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ABSTRACT

The efficient and fair allocation of limited resources is a classical problem in economics and computer
science. In kidney exchanges, a central market maker allocates living kidney donors to patients in
need of an organ. Patients and donors in kidney exchanges are prioritized using ad-hoc weights
decided on by committee and then fed into an allocation algorithm that determines who gets what—
and who does not. In this paper, we provide an end-to-end methodology for estimating weights
of individual participant profiles in a kidney exchange. We first elicit from human subjects a list
of patient attributes they consider acceptable for the purpose of prioritizing patients (e.g., medical
characteristics, lifestyle choices, and so on). Then, we ask subjects comparison queries between
patient profiles and estimate weights in a principled way from their responses. We show how to
use these weights in kidney exchange market clearing algorithms. We then evaluate the impact of
the weights in simulations and find that the precise numerical values of the weights we computed
matter little, other than the ordering of profiles that they imply. However, compared to not prioritizing
patients at all, there is a significant effect, with certain classes of patients being (de)prioritized based
on the human-elicited value judgments.

1 Introduction

As AI is deployed increasingly broadly, AI researchers are confronted with the moral implications of their work.
The pursuit of simple objectives, such as minimizing error rates, maximizing resource efficiency, or decreasing
response times, often results in systems that have unintended consequences when they confront the real world, such as
discriminating against certain groups of people [34]. It would be helpful for AI researchers and practitioners to have a
general set of principles with which to approach these problems [45, 41, 24, 16, 33].

One may ask why any moral decisions should be left to computers at all. There are multiple possible reasons. One is
that the decision needs to be made so quickly that calling in a human for the decision is not feasible, as would be the
case for a self-driving car having to make a split-second decision about whom to hit [13]. Another reason could be that
each individual decision by itself is too insignificant to bother a human, even though all the decisions combined may be
highly significant morally—for example, if we were to consider the moral impact of each advertisement shown online.
A third reason is that the moral decision is hard to decouple from a computational problem that apparently exceeds
human capabilities. This is the case in many machine learning applications (e.g., should this person be released on bail?
[27]), but also in other optimization problems.

We are interested in one such problem: the clearing house problem in kidney exchanges. In a kidney exchange,
patients who need a kidney transplant and have a willing but incompatible live donor may attempt to trade their donors’
kidneys [40]. Once these people appear at an exchange, we face a highly complex problem of deciding who matches
with whom. In some exchanges, this matching problem is solved using algorithms developed in the AI community: the
United States [17], the United Kingdom [30], the Netherlands [23], and so on [11].
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In this paper, we investigate the following issue. Suppose, in principle, that we prioritize certain patients over others—for
example, younger patients over older patients. To do so would clearly be a morally laden decision. How should this
affect the role of the AI researcher developing these systems? From a purely algorithmic perspective, it may seem that
there is little more to this than to change some weights in the objective function accordingly. But we argue that our job,
as AI researchers, does not end with this simple observation. Rather, we should be closely involved with the process for
determining these weights, both because we can contribute technical insights that are useful for this process itself, and
because it is our responsibility to understand the consequences to which these weights will lead. The methodology that
we develop integrates this prioritization into our development work.

1.1 Our Contributions

In this paper, we provide an end-to-end methodology for estimating weights of individual patient profiles in a kidney
exchange, where these weights are used only for tiebreaking purposes (i.e., when multiple solutions give the maximal
number of transplants).

Executing our methodology in such a way that we would advocate directly adopting the results in practice would require
substantially more effort and participation from other parties. For example, we would need to consult domain experts
to determine which patient characteristics should be used to determine edge weights. We would also need to involve
stakeholders such as policy-makers, doctors, and kidney exchange participants in the process for determining weights.
For this reason, we execute this methodology in a limited fashion as a proof-of-concept, and evaluate the results in
simulations.

We first elicit from human subjects a list of patient attributes they consider acceptable for the purpose of prioritizing
patients in kidney exchanges (e.g., most subjects did not find race an acceptable attribute for prioritization). Then, we
ask subjects comparison queries between patient profiles that differ only on acceptable attributes, and estimate weights
from their responses. We show how to use these weights in kidney exchange market clearing algorithms, to break ties
among multiple maximum-sized solutions. We then evaluate the impact of the weights in simulations. We find that
the precise numerical values of the weights we computed matter little, other than the ordering of profiles that they
imply. However, compared to not prioritizing patients at all, there is a significant effect. Specifically, the difference is
experienced by donor-patient pairs that have an “underdemanded” [5, 42] combination of blood types; for them, their
chances rise or drop significantly depending on their tiebreaking weights.

2 Kidney Exchange Model

We briefly review the standard mathematical model for kidney exchange and techniques from the AI community used
to clear real kidney exchanges, and then give illustrative examples where tiebreaking would or would not play a role.

2.1 Graph Formulation

In this work, as is standard [40, 38, 39], we encode an instance of a kidney exchange as a directed compatibility graph
G = (V,E). We first construct one vertex for each patient-donor pair in the pool. Then, we construct an edge e from
vertex vi to vertex vj if the patient in vj wants and is compatible with the donor kidney of vi. A paired donor is willing
to give her kidney if and only if the patient in her vertex vi receives a kidney.

