
Introduction à
eBPF  Moderniser
Linux pour le cloud

Paul Chaignon | @pchaigno
Senior Staff Engineer, Isovalent at Cisco

1

Avez-vous déjà utilisé eBPF ?
eBPF est peu visible mais omniprésent
- Load balancing & DDoS protection on major websites
- App data stats sur Android
- Réseaux Kubernetes
- systemd

2

https://www.brendangregg.com/Slides/reInvent2019_BPF_Performance_Analysis/
https://lwn.net/Articles/801871/
https://cloud.google.com/blog/products/containers-kubernetes/bringing-ebpf-and-cilium-to-google-kubernetes-engine
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/

Avez-vous déjà utilisé eBPF ?

Dans un contexte DevOps :
● Profiling : OpenTelemetry
● Réseau : Cilium
● Observabilité : bpftrace, pwru
● Sécurité système : Falco, Tetragon, Tracee

3

Paul Chaignon
Senior Staff Engineer @ Isovalent
Equipe datapath sur Cilium
BPF developer since 2016

● Company behind Cilium
● Now part of Cisco
● Remote-first startup/company
● Founding member of eBPF Foundation

Who Am I?

4

https://cilium.io/
http://ebpf.io/
https://github.com/cilium/tetragon
https://pchaigno.github.io/

⬢ Kernel space et userspace
⬢ Programmer le kernel : eBPF
⬢ Comment eBPF fonctionne

⬢ Cas dʼusages
⬢ Misconceptions
⬢ Conclusion

Comprendre eBPF

5

⬢ Kernel space et userspace
⬢ Programmer le kernel : eBPF
⬢ Comment eBPF fonctionne

⬢ Cas dʼusages
⬢ Misconceptions
⬢ Conclusion

Comprendre eBPF

6

Kernel Space

Kernel
● Très privilégié

● Gère l’accès aux ressources
physiques

○ Ex. mémoire, disque,
réseau

● Expose ces ressources sous
formes d’abstraction

○ Ex. files, sockets,
processes

● Composant critique

7

Kernel Space et Userspace

Userspace
● Domaine des processus

applicatifs

● Tout accès aux ressources doit
passer par le kernel

8

Syscalls
● Principale interface entre kernel

et userspace

● Demande au kernel d’effectuer
une tâche

System Calls

9

Syscalls
● Principale interface entre kernel

et userspace

● Demande au kernel d’effectuer
une tâche

○ Ouvrir un fichier
○ Lire ce qui a été reçu sur

un socket réseau
○ …

System Calls

10

Syscalls
● Principale interface entre kernel

et userspace

● Demande au kernel d’effectuer
une tâche

○ Ouvrir un fichier
○ Lire ce qui a été reçu sur

un socket réseau
○ …

● Très fréquent et assez coûteux

System Calls

11

Kernel
● Composant critique, très privilégié

● Incontournable

Syscalls
● API du kernel pour les applications

● Peu expressifs

● Assez coûteux

Kernel Space et Userspace

12

⬢ Kernel space et userspace
⬢ Programmer le kernel : eBPF
⬢ Comment eBPF fonctionne

⬢ Cas dʼusages
⬢ Misconceptions
⬢ Conclusion

Comprendre eBPF

13

Kernel et userspace

● Les applications peuvent vouloir de nouvelles fonctionnalités kernel
○ Nouveau protocole réseau
○ Nouvel algorithme de load balancing
○ Redirection du trafic vers un conteneur sidecar
○ …

● Généralement 2 options:
○ Demander au kernel de tout envoyer à l’application

■ Ex. tout le trafic Ethernet pour implémenter un nouveau protocole
■ Très coûteux

○ Implémenter dans le kernel…

14

Made by Vadim Shchekoldin 15

Made by Vadim Shchekoldin 16Made by Vadim Shchekoldin

⬢ Kernel space et userspace
⬢ Programmer le kernel : eBPF
⬢ Comment eBPF fonctionne

⬢ Cas dʼusages
⬢ Misconceptions
⬢ Conclusion

Comprendre eBPF

17

Programmer le kernel

● Programme chargé dans le
kernel

● Attaché à des évènements
○ Réception de paquets
○ Appel de fonctions kernel
○ …

● Exécuté pour chaque
évènement

18

Programme eBPF

19

Programme eBPF

20

Context :
● Seul argument

● Dépend du point d’attache

● Donne les données liées à l’
évènement reçu

Programmer le kernel

● Chargement via un syscall
○ Même syscall pour

beaucoup d’opérations
eBPF

● Programme JIT-compilé de
bytecode à machine code
classique

○ Meilleures perfs qu’un
interpréteur

21

Le Verifier eBPF

● “Le kernel est un composant critique et privilégié”

● Un bug dans le programme pourrait crasher tout le système

● Analyse statique pour rejeter les programmes “unsafe”
○ Ex. Out-of-bounds memory access, unbounded loops, malformed jumps

● Halting problem => 100% précision impossible

● Dans le cas d’eBPF:
○ Subset vérifiable du langage C
○ Des faux positifs mais pas de faux négatifs

22

Le Verifier eBPF

23

eBPF Helpers

1. Accès d’eBPF aux autres
ressources kernel

○ Ex. Mémoire, time, processus,
config réseau

2. Moyen d’implémenter ce qu’il est
compliqué de faire en eBPF

○ String functions, calcul de
checksum, etc.

