PyTorch Tutorial

CS 185/285 Deep RL

PyTorch Tutorial

CS 185/285 Deep RL

What you will leave with:

- Tensor basics (shapes, indexing, broadcasting, dtype/
device)

PyTorch Tutorial

CS 185/285 Deep RL

What you will leave with:

- Tensor basics (shapes, indexing, broadcasting, dtype/

device)
« Autograd mental model (when gradients are tracked &

why)

PyTorch Tutorial

CS 185/285 Deep RL

What you will leave with:

- Tensor basics (shapes, indexing, broadcasting, dtype/
device)

« Autograd mental model (when gradients are tracked &
why)

« How to write a correct training loop (zero_grad —
backward — step)

PyTorch Tutorial

CS 185/285 Deep RL

What you will leave with:

- Tensor basics (shapes, indexing, broadcasting, dtype/
device)

« Autograd mental model (when gradients are tracked &
why)

« How to write a correct training loop (zero_grad —
backward — step)

A full modern training recipe: AdamW, schedulers,
grad clipping, eval mode

PyTorch Tutorial

CS 185/285 Deep RL

What you will leave with:

- Tensor basics (shapes, indexing, broadcasting, dtype/
device)

« Autograd mental model (when gradients are tracked &
why)

« How to write a correct training loop (zero_grad —
backward — step)

A full modern training recipe: AdamW, schedulers,
grad clipping, eval mode

- Common gotchas + debugging tools

PyTorch Tutorial

CS 185/285 Deep RL

What you will leave with:

- Tensor basics (shapes, indexing, broadcasting, dtype/
device)

« Autograd mental model (when gradients are tracked &
why)

« How to write a correct training loop (zero_grad —
backward — step)

A full modern training recipe: AdamW, schedulers, Single GPU. single process. We skip muli-
grad clipping, eval mode GPU, sharding, and distributed details.

- Common gotchas + debugging tools

Scope

1) Tensors

2) Autograd

3) Modules

4) Training loop

5) Data + eval

6) Practical recipes

7) What’s new in modern
PyTorch

Shapes, indexing, broadcasting, dtype & device

Computation graphs, requires_grad, no_grad, detach

nn.Module, parameters, buffers, state_dict

loss, backward, optimizer, schedulers, clipping

Dataloader, model.train/eval, inference_mode

Checkpointing, debugging & gotchas

torch.compile

Part 1 — Tensors

The core data structure (and where it lives)

Tensors: txged n-D arrays on a device

A tensor is like a NumPy ndarray, but with: GPU support + autograd metadata.

Key attributes

shape

- dtype

* device

* requires_grad

* layout (rare)

- strides (important for views)

Tensors: txged n-D arrays on a device

A tensor is like a NumPy ndarray, but with: GPU support + autograd metadata.

shape = (4, 6)
Key attributes

shape

- dtype

* device

* requires_grad

* layout (rare)

- strides (important for views) Indexing examples:
x[0] — first row (shape (6,))
x[:, 2:5] — slice columns 2..4 (shape (4,3))
x.reshape(2, 2, 6) » same data, new view if contiguous

Tensors: txged n-D arrays on a device

A tensor is like a NumPy ndarray, but with: GPU support + autograd metadata.

shape = (4, 6)
Key attributes

shape

- dtype

* device

* requires_grad

* layout (rare)

- strides (important for views) Indexing examples:
x[0] — first row (shape (6,))
x[:, 2:5] — slice columns 2..4 (shape (4,3))
x.reshape(2, 2, 6) » same data, new view if contiguous

Frequent tensors in RL code

Rollouts are just tensors: obs (B,T,<ob_dim>), actions (B,T,<a_dim>), rewards
(B,T). Getting shapes right is most of the battle.