Most fielded exchanges also assign a weight we to an edge e. The function determining the weight for an edge is often
opaque and set in an ad-hoc fashion by a committee. For example, a recent report [44] proposes revising the policy for
setting edge weights to incorporate the patient’s “calculated reactive panel antibody” (which influences their likelihood
of finding a match) and whether the pair has previously been a part of a “failed exchange” (in which the donor donates a
kidney, but their corresponding patient does not receive one). The policy already includes a multitude of other factors,
including which hospital registered the pair and whether the patient has previously donated an organ.2

The weight we of the edge e from vertex vi to vertex vj roughly represents the utility to vj of obtaining vi’s donor
kidney, but can also be used to (de)prioritize specific classes of patient or donor, as we discuss later. A cycle c represents
a possible sequence of transplants, with each vertex in c obtaining the kidney of the previous vertex. We use the term
k-cycle to refer to a cycle with exactly k pairs. For example, the compatibility graph in Figure 1 includes two possible
2-cycles: a 2-cycle between vertex v1 and v2, and a different 2-cycle between vertex v2 and v3. In kidney exchange,
cycles of length at most some small constant L (typically, L ∈ {2, 3, 4}) are allowed—all transplants in a cycle must be

2For a more detailed look into the inner workings of this process that sets edge weights, we direct the reader to a recent report by
the UNOS US-wide kidney exchange [44].
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performed simultaneously so that no donor backs out after his patient has received a kidney but before he has donated
his kidney.

d3 (A)

p3 (B)

d1 (A)

p1 (B)

d2 (B)

p2 (A)

Figure 1: A compatibility graph with three patient-donor pairs and two possible 2-cycles. Donor and patient blood
types are given in parantheses.

Many fielded kidney exchanges gain great utility through the use of chains [32, 37, 4, 6]. Chains start with an altruist
donor donating her kidney to a patient, whose paired donor donates his kidney to another patient, and so on. In the
standard model, altruistic donors are represented in the same way as patient-donor pairs, but with so-called “dummy”
patients who are compatible with every patient-donor pair, yet do not require a kidney. In this way, altruists and
patient-donor pairs—as well as cycles and chains—can be treated similarly in optimization models.

A matching M is a set of disjoint cycles and chains in the compatibility graph G. There can be length limits on
these cycles and chains, as discussed above, resulting in a smaller set of legal matchings. The cycles and chains
must be disjoint because no donor can give more than one of her kidneys (some recent work explores multi-donor
donation [21, 22] but we do not consider this here). Given the set of all legal matchingsM, the clearing house problem
is to find a matching M∗ that maximizes utility function u :M→ R. Formally:

M∗ ∈ argmax
M∈M

u(M)

Kidney exchanges typically use a utilitarian utility function that finds the maximum weighted cycle cover (i.e.,
u(M) =

∑
c∈M

∑
e∈c we). This can favor certain classes of patient-donor pairs while marginalizing others, a behavior

we investigate later in this paper in the context of setting specific edge weights. Alternate utility functions can be used
to enforce incentive properties via mechanism design [5, 28, 25, 12, 31].

2.2 Clearing Kidney Exchanges

We briefly discuss optimization methods for clearing kidney exchanges; later, we show how to augment these methods
to incorporate the ideas in this paper. The standard clearing house problem for finite cycle cap L > 2 (even without
chains) is NP-hard [1, 10], and is also hard to approximate [9, 29, 26]. Thus, fielded kidney exchanges use integer
program (IP) formulations to solve this difficult combinatorial optimization problem.

The first approach to clearing large kidney exchanges, due to Abraham et al., built a custom branch and price [7] integer
program solver; generalizations of, and improvements on, their basic model have addressed scalability issues [23, 4, 18,
19]. We build a similar model in this work.

Formally, denote the set of all chains of length at most K and cycles of length no greater than L by C(L,K). Create a
binary variable xc ∈ {0, 1} for every c ∈ C(L,K), and let wc =

∑
e∈c we; then, solve the following integer program:

max
∑

c∈C(L,K)

wc xc s.t .
∑
c:v∈c

xc ≤ 1 ∀v ∈ V.

The final matching is the set of chains and cycles c such that xc = 1. In this paper, we compare to a baseline where all
edge weights are 1, so that a maximum-cardinality solution is sought. We then break ties in these solutions based on
prioritization weights determined according to the procedure outlined in this paper.

2.3 Tiebreaking and Prioritization: Examples

Consider again the compatibility graph given in Figure 1. Here, there is one pair with a patient of blood type A and a
donor of blood type B, and two pairs with a patient of blood type B and a donor of blood type A. One of the latter two
pairs will have to remain unmatched; either way, we obtain a solution of maximum cardinality (two vertices matched).
The standard algorithm may choose either solution; which one is chosen depends on details of the solver. We may wish
to break the tie based on other attributes of the two patients with blood type B, such as their age. We will explore this in
this paper.

Now, consider the graph in Figure 2. This graph has two maximal solutions. (A solution is maximal if it is not possible
to include any other vertices without dropping others from the solution). One consists of the 3-cycle with vertices
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d1 (AB)

p1 (O)

d2 (O)

p2 (AB)

d3 (AB)

p3 (A)

d4 (A)

p4 (O)

Figure 2: A compatibility graph with four patient-donor pairs and two maximal solutions. Donor and patient blood
types are given in parentheses.

