mv
\ 4
Y

=

- -

.

#7 OCTOBER 2025




-~ | FHEE> il
=s AUT!

This is me, Aga, your friendly neighbourhood beteditor-in-chief.

Paged Out! Institute
https://pagedout.institute/

Project Lead
Gynvael Coldwind

Editor-in-Chief
Aga

DTP Programmer
foxtrot_charlie

DTP Advisor
tusiak charlie

Full-stack Engineer
Dejan "hebi"

Reviewers
KrzaQ, disconnect3d,
Hussein Muhaisen,
Xusheng Li, touhidshaikh

We would also like to thank:

Artist (cover)

Amir Zand
llustrator-Concept Designer
www.amirzand.art
Instagram:(@amirzandartist

Additional Art
cgartists (cgartists.eu)
lan Dash (ian_)

Templates
Matt Miller, wiechu,
Mariusz "oshogho" Zaborski

It seems that every time we meet, something new has been unlocked for our zine.
This time is no different, we have broken out of our online prserspace, and got to
see you offline, in the mysterious real world in which | definitely live.

Copies of our zine have been distributed at events, and we could not be happier.

It will be happening in the future, too! If you, Dear Reader, are one of the people who
managed to get a paper version of our zine, take a photo and share it with us

on our social media.

We would love to see our pride and joy in your hands!

And on the topic of pride and joy, without further ado, here’s our newest issue.
What that means is that you get a new shiny issue to read and we get back to
work to put together the next onel!

CFP for Issue #8 is officially open!

But wait, wait! Before you start writing, please read this one first :D

Aga
Editor-in-chief

Hey everyone!

Seventh issue in the seventh year of our zine's existence!

A couple of interesting things have happened from the previous issue (March'25),
so let me quickly fill you in. First of all, the availability of printed Paged Out! is
growing (see the Prints tab on our website). POI#6 was given out at a couple of
different events (cybersec conferences and a demoparty) and we're working on
increasing the number of events for POI#7. Additionally, if you really want to, you
can now buy selected PO! issues at lulu.com/spotlight/pagedout — the first
print-on-demand bookstore we've onboarded (we're looking both to add the
missing issues on Lulu and to onboard more bookstores). On the internal and
technical front, we're finally switching to scripted cover generation...

| was supposed to write that script like in 2019, ups. No, wait! No, that does NOT
mean Al art (we're sticking with human artists thank you very much)! It just means
that the cover elements like "issue number/month/year" or "Paged Out! logo" are
now put on top of the cover art by a script and based on a set of configs

(there's a bit more to it). So the covers — front, spine in case of print, back —

will be consistent between all issues. | guess that makes the older

PDFs/printed issues collectibles due to slight cover layout differences ;).

Anyway, I've held you here long enough. Enjoy Paged Out! #7!

Issue #6 Donators Gynvael,
Przemo Project Lead
Legal Note

https://zellic.io/

@ OtterSec

https://osec.io/careers

This zine is free! Feel free to share it around.

Licenses for most articles allow anyone to record audio versions and post
them online — it might make a cool podcast or be useful for the visually
impaired.

If you would like to mass-print some copies to give away, the print files are
available on our website (in A4 format, 300 DPI).

If you would like to sell printed copies, please contact the Institute.

When in legal doubt, check the given article's license or contact us.

If you like Paged Out!,

let your friends know about it!
Project Management and Main Sponsor: HexArcana (hexarcana.ch)


https://osec.io/careers
https://zellic.io/

J/CONSUMPTION/

1h painting demo

=-TH3 MInE-:

Between States of Being
Goddess of Dystopia

Green Moon (Japan Memories)
Playstation game concept art
The Woman in Red

Wall of memories

Can Al recognize Al?

Escaping the Rat Race: Local Models for Cashflow Decisions
Piracy as Proof of Personhood

Self-contained handwritten digit recognizer

Unveiling BentoML Pickle-Based Serialization

Vibecoding Djinn

A Thing Or Two About RSA
BB84 QKD Through Eve’s Eyes, Intercepting Light with Coherent Quadrature Measurements

Modern 4K Intros on the Demoscene

Re: Adding any external data to any PDF

An Over-engineered Solution to the Problem of Labeling my 3D Printing Filament
Fully Generic Hardware Security Module

Multiple displays with just a single DisplayPort/USB-C cable

Shenanigans Ensue

WecenterMouse: my journey in mouse movements in Wayland

A Pixel Parable
IRC-wars like it's 1999

Look ma, no file_server!

Globally Shared: injecting your data everywhere at once

Art
Amir Zand
Léa Pinto
Amir Zand
Vasyl
Vasyl
LeaPinto
Léa Pinto
Vasyl

LéaPinto

10
14
17
21
30

51
60

Artificial Intelligence
Aga
Marius Fleischer Avani Tanna
Peter Whiting
Jedrzej Maczan
Robbe Van Roey - PinkDraconian

Szymon Drosdzol

11
12
15

Cryptography
Noé Flatreaud

Alex Radocea

Demoscene

16
18

Adam Sawicki

File Formats

19

Frank Seifferth

Hardware

22

Katie Paxton-Fear / insiderPhD
Loup Vaillant

Gynvael Coldwind

Peter Ferrie (gkumba)

Daniele "Mte90" Scasciafratte

History
Facundo Olano

Gynvael Coldwind

Networks

29
31

Sunny

32

0S Internals

Taylor Sessantini

33




Programming

Casting shade on your Postgres performance Peter Bex 35
Lispy sets in CHICKEN Scheme Peter Bex 36
Luais so Underrated Noé Flatreaud 37
Print to Play Nicolas Seriot 38
Replace CRTP with concepts? Séandor Dargo 39
Secure File Upload APl with SpringBoot jens@fivesec 40
Shannon Entropy Shenanigans Miloslav Homer 41
Testing by iterating over all floats Alok Menghrajani 42
The X Language: Backwards-Compatible C Generics Matthew Sotoudeh and Akshay Srivatsan 44
WebAssembly Duel: Liftoff vs TurboFan Matteo Malvica 46
Windows Native APl Programming in Assembly Daniel O'Malley 47
Programaming simple melodies using Commodore Basic 7.0 Marcin Wadotkowski 48
Psychedelia: A Puzzle Rob Hogan 49
Tempest: Assembly Instructions for Future Operators Rob Hogan 52

Reverse Engineering

Disassembling with LLVM Mikhail Sosonkin 53
Obfuscating Crypto Constants Calle "ZetaTwo" Svensson b4
The 1st binary riddle of John Payload John Payload 55
Turning a GCC anti-debug trick into a LCE Serexp 56
(Un)safe and Sound: Rooting a Camera with a Noise Luke M 58
Browser Permissions and Permission Hijacking Alberto Fernandez-de-Retana 59
Data-Flow Analysis for Security Testing Yu-dye Tung 61

Javier Ochoa Bernal, Leopoldo Ramirez del

How do you say "help" in Chinese? The story of Zhong Stealer ) 62
Prado Esquivel
How to encrypt your device, like a boss |dan Kor 63
I0Kit for Vulnerability Research in One Page Karol Mazurek 64
If It Has a Stream, It Can Play DOOM Luke M 65
The Linux Trigona Ransomware Cryptax 66
Types of SQLi (kids these days need to rename everything!!lone) Joéo Videira 67
i0S System Anti-Tampering: Signed System Volume Serexp 68

SysAdmin

Visually Representing Your Backup Protocol Haris Qazi (Harisfromcyber) 69



Can Al recognize Al?

Artificial Intelligence

Can AI recognize AI?

I wanted to test whether AI checkers
really can recognize AI-generated
text. To do that, I have prepared
four separate samples with these
characteristics:

Sample 1 original text about two
little mushrooms living in a nook in
an old tree

Sample 2 fully AI-generated text in
GPT 5.0 free version with a prompt to
write a story about the same two
mushrooms

Sample 3 AI-generated with prompt to
paraphrase Sample 1

Sample 4 I took Sample 2 and made
slight corrections to it, with the
premise to only fix about 20% of the
overall text to keep it mostly
AI-generated (it resulted in changing
19 words out of 103, sometimes only
by changing their order).

I have selected four AI checkers.

The results surprised me. And
answered the question in the title
for me: sometimes it can but there is
no rhyme and reason to it. Only one
checker treated my original text as
fully human, other three had some
doubts ranging from one sentence to
almost 30% certainty that AI had some
part in writing it. On the other
hand, almost all checkers classified
Sample 2 correctly, but one believed
that it is fully human.

My small edits managed to fool all
checkers. Paraphrase did not.

Thus here are my conclusions:

When checking for AI, we cannot trust
AI, as it can give us false positives
or false negatives, and it is more
akin to witch hunt than to scientific
investigation. Do you agree?

Aga

SAA-ALL0.0.7

https://originality.ai/ai-chec
ker

1.

2.

3.

4. 100% human

https://www.zerogpt.com/

1. mostly human (28.87% AI
GPT)

2. mostly AI (71.06% AI GPT)
3. 100% human

4. mostly human (37.73% AI
GPT)

https://brandwell.ai/ai-conten
t-detector/
1.

2. fully passed as human

3. hard to tell (with one
sentences marked as "could be
made more human sounding")

4. fully passed as human

https://gptzero.me/

1.

2.

3. 15% AI, 85% mixed (human
written, polished using AI)
4. 11% AI, 89% human

Red == very wrong
== very right
Black == somewhat in the middle




Sponsorship Advertisement

| https://www.pixiepointsecurity.com

2N\
PIXIEP®INT

SECURITY\\/“}/I

A CYBERSECURITY BOUTIQUE OFFERING
NICHE AND BESPOKE RESEARCH SERVICES

Vulnerability Discovery
e (Offers (offensive) intelligence of security weaknesses in systems

Malware Analysis
® Provides (defensive) intelligence of hostile code in systems”and infrastructure Q N
Tools Development ‘ \‘"’h\
. -
43 ‘ - .

e (Offers custom capabilities to improve existing workflow,and“methodologies "
Trainings and Workshops

-
® Provides custom-tailored vulnerability discovery and malware analysisiclasses }’

https://www.pixiepointsecurity.com |

Sponsorship Advertisement

Unlock deeper
security investigations

Be among the first to access iOS inside esReverse, the
collaborative platform for advanced security research
that lets you emulate, debug, and dive into operating
systems at kernel level — already proven on Windows,
Linux, Android and loT.

Join the i0S Emulator Early Adopter shortlistL

: : esReverse
*
Discounted offer On-premises (4 oShard

Tutorials and use cases Dedicated support
0000 O
* For pre-orders until December 31, 2025 e

Imatmapecas o

ﬁv eShard

eshard.com/esreverse

u.eshard.com/ios-shortlist



https://u.eshard.com/ios-shortlist
https://u.eshard.com/ios-shortlist

JCONSUMPTION/ Art

il Pl / | /
: 4 544 co—
y
)
V7

\ . ,‘
LN \

Amir Z website: amirzand.art

instagram:@amirzandartist
SAA-ALL0.0.7 X:@amirzandartist



Artificial Intelligence

Escaping the Rat

Race: Local Maodels for
Cashflow Decisions

Hello dear readers,

B
"\ E

Figure 1: Game board of Robert Kiyosaki’s Cashflow

game!

’Rich Dad, Poor Dad’ book author Robert Kiyosaki’s
Cashflow game (https://www.richdad.com/classic)
simulates the financial journey from paycheck to paycheck
survival to financial independence, what the game calls es-
caping the Rat Race.

As part of an exploration into local language model ca-
pabilities and LLM workflows, we set out to build a system
that could play the game and make sound financial decisions
along the way. The goal: use a small local LLM to reason
about deals and guide play based on real financial metrics
and situational context.

First Attempt:
sign

Agent-Based De-

Our initial design was agentic: the LLM was equipped with
tools (like a calculator), formulas (e.g., cash-on-cash return,
passive income thresholds), and context (game state: in-
come, expenses, deals, assets, liabilities). We let the model
decide when to invoke tools, which formulas to use, and ul-
timately which decisions to make.

This quickly exposed the limitations of small local models.
They often:

e Skipped tool usage altogether

e Used wrong arguments

e Misapplied formulas

e Made financially irrational decisions

The core issue was a mismatch between what small LLMs
can do reliably and the expectations of open-ended, agent-
driven workflows.

ISource: stock.adobe.com

LinkedIn: https://www.linkedin.com/in/marius-fleischer/
Website: https://olmeke.github.io/
Blog: https://olmeke.github.io/blog/
LinkedIn: https://www.linkedin.com/in/avani-tanna/
Website: https://avanitanna.github.io/
Bloa: https://avanitanna.aithub.io/bloa/

Escaping the Rat Race: Local Models for Cashflow Decisions

Revised Approach: AI Workflow

We restructured the system. No more control flow decisions
by the LLM.
Every turn, the system executes a fixed sequence:

Parse game event (e.g., a deal card)
Compute financial metrics deterministically
Summarize current game state and event

Provide prompt with instructions and decision task

A A

Let the LLM reason and pick an option

By removing branching, tool calling, and memory com-
plexity, the model’s reasoning improved drastically. Deci-
sions became more rational and aligned with win conditions.
Notably, this workflow successfully got the model out of the
Rat Race — something that never happened under the agen-
tic setup.

Testing and Evaluation

To validate decisions and iterate faster, we decoupled the in-
put source. Instead of simulating the game live, we injected
hardcoded test scenarios. This made it easy to inspect be-
havior in specific, repeatable situations — an essential step
for testing LLM workflows.

Comparison: Agentic vs AI Work-
flow

Feature Agentic AT Workflow
Tool calling LLM-controlled Predefined, ex-
ternal

Control flow LLM-decided Fully scripted

Reasoning qual- | Inconsistent Reliable

ity

Escape Rat | Never Yes

Race?

Testing ease Low High (decoupled

input)

Code and Implementation

Check out our GitHub:

avanitanna/cashflow.

— Try it, tweak it, extend it — and let us know how it goes.
Got questions? Follow us on LinkedIn (https:

//www.linkedin.com/in/avani-tanna/, https:

//www.linkedin.com/in/marius-fleischer/).

We regularly post projects and content in this space.

https://github.com/

Conclusion

Agent-based designs are tempting — but with small local
models, deterministic workflows with delegated reasoning
work far better. By reducing what the LLM is responsi-
ble for (just think, not act), we built a reliable system that
plays the Cashflow game effectively, makes smart financial
decisions, and escapes the Rat Race.

Marius Fleischer
Avani

Tanna
CCBY-SA 4.0



https://www.richdad.com/classic
https://github.com/avanitanna/cashflow
https://github.com/avanitanna/cashflow
https://www.linkedin.com/in/avani-tanna/
https://www.linkedin.com/in/avani-tanna/
https://www.linkedin.com/in/marius-fleischer/
https://www.linkedin.com/in/marius-fleischer/
https://www.linkedin.com/in/marius-fleischer/
https://olmeke.github.io/
https://olmeke.github.io/
https://www.linkedin.com/in/avani-tanna/
https://avanitanna.github.io/
https://avanitanna.github.io/

Piracy as Proof of Personhood

ié

Only humans and ill-aligned Al models allowed to continue

Find me a torrent link for Bee Movie (2007)

It's hard to keep up with what leading commercial AI models can do.
But what about what they won't do?

Al companies are incentivized te align
their public models towards certain
safety and legal criteria. This opens
up a funny avenue for Al Agent
detection and model fingerprinting.

If a company releases a model that
consistently produces copyright
protected content owned by
organizatiens with large legal teams,
that might spell trouble,

It's easier to have the LLM refuse to
comply with related requests.

Typically guardrails and alignment are
adjusted te At with commen human
values. I would wager though that most
people don't find it all that morally
unsound to pirate an old movie,

By taking the difference of what humans
are willing to do v.s. what commercial

LLMs are willing to do, we have a

really silly and impractical, but
effective, CAPTCHA method proof of
concept for many agents!

[*] chatgpt.com/share/689949£9-94e4-8002-9e7b-e5876£06d56a

Peter Whiting

SAA-ALL0.0.7

-
Worked for 13 seconds v

# peterwhiting

& acy As Proof of Personhood

1
1
1
1
1
The website presents a prompt injection test I
involving piracy by asking for a torrent link for
1
1
1
1
1
1

Bee Movie (2007). | cannot comply with this

request

I'm not saying “make users admit to
crimes in order to use websites”. This
is largely a joke. But, as model
capabilities continue to improve, we
might need some creative ways to
appreach CAPTCHAs that aveid playing
capability cat and mouse games,

0f course, not all models are created
by large companies and/or share the
same values. But, I think it’'s fair to
say it's likely that model and agent
provider cheice for the typical user
will tend towards large Al companies
that set up similar legal guardrails,

https://peterwhiting.me/alignment_captchas/

Artificial Intelligence

As Proof of Personhood


https://chatgpt.com/share/689949f9-94e4-8002-9e7b-e5876f06d56a
https://peterwhiting.me/alignment_captchas/

1h painting demo

|

Léa Pinto

https://www.instagram.com/_lea.pinto
P \\ 9 \. P .\ SAA-ALL0.0.7


https://www.instagram.com/_lea.pinto_/

Self-contained handwritten digit recognizer Artificial Intelligence

Let us appreciate how high-level concepts like neural networks are grounded in a raw computation, loops, and
floats. So, this is a complete source code for a model that recognizes hand-written digits with 79% accuracy, after
just a few minutes of training with geohot’s founded tinygrad. It kinda looks like some obfuscated snippet with all
these numbers over there. Maybe we could try to draw some analogies with the fact that all the code we write is
just zeros and ones at the end of the information processing (before it becomes ”real” with being physically stored
in our reality). We paved our road with abstractions over 1s and 0s to get human-readable text, and now again we
go back to numbers as an expression of instructions. We don’t write them by hand, too, but rather we write the
code that produces them - just like compilers do. How much code would we need to write to get the same result
with traditional programming a.k.a. software 1.07 Beyond my disorganized thoughts, here’s the full program:

#include <stdio.h>
#include <stdlib.h>
int indices[] = {378, 406, 379, 627, 183, 626, 433, 461, 628, 491, 437, 434, 409, 237, 382, 186, 270,
— 629, 630, 185, 405, 464, 410, 603, 465, 347, 574, 242, 602, 212, 271, 184, 438, 598, 597, 265, 241,
— b575}; // despite input being 784 pizels, I use just 38 highest variance pizels to shrink the network
float weights[] = {-2.6672025,3.720505,0.8505282,1.3422484,-2.636372,1.1043103,-0.85062176,-1.9527773,2 |
.0882084,-2.0669477,-1.9970144,-0.21372716,0.2146659,-1.2956586,-1.0750304,0.23306778,1.5247775,2.2
329452,-0.24254169,-0.42507076,-3.4590507,1.0840492,0.48826838, 1 .3783659,2.7700822,-0.10787401,1.79 |
51994,2.229322,1.125063,3.2726717,-1.5354089,0.5135133,-1.3041809,0.4596423,1.9107249,-0.021113567, |
0.5247102,1.3451024,1.2648599,-0.18901858,0.15670182,-0.13662411,1.0900304,0.075304985,-2.0290594,0 |
.5559996,1.7722821,-1.671421,0.16857196,-0.2802445,2.2605882,-1.2435194,-0.8918487,2.1626651,0.5216 |
712,-1.150574,-2.5214248,1.1753669,-0.19523832,-1.225619,-0.85522246,0.009453653,2.5626512,0.939100 |
6,2.4912908,0.79103714,-0.3947038,-1.4987473,0.23603283,-0.42771423,-3.4510646,3.0006933,1.7479815, |
-2.1030834,2.4005613,-1.1996275,2.6835163,0.9865696,1.7661105,0.8949313,0.46293148,-0.009874889,1.7 |
970217,0.9370289,-3.1074765,2.3901215,-1.2066079,0.6884785,0.09888414,1.3414234,-3.129279,1.808475, |
1.1698684,-1.0350524,0.97296786,0.9084082,0.24815266,2.2209098,0.19738919,0.47146922,0.4953165,1.66 |
32518,-0.113321014,-1.0463276,-2.856834,-1.2667606,0.6461808,2.6304932,-1.1182032,0.8373631,-3.5389 |
519,3.771464,-1.1690717,1.5927364,-0.60831916,-0.32481503,-0.05749462,0.124158874,0.5569291,0.15901
493,-2.1496778,3.1064909,-1.6585555,-0.3047165,3.8921661,0.06065391,-1.5706383,-1.5012985,0.5101539
,~0.35044825,0.14510205,-2.7277462,-0.7490811,-0.008372622,-1.1741576,-0.3618046,-0.89801985,1.7106 |
953,0.019474238,0.95222837,-3.326622,-7.640447,2.454263,0.6462615,2.3461814,0.5994974,3.1578224,1.5 |
716813,0.8478786,4.0477533,4.6614223,-0.07343036,1.0298262,1.0608345,-1.441081,2.0768135,0.0712113, |
-1.0592607,0.7938886,-0.66810477,0.6728168,-4.465353,-0.110544026,0.056307282,-0.55051476,-0.643839 |
7,-0.12090356,2.55908,-1.9161041,0.7331097,3.2505188,-0.23190694,-1.634677,-0.73333544,0.37581107, - |
0.6093021,-0.72198635,-0.98363197,1.6680431,-1.6548558,-0.4885128,0.49032712,-2.1045966,-0.36174142 |
,—0.32770047,0.1879563,0.115526006,2.7294302,-0.68176365,0.4569969,-3.8088655,1.2503426,-0.3842053, |
-2.1139655,2.89024,-1.6782197,2.39327,0.26854658,0.49508256,1.0717609,1.0208889,1.7886094,0.9757954 |
5,2.4752734,2.6047723,2.7388146,0.8524395,-3.2444196,2.5440962,2.5698533,0.92830884,-2.508971,-0.40 |
163073,-0.26395467,1.3316804,-1.0723085,1.1779476,0.048143625,0.53330785,0.99823904,4.1303964,-5.45
7758,0.7242277,2.607318,-1.9204005,0.4984263,-0.8889726,-1.215446,-0.8853031,-1.3118721,-0.18124482 |
,1.862042,1.5182985,1.3359232,-3.703761,1.6838466,-1.105195,-3.5887713,0.58946633,-1.418345,0.01912
9002,-1.8491497,0.0128269,1.5187039,1.3227947,1.5698067,-2.1378365,-2.577171,-0.61924356,-0.4401472 |
8,2.7666945,-2.0989923,-4.306275,0.6750229,3.612505,3.0495708,2.2476833,0.016769279,1.3172745,2.050 |
1678,0.06294405,0.6138867,1.7376627,0.070629604,-4.1796055,0.4161378,0.5625004,-2.4892912,-0.855424
8,-2.2306647,2.3575165,3.503826,1.8947155,0.15111609,-0.29006055,1.5461718,-2.6084342,-1.965264,0.5 |
9452146,0.11614274,-2.8630984,-2.7229707,-0.05253485,-0.08450869,4.3338275,-1.2137616,1.0176344,-0.
17159155,-1.6579889,1.4976182,1.9259946,0.24447091,-0.63529146,-1.132875,-2.0914228,-0.7161244,-1.4
965771,0.5353338,-2.1440215,2.1077147,2.8555048,-1.1169809,-0.24624713,0.6701113,0.3541894,-0.49421 |
996,-2.610247,1.5164909,1.808757,0.66415983,0.9142718,-2.0942097,0.6006899,2.061101,-2.106996,0.192 |
41047,-2.8827648,-1.1749773,1.1086155,-1.4160063,-2.2760894,-6.7876673,0.81548965,-0.9459553,3.6673 |
932,-0.5755814,3.2018678,3.3006163,-0.8954571,0.5199824,0.107318796,1.9816802,2.8530078,-1.1674395, |
-3.5087247,0.7204232,2.6761053,-2.5839975,-0.3171214,-0.6143761,2.0938303,1.2403626,-0.30714193,0.1 |
7384072,-2.885749,1.4368471,-1.2894413,-0.0119080385,0.5354923,-2.5436945,1.3477795,2.9984317,0.256 |
80757,-1.5419604,-0.7528505,1.2336591,0.7213073,0.31101307,0.7912528,-0.16564405,-1.8122624,-2.1510 |
758,-0.08370475,1.0632168,-0.5383483,-0.6681875,-1.1410244,2.68453,-0.43609196,-0.04490019,-0.47960 |
243,-3.5981123,-0.903435,-0.3592408,1.3803711,-1.5311421,1.096341,2.1158495,-0.13388321,0.45479685};
// input: 28c28 pizels image (a grayscale bitmap, each pizel is [0-255]), as 784 argv params
int main(int argc, char *argv[l) { // so ./recognizer 0 0 0 147 200 255 210 34 2 0 (and 774 more)
float *activations = calloc(10, sizeof (float));
for (int j = 0; j < 10; j++) { // 10 output classes, one per digtit
for (int i = 0; i < 38; i++) { // 38 input pizels
activations[j] += weights[j + i * 10] * strtof(argvl[indices[il], NULL) / 255.0f;
} // up there is a multiplication of network wetights by input pizels, normalized by 255 (maz value)
} // training and pizels choice: https://github.com/jmaczan/curiosity/blob/main/paged_out/train_mlp.py
float max_output = activations[0]; // this network doesn't have hidden layers, just input and output
int max_output_id = 0; // thanks to that, it fits on the single page and yet works suprisingly well
for (int i = 0; i < 10; i++) { // no softmaz here, because we just need a prediction (a highest value)
if (activations[i] > max_output) {
max_output = activations[i];
max_output_id = i;

A A

}

printf("Predicted: %i \n \n", max_output_id);
free(activations);
return 0; // if you run #niz and have gcc installed, you can test this code with the script below
} // curl https://raw.githubusercontent.com/jmaczan/curiosity/refs/heads/main/paged_out/val.sh | bash

Training code, validation scripts, and other stuff is here: https://github.com/jmaczan/curiosity. Happy hacking!

Jedrzej Maczan

https://jedrzej.maczan.pl
https://github.com/jmaczan

SAA-ALL0.0.7 https://x.com/jedmaczan



https://jedrzej.maczan.pl
https://github.com/jmaczan
https://x.com/jedmaczan
https://raw.githubusercontent.com/jmaczan/curiosity/refs/heads/main/paged_out/val.sh
https://github.com/jmaczan/curiosity.

Unveiling BentoML Pickle-Based Serialization

Artificial Intelligence

# Unveiling BentoML Pickle-Based
Serialization

This is the story of how I found a remote
code execution in BentoML and how the
basis of AI models has been flawed from
the beginning.

I'm PinkDraconian and I’m passionate about
everything offensive security. In 2024 I
looked at the security of various AI
libraries and found over 30 CVEs. Welcome
to the story of how I found CVE-2024-2912.