Creating tensors gand controlling dtxge/devicez

Common constructors

1 import torch

2

3 # Constructors

4 x = torch.zeros(3, 4) # float32 on CPU
5y =torch.randn(10, device='cuda') # on GPU
§)

7 # From Python / NumPy

8 a = torch.tensor([1, 2, 3]) # copies data

9 b =torch.as_tensor(a) # avoids copy when possible
10

11 # dtype

12 w = torch.ones(5, dtype=torch.float64)

13

14 # Randomness control (more later)

15 torch.manual_seed(0)

Creating tensors gand controlling dtxge/devicez

Defaults

Common constructors . Default device: CPU

1 import torch * Default floating dtype: float32
2 * Integers default to int64

3 # Constructors _
4 x = torch.zeros(3, 4) # float32 on CPU Tip: for large tensors, create on the target device to
5y = torch.randn(10, device='cuda') # on GPU avoid extra copies.

§)

7 # From Python / NumPy

8 a = torch.tensor([1, 2, 3]) # copies data

9 b =torch.as_tensor(a) # avoids copy when possible

10

11 # dtype

12 w = torch.ones(5, dtype=torch.float64)

13

14 # Randomness control (more later)

15 torch.manual_seed(0)

Common constructors

1 import torch

2

3 # Constructors

4 x = torch.zeros(3, 4) # float32 on CPU
5y =torch.randn(10, device='cuda') # on GPU
6

7 # From Python / NumPy

8 a = torch.tensor([1, 2, 3]) # copies data

9 b =torch.as_tensor(a)
10

11 # dtype

12 w = torch.ones(5, dtype=torch.float64)
13

14 # Randomness control (more later)

15 torch.manual_seed(0)

avoids copy when possible

Creating tensors gand controlling dtxge/devicez

Defaults

+ Default device: CPU
+ Default floating dtype: float32
* Integers default to int64

Tip: for large tensors, create on the target device to
avoid extra copies.

Gotchas about copying (don’t really need to
worry about this)

torch.tensor(np_array) copies.
Use torch.from_numpy / as_tensor for zero-copy views
(CPU only).

Once data is on GPU, keep the whole pipeline in torch.

Broadcasting & shaEe sanitx checks

Broadcasting is powerful — and the #1 source of silent bugs.

Example: add a bias to a batch logits (BxA)

logits: (B, A) Plas (A)
bias: (A,) +
— logits + bias: (B, A)

Broadcasting & shaEe sanitx checks

Broadcasting is powerful — and the #1 source of silent bugs.

Example: add a bias to a batch logits (BxA)

logits: (B, A) Plas (A)
bias: (A,) +
— logits + bias: (B, A)

Best practices

* Assert shapes early

+ Use .shape prints liberally

* Prefer explicit reshape/unsqueeze over “magic’
broadcasting

+ Watch out for (B,) vs (B,1)

H

Broadcasting & shaEe sanitx checks

Broadcasting is powerful — and the #1 source of silent bugs.

Example: add a bias to a batch logits (BxA)

logits: (B, A) . res
bias: (A,) =
— logits + bias: (B, A)

Best practices

+ Assert shapes early
* Use .shape prints liberally Recommendation: first reshape bias to (1, A),

* Prefer explicit reshape/unsqueeze over “magic” then broadcast (better clarity)

broadcasting
« Watch out for (B,) vs (B,1)

Device placement: CPU vs GPU

Tensors live on a device. Operations generally require all inputs to be on the same device.

Canonical pattern

1 device = torch.device('cuda’ if torch.cuda.is_available() else 'cpu')
2

3 model = MyNet().to(device)

4

5 for batch in loader:

6 obs, target = batch

7 obs = obs.to(device, non_blocking=True)

8 target = target.to(device, non_blocking=True)

Device placement: CPU vs GPU

Tensors live on a device. Operations generally require all inputs to be on the same device.

CPU (host) GPU (device)
Canonical pattern
DatalLoader —p- Model
(batch) . + loss
1 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu’) to(device)

2
3 model = MyNet().to(device)
4

5 for batch in loader:

6 obs, target = batch

7 obs = obs.to(device, non_blocking=True)

8 target = target.to(device, non_blocking=True)

Device placement: CPU vs GPU

Tensors live on a device. Operations generally require all inputs to be on the same device.

