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What you will leave with:

• Tensor basics (shapes, indexing, broadcasting, dtype/
device)

• Autograd mental model (when gradients are tracked & 
why)

• How to write a correct training loop (zero_grad → 
backward → step)

• A full modern training recipe: AdamW, schedulers, 
grad clipping, eval mode 

• Common gotchas + debugging tools

Scope
Single GPU, single process. We skip multi-
GPU, sharding, and distributed details.



1) Tensors Shapes, indexing, broadcasting, dtype & device

2) Autograd Computation graphs, requires_grad, no_grad, detach

3) Modules nn.Module, parameters, buffers, state_dict

4) Training loop loss, backward, optimizer, schedulers, clipping

5) Data + eval DataLoader, model.train/eval, inference_mode

6) Practical recipes Checkpointing, debugging & gotchas

7) What’s new in modern 
PyTorch torch.compile



Part 1 — Tensors
The core data structure (and where it lives)
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A tensor is like a NumPy ndarray, but with: GPU support + autograd metadata.

Key attributes

shape
• dtype
• device
• requires_grad
• layout (rare)
• strides (important for views)
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Tensors: typed n-D arrays on a device

A tensor is like a NumPy ndarray, but with: GPU support + autograd metadata.

Key attributes

shape
• dtype
• device
• requires_grad
• layout (rare)
• strides (important for views)

shape = (4, 6)

Indexing examples:
x[0] → first row (shape (6,))
x[:, 2:5] → slice columns 2..4 (shape (4,3))
x.reshape(2, 2, 6) → same data, new view if contiguous

Frequent tensors in RL code
Rollouts are just tensors: obs (B,T,<ob_dim>), actions (B,T,<a_dim>), rewards 
(B,T). Getting shapes right is most of the battle.



Creating tensors (and controlling dtype/device)

Common constructors

 1 import torch
 2 
 3 # Constructors
 4 x = torch.zeros(3, 4)              # float32 on CPU
 5 y = torch.randn(10, device='cuda') # on GPU
 6 
 7 # From Python / NumPy
 8 a = torch.tensor([1, 2, 3])         # copies data
 9 b = torch.as_tensor(a)             # avoids copy when possible
10 
11 # dtype
12 w = torch.ones(5, dtype=torch.float64)
13 
14 # Randomness control (more later)
15 torch.manual_seed(0)
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Creating tensors (and controlling dtype/device)

Common constructors

 1 import torch
 2 
 3 # Constructors
 4 x = torch.zeros(3, 4)              # float32 on CPU
 5 y = torch.randn(10, device='cuda') # on GPU
 6 
 7 # From Python / NumPy
 8 a = torch.tensor([1, 2, 3])         # copies data
 9 b = torch.as_tensor(a)             # avoids copy when possible
10 
11 # dtype
12 w = torch.ones(5, dtype=torch.float64)
13 
14 # Randomness control (more later)
15 torch.manual_seed(0)

Defaults

Gotchas about copying (don’t really need to 
worry about this)
torch.tensor(np_array) copies.
Use torch.from_numpy / as_tensor for zero-copy views 
(CPU only).

Once data is on GPU, keep the whole pipeline in torch.

• Default device: CPU
• Default floating dtype: float32
• Integers default to int64

Tip: for large tensors, create on the target device to 
avoid extra copies.



Broadcasting & shape sanity checks

Broadcasting is powerful — and the #1 source of silent bugs.

Example: add a bias to a batch

logits: (B, A)
bias:   (A,)
→ logits + bias: (B, A)

logits (B×A)

bias (A)

+
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• Use .shape prints liberally
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Broadcasting & shape sanity checks

Broadcasting is powerful — and the #1 source of silent bugs.

Example: add a bias to a batch

logits: (B, A)
bias:   (A,)
→ logits + bias: (B, A)

logits (B×A)

bias (A)

+

Best practices

• Assert shapes early
• Use .shape prints liberally
• Prefer explicit reshape/unsqueeze over “magic” 
broadcasting
• Watch out for (B,) vs (B,1)

Recommendation: first reshape bias to (1, A),
then broadcast (better clarity)



Device placement: CPU vs GPU

Tensors live on a device. Operations generally require all inputs to be on the same device.

