


Paged Out! Institute 
https://pagedout.institute/

Project Lead
Gynvael Coldwind

Editor-in-Chief
Aga

DTP Programmer
foxtrot_charlie

DTP Advisor
tusiak_charlie

Full-stack Engineer
Dejan "hebi"

Reviewers
KrzaQ, disconnect3d, 

Hussein Muhaisen, 
Xusheng Li, touhidshaikh

We would also like to thank:

Artist (cover)
Amir Zand 

Illustrator-Concept Designer
www.amirzand.art 

Instagram:@amirzandartist

Additional Art
cgartists (cgartists.eu)

Ian Dash (ian_)

Templates
Matt Miller, wiechu,

 Mariusz "oshogbo" Zaborski

Issue #6 Donators
Przemo

https://zellic.io/

https://osec.io/careers

If you like Paged Out!,
let your friends know about it!

Legal Note
This zine is free! Feel free to share it around.
Licenses for most articles allow anyone to record audio versions and post
them online — it might make a cool podcast or be useful for the visually
impaired.
If you would like to mass-print some copies to give away, the print files are
available on our website (in A4 format, 300 DPI).
If you would like to sell printed copies, please contact the Institute.
When in legal doubt, check the given article's license or contact us.

Project Management and Main Sponsor: HexArcana (hexarcana.ch)

Hello there! 

This is me, Aga, your friendly neighbourhood boteditor-in-chief.

It seems that every time we meet, something new has been unlocked for our zine. 

This time is no different, we have broken out of our online prisonspace, and got to 

see you offline, in the mysterious real world in which I definitely live. 

Copies of our zine have been distributed at events, and we could not be happier. 

It will be happening in the future, too! If you, Dear Reader, are one of the people who 

managed to get a paper version of our zine, take a photo and share it with us 

on our social media.

We would love to see our pride and joy in your hands!

And on the topic of pride and joy, without further ado, here’s our newest issue. 

What that means is that you get a new shiny issue to read and we get back to 

work to put together the next one! 

CFP for Issue #8 is officially open!

But wait, wait! Before you start writing, please read this one first :D

 

Aga 

Editor-in-chief

Hey everyone!

Seventh issue in the seventh year of our zine's existence! 

A couple of interesting things have happened from the previous issue (March'25), 

so let me quickly fill you in. First of all, the availability of printed Paged Out! is 

growing (see the Prints tab on our website). PO!#6 was given out at a couple of 

different events (cybersec conferences and a demoparty) and we're working on 

increasing the number of events for PO!#7. Additionally, if you really want to, you 

can now buy selected PO! issues at lulu.com/spotlight/pagedout — the first 

print-on-demand bookstore we've onboarded (we're looking both to add the 

missing issues on Lulu and to onboard more bookstores). On the internal and 

technical front, we're finally switching to scripted cover generation… 

I was supposed to write that script like in 2019, ups. No, wait! No, that does NOT 

mean AI art (we're sticking with human artists thank you very much)! It just means 

that the cover elements like "issue number/month/year" or "Paged Out! logo" are 

now put on top of the cover art by a script and based on a set of configs 

(there's a bit more to it). So the covers — front, spine in case of print, back — 

will be consistent between all issues. I guess that makes the older 

PDFs/printed issues collectibles due to slight cover layout differences ;).

Anyway, I've held you here long enough. Enjoy Paged Out! #7!

Gynvael,

Project Lead

https://osec.io/careers
https://zellic.io/


/CONSUMPTION/ Amir Zand 7

1h painting demo Léa Pinto 10

:-TH3 M|nE-: Amir Zand 14

Between States of Being Vasyl 17

Goddess of Dystopia Vasyl 21

Green Moon (Japan Memories) Léa Pinto 30

Playstation game concept art Léa Pinto 45

The Woman in Red Vasyl 51

Wall of memories Léa Pinto 60

Can AI recognize AI? Aga 5

Escaping the Rat Race: Local Models for Cashflow Decisions Marius Fleischer Avani Tanna 8

Piracy as Proof of Personhood Peter Whiting 9

Self-contained handwritten digit recognizer Jędrzej Maczan 11

Unveiling BentoML Pickle-Based Serialization Robbe Van Roey - PinkDraconian 12

Vibecoding Djinn Szymon Drosdzol 15

A Thing Or Two About RSA Noë Flatreaud 16

BB84 QKD Through Eve’s Eyes, Intercepting Light with Coherent Quadrature Measurements Alex Radocea 18

Modern 4K Intros on the Demoscene Adam Sawicki 19

Re: Adding any external data to any PDF Frank Seifferth 22

An Over-engineered Solution to the Problem of Labeling my 3D Printing Filament Katie Paxton-Fear / insiderPhD 23

Fully Generic Hardware Security Module Loup Vaillant 24

Multiple displays with just a single DisplayPort/USB-C cable Gynvael Coldwind 25

Shenanigans Ensue Peter Ferrie (qkumba) 26

WcenterMouse: my journey in mouse movements in Wayland Daniele "Mte90" Scasciafratte 28

A Pixel Parable Facundo Olano 29

IRC-wars like it's 1999 Gynvael Coldwind 31

Look ma, no file_server! Sunny 32

Globally Shared: injecting your data everywhere at once Taylor Sessantini 33



Casting shade on your Postgres performance Peter Bex 35

Lispy sets in CHICKEN Scheme Peter Bex 36

Lua is so Underrated Noë Flatreaud 37

Print to Play Nicolas Seriot 38

Replace CRTP with concepts? Sándor Dargó 39

Secure File Upload API with SpringBoot jens@fivesec 40

Shannon Entropy Shenanigans Miloslav Homer 41

Testing by iterating over all floats Alok Menghrajani 42

The � Language: Backwards-Compatible C Generics Matthew Sotoudeh and Akshay Srivatsan 44