CPU (host) GPU (device)
Canonical pattern
DataLoader —p- Model
(batch) . + loss
1 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu’) to(device)
2
3 model = MyNet().to(device)
4
5 for batch in loader: Common device errors
6 obs, target = batch
7 obs = obs.to(device, non_blocking=True) “Expected all tensors to be on the same device”
8 target = target.to(device, non_blocking=True) — some tensor stayed on CPU (often targets /
masks).

Fix: move *every* tensor used in the loss.

Part 2 — Autograd

How PyTorch tracks gradients

Autograd: dxnamic comEutation graEhs

During the forward pass, PyTorch records operations so it can run backprop later.

4 forward

backward |

Autograd: dxnamic comEutation graEhs

During the forward pass, PyTorch records operations so it can run backprop later.

4 forward

Key idea
Graph is built *as you run Python*.

If you do control flow (if/for), the graph matches
what actually ran.

backward |

Autograd: dxnamic comEutation graEhs

During the forward pass, PyTorch records operations so it can run backprop later.

4 forward

Key idea
Graph is built *as you run Python*.

If you do control flow (if/for), the graph matches
what actually ran.

Backprop requires a scalar

Typically you compute a scalar loss (e.g., MSE,
cross-entropy).

loss.backward() computes gradients for all
parameters that contributed.

backward |

Autograd: dxnamic comEutation graEhs

During the forward pass, PyTorch records operations so it can run backprop later.

4 forward

Key idea
Graph is built *as you run Python*.

If you do control flow (if/for), the graph matches
what actually ran.

Backprop requires a scalar

Typically you compute a scalar loss (e.g., MSE,
cross-entropy).

loss.backward() computes gradients for all
parameters that contributed.

RL Losses

Your loss can be a policy gradient objective,
TD error, or PPO clip loss — but it still ends as
a scalar you backprop.

backward |

More on gradients

Where gradient information is stored

+ Parameters in nn.Module have requires_grad=True by default
+ Other tensors will not have requires_grad=True by default

+ Gradients accumulate into .grad

- .grad is only populated for leaf tensors

Tiny example

w = torch.randn(3, requires_grad=True)
x = torch.randn(3)

y = (W * x).sum()
y.backward()

print(w.grad)
print(x.grad)

When gradients are tracked gand how to turn them offz

Useful tools:

Tool What it does Typical use

with torch.no_grad(): Disables gradient tracking (but tensors can later be used Evaluation loops, target networks, data
with autograd). preprocessing

with _ Like no_grad, but more restrictive and can be faster Pure inference / evaluation when you

torch.inference_mode(): (disables extra autograd bookkeeping). never need grads

x = x.detach() Cuts the graph: x becomes a tensor that shares storage but Stop-grad in RL (e.g., advantage

does not track gradients. estimates, target values)

Part 3 — nn.Module

How you define models

nn.Module essentials

Modules are Python classes that hold parameters and define a forward pass.

A simple MLP

1 import torch

2 import torch.nn as nn

3

4 class MLP(nn.Module):

5 def __init__(self, in_dim, hidden=256, out_dim=10):
6 super().__init__()

7 self.net = nn.Sequential(

8

nn.Linear(in_dim, hidden),
9 nn.RelLU(),
10 nn.Linear(hidden, hidden),
nn.ReLU(),
12 nn.Linear(hidden, out_dim),
13)
14
15 def forward(self, x):
16 return self.net(x)
17
18 model = MLP(128)

nn.Module essentials

Modules are Python classes that hold parameters and define a forward pass.

A simple MLP

1 import torch
2 import torch.nn as nn
3
4 class MLP(nn.Module):
def __init__(self, in_dim, hidden=256, out_dim=10):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, hidden),
nn.RelLU(),
nn.Linear(hidden, hidden),
nn.ReLU(),
nn.Linear(hidden, out_dim),

)

15 def forward(self, x):
16 return self.net(x)
17

18 model = MLP(128)

Parameters & buffers

» Parameters: nn.Parameter — optimized

+ Buffers: persistent state not optimized (e.g.,
running_mean in BatchNorm) — don’t worry about this
(we won’t use BatchNorm)

Both appear in state_dict().

nn.Module essentials

Modules are Python classes that hold parameters and define a forward pass.