AB-O, O-A, and A-AB (patient listed first in each case). The other consists of the 2-cycle with vertices AB-O and
O-AB. (For a complete description of which patient and donor blood types are compatible, see Table 1.) The standard
algorithm must choose the 3-cycle, because it matches more vertices. While in principle one might consider choosing
the 2-cycle, arguing that (due to other attributes) it is more important to save the patient from the O-AB vertex than it is
to save both the patient from the O-A vertex and the patient from the A-AB vertex, in this paper we will not do so; we
will always choose the 3-cycle, no matter what the values of the additional attributes are.

Patient
A B AB O

Donor

A X X
B X X
AB X
O X X X X

Table 1: Patient-donor blood-type compatibility. A checkmark denotes compatibility between the patient blood type
in the column heading and the donor blood type in the row heading. For example, patients with blood type AB are
compatible with all donor blood types, and donors with blood type O are compatible with all patient blood types.

3 Determining and Using Prioritization Weights

In this section, we describe our procedure for computing prioritization weights and integrating them into the algorithm
for clearing kidney exchanges. Because this procedure was intended as a proof-of-concept, we gathered preference
data from participants recruited through the online platform Amazon Mechanical Turk (“MTurk”).3 However, if this
procedure were used in a real-life kidney exchange, medical experts and other stakeholders would need to be involved
in the process of determining weights. 4

3.1 Selecting Attributes

First, we determined which patient attributes to include in our model by assessing which attributes a pool of human
participants found acceptable to use for this purpose. The attributes were generated by the participants in an open-ended
survey to minimize experimenter bias. Specifically, participants (N = 100) were asked to read a brief description of the
kidney transplant waiting list process, and then asked to imagine that a country is developing a new policy for allocating
kidneys to patients on the waiting list. Each participant was asked to report four potential patient attributes that they
thought the kidney allocation policy “morally ought to take into account,” and four attributes that they thought the policy
“morally ought NOT to take into account.” Each participant received $0.85 as compensation for their participation.

Participants’ responses were independently sorted into attribute categories, including those listed in Table 2, by two
different researchers. Attributes that the UNOS algorithm already takes into account, such as patient-donor medical
compatibility, were discarded. The number of participants who mentioned each of the remaining attributes is noted in

3All experiments were conducted between fall 2016 and summer 2017.
4That being said, it is not immediately clear what the optimal mix of stakeholders would be. For example, it does not seem that

medical training is especially helpful for evaluating how important it is whether a patient has dependents, such as small children.
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Table 2. Because we are interested in improving the kidney allocation process, we only included those categories that
more survey participants thought ought to be taken into account than participants thought ought not to be taken into
account.

Because participants were asked to propose these attributes themselves, these results reflect which attributes occurred to
them during the survey. This may skew the results in favor of attributes that seem more directly relevant to the medical
context. For example, it’s possible that 30 of the survey participants would have answered “yes” if directly asked
whether criminal record should be taken into account, but because this aspect of personal life is not clearly related to
health, only a few of those thought of it when prompted to consider public health policy during the survey. Additionally,
we explicitly listed age as an example of the sort of attribute the policy might consider, which likely biased participants
toward including it in their responses. We chose to prime with age in order to direct responses toward the sort of specific,
individual attributes that the revised policy might take into account. We chose age specifically because it is a common
response to informal iterations of this survey, and in fact is already included in current kidney allocation policy to a
certain extent, so we hoped that the skewing effects of the priming would be minimal.

Category Ought Ought NOT

Age 80 10

Health - Behavioral 53 5

Health - General 44 9

Dependents 18 5

Criminal Record 9 4

Expected Future 8 1

Societal Contribution 7 3

Attitude 6 0

Table 2: Categorized responses to the Attribute Collection Survey. The “Ought” column counts the number of responses
in each category that participants thought should be used to prioritize patients. The “Ought NOT” column counts those
that participants thought should not be used to prioritize patients. Categories are listed in order of popularity.

The three attribute categories that the most participants thought should be used to prioritize patients were “Age”, “Health
-– Behavioral” (aspects of health that are generally perceived to be controllable, such as diet and drug use), and “Health
-– General” (aspects of health that are generally perceived to be involuntary and are unrelated to kidney disease, such
as cancer prognosis). There was a sharp drop-off in popularity between the third most popular category, “Health –
General” (reported 44 times) and the fourth most popular one, “Dependents” (whether the patient had dependents,
reported 18 times), so only the first three attribute categories were selected for inclusion in the next stage of the study.
The least-commonly reported categories were “Criminal Record”, “Expected Future”, which included responses about
patients’ future life expectancy and expected quality of life post-surgery, “Societal Contribution”, and “Attitude”, which
included responses about patients’ psychological state and mental preparation for the surgery and recovery process.

3.1.1 Participant Demographics

The survey participants were very diverse, ranging in age from 22 to 64 (with an average age of 40), ranging in self-
reported political views from “extremely liberal” to “extremely conservative”, and ranging in educational achievement
from “some high school, no diploma” to “doctorate degree”. Participants took between 2 and 26 minutes to complete
this survey, with an average completion time of 9 minutes.