Canonical pattern

1 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
2 
3 model = MyNet().to(device)
4 
5 for batch in loader:
6     obs, target = batch
7     obs = obs.to(device, non_blocking=True)
8     target = target.to(device, non_blocking=True)
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Device placement: CPU vs GPU

Tensors live on a device. Operations generally require all inputs to be on the same device.

Canonical pattern

1 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
2 
3 model = MyNet().to(device)
4 
5 for batch in loader:
6     obs, target = batch
7     obs = obs.to(device, non_blocking=True)
8     target = target.to(device, non_blocking=True)

CPU (host) GPU (device)

DataLoader
(batch)

Model
+ loss

.to(device)

Common device errors
“Expected all tensors to be on the same device”
→ some tensor stayed on CPU (often targets / 
masks).

Fix: move *every* tensor used in the loss.



Part 2 — Autograd
How PyTorch tracks gradients



Autograd: dynamic computation graphs
During the forward pass, PyTorch records operations so it can run backprop later.
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Autograd: dynamic computation graphs
During the forward pass, PyTorch records operations so it can run backprop later.

Key idea
Graph is built *as you run Python*.

If you do control flow (if/for), the graph matches 
what actually ran.

Backprop requires a scalar
Typically you compute a scalar loss (e.g., MSE, 
cross-entropy).

loss.backward() computes gradients for all 
parameters that contributed.

RL Losses
Your loss can be a policy gradient objective, 
TD error, or PPO clip loss — but it still ends as 
a scalar you backprop.



More on gradients

Where gradient information is stored
• Parameters in nn.Module have requires_grad=True by default
• Other tensors will not have requires_grad=True by default
• Gradients accumulate into .grad
• .grad is only populated for leaf tensors

Tiny example
1 w = torch.randn(3, requires_grad=True)
2 x = torch.randn(3)
3 
4 y = (w * x).sum()
5 y.backward()
6 
7 print(w.grad)   # tensor([...])
8 print(x.grad)   # None (requires_grad=False)



When gradients are tracked (and how to turn them off)

Useful tools:

Tool What it does Typical use

with torch.no_grad(): Disables gradient tracking (but tensors can later be used 
with autograd).

Evaluation loops, target networks, data 
preprocessing

with 
torch.inference_mode():

Like no_grad, but more restrictive and can be faster 
(disables extra autograd bookkeeping).

Pure inference / evaluation when you 
never need grads

x = x.detach() Cuts the graph: x becomes a tensor that shares storage but 
does not track gradients.

Stop-grad in RL (e.g., advantage 
estimates, target values)



Part 3 — nn.Module
How you define models



nn.Module essentials
Modules are Python classes that hold parameters and define a forward pass.

A simple MLP
 1 import torch
 2 import torch.nn as nn
 3 
 4 class MLP(nn.Module):
 5     def __init__(self, in_dim, hidden=256, out_dim=10):
 6         super().__init__()
 7         self.net = nn.Sequential(
 8             nn.Linear(in_dim, hidden),
 9             nn.ReLU(),
10             nn.Linear(hidden, hidden),
11             nn.ReLU(),
12             nn.Linear(hidden, out_dim),
13         )
14 
15     def forward(self, x):
16         return self.net(x)
17 
18 model = MLP(128)
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• Parameters: nn.Parameter → optimized
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running_mean in BatchNorm) → don’t worry about this 
(we won’t use BatchNorm)

Both appear in state_dict().



nn.Module essentials
Modules are Python classes that hold parameters and define a forward pass.

A simple MLP
 1 import torch
 2 import torch.nn as nn
 3 
 4 class MLP(nn.Module):
 5     def __init__(self, in_dim, hidden=256, out_dim=10):
 6         super().__init__()
 7         self.net = nn.Sequential(
 8             nn.Linear(in_dim, hidden),
 9             nn.ReLU(),
10             nn.Linear(hidden, hidden),
11             nn.ReLU(),
12             nn.Linear(hidden, out_dim),
13         )
14 
15     def forward(self, x):
16         return self.net(x)
17 
18 model = MLP(128)

Parameters & buffers
• Parameters: nn.Parameter → optimized
• Buffers: persistent state not optimized (e.g., 
running_mean in BatchNorm) → don’t worry about this 
(we won’t use BatchNorm)

Both appear in state_dict().