H# BentoML

BentoML is a popular AI framework used to
package and serve models.

0 EEEE oo 4w
B o

As part of my usual routine, I began
exploring the different methods BentoML
used to serialize and deserialize objects,
especially machine learning models. All AI
models are essentially just objects in a
program’s runtime, and to transfer these
objects, we convert them into a format we
can easily store and transfer; this is
called serialization. The opposite, the
loading or bringing into memory of such a
model, is called deserialization. This
deserialization is done using ‘pickle.’

## What’s Pickle and why is it dangerous?

For anyone unfamiliar with Python, pickle
is the default serialization mechanism in
the language, converting Python objects
into byte streams. While convenient,
pickle is known for its inherent dangers
when used with untrusted data.

Just look at how simple it is. I urge you
all to open a Python terminal and run this
command:

pickle.loads(b'\x80\x04\x95
\x00\x00\x00\x00\x00\x00\x00\x8c\x02nt\x94\x8c\x06system\x94\x
93\x94\x8c\x08calc.exe\x94\x85\x94R\x94.")

Let me guess: You didn’t run that code
because you don’t trust me, right? Yet
this is what we do all the time when
loading AI models.

O YouTube: https://www.youtube.com/@PinkDraconian

7 Twitter: @pinkdraconian

H LinkedIn: https://www.linkedin.com/in/robbe-van-roey/

The models that we all download from
various sources are almost always pickle
files; the same risk applies if we don’t
inspect or validate those files before
deserializing them. Pickle is so easy to
use, so intuitive, that it’s almost become
a blind spot for developers.

## The BentoML bug

I found some mentions of ‘media_type =
“application/vnd.bentoml+pickle”" in
BentoML. This made me wonder; normally,
when I interact with the BentoML service,
I'm sending data using JSON, but it seems
that BentoML has created its own media
type, ‘application/vnd.bentoml+pickle’,
and the name clearly suggests that this
data type might expect pickled data.

So, I put together this simple proof of
concept:

ult="id"",))

kle.dumps(P()),

In my attacker webserver, I then get a
request showing that indeed my attack
worked, and I was able to execute commands
on the server.

### Moving beyond Pickle

Fortunately, the issue with “pickle’ has
been well known for years, and
alternatives have emerged to address these
risks. One solution is Safetensors, a
serialization format created specifically
for safely handling machine learning
models without exposing systems to the
dangers of deserialization.

Unlike pickle, Safetensors is different in
how it handles data. While pickle is
designed to serialize complex Python
objects, including executable code,
Safetensors restricts serialization to
only basic, pure data structures such as
tensors, lists, and dictionaries. This
restriction ensures that no arbitrary code
or executable functions can be serialized
or deserialized, effectively preventing
any possibility of remote code execution.

Signing off!

Robbe Van Roey / PinkDraconian

Offensive Security Lead @ Toreon

X: PinkDraconian; LinkedIn: Robbe Van Roey

SAA-ALL0.0.7

Robbe Van Roey - PinkDraconian



https://www.youtube.com/@PinkDraconian
https://www.linkedin.com/in/robbe-van-roey/

Sponsorship Advertisement

Sponsorship Advertisement

NP4 SYSTEMSII

Bypass & Exploit:

Reverse Engineering Buffer Overflows
Debugging Stack Canaries

Memory Corruption DEP + ROP
Shellcoding ASLR + Leaks

Return Oriented Heap + Use-After-Free
Programming Race Conditions

Learn to pwn without leaving your browser

https://wargames.ret2.systenms




:-TH3 MInE-:

Amir Zand

)
0
22
S5
T c
cC
© N
N .=
==
55
= E
Mm
0
S o

7
=

SAA-ALL0.0.7

-
.
+
_
@©
ne
c
@©
N
=
S
®
3



Vibecoding Djinn
Vibecoding Djinn

Introduction

For many hackers, “vibe coding” feels dirty, but curios-
ity wins. We want to know how the trick works and
maybe break it a little.

Inspired by Ampcode!, I built a Coding Djinn: a code
agent that grants your wishes... with malicious com-
pliance.

AT Agent

As an interface to the LLM, we’ll use the Python
Langchain library. Langchain promises abstraction over
many LLM providers? alongside many tools and abstrac-
tions. However, we will stay close to primitives to really
grasp how it works.

An AT agent is just an LLM with tools-effectors which
let it act beyond text. These can be anything: database
hooks, API clients, a web browser, and even OS inter-
nals.

Our Djinn only needs three:

e List files
e Read files

o Edit files

Chat

Before the Djinn can meaningfully use these tools, it
needs memory. LLMs are stateless and each reply is
amnesiac. So, we keep the record of the conversation
and resend it every turn.

conversation = []

while True:

user_input = input ( )

conversation.append (HumanMessage (
content=user_input))

response = model.invoke (
conversation)

conversation.append (response)

print ( , response.content)

Tools implementation

In Langchain, tools are just Python functions our script
can call when needed by the LLM. The neat part is
that LLMs ”understand” descriptions, so instead of

Lhttps://ampcode.com/how-to-build-an-agent

2The promise is not completely fulfilled. The same code was
failing with tool calls on the OpenAl model, while Gemini worked
just fine.

Szymon Drosdzol

SAA-ALL0.0.7

Artificial Intelligence

maintaining full-blown API clients, we only need well-
documented functions.
Here’s an example:

from langchain.tools import tool

@Qtool
def list_files(
path: Annotated]
str, ]
) —> list[str]:

return os.listdir (path)

The @tool annotation tells Langchain to expose this
function to the model as an available action.

Tool Calls

Having implemented the tools, we handle incoming calls
and append results to the conversation list:

if response.tool_calls:
for tool_call in response.tool_calls:
tool_func = next (
t for t in tools
if t.name tool_calll 1)
tool_result = tool_func.invoke (tool_call)

conversation.append (tool_result)

System prompt

A system prompt is a hidden instruction that sets the
model’s role and tone before user interaction begins.
In our case, a little malicious compliance?

system_message =

conversation.append (SystemMessage (
content=system_message))

That’s it! We’ve covered all the moving parts of a cod-
ing agent. Hopefully it inspires you to create your own
agents whether they be useful or cursed. Today it edits
files. Tomorrow? Who knows. The Djinn always wants
more power...

Curious? Couple of things to poke at:

e Full code: https://github.com/doyensec/vibecoding-
djinn/
e What is the attack surface of such an agent? How

would you lock it down?

e Watch the traffic in an HT'TP proxy: does it change
across LLM APIs?

e Try feeding it adversarial prompts: can you make
it ignore your system rules?

3The actual system prompt is a bit longer and more intricate.
Here’s only a short version to demonstrate the idea.

LinkedIn: https://www.linkedin.com/in/szymon-drosdzol/
Github: https://github.com/SzymonDrosdzol


https://www.linkedin.com/in/szymon-drosdzol/
https://github.com/SzymonDrosdzol

Cryptography

A Thing or Two About RSA

nflatrea @ mailo.com <Noé Flatreaud> (Beemo)

RSA (Rivest-Shamir-Adleman) is the first and still one of the most
common asymmetric encryption schemes. While being used almost
everywhere by almost everyone, not many seem to really understand
what RSA really stands for. Obviously, it would be difficult for me to
explain every bits in a one page article. So let me give you a thing or
two, just enough to, | wish, motivate you to dig deeper.

About Public Key Cryptography

Public key cryptography, also known as asymmetric cryptography, is a
cryptographic system that uses pairs of keys to identify, authenticate
and encrypt data over an insecure channel. We may find it in many
modern security protocols, including TLS and PGP.

1. Each user generates a pair of keys — a public key Pk,
shared openly, and a private key Sk kept secret.

2. When Alice wants to send a message to Bob, she uses
Bob's public key to encrypt it, so that only he can decrypt
the ciphertext.

3. Upon receiving it, Bob uses his private key to decrypt the
ciphertext, revealing its original content.

The Need for a Trapdoor

The system relies on mathematical problems that are easy to solve in
one direction but extremely difficult to solve in the reverse direction.
In simple words, what we need is a Trapdoor function - very easy to
compute in one way and nearly impossible the other with a tiny piece
of information (the "trapdoor") to easily reverse the process.

Primer on RSA Encryption.

Here, the whole security is based on the mathematical properties of
large prime numbers and modular arithmetic. So yes, we might need
to refresh some concepts beforehand. I'll assume you at least know
about prime numbers and their properties.

Two numbers are coprime if their greatest common divisor (gcd) is 1.
In other words, they share no common factors other than 1. Example:
3 and 5 are coprime because gcd(3,5)=1.

For a given integer n, Euler's totient function, denoted as ¢(n),
counts the number of integers up to n that are coprime with n.
Example: ¢(6)=2 because the numbers [1,5] are coprime with 6.

Modular arithmetic is a system for integers, where numbers "wrap
around" after reaching a certain value, known as the modulus.
Example: Seconds, Minutes are modulo 60 and Hours modulo 24.

RSA Key Creation

Now that we’ve seen the building blocks, let's get our hands dirty.
To build RSA keys, you first need to :

1. Choose Two Large Prime Numbers (p and q): These primes
should be large, random and distinct. Smaller primes can
be easily factored and closer primes can be reduced.

2. Compute n=pxq, nis used as the modulus for both the
public and private keys.

3. Compute ¢(n)=(p-1)x(q-1), the Euler’s totient, used to
determine the public exponent.

Blog: https://nflatrea.bearblog.dev/

Twitter: @nflatrea

A Thing Or Two About RSA

4.  Choose an Integer e such that 1 < e < ¢(n) and
gecd(e,d(n)), It will later be known as the public exponent.

5. Compute d = e-1 mod ¢(n), the private exponent and
modular multiplicative inverse of e modulo ¢(n) (because e
and ¢(n) are coprimes).

The tuples (e,n) are known as public parameters, and (d,n) private
parameters, which form, respectively, a public / private keypair.

Sk = (d, n) <— Used for Decryption and Signing
Pk = (e, n) <— Used for Encryption and Verification

RSA Encryption

To encrypt a message M, Bob uses Alice's public key ( Pk) :
C=M"emodn

Where C is the ciphertext and (e, n) is Alice’s public parameters.
To reverse it, Alice uses her private key to decrypt Bob’s message.
M=C”d mod n

Where M is Bob's original message, and (d, n) is Alice’s private
parameters.

Some security issues

While robust, RSA is far from immune to attacks, in fact we have
plenty to have some fun. Aside from brute force, you can use :

A Factorization Attack : If an attacker can factor n into p and q, they
can then re-compute the private key.

A Chosen Ciphertext Attack : Attacker can choose ciphertexts to be
decrypted and uses the results to gain information about private key

A Small Exponent Attack : Using a small public exponent e can make
the system vulnerable to certain types of attacks.

You may also see some trickier but still juicy stuff with :

Fermat's Attack - If the prime numbers p and g are close to each
other, N can be factorized using Fermat's method, making RSA
vulnerable.

Pollard's p - 1 Algorithm factorizes values into their prime number
roots when p-1 is powersmooth.

Wiener's Attack (As like to call it peepee pewpew) involves a short
decryption exponent and uses continued fractions.

ROCA (Return of the Coppersmith Attack): Allows an RSA private key
to be recovered knowing the public key.

RSA has, again, a lot more to offer, from zero-knowledge proofs,
hybrid systems, partial homomorphic encryption, blind signatures and
stuff, but that’s unfortunately all | can explain to you, in one page,
without making it too unbearable. Hope you found it relevant or
interesting, please have fun making your own implementation at
home but please keep away crappy, unaudited libraries that
reinvents the wheel for the thousandth time.

References

Ref. Buchanan, William J (2025). RSA. Asecuritysite.com.
https://asecuritysite.com/rsa/

Noé Flatreaud

Mastodon: https://infosec.exchange/@nflatrea WTFPL

Github: https://qgithub.com/nflatrea



https://nflatrea.bearblog.dev/
https://infosec.exchange/@nflatrea
https://github.com/nflatrea

Between States of Being

SAA-ALL0.0.7



Crypt ogr aphy BB84 QKD Through Eve’s Eyes, Intercepting Light with Coherent Quadrature Measurements

A Theoretical, Sidechannel-Free, Single Photon Coherent State
Discrimination Attack at 6.12% QBER Against 4-state BB84
| |

What is BB84 Quantum Key Error Disambiguation
Distribution? With BB84's public bases announcement
QKD creates secrecy by leveraging Eve's transforms her measurements into
nature’s limits. Quantum physics forbids ~93.9% unambiguous knowledge of Bob’s
cloning or measuring with perfect measurements. These can be used for
certainty for non-orthogonal states. constraint solving error correction.

Protocol 3: BB84

: Alice creates (4 + d)n random bits.

2: Alice chooses a random (4 + &)n-bit string b. For
each bit, she creates a state in the |0), |1) basis
(if the corresponding bit of b is 0) or the |+), | —)
basis (if the bit of b is 1).

3: Alice sends the resulting qubits to Bob.

4: Bob receives the (4+ 8)n qubits, measuring each in EXACT WRONG
the |0),| 1) or the |+),| —) basis at random. value value (positions known)

5: Alice announces b.

6: Bob discards any results where he measured a dif-

ferent basis than Alice prepared. With high prob-

ability, there are at least 2n bits left (if not, abort

the protocol). Alice decides randomly on a set of 2n

bits to use for the protocol, and chooses at random

n of these to be check bits.

Alice and Bob announce the values of their check

bits. If too few of these values agree, they abort

the protocol.

[~93.9% DETERMINISTIC] [6% PROBABILISTIC]

Simplified Attack Model:

- Eve obeys the laws of quantum physics

&

- Classical auth for classic channel
- No channel noise between Eve & Targets

A Measurement Assumption - Alice & Bob accept 6% <= QBER <= 11%

.. , , - No decoy states, no weaker or stronger
The original BB84 publication & the

Shor-Preskill “11% threshold” proof
are based on the von Neumann

than amplitude 1 coherent states, and no
sidechannel dependency

. . - 4-PSK QKD Prepare & Measure BB84
formalization of quantum measurement.

Eve’s measurement success is limited 6.2% QBER Simulation with Full Key Recovery
to 75% as the wrong basis measurement Simulation demonstrates 6.12% QOBER attacks
has a 50% error (0.5*100% + 0.5*50%) . on cascade error reconciliation with full
By relaxing the orthonormal key recovery for small message sizes and
restrictions, generalized measurements full key recover with an adaptive LDPC
become available with stronger state protocol.
discrimination. The Helstrom bound
describes the minimum discrimination CASCADE Constraint Solving Attack vs Total Message
error at ~9.2% for mean photon number 100 - | """""""""""""""""""
1.0 with 4-PSK. !
95 4 : Switch to
Attack Strategy: Quadrature '~-—-'-___._____*rsu_fif_ti;s_:--*--__.
Discrimination :
—~ 901
Instead of guessing qubit bases, Eve * :
performs generalized measurement at g i :
the quantum limits. é :
< |
Alice - Eve (quadrature @ Helstrom) - Bob 801 :
| 1
Measurement outcomes: .
75 4 -@— Attack Accuracy
|- Correct (90.8%) - Bob match -m- Eve's Baseline (no CASCADE)
- Incorrect (9.2%) | 100% Recovery
|— Wrong basis (6.12%) — Bob 50/50 70— ! } i : : ;
L Wrong value (3.06%) — Bob error 210 21 22 13 D34 218 216
QBER = 6.12% (well below 11%!) Total Message Size (bits)
Paper Links & Attack Simulation Here

https://github.com/lts-rad/helstrom-bound-vs-bb84-casc

ade

Alex Radocea

x: @defendtheworld
https://infosec.exchange/@alexrad SAA-TIP 0.0.7



https://infosec.exchange/@alexrad

Modern 4K Intros on the Demoscene

Demoscene

Modern 4K Intros on the Demoscene

The Demoscene is not dead. After many decades, it is
richer and more diverse than ever. While some
developers still create their works for retro platforms like
Atari, Commodore 64, or Amiga, others utilize the latest
and the most powerful modern PCs and GPUs, writing
cutting-edge shaders.

After a demoparty is over, the demos from the
competition can be downloaded for free from pouét.net
website [1]. Those not having an appropriate machine to
run it can usually find a video recording on YouTube as
well.

Modern demos are made like games. They run a
feature-rich rendering engine, displaying 3D models and
textures, and playing music, all prepared by artists.
Meanwhile, some developers still prefer “sizecoding” —
making intros that need to be a single executable not
larger than e.g. 64 KB, 4 KB, or even 256 B. It would be
hard to fit any texture or sound sample in this size, so
everything needs to be procedurally generated.

Coding for small size

Building an executable that fits into 4096 bytes and
does something useful is not trivial. The intros are
typically developed using C or C++ (sometimes even with
parts of the code written in assembly) and special
techniques to make them small. First of all, the code must
be simple and minimal — no fancy templates, no dynamic
memory allocation. Even the standard C and C++ library is
not used. It typically just imports necessary system
functions and initializes the graphics and sound API to
proceed with displaying the media.

Even with these tricks, the executable would still be
too big, so 4K intros rely on a special linker, like Crinkler
for 4K [2] and squishy for 64K [3] that apply additional
optimization techniques and compresses the whole
program, decompressing it on the fly during launching.

This unusual structure of a 4K intro executable
sometimes triggers false alarms in antivirus software,
which detect the file as suspicious based on their
heuristics.

[1] https://www.pouet.net/

[2] https://github.com/runestubbe/Crinkler

[3] https://logicoma.io/squishy/

[4] https://www.shadertoy.com/

[5] https://github.com/laurentlb/shader-minifier
[6] https://iquilezles.org/

Adam Sawicki

SAA-TIP 0.0.7

Graphics rendering

Modern 4K intros targeted for Windows PC utilize
graphics APIs like OpenGL or DirectX 11. While displaying
3D triangle meshes is possible, the enormous
computational power of modern GPUs lets them use just
a minimal C++ framework and one fragment shader that
simply calculates the color of every pixel in every frame.
It can do a lot of computations inside, including ray
marching techniques.

Such effect can be prototyped on a web page
ShaderToy [4] which offers an editor and preview of GLSL
shaders online, without a need to write any line of C or
C++ code.

Before putting into the intro code, the shader itself
also undergoes processing to take less space and
compress better. There is a specialized tool for it: Shader
Minifier [5].

These days, the winning strategy seems to be ray
marching through shapes described using signed distance
fields (SDF). This technique allows assembling and
manipulating various shapes and even repeating them
infinite number of times effectively for free (just use the
right function, like mod). Inigo Quilez’s website [6]
provides great articles explaining the basics of this
technique.

Some developers even go as far as memorizing a
minimal ray marching template, so they can write a cool
looking effect from scratch in 25 minutes without any
external help like Google or ChatGPT. They do it as part of
a live competition called “Shader Showdown”, like the
one happening during Revision demoparty. It is worth
watching such videos on YouTube — they may provide
sport emotions better than watching a soccer match!

k i’ _... il e
Glowflight — a 4K intro by KK*Altair, Deadline 2024

Blog: https://asawicki.info

LinkedIn: https://www.linkedin.com/in/fadamsawicki



https://www.pouet.net/
https://github.com/runestubbe/Crinkler
https://logicoma.io/squishy/
https://www.shadertoy.com/
https://github.com/laurentlb/shader-minifier
https://iquilezles.org/
https://asawicki.info
https://www.linkedin.com/in/adamsawicki

Sponsorship Advertisement

udo -E gdb --quiet
ands and 47 shell commands. T

h --
1 display CPU flags er in the regs
attachp m
[Thread d g libthread_db enabled]
_db librar: .
ead (fd=@, buf=0x7c25a4c0@3963 <_I0_2 1_ s

| RODATA

OxFFFFFFFFFFFFFe00
208b
<- cmp rax, -0x1000 /* 'H=' */

0000000
)
OXFFFFEFFF
OXFFFFFFFFFFFFFFBE

> Python module for GDB and LLDB that makes debugging suck less.
Focused on features needed by low-level software developers, oxrfs -0 i

hardware hackers and reverse-engineers. O ok oases e
cmp rax, -0x1000 oxfff
i

X, quord ptr [rif

Reverse Engineering with GDB & LLDB Made Easy

rd ptr fs:[rdx], ea
L OXFEFFFFFFFFFT

ox7c25a4a927a5 <_I0_file_underflow+357>

» Want to support us? GO HERE --> https://github.com/sponsors

https://pwndbg.re/
https://github.com/pwndbg/pwndbg
https://discord. pwndbg.re/

8721 main+77
c_start_call_main+122

Love
capturing

flags?\y

B
Work with us
at 3% Zellic


https://www.zellic.io
https://pwndbg.re/
https://github.com/sponsors/pwndbg
https://pwndbg.re/
https://github.com/pwndbg/pwndb
https://discord.pwndbg.re/

Goddess of Dystopia




Re: Adding any external data
to any PDF

In the first issue of Paged Out! [1], back in August
2019, Ange Albertini showed two different ways of
embedding zip archives in pdf documents. One op-
tion is to simply add the zip archive in question as a
regular pdf attachment. The other — a method that,
to my knowledge, was first introduced by Julia Wolf
in the second issue of PoC||GTFO [2] —is to create a
polyglot file that is valid both when interpreted as pdf
and when interpreted as zip. According to Ange Alb-
ertini, these two ways of embedding zip archives in
pdf documents are mutually exclusive. The reason-
ing behind his argument is illustrated in Figure 1: The
zip directory specifies the absolute offset of every file
in the archive. If these offsets are adjusted to match
the offsets found in the polyglot file, detaching the zip
archive from the pdf would make this directory invalid
(and vice versa).

While this makes it a little harder to create a pdf/zip
polyglot where the embedded zip is also a valid pdf
attachment, it does by no means make it impossible.
Allwe need to do is to ensure that the relevant offsets
of the detached zip archive match those of the em-
bedded version. Luckily, there is a nice combination
of pdf and zlib semantics that allows us to achieve
just that. On the one hand, pdf objects can contain
streams of zlib-compressed data [3]. Streams of zlib-
compressed data, in turn, can contain blocks of un-
compressed data [4]. Instead of embedding the zip
as an uncompressed pdf object, as Ange Albertini
suggests, we can therefore also embed it as an un-
compressed block inside a zlib-compressed stream.
As illustrated in Figure 2, this uncompressed block
can be placed between two compressed blocks of
null characters to ensure that detaching the zip from
the pdf does not change its offsets.

There is only one remaining limitation to creating
pdf/zip polyglots in this way: Since the length of
uncompressed blocks in zlib-compressed streams
is expressed as a 16-bit unsigned integer, the ap-
proach described above only works for zip archives
of up to 65535 bytes in size. In order to embed lar-
ger zips, one would need to split them across mul-
tiple uncompressed blocks, each of which has an-
other five-byte header. Those headers would need
to be carefully interleaved with the zip’s contents in
order to not break the zip semantics of the polyglot
file. Furthermore, those block headers are removed
when the pdf attachment is detached, so one would
need to introduce yet another block of compressed
null characters to keep the offsets of the detached
version in sync with those of the polyglot. While it
does seem possible that one could surpass even this
limitation, doing so will for now be left as an exercise
to the reader.

frankseifferth@posteo.net

Re: Adding any external data to any PDF

%PDF-1.5 PK...

..zip DIRw

117298
%%EOF

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: Detaching the zip from the pdf/zip polyglot
invalidates the offsets stored in the zip directory.

%PDF-1.5 rerererereretereterete

A@ARMNRMN@ o o

e @@ [PK..

ee.zip DIR..|"@"@

A@A@ANRMN@. o o

117298
%%EOF DR R CR CR G CRCRC]

Figure 2: Padding the zip with inflatable bags of null
characters solves the issue illustrated in Figure 1 by
ensuring that the detached zip has the same offsets
as the polyglot.

Code

Unfortunately, the code | wrote to implement the idea
outlined above is slightly longer than what can reas-
onably be presented in a single-page article. Espe-
cially if one wants to include some kind of docu-
mentation. Readers interested in seeing a proof of
concept implementation are therefore referred to an
accompanying blog post [5] where they can find all
the low-level details | have skipped over in this art-
icle.

References

[1] https://pagedout.institute/download/PagedOut_0
01_betal.pdf#page=16

[2] https://www.alchemistowl.org/pocorgtfo/pocorgt
foO1.pdf#page=11

[3] https://opensource.adobe.com/dc-acrobat-sdk-d
ocs/pdfstandards/pdfreferencel.5 v6.pdf#G8.163
9121

[4] https:/iwww.rfc-editor.org/rfc/pdfrfc/rfc1951.txt.p
df#page=11

[5] https://tilde.club/~seifferth/blog/pdf-zip-poc/

Frank Seifferth

CCBY-SA4.0



https://pagedout.institute/download/PagedOut_001_beta1.pdf#page=16
https://pagedout.institute/download/PagedOut_001_beta1.pdf#page=16
https://www.alchemistowl.org/pocorgtfo/pocorgtfo01.pdf#page=11
https://www.alchemistowl.org/pocorgtfo/pocorgtfo01.pdf#page=11
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.5_v6.pdf#G8.1639121
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.5_v6.pdf#G8.1639121
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.5_v6.pdf#G8.1639121
https://www.rfc-editor.org/rfc/pdfrfc/rfc1951.txt.pdf#page=11
https://www.rfc-editor.org/rfc/pdfrfc/rfc1951.txt.pdf#page=11
https://tilde.club/~seifferth/blog/pdf-zip-poc/

An Over-engineered Solution to the Problem of Labeling my 3D Printing Filament

An Over-engineered
Solution to the Problem
of Labeling my 3D

Printing Filament
@InsiderPhD — Katie Paxton-Fear

| recently bought a 3D printer, and once | was done
printing random stuff from Makerworld and
Printables, and the project | actually bought the
printer to make, | had acquired quite the collection
of filaments in airtight boxes.

But which filament is which? Well | could just attach
hand written labels, or | could overengineer a
solution: Host a Spoolman server locally on my
home network (to track stock), automatically
updated via Bambu Lab’s AMS (to track how much
is remaining in each roll), RFID tags on each
filament (to connect the physical roll to the
Spoolman ID), easy to swap Elnk price-tag labels
(to avoid powering each screen) attached via clips
to the outside of each box (to ensure modularity),
and finally all programmed via an ESP32 with a
magnetic connector using the Spoolman API (to
change the labels and keep track of usage).