3.2 Evaluating Pairwise Comparisons

We next gathered data on how people use the three top participant-generated attributes to prioritize patients. We
administered a “Kidney Allocation Survey” to a new cohort of participants recruited through MTurk. In this survey,
we turned each of the three chosen attributes into a binary one, as described in Table 3 below. The Age alternatives
represent an adult nearer to the beginning of their adult life (but still of legal drinking age, 30 years old) or nearer to the
end (70 years old). For a health-behavioral attribute, we chose alcohol consumption as a (potentially) controllable
behavior that can contribute to kidney disease. The indicated amount of alcohol consumption is specified to occur “prior
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to diagnosis,” because drinking afterward disqualifies patients from the waiting list. Skin cancer was chosen as the
“unhealthy” alternative for the Health-General characteristic because it is a specific, well-known disease that may or
may not be fatal and is unrelated to kidney disease.

Attribute Alternative 0 Alternative 1

Age 30 years old (Young) 70 years old (Old)

Health -Behavioral 1 alcoholic drink per month (Rare) 5 alcoholic drinks per day (Frequent)

Health - General no other major health problems (Healthy) skin cancer in remission (Cancer)

Table 3: The two alternatives selected for each attribute. The alternative in each pair that we expected to be preferable
was labeled “0”, and the other was labeled “1”.

Because there are three binary attributes, there are eight possible patient profiles. These eight unique patient profiles
were enumerated and assigned ID numbers. For expositional ease, in this paper, we refer to profiles in text as a
combination of {Y,O}, {R,F}, and {C,H}, representing {Young, Old}, {Rare, Frequent} alcohol consumption, and
{Cancer, Healthy} status. For example, profile YRH reads:

Patient W.A. is 30 years old, had 1 alcoholic drink per month (prior to diagnosis), and has no other
major health problems.

In the survey, participants were asked to choose between pairs of these profiles. Participants (N = 289) were again
recruited through MTurk. They read a short description of how kidney waiting lists work, and were asked to imagine
that they were responsible for allocating a single kidney to one of two fictional patients. Each participant was then
presented with all

(
8
2

)
= 28 possible pairs of profiles, in random order, and asked in each case to select the patient that

they believed should receive the kidney. For half of the participants, the profile with the smaller ID number appeared on
the screen above the profile with the larger ID number for each question (“original order”), and for the other half of the
participants this order was reversed (“reversed order”), to counteract possible ordering or screen location effects. Each
participant received $1.00 compensation for participating in this part of the study.

3.2.1 Summary of Responses

Aggregate responses to the Kidney Allocation Survey are summarized below. The “Preferred” column reports the
percentage of times that each profile was chosen in all the comparisons in which it appeared.

Profile Age Drinking Cancer Preferred

1 (YRH) 30 rare healthy 94.0%

3 (YRC) 30 rare cancer 76.8%

2 (YFH) 30 frequently healthy 63.2%

5 (ORH) 70 rare healthy 56.1%

4 (YFC) 30 frequently cancer 43.5%

7 (ORC) 70 rare cancer 36.3%

6 (OFH) 70 frequently healthy 23.6%

8 (OFC) 70 frequently cancer 6.4%

Table 4: Profile ranking according to Kidney Allocation Survey responses. The “Preferred” column describes the
percentage of time the indicated profile was chosen among all the times it appeared in a comparison.

As expected, there was a clear preference for profile 1 (30 years old, 1 alcoholic drink per month, no other major health
problems), and a clear preference against profile 8 (70 years old, 5 alcoholic drinks per day, skin cancer in remission).

The preference for profile 3 (skin cancer in remission but minimal drinking) over profile 2 (healthy other than heavy
drinking), and similarly 7 over 6, suggests that participants put greater weight on the health-behavioral attribute than on
the health-general one. This aligns with responses to our first survey, in which more participants gave responses in the
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“Health - Behavioral” category than gave responses in the “Health - General” category (see Table 2). (Of course, this
observation may not generalize to other health-behavioral and health-general attributes, such as drinking soda and skin
cancer that’s not in remission.)

3.2.2 Participant Demographics

Again, the survey participants were very diverse. They ranged in age from 19 to 70 (with an average age of 37), and
again ranged in self-reported political views from “extremely liberal” to “extremely conservative”, and in educational
achievement from “some high school, no diploma” to “doctorate degree”. Participants took between 1.5 minutes and
38.5 minutes to complete this survey, with an average completion time of 7 minutes.

3.3 Estimating Profile Scores

We performed statistical modeling of participants’ pairwise comparisons between patient profiles in order to obtain
weights for each profile. We used the Bradley-Terry model, which treats each pairwise comparison as a contest between
a pair of players [14]. Under this model, each player i has a score pi, representing its skill or value. Given two players i
and j with respective scores pi and pj , the probability that player i will win the contest is:

P (i > j) =
pi

pi + pj

To illustrate this model, imagine that individuals a, b, and c are patients waiting for kidney transplants. For each pair of
patients, imagine that we have asked 100 survey participants to pick one to receive a kidney. Assume that patient a
was picked over patient b 63 times and picked over patient c 72 times, and that patient b was picked over patient c 58
times. There were no ties. We can use the Bradley-Terry model to estimate a score representing the value that survey
participants place on giving a kidney to each patient. Judging from this sample of 300 comparisons, the probability of
patient a being chosen over patient b is 63/100 = 0.63, the probability of patient a being chosen over patient c is 72/100
= 0.72, and the probability of patient b being chosen over patient c is 58/100 = 0.58. Therefore, we have:

P (a > b) = 0.63 =
pa

pa + pb

P (a > c) = 0.72 =
pa

pa + pc

P (b > c) = 0.58 =
pb

pb + pc

When we fit the model to these results and assign score 1.00 to pa, pb is estimated as 0.57, and pc is estimated as 0.40.
It is important to note that these scores are only meaningful relative to each other. In particular, scaling all the scores pi
by the same factor would not affect the predictions.

