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Abstract
Machine learning systems are frequently interact-
ing with people in changeable environments, and
would benefit from being able to leverage insights
from those people. There are a number of inter-
action types that these increasingly sophisticated
systems can use towards this end. However, peo-
ple have limitations that affect their teaching and
need to be accounted for. One such limitation is
a finite working memory capacity. We propose
that interaction types that are more informative
also result in increased cognitive load. Thus, we
present a design for a learning framework that
iterates between demonstration, rating, and pref-
erence interactions in order to preserve learning
performance while minimizing human cognitive
effort.

1. Introduction
People interact with disembodied systems such as recom-
mendation engines on a near-daily basis, and embodied
systems such as self-driving cars promise to soon become
fixtures in daily life. Alongside this omnipresence comes
the need for these systems to behave appropriately in an
unprecedented number of possible contexts. To support
such breadth of behavior, these systems can leverage human
insight.

Currently, most people who interact with these systems play
no role in shaping their development; thus, a wealth of in-
sights, preferences, and priorities go unheard. For example,
should a self-driving car get stuck in a situation where it
does not know how to act appropriately (e.g. merging safely,
or navigating a crowded parking lot), its passenger can
likely identify a desirable course of behavior. However, it is
unclear how they could teach this complex system. The diffi-
culty in teaching complex behaviors is consistent throughout
the learning process, and without regard for whether the in-
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structor is a layperson or a machine learning expert. The
question then becomes: how can we build learning systems
that are easier for people to teach?

We concern ourselves with techniques for learning reward
functions in order to derive optimal behavioral policies for
an intelligent agent, such as a self-driving car. Researchers
have investigated a variety of interaction types that can be
leveraged towards this end. These include, but are not lim-
ited to, learning from human-provided demonstrations, cri-
tiques, ratings, corrections, and preferences (Abbeel & Ng,
2004; Cui & Niekum, 2018; Daniel et al., 2015; Bajcsy et al.,
2018; Dorsa Sadigh et al., 2017). The diversity in available
techniques may stem in part from their complementary na-
tures, and the varied benefits each technique brings to the
table. For example, demonstrations are more informative
than preferences, but less accurate, and both can be com-
bined to accelerate learning (Palan et al., 2019). Work from
(Bullard et al., 2019) has also explored game-theoretic and
heuristic based approaches to switching between interaction
types as an avenue towards increased learning efficiency;
this work also assumed a constrained query budget in order
to approximate the limitations of a human instructor.

Taking these types of limitations into consideration is nec-
essary because people are flawed teachers. Unlike oracle
agents, they are noisy, they are overly generous in their
feedback, and they get fatigued by long streams of ques-
tions (Amershi et al., 2014). Several of the shortcomings
in people’s teaching capabilities may relate to their limited
working memory capacity (Miller, 1956). As the cognitive
load (i.e. the portion of working memory being utilized) on
an individual increases, they grow more easily distracted
and tend to have worse task performance (Sweller, 1988).
Interestingly, interaction design can be used to modulate cog-
nitive load in human learners (Chandler & Sweller, 1991);
that is, the way a task is presented can affect how burden-
some it is to complete it.

We propose that interaction types that are more informative
also result in increased cognitive load. Given this proposal,
we can construct a learning framework that dynamically
iterates between using demonstration, rating, and preference
interactions in order to preserve learning performance while
minimizing human cognitive-effort.

The main contributions of this paper are the motivation for
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and design of such an iterative, interactive reward learning
system. In addition, we present preliminary thoughts on
evaluations and directions for further exploration.

2. Related Work
2.1. Learning from People

We are particularly interested in how to learn a reward
function from a person. Reward functions have been
described as the most compact and transferable descriptor
of a task (Russell, 1998), and can capture a person’s needs,
expectations, and preferences. We focus on the literature
regarding learning rewards from demonstrations, ratings,
and preferences.

Learning from Demonstration: Without any prior infor-
mation, the space of a user’s potential reward functions
may be expansive. Demonstrations can be used to narrow
down this space. Inverse Reinforcement Learning (IRL) is
a technique that is used precisely for recovering a reward
function given a series of demonstrations (Ng et al., 2000).
Commonly, the reward function can be modeled via a linear
combination of feature weights (Abbeel & Ng, 2004); this
is an assumption that we make as well. IRL can also be
formulated from a Bayesian perspective (BIRL), wherein
the demonstrator’s actions serve as evidence that is used
to update a prior distribution over reward functions (Ra-
machandran & Amir, 2007). In another Bayesian approach,
(Levine et al., 2011) explored how Gaussian Process (GP)
can be used for inverse reinforcement learning. We similarly
use a GP to explicitly maintain a distribution over feature
weights that other interaction types can leverage as well.

While demonstrations can be highly informative, they are
also difficult to provide. Due to time and resource con-
straints, people are limited in the number of examples they
can provide, particularly as the task grows more complex.
Furthermore, IRL is known to suffer from a degeneracy
problem: multiple rewards can explain a single behavior
(Ng et al., 2000). Finally, people may not be able to demon-
strate what they would like but rather what they are capable
of (Basu et al., 2017).