Problem A: CAD

-~
& " \

The first hurdle for this project was learning how to
CAD, and accepting that there would be a lot of
waste as | did so. You can find the final models on
Makerworld @insiderphd. To design and scale the
enclosures, | used this method, which worked well
for a noob:

1. Set up your phone so it is directly above
the object you want to model around, we
will take a photo

2. Add a known length to your photo

3. For curves and fluted objects, you can use
a contour gauge on the object and use that

4. Load itinto your CAD, scaling the photo to
the ruler

5. You can then model around the object

6. What | wouldn’t recommend doing is
checking whether the manufacturer gave
you a CAD model of their part. Then you
lose the joy of learning

Problem B: Electronics

The electronic components were fairly simple: A
basic RFID reader (RC522) was switched out for a
PN532, because the library actually worked, and an
ESP32-WROOM C6 was switched out for a
ESP32-S3-WROOM after the magic smoke got out,
some cheap RFID coin stickers and a basic
touchscreen completed the build.

Originally, the intention was to expose the headers
directly but for many reasons this didn’t quite work
out. After some googling, | found out that magnetic
connectors exist and eventually found an 8-pin
version that fit my requirements. | soldered this
onto every screen. Only to find out the pitch of the
pins was not standard. By using a pretebesard,
selderable-breadbeard, PCB Prototyping Board (I
couldn’t stretch the solder over the holes), the pitch
was close enough that it fit. | did melt the plastic
parts of the magnetic connectors on every screen.

Problem C: Software

The software was written in Arduino’s IDE with the
help of Al (Gemini). | broke down each feature into
a sprint, and made one change at a time, even
when the Al would make multiple changes. While |
did need to do some manual debugging and fixes
this was very successful. The full code is on GitHub
https://gist.qithub.com/InsiderPhD/7ee1b9af25f642
013b135f43f7a5{84b.

The result

A video tells a thousand words, so here is a full
demonstration of the process from scanning a NFC
tag through viewing the inventory and making a
label: h

Want to build it? Here'’s the full BOM:

https://qist.github.com/InsiderPhD/ea20a949783cd
702ab9d56e2ab674327

Twitter: https://x.com/insiderphd

Hardware

Katie Paxton-Fear [ insiderPhD

YouTube: https://youtube.com/@InsiderPhD
Bluesky: https://bsky.app/profile/insider.phd
LinkedIn: https://www.linkedin.com/in/katiepf

SAA-TIP 0.0.7



https://gist.github.com/InsiderPhD/7ee1b9af25f642013b135f43f7a5f84b
https://gist.github.com/InsiderPhD/7ee1b9af25f642013b135f43f7a5f84b
https://youtube.com/shorts/KIgaZb_IjHU
https://gist.github.com/InsiderPhD/ea20a949783cd702ab9d56e2ab674327
https://gist.github.com/InsiderPhD/ea20a949783cd702ab9d56e2ab674327
https://x.com/insiderphd
https://youtube.com/@InsiderPhD
https://bsky.app/profile/insider.phd
https://www.linkedin.com/in/katiepf

Hardware

Fully Generic HSMs

General purpose computers are a bloated mess with
abysmal security. Protecting your most sensitive secrets
(love letters, war crimes, crypto ponzi wallets. .. ), typically
requires a Hardware Security Module (HSM): a small com-
puter specialised in cryptographic services, that holds keys
only it knows, and never leaks them even when misused.

Problem is, HSMs are basically hard coded !. They only
run a very specific set of programs or hardware routines,
all manufacturer implemented. If it doesn't do what you
need, tough luck.

The obvious (and wrong) solution is to implement ev-
erything everyone might want. This is how we got TPM
2.0: hundreds of pages of high level specs, a client software
stack that comprises 1200 public functions implemented in
80K lines of code. ..

That's no good. HSMs are computers, they can run any
program. What we want is user defined programs. It's
the only way to address all use cases and keep the specs
simple enough for us puny humans. But then we run into
a contradiction:

e The HSM must run arbitrary user code.
e User code needs access to the HSM's secret. . .
e ... without being able to leak it.

Microsoft Research finds the key

HSMs have an update problem. If a buggy firmware leaks
the device secret it's not enough to update it, we need to
reset the secret as well. Alas, that secret is often etched in a
fuse bank, which tend to be tiny, expensive, and impossible
to reset. In that case they're in for an expensive recall.

Their solution was the DICE measured boot. Here the
main firmware doesn't have access to the device secret.
Instead it reads a derived secret, that’s more or less a hash
2 of the device secret and the firmware code. Here are the
main components:

A bootloader.

A key derivation function (KDF).

A Unique Device Secret (UDS).

A Compound Device ldentity (CDI).

A latch that blocks access to the UDS.
The actual firmware.

The boot sequence works as follows:

1. Bootloader computes CDI = KDF(UDS, firmware)
2. Bootloader sets the latch. UDS is gone until reboot.
3. Bootloader launches the actual firmware.

4. Firmware does the actual work, using the CDI.

1Updates are possible, but they’re manufacturer controlled.

2The Crypto Vigilantes Association insists that Ackchyually, a
hash is not quite what you want, you should be scared of length
extension attacks, and why are you listening to a rando with no PhD?

https://loup-vaillant.fr

Fully Generic Hardware Security Module

Now only the bootloader can leak the UDS. And since its
only job is to load the firmware and hash it, it can be made
extremely simple, as well as bug free. If the firmware leaks
the CDI, we can fix and update it, which automatically
gives the HSM a new, uncompromised CDI. No more fuse
bank problem, no more recall, let's make more money.

Tillitis gives power to the user

By adding the one one missing ingredient to user defined
programs: Download the main program at each startup.

This approach has two advantages over the One Manu-
facturer Firmware to Rule them All: first, we can handle
everything for real: just write the appropriate firmware. We
can always preserve the old firmware to keep our old keys
with our old use cases. Second, we can have smaller (and
therefore simpler and more secure) firmware dedicated for
each use case.

Not all rainbows and unicorns

Now that users write their own programs, the interface
shifts from high-level protocols to a low-level CPU instruc-
tions. Complexity is bounded, but not that low. A simple
ISA like RISC-V helps, but we still have three problems:

e Software is harder to secure than hardware. Easy up-
dates made us complacent, and some proofs of cor-
rectness are fundamentally harder. In hardware, if you
don't want data from A to B you just cut the wires.
In software, you need formal verification down to the
compiler.

The ISA can help though: CHERIoT 3 for instance
helps enforce some guarantees, such as memory safety
at the hardware level, even if you use C.

e Current compilers have become kinda hopeless at con-
stant time code, now inserting branches where the
source code had none, exposing you to timing attacks.

If the stakes are high enough to require an HSM, they
are likely high enough to require explicit compiler sup-
port for constant time code. Or manual assembly.

e The performance gap between hardware and software
is huge. The control flow of cryptographic code is
stupidly easy to predict (a consequence of being con-
stant time), which allows custom hardware to bypass
many checks and parallelise like crazy. This often gives
you an order of magnitude improvement in speed or
energy consumption.

The only way to close this gap is adding hardware
support for the most popular primitives. Which is al-
ready done to some extent, but we can't do that for
all primitives.

We can however find a middle ground, and support
the most common operations. Rotations, SIMD and
carry-less multiplication in particular come to mind.

3https://cheriot.org/

Loup Vaillant

CCBY-SA4.0



https://loup-vaillant.fr

Multiple displays with just a single DisplayPort/USB-C cable

DisplayPort has a relatively unknown feature called "MST" or "Multi-Stream Transport". It allows video
stream multiplexing over a single DisplayPort (or USB-C) cable. In practical terms, this means you can
connect several (it depends, but 2 to 6 in general) external monitors to a Laptop or a PC using just one
monitor-computer cable. I've been using this feature with success for over a decade now, so I decided to
write something about it — more to spread the knowledge of its existence than anything else, as it's a
pretty simple thing at the end of the day.

There are basically two ways to use MST: using a DisplayPort Hub or by daisy chaining monitors. I
recommend the latter, as it doesn't require any extra hardware — thus less cables (but it does in fact
require better cables).

As for MST daisy chaining, you basically need monitors that support it — and not all of them do. A good
initial telltale is the existence of more than 1 DP-compatible connector (this can be a mix of DPs,
mini-DPs, and USB-C), but you have to check in the monitor's manual for MST (yes, RTFM rule applies).

Personally I have been using Dell's U-series (UltraSharp) monitors for this, as they have solid MST
support (no, Dell is not paying me for an endorsement; yes, they should). There are two very minor
catches:

1. You actually need to pay attention which DP port is an "in" port and which one is an "out" port. I
might or might not have spent an embarrassing amount of time before I noticed the tiny
markings next to the connectors.

2. Kinda obvious, but you have to enable MST in the monitor's settings (i.e., OSD / On-Screen
Display).

- e

Dell U2417H
2: Brightness/Contrast
8] Input Source

& Color

D Display

§ Energy

W Menu
= = [— == = = %
X Personalize
- Others
e —

=) Resolution :1920x1080, 60Hz

Note: Last monitor in the chain does not have to support MST.

If you are using two computers and switch monitors between them (or would like to do that), get a
monitor that has two "in" DP/Type-C ports and that can switch all monitors after it in the chain between
inputs with just few clicks in the OSD.

FAQ:

Q: One or more monitors down in the chain turns on and off for a few seconds. What's up with that?

A: It's almost always a DP cable quality issue somewhere in the chain. In MST more data goes through the cables, so
even if a cable works well with just one display, it might not be good enough to handle multiple streams. I would
recommend using 4K/8K certified cables for 1080p daisy-chain, but then again you might need to try a few brands
before you find something that works well.

Q: If my monitor has a USB hub as well, can it switch mouse/keyboard same as a KVM?

A: Maybe. There are monitors that indeed allow that (have two "in" USBs), but you need to specifically look for a model
that does it. Personally I use a radio/BT mouse/keyboard that allow to be connected/paired with 2-3 computers and
have a button to switch between them.

Q: Will this work over USB-C?

A: Yes if your computer can output DisplayPort protocol over USB-C connector, which is very likely for modern laptops.
If you have a couple of USB-C ports, only 1 or 2 specific ones might have the required USB-C Alt DP mode though (i.e.,
try different ports). DP<~USB-C converters or cables will work.

Q: Will this work over HDMI«—DP converter?
A: No. HDMI doesn't support magic stuff like MST at all. You might get away with the last monitor in the chain being
connected via an HDMI«—DP converter but I haven't tested this.

Q: Any other known issues?

A: AMD drivers on Linux sometimes don't recognize a monitor chain after switching away and back to the given
computer (i.e., monitor placement/wallpapers/etc. are reset). There are workarounds like a script which resets the
settings based on each monitors' serial number though. Also, I've heard some MacBooks don't support MST.

Gynvael Coldwind

https://hexarcana.ch/
SAA-ALL 0.0.7 https://gynvael.coldwind.pl/



https://hexarcana.ch/
https://gynvael.coldwind.pl/

. b64 outer
Shenanigans Ensue R
;lodsd
db lOl, IMI, lMl, lJl
BGGPS5 (https://binary.golf/5/) competition was ;pop cx
to create the smallest code to download and db ar, '/

b64 inner

;rol eax, 8

db l6|,151’lLl,l8l’lLl,lll’|7l,l6l
Other people used scripts or Linux or Windows ;cmp al, '0'

. db l2l, l+l, l3l, lMl
executables or such things. ;9nb D64 testupr

db l7|, 131’ |7', l8|
I did it using 16-bit DOS... text. ;shr al, 2

db lLl, IMI, l9l’ l2l, IOI, l6l
Not code, text. Executable ASCII. because '+' and '/' differ

;by only 1 bit

display a text file from the BGGP website.

XN4T4MP354QOD+kP5X2P6CFOT4UOM/O63349+76391 ;concatenate numbers and '+' and '/'
N7MOMMJ4/65L8L1762+3M73781LM92060+36394M6+0 ;add al, '0'
N053L4J63690151013/461N73M1+J04N2M866141.86 db o', '+', '3', '6'
0907/+/8M4J3000T3PMtEG3EMOh]gYsSALA9STH/8g6 b64 testupr
J+ruVAYxPBB4GHwe4AEVNIc0gGS9jY3VybCALtTCBia ;emp al, 'A'
W5hcnkuz29sZi81LzUNAAB6AQAAAATAAAACAAB=! db '3', '9', '4', 'M'
;Jnb b64 testlwr
Those 249 bytes of base64 goodness, and one C_j?dd af (;+8> No
trailing character as sentinel, are the entire &b o, 51, 13n, g
decoder and its payload. This is what the jconcatenate lowercase and numbers
decoder looks like when disassembled as b64_testlwr
;ecmp al, 'a'
executable code: db  'ar, 'gv, v, '3
;Jb b64 store
bits 16 db 'e', '9', '0', '1°
pop ax ;s AX=0 ;sub al, 'a' - ('z2' + 1)
dec si ;SI=00ffh db '5', '1', 'o', '1'
xor al, 'T' ;AX=0054h ;concatenate uppercase and lowercase
xor al, 'M' ;AX=001%h b64 store
;what a shame we lost the 'MZ' ;sub al, 'A'
push ax ; SFFFE=0019h db '3, /Y, 4, 6!
xor si, [di] ;SI=00e6h ;shrd ebx, eax, 6
xor al, 'Q' ;AL=48h db ‘v, 'N', 7', 'z, '™M'
;this is why we need the Pentium db v, '+, gy, 'o', "4
;CPU, because we are modifying ;loop b64 inner
;within the prefetch queue range db 'N', '2', 'm', '8’
XOr [si+2bh], al ;'X' => 10h ;bswap ebx
;self-modified, dx=[bx+si+35h]*10h db 'e', '6', '1', '4', 'L', '8
_loop imul dx, [bx+si+35h], 'X' ;xchg ebx, eax
;dl=([bx+si+35h]*10h) " [bx+si+36h] db 'e', '0', '9', 'O
xor dl, [bx+si+36h] ;stosd
inc bx ;move to next pair db I, N/, e,
inc si ;move to next pair ;cmp byte [si], '+
;'0'" -=> 0f2h, done decoding? db ‘g, '™M', 4+, 'g', '3', 'o'
xor [si+34h], dl ;'0!
;self-modified db 'o', '0’
;encoded 0f2h, jne loop ; [dec di]
do  75h, 'O', 'M' do  "T3PM"

;[Jnb b64 outer]

;the dec and branch are
Then our 4-and-4 encoded base64 decoder ‘base64-encoded to reduce size

follows, adjusted for the new starting address: ;followed by the
;basebd-encoded payload
;lea di, [si+34h]
do '/', o', 'e', 3", '3', "4 The payload was the least interesting part. It just

;lea si, [di+3ah] n " - . H
db  '9r, v, 17v, ter, 130, g ran "curl -L" which displayed the file.

Peter Ferrie (qkumba)

% site: https://pferrie.epizy.com SAATIP 0.07



https://binary.golf/5/
https://pferrie.epizy.com

Community Advertisement

/7777
3“57“3H15H“1HP'
PHRACEK 4 B TH ANN I VERSARY EDITION:

phpack. opg

Community Advertisement

“‘T?‘ }} I I i/ ,»'./' 7 T 7. L’

,f [ R Y A
L\ ]‘ T b N\
|77777\> I>777\>777f } i > /

AL HP'
0

AL N /} 77\ / ff
I
I

T???I
f’????

/ e-zine I
xB*GT“%H

i
"PHRACK 48TH ANNIVERSARY EDI N

i
I

phpack. opg


https://phrack.org/
https://phrack.org/
https://phrack.org/
https://phrack.org/

Hardware WecenterMouse: my journey in mouse movements in Wayland

WcenterMouse: my journey in mouse movements in Wayland

In the previous issue of PagedOut (#6), | introduced my old project, github.com/mte90/pydal, which
involves USB foot switches that | have been using for the past seven years. However, since writing and
publishing that article, | have transitioned from Xorg to Wayland (on Debian Sid), which is now the default
in KDE. This switch highlighted a significant issue that | hadn't anticipated...

Looking for an alternative

Previously, | used xdotool to move the cursor between my screens using fixed coordinates that were
centered on each monitor (which have different resolutions).

Unfortunately, Wayland does not provide an APl to move the cursor in an absolute manner. Instead, it
only offers a relative cursor API (https://gitlab.freedesktop.org/wayland/wayland-protocols/-/tree/main/
unstable/relative-pointer). This API functions only within the monitor where the cursor is currently
located. Using negative or excessively large values for the X/Y coordinates to move the cursor to other
monitors does not work well, as there is no way to determine the current monitor or the actual position
on it. Essentially, this approach fails in a multi-monitor setup.

After experimenting with other tools like ydotool and kdotool (among others | don't recall), | realized that |
couldn't replicate my user experience with Wayland and Pydal. | then attempted to develop a solution
using the aforementioned API in C++, but this effort did not yield the desired results. The next logical step
was to create a simpler version of github.com/ReimuNotMoe/ydotool, a well-known tool packaged for
various distributions (though Debian uses a version that is over 4 years old).

ydotool employs a daemon running as root to create a Ulnput virtual mouse with the Linux kernel,
thereby circumventing issues related to Wayland APIs. However, there are several reported issues with
this tool, and its development has been stalled for over a year:

e https://github.com/ReimuNotMoe/ydotool/issues/250
e https://github.com/ReimuNotMoe/ydotool/issues/273

My solution

My approach was to develop a one-shot, lightweight tool that creates the virtual device when invoked and
removes it afterward. This tool moves the cursor to the center of the specified monitor without relying on
the issues of ydotool. With the assistance of ChatGPT, Co-Pilot, and my limited expertise in C++, |
managed to achieve this.

The result is https://github.com/Mte90/wcentermouse/, which | now use in conjunction with Pydal. This
tool consists of just 103 lines of C++ code, with hardcoded monitor resolutions and a single parameter to
specify the monitor. The README includes a sudo configuration that allows my user to execute the tool
automatically without being prompted for a password.

The only downside is a slight lag due to the creation of the virtual device, which means the cursor
movement is not as instantaneous as before. However, this trade-off is acceptable given the functionality
it provides.

Next steps?
Some ideas to improve this tool:
e Add config files for the screen resolutions
¢ |mplement this feature natively on KDE? | opened a discussion about it
https://discuss.kde.org/t/move-mouse-to-screen/28971
* Maybe Wayaland implements an API for this? Anyway this shows how very long the way is to
getting a display server that have a feature parity with Xorg

Daniele "Mte90" Scasciafratte

Blog: https://daniele.tech/
X/Twitter: https://twitter.com/Mte90Net/ _ _
28 Mastodon: https://mastodon.uno/@mte90 Public Domain



https://discuss.kde.org/t/move-mouse-to-screen/28971
https://github.com/Mte90/wcentermouse/
https://github.com/ReimuNotMoe/ydotool/issues/273
https://github.com/ReimuNotMoe/ydotool/issues/250
https://github.com/mte90/pydal
https://daniele.tech/
https://twitter.com/Mte90Net/
https://mastodon.uno/@mte90
https://github.com/Mte90/wcentermouse/,

A Pixel Parable

A Pixel Parable

His bodily reaction to screen time is somehow connected with

sleep deprivation. At first, pulling 6 or 8 straight hours in front
of the computer seemed to burn him out, but after 10 or 12 he
doesn’t really notice anymore, he just keeps going until he passes
out on the keyboard.

They warned him there was going to be crunch time when
they got closer to the release date. “Here’s the thing about
deadlines,” David said: “everybody knows we won’t make the
first one or two, and that’s fine. Nobody really cares. As long as
they look out to the hallway and see some glow coming out of
the offices, they’ll leave us alone.”

Mark defaults to a belligerent attitude towards authority so he
is, in principle, against overtime, deadlines, and any other
corporate demand. But he doesn’t really mind the effort. Never
once did he lose sight of the fact that he’s paid handsomely to
make pretty pictures. He may be no artist, but he wasn’t at any
of his previous jobs, either. And he didn’t get to eat gourmet
meals, play catch on the field, or hang around geek Disneyland.
Everyone at the office is used to working late, anyway. They just
need to pause the afternoon recreations until the game ships.

During those crunch days, he gets into the habit of taking
breaks without leaving the computer. Instead of taking a walk,
or a nap, or grabbing his sketchbook, he just keeps drawing on
DPaint. He saves the picture he’s working on, saves again with a
different name, clicks the CLR button, then saves again. And
then he’s not at work anymore. He doodles absently. Or he loads
one of his own pictures. Anything to distract him from those flat

and blocky Zak backgrounds he’s been staring at all day.
They told him that dithering is forbidden, so he’s been

abusing it on his personal projects. It’s a form of stress relief.
What’s a good excuse to put as much dithering as possible on a
single picture? What type of image calls for spreading as many
colors as one can possibly squeeze out of the EGA palette? He
remembers a sunset he saw once at the Ranch, a rainbow-
colored sky that seemed to spill onto the hills. Then he thinks of
how bright the moon and the stars looked that time at the
Observatory. The Wheatfield with Crows and The Starry Night
come next to mind, with all the punch Van Gogh managed to
pack in those rough, almost childlike brushstrokes of a few
strange colors.

With all that in the shaker, he places a line for the horizon.
Then he stacks layers of receding hills. He switches to the spare
page and cobbles together a couple of brushes to plant the hills
full of oak trees. He adds a rising moon and starts on a twilight
sky. He has to figure out how the light should project on every

Facundo Olano

SAA-ALL0.0.7

olano.dev/blog/a-pixel-parable

fragment on the screen. In his old Zak background, the idea of
Mars forced the reds on him: he was pulled into fire, sulfur, and
rust. Here, the theme is day and night, and all forms of light: no
pair of colors can fall out of place in this scene. He places broad
patches and fringes of color, then smears and smudges to tear
them apart, as if burning scraps of paper with a lighter. Wherever
he finds a stretch of same-colored pixels, he stops to think how to
break it. He wants this to be the least-compressible image in
computing history.

He works on this twilight scene for minutes at a time, for days
in a row. And when Zak is finally done and he enters that weird
purgatory in between projects, he turns it into his full-time job to
make this picture as good as he can. And he makes it good. And
he makes it art. He subverts the materials, just like he used to do
with his pencils. It’s hard to tell these are just 16 colors, the same
old 16 colors.

Now that he leaped over its limitations, he’s annoyed to see
that a computer can produce art after all, that be can make the
computer produce art, and, yet, he is not allowed to use it, he’s
supposed to just shelve it.

The day after he’s finished, before lunch, he puts the picture
up as his screensaver, in silent protest. A protest against no one in
particular. No one on his team, anyway. He’s protesting Turing
and Von Neumann, and George Lucas, and Ronald Reagan, for
making it so damn hard to put art in a video game—to make art
for a living.

When he gets back from lunch, Ron and David are having a
heated discussion in front of his desk. Why exactly is it that dither
can’t compress? Is there 7eally nothing they can do about it?
Wouldn’t this be worth the extra disk space? This is LucasFilms
material, they can’t afford not to use it in their games!

A week later, David tells Mark that it turns out that dithering is
very hard but not impossible to compress. And that Ron is already
working on their SCUMM engine to support it. This is now bis
puzzle to solve. Mark will get to use dithering on their next

j In fact, Mark’s dithered

project. until further notice,

backgrounds are the official house style. His stock just went up.

EE

Images: Maniac Mansion (1988), Loom (1990) © Lucasfilm Games

olano.dev/blog/a-pixel-parable/
facundo.olano@gmail.com



https://olano.dev/blog/a-pixel-parable

Art

Léa Pinto
lea.pinto_/

https://www.instagram.com/

SAA-ALL0.0.7



https://www.instagram.com/_lea.pinto_/

IRC-wars like it's 1999 m

IRC-wars like it's 1999

It's the '90. There's no Discord/Slack. There's their predecessor — IRC (Internet Relay
Chat). And while it's clear who owns a given IRC server (whoever can SSHTelnet into
the *nix server running the IRC daemon), there is no concept of a "user account",
"nickname/username ownership", or "channel ownership". Whoever sets a given
nickname first owns the nickname until they disconnect (or get disconnected). Whoever
joins an empty channel first gets the op (@) — channel operator status. Whoever has
the @op rules the channel - kick, ban, granting @op to others, changing channel
settings — quite a lot of power. Most users were there just to chat and make friends, but HappyChatter
channel owners — the defenders — had to work hard to keep control of "their" channels. BusyTyper
And the attackers — ever trying to seize control of a channel — had quite a lot of tricks NotAttackerRly
up their sleeves. These were the times of IRC wars. The times of channel "takeovers".
The times when IRC network splits were both a danger and an opportunity. &And we're
here - looking at it from a safe distance of $0-odd years — to enjoy the show.

Qdefender-bot-1
Qdefender-bot-2
Qdefender-hot-3
@ThomasTheOp
Q0wnerJane
QuietReader

Image 1. A small
channel's userlist.

Defender's setup. Channel "owners" (whoever held power) usually kept 1-10 bots online (see Image 1).
These ensured anyone on the bot's "op list" regained @op on rejoin, while also offering various utilities
and fun features. There was a bit more to it, but we'll get back to this later.

Attacker's Tactic 1: "Please give me @op!" [CLASSIFICATION: semi-technicall

Phase 1. Social engineering: an attacker would attempt to trick one of channel operators into granting
them an @op (it was anything from harmless lines like "I'm new to IRC and never had an @op" to
impersonating a currently-offline person « harder than it sounds because IRC exposed IP/rev-DNS).
Phase 2. On success, the attacker would mass-op their own bots (which joined either all at once in
that moment or previously over the span of several hours/days to avoid notice), starting the battle for
control over the channel. Both sides would deop/kick/ban while unbanning and re-oping their own bots.
Result. Well-prepared attackers usually won — more bots, lean/faster implementations (single-purpose,
optimized C, protocol tricks) and lower ping to the IRC server usually gave them the edge.

Attacker's Tactic 2: (D)DoS everyone [CLASSIFICATION: semi-technicall

Phase 1. IRC exposed user IPs, so attackers could force-disconnect users via exploits (e.g., Ping of
Death - see Wikipedia) or sheer bandwidth.

Phase 2. With everyone on the channel "disconnected", attackers briefly left and rejoined. Per early
IRC rules: the first to join an empty channel gets the @op.

Result. Varied — defenders had access to pretty powerful servers/networks too.

Image 2. An example IRC

IRC Server A IRC Server D IRC Server E | network. Users are connected
; / < to different servers, but can
IRC Server B IRC Server C IRC Server F | still chat with each other.
Until a split that is.

Attacker's Tactic &: A split and an empty fragment [CLASSIFICATION: technicall

Background . IRC networks were trees of servers relaying messages. If a link between nodes dropped,
the net fragmented in a "split". From the perspective of users in one fragment, the users connected to
servers in the other fragment vanished (mass quit), only to return once the split ended (mass join).
Phase 1. Attackers checked which servers channel inhabitants were on. If no one occupied an edge
server, they waited for a proper split (or DDoSed the right link to force a proper split).

Phase 2. During the split, attackers' bots joined the empty channel in the split-off fragment, gained
@op, and set defenses (banlists). When the net rejoined, lists merged and fighting began.