A simple MLP

1 import torch
2 import torch.nn as nn
3
4 class MLP(nn.Module):
def __init__(self, in_dim, hidden=256, out_dim=10):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, hidden),
nn.RelLU(),
nn.Linear(hidden, hidden),
nn.ReLU(),
nn.Linear(hidden, out_dim),

)

15 def forward(self, x):
16 return self.net(x)
17

18 model = MLP(128)

Parameters & buffers

» Parameters: nn.Parameter — optimized

+ Buffers: persistent state not optimized (e.g.,
running_mean in BatchNorm) — don’t worry about this
(we won’t use BatchNorm)

Both appear in state_dict().

Typical Modules in RL

Actor and critic can be separate Modules.

A common thing to do is share a trunk (e.g., a vision
encoder) and have two heads (two Linear layers) for
the actor and critic.

Part 4 — Training Loop

The “three-liner” + modern recipes

The canonical training step

Most training code is just this pattern, plus a few “recipe” exiras:

[1) zero_grad }{ 2) forward]»[3) loss]»[4) backward }»[5) step J

The canonical training step

Most training code is just this pattern, plus a few “recipe” exiras:

[1) zero_grad }{ 2) forward]»[3) loss]»[4) backward }»[5) step J

Minimal code

optimizer.zero_grad(set_to_none=True)
loss = compute_loss(model, batch)
loss.backward()

optimizer.step()

The canonical training step

Most training code is just this pattern, plus a few “recipe” exiras:

[1) zero_grad }{ 2) forward]»[3) loss]»[4) backward }»[5) step J

Minimal code Recipe extras
optimizer.zero_grad(set_to_none=True) « gradient clipping

loss = compute_loss(model, batch) * weight decay (AdamW)
loss.backward() * Ir schedulers
optimizer.step() * mixed precision

* logging (loss, grad norms)

oEtimizer.zero_gradQ: whx and how

Why zero grads?

Because grads accumulate into param.grad.

If you forget, training usually “blows up” or behaves like you
increased batch size unpredictably.

Two modes

optimizer.zero_grad(set_to_none=True)

optimizer.zero_grad(set_to_none=False)

oEtimizer.zero_gradQ: whx and how

Why zero grads? Gradient accumulation
Because grads accumulate into param.grad. If you *want* accumulation: do NOT zero every
microbatch.

If you forget, training usually “blows up” or behaves like you
increased batch size unpredictably. Example: accumulate N microbatches then step once.

Two modes Accumulation pattern

1 # Recommended (often slightly faster + saves memory) 1 for i, batch in enumerate(loader):

P Op’[imizel’.zel’o_grad(Set_to_none=Tl’ue) IOSS — Compute_loss(batch) / accum_steps

3 loss.backward()
4 # Equivalent to setting grads to 0 (more work)

5 optimizer.zero_grad(set_to_none=False) if (i + 1) % accum_steps == 0:

clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
optimizer.zero_grad(set_to_none=True)

Optimizers: AdamW, SGD, and parameter groups

AdamW + param groups

1 import torch.optim as optim

2
3 # Common default for modern deep nets

4 optimizer = optim.AdamW/(

5 model.parameters(),

6 Ir=3e-4,
weight_decay=1e-2,

10 # Parameter groups (e.g., different LR for head)
11 optimizer = optim.AdamW([

12 {'params': model.trunk.parameters(), 'Ir": 3e-4},
13 {'params': model.head.parameters(), 'lr': 1e-3},
14], weight_decay=1e-2)

Optimizers: AdamW, SGD, and parameter groups

AdamW + param groups

Weight decay vs L2

; 7Ol SR IR S T AdamW uses decoupled weight decay

3 # Common default for modern deep nets [preneyiee @uer L2 ey in Al

4 optimizer = optim.AdamW/(L : :
5 model.parameters(), Tip: typically do NOT weight-decay biases or