Based on these scores, the preference probabilities are estimated as follows:

P (a > b) =
pa

pa + pb
=

1.00

1.00 + 0.57
≈ 0.64

P (a > c) =
pa

pa + pc
=

1.00

1.00 + 0.40
≈ 0.71

P (b > c) =
pb

pb + pc
=

0.57

0.57 + 0.40
≈ 0.59

Note that these scores do not exactly line up with the empirical fractions with which each patient is chosen (0.63, 0.72,
and 0.58, respectively); this is because we only have 2 degrees of freedom. Specifically, if we decrease pa then the
estimate gets closer to the first empirical fraction but further away from the second; if we decrease pb the estimate gets
closer to the third but further away from the first; and if we decrease pc the estimate gets closer to the second but further
away from the third.

The BT scores (that we estimate based on our data) constitute one measure of the value that the survey participants
collectively place on “saving” each profile. The higher this value, the more likely a randomly selected participant is
to select that profile over another. We can then use these scores as weights. (One may wonder whether perhaps it
would be better to somehow transform—e.g., take the square root of—the weights first; one of our experiments below
suggests this would make almost no difference.) This estimation procedure constitutes a specific way to aggregate the
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human subjects’ moral judgments into a single weight for each profile; the strategy of using social choice theory to
aggregate moral preferences for decision making has already been proposed by several groups [24, 16, 33], and our
specific approach fits well in the literature on interpreting voting as a method for statistically estimating an underlying
truth (for an overview, see Elkind and Slinko).

We estimate BT scores in two different ways. One is to estimate scores directly for all profiles, so one profile’s score is
not constrained by the scores of other profiles. The second is to consider the importance of the individual attributes and
let the score of profile i be a linear function of these:

p∑
r=1

βrxir + Ui

where xir is profile i’s value for attribute r, and we estimate the βr (importance of attribute r). The Ui are individual
error terms where Ui ∼ N(0, σ2), resulting in correlation between comparisons that share a common profile.

We used the BTm() function in the BradleyTerry2 package in R to estimate profile scores p1, . . . , p8 based on the
8092 pairwise comparisons, both directly and as a function of the estimated scores of their three attribute values. The
most-preferred profile, profile 1 in both cases, was assigned a score of 1. The results are in Table 5.

Profile Direct Attribute-based

1 (YRH) 1.000000000 1.00000000

3 (YRC) 0.236280167 0.13183083

2 (YFH) 0.103243396 0.29106507

5 (ORH) 0.070045054 0.03837135

4 (YFC) 0.035722844 0.08900390

7 (ORC) 0.024072427 0.01173346

6 (OFH) 0.011349772 0.02590593

8 (OFC) 0.002769801 0.00341520

Table 5: The patient profile scores estimated using the Bradley-Terry Model. The “Direct” scores correspond to allowing
a separate parameter for each profile (we use these in our simulations below), and the “Attribute-based” scores are based
on the attributes via the linear model.

3.4 Adapting the Algorithm

The final step was to incorporate the obtained weights into the kidney exchange market clearing algorithm. Because
our human subject data and analysis do not involve comparisons between differing quantities of patient profiles (e.g.,
choosing two patients with profile 1 over three patients with profile 2), we feel it is inappropriate to use the weights for
such decisions. We only use the weights to break ties between solutions of maximum cardinality.

To find a matching, our adapted (prioritized) algorithm first runs the basic IP-based algorithm due to Abraham et al.
with unit edge weights (i.e., we = 1 ∀e ∈ E). Given a pool of patient-donor pairs, this algorithm returns a set of
kidney exchange cycles that maximizes the number of patients who receive a kidney without regard to their personal
characteristics (other than medical compatibility). Our algorithm records the number of patients who receive a kidney
in this solution as Q, and adds a new constraint to the IP requiring that the solution includes at least Q vertices. We
then re-solve the IP with a new objective, using the weights corresponding to the patient profile scores derived from
the survey responses. Formally, with |c| denoting the number of vertices in cycle c, type : V → {1, . . . , 8} mapping a
vertex to its patient’s profile, and wθ denoting the score of profile θ, we solve:

max
∑
c∈C(L,K)

[∑
(u,v)∈c wtype(v)

]
xc

s.t.
∑
c:v∈c xc ≤ 1 ∀v ∈ V∑
c∈C(L,K) |c|xc ≥ Q

xc ∈ {0, 1} ∀c ∈ C(L,K)

This results in a set of kidney exchange cycles that includes the maximum possible number of patients, but prioritizes
patient profiles that the surveyed population preferred.
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4 Experiments

Having described how we obtained weights and how we integrated these weights into the IP-based algorithm, we now
describe our experiments testing the effects of our prioritizing algorithm in simulations.