Typical Modules in RL

Actor and critic can be separate Modules.

A common thing to do is share a trunk (e.g., a vision 
encoder) and have two heads (two Linear layers) for 
the actor and critic.



Part 4 — Training Loop
The “three-liner” + modern recipes



The canonical training step
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1) zero_grad 2) forward 3) loss 4) backward 5) step
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The canonical training step
Most training code is just this pattern, plus a few “recipe” extras:

1) zero_grad 2) forward 3) loss 4) backward 5) step

Minimal code
optimizer.zero_grad(set_to_none=True)
loss = compute_loss(model, batch)
loss.backward()
optimizer.step()

Recipe extras
• gradient clipping
• weight decay (AdamW)
• lr schedulers
• mixed precision
• logging (loss, grad norms)



optimizer.zero_grad(): why and how

Why zero grads?
Because grads accumulate into param.grad.

If you forget, training usually “blows up” or behaves like you 
increased batch size unpredictably.

Two modes
1 # Recommended (often slightly faster + saves memory)
2 optimizer.zero_grad(set_to_none=True)
3 
4 # Equivalent to setting grads to 0 (more work)
5 optimizer.zero_grad(set_to_none=False)



optimizer.zero_grad(): why and how

Why zero grads?
Because grads accumulate into param.grad.

If you forget, training usually “blows up” or behaves like you 
increased batch size unpredictably.

Two modes
1 # Recommended (often slightly faster + saves memory)
2 optimizer.zero_grad(set_to_none=True)
3 
4 # Equivalent to setting grads to 0 (more work)
5 optimizer.zero_grad(set_to_none=False)

Gradient accumulation
If you *want* accumulation: do NOT zero every 
microbatch.

Example: accumulate N microbatches then step once.

Accumulation pattern
1 for i, batch in enumerate(loader):
2     loss = compute_loss(batch) / accum_steps
3     loss.backward()
4 
5     if (i + 1) % accum_steps == 0:
6         clip_grad_norm_(model.parameters(), 1.0)
7         optimizer.step()
8         optimizer.zero_grad(set_to_none=True)



Optimizers: AdamW, SGD, and parameter groups

AdamW + param groups

 1 import torch.optim as optim
 2 
 3 # Common default for modern deep nets
 4 optimizer = optim.AdamW(
 5     model.parameters(),
 6     lr=3e-4,
 7     weight_decay=1e-2,
 8 )
 9 
10 # Parameter groups (e.g., different LR for head)
11 optimizer = optim.AdamW([
12     {'params': model.trunk.parameters(), 'lr': 3e-4},
13     {'params': model.head.parameters(),  'lr': 1e-3},
14 ], weight_decay=1e-2)
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Optimizers: AdamW, SGD, and parameter groups

AdamW + param groups

 1 import torch.optim as optim
 2 
 3 # Common default for modern deep nets
 4 optimizer = optim.AdamW(
 5     model.parameters(),
 6     lr=3e-4,
 7     weight_decay=1e-2,
 8 )
 9 
10 # Parameter groups (e.g., different LR for head)
11 optimizer = optim.AdamW([
12     {'params': model.trunk.parameters(), 'lr': 3e-4},
13     {'params': model.head.parameters(),  'lr': 1e-3},
14 ], weight_decay=1e-2)

Weight decay vs L2
AdamW uses decoupled weight decay 
(preferred over L2 penalty in Adam).

Tip: typically do NOT weight-decay biases or 
LayerNorm params (use groups).

RL note
Actor/critic often benefit from separate learning 
rates. You might experiment with tuning 
learning rates separately for these two (e.g., 
higher learning rate for the critic). 



Gradient clipping (a common stability tool)

Why clip?
Prevents rare but huge gradients from destabilizing training.

Common in just about all modern NN training runs

Clip before optimizer.step()
1 from torch.nn.utils import clip_grad_norm_
2 
3 loss.backward()
4 
5 # Clip by global norm
6 max_norm = 1.0
7 grad_norm = clip_grad_norm_(model.parameters(), 
max_norm)
8 
9 optimizer.step()



Gradient clipping (a common stability tool)

Why clip?
Prevents rare but huge gradients from destabilizing training.

