
Integer Logarithm
Aubrey Jaffer
March 2008

Bignum software packages provide operations on practically unbounded size integers.
They typically include an integer-exponentiation operator but not its inverse:

procedure: integer-log base j
Returns the largest integer whose power of positive integer base is less than or equal

to positive integer j.

Searching the web for “integer logarithm” finds uses of integer logarithms, the non-
power-of-two logarithms usually computed using floating-point arithmetic. But I didn’t
find an integer algorithm with time-complexity better than O(n3), where n is the number
digits.

The approach here is to minimize the number of divisions while knocking down the
size of input j as quickly as possible, but without generating intermediate numbers larger
than j. Repeatedly squaring the base provides the exponentially increasing divisors. An
internal function ilog calls itself with exponentially growing b and exponentially shrinking
k/b until b > k. Each call then divides the returned ilog value by its b if doings so does
not result in 0.

This Scheme function employs only integer operations:

(define (integer-log base j)

(define n 1)

(define (ilog m b k)

(cond ((> b k) k)

(else (set! n (+ n m))

(let ((q (ilog (* 2 m) (* b b) (quotient k b))))

(cond ((> b q) q)

(else (set! n (+ n m))

(quotient q b)))))))

(cond ((> base j) 0)

(else (ilog 1 base (quotient j base))

n)))

For j = basep + c, c < basep:

m0 = 1 b0 = base k0 = floor(j/base)
m1 = 2 b1 = base2 k1 = floor(j/base2)
m2 = 4 b2 = base4 k2 = floor(j/base4)

mL = 2L bL = base(2
L) kL = floor(j/base(2

L))

The variable n accumulates all the mi values for calls where ki ≥ bi. During the Lth
call, where kL ≥ bL:

n = 2(L+1)

1



When kL < bL, the most nested call returns kL without altering n. Then each stacked
call compares the returned value qL with bL; if greater, it adds mL to n and returns q/bL;
otherwise it merely returns qL.

Counting the number of base factors divided from j, n accumulates between 2(L+1)

and 2(L+2) − 1 (where L is the number of calls with kL ≥ bL).

The largest bL = base(2
(L+1)) generated in the calculation is passed to ilog where

kL < bL, which is not counted in n. This largest bL is always less than or equal to

j = base(n) + c = base(2
(L+1)) + c.

The number of operations is logarithmic in p, the number of digits of j. In long-
division, the time-complexity of dividing a n-digit number by a d-digit number is bounded
by O((n − d) · d) [KNUTH]. The first few divisions will dominate running time; the
conditional divisions done on return have small n− d.

Let p = 2H+1 be the number of digits in j. The time-complexity of the long-divisions
is proportional to:

H∑
L=0

((p− 2L) − 2L)2L =
H∑

L=0

(2H+1 − 2L+1)2L

= 2H+1
H∑

L=0

2L − 2
H∑

L=0

22L

= 2H+1 · 2H+1 − 1

2 − 1
− 2 · 4H+1 − 1

4 − 1

= p · p− 1

2 − 1
− 2 · p

2 − 1

4 − 1

=
p2 − 3 p + 2

3

< O(p2)

The time-complexity of the repeated squarings with O(n2) multiplication is propor-
tional to:

H∑
L=0

(2L)
2

=

H∑
L=0

4L =
4H+1 − 1

4 − 1
=

p2 − 1

3
< O(p2)

Thus the overall time-complexity when using long division is O(p2).

Bibliography

[KNUTH] Donald E. Knuth.
“The Art of Computer Programming”, Vol 2 / Seminumerical Algorithms.
Addison-Wesley Publishing Company, Reading Massachusetts, 2nd Edition.
ISBN 0-201-03822-6 (v. 2), 1981.

2