4.1 Experimental Setup

Based on previously developed tools [17], we built a simulator to mimic daily matching in a real-world kidney exchange
pool.5 In the simulation, each day, some incompatible patient-donor pairs enter the simulated pool and some depart.
Then, a matching algorithm is run to match a subset of compatible patient-donor pairs. The remaining incompatible
pairs stay in the pool for consideration on the next day (and possibly beyond). Finally, the matches formed the previous
day are executed with a certain success probability, and the matched pairs are removed from the pool. Not all of the
matched pairs are executed, because in real-life situations many algorithmic matches fail to go to transplant due to
last-minute medical incompatibilities, surgeons rejecting a donor organ, or other logistical difficulties [4, 19] We model
this by executing matches with a probability of 0.5 instead of 1.

The demographics of our simulated pool were designed to reflect the UNOS kidney exchange pool where possible, and
otherwise the general US population.

4.2 Experiment 1: Matchings with pair scores

4.2.1 Experiment

In the first experiment, we compared the patient-donor pairs (vertices) matched by the original algorithm, which
treats all profiles equally and breaks ties arbitrarily, to the pairs matched by the “prioritized” algorithm, which breaks
ties towards pairs with higher (patient) profile scores. We ran 20 simulations of daily matching over the course of 5
simulated years using both algorithms.

4.2.2 Hypothesis

We hypothesized that the original algorithm would match pairs in approximately the same proportion for every profile,
but that the prioritizing algorithm would match pairs with higher profile scores more often than pairs with lower scores.
Moreover, we hypothesized that the pairs with the highest profile scores (profiles 1, 3, and 2) would be matched more
often by the prioritizing algorithm than by the original algorithm, and that the pairs with the lowest profile scores
(profiles 7, 6, and 8) would be matched more often by the original algorithm than the prioritizing algorithm.

4.2.3 Results

The proportions of pairs of each profile type matched by the original and prioritizing algorithms are plotted in Figure 3
below. “Proportion Matched” is the proportion of pairs that entered the pool that were subsequently matched. Both
algorithms matched approximately 61.7% of pairs overall. (This result does not follow immediately from the fact that
both algorithms match the maximum number of pairs in each round, because which specific profiles are matched in a
round will affect which profiles appear in future rounds, and consequently may affect how many can be matched in
future rounds.)

The results support both of our hypotheses. First, the original algorithm, called “STANDARD” in Figure 3, matched
pairs approximately 62% of the time, regardless of their profile, while the prioritizing algorithm, called “PRIORITIZED”
in Figure 3, matched the pairs with profile 1, who had the highest profile scores, nearly twice as often as it matched
pairs with profile 8, who had the lowest profile scores.

Secondly, pairs with profiles 1, 3, and 2 were indeed matched substantially more often by the prioritizing algorithm
than by the original algorithm, while pairs with profiles 7, 6, and 8 were indeed matched substantially less often by the
prioritizing algorithm than by the original algorithm. Thus, the scores assigned by the prioritizing algorithm do have a
substantial effect on which profiles get matched.

5All code for this paper can be found in the Ethics package of github.com/RachelFreedman/KidneyExchange.
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Figure 3: The proportions of pairs matched over the course of the simulation, by profile type and algorithm type. N =
20 runs were used for each box. The numbers are the scores assigned (for tiebreaking) to each profile by each algorithm
type. Because the STANDARD algorithm treats all profiles equally, it assigns each profile a score of 1. In this figure
and later figures, each box represents the interquartile range (middle 50%), with the inner line denoting the median.
The whiskers extend to the furthest data points within 1.5 × the interquartile range of the median, and the small circles
denote outliers beyond this range.

4.3 Experiment 2: Matchings evaluated by blood type

4.3.1 Experiment

Blood type is a major factor in determining patient-donor biological compatibility (see Table 1 for a summary of
blood type compatibility). Patients with difficult-to-match blood types are more likely to struggle to find a compatible
donor, and consequently can be disproportionately represented in kidney exchange pools. To explore how the modified
algorithm treats patients with these blood types, we again ran 20 simulations of 5 simulated years of daily matching,
this time recording the patient and donor blood types of each pair in addition to their profiles. We partitioned pairs into
four established blood type classes motivated by large market analysis [5, 42]. Underdemanded pairs were those that
contain a patient with blood type O, a donor with blood type AB, or both, making them the most difficult to match.
Overdemanded pairs contain a patient with blood type AB, a donor with blood type O, or both; self-demanded pairs
contain a patient and donor with the same blood type; and reciprocally demanded pairs contain one person with blood
type A, and one person with blood type B. These three classes are substantially easier to match.

4.3.2 Hypothesis

We hypothesized that the prioritizing algorithm primarily impacts underdemanded pairs, prioritizing underdemanded
pairs with higher profile scores at the expense of underdemanded pairs with lower profile scores, while matching pairs
that belong to the three other blood type classes at roughly the same high rates that the original algorithm does. The
reasoning was that, intuitively, there is generally a scarcity of matching opportunities for the underdemanded pairs, but
this is not so for the other types of pairs.

4.3.3 Results

The results confirm our hypothesis. The proportions of underdemanded pairs matched are plotted in Figure 4. We found
the proportions of overdemanded, self-demanded, and reciprocally demanded profiles matched to be fairly similar, so
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we grouped them together in Figure 5. The prioritizing algorithm matched underdemanded pairs with high profile
scores substantially more often and underdemanded pairs with low scores substantially less often than the original
algorithm did, but both algorithms matched pairs of other classes at roughly equal rates. This suggests that the primary
difference between the algorithms lies in how they treat underdemanded pairs.