Common in just about all modern NN training runs

Clip before optimizer.step()
1 from torch.nn.utils import clip_grad_norm_
2 
3 loss.backward()
4 
5 # Clip by global norm
6 max_norm = 1.0
7 grad_norm = clip_grad_norm_(model.parameters(), 
max_norm)
8 
9 optimizer.step()

Mental model:

If ‖g‖ > max_norm, rescale: g ← g · (max_norm / ‖g‖)



Learning rate schedules
Schedulers don’t fix bad hyperparameters, but they often improve final performance.

Cosine schedule
1 from torch.optim.lr_scheduler import CosineAnnealingLR
2 
3 optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
4 scheduler = CosineAnnealingLR(optimizer, T_max=num_steps)
5 
6 for step, batch in enumerate(loader):
7     ...
8     optimizer.step()
9     scheduler.step()  # usually after optimizer.step()
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Learning rate schedules
Schedulers don’t fix bad hyperparameters, but they often improve final performance.

Cosine schedule
1 from torch.optim.lr_scheduler import CosineAnnealingLR
2 
3 optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
4 scheduler = CosineAnnealingLR(optimizer, T_max=num_steps)
5 
6 for step, batch in enumerate(loader):
7     ...
8     optimizer.step()
9     scheduler.step()  # usually after optimizer.step()

Where to call scheduler.step()
Most step-per-batch schedulers: after 
optimizer.step().

Plateau schedulers: call after validation metric 
(e.g., after validation loss plateaus)

Warmup (common recipe)
For large models: ramp LR from 0 → target over 
first few % of steps.
Implement with LambdaLR or a custom 
schedule.

Schematic: warmup + cosine decay



Part 5 — Data & Evaluation
Feeding in training data, and also evaluating models



Data pipeline: Dataset → DataLoader

Typical setup

 1 from torch.utils.data import Dataset, DataLoader
 2 
 3 class MyDataset(Dataset):
 4     def __len__(self):
 5         return N
 6     def __getitem__(self, idx):
 7         return obs[idx], target[idx]
 8 
 9 loader = DataLoader(
10     MyDataset(),
11     batch_size=256,
12     shuffle=True,
13     num_workers=4,
14     pin_memory=True,
15 )

Key knobs
shuffle: True for SGD
num_workers: parallel CPU loading
pin_memory: faster CPU→GPU copies

In RL, your training dataset will typically be a replay 
buffer



Data pipeline: Dataset → DataLoader

Typical setup

 1 from torch.utils.data import Dataset, DataLoader
 2 
 3 class MyDataset(Dataset):
 4     def __len__(self):
 5         return N
 6     def __getitem__(self, idx):
 7         return obs[idx], target[idx]
 8 
 9 loader = DataLoader(
10     MyDataset(),
11     batch_size=256,
12     shuffle=True,
13     num_workers=4,
14     pin_memory=True,
15 )

Key knobs
shuffle: True for SGD
num_workers: parallel CPU loading
pin_memory: faster CPU→GPU copies

In RL, your training dataset will typically be a replay 
buffer

Gotcha
If your Dataset returns NumPy arrays, convert to torch 
tensors in __getitem__.
Avoid mixing numpy ops in the training step.



Training vs evaluation mode
Two separate switches:

1) model.train() / model.eval()
Changes behavior of certain layers:
• Dropout: on/off
• BatchNorm: batch stats vs running stats

Always set the right mode.

2) grad mode (no_grad / inference_mode)
Controls whether autograd tracks ops.

During evaluation:
model.eval()
with torch.inference_mode():
    ...



Training vs evaluation mode
Two separate switches:

1) model.train() / model.eval()
Changes behavior of certain layers:
• Dropout: on/off
• BatchNorm: batch stats vs running stats

Always set the right mode.

2) grad mode (no_grad / inference_mode)
Controls whether autograd tracks ops.

During evaluation:
model.eval()
with torch.inference_mode():
    ...

