

Integer Logarithm

Aubrey Jaffer

March 2008

Bignum software packages provide operations on practically unbounded size integers. They typically include an integer-exponentiation operator but not its inverse:

procedure: `integer-log base j`

Returns the largest integer whose power of positive integer *base* is less than or equal to positive integer *j*.

Searching the web for “integer logarithm” finds uses of integer logarithms, the non-power-of-two logarithms usually computed using floating-point arithmetic. But I didn’t find an integer algorithm with time-complexity better than $O(n^3)$, where *n* is the number digits.

The approach here is to minimize the number of divisions while knocking down the size of input *j* as quickly as possible, but without generating intermediate numbers larger than *j*. Repeatedly squaring the base provides the exponentially increasing divisors. An internal function `ilog` calls itself with exponentially growing *b* and exponentially shrinking *k/b* until *b* > *k*. Each call then divides the returned `ilog` value by its *b* if doing so does not result in 0.

This *Scheme* function employs only integer operations:

```
(define (integer-log base j)
  (define n 1)
  (define (ilog m b k)
    (cond ((> b k) k)
          (else (set! n (+ n m))
                (let ((q (ilog (* 2 m) (* b b) (quotient k b))))
                  (cond ((> b q) q)
                        (else (set! n (+ n m))
                              (quotient q b)))))))
  (cond ((> base j) 0)
        (else (ilog 1 base (quotient j base))
              n)))
```

For $j = base^p + c$, $c < base^p$:

$m_0 = 1$	$b_0 = base$	$k_0 = \text{floor}(j/base)$
$m_1 = 2$	$b_1 = base^2$	$k_1 = \text{floor}(j/base^2)$
$m_2 = 4$	$b_2 = base^4$	$k_2 = \text{floor}(j/base^4)$
$m_L = 2^L$	$b_L = base^{(2^L)}$	$k_L = \text{floor}(j/base^{(2^L)})$

The variable *n* accumulates all the *m_i* values for calls where $k_i \geq b_i$. During the *L*th call, where $k_L \geq b_L$:

$$n = 2^{(L+1)}$$

When $k_L < b_L$, the most nested call returns k_L without altering n . Then each stacked call compares the returned value q_L with b_L ; if greater, it adds m_L to n and returns q/b_L ; otherwise it merely returns q_L .

Counting the number of base factors divided from j , n accumulates between $2^{(L+1)}$ and $2^{(L+2)} - 1$ (where L is the number of calls with $k_L \geq b_L$).

The largest $b_L = \text{base}^{(2^{L+1})}$ generated in the calculation is passed to `ilog` where $k_L < b_L$, which is not counted in n . This largest b_L is always less than or equal to $j = \text{base}^{(n)} + c = \text{base}^{(2^{L+1})} + c$.

The number of operations is logarithmic in p , the number of digits of j . In long-division, the time-complexity of dividing a n -digit number by a d -digit number is bounded by $O((n - d) \cdot d)$ [KNUTH]. The first few divisions will dominate running time; the conditional divisions done on return have small $n - d$.

Let $p = 2^{H+1}$ be the number of digits in j . The time-complexity of the long-divisions is proportional to:

$$\begin{aligned}
\sum_{L=0}^H ((p - 2^L) - 2^L) 2^L &= \sum_{L=0}^H (2^{H+1} - 2^{L+1}) 2^L \\
&= 2^{H+1} \sum_{L=0}^H 2^L - 2 \sum_{L=0}^H 2^{2L} \\
&= 2^{H+1} \cdot \frac{2^{H+1} - 1}{2 - 1} - 2 \cdot \frac{4^{H+1} - 1}{4 - 1} \\
&= p \cdot \frac{p - 1}{2 - 1} - 2 \cdot \frac{p^2 - 1}{4 - 1} \\
&= \frac{p^2 - 3p + 2}{3} \\
&< O(p^2)
\end{aligned}$$

The time-complexity of the repeated squarings with $O(n^2)$ multiplication is proportional to:

$$\sum_{L=0}^H (2^L)^2 = \sum_{L=0}^H 4^L = \frac{4^{H+1} - 1}{4 - 1} = \frac{p^2 - 1}{3} < O(p^2)$$

Thus the overall time-complexity when using long division is $O(p^2)$.

Bibliography

[KNUTH] Donald E. Knuth.

“The Art of Computer Programming”, Vol 2 / Seminumerical Algorithms. Addison-Wesley Publishing Company, Reading Massachusetts, 2nd Edition. ISBN 0-201-03822-6 (v. 2), 1981.