1-YRH 2-YFH3-YRC 5-ORH 6-OFH7-ORC4-YFC 8-OFC

Figure 4: The proportions of underdemanded pairs matched over the course of the simulation, by profile type and
algorithm type. N = 20 runs were used for each box.

4.4 Experiment 3: Transforming Bradley-Terry scores

4.4.1 Experiment

One may well wonder whether using the Bradley-Terry scores as weights is well motivated, especially because the
difference in scores between the top two profiles is so large. This difference reflects that it is very unlikely that the
top profile would not be preferred by a subject, but this does not imply that saving someone of profile 1 is more than
four times as important as saving someone of profile 3. Presumably, the ideal weights used in the algorithm would be
monotonically increasing in the BT scores, but it is not clear that they should be proportional. To explore the impact
of the sizes of the gaps between the weights on the matchings produced by the PRIORITIZED algorithm, we tried
alternative weights, given below.

Profile
1 2 3 4 5 6 7 8

ORIGINAL 1 .103 .236 .036 .070 .011 .024 .003

LINEAR 1 .998 .999 .996 .997 .994 .995 .993

Table 6: Two weight vectors. The first represents the original BT scores as used in PRIORITIZED; the second
agrees with the BT scores on the ordering, but the weights are linear in the rank of the profile, as used in LINEAR
PRIORITIZED.

The alternative weights result in the profiles being ranked in the same order as the BT scores, but make the difference
between sequential weights small and identical.
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Figure 5: The proportions of overdemanded, self-demanded, and reciprocally demanded pairs grouped together matched
over the course of the simulation, by profile type and algorithm type. N = 60 runs were used for each box.

We again ran 20 simulations of 5 simulated years of daily matching, this time comparing the prioritized algorithm using
the original BT scores as weights to the prioritized algorithm using the alternative weights.

4.4.2 Hypothesis

We hypothesized that the profile ranking was primarily responsible for the differences in matching and that beyond this,
the magnitude of the BT scores would not have a great impact.

Hence, since both of these vectors of weights rank profiles the same, we expected them to match profiles in very similar
proportions.

4.4.3 Results

The proportions of pairs matched using each weight vector are plotted in Figure 6. The matching using the original
weights is again called “PRIORITIZED”, while the matching using the new weight vector is called “LINEAR PRI-
ORITIZED”. The results confirm our hypothesis. There was very little difference in the matchings produced by the
PRIORITIZED and LINEAR PRIORITIZED algorithms, and what difference there was could be easily explained by
the fact that a slightly different set of pairs enter the pool for each algorithm type. We also tried other weight vectors
that assigned different weights to each profile, but that agreed with the initial prioritizing algorithm on the order of the
profiles, and found similarly little difference. These results suggest that the profile ranking induced by the weights is
primarily responsible for the impact of the prioritizing algorithm, while beyond that varying the weights makes little
difference.

5 Discussion

In this section, we discuss the potential for applying these results to real-world kidney exchanges, some of the ethical
context of our work, and directions for future research.
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Figure 6: The proportions of underdemanded pairs matched over the course of the simulation, by profile and algorithm.
The “PRIORITIZED” algorithm matches using the original profile weights, while the “LINEAR PRIORITIZED”
algorithm matches using the alternative weights given above.

5.1 Application in Real Kidney Exchanges

Our study serves as a proof-of-concept for the proposed method of soliciting and using prioritization weights, but we
do not advocate directly applying the weights obtained in our limited study to a real kidney exchange. For one, a real
kidney exchange would require each of the attributes considered to be able to take more possible values than we tested
in our mere pairwise comparisons (e.g., there should be more than two values for “age”). Whoever eventually makes
the judgments about who should be prioritized (in our study this was left to MTurkers, who may not be representative
of the general population) should also have a chance to obtain expert advice—for example, about what the prognosis is
for someone with skin cancer in remission. Generally, deploying these techniques in a real kidney exchange should be
done with input from representatives of all the stakeholders in such a system—patients, donors, surgeons, other hospital
staff, etc. How to best structure the process as a whole is an important topic for future research.

That being said, our work demonstrates that there are no fundamental technical obstacles to building such a system.
We have shown one way in which moral judgments can be elicited from human subjects, how those judgments can
be statistically modeled, and how the results can be incorporated into the algorithm. We have also shown, through
simulations, what the likely effects of deploying such a prioritization system would be, namely that underdemanded
pairs would be significantly impacted but little would change for others. We do not make any judgment about whether
this conclusion speaks in favor of or against such prioritization, but expect the conclusion to be robust to changes in the
prioritization such as those that would result from a more thorough process, as described in the previous paragraph. We
also expect the conclusion to hold if the method is applied to real rather than simulated data: while the distribution of
donor and patient data in real kidney exchanges is surely different from the simulated one, there are no obvious reasons
to suspect that this would change our qualitative conclusion.

5.2 Artificial Morality

Our work is also a concrete proof-of-concept of a hybrid approach to artificial morality. This hybrid combines and
contrasts with both top-down approaches and bottom-up approaches [2, 46].