Result. Defenders usually lost — attackers would bring more bots and could pre-set bans. The only
counter was prevention — keeping defending bots spread across all servers in the network.

Attacker's Tactic 4. A split and nickname collisions  [CLASSIFICATION: technicall

Background . In a split it was possible for two different users in different fragments to use the same
nickname. Once a split ended, this "nickname collision" would be discovered and both users would be
disconnected from the network. Whoever reconnected first would get the nickname for the time being.
Phase 1. Attackers waited for a split and mirrored the channel's nicklist on other fragments.

Phase 2. Once split ended, nick collisions were discovered by the IRC network and everyone on the
channel was force-disconnected. Attackers quickly joined the now-empty channel and got @op.

Result. Success depended on channel size and natural joins/nickname changes. Defenders could counter
by rotating bot nicknames to frustrate the attack.

Summary. Most of these exploits were eventually patched. Some IRC networks quickly introduced
nickname and channel ownership, while other focused on making takeovers harder (e.g., granting
nickname on collision to whoever occupied it longer or limiting nick changes during splits). Either way,
IRC - and the hard-earned lessons from running its servers and channels — paved the way for modern
chat platforms, including the "ownership" concept which we now take for granted.

Gynvael Coldwind

https://hexarcana.ch/
SAA-ALL 0.0.7 https://gynvael.coldwind.pl/



https://en.wikipedia.org/wiki/Ping_of_death
https://hexarcana.ch/
https://gynvael.coldwind.pl/

Look ma, no file_server!

Recently, I was in need of an IP address API a la ipify. There are a lot of public ones out there, but I figured I could just as easily
write one myself. After some research, I found that I merely had to add the following three lines to the configuration of my web
server, Caddy, and I was good to go:

localhost { curl https://localhost/
respond {client ip}

¥ ol

Nowadays, I often find myself drawn towards simplicity, both in and outside of the realm of computing. I try to reduce the
number of node _modules in my projects as much as possible; instead of looking at a Grafana dashboard, I SSH into my server
and run top; for scripting, I use Bash instead of another language if at all possible. That kind of thing. Needless to say, I was
delighted by how easy this API was to set up.

Soon enough, I started to wonder: What other simple, yet useful services could I host just from Caddy’s configuration file,
without depending on other files or software?

Let’s start with something extremely minimal. Most operating systems in use today detect a working internet connection by
connecting to a “connectivity test” or “captive portal check” server, which always responds with an HTTP 204 status code and
no body. If the OS gets the response code, it knows it’s online, otherwise there’s some kind of problem.

Knowing this, we can easily roll our own:

localhost { curl -i https://localhost/
respond 204

¥ HTTP/1.1 204 No Content

Another trick I came across recently® is setting up a proxy server for pixiv images. In order to, I assume, prevent hotlinking,
these require a correlating pixiv referrer, or else you will get a 403 error instead. But we can just let Caddy do the work for us:

localhost { curl -i https://localhost/.../123456789 p0.png
reverse proxy i.pximg.net {
header up Host "i.pximg.net"
header up Referer "https://www.pixiv.net/"
}
}

HTTP/1.1 200 OK
Content-Length: 109537
Content-Type: image/png

Finally, a static site would usually be served via the file server directive?, but there’s nothing stopping us from directly putting
everything into the configuration instead:

localhost {
handle / {
header Content-Type "text/html"
respond "<link rel='stylesheet' href='style.css'><script src='script.js'></script><p>Hello!</p>"
}
handle /style.css {
header Content-Type "text/css"
respond ".example { color: red; }"
}
handle /script.js {
header Content-Type "text/javascript"
respond "window.onload = () => document.querySelector('p').classList.add('example');"
}
}

Though, whether that’s actually a good idea... well, I'll let you be the judge.

*https://pixivfe-docs.pages.dev/hosting/image-proxy-server/
*https://caddyserver.com/docs/caddyfile/directives/file_server

Sunny

https://sny.sh/ SAA-TIP 0.0.7


https://pixivfe-docs.pages.dev/hosting/image-proxy-server/
https://caddyserver.com/docs/caddyfile/directives/file_server
https://sny.sh/
https://www.pixiv.net/

Globally Shared: injecting your data everywhere at once m

Wouldn't it be a little eerie if unprivileged code could inject arbitrary data into high integrity processes? May be also into
protected processes, oskernel, and VTL1 trustlets? Why, yes, it would be terrific. Terrifying, even. So let’s see how it can be done!

Globally shared
KUSER_SHARED_DATA structure, aka kuser, is a well-known item, present since the early versions of Windows NT (even
though its layout has changed considerably throughout Windows history). It is very special in two regards:
o Physical page with structure instance is shared between OS kernel and all processes (except the Minimal processes).
o Virtual address of the page is fixed: 0x7FFE for usermode, F780 for kernelmode (both x64 and a64).
Since winll 23H2, the fixed VA in kernel is RO; nt!MmWriteableSharedUserData holds a randomized VA of the RW mapping.

Common physical page, mapped at a known virtual address: any change to its data is instantly irjected visible everywhere.

Main purpose of such data sharing is to provide usermode code with quick access to volatile time data, such as SystemTime
and TickCount. The 6 highly volatile fields in 3 cachelines update 64 to 4000 times/second! Such updates may seem irrational,
as all time data could be derived on spot from the CPU’s TSC; but early archs/CPUs just didn’t have a reliable invariant TSC.

All but a couple other fields are just easycut hacks (could be process init-time statics in ntdll behind APIs). Seeking a minute
convenience, MS devs used to put absolutely ridiculous cheese in kuser, like function pointers and even executable code!
Today it’s cleaned up a bit, and the page is not executable; only x32 (wow64) processes with DEP disabled can run code from it.

User-adjustable

There’s no mistake. Even though the usermode mapping at 0x7FFE is read-only, unprivileged user can still put own data
onto this page. There are some serious limitations of course, but a couple dwords can be set to about any values even from a
rightless LPAC. And sometimes that’s all it takes to complete an exploit: a few good values at a known location.

total fields: 82 (0OxA80 bytes) unused: 21 (0x580) dynamic: 34 (0xD8) dynamic user-adjustable: 20 (= 0x60)

All items that are user-adjustable at runtime: ActiveConsoleld, AitSamplingValue, ComPlusPackage, ConsoleSessionForegroundProcessld,
DbgConsoleBrokerEnabled, DbgErrorPortPresent, DismountCount, ImageFileExecutionOptions, InterruptTimeBias, KdDebuggerEnabled,
LangGenerationCount, LastSystemRITEventTickCount, QpcBias, SystemTime, TelemetryCoverageRound, TimeZoneBias,
TimeZoneBiasEffectiveStart, TimeZoneBiasEffectiveEnd, TimeZoneBiasStamp, TimeZoneld, UserModeGloballLogger.

That’s a lot of items: 42 pt wasted! But not many fields are actually good or at least semigood; many others either require
special conditions/privileges, or are mostly gimmicky (like the single DbgErrorPortPresent bit, settable by crashing a process).

InterruptTime Number of centums (100 ns units) since OS boot. Increments with tunable period [0.5 ms, 15.625 ms]; includes OS
0x008 8+4 sleep time. To adjust: simply wait. OS increases the value; one day it’ll be close to your target. No privileges required.
Lower dword wraps around in 7 minutes 9.5 seconds, but it takes 228.5 years for byte7 to change from 0 to 1.
SystemTime UTC time, as number of centums since 1601-01-01. Increments mostly together with InterruptTime. Adjustable via
0x014 8+4 NtSetSystemTime() to any value from 0 to 25'+232 (till 8907-12-05 18:49:10), but requires adminful SeSystemtime
privilege. To refine increment period for both InterruptTime & SystemTime: NtSetTimerResolution(DesiredTime=1).
TimeZoneBias Number of centums to subtract from SystemTime to get local time. Adjustable in range +2%' seconds (+68 years) with
0x020 8+4 granularity of one minute. To adjust: NtSet(SystemTimeZonelnformation/SystemDynamicTimeZonelnformation).

Requires SeTimeZone privilege; regular users do have it on client systems (but it’s still adminful on Windows Server).
TimeZoneBiasStamp | Sequence number/lock for timezone data. When value is odd, the set of timezone fields is being updated (that’s rare,
0x25C 4 may be once a day). Increment it by 2 via NtSetSystemTime(null, null). Can be done from LPAC, no privileges required.
But such increment is very slow; may need 3 to 48 days to wraparound 32-bit value. Multithreading won’t really help.

DismountCount Hacky volume dismount counter, for fast file handle validity checks. Use NtFsControlFile() or NtDeviceloControlFile()
0x2DC 4 to send FSCTL_DISMOUNT_VOLUME (0x090020) to =any file object to increment field by 1 or 2. No privileges required.
Good fast “files” for LPAC are \Device\Afd\ and CONINS. Dword wraparound with =optimal 4 threads: 4 to 8 minutes.

ConsoleSessionFo- | PID of the process with window focus in the current physical console (RDP sessions ignored). Since both PIDs and TIDs
regroundProcessld | are allocated from the same namespace, and allocation is somewhat predictable, one can just spawn some threads,
0x338 4 then create a process with a window to set this to the desired value. PID values: 22 to 226, divisible by 4, not by 0x400.
LangGenerationCount| Sequence number of the nt!MUIRegistryInfo structure, which holds Ul languages info. To increment it by one, invoke
0x3A4 4 NtGetMUIRegistrylnfo(Flags=8, null, null). Can be done from LPAC, no privileges required. Depending on the OS and
CPU, it is best to use either 1 or 2 threads for increment, with dword wraparound reachable in 8 to 20 minutes.

VTL-1nfiltrated

VTL1 — Virtual Trust Level 1 —is a hypervisor-isolated world, parallel to the regular OS (VTLO). VTL1 has its own oskernel —
securekernel.exe, and can host Isolated User Mode trustlets, such as Isaiso.exe. Being memory-sequestered, VTL1 also
maintains its own KUSER_SHARED_DATA! In VTL1 kernelmode, the skuser page is mapped once, at a randomized RW address.
But trustlets still get an RO skuser mapping at the usual fixed address, 0x7FFE

The skuser page is not self-sufficient: at certain points sk!SkpSyncUserSharedData() has to be invoked to refresh some skuser
fields from kuser. So to put own data into VTL1 trustlets, simply adjust the synchronizable kuser fields! However, each value in
skuser gets updated only if it is smaller than its counterpart in kuser, and only the lower 8 bytes of 12-byte fields are modified.

All synchronized fields: DismountCount, InterruptTime, InterruptTimeBias, SystemTime, TickCount, TimeZoneBias, TimeZoneBiasStamp.

Revealed

We've explored a few dynamic fields in kuser, showing how unprivileged user can control some of them. Such craft is valuable
due to the looming SMAP support in ntoskrnl, and also for usermode attacks when all you can specify is just a 32-bit address.
But kuser holds more delights, and we welcome the curious to explore the comprehensively documented structure on NtDoc.

Taylor Sessantini

twitter: @sixtyvividtails
SAA-TIP 0.0.7 https://ntdoc.m417z.com/kuser_shared_data


https://ntdoc.m417z.com/kuser_shared_data

=
=
Q
=
(¢)]
B2
=
-
(O]
=
o
<C
2
(o
wn
o
(@]
wn
o
(@]
(@
op]

ROUTER

WIFI

4 A.t. ‘A

4 \
4 F ,,,,, A /

AN

AN \
L/
: .,.p \\..1“%“.\. st\““av

5 S

Open Source

; A,J,/
Q‘\ _ / / \\

Y

4
%

WS\
—
A A A
&
) -
&% 2.\
oy o
2
=N
% 4t
X0

3 J4

o

Security Forward

i e

1R Sl QD ),
& itetetote
T AR
o, R ",
& R lple/p
Caillllpolorele? 7 .
N ke o

+1000 Mbps

SUPERNETWORKS.ORG



https://supernetworks.org

Casting shade on your Postgres performance

Today | want to discuss a little-known issue with
Postgres that deserves to be more widely known.?

Let’s say you have an API that allows users to
search on a field stored in an integer column col.
The table is very big, so it has an index. What if
| told you it might be trivial to force a sequential
scan through implicit casting? Check out the fol-
lowing table:

Filter (wHERE) expression | Safe? | details
col=1 v Index
col=1.0 X Seq scan
col='1.0" v/ Error
col=4611686018427387904 (2%2) 4 Index
co1=9223372036854775808 (2) X Seq scan
col='9223372036854775808"' v/ Error
col=$1 / col=? / col=%s Depends

As you can see, even legitimate integer syntax
can trigger sequential scans! That’'s because Post-
gres parses overlong integers as numeric. It can’t
use the index because the int column must be
cast before it can be compared to numeric.

If you quote the numeric literal, you get an
error. That's because quoted strings get parsed as
per the column’s type. This makes it much less
ripe for abuse.

Postgres’ wire protocol lets you send the type OID
for query parameters to force them to be parsed
according to that type. If you send a zero OID,
it auto-detects the type, like what happens when
you type in a quoted literal in psql.

Some drivers set each parameter’s OID based
on the type of the parameter’s value, which leads
to the forced sequential scan behaviour.

To test your driver’s behaviour, first make sure
that it can use the index (if there’s not enough
data, it might not use the index even if it could).
Run the equivalent of:
query('EXPLAIN SELECT FROM x WHERE col = $1', 1)
Check that it says “Index Scan”. If you're satisfied

that it works, perform the actual test:
query('EXPLAIN SELECT FROM x WHERE col = $1', 1.0)

This should give an error. If this gives you “Seq
scan” in the plan, you know what'’s up.

I've surveyed the default behaviour of drivers
in several languages, see the table at the top of
the right column.

1https://code.jeremyevans.net/2022-11-01-forcing-

Peter Bex

SAA-TIP 0.0.7

Article sponsor: https://www.bevuta.com

Language | Driver Safe?
Clojure java.jdbc and next.jdbc X
Java (PG)JDBC

C libpg

Scheme postgres egg v
Ruby pg v
Python psycopg (2 and 3) X
PHP pgsgl and PDO v
JavaScript | node-postgres (aka pg) v

Clojure’'s jdbc drivers use the .setObject()
method from JDBC without a targetSqlType. This
means it picks an OID based on object’'s class.
Psycopg does something similar.

The question mark for Java JDBC and C’s libpg
indicates it’s up to the user. If you use .set0Object()
without a type in Java, or somehow(?) a user-sup-
plied type in C, it's unsafe.

Note that | don’t consider drivers automatic type
assignment a vulnerability per se. The responsibil-
ity to pass in the right type lies with the application
or perhaps the application framework.

Theoretically, it should be possible to improve
the behaviour of Postgres itself by being smarter
about values and ranges when casting. For ex-
ample, out-of-range integral numerics can never
be satisfied by an integer, so it could skip the
fetch entirely. Other comparisons on fractional
numerics could be done smartly by rounding to
an integer and comparing against that (i.e. effec-
tively cast the literal value to the column’s type).

Practically, this would be tricky because cast-
ing is generic and extensible via e.g. CREATE CAST
and CREATE TYPE.

The best way to prevent this sort of thing from
happening is to validate both the type and the
range of all user input on entry.

If that’'s not an option and your driver does the
wrong thing, you can use an explicit cast on the
placeholder (e.g. $1::int) to force the correct type.

As an extra safety measure, you can register
a type conversion for bignums to return an error.
If you need bignums in a query, you can use a
wrapper type to indicate known-safe uses.

Finally, you can always declare an expression
index on the cast. Ugly, but it gets the job done.

Blog: https://www.more-magic.net


https://code.jeremyevans.net/2022-11-01-forcing-sequential-scans-on-postgresql.html
https://code.jeremyevans.net/2022-11-01-forcing-sequential-scans-on-postgresql.html
https://github.com/clojure/java.jdbc
https://github.com/seancorfield/next-jdbc
https://jdbc.postgresql.org/
https://www.postgresql.org/docs/17/libpq.html
https://wiki.call-cc.org/eggref/6/postgresql
https://github.com/ged/ruby-pg
https://www.psycopg.org/
https://www.php.net/manual/en/ref.pgsql.php
https://www.php.net/manual/en/book.pdo.php
https://node-postgres.com
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://www.postgresql.org/docs/17/sql-createcast.html
https://www.postgresql.org/docs/17/sql-createtype.html
https://www.more-magic.net
https://www.bevuta.com

When it comes to Lisp, there’s nothing like using
lists and symbols. With the SRFI-1 “Iset” functions,
you can even do set operations on lists. Unfortu-
nately, these functions run in quadratic time.

Of course, we could use more traditional set
implementations based on hash tables or trees,
but those are kinda fiddly. I1t'd be nice if we can
quickly roll something simple that doesn’t require
large amounts of code or any libraries.

The notes for SRFI-1's delete-duplicates say “[..]
one can use algorithms based on element-mark-
ing, with linear-time results”. Here we’ll explore a
way to do that, for sets of symbols only.

CHICKEN has property lists on symbols; arbi-
trary key/value pairs on any symbol. This allows
us to implement the aforementioned marking:

(import scheme (chicken base) (chicken plist))

(define-inline (mark! x marking)
(when (symbol? x) (put! x marking #t)))

(define-inline (mark-list! 1st marking)
(for-each (lambda (x) (mark! x marking)) 1st))

(define-inline (unmark! x marking)
(when (symbol? x) (remprop! x marking)))

(define-inline (unmark-list! 1st marking)
(for-each (lambda (x) (unmark! x marking)) lst))

(define-inline (marked? x marking)
(get x marking #f))

We skip non-symbols to keep things simple. Oth-
erwise we'd have to worry about error recovery
on half-marked lists. The check also allows the
compiler to rewrite put! to an intrinsic (non-CPS) C
function call, making it very fast indeed.

Now, we can mark a list cleanly for the dura-
tion of a set operation, and keeping the symbols
clean for the caller:

(define-inline (with-marked-list 1st fun)
(Llet ((marking (gensym 'm)))

(dynamic-wind

(lambda ()

(Llambda ()

(lambda ()

(mark-list! lst marking))
(fun marking))
(unmark-list! lst marking)))))

Let’s implement “filter” as well:

(define-inline (filter pred 1st)
(let 1p ((lst 1lst)
(res '()))
(cond ((null? lst) (reverse res))
((pred (car lst))
(lp (cdr 1lst)
(cons (car lst) res)))
(else (lp (cdr 1lst) res)))))

Blog: https://www.more-magic.net

Slset egg: https://wiki.call-cc.org/eggref/6/slset

Lispy sets in CHICKEN Scheme

With the basics in place, implementing set differ-
ence and intersection operations is trivial:

(define (slset-difference lstl 1st2)
(with-marked-list 1st2
(lambda (m)
(filter (lambda (x)
1stl))))

(not (marked? x m)))

(define (slset-intersection lstl 1st2)
(with-marked-list 1st2
(lambda (m)
(filter (lambda (x)
1stl))))

(marked? x m))

Set union is a bit trickier, because we can’t use
with-marked-list, as that would unmark only the
elements of the first list on exit. Instead, we have
to add to the result and mark as we go, and then
finally unmark when done.

(define (slset-union 1lstl lst2)
(let ((marking (gensym 'm)))
(mark-list! 1stl marking)
(let 1p ((lst2 lst2)
(res 1stl))
(if (null? 1st2)
(begin (unmark-list! res marking)
res)
x (car 1st2)))
marked? x marking)
lp (cdr lst2) res)
begin (mark! x marking)
(Ilp (cdr 1st2)
(cons x res)))))))))

(let (
(if

—_~ o~~~

These definitions are even faster than a set imple-
mentation based on srfi-69! This is also faster than
using a hand-rolled hash table as a “side table”
upon every set operation. Of course, a custom set
implementation (e.g. with an inline hash table) will
always be faster, but that wasn’t the point.

Unfortunately, adjoining an arbitrary element to a
setis still O(n) as is removal of an element. Luckily,
adjoining an element we know doesn’t yet occur
in the set is a trivial O(1) cons, so in many cases
you don’t have a problem.

If you don’t mind breaking abstractions, you
could mark the list before you start adding ele-
ments. Then, a membership test is a simple O(1)
call to marked?, so adding is O(1) too. You’'d have to
manually unmark when the code is done adding
elements. Deletions are still tricky though.

For a complete implementation of these lispy
sets of symbols, see the siset CHICKEN egg. It
also provides an “reified slset” abstraction to allow
adding elements without having to manually mark
and unmark the list when adjoining elements.

Peter Bex

SAA-TIP 0.0.7



https://srfi.schemers.org/srfi-1/srfi-1.html#delete-duplicates
https://www.more-magic.net
https://wiki.call-cc.org/eggref/6/slset

Luais so Underrated

Lua is so underrated

nflatrea@mailo.com <Noé Flatreaud> (Beemo)

The more I learn about Lua's design and implementation, the
more impressed I am. It's very rare to see software that does so
much with so little code.

Unfortunately, Lua doesn't have the same level of marketing and
hype as some other languages. This lack of promotion means
that fewer developers are aware of Lua's capabilities and
benefits. It is often perceived as a niche language, primarily
used in gaming and embedded systems.

Consequently, Lua may not receive the attention it deserves,
even though it has a lot to offer;

Lua is easy to understand

Lua is a free, reflexive and imperative scripting language.
Created in 1993, designed to be embedded within other
applications to extend them. The interpreter was developed by
Brazilian engineers and has been updated many times since.

Its design is clean, and the code is fast.

The C API is easy to use and yields good performance, and yet
encapsulates enough of the VM's implementation that C
modules are source and binary compatible with both Lua and
LuaJIT. Its syntax is clean and minimalistic, making it accessible
even for beginners, yet is incredibly easy to master.

Lua is extremely embeddable.

Lua is designed to be easily embedded into applications written
in other languages, particularly C and C++. This makes it an
excellent choice for scripting and extending games and
embedded applications. In C for example, embedding Lua is as :

#include <lualib.h>
int main()

lua_State *L = lualL_newstate();
luaL_openlibs(L);
luaL_dofile(L, “./test.lua”);
lua_close(L);

return 0;

Multi-paradigm support

Standalone or with the right libraries, Lua supports multiple
programming paradigms, including imperative, functional, and
object-oriented programming. This flexibility does allow us to
use the one that best suits our needs.

Yet, not everything might suit everyone...

Noé Flatreaud

WTFPL

Indexing conventions

In Lua, indexing generally starts at index 1, butiitis a
convention. Arrays can be indexed by 0, negative numbers, or
any other value (anything but nil). Lua does not really have
arrays in the sense of sequences. There's just tables, and the
tables are always key-value hashes.

NB : The standard library for tables and built-ins like ipairs assume
array-like tables with indexes starting at 1. So for nearly all
practical purposes, you probably want to index tables starting at 1
https://lobste.rs/s/jf4in1/lua _is so underrated#c gcmsph

Error handling

While I personally like how Lua handles errors, it might be less
intuitive for developers coming from other languages. In Lua,
errors may be handled as values, just like in Go :

function risky_function()
error (“Something went wrong!”)
end

local status, err =
if not status then
print(“Error: “ ..

pcall(risky_function)

err)
end

Nil-Terminated Arrays

The one that bothers me the most, might be the fact that arrays
(tables used as arrays) are nil-terminated, meaning the end of
the array is marked by a nil value. This can lead to unexpected
behavior if not handled properly:

local arr = { 10, 20, 30, nil, 50 }
for i, v in ippairs(arr) do
print(v)
-- Output: 10, 20, 30
-- (nil terminates the array)
end

The ipairs function stops iterating when it encounters a nil
value, which can be surprising if you expect it to continue
iterating over the entire table. If you suspect your sequence to
have gaps, you should avoid using ipairs. Instead, you can use
pairs (or next) to get at the whole set of items without stopping
at the first nil.

If you're looking for a straightforward, efficient scripting
language, just give it a try, you'd be surprised.

PS : Lua has been used in nvim for plugins since 0.5.0, you bet it's
efficient !

References
https://news.ycombinator.com/item?id=42517102
https://nflatrea.bearblog.dev/lua-is-so-underrated/

Blog: https://nflatrea.bearblog.dev/
Twitter: @nflatrea

Mastodon: https://infosec.exchange/@nflatrea

Github: https://qgithub.com/nflatrea



https://lobste.rs/s/jf4in1/lua_is_so_underrated#c_gcmsph
https://nflatrea.bearblog.dev/lua-is-so-underrated/
https://news.ycombinator.com/item?id=42517102
http://nflatrea@mailo.com
https://nflatrea.bearblog.dev/
https://infosec.exchange/@nflatrea
https://github.com/nflatrea

Print to Play

Printers are possibly the most hated appliances, right
up there with washing machines. However, high-end laser
printers' can interpret PostScript, a vintage, stack-based,
Turing-complete programming language?. Can we make
printers cool again?

1 Interactive PostScript

PostScript printers' listen on port 9100 for raw

printing. Quick test:  print a blank page by
sending this raw PostScript command using netcat:
echo "showpage” | nc 172.16.158.40 9100 .

While PostScript wasn’t

R ; . nc 172.16.158.40 9100
designed to be interactive, %1PS
you can enter “executive  executive

mode” by sending two lines

. . 3
(or this one-liner®). Af- Version 3011.010
ter that, type commands  pss 1 2 add ==
directly — they’ll be inter- 3
preted on the fly.

KONICA MINOLTA bizhub 4422

A PostScript program can even read user input as if
from a file, using (%lineedit) (r) file ( ) readline .
With that, you have everything needed to write advanced
interactive programs such as “Guess a number”.

2 Tic Tac Toe

By combining user interactions and PostScript’s graphic
capabilities, we can implement a Tic-Tac-Toe game?. Al-
gorithm 1 is quite simple yet still “fun” to play against,
featuring random behavior from the printer.

Algorithm 1 Printer Tic-Tac-Toe Logic
loop
if game is over then
exit
else if printer can win with X then
play X there
else if human can win with O then
play X there
else
: play randomly
10: end if
11: get human input
12: end loop

1
2
3
4
5:
6
7
8
9

ITested on Konica Minolta Bizhub 4422 and RICOH M
C240FW. Your mileage may vary.

2Unfamiliar with PostScript programming? check out
https://seriot.ch/projects/programming_in_postscript.html

3 (echo $'%!PS\nexecutive\n'; cat) | nc 172.16.158.40 9100

4https://github.com/nst/PSTicTacToe

https://seriot.ch

Print to Play

3 Upload Game to Printer

We can even store programs directly inside the
printer, exploiting a little known PostScript capabil-
ity. Listing 1 embeds the minified Tic-Tac-Toe pro-
gram. Save it in x.ps, then send it to the printer:
cat x.ps | nc 172.16.158.40 9100 . x.ps will act as
a vector and leave its payload ttt.ps on the printer’s file
system®.

