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Section 2: Probability Review

1 Notation and Basics

Events An event A is a subset of the sample space Ω (the set of all possible outcomes). We assign
probabilities P (A) ∈ [0, 1] to events.

Random Variables A random variable X : Ω → R is a function that assigns a number to each
outcome.

• Discrete X: takes values in a countable set X
• Continuous X: takes values in Rd

Example (dice): Sample space Ω = {1, 2, 3, 4, 5, 6}.

Random variable X(ω) =

{
1 if ω is even

0 otherwise
maps outcomes to {0, 1}.

PMF / PDF / CDF

PMF (Probability Mass Function) pX(x) = Pr(X = x) [discrete]

PDF (Probability Density Function) pX(x) s.t. Pr(X ∈ A) =

∫
A
pX(x) dx [continuous]

CDF (Cumulative Distribution Function) FX(x) = Pr(X ≤ x) [both]

Normalization:
∑
x

p(x) = 1 (discrete) or

∫ ∞

−∞
p(x) dx = 1 (continuous)

Notation: When clear from context, we write p(x) instead of pX(x).

Joint, Marginal, and Conditional Probabilities

Joint: p(x, y)

Marginal: p(x) =
∑
y

p(x, y) or p(x) =

∫
p(x, y) dy

Conditional: p(x | y) = p(x, y)

p(y)
(when p(y) > 0)

Independence vs Conditional Independence

Independence: X ⊥ Y

p(x, y) = p(x) p(y) ⇐⇒ p(x | y) = p(x)

Conditional independence: X ⊥ Y | Z

p(x, y | z) = p(x | z) p(y | z) ⇐⇒ p(x | y, z) = p(x | z)
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RL: “Future independent of past given present state (and action)” is conditional independence →
Markov property.

2 Distributions

Bernoulli and Categorical

Bernoulli: X ∈ {0, 1}, parameter p

Pr(X = 1) = p, Pr(X = 0) = 1− p

Categorical: A ∈ {1, . . . ,K}, probabilities π1, . . . , πK with
∑

k πk = 1

RL: Discrete-action policies πθ(a | s) are typically categorical distributions.

Gaussian (Normal)

Multivariate Gaussian: a ∼ N (µ,Σ)
• µ = mean vector
• Σ = covariance matrix

Diagonal covariance (common in RL):

Σ = diag(σ2
1, . . . , σ

2
d)

Independent noise per action dimension. Policy outputs µ(s) and either:
• state-independent log σ (one learnable vector), or
• state-dependent log σ(s)

RL: Continuous-action policies are typically Gaussian: πθ(a | s) = N (µθ(s),Σ).

3 Expectation and Variance

Definition of Expectation

Discrete: E[X] =
∑
x

x p(x)

Continuous: E[X] =

∫ ∞

−∞
x p(x) dx

Function of X: E[f(X)] =
∑
x

f(x) p(x) or

∫ ∞

−∞
f(x) p(x) dx

Linearity of Expectation
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For any random variables X,Y and constants a, b:

E[aX + bY ] = aE[X] + bE[Y ]

Variance

Var(X) = E
[
(X − E[X])2

]
= E[X2]−

(
E[X]

)2
RL: High variance of Monte Carlo estimators is a core issue in RL → motivates baselines and
advantage functions.

4 Conditioning and Bayes

Conditional Probability

Pr(A | B) =
Pr(A ∩B)

Pr(B)
(assuming Pr(B) > 0)

Chain Rule (rearranging the conditional definition):

p(x, y) = p(x) p(y | x) = p(y) p(x | y)

General form:

p(x1, . . . , xn) =
n∏

i=1

p(xi | x1:i−1)

RL: Trajectory probability is a direct application: p(s1, a1, s2, a2, . . .) = p(s1)
∏

t π(at|st) p(st+1|st, at)

Law of Total Probability (marginalization + chain rule):

p(y) =
∑
x

p(x, y) =
∑
x

p(x) p(y | x) = Ex∼p(x)[p(y | x)]

RL: Used in Bellman equations: V (s) = Ea∼π[Q(s, a)] =
∑

a π(a|s)Q(s, a)

Conditional Expectation

E[X | Y ] = “expected value of X after observing Y ”

Tower property (law of total expectation):

E[X] = E
[
E[X | Y ]

]
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Bayes Rule

p(x | y) = p(y | x) p(x)
p(y)

5 Markov Property and MDPs

Markov Property

In an MDP, the transition dynamics satisfy the Markov property: the next state depends only on
the current state and action, not the full history.

p(st+1 | s1:t, a1:t) = p(st+1 | st, at)

Equivalently (conditional independence):

st+1 ⊥ (s1:t−1, a1:t−1)
∣∣ (st, at)

Markov Chain vs MDP

Markov Chain MDP

Actions None at ∼ π(at | st)

Transition p(st+1 | st) p(st+1 | st, at)
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