Berkeley CS 185/285 Deep Reinforcement Learning, Decision Making, and Control Spring 2026

Assignment 1: Imitation Learning
Due February 11, 11:59 pm

1 Introduction

In this assignment, you will train action chunking policies for the Push-T environment. You will first train a
simple MSE (mean-squared error) policy that predicts action chunks in a single forward pass. Then, you will
train a more expressive flow matching policy, similar to diffusion policy ( , ).
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Figure 1: The Push-T environment. The observation is 5-dimensional state describing the position of the T
and the agent. The action is a 2-dimensional vector representing the target position of the agent. The goal is
to push the T into the goal zone.

2 Action Chunking with MSE Loss

Action chunking reduces decision frequency by predicting a short horizon of actions at once. At time ¢, the
policy mg(A¢|o;) maps the current observation o; to an action chunk A; = (a;,a441,...,a:+5-1) for some
fixed chunk length K. The chunk is executed open-loop: the environment receives a, at time ¢, then a; 1
at time ¢ 4+ 1, and so on until a;1 1. After the chunk finishes, the policy is queried again on the latest
observation o4y g to produce the next chunk.

The simplest way to train an action chunking policy is to use a mean-squared error (MSE) loss. That is, given
a dataset of paired observations and expert chunks (oij ) Aij )), we fit mp by minimizing

Las (0 i HA(J) (J))H2 (1)

for each batch, where my(0; ( )) denotes the output of the policy network, and B is the batch size.

2.1 Implementation
The first part of this assignment is to implement the MSE policy and the main training loop.
The starter code for this assignment can be found at

https://github.com/berkeleydeeprlcourse/homework_spring2026/tree/main/hwl

We recommend starting by reading the following files thoroughly:
e README.md describes basic project setup.

e src/hwl_imitation/data.py defines the dataset class, and handles downloading, extracting, and load-
ing the Push-T dataset for you.

e src/hwl_imitation/model.py defines the BasePolicy class.


https://github.com/berkeleydeeprlcourse/homework_spring2026/tree/main/hw1
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e src/hwl_imitation/evaluation.py defines the evaluate_policy function. You do not ever need to
modify this file, but you do need to understand how to call the evaluate_policy function periodically
in your training loop.

What you’ll need to do:

e Implement the MSEPolicy class by filling in the TODO in src/hwl_imitation/model.py. We recommend
using a simple MLP architecture with ReLU activations.

e Implement the main training loop by filling in the TODO in src/hwil_imitation/train.py.

e (Call the evaluate_policy function periodically in your training loop, which will log evaluation metrics
and videos to WandB.

Deliverables:
e A working training loop and MSE policy.

e WandB-generated logs (including videos) of a successful training run. An MSE policy should be able to
achieve a reward of at least 0.5.

e Note that, for grading purposes, you must call the evaluate_policy function periodically in your
training loop, and call logger.dump_for_grading() at the end of training.

e A brief report including:

— Training curves (training steps vs. loss and reward) of your best MSE policy. Please generate these
plots yourself rather than taking screenshots of WandB.

— A Dbrief description of your MLP architecture (number of layers, hidden size, activation functions,
etc.).

Tips:
e A small MLP should be able to train fairly quickly (within a few minutes) on a laptop CPU.
e Use the Adam optimizer ( , ) that is built into PyTorch.
e Use torch.compile on the train step to speed up training quite significantly!

e Besides the eval metrics, which are required, you can use WandB to log other useful metrics, such as the
loss and training speed.

3 Action Chunking with Flow Matching

MSE policies predict chunks in one shot, which can struggle to model complex, multimodal chunk distributions.
Flow matching addresses this by learning a conditional vector field that transports noise into realistic action
chunks. This is very similar to diffusion, but it is easier to implement and generally exhibits better performance.
Let Agj) be an action chunk and Agfg ~ N(0,I) be noise of the same shape. We first sample a “flow matching
timestep” 70) ~ (0, 1) and define the interpolation Afﬂj = T(j)Agj) +(1 —T(j))Agfg. We then train a network

vg to predict the velocity that moves AgJT) toward Agj ), using the flow-matching loss

B
1 ) ) ) ) L2
Lou®) =53 |va(of”, A7) — (A — AL . 2)
At inference time, we sample initial noise A; o ~ N(0,I) and integrate the ODE d‘g;‘ = vg(o¢, Ay 7, 7T) from

7 =0 to 7 = 1. The simplest integration method is Euler integration, which is given by the following update
rule:

1
At,‘r+% = At,r + ﬁ . ’UG(Ot, At,‘r77—)7 (3)
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which is repeated n times from 7 = 0 to 7 = 1 to obtain A, 1, where n is the number of integration steps (also
called “denoising steps”). A;1 = A, is the final action chunk that is executed open-loop, as before.

3.1 Implementation

For this part, you only need to implement the FlowMatchingPolicy class by filling in the TODO in model.py.
We recommend using the same MLP architecture as the MSE policy.

Deliverables:
e A working training loop and flow matching policy.

e WandB-generated logs (including videos) of a successful training run. A flow matching policy should be
able to achieve a reward of at least 0.7.

e A brief report including:

— Training curves (training steps vs. loss and reward) of your best flow matching policy. Please
generate these plots yourself rather than taking screenshots of WandB.

— A brief qualitative description of how the flow matching policy behaves compared to the MSE policy
(based on the videos).

Tips:

e Don’t forget that your neural network needs the flow matching timestep, 7, as part of its input.

4 Submitting the Code and Experiment Runs

In order to turn in your code and experiment logs, create a directory that contains the following:

e A directory named exp with your best experiment runs for this assignment. The experiment runs will
initially be saved with names like seed_42_20260119_161512_my_expriment_name; you should rename
the directories accordingly as specified below, and include only your best run for each part.

e The src folder with all the .py files, with the same names and directory structure as the original
homework repository.

The unzipped version of your submission should have the following file structure. Make sure that the exp
directory has the exact structure as shown below. Make sure that you copy the entire run
directory, including all of the .wandb, .json, .mp4, and .pkl files.
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submit.zip
+— eXp

mse
log.csv
viindb

flow
t log.csv
viindb

- jic
wl_imitation

model.py
train.py
data.py
evaluation.py
+— pyproject.toml

— uv.lock
— README .md

Turn in your assignment on Gradescope. Upload the zip file with your code and log files to HW1 Code, and
your report to HW1 Report.
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