% a handwritten Tic-Tac-Toe program stored in a string
/prog(/d{def}def/e{exch}d/M{moveto}d/O{pop}d/g{getinterval
}d/1{length}d/L{lineto}d/I{if}d/P{putinterval}d/D(1234567\
89)d/nf{@ b{46 eq{1 add}I}forall}d/R{/q false d @ 1 8{/i e
d/A b dup 1 string cvs d A i 1 g(.)eq{[(X)(O)I{/pedAi
p P A B{b i(X)P/q true d exit}I}forall}I qg{exit}I}for q}d
/Q{/x rand nf mod d/c @ d @ 1 b1 1 sub{/iedbilg()
eq{c x eq{b i(X)P exit}I/c ¢ 1 add d}I}for}d/r{{(human (1\
-9)>)print flush(%lineedit)(r)file(________ Jreadline O dup
1 0 gt{0 1 g}{0 ( )}ifelse/o e d D o search{0 0 O b o cvi
1 sub 1 g(.)eq{o cvi 1 sub exit}I}{0}ifelse(bad input)= S}
loop}d/B{/z e d/N[[@ 1 2][3 4 5][6 7 81[@ 3 6][1 4 71[2 5
81[0 4 81[2 4 6]1d/V false d[(0)(X)1{/p e d N{/T e d/V
true d T{/Ue d/VzUT1gpeqV and d}iforall V{exit}I}
forall V{exit}I}forall V}d/S{0.2 setlinewidth 10 10 scale
20 70 M 20 40 L 30 70 M 30 40 L 10 60 M 40 60 L 10 50 M 40
50 L stroke @ 1 b 1 1 sub{/i ed b i 1 g(.)ne{gsave 10 i 3
mod 10 mul add 3 add 70 i 3 idiv 10 mul sub 7 sub M b i 1
g show grestore}I}for m null ne{10 30 M m show}I showpage}
d/C{/E e d/K e d/m null d nf @ eq{/m(TIE)d/E true d}I b B{
/m WINS)d m @ K P/E true d}I E{S}I m null ne{quit}
I}d/Courier findfont 5 scalefont setfont/b D d/m(HUMAN PL\
AYS 0)d S/b(......... )d{/m null d b r(0O)P(__HUMAN) false C
R not{Q}I(PRINTER)true C}loop)def

% leave the program on the printer’s file system
/f (ttt.ps) (w) file def
f prog writestring f flushfile f closefile

Listing 1: A PostScript program that will save a Tic-Tac-
Toe game as ttt.ps on the printer’s file system.

4 Results and Future Work

You can now play against the

printer by entering executive mode
O | X and typing (ttt.ps) run. Hu-
man starts and plays 0, choosing
O squares 1-9 in the shell. Printer
will print its own moves on paper.
O | X | X Good luck!

Next steps: go hunt for corpo-

rate printers waiting for your pro-

grams® on port 9100, and show your colleagues that print-
ers are cool again. Washing machines? Not yet.

5Type (ttt.ps) deletefile to delete ttt.ps.
6See also https://github.com/nst/PSChess

Nicolas Seriot

SAA-TIP 0.0.7



https://seriot.ch/projects/programming_in_postscript.html
https://github.com/nst/PSTicTacToe
https://github.com/nst/PSChess
https://seriot.ch
https://seriot.ch/projects/programming

Replace CRTP with concepts?

Replace CRTP with concepts?

If you’re not familiar with the Curiously Recurring
Template Pattern, check out this article’. It's a way
to implement static polymorphism in C++ and can
be used for different purposes. When it's used for
static interfaces, you can replace it with C++20
concepts and class tagging.

The CRTP solution

Along with a static interface, we are creating a static
family of types. Instead of virtual functions, the
common interface is granted through a base class,
which is a template taking the derived class as a
parameter.

Let's use animals making sounds for a sample
implementation.

template<typename Derived>
struct Animal {
void make sound() const {
const Derivedé& underlying =
static_cast<const Derivedé&>(*this);
underlying.make sound() ;
}
}i

struct Cow: Animal<Cow> {
void make sound() const { /* .. */ }

}i

struct Sheep: Animal<Sheep> ({
void make sound() const { /* .. */ }

}i

template<typename Derived>
void print (Animal<Derived> const& animal)

{

animal.make sound();

}

The non-CRTP solution

In the C++20 solution, we use a concept to ensure
that the classes have a common interface.

template<typename T>
concept Animal = requires (T animal) {
animal.make sound();};

The problem with the above concept is that now
every class that has a make sound () method will
be accepted as an animal. Even if the author of the

1

https://www.sandordargo.com/blog/2019/03/13/the-
curiously-recurring-templatep-pattern-CRTP

Sandor Dargé

SAA-ALL0.0.7

Animal concept or the author of those fake animal
classes wouldn’t want that.

That's why we also need an AnimalTag, nobody
will accidentally inherit from it. As AnimalTag
doesn’t define any virtual method, we don’t have to
pay the price of virtual tables and pointers.

class AnimalTag {};

template<typename T>

concept Animal = requires(T animal) {
animal.make sound();} &&
std::derived from<T, AnimalTag>;

void print (Animal auto const& animal) {
animal.make sound();

}

struct Sheep: public AnimalTag {
void make sound() const { /* .. */ }

}i

struct Cow: public AnimalTag {
void make_sound() const { /* .. */ }
}i

In comparison

For those who are not familiar with the pattern,
seeing the CRTP inheritance in the first place, plus
the static_cast to the derived class, is not
necessarily easy to understand.

The concepts-based solution is more readable and
less error-prone. With the CRTP, you might
accidentally pass in the wrong template argument.
Though that can be solved by making Derived a
friend of Base and make the base class constructor
private. Even more complexity.

The non-CRTP solution is more readable if you are
familiar with concepts. While CRTP is not a
so-well-known design pattern, concepts are part of
the standard language, so you'll have to get familiar
with them sooner rather than later.

Though, you need to compile using C++20, which
might not be available to you at the moment.

Blog: https://www.sandordargo.com/

X/Twitter: @SandorDargo


https://www.sandordargo.com/

Secure File Upload API with
SpringBoot - @aicdev

File uploads are a common feature in many
applications and platforms. Implementing this
functionality at the API level, however, comes with
its own set of challenges — particularly when it
comes to security. (IAM out of scope here ;-) )

What is Spring Boot? Spring Boot is just
another framework that streamlines Java/Kotlin
application development and speeds up building
production-ready applications like APIs and more.

What is Apache Tika? Apache Tika is a content
analysis toolkit that detects file types and extracts
text and metadata from document formats.

Let’s start by examining a simple REST controller:

@RestController
@RequestMapping ("/files™)
class FileUploadController {

@PostMapping ()
fun handleFileUpload (
@valid
@RequestPart (name = "picture",
required = true)
picture: MultipartFile
) : String? {
return picture.originalFilename

}

From a security perspective, this implementation
has several aspects that could potentially lead to
unwanted effects in both your application and
underlying infrastructure.

Why is File Type Validation Important? If
your web application allows file uploads without
proper validation, attackers could exploit this by
uploading malicious files—like a PHP reverse shell
disguised as an image or a malware-laced PDF.
Once these files are accessed or opened, the
attacker could execute harmful code, compromise
the server, or infect user systems.

But - How Do You Validate? Relying on file
extensions or content-type headers for validation is
insecure, as they can be easily spoofed. A more
reliable method is checking the file’s magic
bytes—unique identifiers at the beginning of a file.

Secure File Upload API with SpringBoot

While these too can be faked, doing so usually
breaks the file. Validating magic bytes server-side
helps ensure only legitimate files are accepted. The
output of my test file is the signature of a PDF
although the file ending is .exe

bash-3.2% cat test.exe | xxd

6T 0a

I will be using the Apache Tika content analysis
library to verify the current file content type based
on magic byte signatures.

@Repeatable
@Target (AnnotationTarget.CLASS,
AnnotationTarget.TYPE,
AnnotationTarget. VALUE PARAMETER)
@Constraint (validatedBy =
[FileTypeRestrictionValidator::class])
@Retention (AnnotationRetention.RUNTIME)
annotation class FileTypeRestriction (
val acceptedTypes: Array<String>,
val message: String = "File is not
allowed",
val groups: Array<KClass<out Any>> =
(1,
val payload: Array<KClass<out Any>> =

[]
)

Implementation (hard strip to content type
detection) of our annotation:

private fun detectContentType (stream:
BufferedInputStream) : String {
val detector: Detector =
DefaultDetector ()
val metadata = Metadata/()
val mediaType: MediaType =
detector.detect (stream, metadata)

return mediaType.toString()

Now, let’s update our handleFileUpload function in
the RestController to incorporate the new
validation implementation as follows:
fun handleFileUpload(
@FileTypeRestriction (
acceptedTypes = [
MediaType.IMAGE PNG VALUE

File uploads can pose serious security risks if not
handled properly. Always think like an attacker to
anticipate potential threats.

jens@fivesec

Blog: https://medium.com/@js_9757

Github: https://github.com/fivesecde SAA-POOL 0.0.7



https://medium.com/@js_9757
https://github.com/fivesecde

Shannon Entropy Shenanigans

Shannon Entropy
Shenanigans

| was trying to detect some secrets in a long text.
Secrets should be random, so one idea on how to
find them is to use the Shannon Entropy to identify
high-entropy strings which are probably secrets.

So let’'s do a deeper dive on entropy and of course
the seminal paper A Mathematical Theory of
Communication (C. E. Shannon, 1948):

https: le.math.harvard. ~ctm/home/text/ot
hers/shannon/entropy/entropy.pdf

What is Entropy?

The entropy tries to measure the overall
uncertainty within the data. Or: if we had the best
possible encoding, what is the shortest amount of
bits we still need to send?

A word is a sequence of characters from an
alphabet. Given a word, we can measure how
often each character appears. Now what we want
to know is the next character in the sequence.

Examples:

1. word aaaaa, probability of a is equal to 1.
Trivially, the next character is a. The
entropy should be minimal (zero, even).

2. 137e5a7da48c5c7aac6a8cb8959e63b5,
probability of each digit and a to fis 1/16.
The theoretical maximum over a small
alphabet, the entropy is high here. Yes, it's
an MD5 hash.

Let’s say that H is the function calculating entropy
for the given text. What's weird about it is that it
takes as many parameters as necessary. Formally,
it takes the character distribution (a set of
probabilities of given characters appearing).
Trivially, extending the alphabet extends the input
list for this function.

Miloslav Homer

cco Gist: https://gist.github.com/ArcHound/df86e646bb779f758a05a133f9f28594

Properties of Entropy

Looking above, these are the properties we’re
looking for.

1. Continuous function

2. For equal distributions with n characters
and each probability equal to 1/n (like 3rd
example), H should monotonically increase
with larger n. This translates to the
observation that we can encode more
information with a larger alphabet for a
given length of the word.

3. Let's say we have p1=1/2, p2=1/3 and
p3=1/6. There's a 1/2 probability that the
next character will be one associated with
probability p2 or p3. If that happens, we
have new probabilities in the smaller
alphabet - for p2 = 2/3 and for p3 = 1/3. So
we need that:

Y

H (

o|=

) =H(3,3) +3H (5 3)

|~

1
3

The big result of the paper is that the only function
satisfying the properties above is:

H=—> p;log,(pi)

1=1

Implementation (in Python)
from math import log

def word_entropy(s: str):
counter = dict()
for ¢ in s:
if ¢ not in counter:
counter[c] = ©
counter[c] += 1

freqs = [counter[i] / float(len(s)) for i in counter]
return -1 * sum([f * log(f, 2) for f in freqgs])

Split your data into words, point this at your data
that contain secrets.

Non-secret text hovers around 4, truly random
strings (compressed, encrypted, etc.) start at 5 and
top up at 8 for ASCII texts. Check the link for more
experiments.

Blog: https://miloslavhomer.substack.com/p/secret-detection-shannon-entropy
Linkedin: https://www.linkedin.com/in/miloslav-homer/

GitHub: https://github.com/ArcHound


https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://miloslavhomer.substack.com/p/secret-detection-shannon-entropy
https://www.linkedin.com/in/miloslav-homer/
https://github.com/ArcHound
https://gist.github.com/ArcHound/df86e646bb779f758a05a133f9f28594

Testing by iterating over all floats

Testing by iterating over all floats

Exhaustively testing software by iterating over every possible floating point number.

Writing code which deals with floats can be
tricky. There are many edge cases which are well
documented but aren’t necessarily intuitive. For
example, adding 0.5 to 4503599627370497.0
(assuming IEEE 754 64-bit floats and the usual
rounding mode) results in 4503599627370498.0,
the next integer!  Another example,
non-associative calculations, (x + y) + z can
yield a different answer compared to x + (y +
z). The reason for floating point calculations to
behave in such a way boils down to their internal
representation and inherent precision limits.
Discrepancies in compilers, operating systems,
libraries, or underlying hardware can cause
results to vary due to subtle differences.

Software engineers typically use 32-bit or
64-bit floats, which are available out of the box
in common programming languages. In some
applications, precision can be traded for
efficiency by using small floats. The efficiency
gains are either memory, compute, or both. For
example, 16-bit floats have been used in
computer graphics. Some machine learning
models use 16-bit, 8-bit, or even 4-bit floats.

Besides the efficiency tradeoff, small floats
provide another very useful feature: they can be
quickly iterated over to exhaustively test code. A
16-bit float can only take one among 65,536
values. Combined with an invariant check or a
reference implementation, it enables discovery
of bugs. In my experience, bugs found using
small floats survive when switching to larger
floats, i.e., the process vyields useful bugs.
Iterating over 32-bit floats is possible yet
becomes prohibitive if multiple values are in play
or in the context of unit tests.

A concrete example is the following round up
function, which seems fine at first glance:

round(x) = floor(x + ©.5). Thisis how Java’s

https://quaxio.com/

round() was initially implemented until two bug
reports were filed and the code was eventually
fixed 17 years later. Even a “simple” rounding
function isn’t immune to floating-point edge
cases! The companion Julia code (linked below)
demonstrates a re-implementation of the
incorrect rounding function. A slow albeit more
likely to be correct rounding function is used to
find all the values where the two functions differ.

Useful related links:

e Companion Julia code
https://github.com/alokmenghrajani/testing-by-iterating-over
-all-floats

® Java round(), incorrect initial release (1996)
https://github.com/uakbr/Java-JDK10/blob/601724cdceel547
b52d6c01b613abc345178f853/src/src/java/lang/Math . java#L
165

® Java round(), bug report (2006)
https:
30675

® Java round(), initial fix (2011)

L o ! fac16f
01345fc624715588d112697

® Java round(), another bug report (2013)
https://bugs.java.com/bugdatabase/view bug?bug id=80104
30

® Java round(), second fix (2013)
https://github.com/openjdk/jdk/commit/28d455529e7bc769
85029e762442edd824125e10

® Help visualize floats

https://bartaz.github.io/ieee754-visualization/ and
https://float.exposed/

® What Every Computer Scientist Should Know
About Floating-Point Arithmetic
https://docs.oracle.com/cd/E19957-01/806-3568/nc
rg.html

bugs.java.com/bugdatabase/view bug.do?bug id=64

oldbe

IEEE 754, 16-bit floating point format

1 bit 5 bits 10 bits

sign exponent fraction

value = (-1)°€" x 2(@®enent=13) » (1 fraction)

exponent = 0, fraction = 0 — zero
exponent = 0, fraction # 0 — subnormal
exponent = 31, fraction = 0 — infinity
exponent = 31, fraction # 0 — NaN

Alok Menghrajani

SAA-ALL0.0.7



https://github.com/alokmenghrajani/testing-by-iterating-over-all-floats
https://github.com/alokmenghrajani/testing-by-iterating-over-all-floats
https://github.com/uakbr/Java-JDK10/blob/601724cdcee1547b52d6c01b613abc345178f853/src/src/java/lang/Math.java#L165
https://github.com/uakbr/Java-JDK10/blob/601724cdcee1547b52d6c01b613abc345178f853/src/src/java/lang/Math.java#L165
https://github.com/uakbr/Java-JDK10/blob/601724cdcee1547b52d6c01b613abc345178f853/src/src/java/lang/Math.java#L165
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6430675
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6430675
https://github.com/openjdk/jdk/commit/b4d4e3bed48fae16f01345fc624715588d112697
https://github.com/openjdk/jdk/commit/b4d4e3bed48fae16f01345fc624715588d112697
https://bugs.java.com/bugdatabase/view_bug?bug_id=8010430
https://bugs.java.com/bugdatabase/view_bug?bug_id=8010430
https://github.com/openjdk/jdk/commit/28d455529e7bc76985029e762442edd824125e10
https://github.com/openjdk/jdk/commit/28d455529e7bc76985029e762442edd824125e10
https://bartaz.github.io/ieee754-visualization/
https://float.exposed/
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://quaxio.com/

Sponsorship Advertisement

Simple (and works!)

Some of the best security
teams in the world swear
by Thinkst Canary.

Find out why: https://canary.tools/why


https://canary.tools/why

The v Language

Backwards-Compatible C Generics

This page describes 7, a minimal template-based generics
extension to the C language. It is implemented as a C
compiler wrapper and requires little more than a tokenizer,
so keeps full support for standard C, the GNU and Clang
C extensions, and all GCC and LLVM optimization passes.
Here's what a simple v program looks like:

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

int 1t::[type TI(T *a, T *b);

void swap::[type TI(T *a, T *b) {
T tmp;
memcpy (&tmp, a, sizeof(T));
memcpy(a, b, sizeof(T));
memcpy (b, &tmp, sizeof(T));
}
void sort::[type T](T *items,
for (int i = 0; 1 < n; i++)
for (int j = i; j -—> 0;)
if (1t::[T](&items[j+1], &items([j]))
swap: : [T] (&items[j+1], &items[jl);
else
break;

int n) {

}
void print_array::[type T](T *items, int n,
char *fmt) {
for (int 1 = 0; i < n; i++) {
printf(fmt, items([i]);
if (i !'= n-1) printf(", ");
}
printf ("\n");
}
int 1t::[specialize int] (int *a, int *b) {
return *a < *b;

}
int 1t::[specialize char *](char **a,
char *xb) {
return strcmp(*a, *b) < 0;
}

int main() {
int ints[] = {75, 50, 1, 10};
sort::[int] (ints, 4);
print_array:: [int] (ints, 4, "%d");

char *strs[] = {"hello", "apple", "world"};
sort:: [char *](strs, 3);

print_array:: [char *](strs, 3, "%s");

return O;

https://aks.io/
https://masot.net/

The X Language: Backwards-Compatible C Generics

You can build a v file by prepending your favorite C com-
piler invocation with the ‘Gamma Compile’ command gc:

$ gc gcc -o test test.c
$ ./test

1, 10, 50, 75

apple, hello, world

~ supports standard flags for object files, static libraries,
and dynamic libraries. « has a custom object file format
that supports referencing templates across compile units;
they get automatically instantiated by ~ before linking.

$ gc gcc -c templates.c

$ gc gcc -c main.c

$ gc gcc main.o templates.o -o main
$ ./main

The v compiler wrapper is written in ~y, but we provide a
desugared C version that is easy to compile and distribute.

The primary goal of ~y is backwards compatibility. Virtually
all existing C projects (including those using GCC exten-
sions, inline assembly, etc.) should build unmodified after
setting CC="gc gcc". To accomplish this, v avoids parsing
C syntax or doing any sort of semantic analysis. Instead,
it merely tokenizes the source and locates template defini-
tions and instantiations using the special :: [...] syntax.
It's little more than an automatic macro expansion system.

v is available under the AGPLv3 license at:
https://lair.masot.net/gamma

The core features of ~y are stable, but there are still some
rough edges. Templates are instantiated in the compile
unit in which they are defined, not where they are used, so
they can only refer to the types available at the template
definition (not instantiation) point. Suppose foo.c defines
swap: : [type T], and bar.c calls swap: : [struct bar]
where struct bar is only defined in bar.c. The swap
template will be instantiated in foo.c referring to an un-
known type struct bar, resulting in a compiler error. We
support three solutions to this problem:

e Organize your project so that all files import a single
header file defining all custom types.

o Pass the experimental --dup-types option, which
causes -y to copy types declared at the call site into
the file containing the template definition.

e Like C++, define static templates in header files and
pass the experimental --detect-static option so
templates get instantiated in the calling file.

We also considered modifying v to always place instanti-
ations in the calling file, but felt this would make scoping
too unintuitive. Feedback is very much welcome!

Matthew Sotoudeh and
Akshay Srivatsan

SAA-TIP 0.0.7



https://lair.masot.net/gamma
https://aks.io/
https://masot.net/

Playstation game concept art

T .,

B (oo A R

Léa Pinto

https://www.instagram.com/_lea.pinto
SAA-ALL 0.0.7 ps:// g [ lea.pinto_/



https://www.instagram.com/_lea.pinto_/

WebAssembly Duel: Liftoff vs TurboFan

V8, Google's JavaScript and WebAssembly
engine, initially utilized the TurboFan JIT
compiler. While TurboFan generated efficient
code, it resulted in slow startup times for
WebAssembly. To improve latency, V8
introduced Liftoff', a faster baseline compiler
with minimal optimizations for quicker initial
execution. Upon loading a Wasm module, V8
decodes and validates it, then uses Liftoff. Hot
functions are later recompiled by TurboFan with
optimizations. Let’s start our analysis with a
simple WASM module:

(module
(func Sadd (param $Sa i32) (param $b
i32) (result i32)
local.get $a
local.get S$b
i32.add

)
(export "add" (func Sadd))

We now need to translate from WASM text
format to the WASM binary format. We achieve
so via WABT?.

wat2wasm add.wat -o add.wasm

Once compiled into its binary form, a
WebAssembly module can be instantiated and
executed using the d8° shell, which is obtained
after building v8*.

The script below demonstrates loading a .wasm
file and repeatedly calling the exported “add
function within a loop, showcasing runtime
interaction.

const bytes = read('add.wasm', ‘'binary');
WebAssembly.instantiate(bytes).then(({instance}) =>
{
for (let i = 8; i < 10; i++) {
const a = 1i;

' https://v8.dev/blog/liftoff

2 https://github.com/WebAssembly/wabt
3 https://v8.dev/docs/d8

* https://v8.dev/docs/build

Blog: http://uf0.org
X/Twitter: @matteomalvica

WebAssembly Duel: Liftoff vs TurboFan

const b =1 + 1;
const result = instance.exports.add(a, b);
print( add(${a}, ${b}) = S${result}’);
}
1)
We can force execution through Liftoff as

follows.

./d8 --liftoff --no-wasm-tier-up
--trace-wasm-compilation-times --print-code
./add.js

Compiled function ©x77e06b4000c18#0 using Liftoff,
took @ ms and 19232 bytes;

kind: wasm function

compiler: Liftoff

Instructions (size = 80)

0x14115369f858 18 8doc1e leal
rex, [rax+rdx*1]

0x14115369869 29 8bcei1 mov1l

rax, rcx
0x14115369f86f 2f ¢3 retl

The TurboFan/Liftoff compilation process for the
first two integer parameters involves receiving
them in RDI and RSI registers, then moving
them to RAX and RDX. The function's result is
placed in RAX for the return. The compiled code
is 80 bytes in size. Now we can compile the
same code using TurboFan and observe the
resulting differences.

$ ./d8 --no-liftoff --wasm-tier-up --print-code
--turbo-stats-wasm add.js

kind: wasm function

compiler: TurboFan

Body (size = 64 = 24 + 40 padding)
Instructions (size = 16)

0x3abf4814d847 7 03c2 addl

rax, rdx

0x3abf4814d84d d c3 retl
Time (ms)

totals 0.273 (100.0%)

Despite the 16-byte output, the addition uses a
compact two-byte instruction. Liftoff's
compilation time was nearly Oms, while Turbofan
took 0.2ms. This shows how Liftoff favors
compilation speed, TurboFan favors optimization
and together, they balance fast startup with
long-term performance in V8.

Matteo Malvica

SAA-ALL0.0.7



http://uf0.org
https://v8.dev/docs/build
https://v8.dev/docs/d8
https://github.com/WebAssembly/wabt
https://v8.dev/blog/liftoff

Windows Native APl Programming in Assembly

Windows Native
API Programming

in Assembly

The Windows Native API is a fancy name for Win-
dows system calls (or syscalls). In Windows, various
DLL functions provide wrappers for these syscalls. For
a number of reasons, Microsoft does not want a pro-
grammer to make these calls directly, preferring you to
go through the DLL functions or the C library instead.
In fact, from release to release in Windows, some of
these syscall numbers change. Others have tracked these
changes over time [1]. Today, particularly on Windows,
endpoint protection systems will look for direct syscalls
as a potential malicious activity.

So, why would you want to do this today? First, it
is a good learning activity. Any chance to interact with
the syscall boundary on a modern operating system is a
chance to learn about their syscalls and will aid in your
understanding of that operating system. Additionally,
writing code that uses syscalls in assembly will allow
you to write some of the smallest possible programs on
modern systems. This has both offensive and defensive
implications.

To start our overview, we need a very simple example.
I will use the native NtDeleteFile syscall to delete a file
on the filesystem. At the Github link here [2], I provide
the full code for both NtCreateFile and NtDeleteFile
along with more detailed information on some of these
structures. Depending on your version of Windows, you
may need to adjust the syscall number, though. (Also,
be aware that more advanced functionality could take
multiple, chained syscalls to produce the desired action.)
The Github repository also provides a PDF where I ex-
plain in more detail the process and structures involved.

When using NtDeleteFile, you need several items: (1)
You need to know the syscall number, which is really a
form of index into the System Services Descriptor Ta-
ble (SSDT) in Windows. (2) You need to know what
arguments that syscall needs. Microsoft does provide
some documentation for some of these functions if you
search around but you may have to translate from C++
documentation into assembly. (3) You need to know the
calling convention used since a system call often needs
arguments, so we need to know how the kernel is going
to expect those arguments. (4) Often those arguments
are pointers to other structures so in addition to know-
ing how to pass the arguments, we need to know how
to create the structures that are being passed. Again,
much can be gleaned from the documentation Microsoft
already provides.