Active Reward Learning with Labels: Active learners
strive to be data efficient by finding the most informative
query at each iteration. A common approach is to utilize
active labeling, wherein a query point is selected and a user
must ascribe a label to it. GPs are particularly well suited
to this, and there are a host of well-developed Bayesian
Optimization techniques and acquisition functions that re-
searchers have explored in the context of reward learning
(Daniel et al., 2015). In our work, we utilize an active rat-
ings technique, which is a subset of active labeling where
users are given a discrete five-point scale along which to

rate queries.

While it has been found that label queries are easier to
answer than demonstration queries (Cakmak & Thomaz,
2012), a discrete scale restricts the informativeness of any
answer. Furthermore, people are known to be overly gener-
ous in their feedback, which might skew results (Amershi
et al., 2014). Additionally, people’s ratings are not static:
they tend to increase, meaning that a query rated low earlier
on in the training process might be given a higher score
later as the user’s expectations adjust (O’Connor & Cheema,
2018). Therefore, they are well-suited to be used in conjunc-
tion with other interaction types.

Active Preference-based Reward Learning: There is a
growing body of work on comparison-based approaches
to learning reward functions. The goal of the Active
Preference-based Reward Learning (APbRL) technique pre-
sented in (Dorsa Sadigh et al., 2017; Erdem et al., 2020) is
to recover a user’s underlying reward function, given as a
linear combination of weights, for a trajectory planning task
by presenting users with a series of comparison queries. In
(Bıyık et al., 2020), the reward function is modeled using a
GP. We use a similar GP formulation in our work.

Preference queries are precise, require little effort from
users, and consist of choosing between two (or more) poten-
tial options. As a result, the technique is good at fine-tuning
a coarse understanding of a user’s reward function, but the
amount of information that can be gained from each query
is limited. Furthermore, this technique can be inefficient
due to the computational overhead of repeatedly optimizing
candidate preference queries online.

2.2. Mixing Interaction Types

It is known that people utilize multiple interaction types
when learning a novel task. (Cakmak & Thomaz, 2012)
categorized people’s questions into three primary types:
labels, demonstrations, and feature queries. Researchers
have explored how multiple interaction types can be lever-
aged by algorithmic learners as well. (Palan et al., 2019)
recognized that demonstrations and preferences traded off
informativeness with accuracy, and that combining them
reduced convergence time: demonstrations could be used
to narrow down a user’s potential reward space, and prefer-
ences to hone in on the true reward function. Further work
has investigated how to toggle between interaction types
when the agent has a limited number of queries it can make:
game-theoretic, rule-based, and learned questioning strate-
gies were explored in (Bullard et al., 2018; 2019). Our work
also explores how multiple interaction types can be used in
conjunction, though we use the cognitive load induced by
each one as a key parameter in selecting which to use.
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3. Problem Definition
Goal: Our system will utilize various types of user feedback
in order to recover a reward function that leads to desirable
agent behavior.

Model: We consider a sequential decision making problem
with states s ∈ S and actions a ∈ A, that is both determin-
istic and fully observable.

Figure 1. The dashed line in this figure represents a trajectory ξ
that might be displayed to a user, who would then have the option
of returning a rating from 1 (worst) to 5 (best).

As in (Erdem et al., 2020), the pair (st, at) denotes the state
of the environment at time t and the corresponding action
taken. A trajectory represents a series of these pairs, and
can be defined as ξ = ((st, at))

T
t=0, where T is a finite

time horizon. Figure 1 shows an example trajectory in our
self-driving car domain.

We make the standard assumption that the reward is given
by a linear combination of feature weights (Abbeel & Ng,
2004), which reduces the reward-learning problem to learn-
ing feature weights. That is, R(ξ) = wTφ(ξ) where
w ∈ Rd represents the weights we need to learn, and
φ(ξ) ∈ Rd is a feature function that evaluates feature values
over ξ. We constrain ||w||2 = 1 without loss of generality
as in (Brown & Niekum, 2018; Palan et al., 2019). Initially,
we assume a uniform prior over w, which is updated based
on user feedback.

Interaction Types: We leverage three interaction types in
service of our goal.

Demonstration Queries (QD = s0), prompt the user with an
initial state and request the provision of a desirable trajectory
in the provided environment.

Rating Queries (QR = ξ) prompt the user with a single
trajectory and request a rating on a discrete five-point scale.

Preference Queries (QP = (ξA, ξB)), prompt the user with
two trajectories, and request the selection of the superior
trajectory.

Having a unified framework will allow us to toggle between
different interaction types at each querying iteration. We
leverage a standard multi-variate GP with a radial basis
function kernel in order to maintain a distribution over the

learned reward function and unify the aforementioned in-
teraction types. Utilizing a GP framework allows us to
flexibly make use of Bayesian Optimization techniques, and
explicitly reason about uncertainty over the distribution. We
build on pre-existing approaches towards GP-based learning
from demonstration and preferences (Levine et al., 2011;
Bıyık et al., 2020), and implement our own ratings technique
using a discrete five-point scale and a traditional Upper Con-
fidence Bound acquisition function (Srinivas et al., 2009).