24

eBPF Helpers

25man7.org/linux/man-pages/man7/bpf-helpers.7.html

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

eBPF Maps

● Key-value stores of many types

● Pour:
○ Stocker des données

entre deux évènements
○ Communiquer avec

userspace

● Accès aux maps via les helpers
○ Avec bounds checks

26

eBPF Maps

27

eBPF Map Types

● Array
● Hash table
● Ring buffer
● Prefix trie
● Least-recently used hash table
● Map of maps
● FIFO and LIFO queues
● Bloom filter
● …

28

● Beaucoup de maps supportées
○ Au fur et à mesure des besoins

● Assez haut niveau, simple d’usage

● Évite de devoir les implémenter en C

“eBPF est un acronymeˮ Oui, mais

“extended Berkeley Packet Filter”

● Sans lien avec Berkeley
● S’applique à bien plus que des paquets réseaux
● Peut faire bien plus que filtrer

Un peu comme SFR, spam, taser…

29

Comment eBPF Fonctionne : Résumé

● Code C simplifié

● Exécuté sur des évènements

● Analyse statique protéger le kernel

● Kernel APIs pour :
○ Accéder au reste du kernel
○ Stocker des données

30

⬢ Kernel space et userspace
⬢ Programmer le kernel : eBPF
⬢ Comment eBPF fonctionne

⬢ Cas dʼusages
⬢ Misconceptions
⬢ Conclusion

Comprendre eBPF

31

eBPF pour le Monitoring

● Premier cas d’application connu
○ En grande part grâce à Brendan Gregg, un expert en

analyse de performance

● Principalement:

○ Outils d’observation du système

○ Outils de profiling axés analyse de performance

32

Application and system profiling

● Read-only

● Très nombreux hook points

● Agrégation dans le kernel
○ Médiane, quantiles
○ Histogram
○ Stacktraces
○ …

33

https://github.com/iovisor/bcc/

Kernel

Java

JVM

Application and system profiling

34

● Existait déjà

● Mais beaucoup plus efficace
avec eBPF

● Enables continuous profiling

prodfiler.com/blog/introducing-prodfiler

https://github.com/brendangregg/FlameGraph
https://prodfiler.com/blog/introducing-prodfiler/

eBPF pour le Réseau

● Motivation initiale pour eBPF

● Cas d’usage assez variés :
○ Load balancing
○ Sécurité
○ Réseaux de conteneurs
○ Nouveaux protocoles
○ …

35

Container Networking

● Stack réseau Linux est assez
générale mais lourde

● Stack traversée 2+ fois dans le
cas de conteneurs

36

https://cilium.io/blog/2021/05/11/cni-benchmark/

Avec eBPF :

● Spécialisation de la stack
réseau

● Bypass tout ce qui n’est pas
requis

● Beaucoup à bypasser pour les
réseaux de conteneurs

Container Networking

37cilium.io/blog/2021/05/11/cni-benchmark

https://cilium.io/blog/2021/05/11/cni-benchmark/
https://cilium.io/blog/2021/05/11/cni-benchmark/

“Utiliser eBPF améliore les performancesˮ Non, mais

38pchaigno.github.io/ebpf/2020/09/29/bpf-isnt-about-speed.html

● Le simple fait d’utiliser eBPF n’améliore pas les performances

● Mais beaucoup de gains de perf possible :
○ Spécialisation du kernel
○ Bypass d’opération inutiles
○ Utilisation d’algorithmes plus adaptés
○ …

http://pchaigno.github.io/ebpf/2020/09/29/bpf-isnt-about-speed.html

39

Sécurité Système

● Monitoring and
enforcement completely
with eBPF

● “Kubernetes-aware”