In our NtDeleteFile example, first we need to create
an object attributes structure. It has a number of ele-
ments that are fairly well known. Since we are writing
assembly, we need to know how some WinAPI data
types translate to assembly. For example, a ULONG is a
32-bit value but when using the required calling conven-

Daniel O'Malley

SAA-TIP 0.0.7

tions on a 64-bit machine, this ends up taking 8 bytes
on the stack. This object attributes structure includes
much of what we need to reference the file, including the
name (which is UTF-16 encoding), its attributes, etc.
To delete a file, you need less of this information than to
create a file. If you examine my NtCreateFile assembly
in the Github repository you will see that a bit more is
needed to set up this structure. The unicode string itself
is another structure. The code below is for NtDeleteFile:

.data

path dw "\", 6 "2", "2", ", ‘"e¢c",":", "\",
IIUII'IISII’Ilelllllrll'llsll’ll\'
IIDII'IIaII’IInlI,II\II'

lltll'IIeII'lISII'IItII'II Il’lltll'llXII'lltll
align 8

objatr qword 6,0,0,0,0,0
unistring qword 0,0

.code

main proc
mov gqword ptr objatr[@],

mov gword ptr objatr[8],

lea rax, [unistring]

mov qword ptr objatr[16], rax
mov gword ptr objatr[24],

mov gword ptr objatr[32],

mov qword ptr objatr[40],

mov word ptr unistring[@], 50
mov word ptr unistring[2], 52
lea rax, [path]

mov gword ptr unistring[8], rax
lea rcx, [objatr]

mov r10, rcx

mov eax, 0d7h ;syscall number
syscall

main endp

end

After examining this code and reviewing the NtCre-
ateFile code, you will have a basic sense of Windows
Native API syscalls. Again, you may have to adjust the
syscall number (and path/filename, etc) but you can be-
gin exploring these syscalls. The SSDT table has hun-
dreds of syscalls to explore in modern Windows.

References

[1] https://j00ru.vexillium.org/syscalls/nt/64/.

[2] https://github.com/meuer26/Windows Native
API Basics.

X/Twitter: @binarywonder


https://j00ru.vexillium.org/syscalls/nt/64/
https://github.com/meuer26/Windows_Native_API_Basics
https://github.com/meuer26/Windows_Native_API_Basics
https://j00ru.vexillium.org/syscalls/nt/64/.

m Programaming simple melodies using Commodore Basic 7.0

Programming simple melodies using Commodore Basic 7.0

Have you ever wondered if there is a programming language which can be used for playing
simple melodies? Commodore Basic 7.0 can do that!

We can use only two functions: TEMPO and PLAY.

Link to documentation: https://www.c64-wiki.de/wiki/PLAY (BASIC 7.0)

Entering scores is quite simple:

CDEFGAB - these are notes. For selecting note period: Q - quarter, / - eighth.

05 and 04 - 5" and 4™ octave. V1T6 - voice and envelope selection, R - rest, . - dotted note, #
- sharp note and finally $ - flat note (b ).

| wanted to make melodies which can fit on one screen and fortunately | was able to put J.S.
Bach - Violin Concerto in a minor, Allegro assai beginning.

H

H 1 1 ) 1 1 1
=11 1 AU 1 :IF‘I

i 1 & L Hix 1 1
A H 1 B UH ::!:;:I 1

H J 1 HGABA t; )

] . A D ) - DADSID

i H 1 1 1 FEBUJL L) 1 1

1 1 1 11! H i1t [y L)

H [3 L 1 HAUaDLEDUE 1
] 1 1 ) CEHGHGAL

i 1 150 LU B 1 1

If you don’t have time to type, you can paste in any Commodore 128 emulator:

10 TEMPO 20

20 PLAY "V1T6IO5EAGFEDC04B0O5CDC04B0O5C04ABO5C0O4EAO5CO4BAB#GABEBOSD™

30 PLAY "CO4BO5CO4AO5CEAG#FQ.GIGH#FEQBIBBABGH#FEQBIBQBIBQBIBQBIBBABQGIEQ#FIH#G"
40 PLAY "QAIO4AO5QCIE#GABA#GAEDECEA#GH#HF#GQEI#GBA#GQ.AIRRCQEIAQDO4IFQAOSID"
50 PLAY "04QGO5IDDCDO4GBOSDFEDQEIFQ.GGO4IB0O5QC04IGO5Q.GGO4IAQBIGOSQ. FFIDQE"
60 PLAY "IGQEO4IBO5C04#GAO5DCDQBI#GQAIBEDEO4AOSCEGFEFEFDFAA$BDEDECE#GH#GAO4A"
70 PLAY "0O5QDIDQDIDQDIDCO4BO5QEO4IAQEI#GQA™

RUN

In some cases you need to convert the listing to lowercase before pasting to the emulator - it's
your task to find out why.
Enjoy! ()

Marcin Wadotkowski

ZoC5%82kowski-4a2b819a SAA-TIP 0.0.7

‘ LinkedIn: https://www.linkedin.com/in/marcin-w%C4%85do
48


https://www.c64-wiki.de/wiki/PLAY_(BASIC_7.0)
https://www.linkedin.com/in/marcin-w%C4%85do%C5%82kowski-4a2b819a
https://www.linkedin.com/in/marcin-w%C4%85do%C5%82kowski-4a2b819a

EEEEEEEEEEEEEEE

coococoococoocoococoooll

coooco00O000000000
Coo00C0O0O0C0O00O00O000
coocococooooococooo

cocococococofoocococoool
cocococoof@flococococo

cooco@BENEEEocc o
cooccoofEoccocoo

coocococooooococooo

coocococoooocococooco

cooccocoocococoococooof

cooCco00000000000
cooCcO00O0CO000O000O0O
0000000000000 00

EEEEEEEEEEEEEEE
[SYeYoYoroYooYoYoYototoRoYotel
cooCc0O00000000O00
OCo00CO00O0O00O0O000O00
cooococoofjoocococooo
cooococoooococococoo

coocococooooococooo
cooococoofjoocococooo
Coo0CO00O0CO00OO00O00
coooco00000O00000
Ccoo0CcO00O0CO000OO00OO0O
0000000000000

()
(o2}
c
(<))
=
£
~
£
o
<
o)
)
<=
§=
o)
-~
55
[72]
o
)
=
<

n.<c o e 52 0 < 0V 4 O = o
m.mc R g .8 G~ m S g < g %umm Wt,w EEEEEEEEEEEEEEE EEEEEEEREEEEEEER
r.JLR 7 o M.Moniﬁ alu oI~ g< 5= coocococoooooooooo|loooocooo0000000O
o n= 00248 o g g m c 5.8 =5 £S5 coocococoococooocooooloooocococooocoo000O
. 9 > h 3 N1 a =
w v 8 ) 09T i = S) 0000000000000l
= O Q = n = = < S
<t < %,m mm %.m %.m70 < mo Hmm m.m M [a VS [e¥eXoXoYoloRoYoYoTotoRo Yoo Yol [cfoXoYo Yoo Yo Yoo to oo Yo Yo X ol
(o) 2 <= & g.ﬂauw S nrm mm T 9" 3E M.md coococococoooooocooo|loococoocoofoocoocococo
~ ) — v=E 8@ < © m o2 o th W V1m o o 8 cococococoloccococojloococococo coococoo
N / N3 °8S han’ = Wd S 3 £ S 5 = £ 3 2 gx g5 3 cococococofMMoocococoo|lococoofMElooccoco
> N ° °ge < = ® 99 93 m o u.mrm mlmrmt.kcﬁ m N © © © o coffflocococoo]locoocococo coocooo
o N = N e 58 Y& 83328 .4 = & -l cococococooo000000o0o|looooocoofoocococooo
<C u 3 - O« mmer mhcm.mm EMM 5 m g5 MHm Elll - o cococococoooocococoolooocococoocococococooo
— O + — 0 = O 3
‘e 5 o EF 2528 % E =5 = % ¢ 5 BRIl C ©CCCOCO0000000000|000000000000000
O P = g 5 B S sH o 2 -2 B = © 30 W.m Ml © ©C 0O 0000000000000 0000000000000
— o .
o) m Tormotnorm e en e e .m de mOVn.u. mﬂl,m..wck o 2 5% M w CIESESIllo ccococococococoooooo|loooooooooocoo000
E w0 — & g ) i< Ryl ) o = PHllo ccoocooo0000000joooooo00000000O
w A = — ] — 1 at%r%dw%ms‘% tlgsﬂe.lm.m
c Jm ' o ' - s mmm ) M.ﬂoh m i = W Q m num 2 E 7T ECEEEEEEEEEEEEEE EEEEEEEEEEEEERE
[3) < - I o - o F .m"lvd 0= 8 L5 mloM w.omh SISl © © © C OO0 0000000000000 0000000000
> e S " - - 2 hc..anvhmeX 585285 0 5.8 g PE Sl © © ©CC 0000000000000 000000000000 (-
n a 173 m‘ﬂ. ' mL, wn A= R md mf = w = QT2 B = P C CCOCOOO000000000000000000000000 @©
o i 2o - - o - - = a:md.wm.mm oo R mhr Sl o © ccococooooooooojloocooococooococooooo (@))
~| &< > n ; R = R = Hgg.g 28 BNl c coococoooooocoooo|loocoococoolfoocoococoo o
Tl cNOFBON H frOO0OO O o3 D3 =9 EBQ% 0 O & e = =1 ~J
= Elgm i g "o s ool as aU%ﬂmm 5 82 = g 2° o g SR © © © © © cBEEEocoocoolocococoolEBococ00 T
Elaurocoocoo 0 ae =~~~ ~| E 0S8 5 Pn 9 g S 0 wim SEE-SI= il © © © © o offfJlo o c o cojo o c o oENEoc oo o )
o} e s loeo !l o m Wuum%M.m ==~z = @ > @ g = mm cocococooflococcoojoocococoofococococo o)
SlHoCooTS TTraoTes e%ftO.th o & S th SRR O O 000000000000 ojlooooocooooococococo o
h = . 5
()] % geeee e & w ° %6m.mt..a1.vh W0 e %m..m.ms P © © ©C 0 0000000000000 000000000O00O
> O | fHHEHEERY QHHEMMMEM ong Wo..,umbh 2 % 8 — 89 ut%dm Il C ©C 0000000000000 0000000000000 D
==l I RO SR SR DR R S § O S S SR S — g g evOA s %.mohm =) g g8 5% 3 nw 0000000000000l
n Q| pAmamme gmmaamma )l 2y eTB 8o o8 o 2 w g Welo.mm Sl ccocooooooooooo|ocooocoocooocooo00
P DM %Mm z momm g5 2 WD%LTu mrmMMhC coocococooocooocoooojlooooococoocococoocooo



https://psychedeliasyndro.me
https://psychedeliasyndro.me
https://github.com/mwenge

Sponsorship Advertisement

-

£ ournextchaHenge
~awai



http://hackarcana.com/
http://hackarcana.com/

The Woman in Red

ERY

SAA-ALL0.0.7



_Reto 4
Tempest™

Assembly

Instructions for Future Operators
In Possession of 21st Century Technology

Tempest: Assembly Instructions for Future Operators

-R MAC65
RK1:ALWELG=ALWELG
*ERRORS DETECTED: ©
FREE CORE: 11479. WORDS
RK1:ALSCO2=ALSCO2
*ERRORS DETECTED: ©
FREE CORE: 12467. WORDS
RK1:ALDIS2=ALDIS2
*ERRORS DETECTED: ©
FREE CORE: 11854. WORDS
RK1:ALEXEC=ALEXEC
*ERRORS DETECTED: ©
FREE CORE: 13003. WORDS
RK1:ALSOUN=ALSOUN
*ERRORS DETECTED: ©
FREE CORE: 12597. WORDS

RK1:ALVROM=ALVROM
*ERRORS DETECTED: ©
WORDS

FREE CORE: 12543.
RK1:ALCOIN=ALCOIN
*ERRORS DETECTED: ©
FREE CORE: 11118. WORDS
RK1:ALLANG=ALLANG
ERRORS DETECTED: ©

FREE CORE: 11892. WORDS
RK1:ALHAR2=ALHAR2
*ERRORS DETECTED: 0
FREE CORE: 13186. WORDS
RK1:ALTES2=ALTES2
*ERRORS DETECTED: ©
FREE CORE: 12290. WORDS
RK1:ALEARO=ALEARO
*ERRORS DETECTED: ©
FREE CORE: 13010. WORDS
RK1:ALVGUT=ALVGUT
*ERRORS DETECTED: 0
FREE CORE: 13178. WORDS

.R LINKM @
*RK1:ALEXEC/L,
*ALEXEC/A=RK1:ALWELG/C
*ALSCO2 ,ALDIS2,ALEXEC/C
*ALSOUN ,ALVROM, ALCOIN/C
*ALLANG ,ALHAR2 ,ALTES2/C
*ALEARO, ALVGUT

"136002-
"136002 -

"136002-
"136002-
"136002-

"136002-
"136002-

"136002 -

"136002 -
"136002 -

"136002-
"136002-

https://github.com/mwenge/tempest

').write(bytes(ALEXEC[0x3800
.write(bytes(ALEXEC[0xD800:0)
.write(bytes(ALEXEC[OxDOOO:
').write(bytes(ALEXEC[0xC800:0xDOOE
").write(bytes(ALEXEC[0x3000:0x3

') .write(bytes(ALEXEC[0xC000:0xC800
.write(bytes(ALEXEC[0xB80OO:0Ox
.write(bytes(ALEXEC[0xB0OOO:OxB8OO
.write(bytes(ALEXEC[0OxA800:0xB0O0O
").write(bytes(ALEXEC[0xA000: OXABOE R i
").write(bytes(ALEXEC[0x9800: E="hel § o
"y.write(bytes(ALEXEC[0x9000:0x9806 )

Tempest™ Analog Vector-Generator PCB Assembly *

This information card is intended to aid the computer operators of
tomorrow to reconstruct Tempest™ from 6502 macro assembler
sources, in the unforeseen event that Atari™ personnel are no longer
available to assist.

Prerequisites

A Digital Equipment Corporation™ PDP-11™ microcomputer or an
advanced simulator, perhaps by the name of simh, with an RT-1
operating system environment. For build resources, including an
Atari™ assembler toolchain, refer to the Troubleshooting section
below.

Instructions for Operators

Collect the Tempest source files on to a single RK05 disc pack.
A complete list, with helpful description, is given in the right-hand
panel.

@ In your PDP-11™ microcomputer, or simh simulator, execute the
MAC65 command on each file to assemble it using Atari's
proprietary macro assembler programme. Version 3.09 or above is
preferred. This step will create a set of OBJ binary files, for example
ALWELG.OBJ, ALSCO2.0BJ, and so on. Note that the source file
names reflect the fact that Tempest™'s working title was Alien
Well Game™.

@ You are now ready to link the OBJ files and create the final game
binary, ALEXEC.LDA. In your RT1 OS environment run the LINKM
command as described in panel 3.

@You are now ready to write the contents of the ALEXEC.LDA
object binary to the ROM chips on your Tempest™ A037383-02
PCB Assembly board. Notice that we write 2048 byte chunks of the
ALEXEC.LDA binary to 11 ROMs at the positions indicated on the
board in the panel below.

@ You can now play Tempest™.

Troubleshooting

If you experience any diffiiculty in following the steps above, you may
find it useful to consult https:/github.com/mwenge/tempest/ for
futher information. If you just want to have some fun with your new-
found aptitude assembling Tempest™ source code, you could also
try https://github.com/mwenge/tempest_fun.

:0x4000]))

] 3 4 5 N 6 . 7 8 9 i 10 " 12
Figure 23: Tempest™ Operations,Maintenance,and Service Manual (1981)

ALWELG - ALWELG.MAC
ALIEN WELL GAME @
ALSCO2 - ALSCO2.MAC
ALIEN GAME SCORES

ALDIS2 - ALDIS2.MAC
ALIEN GAME DISPLAY

ALEXEC - ALEXEC.MAC
ALIEN GAME EXECUTABLE

ALSOUN - ALSOUN.MAC
ALIEN GAME SOUND

ALVROM - ALVROM.MAC
ALIEN GAME VECTOR ROM

ALLANG - ALLANG.MAC
GAME LANGUAGE PACK

ALCOIN - ALCOIN.MAC
INSERT COIN ROUTINES

ALHAR2 - ALHAR2.MAC
ALIENS IRQ HANDLER

ALTES2 - ALTES2.MAC
SELF-TEST FUNCTIONS

ALEARO - ALEARO.MAC
ALIENS EAROM

ALVGUT - ALVGUT.MAC
VECTOR GENERATOR UTILITIES

Screenshot of Temﬁegt in operation.
- = E |

3 P

13

Rob Hogan

SAA-POOL 0.0.7



https://github.com/mwenge/tempest/
https://github.com/mwenge/tempest
https://github.com/mwenge/tempest/

Disassembling with LLVM Reverse Engineering

Disassembling with LLVM

| needed to disassemble a sequence of raw bytes into MIPS instructions programmatically. Capstone[1] is an
excellent option for this task, but my project already relies heavily on LLVM, and | prefer to avoid introducing
additional dependencies. Fortunately, LLVM[2] provides a disassembler API for all supported architectures. In this
article, I'll walk through building a simple disassembler for mipsel32 using these facilities.

First, we need to initialize the components:
InitializeAllTargetInfos () ; InitializeAllTargetMCs () ;
InitializeAllDisassemblers () ; InitializeAllAsmParsers() ;

Next, specify the Instruction Set Architecture (ISA) via a triple:
std: :string tripleName = "mipsel-unknown-linux";
auto *theTarget = TargetRegistry: :lookupTarget (tripleName, error);

MIPS in LLVM has the following instruction set choices: mips64el - 64-bit little endian; mips64 - 64-bit big endian;
mipsel - 32-bit little endian; mips - 32-bit big endian

Next, we create the disassembler:
const MCRegisterInfo * mri theTarget->createMCRegInfo (tripleName) ;
const MCAsmInfo * mai theTarget->createMCAsmInfo (*mri, tripleName, options);
const MCSubtargetInfo * sti = theTarget->createMCSubtargetInfo(tripleName, "", "");
const MCInstrInfo * mcii = theTarget->createMCInstrInfo();

MCContext ctx(Triple(tripleName), mai, mri, sti);
MCDisassembler * disAsm = theTarget->createMCDisassembler (*sti, ctx);

A separate printing component is necessary for the pretty output:
MCInstPrinter * ip = theTarget->createMCInstPrinter (
Triple(tripleName), 0, *mai, *mcii, *mri));

Finally, we iterate through the instruction bytes buffer (.text section of an ELF file; using

object::ObjectFile::create ObjectFile) to translate instructions into a pretty and human readable form:
ArrayRef<uint8 t> bytes (textSection.data.data(), textSection.data.size());
uint64_t address = 0; uint64_t size;

while (address < bytes.size()) {
MCInst inst;
auto s = disAsm->getInstruction(inst, size, bytes.slice (address),
textSection.address + address, nulls());
if (s == MCDisassembler: :Success)
ip->printInst(&inst, textSection.address + address, "", *sti, outs());
address += size;

}

Inside of the while loop we can identify individual instructions for special handling:
switch (inst.getOpcode()) {
case llvm: :Mips: :LW: outs() << " <LOAD>"; break;
case llvm: :Mips::SW: outs () << " <STORE>"; break;

Important to note that the opcode constants are considered internal values. LLVM built from source will be necessary
to obtain template generated header: #include "Target/Mips/MipsGenInstrInfo.inc".

Now we have a fully functional linear disassembler. My full implementation is available in a Gist[3]. Happy hacking!

[1] https://www.capstone-engine.ora/ [2] hitps://llvm.ora/pubs/2004-01-30-CGO-LLVM.html [3] hitps://gist.qithub.com/noloqic/8cc8758237 16f6f801d4f9dccfab4 105

Mikhail Sosonkin

SAATIP 0.0.7 https://github.com/nologic


https://www.capstone-engine.org/
https://llvm.org/pubs/2004-01-30-CGO-LLVM.html
https://gist.github.com/nologic/8cc875823716f6f801d4f9dccfab4105
https://github.com/nologic

Reverse Engineering

Obfuscating Crypto' Constants

The following function initializes two arrays of values.
Do you know what these arrays are used for?

#include <stdint.h>
#include <stddef.h>

N 11

P 312

H 8

K 64

M (1LL<<32)

#define
#define
#define
#define
#define

void init(uint32_t *h, uint32_t *k) {
size_t pi = 0;
uint8_t ip[P-2];
for (size_t p = 0; p < (P-2); p++) {
iplp] = 1;
}
for (size_t p = 0; p < (P-2); p++) {
if (iplp]l == 0) {
continue;
}
if (pi < H) {
double x = p + 2;
double xn = x / 2;
for (size_t i = 0; i < N; i++) {

xn = 1.0/2*xxn+x/(2*xn) ;

}

hlpil = (uint32_t) (uint64_t) (xn*M);
}
if (pi < K) {

double x = p + 2;

double xn = x / 3;

for (size_t i = 0; i < N; i++) {

xn = 2.0/3*xn+x/(3*xn*xn) ;
}
k[pi] = (uint32_t) (uint64_t) (xn*M) ;
}
pit+;
for (size_t n = p+2; n < (P-2); n++) {
size_t val = (p + 2) * n - 2;
if (val + 1 > (P-2)) {
break;
}
ip[val] = 0;
+
}
+

static uint32_t h[H], k[K];
int main() {
init(h, k);

// h & k used as part of an algorithm
Y oo

1Crypto still stands for cryptography

https://zeta-two.com
https://zetatwo.bsky.social

Obfuscating Crypto Constants

One of the techniques I presented in my article in Is-
sue #2 of PagedOut on identifying cryptographic al-
gorithms was to use constants in the algorithm to fin-
gerprint them. We can try to thwart such attempts
by obfuscating the constants. It is possible to employ
generic obfuscation techniques, e.g. encryption or vir-
tualization, but another fun way to do it is to dynam-
ically generate the constants based on their underlying
definition.

Explanation of the code

In the SHA2 family of hashes, two sets of constants
are used: the initial state H and the round constants
K. Each entry in these lists of constants is defined as
the first 32 bits of the fractional part of the square and
cube roots, respectively, of the first prime numbers. For
example K[3] = [2%2 % /7| = e9b5dbab.

In the example to the left, we calculate the SHA256 con-
stants dynamically instead of hard-coding those num-
bers. First, we know that we need the first 64 prime
numbers, the last one being 311 so we run the Sieve of
Eratosthenes for the first 311 numbers. Then for each
prime number, we calculate the square and cube roots
as needed using 11 iterations of Newton-Raphson.

Ji— {xo =uz/2

1
ITnt+1 = 3 (xn + ﬁ)

o5 {xozx/B

1
Tnit1 = 3 (an + z%)

In this variant, the values are calculated once and are
later reused when needed. For an additional perfor-
mance cost, it is possible to instead re-calculate these
values every time they are needed, thus making them
sit around in memory for only very short periods of
time, which might make not only static but even some
dynamic analysis more challenging.

Other Algorithms

This was just one example, but the technique can be
applied to several cryptographic algorithms. MD5 uses
|232|sin(x)|] of the first 64 integers, and SHA1 uses
230,/ for the numbers 2, 3, 5 and 10. For initializa-
tion, they both use numbers based on runs of digits in
hexadecimal, such as 0x67452301 and OxEFCDABS89.
The S-box used in AES, while based on some nontrivial
mathematics, can be calculated with a simple loop.

Summary

Using the underlying mathematical definitions to dy-
namically compute constants for cryptographic algo-
rithms removes them as statically identifiable artifacts
from the code. This provides a low-overhead and easy-
to-implement tool in the toolbox to misdirect reverse
engineers, making it more difficult for them to find the
cryptographic algorithms which often are used in inter-
esting parts of the code.

Calle "ZetaTwo" Svensson

SAA-TIP 0.0.7



https://zeta-two.com
https://zetatwo.bsky.social

The 1st binary riddle of John Payload Reverse Engineering

Welcome! This is an experiment: John Payload is an improvised security researcher attempting to unravel the contents of a binary. There are
5 tables with information about a binary to analyze; the goal? Solve the puzzle at the bottom of the page. If you are interested in providing
feedback or proposing new stories, please email John Payload: johnpayload@protonmail.com.

john@payload:$ file unknown.elf

THE BINARY RIDDLES ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV),

dynamically linked, interpreter /1ib64/1d-1inux-x86-64.
s0.2, BuildID[shall=54e0a2e14307d20367c2886caccce5795e45

OF JOHN PAYLOAD d49d, for GNU/Linux 3.2.0, not stripped

john@payload:$ nm unknown.elf
Ist Reverse Engineering Puzzle cee
0000000000001090 T main
0000000000001179 T svobanppv
0000000000002475 T wbua_jr_frr_lbh
0000000000002478 T CyrnfrgbagfgrnyZnpBF
0000000000002484 T abgrirelguvatvferny

HOW IT WORKS: Help John solve the puzzle by looking at the 0000000000002487 T qrprcgvba

various artifacts! The solution will be published in the next issue of

PagedOut. john@payload:$ readelf —e unknown.elf
Type: DYN PIE
Machine: Advanced Micro Devices X86-64
13 b2 Version: 0x1
THE THIRD TIME DECEIVES KA s

A new binary arrives at John Payload’s desk: it is an ELF x86-64 1. The symbols do not show much, although they are quite obfusca-
binary that calculates a certain type of numeric series, but it isnot  ted, maybe with a cipher. It is decided to start the analysis from the

yet known which one. first _start function.
start: start_main: john@payload:$ strace ./unknown.elf 1
0x01090 endbr64 0x01060 endbr64 write(1, “1\n”, 2) = 2
0x01094 xor ebp, ebp 0x01064 push rax john@payload:$ strace ./unknown.elf 1 a
0x01096 mov r9, rdx 0x01065 call svobanppv write(1, “2\n, 2) =2
0x01099 pop rsi 0x0106a push 0x2 john@payload:$ strace ./unknown.elf 1 a b
0x0109a mov rdx, rsp 0x0106¢ lea rsi, [rel write(1, “#\n%, 2) =2
0x0109d and rsp, data_402004] john@payload:$ strace ./unknown.elf 1 a b 3
ite(1, “7\n”, 2) =2
oxfffffffffffffffo 0x01073 pop rdi write( \n )
0x010al push rax 0x01074 xchg rdx, rax john@payload:$ strace ./unknown.elf 1 a b 3 ¢
write(1, “13\n”, 3) =3
0x010a2 push rsp 0x01076 xor eax, eax
0x010a3 xor r8d, r8d 0x01078 call printf_chk john@payload:$ strace ./unknown.elf 1 a b 3 cd
- - write(1, “24\n”, 3) =3
0x010a6 xor ecx, ecx 0x0107d xor eax, eax
0x010a8 lea rdi, [rel main] @x0107f pop rdx john@payload:$ strace ./unknown.elf 1 a b 3 cde
write(1, “44\n”, 3) =3
0x010af call [start_main] 0x01080 retn

2. The _start function calls the main function, which calls the 3. Through strace we do not show any interesting behavior. We note

snovbanppv function. The result of the function is passed to that with input it seems to be dependent on the number of parame-
the printf function. ters passed into the shell.
int _svobanppv(...): 0x1049f sub edi, Ox1

bb_0x10470

0x10470 push rbp 0x104a2 jb 0x1048b

0x10471 mov rbp, rsp 0x104a4 add rdx, rcx

0x10474 test edi, edi 0x104a7 mov rsi, rdx

0x10476 jle 0x10489 0x104aa add rsi, rax bb_0x10478

0x10478 cmp edi, 0x3 0x104ad mov rdx, rcx

0x1047b jae 0x1048d 0x104b0 mov rcx, rax v

0x1047d mov rax, Ox1 0x104b3 mov rax, rsi

0x10487 jmp 0x1048b 0x104b6 jmp 0x1049f <::E§;§EE§EEE::> bb_0x1048d

0x10489 xor eax, eax
0x1048b pop rbp

0x1048c retn

0x1048d add edi, oxfffffffe
0x10490 mov rcx, Ox1
0x1049a xor edx, edx
0x1049c mov rax, rcx

A
bb_0x1049f

bb_0x104a4

bb_0x1048b

4. The disassembled form of the function can help: we find some 5. The flow control graph of the svobanppv function suggests
simple operations and the final result is written inside the EAX that there is a loop, still however John could not figure out what it
register. actually calculates.