Recommended pattern
1 model.train()
2 for batch in train_loader:
3     loss = ...
4     ...
5 
6 model.eval()
7 with torch.inference_mode():
8     for batch in val_loader:
9         metrics = ...



Part 6 — Other training loop things
Checkpointing, debugging, best practices



Saving & loading: state_dict and checkpoints
Save weights (and optimizer state) so training can resume exactly.

Checkpoint pattern

 1 # Save
 2 ckpt = {
 3   'model': model.state_dict(),
 4   'optim': optimizer.state_dict(),
 5   'step': step,
 6   'rng': torch.get_rng_state(),
 7 }
 8 torch.save(ckpt, 'ckpt.pt')
 9 
10 # Load
11 ckpt = torch.load('ckpt.pt', map_location='cpu', weights_only=False)
12 model.load_state_dict(ckpt['model'])
13 optimizer.load_state_dict(ckpt['optim'])

Best practice
For *weights only* files: save and load just 
model.state_dict().

When loading from untrusted sources, prefer 
weights_only=True.

Newer PyTorch (>=2.6)

torch.load changed the default for 
weights_only to improve security from False 
to True. If you rely on loading arbitrary pickled 
objects, you may need to manually specify 
weights_only=False.



Debugging toolbox
First steps
• Print tensor shapes + dtypes
• Check devices (CPU vs CUDA)
• Look for NaNs/Infs: torch.isnan / torch.isfinite
• Overfit a tiny batch (sanity test)
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Debugging toolbox
First steps
• Print tensor shapes + dtypes
• Check devices (CPU vs CUDA)
• Look for NaNs/Infs: torch.isnan / torch.isfinite
• Overfit a tiny batch (sanity test)

Useful snippets
 1 torch.autograd.set_detect_anomaly(True)
 2 
 3 # Track grad norms
 4 with torch.no_grad():
 5     total = 0.0
 6     for p in model.parameters():
 7         if p.grad is not None:
 8             total += p.grad.norm().item()
 9     print('grad_norm', total)
10 
11 # Helpful for NaNs
12 torch.cuda.synchronize()

Common culprits
• Forgetting model.train()/eval()
• Wrong target dtype (CE needs int64)
• Learning rate too high
• Silent broadcasting bug
• Accidental in-place ops on tensors needed for 
backward

RL-specific gotcha
Stop-grad mistakes: accidentally backprop through 
targets/returns/advantages can cause instability.
Use detach() intentionally.



Gotchas & best practices

Gotchas Best practices

• Mixing NumPy and torch in the training 
step (breaks device/grad flow)

• Forgetting .to(device) on targets/masks
• In-place ops (x += y) on values needed 

for backward
• view() on non-contiguous tensors (use 

reshape or .contiguous())
• Calling softmax before CrossEntropyLoss

• Keep everything in torch; convert NumPy at 
the boundary

• Use optimizer.zero_grad(set_to_none=True)
• Log: loss, learning rate, grad_norm, 

parameter_norm
• Save checkpoints with model/optimizer 

state_dict
• Start simple: overfit a tiny batch → scale up
• Use inference_mode for evaluation loops



Part 7 — Modern PyTorch (2.x)
Not needed for this class, but nonetheless might be useful



torch.compile: speed up training with minimal changes
PyTorch 2.x introduced a compiler stack you can often use with one line.

One-liner

1 model = MyNet().to(device)
2 
3 # Drop-in compilation (PyTorch 2.0+)
4 model = torch.compile(model)
5 
6 for batch in loader:
7     ...

When it helps
• Larger models
• Many repeated ops
• GPU-bound training

With “graph breaks”, you may get smaller gains 
(but the code will still be correct).

When to skip (for class)
First implementation: start in eager mode.
Turn on compile only after your code seems to 
work.



Checklist: a solid PyTorch training script
• Set device + move model and all batch tensors

• model.train() in training; model.eval() + inference_mode() in evaluation

• Training step: zero_grad(set_to_none=True) → forward → loss → backward → clip → step

• Use AdamW (and parameter groups if needed) + an LR schedule

• Log loss, LR, grad norms; checkpoint state_dict regularly

• Don’t mix NumPy ops into the training step; keep everything in torch