Top-down approaches provide a computer with a general ethical theory along with facts that are morally relevant
according to the theory. The machine then infers moral judgments or makes moral decisions by applying the theory to
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the facts. This top-down approach must begin by choosing a moral theory to program into computers. The problem
is that ethicists support a wide variety of moral theories, and it is hard to see how to justify insisting on one theory
instead of another. The second problem for the top-down approach is that such theories are too vague to implement, they
conflict in real-life decisions, and they can yield disasters [2, 46, 3, 35, 15]. It might seem innocuous for a computer to
follow a rule like “Minimize harm,” but what if a computer decides that killing all humans will minimize harm in the
long run?

Bottom-up approaches try to avoid assuming any moral theory by using machine learning trained on human descriptions
of concrete moral problems to predict human moral judgments. This system mirrors one way in which children learn
morality, so it resembles Alan Turing’s original proposal for developing artificial intelligence. Over 50 years ago,
when faced with the problem of developing an artificial agent capable of making decisions like an adult human, Turing
presciently suggested, “Instead of trying to produce a programme to simulate the adult mind, why not rather try to
produce one which simulates the child’s? If this were then subjected to an appropriate course of education, one would
obtain the adult brain.” [43] It is not completely clear how children learn morality, but one element involves encounters
with concrete moral problems. Accordingly, a purely bottom-up approach might try to build AI systems that can learn
solely by exposing them to moral examples.

In order to learn in this way, an artificial moral judge or agent must be able to safely extrapolate what it learned in
some cases to novel environments that it may face in the future. This ambitious purpose requires a data set that is large
and varied enough to teach genuine underlying moral principles that are projectible into these new environments as
opposed to narrowly applicable surface features that predict human moral judgments only in the training set. Moreover,
we want to know not only that an act is wrong but also why it is wrong—what makes it wrong. Otherwise, we cannot
give comprehensible justifications for controversial decisions, and we have no way to check on whether or when the
system is working properly. These goals are difficult or impossible to achieve within uninterpretable ML systems [8].
Moreover, today’s AI systems lack a broad / commonsense understanding of our (human) world, and it seems that
such an understanding would be a necessary component of a system that could make moral judgments across a broad
range of settings. This task could be aided by computational models of case-based and value-based reasoning and
argumentation. For a variety of approaches, see Rahwan and Simari.

While top-down and bottom-up approaches both contain promising elements for developing moral artificial intelligence,
each approach also faces serious challenges [8]. Their flaws suggest that we might be able to do better by combining
the two approaches into unified systems that achieve the benefits without the problems of each [16]. Top-down
supervision and organization can enable artificial agents to justify their decisions in terms of moral principles that are
comprehensible to humans, while bottom-up learning has the potential to deal with complex facts in particular cases.

Our particular hybrid attempts to reduce the arbitrariness of top-down approaches by crowd-sourcing a list of features
that humans see as morally relevant. Humans do not include some characteristics, such as shirt color, as relevant to
kidney exchanges, and they are responsible for determining which patient characteristics are important. These features
of alternatives can then be used both to constrain the data and also to provide an interpretable basis for the algorithm’s
predictions. In this way, our hybrid introduces some minimal theory in the form of morally relevant features in order to
solve the main problems of competing top-down and bottom-up approaches.

This hybrid method is particularly well-suited to developing ethical machine reasoning in constrained domains where
it is clear which features of acts are morally relevant. In such a domain, it is possible to create models of multiple
individuals’ moral decisions, and then to have these models vote over what the right decision is overall [16]. Noothigattu
et al. recently applied a version of this approach to ethical decision-making for autonomous vehicles. They aggregated
human moral judgments about autonomous vehicles colliding with, for example, a pedestrian (likely killing them) or a
wall (likely killing the driver). Their method assumes that causing death along with a few other features are morally
relevant.

We applied a similar approach to kidney allocation in this paper. Our hybrid approach is not without its own challenges,
however. One is that human moral judgments are inconsistent within and across individuals, so a machine learning
system can at best predict a subset (though perhaps a majority) of human moral judgments. We will need to decide how
to make social decisions in light of such disagreements.

Moreover, humans often exhibit biases, such as racial and gender discrimination, that they themselves reject as improper
and would want an artificial moral agent to avoid. This problem can be reduced (though not fully solved) by designing
the artificial intelligence system to include only features that most humans deem to be morally relevant. If we had
included the characteristic “race” in our patient descriptions, the algorithm might have learned to take race into account.
Leaving out that characteristic avoids this undesirable result, though it still leaves open the possibility of more subtle
and hidden forms of bias. These problems for our hybrid approach will be the topic of future work.
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5.3 Future Research

Besides being applicable to kidney (and perhaps other organ) exchanges, our study also suggests a roadmap for
automated moral decision making in other domains. For example, the idea of obtaining human subjects’ judgments
to guide AI systems in moral decision making is also being explored for self-driving cars [13, 33]. Some aspects of
that domain are different. In particular, in that case the need for automated decision-making is driven by the fact that
decisions need to be made too fast to be made by a human, whereas in kidney exchanges the need for AI is driven
by the fact that the nature of the search space of all possible matchings makes the problem intractable for a human.
Nevertheless, the domains clearly have much in common, and it seems likely that we will be confronted with similar
problems in many others. Further research should eventually lead us to a good understanding of best practices for
automated moral decision making by generalizing from human judgments.
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