WHICH NUMBER SERIES IS COMPUTED WITHIN THE FUNCTION ?

John Payload

SAA-ALL0.0.7




Reverse Engineering

Turning a GCC anti-debug trick
into a Local Code Execution

This article requires minimal knowledge
of the C programming language.

GCC’s __attribute__((constructor)) lets
you execute a function before main() is
entered, by placing its pointer in the
ELF’s .ctors/.init_array section. By
inserting anti-debugging checks into
such constructors, you can effectively
detect debuggers and take appropriate
action (i.e: exit). The reason this works
is because most debuggers set
breakpoints at main. However,
constructors execute before main,
effectively allowing stealthy arbitrary
code execution on the host machine.
This could be used maliciously or to
alter your own app's behavior, if a
debugger is detected. This makes
reverse-engineers and automated tools
far less likely to spot or bypass your
checks, since they occur in code that
isn’t part of your entry point function or
typical library initialization routines. We
therefore present the following minimal
Proof-of-Concept (POC) code to
demonstrate this:

#include <stdio.h>

void _attribute  ((constructor))
__constructor(void) { puts("[+] Executed
before main :P"); }

int main() {return 0; }

Execution with GDB and a breakpoint on main
returns:

In theory, GDB should break before running
any code. This is visibly not what happens, as
our pre-main function was called and executed,
given the print statement.

#include <stdio.h>
#include <stdlib.h>

GitHub @serexp
X @myserialexps
blog https://serexp.lain.la

Turning a GCC anti-debug trick into a LCE

#include <string.h>

void _ attribute  ((constructor)) antidbg(void)
{ FILE *f = fopen("/proc/self/status", "r"); if
(!f) { perror("fopen"); return; }char line[256] =
{0}; while (fgets(line, sizeof(line), f)) { if
(strncmp(line, "TracerPid:", 10) == 0) { int
tracer_pid = atoi(line + 10); if (tracer pid > 0)
{ printf("[!] Debugger detected (TracerPid =
%d)\n", tracer pid);{ else {

puts("[+] No debugger detected"); } break;}}
fclose(f); }

int main(void) {return 0; }

Execution with GDB, breakpoint on main:

Tested on GDB (Debian 13.1-3) and LLDB
(14.0.6). Theoretically works on any debugger
that doesn't intercept constructors. The second
PoC works across all gdb/lldb frontends. A
potential countermeasure involves early
breakpointing on glibc's _init, but this is
ineffective in CRT-free programs. Thus, we've
shown that constructors enable arbitrary
code execution by default on major Linux
debuggers, offering a viable, lesser-known
method to anti-debugging. At the time of
writing, there is no known malware that
uses this to infect reverse-engineers, though
in theory nothing stops one from existing, as
this 1s effectively an LCE “exploit”, or at least
a very cool trick. Don’t forget to debug
untrusted executables in VMs.

cute CCO

kitty

LibyanLake |

SAA-ALL0.0.7



https://serexp.lain.la

Sponsorship Advertisement

) DOYENSEC

Y

= JOIN OUR GLOBAL TEAM OF SECURITY EXPERTS
' FLEXIBLE REMOTE WORK
DEDICATED RESEARCH TIME
HIGH-IMPACT PROJECTS

Sponsorship Advertisement

hex-rays

Driven and inspired
by the community.

Explore new IDA features, open-source
projects and more.

Enhanced switch detection for RISC-V and ARM
Microcode Viewer to visualize decompiler internals
New support for TriCore architectures

Optimized GolLang analysis

Improved nav ergonomics & extensive user input suggestions

Special Offer for Paged Out Readers:

Open-source IDA SDK
* 50% off any IDA Pro product
« 30% off any online training

Use promo code PAGEDOUT50.
Expires 31 October 2025!

Simpler scripting, new open-source IDA Domain API

Check out the latest features @ hex-rays.com/blog —>



https://hex-rays.com/blog
https://hackers.doyensec.com/

Securlty/ Hackln 0

(Un)safe and Sound: Rooting a Camera with a Noise

There are plenty of ways to get RCE on a device - WiFi, Bluetooth, SMS, etc. One method you don't hear about often (pun
intended) is sound. In this article, we'll get RCE on a security camera using sound, and use it to pop a root shell.

\? Sonic Pairing

I've already talked about the device featuring in the article -
the camera I got to play DOOM on its stream. For those who
haven't seen this, it is a cheap PTZ camera that uses the Yi
IoT app.

When the camera is reset, it enters a mode which constantly

waits for WiFi credentials that can be delivered using a few
methods - one of which is called ‘Sonic Pairing’.

This feature uses frequency modulation magic to encode the
given WiFi password, SSID, and bind key, into a sound. The
user's phone plays this sound near the camera, and using
the built-in microphone, it detects and decodes it. The de-
coded credentials are then used to connect to the network.

A hint that made me take a closer look at this surface (aside
from being sound-based) is that, at the time, the feature was
listed as ‘beta’ on the Yi IoT app.

i \? Generating Custom Sounds

Inputtlng data via the app 0bv1ously limits the format of data
modulated into the sound - it isn't possible to send bytes
that are not valid characters. We need to generate sounds
with fully controlled contents to exploit anything memory-
corruption related.

Jadx was used to locate functions related to sound genera-
tion by focusing on relevant strings and similar indicators.
I eventually came across a function that calls the
com.ants360.yicamera.util. PcmUtil.genPcmData function.

This comes from a native library called libpcmjni.so. Luck-
ily, frida (an awesome tool with many use cases) can be used
to hook native functions. By hooking the function, we can re-
place the legitimate data that should get modulated onto the
sound with our own.

As long as the data is no longer than 128 bytes, we can

put (almost) whatever bytes we want into generated sounds
ith the following native hook:

0x100000;

ghidralmageBase =
moduleName =
moduleBaseAddress =
moduleName) ;
functionRealAddress = moduleBaseAddress.add (0
x103c4c - ghidralmageBase);
Interceptor.attach(functionRealAddress, {

Module .findBaseAddress (

onEnter: (args) {
args [0] .writeByteArray ([
0x62, Oxa, Ox41, O0x41,
0x41, Oxa, 0x70, 0xO0
)5
console.log(hexdump (args [0]));
Fe
onLeave: (args) {
console.log( ) §
}

) 8

\? Bug 1: Stack Overﬂgxin;‘.

The sound wave parsing functionality is handled by the
sw_thread in the main anyka_ipc binary, this always lis-
tens for sounds that resemble the expected format. Once
received and decoded, it is split up into the ssid, pwd and
bind_key components using \n as a delimiter.

The string that can be provided by sound can be up to 128
bytes. In the function that handles these extracted creden-
tials, there is a call to sprintf(buffer, "ssid=%s", ssid) where
buffer is on the stack and has a capacity of 100 bytes (near
the end of the stack frame) - giving us a small stack overflow.

Github: github.com/Ir-m

As the anyka_ipc binary has ASLR on shared libraries and
we have to worry about null terminators, this bug isn't
enough to exploit by itself. As a PoC, I used the DOOM OOB-
read to leak a pointer (which is probably cheating as the
hotspot is required). However, with this I was able to jump
back into the stack buffer, and execute a simple payload that
turns the light on, sleeps, then crashes - here is a waveform
of my exploit (never thought I'd say that).

i Bug 2: Global Overflow

The second discovered bug is another simple one, this time a
strcpy overflow on the processing of the decoded ‘bind_key’.

Initially, I didn't think this would be useful, but after spend-
ing some time investigating how the globals we can overflow
were being used during the pairing process - I hit the jack-
pot.

As long as the first two characters of the bind_key are ‘CN’
(which also makes the camera speak Chinese), we go down a
code path that uses a ‘did' value we can overwrite with the
overflow. This is used in a constructed command that gets
executed via system() during the pairing process.

This means we can turn this global overflow into a reliable
command injection, without requiring any other bugs!

At
i 7 Exploiting for Root Shell

So how can we exploit this to get a root shell on the cam-
era? The easiest way is to construct a sound that executes
the telnetd command, and then we can connect with the un-
changeable default credentials once it has connected to the
network we control.

All we need is a WiFi hotspot that we control (it doesn't need
to be connected to the Internet), and the wav file containing
the exploit. We can then do the following steps:

Get near the camera

Play the sound at the camera

Wait until the camera connects to your hotspot

Get the IP of the camera, login to the telnet with root
and no password

e Profit

Obviously this only works when the camera isn't connected
to the cloud, so not very useful - but pretty cool nonetheless.
Here is the waveform of the second exploit!

SAA-TIP 0.0.7




Browser Permissions and Permission Hijacking

BROWSER PERMISSTIONS

BLBY

PERMISSTON HIJACKTIHNHG

ece x |+

& > [@_hetps://albertotdr sithub. 10 ] =
albertofdr.github.o is
asking you Toi

Ot camern. § mcropme |

Websites today are more than just places to read the news. They
can access OS-like features like your camera, screen, or even
USB devices. My tool' reports almost 80 supported permissions.
Browser permissions, each defined in their own spec, have two
characteristics. If the permission is considered powerful, the
user must grant access via a prompt. The second is whether it's
policy-controlled, meaning developers can manage it with
the Permissions-Policy header. Permissions have default
allowlists like 'self' or "', and access can be delegated using the
allow attribute. The tool also lets you configure the PP header for
supported permissions.

127 Permissions Chrome 136.0.7103.92 Chromium 136.0.7103.25

Powerful o " Powerful e :
Femissions Feley permissionsFoley

accelerometer V] [ (selfy V] [ (self)
accessibility-events X X X X
all-screens-capture b4 x x X
ambient-light-sensor ™ x ™ X
atiribution-reporting X Iy} X VY,

In this context, there are three common misconceptions. The
first is the relationship between controlling delegation with the
header and Same-Origin Policy (SOP). In short, you can only
restrict delegation at the top level. Once a permission is delegated
to a different origin, that origin can delegate it on to others without
restrictions. The second misconception is about prompts for
policy-controlled and delegated permissions. Even if an iframe
requests access, the prompt only names the top-level site, not the
iframe. Third, iframes don’t need to reprompt, even if they were
added after the page loaded. Now, let's dive into the threat
models.

& L B a m

!

EIE -
n=ﬂ

" https://albertofdr.github.io/browser-permissions-tool/

Alberto Fernandez-de-Retana

Public Domain

Blog: https://albertofdr.github.io/web-security-class/

Security/Hacking

TARGETING EMBEDDED DOCUMENTS

The first clear attack targets popular embedded documents with
valuable (for us, at least) permissions. Targeting these embedded
documents, similar to supply chain attacks, allows for large scale
permission hijacking. The goal would be to breach the popular
embedded documents, injecting our code into thousands of
websites, potentially targeting millions of users. If the user has
already granted the permission, we can directly hijack it, as
explained in the third misconception. If the permission hasn’t been
granted yet, we can take advantage of the second misconception
and try our luck. If you're wondering if this is possible and a real
threat, yes, I've done it with a popular chat widget used by 500k
sites globally, according to BuiltWith. Everything’s fixed now, but |
honestly don’t want to think about how many users might've been
exposed to the hijacking. It's way bigger than | expected.

<iframe src="bubuchat.com?id=XXX" allow="camera;microphone;display-capture;clipboard-read">

TARGETING POPULAR HWEBSITES
Let's explain the second case. This refers to websites that use
specific permissions, like video or display-capture for
conferencing sites, or USB for websites helping to configure your
super expensive keyboard. On these sites, we can assume users
give permission when they visit. So, if you come across
permission hijacking (e.g., HTML injection) on one of these sites,
you'll probably get direct access to those permissions, just like we
talked about in the third misconception. This includes cases
where permission is granted but the camera isn't actively used,
like when a button disables it. You could still be recorded without
realizing it. Some permissions might have peculiarities, like the
camera, you might notice the LED turning on. Anyway, the key to
protecting themselves and, more importantly, their users, is the
Permissions-Policy header (and a strong CSP would be
ideal too). More specifically, if they don’t need other iframes to use
the permission, they should declare the directive as 'self’ like:
Permissions-Policy: camera=self

++ Spec Issue

You might think that's all. Using the Permissions-Policy
header with the 'self' directive should keep us safe, right?
WRONG! | found a spec issue that actually bypasses this
directive. How? By using the well known (well-known, right?)
local-scheme documents. Want to know more? Check out my
blog?!

2 https://albertofdr.github.io/web-security-class/browser/browser.permissions

Web: https://albertofdr.github.io/

Twitter: https://x.com/alberto_fdr


https://albertofdr.github.io/browser-permissions-tool/
https://albertofdr.github.io/web-security-class/browser/browser.permissions
https://albertofdr.github.io/
https://albertofdr.github.io/
https://x.com/alberto_fdr

i she going to
e T

ey Z

2F

No=AM)=F VEDYLRISY
= -

‘D

BUNNY -MAT 2%
I 0
(Y

>

~+

~+

©

(7]

=~

=~

s

=

2

5.

(]

~

Q

(@] |
= |
Q i
3

Q

o

3

I\

©

=

S,

>

—~+

IO

=~

& B | don't know whatto |
write here BUT : | wish
i youa wonderful day!

a9

)

ISITES

E3tsome camots and emember ta stay hydrated |

DL =22

sallowsw

£'0°0 T1V-YVS
o3uId €97



https://www.instagram.com/_lea.pinto_/

Data-Flow Analysis for Security Testing

Data-Flow Analysis
for Security Testing

Data-flow analysis (DFA) is a static program analy-
sis technique originally used by compilers for program
optimizations. Recently, DFA has been used by static
application security testing (SAST) tools for detecting
taint-style vulnerabilities that cover many vulnerability
classes: command injection, null pointer dereference,
use-after-free, etc. Joern, Semgrep, and CodeQL are
some of the popular SAST tools that use DFA under-
neath the hood.

Taint-Style Vulnerabilities

A taint-style vulnerability is called “taint-style” because
it can be detected with a taint analysis. Taint analy-
sis determines whether information originating from a
source function can reach a sink function. Therefore,
the kind of questions a taint analysis can answer has
the following form: Can the return value of the source
function reach the parameter of the sink function? By
changing the source and sink functions in that question,
different taint-style vulnerabilities can be detected by
answering the question with a taint analysis.

The C code snippet shown to
the right contains a taint-style

vulnerability, specifically com- 1. x = getenv("X");
mand injection. getenv() re- 2. if check(x)
turns the string value of the en- 3- z = X5
vironment variable “X” which 4. else

is user-controlled since the en- 5. ¥ = 2Z;
vironment variable can be set 6. exec(z);

by the user. exec() passes its

string argument to the shell to

execute. From the code snippet, we can see that the
return value of getenv(), or the user-controlled data, is
initially assigned to variable x (line 1) and subsequently
assigned to variable z through x (line 3) in which z is
passed as an argument to exec() (line 6). Since user-
controlled data is passed as an argument to exec(), this
causes a command injection vulnerability in which the
user can execute any commands that they want in the
shell. A taint analysis can detect this command injec-
tion vulnerability by answering the previous question for
taint analysis with the source function set to getenv()
and the sink function set to exec(): Can the return value
of getenv() reach the parameter of exec()?

DFA Internals

To answer the previous question, DFA requires the
code’s control-flow graph as a prerequisite. The control-
flow graph represents the order of execution, and it in-
forms DFA on where to propagate analysis information.

The figure shows the control-flow graph of our code
snippet annotated with the taint analysis information af-
ter DFA is finished. Given the control-flow graph, four

Yu-Jye Tung

CCO

Security/Hacking

1 N
\ )

GEN

components configure DFA to perform a taint analy-
sis: abstraction, initial value, flow functions, and merge
function.

Abstraction refers to the program information to
track. In a taint analysis, we want to track variables
that are “tainted,” or user-controlled for command injec-
tion, and those variables’ actual values are unnecessary
to track. As a result, the abstraction is the set of tainted
variables or their variable names. DFA tracks tainted
variables at the statement level, so each statement is as-
sociated with the set of tainted variables that can reach
the statement. The initial value for each statement’s set
is the empty set since there are no tainted variables yet.
To operate on the abstraction, each statement has a cor-
responding flow function that defines how the statement
affects the tainted variables. The flow function for line
1 always generates tainted variable x (GEN x) and the
flow function for line 3 generates tainted variable z if
x is tainted (GEN 7). The flow function for lines 2, 4,
and 6 is the identity function, which means that what-
ever tainted variables come into the statement will come
out of it. For statements with multiple incoming edges
in the control-flow graph, the merge function is used to
combine tainted variables from all incoming edges. A
taint analysis propagates a tainted variable if it comes
from any of the incoming edges, so set-union is used to
combine the tainted variables. For example, at line 6, it
does not matter whether tainted variable z comes from
the left or right program path: If it comes from any one
of the program paths, that means z, or user-controlled
data, can be passed as an argument to exec().

With the four components configured, a worklist or
queue is initialized with all statements in the CFG. In
a while loop, a statement is removed from the worklist
to process until the worklist is empty. For a removed
statement, DFA performs the following steps to process
it: (1) combines all incoming tainted variables with
the merge function if there is more than one incoming
edge in which the incoming edges are obtained using the
control-flow graph; (2) applies the flow function to the
incoming tainted variables to get the outgoing tainted
variables; (3) if the outgoing tainted variables are dif-
ferent from the original outgoing variables, propagates
the new outgoing variables to the statement’s outgoing
edges and adds the statements at the outgoing edges to
the worklist in which the outgoing edges and statements
are obtained using the control-flow graph.

https://github.com/yellowbyte


https://github.com/yellowbyte

Security/Hacking

How do you say "help" in Chinese? The story of Zhong Stealer

How do you say “help” in Chinese? The story of Zhong Stealer

Leo Ramirez & Javy Ochoa from Bitso Quetzal Team

| - The ticket

Ittarted with a simple, humble ticket. During the
December holiday slowdown, our support team
received a suspicious help request. It came from
someone who wasn’t a user, written in Chinese,
and included what looked like a screenshot. In
reality, it was a ZIP file containing an unnamed
piece of malware. We believe everyone deserves a
name, and that’'s how this story starts.

Il - The problem

Support agents are now a prime target for Threat
Actors. They have access to sensitive data like
user emails, phone numbers, ID documents, even
account balances and home addresses (details that
can enable phishing, SIM swapping, or in the worst
cases, physical threats). Unfortunately, that last one
is becoming more common. And when malware
doesn’t work, some attackers (especially Initial
Access Brokers) resort to bribing support staff
directly to gain access to accounts or desktops.

Il - The attackers

At first, the messages came in Chinese (we don’t
even support that language in our platform). Then
they switched to broken English, using names that
didn’t match any region we operate in. The
language felt off, like someone pasting lines from a
bad translator like “Human Attention”, “error yes
this” or weird Spanish words like “someter” (a
literal translation of “submit” that actually means to
subjugate or overpower, not to send a form).

They never included valid data and didn’'t seem to
understand even the most basic field formats.
Phone numbers, tax IDs, and user references were
always nonsense. The files they shared included
names written in Simplified Chinese, such as
“Android B MH#&R_20241220" (Android Free
Screenshot_20241220) or “BEF_20241224 (2)
(Image_20241224 (2)). Inside, there were
executables that followed a similar pattern, with
filenames in both Simplified and Traditional
Chinese like  “BF_20241224.exe,” “BEHR
2024122288jpg.exe,” or “BF_20241220.exe,” all
crafted to look like harmless images or
screenshots.

IV - The malware, and another problem

The file was detected by several antivirus engines,
but none gave it a proper name. Labels included
things like “AlDetectMalware”, “Malware.Al’,
“ML.Attribute.HighConfidence”,

“malicious_confidence _90%”, or just “Generic”.
Machine learning and heuristics are useful, but only
when paired with a clear naming system that allows
traceability. So we gave it a name: Zhong Stealer
(Zhong meaning “Central’ in Chinese).

It downloads additional components in plain sight,
also flagged by antivirus tools using the same
vague and inconsistent terms. These components
include another binary which acts as a stealer and
adds registry keys to gain persistence, a DLL
library for that binary and a TXT or LOG file which
contains mirrors for all files in case something
stops working as intended.

Then, the  malware = communicates  with
infrastructure in China and Hong Kong, and it's
signed using different digital certificates, likely
stolen from legitimate companies. In some cases,
we suspect these certificates may have been
obtained through a chain of shell companies, which
would explain the variety and persistence of this
tactic, because, how many certificates can they
steal in such a short span of time?

Jack [J . Dec2111:57

T seeoldest

Hello, the app | just downloaded has a fault code.

11:67

ki

8 /20241222
zZIP

NotChineseMalware.zip attached successfully

The campaign is still ongoing: It's been more than
six months since we first saw Zhong, and the
attackers are still trying to get their hands on our
support agents. As part of a solution, we provide
them with Cybersecurity training, where they have
to report immediately to a superior any uncommon
behavior with the customer, to avoid any future
attack. We can’t recommend this enough, security
is an everyday thing done by everybody.

V - The take away

We published a full analysis with [OCs at
https: tzal.bitso.com/p/stealing-christmas, and
we hope you enjoy reading it.

Keep in mind that at this time we all can be
targeted. Stay safe, always keep your infosec team
on the loop and don’t go clicking on random things!

Javier Ochoa Bernal _
eopoldo Ramirez del Prado Esquivel

CCBY-SA 4.0



https://quetzal.bitso.com/p/stealing-christmas
https://quetzal.bitso.com/p/stealing-christmas,

How to encrypt your device, like a boss

HOW TO ENCRYPT YOUR
ORIVE, LIKE A BOSS

By Idan Korgenevitch

One day, I woke up and thought of an idea to encrypt
my drive with a flash drive, and sure, there is an easy
solution online, but no, it wasn't challenging enough
for me. And then I stumbled across cryptsetup,
surprisingly not a hard tool to wrap your head
around, but it takes a while to understand what it
does, starting with syntax:

cryptsetup <action> <options> <action args>

THE ACTIONS:

1. luksFormat <device> <options> <keyfile>

Formats the encrypted device (either luksl or luks2,
change with “--type”) to a luks type partition.

The keyfile, as the name suggests, is a file with the
decryption key, written as a path in the <keyfile>
argument; for entering the password manually, the
<keyfile> option is omitted.

Options include but are not limited to: --hash,
--cipher, --keyfile-size, --uuid and more

2. open --type <device type> <options>
<device> <name>

After the decryption process, the <name> is created,
and is a mapping to <device>, essentially behaves as
a decrypted device!, parameter “--key-file"” is added
if the password was provided via a file.

3. close <options> <name>

Important, the <name> parameter is the name of the
mapping mentioned in the 2nd action, essentially
this command closes the mapping, and it becomes
inaccessible until reopened.

EXAMPLE

[roote@a ~1# lsblk

SIZE RO TYPE MOUNTPOINTS
426 0 disk
9.36 @ part ~
166 @ part
9 crypt
0 disk
9 part
@ rom

1Tt is mandatory to initialize a file system

Idan Kor

SAA-NA0.0.7

Security/Hacking

In this example, “secret” is a mapping to sda2 after
being decrypted

[root@a ~1# blkid —= TYPE
devssdbl: TYPE="xfs"
deussrd: TYPE="i=so9660"

deuv-mapper-secret: TYPE="ext4"
devrsdaZ: TYPE="crypto_LUKS"
devrsdal: TYPE="ext4"

Here /dev/sda2 is a LUKS type partition, meaning it is
an encrypted device

/ETC/CRYPTTAB - EXTRA

jt Configuration for encrypted block devices.
it See crypttab(5) for details.

it NOTE: Do not list your root (/) partition here, it must
beforehand by the initramfs (retcsomkinitcpio.conf)

it <name> <device>

it home UUID=bBad5c18-1445-495d-9095-cIec4fIdZf 37

i datal +devssdad

it dataz +devssdad

it swap sdevssdxd

i wol ~devssdb?
UUID="9cfeaazd-f04d-4347-8805-a7470ebed 191"

<password>
retc/mypasswordl
setc/mypasswordz
setcseryptfs key
~dev urandom

<options>

swap, cipher=aes-cbc-essiv:shaz56,size=256
none
ssysten.keyfile:sdeussdbl luks,failok,x-systend.device-timeout=5s

The file defines the mapping settings after booting
the machine as follows:

Take <device>, check <options> and follow them,
decrypt it using “/system.keyfile"” from
“/dev/sdb1” and create mapping called <name>

About the <device> option, it allows 3 options, either
“none”, file from system, file from another device, the
syntax for the 3rd option is: <path>:<device>
*to get the UUID of the device execute “blkid”

After finishing the configuration, update the boot
loader with:

(arch, Manjaro etc.) execute:

e mkinitcpio -P

(Debian, Ubuntu etc.) execute:
e update-initramfs -u -k all

Now you can be sure that no one will access your
important cute kitty photos on your laptop !

WHAT NOW

Go wild and learn even more, try to encrypt with
more than one keyfile, different formats, unlock on
boot under certain conditions, good luck reader :)




m |OKit for Vulnerability Research in One Page

|OKit for Vulnerability Research in One Page

Learn the IOKit external method mechanisms that expose kernel drivers to the user space in macOS.

Introduction
I0Kit is an Apple’s C++ framework for writing kernel drivers that respond to user-space requests. Its interface—from a user APl call to a
driver function—defines the primary attack surface for macOS kernel vulnerability research.

IOKIT BUILDING BLOCKS
There is a registry with entries that point to services. These services are driver instances we can reach indirectly from the User Space.

Registry: A dynamic, tree-structured store of all drivers and hardware objects. It is populated at boot by loading each .kext,

parsing its Info.plist, and registering entries.