6 Ir=3e-4, LayerNorm params (use groups).
weight_decay=1e-2,

10 # Parameter groups (e.g., different LR for head)
11 optimizer = optim.AdamW([

12 {'params': model.trunk.parameters(), 'Ir": 3e-4},
13 {'params': model.head.parameters(), 'lr': 1e-3},
14], weight_decay=1e-2)

Optimizers: AdamW, SGD, and parameter groups

AdamW + param groups

Weight decay vs L2

; 7Ol SR IR S T AdamW uses decoupled weight decay

3 # Common default for modern deep nets [preneyiee @uer L2 ey in Al

4 optimizer = optim.AdamW/(L : :
5 model.parameters(), Tip: typically do NOT weight-decay biases or

6 Ir=3e-4, LayerNorm params (use groups).
weight_decay=1e-2,

10 # Parameter groups (e.g., different LR for head)

11 optimizer = optim.AdamW([RL note

12 {'params": model.trunk.parameters(), 'Ir': 3e-4}, Actor/critic often benefit from separate learning
13 {'params’: model.head.parameters(), 'Ir": 1e-3}, rates. You might experiment with tuning

14-], weight_decay=1e-2) learning rates separately for these two (e.g.,

higher learning rate for the critic).

Gradient cIiEEing ga common stabilitx toolz

Why clip?

Prevents rare but huge gradients from destabilizing training.

Common in just about all modern NN training runs

Clip before optimizer.step()

1 from torch.nn.utils import clip_grad_norm_
2

3 loss.backward()

4

5 # Clip by global norm

6 max_norm = 1.0

7 grad_norm = clip_grad_norm_(model.parameters(),
max_norm)

8

9 optimizer.step()

Gradient cIiEEing ga common stabilitx toolz

Why clip?

Prevents rare but huge gradients from destabilizing training.

Common in just about all modern NN training runs

Clip before optimizer.step()

1 from torch.nn.utils import clip_grad_norm_
2

3 loss.backward()

4

Mental model:

If lgll > max_norm, rescale: g « g - (max_norm / ligll)

5 # Clip by global norm

6 max_norm = 1.0

7 grad_norm = clip_grad_norm_(model.parameters(),
max_norm)

8

9 optimizer.step()

Learning rate schedules

Schedulers don't fix bad hyperparameters, but they often improve final performance.

Cosine schedule

1 from torch.optim.Ir_scheduler import CosineAnnealingLR

2

3 optimizer = torch.optim.AdamW(model.parameters(), Ir=3e-4)

4 scheduler = CosineAnnealingLR(optimizer, T_max=num_steps)
5

6 for step, batch in enumerate(loader):

7 ..

8 optimizer.step()

9 scheduler.step() # usually after optimizer.step()

Learning rate schedules

Schedulers don't fix bad hyperparameters, but they often improve final performance.

Where to call scheduler.step()

Most step-per-batch schedulers: after

1 from torch.optim.Ir_scheduler import CosineAnnealingLR optimizer.step().

2 . . .
3 optimizer = torch.optim.AdamW(model.parameters(), Ir=3e-4) Plateau schedulers: call after validation metric
4 scheduler = CosineAnnealingLR(optimizer, T_max=num_steps) (e.g., after validation loss plateaus)

5

6 for step, batch in enumerate(loader):

7 ..

8 optimizer.step()

9 scheduler.step() # usually after optimizer.step()

Cosine schedule

Learning rate schedules

Schedulers don't fix bad hyperparameters, but they often improve final performance.

Where to call scheduler.step()
Most step-per-batch schedulers: after

Cosine schedule

1 from torch.optim.Ir_scheduler import CosineAnnealingLR optimizer.step().

2 . . .
3 optimizer = torch.optim.AdamW(model.parameters(), Ir=3e-4) Plateau schedulers: call after validation metric
4 scheduler = CosineAnnealingLR(optimizer, T_max=num_steps) (e.g., after validation loss plateaus)

)

6 for step, batch in enumerate(loader): _

7 .. Warmup (common recipe)

8 optimizer.step()

9 scheduler.step() # usually after optimizer.step() For large models: ramp LR from 0 — target over

first few % of steps.
Implement with LambdalLR or a custom
schedule.

