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Section 2: Probability Review

1 Notation and Basics

Events An event A is a subset of the sample space 2 (the set of all possible outcomes). We assign
probabilities P(A) € [0,1] to events.

Random Variables A random variable X :  — R is a function that assigns a number to each
outcome.

e Discrete X: takes values in a countable set X
e Continuous X: takes values in R?
Ezample (dice): Sample space Q = {1,2,3,4,5,6}.
1 if wis even

Random variable X (w) = . maps outcomes to {0,1}.
0 otherwise

PMF / PDF / CDF

PMF (Probability Mass Function) px(z) =Pr(X = x) [discrete]
PDF (Probability Density Function) px(x) st. Pr(X € A) = / px(z)dx  [continuous]
A
CDF (Cumulative Distribution Function) Fx(z) =Pr(X <x) [both]
o
Normalization: Zp(x) =1 (discrete) or p(z) dx =1 (continuous)
—o

xT

Notation: When clear from context, we write p(z) instead of px ().

Joint, Marginal, and Conditional Probabilities

Joint: p(z,y)
Marginal: ~— p(z) =Y p(z,y) or p(x)= / p(x,y) dy
Y
tional: oz |v) = P&Y)
Conditional: p(z |y) = o) (when p(y) > 0)

Independence vs Conditional Independence
Independence: X 1LY
p(z,y) =p(@)p(y) <= plz|y) =p()

Conditional independence: X 1 Y | Z

plx,ylz)=plx|2)plylz) <= bp@ly2)=p]=2)
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)

RL: “Future independent of past given present state (and action)’
Markov property.

is conditional independence —

2 Distributions

Bernoulli and Categorical

Bernoulli: X € {0,1}, parameter p
Pr(X =1) =p, Pr(X=0))=1-p

Categorical: A € {1,..., K}, probabilities 71, ..., 7x with ), 7, =1
RL: Discrete-action policies my(a | s) are typically categorical distributions.
Gaussian (Normal)

Multivariate Gaussian: a ~ N (u,X)
e [, = mean vector
e ) = covariance matrix

Diagonal covariance (common in RL):
¥ = diag(o?,...,03)

Independent noise per action dimension. Policy outputs p(s) and either:
e state-independent log o (one learnable vector), or
e state-dependent log o (s)

RL: Continuous-action policies are typically Gaussian: mg(a | s) = N (ug(s),X).

3 Expectation and Variance
Definition of Expectation
Discrete: E[X] = Z x p(x)
Continuous: E[X] = /xoo zp(x)dex

Function of X: E[f(X)] = Zf(:v)p(a:) or /Oo f(z)p(x) dx

Linearity of Expectation
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For any random variables X,Y and constants a, b:

ElaX +bY] = aE[X] + bE[Y]

Variance

Var(X) = E[(X — E[X])?] = E[X?] — (E[X])”

RL: High variance of Monte Carlo estimators is a core issue in RL — motivates baselines and
advantage functions.

4 Conditioning and Bayes
Conditional Probability

Pr(AN B)

Pr(A|B) =~

(assuming Pr(B) > 0)

Chain Rule (rearranging the conditional definition):

p(z,y) =p(@)p(y | ) = p(y) p(z | y)
General form: .
p(ar,. .. zn) = [ [ p(2i | 21:6-1)
i=1
RL: Trajectory probability is a direct application: p(si, a1, s2, a2, ...) = p(s1) [ [, 7(as|s¢) p(Se+1]se, ar)

Law of Total Probability (marginalization + chain rule):

:Zp(x y Zp y|33 ]E:vrwpx)[ (y|$)]

RL: Used in Bellman equations: V(s) = Equr[Q(s,a)] = >, 7(als)Q(s, a)

Conditional Expectation

E[X | Y] = “expected value of X after observing Y”

Tower property (law of total expectation):

E[X] =E[E[X | Y]]
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Bayes Rule

py | z) p(z)

plz|y) = o)

5 Markov Property and MDPs

Markov Property

In an MDP, the transition dynamics satisfy the Markov property: the next state depends only on
the current state and action, not the full history.

p(5t+1 \ slztaalzt) = P(St+1 \ Styat)

Equivalently (conditional independence):

st41 L (s10-1,010-1) | (8¢, ar)

Markov Chain vs MDP

Markov Chain MDP

Actions None ay ~ m(ay | st)

Transition  p(si11 | 5¢) p(ser1 | 8¢, a4)