Informativeness and Cognitive Load: The previously de-
fined interaction types have a trade-off between informative-
ness and cognitive load on the user. Our approach seeks to
utilize the most informative and effortless interaction type at
each querying step. Thus, we need to formalize definitions
for informativeness and cognitive load that can be used in
our optimization procedure.

Let ρx(w) denote the informativeness of interaction type
x ∈ {d, r, p}, where w is the current distribution over the
reward space. Similarly, let cx(i) be the cognitive load
of interaction type x at iteration i of the learning system.
Note that neither ρx(w) nor cx(i) are static variables: the
informativeness of a query is affected by the shape of the
distribution that query is drawn from, and cognitive load is
likely to increase with task length.

Our goal at each iteration i is to solve the following opti-
mization for the ideal interaction type x∗:

x∗ = argmax
x∈{d,r,p}

αρx(w)− (1− α)cx(i) (1)

Here, α ∈ [0, 1] is a tuning parameter. Initially, let α = 0.5.

Each time we query a user, we want to use the interaction
type that maximizes the amount of information gained while
minimizing induced cognitive load.

To do this, we need to prescribe real-values to the informa-
tiveness and associated cognitive load of each interaction
type. We propose using the expected information-gain of a
particular interaction type as an initial definition of informa-
tiveness, as in (Jeon et al., 2020; Erdem et al., 2020):

ρx(w) = I(qx;w|Qx) (2)

= Ew,qx|Qx

[
log

(
P (qx|w,Qx)∫

P (qx|w′, Qx)P (Qx|w′)dw′

)]
(3)

In Eq.(2), qx is the response from the user (e.g. their demon-
stration, rating, or preference selection) to the query Qx,
and the integral must be taken over the entire space of w.
Precisely computing P (qx|w,Qx) for x ∈ {d, r, p} is out-
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side the scope of this paper, and will be addressed in future
work.

Furthermore, in order to determine the cognitive load of
each interaction type, we need to run a user study and collect
data. We would need to run a study wherein participants use
each interaction type sequentially (e.g. a section of demon-
stration queries, followed by ratings queries, followed by
preference queries). We could then collect subjective mea-
sures of cognitive load, such as the widely used NASA-TLX
questionnaire, which allows us to compute a task load score
between 0 and 100 (Hart & Staveland, 1988). Simultane-
ously, we could use this data to confirm our informativeness
metrics.

Let sx, x ∈ {d, r, p} denote the task load score obtained
through the study. Then, let cx(i) = k(i) · sx, where k(i) is
the factor by which cognitive load increase with each query
iteration. We leave finding the optimal fatigue formula k(i)
for future work; as a first pass, we can let k(i) = 1. With
this, we now have enough information to solve Eq. (1) and
determine which interaction type to use.

4. Proposed Evaluation
Our learning framework will be evaluated along the two axes
of learning performance and user-friendliness. We seek to
answer questions including (1) How well, and how quickly,
can our system recover a ground truth reward function? (2)
How satisfied are users with the final performance of the
system? (3) Would a user utilize this system to teach an
agent again? and (4) What is the overall cognitive effort
induced by this system? While (1) can be answered via
the use of a simulated oracle user, we need to run a user
study in order to answer the remainder. Ultimately, we want
to understand the answers to these questions in relation to
other state-of-the art techniques.

These questions can be answered using both objective and
subjective task performance measures. Objective measures
might include the time taken for a user to respond to a partic-
ular interaction type, or their ability to perform a secondary
task alongside responding to queries. Subjective measures
include responses to survey questions regarding the user’s
experience with the system or their desire to use such a
system again, as well as measures of cognitive load such as
the NASA-TLX questionnaire.

There are a number of baselines against which we can com-
pare our method in order to collect the aforementioned met-
rics. For example, we can compare our system against
demonstration-only, ratings-only, and preference-only ac-
tive learning systems in order to understand the efficacy of
multiple interaction types on learning performance and user-
friendliness. In order to understand the efficacy of iterative
querying, we can compare this system to a unified approach

with a fixed ordering of interaction types. Ultimately, we
will run user studies with baselines and metrics that com-
prehensively evaluate the usability of our proposed learning
framework.

5. Conclusion
In this paper, we proposed a design for an iterative, inter-
active reward learning system. We designed this system to
intelligently toggle between interaction types in order to
minimize the cognitive load on a user without reduction in
learning performance. We outlined potential user studies to
further elucidate this trade-off between informativeness and
cognitive load, and evaluate our system’s approach. This
work is but one component of a larger effort to actively
accommodate human guidance in machine learning.

Though this project is a work in progress, we anticipate
that there will be several promising directions for future
exploration. For example, human teachers typically look
for and respond to signs of growth and learning from their
students, and respond positively to transparency in the ma-
chine learning process (Amershi et al., 2014). With this in
mind, we might investigate how a unified GP framework
can enable more explicit two-way communication between
teacher and learner. Alternatively, we can study how user
expertise affects both teaching and learning performance.
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