● Low overhead

Tetragon

Letʼs Deep Dive into a Kubernetes Pod

Namespace Pod Name Tetragon

Letʼs Deep Dive into a Kubernetes Pod

Namespace Pod Name

Container
Runtime

Tetragon

Letʼs Deep Dive into a Kubernetes Pod

Namespace Pod Name

Container
Runtime

Pod
Process

Tree

Tetragon

Letʼs Deep Dive into a Kubernetes Pod

Namespace Pod Name

Container
Runtime

Pod
Process

Tree

Tetragon

Letʼs Deep Dive into a Kubernetes Pod

Namespace Pod Name

Container
Runtime

Reverse
ShellPod

Process
Tree

Tetragon

Letʼs Deep Dive into a Kubernetes Pod

Namespace Pod Name

Container
Runtime

Reverse
ShellPod

Process
Tree Lateral

Movement

Tetragon

Letʼs Deep Dive into a Kubernetes Pod

Letʼs Deep Dive into a Kubernetes Pod

Namespace Pod Name

Container
Runtime

Reverse
ShellPod

Process
Tree Lateral

Movement
Data

Exfiltration

Tetragon

Cas dʼUsages

● Monitoring, réseau et sécurité système

● Mais aussi : profiling, scheduling CPU, drivers HID, TCP congestion
control, live patching de vuln., etc.

● Principales motivations :
○ Optimisations en spécialisant le kernel
○ Supporter de nouveaux standards plus rapidement
○ Patch kernel temporaire

48

⬢ Kernel space et userspace
⬢ Programmer le kernel : eBPF
⬢ Comment eBPF fonctionne

⬢ Cas dʼusages
⬢ Misconceptions
⬢ Conclusion

Comprendre eBPF

49

“eBPF est dangereuxˮ Pas vraiment

● Code exécuté dans un contexte très privilégié, celui du kernel

● Bug dans le verifier => accès à toute la mémoire

Mais
● Par défaut, privilèges admin requis pour charger un

programme _(ツ)_/

50

“eBPF ne peut pas crasher le kernelˮ Faux

51

● Le programme lui-même ne peut pas crasher le kernel
● … mais comment vous l’utiliser peut

○ Ex. s’attacher à toutes les fonctions kernel

● Aussi facile de bloquer ex. tout le réseau ou tous les
syscalls

● Plus difficile to crasher le kernel par erreur mais
possible

“On ne peut pas tout programmer avec eBPFˮ
Si, mais

52

● eBPF est Turing-complet
○ Prouvé à bpfconf 2023

● En pratique :
○ Le verifier impose des contraintes assez fortes

○ Beaucoup de programmes sont compliqués à implémenter
■ Ex. chiffrement, parsing complet HTTP

● Ca s’améliore à chaque version Linux !
○ Ex. Travaux en cours sur offload Envoy vers eBPF

isovalent.com/blog/post/ebpf-yes-its-turing-complete/

https://isovalent.com/blog/post/ebpf-yes-its-turing-complete/

Misconceptions

● Beaucoup à nuancer autour du verifier et des usages

○ Verifier assez spécifique à eBPF

○ Usages encore en évolution

53

⬢ Kernel space et userspace
⬢ Programmer le kernel : eBPF
⬢ Comment eBPF fonctionne

⬢ Cas dʼusages
⬢ Misconceptions
⬢ Conclusion

Comprendre eBPF

54

Conclusion

● Programmes assez classiques chargés dans le kernel

● Exécutés en réaction à divers évènements

● Permet de définir de nouvelles actions du kernel

● Déjà très utilisé dans le monde Linux

55

Conclusion

● Slides sur pchaigno.github.io

● Ne me suivez pas sur LinkedIn, BlueSky, Mastodon à moins
de vouloir du BPF, que du BPF et encore plus de BPF 😇

● On recrute !

○ Ingénieurs logiciels (Go, eBPF, NSX)

○ Community manager

56

http://pchaigno.github.io
https://www.linkedin.com/in/pchaigno/
https://bsky.app/profile/pchaigno.bsky.social
https://hachyderm.io/@pchaigno
https://jobs.cisco.com/jobs/SearchJobs/isovalent?21178=%5B102695%5D&21178_format=6020&listFilterMode=1

Merci !

57

Merci à Raphaël Pinson et Vadim Shchekoldin
pour beaucoup des slides et images !

https://fr.linkedin.com/in/paulchaignon/en
https://twitter.com/pchaigno
https://github.com/pchaigno
https://pchaigno.github.io

58

eBPF loves Cloud Native

● Contrairement aux VM, les conteneurs partagent
un même kernel

● Opportunité de réinventer l’existant

59

“Il faut écrire les programmes eBPF en Cˮ Non

60

● Compilateur depuis Rust aussi disponible

● Probablement d’autres à venir
○ Any LLVM frontend?

konghq.com/blog/engineering/writing-an-ebpf-xdp-load-balancer-in-rust

https://konghq.com/blog/engineering/writing-an-ebpf-xdp-load-balancer-in-rust