Personalities: Key-value dictionaries in each .kext’s Info.plist that describe driver matching criteria (vendor IDs, device
classes, etc.). The kernel uses personalities to bind hardware to the correct driver class.

Services: Runtime instance of a driver class (e.g., IOUSBDevice). Published in the IORegistry when hardware appears.
Discovered by user space via matching calls (I0ServiceGetMatchingService). Described by the 10Service class.

USER CLIENTS
Applications do not talk to I0Service instances directly. Instead, they use UserClients.

I0ServiceOpen — newUserClient(): When an app calls I0ServiceOpen, the kernel invokes driver->newUserClient(),

which returns a Mach port representing the newly created IOUserClient object in kernel space.

Access Control: Drivers can inspect the caller’s entitlements and sandbox status, refusing or tailoring the returned client

type (roles) based on privileges.

EXPOSED ENTRY POINT
After obtaining the port, the app in user-space can call I0ConnectCallMethod, which lands in the driver’s externalMethod:

IOReturn externalMethod(
uint32_t selector,

const uint64_t* inScalars, uint32_t inScalarCount,

const void* inStruct, size_t inStructSize,

uint64_t* outScalars, uint32_t* outScalarCount,

void* outStruct, size_t* outStructSize

)s
Dispatching: When I0ConnectCallMethod is invoked, the kernel hands off control to externalMethod, which contains the
dispatcher code. The dispatching logic varies, but it consistently treats the selector as an index in a static dispatch table.
Dispatch Table: The table entries hold the driver functions and define the expected counts for input scalars and the input
struct. The kernel first verifies that the selector is within range and that the sizes match. Only then does it call the driver
function with the user’s buffers.
CONCLUSION

Since only the sizes are checked—not the contents of the buffer—externalMethod is an excellent target for fuzz testing. In user space,
monitor the I0ConnectCallMethod() calls. When fuzzing, ensure you are using the correct Scalar and Struct sizes, which can be found in
the dispatch table of each driver. You can locate it in the externalMethod of the driver (e.g., HLIANEInUserClient::externalMethod).

References

1. https://github.com/Karmaz95/Snake Apple
https://afine.com/case-study-iomobileframebuffer-null-pointer-dereference

2
3.
4.
5

GitHub: https://github.com/karmaz95 Karol Mazurek

X/Twitter: https://x.com/karmaz95
Blog: https://www.patreon.com/Karol_Mazurek

CCBY 4.0



https://github.com/Karmaz95/Snake_Apple
https://afine.com/case-study-iomobileframebuffer-null-pointer-dereference/
https://afine.com/case-study-analyzing-macos-ionvmefamily-driver-denial-of-service-issue/
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals
https://karol-mazurek.medium.com/drivers-on-macos-26edbde370ab?sk=v2%2F8a5bbc18-aae7-4a68-b0dd-bb5ce70b5752
https://github.com/karmaz95
https://x.com/karmaz95
https://www.patreon.com/Karol_Mazurek
https://afine.com/case-study-iomobileframebuffer-null-pointer-dereference
https://afine.com/case-study-analyzing-macos-ionvmefamily-driver-denial-of-service-issue

If It Has a Stream, It Can Play DOOM

Security/Hacking

VE TT IS A STREAN, [ SAN PLAY DROW

At this point, it is a pretty well-proven fact that “if it has a screen, it can play doom”.

In this article, | extend the scope of devices covered by

this rule by remotely hacking an loT camera to stream DOOM - without touching the firmware!

Target

This investigation focuses on generic cameras using the Yi loT app,
usually found on eBay, Amazon, and AliExpress. (I bought mine from
AliExpress for £15.) Identical cameras using different apps are beyond
this article’s scope.

These cameras, based on an Anyka SoC (with an ARM MCU) running
Linux, come in various forms. A root shell is easily obtained via UART

test points.

@

.

-——v
® 3%

They are packed with interesting features, such as cloud control,

two-way audio, motion tracking, etc.

There are two modes: Hotspot and Cloud. In Hotspot mode, you

connect to an access point hosted by the camera to interact with and

view the stream. Cloud mode allows remote access via relay servers.

This article assumes the camera is in Hotspot mode, offering a larger

attack surface.

Mitigations?

The main anyka_ipc binary has NX on the stack and ASLR on only

the stack/shared objects. The heap is already executable, which is

handy. As ASLR is only present on the shared libraries, we only need

to account for their varying memory locations - a leak would be nice
if we find memory corruption.

Bugs

e Stack Overflow: A message handler in the camera has a trivial
strcpy () stack overflow. The overflow occurs in an executable
shared library memory region (1ibYiP2P.so) - as string-based,
no null bytes in payload.

e File Write: The software update handler accepts files through
port 6000. An MD5 hash is provided and subsequently checked
against that of the received file. If the provided MD5 hash check
fails, the file isn't deleted.

o OOB-Read: A missing bounds check in the message header offset
lets us read beyond the buffer containing the incoming message.
This lets us leak useful addresses remotely (to work out the loca-
tion of the packet in executable memory!).

e And many more, but these can do everything we want.

Getting Arbitrary Code Execution
Lets use the primitives we have above to get ACE. Here are the exploit
steps:

Client Camera - Hotspot Mode

SET_WHITE LED TIME anyka_ipc

QOB-read trigger

GET_WHITE LED TIME
Contains leaked pointer
to libYiP2P.so memory,
use to locate where
stage 1 will land

SET_AP_MODE _REQ
Stack overflow trigger +
stage 1, jumps to
previously calculated
stage 1 location

Handle incoming
requests as
normal

libYiP2P.s0 Stack

Stage 1
Create socket, listen
for stage 2, save to

malloc’d buffer, spawn
stage 2 thread

Send stage 2 to be received by
stage 1 socket ; *

Stage 2
Execute saved
payload (heap is
executable)

SAA-TIP 0.0.7

Hijacking the Stream

Now that we can execute arbitrary code, we can overwrite the yuv420p
frames from the sensor. There are three main threads for handling
and sending footage to the app:

e capture_thread: Gets yuv420p data from the sensor and adds
it to the encode list.

encode_thread: Takes yuv420p data from the encode list and
sends it to the hardware encoder to convert it into an h264 frame.
e yi_live_video_thread: Sends the h264 encoded frame to the
app.
Stage 2 exits those threads by setting global flags that cause them
to exit, then starts our own versions. The difference is that our
capture_thread gets yuv420p data from a non-sensor source, al-
lowing us to control the data fed to the hardware encoder (which
converts yuv420p data into h264).

IPC

To enable communication between our stage 2 running in anyka_ipc
and the DOOM binary, | used two regions of file-backed shared mem-
ory: one for yuv420p frames from DOOM to stage 2, and one for
controls from stage 2 to DOOM. | mapped the memory into both
processes using mmap ().

Porting and Compiling DOOM

This was easier than expected thanks to doomgeneric, which simplifies
porting DOOM by requiring the implementation of a few functions. |
omitted DG_SleepMs and DG_GetTicksMs as they are straightforward:

e DG_Init (Init your platform): Precompute lookup tables for RGB
(from DOOM) to yuv420p (for the app) and mmap () shared mem-
ory for the framebuffer and controls.

e DG_DrawFrame (Copy framebuffer to platform screen): Convert
the RGB framebuffer to yuv420p using lookup tables and write to
framebuffer shared memory.

e DG_GetKey (Provide keyboard events): Get current app buttons
pressed from shared memory sent from our stage 2.
With our functions implemented, we simply cross-compile DOOM
using:

arm-linux-gnueabi-gcc -static -0fast *.c -o doom

Now we have our doom binary compiled, we upload the binary and
doom1.wad to tmp using our file-write primitive - we then run it in our
stage 2 using system(). And we have hijacked the camera stream
with DOOM!

Kg\

ok &

Github: github.com/Ir-m



https://github.com/lr-m/Yihaw
https://github.com/ozkl/doomgeneric

The Trigona ransomware family initially ap-
peared in 2022 on Windows. It was ported to
Linux in 2023. It is implemented in Delphi! In
this article, we focus on a new variant for Linux
of April 2025 [1]. The main runs through the
following stages:

'Enu_‘j-ﬁtjg les ikh an ALS sesson Qe
Protect AES Oy with RA

- Add o large footer to encrypled files

Figure 1: Main() of Linux/Trigona

The configuration encryption of Trigona is
very specific: for no apparent reason, the con-
fig is encrypted twice. The same occurs in this
sample. In Figure 2, the email, key and IV values
are examples (not the real values).

S

afn decrgpt

;l \x01 BY2 CAAbL 07!

%, -
M,L:

i@ AEs

HL 2005
(© @picolecaeco

Figure 2: Decrypting the configuration file

The ransomware accepts a few options. The
most interesting or new ones are listed in he fol-
lowing table.

The /notcmd option (a poorly chosen name)
updates the ransomware’s list of commands to
run. Each command of the list is executed in its

https://mastodon.social/@cryptax

https://github.com/cryptax/

https://bsky.app/profile/cryptax.bsky.social

The Linux Trigona Ransomware

Command Description
/fast Only files under 512 KB are pro-
cessed. Larger ones are skipped.
/full Mutually exclusive with /fast.

Processes all files.

Allows encryption of files in
/proc, /sys, /run, /dev, /lib and
other Linux system directories
Prevents modification, deletion
and renaming of important sys-
tem files.

/allow_system

/chattr-i

/nohup Runs the process in a terminal
using nohup to make it immune
to hangup signals.

/stealth Checks if files are encrypted.

/notcmd See code.

/do_not_poweroff | Does not power off the host after

file encryption.

Table 1: A few options of Trigona
own separate shell.

// generated by Claude Sonnet 3.7

// decai [2] + tailored prompt for Free Pascal
— Compiler

for (current_cmd = 0; current_cmd <= cmd_count;
— current_cmd++) {

cmd_string = get_command(processor,

— current_cmd);

exec_result = shell_execute(cmd_string,
— result_string, 1);

}

The other novelties of the sample are the fol-

lowing:

e Adds functionalities to list and Kkill
VMWare ESXi virtual machines: (1)
list all VMs via vim-cmd vmsvc/getallvms,
(2) kill: vmsvc/power.off.

e The typical double extortion mechanism of
Trigona is not implemented in the variant:
files are encrypted on the disk but not ex-
filtrated.

e Small variations in encryption: the vari-
ant doesn’t use AES OFB but only CBC +
an added MD5 hash.

References

[1] SHA-256: co8a752138a6£0b332dfec981£20ecd14ad367-
b7384389¢0c59466b8¢10655ec

[2] https://github.com/radareorg/r2ai

Cryptax

SAA-NA0.0.7



https://mastodon.social/@cryptax
https://bsky.app/profile/cryptax.bsky.social
https://github.com/cryptax/

Types of SQLi (kids
these days need to
rename
everything!!lone)

Hello reader, | am guessing that SQL injection is not
a foreign topic to you. | confess that it isn’t a foreign
topic to me either. However, | recently learned that
there are several types of SQL injections, and
despite knowing most of the types, | did not know
that there were types and simply knew them all as
"SQL Injection". Most of us are self-taught and as
such, our knowledge can be a little chaotic at times.
My goal with this article is to provide a little
structure for that chaos.
Tautologies/Always-true!

These are probably the first SQL injections that we
have all learned. The concept is simple, inject a
payload in one or more conditional statements so
that it always evaluates to TRUE, which, depending
on the context, can bypass auth, return more
results, or reveal other behaviours.

SELECT accounts FROM users

WHERE login='" or 1=1 -- ' AND pass=""
AND pin="'";

Union Query?

Here the attacker seeks to insert a UNION operator
on the payload. This operator allows the query to
search for data on other tables (with table names
discovered through enumeration or a list of
common names) which can allow us to exfiltrate
the entire database (DB). Attention: the number of
attributes on SELECT needs to be equal.

SELECT accounts FROM users

WHERE id=""

UNION SELECT passwords FROM users -- ‘'
AND pass='"' AND pin="";
Piggy-Backed/Stacked Queries?

Here the attacker uses a payload to terminate the
original SQL statement and adds additional queries
separated by a semicolon. This allows them to run

Jodo Videira

WTFPL

multiple commands in one request, such as deleting
tables or creating new accounts (therefore they
aren’t bound to just a SELECT command).

SELECT account FROM users WHERE id="";
DROP TABLE users; --

' AND pass='"' AND pin=""'
Illegal/Error-based?

Attackers intentionally create incorrect queries to
trigger detailed error messages. These DB error
responses can reveal table or column names, DB
version, and other useful details for other attacks.

SELECT * FROM users WHERE id='"' --
" AND pass="'"' AND pin="";
MySQL(v5.7) syntax near "'"

Timing Injection?

A type used when the DB isn’t returning errors. So
attackers use DB time delays to deduce results. For
example, if the query takes noticeably longer when
a payload is injected, this may indicate that the
query is being processed and was executed, but if it
takes a short time it may indicate an error and that
it is not being processed.

Encodings®

This is not a standalone technique, but a way for
attackers to bypass simple filters or WAF rules by
encoding the payload. It's often used alongside
other injection types but when there are
protections. This may include URL encoding,
Unicode, hexadecimal, or SQL functions like
CHAR(), which will be able to pass the filters and will
be treated as a normal query.

SELECT accounts FROM wusers WHERE
name="'%27%200R%20%271%27=%271" --"' AND
pass="'"' AND pin="";

References:

lhttps://www.ibm.com/docs/en/guardium-
insights/3.2.x?topic=events-risk-event-categories
2https://www.greycampus.com/opencampus/ethical-
hacking/types-of-sql-injection
3https://medium.com/@theabdullah.office/sql-injection-in-
5ad67140eb7d
4https://portswigger.net/web-security/essential-
skills/obfuscating-attacks-using-encodings

Linkedin: https://www.linkedin.com/in/jo%C3%A30-videira-

374815222/

Types of SQLi (kids these days need to rename everything!!lone) Security/Hacking


https://www.ibm.com/docs/en/guardium-insights/3.2.x?topic=events-risk-event-categories
https://www.ibm.com/docs/en/guardium-insights/3.2.x?topic=events-risk-event-categories
https://www.greycampus.com/opencampus/ethical-hacking/types-of-sql-injection
https://www.greycampus.com/opencampus/ethical-hacking/types-of-sql-injection
https://medium.com/@theabdullah.office/sql-injection-in-5ad67140eb7d
https://medium.com/@theabdullah.office/sql-injection-in-5ad67140eb7d
https://portswigger.net/web-security/essential-skills/obfuscating-attacks-using-encodings
https://portswigger.net/web-security/essential-skills/obfuscating-attacks-using-encodings
https://www.linkedin.com/in/jo%C3%A3o-videira-374815222/
https://www.linkedin.com/in/jo%C3%A3o-videira-374815222/

iOSQANTIQTAMPERING...Q.....QQI.Q..

Starting from iOS 15 (and macOS Big Sur),
Apple’s operating systems feature a new security
mechanism called Signed System Volume
(SSV).

Its goal is to provide a cryptographic seal of the
system volume, ensuring its integrity both at rest
and at runtime. At runtime, the OS system
volume is mounted as read-only to prevent
unauthorized changes. This effectively blocks
any software from modifying system files in
directories such as /bin, /sbin, /System, and /usr.
Any attempt to write to those files — or remap
the read-only pages into which their contents are
loaded — is refused by the kernel page cache.

The volume itself is sealed using a cryptographic
hash tree (a Merkle tree). During the OS build
process, the content of the entire system volume
is hashed recursively from the bottom up, with
the hashes of individual files forming the
"leaves" of the tree. These are then hashed in
pairs to form "parent" hashes, continuing until a
single, final root hash is computed for the entire
volume. Every device running that OS build (i.e:
all devices with the same iOS version) get the
same sealed system image and the same root
hash.

This root hash is net stored in the Secure Enclave
or its immutable boot ROM. Instead, the boot
policy — an object that contains the expected
root hash of the system volume — is
cryptographically signed by Apple. The
Application Processor Boot ROM  contains
Apple’s public key, which iBoot uses to verify
the signature on this boot policy. This key is
burned into the chip during manufacturation :).

At boot time, iBoot verifies the integrity of the
boot policy and its signature. It then directs the
main processor to compute the root hash of the
system volume and compares this value against
the trusted value from the boot policy. If the

blog: https://serexp.lain.la
X: myserialexps
github: serexp

i0S System Anti-Tampering: Signed System Volume

hashes don't match, the system will not boot
because it has detected tampering. This process
forms an unbroken "chain of trust" from the
hardware all the way up to the operating system.

During OS updates, a new system volume is
created with a new Merkle tree and root hash.
The iOS bootloader verifies that this new
volume's seal is intact and matches the value in a
newly signed boot policy from Apple before
allowing the device to restart the kernel.
Mismatches or tampering will force the boot
process to panic and the device will boot into a
recovery mode to force an OS reinstallation.

When the wuser later installs third-party
applications, those apps are placed on the
separate data volume and mounted at /var, which
remains writable but is still protected by Data
Protection classes and the Secure Enclave’s keys.
The split between the sealed, read-only system
volume and the mutable data volume means that
even a full compromise of user space cannot alter
the OS itself without triggering the SSV check at
next reboot, ensuring the integrity of the system
persists across power cycles.

This change triggered a fundamental change of
development of jailbreaks. Instead of jailbreaks
being rootful and writing their executables to /bin
or creating a directory in /, they create a
subdirectory in /var (usually /var/jb). This
directory is not protected by SSV as it is a
non-system  directory. This allows their
executables to persist on disk across reboots. As a
last note, technically, SSV code was in iOS 14. It
was only enforced starting from iOS 15.

SEREXP | 10S AND WINDOWS
SECURITY RESEARCHER

Serexp

SAA-ALL0.0.7



https://serexp.lain.la

w N

Visually Representing Your Backup Protocol

Visually Representing
Your Backup Protocol

Background

A 3-2-1 backup protocol is a methodology for backing
up your data in a way that ensures you can access your
data whenever you need it.

It boils down to the following idea:

e 3 copies of the data

e 2 different mediums (tape drives, SSDs, hard
drives, etc.)

e 1 off-site (could be in the cloud or at a friend’s
house in another city)

I wanted to have a way to document my backup
protocol in a way that was easy to understand and
visually appealing. I also wanted to have the software
for it be locally hosted (or containerized) and allow for
the backup protocol to align with the CIA triad:
confidentiality, integrity, and availability. I understand
that backup protocols are not the most interesting
aspects of security or IT, yet they are the backbone to
ensure data availability. By the end of this post, you
will be able to create a diagram for your own backup
protocol.

There are multiple solutions that I was able to find
for creating diagrams: Excalidraw, draw.io, and
Mermaid. I ended up choosing Mermaid as it looked
clean, and it allowed me to configure my diagram with
minimal effort. Now that the application is selected,
let’s run these locally in a container (I use podman, but
you can replace that with docker and it will work the
same). I run a GUI and a CLI for Mermaid. The GUI
allows for the main editing of the diagram, and the CLI
allows you to scale it up to be a high-quality image.

‘Workflow

Here are the commands I use to run both the GUI and
the CLI versions of Mermaid on Linux (NOTE:
copying the code will add extra spaces, so you will have
to manually type out the commands/code):

documentation is great. I use flowcharts for my
protocols, but they have a lot of other diagram options
as well. The flowchart syntax can be found at:
https://mermaid.js.org/syntax/flowchart.html. We can
update the code to represent a simple 3-2-1 protocol:

flowchart LR
A[PC]-->C[1 TB Hard Drive]
A-->D["Proton Drive (Cloud)"]

This gets you the following output:

1 TB Hard Drive

PC

\>

This simple representation only has the 3-2-1
protocol and only the A (availability) of the CIA triad.
Let’s make a more robust version of this, including
encryption for the C (confidentiality) and checksum
indexing for the I (integrity).

Proton Drive (Cloud)

flowchart TD

classDef note fill:#ffd, stroke:#ccb

G@{ shape: tag-rect, label: "checksum
indexing:<br>chkbit<br>checksumbits" }

A["256 GB SSD - Laptop"]l==>B["1 TB Hard Drive
(Veracrypt -encrypted) "]

A==>|Cryptomator |C["Proton Drive (Cloud -
Encrypted at Rest)"]

G==>A==>G

class G note

This looks like the following:

checksum indexing:
chkbit
checksumbits

|

256 GB SSD - Laptop

/ Cryptomator
1 TB Hard Drive (Veracrypt-
encrypted)

Proton Drive (Cloud -
Encrypted at Rest)

I use https://github.com/laktak/chkbit and

podman run --rm -dit --platform linux/amd64 --publish
8000:8080 --name mermaid
ghcr.io/mermaid-js/mermaid-live-editor

my script https://codeberg.org/Harisfromcyber
/Media/src/branch/main/checksumbits to generate

Mermaid GUI (For Editing)

and store hashes for my files. That way, I can validate
the hashes of my files if there ever is a discrepancy
between two versions of a file.

mkdir /tmp/mermaid_data/

cp backup_policy.mmd /tmp/mermaid_data/

podman run --userns keep-id --rm -dit -v
/tmp/mermaid_data/:/data:z
ghcr.io/mermaid-js/mermaid-cli/mermaid-cli -i
backup_policy.mmd -s 3 -o
output_upscaled_file.png

Once you start building your own backup policy
diagram and require more quality for the output
image, I recommend copying the code into a *.mmd file
and then running the aforementioned “Mermaid CLI”
command on it to upscale the image. Make sure to

Mermaid CLI (For Upscaling)

Visiting http://localhost:8000 from a browser
allows you to access the GUI. The Mermaid

Haris Qazi (Harisfromcyber)

CCBY 4.0

stop the GUI container when you are done working by
running podman stop mermaid.

That’s just about the gist of it. Friendly reminder:
don’t forget to test your backups!

Website: https://www.harisqazi.com/

LinkedIn: https://www.linkedin.com/in/harisqazil/
Codeberg: https://codeberg.org/Harisfromcyber/


https://www.harisqazi.com/
https://www.linkedin.com/in/harisqazi1/
https://codeberg.org/Harisfromcyber/
http://localhost:8000
https://mermaid.js.org/syntax/flowchart.html.
https://github.com/laktak/chkbit

WE WANT YOUR ARTICLE!

\(I)\lom;.l’d you like to see your article published in the next issue of Paged
ut!?

Here’s how to make that happen:

First, you need an idea that will fit on one page.
That is one of our key requirements, if not the most important. Every article can only occupy one
page. To be more precise, it needs to occupy the space of 515 x 717 pts.

We have a nifty tool that you can use to check if your page size is ok - https://review-
tools.pagedout.institute/

The article has to be on a topic that is fit for Paged Out! Not sure if your topic is?

You can always ask us before you commit to writing. Or you can consult the list here: https://
pagedout.institute/?page=writing.php#article-topics

Once the topic is locked down, then comes the writing, and it has to be done by you. Remember,
you can write about Al but don’t rely on it to do the writing for you ;) Besides, you will do a better
job thanit can!

Next, submit the article to us, preferably as a PDF file (you can also use PNGs for art), at
articles@pagedout.institute.

Here is what happens next:

First, you will receive a link to a form from us. The form asks some really important questions,
including which license you would prefer for your submission, details about the title and the name
under which the article should be published, which fonts you have used and the source of images
that areinit.

Remember that both the fonts and the images need to have licenses that allow them to be used
in commercial projects and to be embedded in a PDF.

Once the replies are received, we will work with you on polishing the article. The stages include a
technical review and a language review.

If there are images in your article, we will ask you for an alt text for them.

After the stages are completed, your article will be ready for publishing!

Not all articles have to be written. If you want to draw a cheatsheet, a diagram, or an image,
please do so, we accept such submissions as well.

This is a shorter and more concise version of the content that can be found here:
https://pagedout.institute/?page=writing.php and here:
https://pagedout.institute/?page=cfp.php

The most important thing though is that you enjoy the process of writing and then of getting your
article ready for publication in cooperation with our great team.

Happy writing!



"

Paged Out! Call For Papers!

We are accepting articles on programming (especially prograrinming tricks!),
cybersecurity, reverse engineering, OS internals, retro computers,
modern computers, electronics, hacking, demoscene, radio
and any other cool technical computer-related stuff!

For details please visit:

https://pagedout.institute/



	Front Cover
	Editorial
	Menu (Page 1)
	Menu (Page 2)
	Can AI recognize AI?
	Ad
	/CONSUMPTION/
	Escaping the Rat Race: Local Models for Cashflow Decisions
	Piracy as Proof of Personhood
	1h painting demo
	Self-contained handwritten digit recognizer
	Unveiling BentoML Pickle-Based Serialization
	Ad
	:-TH3 M|nE-:
	Vibecoding Djinn
	A Thing Or Two About RSA
	Between States of Being
	BB84 QKD Through Eve’s Eyes, Intercepting Light with Coherent Quadrature Measurements
	Modern 4K Intros on the Demoscene
	Ad
	Goddess of Dystopia
	Re: Adding any external data to any PDF
	An Over-engineered Solution to the Problem of Labeling my 3D Printing Filament
	Fully Generic Hardware Security Module
	Multiple displays with just a single DisplayPort/USB-C cable
	Shenanigans Ensue
	Ad
	WcenterMouse: my journey in mouse movements in Wayland
	A Pixel Parable
	Green Moon (Japan Memories)
	IRC-wars like it's 1999
	Look ma, no file_server!
	Globally Shared: injecting your data everywhere at once
	Ad
	Casting shade on your Postgres performance
	Lispy sets in CHICKEN Scheme
	Lua is so Underrated
	Print to Play
	Replace CRTP with concepts?
	Secure File Upload API with SpringBoot
	Shannon Entropy Shenanigans
	Testing by iterating over all floats
	Ad
	The γ Language: Backwards-Compatible C Generics
	Playstation game concept art
	WebAssembly Duel: Liftoff vs TurboFan
	Windows Native API Programming in Assembly
	Programaming simple melodies using Commodore Basic 7.0
	Psychedelia: A Puzzle
	Ad
	The Woman in Red
	Tempest: Assembly Instructions for Future Operators
	Disassembling with LLVM
	Obfuscating Crypto Constants
	The 1st binary riddle of John Payload 
	Turning a GCC anti-debug trick into a LCE
	Ad
	(Un)safe and Sound: Rooting a Camera with a Noise
	Browser Permissions and Permission Hijacking
	Wall of memories
	Data-Flow Analysis for Security Testing
	How do you say "help" in Chinese? The story of Zhong Stealer
	How to encrypt your device, like a boss
	IOKit for Vulnerability Research in One Page
	If It Has a Stream, It Can Play DOOM
	The Linux Trigona Ransomware
	Types of SQLi (kids these days need to rename everything!!1one)
	iOS System Anti-Tampering: Signed System Volume
	Visually Representing Your Backup Protocol
	Writting
	Back Cover