Learning rate schedules

Schedulers don't fix bad hyperparameters, but they often improve final performance.

Where to call scheduler.step()

Cosine schedule Most step-per-batch schedulers: after

from torch.optim.Ir_scheduler import CosineAnnealingLR optimizer.step().

optimizer = torch.optim.AdamW(model.parameters(), Ir=3e-4) Plateau schedulers: call after validation metric
scheduler = CosineAnnealingLR(optimizer, T_max=num_steps) (e.g., after validation loss plateaus)

for step, batch in enumerate(loader): o (ipe)
armup (common recipe

optimizer.step()
scheduler.step()

For large models: ramp LR from 0 — target over
first few % of steps.

Implement with LambdalLR or a custom
schedule.

Schematic: warmup + cosine decay

v

Part 5 — Data & Evaluation

Feeding in training data, and also evaluating models

Data EiEeIine: Dataset @ DatalLoader

Typical setup

Key knobs

1 from torch.utils.data import Dataset, DatalLoader shuffle: True for SGD
2

3 class MyDataset(Dataset):
4 def __len__(self):

5 return N _ In RL, your training dataset will typically be a replay
6 def__getitem__(self, idx): buffer

7 return obsl[idx], target[idx]

num_workers: parallel CPU loading
pin_memory: faster CPU—GPU copies

8

9 loader = Datal.oader(
10 MyDataset(),

11 batch_size=256,
12 shuffle=True,

13 num_workers=4,
14 pin_memory=True,
15)

Data EiEeIine: Dataset @ DatalLoader

Typical setup

Key knobs
1 from torch.utils.data import Dataset, DatalLoader shuffle: True for SGD
2 num_workers: parallel CPU loading
3 class MyDataset(Dataset): pin_memory: faster CPU—GPU copies
4 def __len__(self):
5 return N _ In RL, your training dataset will typically be a replay
6 def__getitem__(self, idx): buffer
7 return obsl[idx], target[idx]

8
9 loader = Datal.oader(
10 MyDataset(), Gotcha

11 batch_size=256,
12 shuffle=True, If your Dataset returns NumPYy arrays, convert to torch

tensors in __getitem__.

13 num_workers=4, . . -
Avoid mixing numpy ops in the training step.

14 pin_memory=True,
15)

Training vs evaluation mode

Two separate switches:

1) model.train() / model.eval() 2) grad mode (no_grad / inference_mode)
Changes behavior of certain layers: Controls whether autograd tracks ops.
* Dropout: on/off
 BatchNorm: batch stats vs running stats During evaluation:
model.eval()

Always set the right mode. with torch.inference_mode():

Training vs evaluation mode

Two separate switches:

1) model.train() / model.eval() 2) grad mode (no_grad / inference_mode)
Changes behavior of certain layers: Controls whether autograd tracks ops.
* Dropout: on/off
- BatchNorm: batch stats vs running stats During evaluation:
model.eval()

Always set the right mode. with torch.inference_mode():

Recommended pattern

1 model.train()

2 for batch in train_loader:
3 loss=...

4

5

6 model.eval()

7 with torch.inference_mode():
8 for batch in val_loader:

9 metrics = ...

Part 6 — Other training loop things

Checkpointing, debugging, best practices

Saving & loading: state_dict and checkpoints

Save weights (and optimizer state) so training can resume exactly.

Checkpoint pattern

Best practice

For *weights only”* files: save and load just

1 # Save model.state_dict().

2 ckpt ={
'model": model.state_dict(),
'optim'": optimizer.state_dict(),
'step’: step,
'rng": torch.get_rng_state(),
7}
8 torch.save(ckpt, 'ckpt.pt)
9
10 # Load
11 ckpt = torch.load('ckpt.pt', map_location="'cpu', weights_only=False)
12 model.load_state_dict(ckpt['model'])
13 optimizer.load_state_dict(ckpt['optim'])

When loading from untrusted sources, prefer
weights_only=True.

