Integer Logarithm
Aubrey Jaffer
March 2008

Bignum software packages provide operations on practically unbounded size integers.
They typically include an integer-exponentiation operator but not its inverse:

procedure: integer-log base j

Returns the largest integer whose power of positive integer base is less than or equal
to positive integer j.

Searching the web for “integer logarithm” finds uses of integer logarithms, the non-
power-of-two logarithms usually computed using floating-point arithmetic. But I didn’t
find an integer algorithm with time-complexity better than O(n?), where n is the number
digits.

The approach here is to minimize the number of divisions while knocking down the
size of input j as quickly as possible, but without generating intermediate numbers larger
than j. Repeatedly squaring the base provides the exponentially increasing divisors. An
internal function ilog calls itself with exponentially growing b and exponentially shrinking
k/b until b > k. Each call then divides the returned ilog value by its b if doings so does
not result in 0.

This Scheme function employs only integer operations:

(define (integer-log base j)

(define n 1)
(define (ilog m b k)

(cond ((> b k) k)

(else (set! n (+ n m))
(let ((q (ilog (* 2 m) (* b b) (quotient k b))))
(cond ((> b q) q)
(else (set! n (+ n m))
(quotient q b)))))))
(cond ((> base j) 0)
(else (ilog 1 base (quotient j base))
n)))

For j = baseP + ¢, ¢ < baseP:

mo =1 by = base ko = floor(j/base)

my =2 by = base? k1 = floor(j/base?)
mo =4 by = base* ko = floor(j/base*)
my, = 2% by, = base") ki, = floor(j/base®"))

The variable n accumulates all the m; values for calls where k; > b;. During the Lth
call, where k;, > by:



When kj, < by, the most nested call returns k;, without altering n. Then each stacked
call compares the returned value g, with by ; if greater, it adds my, to n and returns q/by;
otherwise it merely returns qr,.

Counting the number of base factors divided from j, n accumulates between 2(&+1)
and 2(L+2) — 1 (where L is the number of calls with k; > by).

The largest by, = base" ) generated in the calculation is passed to ilog where
kr < br, which is not counted in n. This largest by is always less than or equal to
j = base™ + ¢ = base" ) + ¢,

The number of operations is logarithmic in p, the number of digits of j. In long-
division, the time-complexity of dividing a n-digit number by a d-digit number is bounded
by O((n — d) - d) [KNUTH]. The first few divisions will dominate running time; the
conditional divisions done on return have small n — d.

Let p = 2H%1 be the number of digits in j. The time-complexity of the long-divisions
is proportional to:

H H
L=0 L=0
H H
:2H+IZ2L_QZ22L
L=0 L=0
_gupn 21, AT
2—1 4—1
2—1 4—1
B p?—3p+2
B 3
<O0(p?)

The time-complexity of the repeated squarings with O(n?) multiplication is propor-
tional to:

H H H+1 2

2 4 -1 p°—1
>l =Y 4t = <o)
L=0 L=0

Thus the overall time-complexity when using long division is O(p?).

Bibliography

[KNUTH] Donald E. Knuth.

“The Art of Computer Programming”, Vol 2 / Seminumerical Algorithms.
Addison-Wesley Publishing Company, Reading Massachusetts, 2nd Edition.
ISBN 0-201-03822-6 (v. 2), 1981.