Newer PyTorch (>=2.6)

torch.load changed the default for
weights_only to improve security from False
to True. If you rely on loading arbitrary pickled
objects, you may need to manually specify
weights_only=False.

Debugging toolbox

First steps

* Print tensor shapes + dtypes

« Check devices (CPU vs CUDA)

« Look for NaNs/Infs: torch.isnan / torch.isfinite
* Overfit a tiny batch (sanity test)

Debugging toolbox

First steps Common culprits

* Print tensor shapes + dtypes * Forgetting model.train()/eval()

« Check devices (CPU vs CUDA) « Wrong target dtype (CE needs int64)
» Look for NaNs/Infs: torch.isnan / torch.isfinite * Learning rate too high

* Overfit a tiny batch (sanity test) - Silent broadcasting bug

+ Accidental in-place ops on tensors needed for
backward

Debugging toolbox

First steps Common culprits

* Print tensor shapes + dtypes * Forgetting model.train()/eval()

« Check devices (CPU vs CUDA) « Wrong target dtype (CE needs int64)

» Look for NaNs/Infs: torch.isnan / torch.isfinite * Learning rate too high

* Overfit a tiny batch (sanity test) - Silent broadcasting bug
+ Accidental in-place ops on tensors needed for
backward

RL-specific gotcha

Stop-grad mistakes: accidentally backprop through
targets/returns/advantages can cause instability.
Use detach() intentionally.

Debugging toolbox

First steps

* Print tensor shapes + dtypes

« Check devices (CPU vs CUDA)

* Look for NaNs/Infs: torch.isnan / torch.isfinite
« Overfit a tiny batch (sanity test)

Useful snippets
torch.autograd.set_detect_anomaly(True)

with torch.no_grad():
total = 0.0
for p in model.parameters():
if p.grad is not None:
total += p.grad.norm().item()
print(‘grad_norm’, total)

torch.cuda.synchronize()

Common culprits

* Forgetting model.train()/eval()

+ Wrong target dtype (CE needs int64)

* Learning rate too high

- Silent broadcasting bug

+ Accidental in-place ops on tensors needed for
backward

RL-specific gotcha

Stop-grad mistakes: accidentally backprop through
targets/returns/advantages can cause instability.
Use detach() intentionally.

Gotchas & best practices

Gotchas Best practices

« Keep everything in torch; convert NumPy at
the boundary

« Use optimizer.zero_grad(set_to_none=True)

« Log: loss, learning rate, grad_norm,
parameter_norm

- Save checkpoints with model/optimizer
state_dict

- Start simple: overfit a tiny batch — scale up

- Use inference_mode for evaluation loops

« Mixing NumPy and torch in the training
step (breaks device/grad flow)

« Forgetting .to(device) on targets/masks

* In-place ops (x +=y) on values needed
for backward

* view() on non-contiguous tensors (use
reshape or .contiguous())

« Calling softmax before CrossEntropyLoss

Part 7 — Modern PyTorch (2.x)

Not needed for this class, but nonetheless might be useful

torch.comEiIe: sEeed up training with minimal changes

PyTorch 2.x introduced a compiler stack you can often use with one line.

When it helps

One-liner

+ Larger models
model = MyNet().to(device) « Many repeated ops
* GPU-bound training

model = torch.compile(model) With “graph breaks”, you may get smaller gains
(but the code will still be correct).
for batch in loader:

When to skip (for class)

First implementation: start in eager mode.
Turn on compile only after your code seems to
work.

Checklist: a solid PyTorch training script

- Set device + move model and all batch tensors

- model.train() in training; model.eval() + inference_mode() in evaluation

 Training step: zero_grad(set_to_none=True) — forward — loss — backward — clip — step
« Use AdamW (and parameter groups if needed) + an LR schedule

* Log loss, LR, grad norms; checkpoint state_dict regularly

- Don’t mix NumPy ops into the training step; keep everything in torch