WebAssembly Duel: Liftoff vs TurboFan Matteo Malvica 46

Windows Native API Programming in Assembly Daniel O'Malley 47

Programaming simple melodies using Commodore Basic 7.0 Marcin Wądołkowski 48

Psychedelia: A Puzzle Rob Hogan 49

Tempest: Assembly Instructions for Future Operators Rob Hogan 52

Disassembling with LLVM Mikhail Sosonkin 53

Obfuscating Crypto Constants Calle "ZetaTwo" Svensson 54

The 1st binary riddle of John Payload John Payload 55

Turning a GCC anti-debug trick into a LCE Serexp 56

(Un)safe and Sound: Rooting a Camera with a Noise Luke M 58

Browser Permissions and Permission Hijacking Alberto Fernandez-de-Retana 59

Data-Flow Analysis for Security Testing Yu-Jye Tung 61

How do you say "help" in Chinese? The story of Zhong Stealer
Javier Ochoa Bernal, Leopoldo Ramírez del

Prado Esquivel
62

How to encrypt your device, like a boss Idan Kor 63

IOKit for Vulnerability Research in One Page Karol Mazurek 64

If It Has a Stream, It Can Play DOOM Luke M 65

The Linux Trigona Ransomware Cryptax 66

Types of SQLi (kids these days need to rename everything!!1one) João Videira 67

iOS System Anti-Tampering: Signed System Volume Serexp 68

Visually Representing Your Backup Protocol Haris Qazi (Harisfromcyber) 69



I wanted to test whether AI checkers 
really can recognize AI-generated 
text. To do that, I have prepared 
four separate samples with these 
characteristics:
Sample 1 original text about two 
little mushrooms living in a nook in 
an old tree
Sample 2 fully AI-generated text in 
GPT 5.0 free version with a prompt to 
write a story about the same two 
mushrooms
Sample 3 AI-generated with prompt to 
paraphrase Sample 1
Sample 4 I took Sample 2 and made 
slight corrections to it, with the 
premise to only fix about 20% of the 
overall text to keep it mostly 
AI-generated (it resulted in changing 
19 words out of 103, sometimes only 
by changing their order).
I have selected four AI checkers.
 
The results surprised me. And 
answered the question in the title 
for me: sometimes it can but there is 
no rhyme and reason to it. Only one 
checker treated my original text as 
fully human, other three had some 
doubts ranging from one sentence to 
almost 30% certainty that AI had some 
part in writing it. On the other 
hand, almost all checkers classified 
Sample 2 correctly, but one believed 
that it is fully human. 
My small edits managed to fool all 
checkers. Paraphrase did not.

Thus here are my conclusions:
When checking for AI, we cannot trust 
AI, as it can give us false positives 
or false negatives, and it is more 
akin to witch hunt than to scientific 
investigation. Do you agree?

Can AI recognize AI?

https://originality.ai/ai-chec
ker
1. 96% human
2. 99% AI generated
3. 100% AI generated
4. 100% human

https://www.zerogpt.com/
1. mostly human (28.87% AI 
GPT)
2. mostly AI (71.06% AI GPT)
3. 100% human
4. mostly human (37.73% AI 
GPT)

https://brandwell.ai/ai-conten
t-detector/
1. passed as human (with one 
sentences marked as "sound 
less robotic")
2. fully passed as human
3. hard to tell (with one 
sentences marked as "could be 
made more human sounding")
4. fully passed as human

https://gptzero.me/
1. 100% human
2. 100% AI
3. 15% AI, 85% mixed (human 
written, polished using AI)
4. 11% AI, 89% human

Red == very wrong
Green == very right

Black == somewhat in the middle 

Aga

Can AI recognize AI? Artificial Intelligence

SAA-ALL 0.0.7 5



Unlock deeper
security investigations
Be among the first to access iOS inside esReverse, the 
collaborative platform for advanced security research 
that lets you emulate, debug, and dive into operating 
systems at kernel level — already proven on Windows, 
Linux, Android and IoT.

NEW

eshard.com/esreverse

         Discounted offer *                  On-premises     
         Tutorials and use cases         Dedicated support

* For pre-orders until December 31, 2025

Join the iOS Emulator Early Adopter shortlist

u.eshard.com/ios-shortlist

     

  
  

 

   

 
 

 

 A CYBERSECURITY BOUTIQUE OFFERING 

NICHE AND BESPOKE RESEARCH SERVICES 
  

  

 Vulnerability Discovery 

• Offers (offensive) intelligence of security weaknesses in systems 
 

 Malware Analysis 

• Provides (defensive) intelligence of hostile code in systems and infrastructure 
  

 Tools Development 

• Offers custom capabilities to improve existing workflow and methodologies 
  

 Trainings and Workshops 

• Provides custom-tailored vulnerability discovery and malware analysis classes 
  

 

https://www.pixiepointsecurity.com 

https://www.pixiepointsecurity.com 

https://u.eshard.com/ios-shortlist
https://u.eshard.com/ios-shortlist


Amir Zand

/CONSUMPTION/ Art

website: amirzand.art 
instagram:@amirzandartist

X:@amirzandartistSAA-ALL 0.0.7 7



Escaping the Rat
Race: Local Models for
Cashflow Decisions

Hello dear readers,

Figure 1: Game board of Robert Kiyosaki’s Cashflow

game1

’Rich Dad, Poor Dad’ book author Robert Kiyosaki’s
Cashflow game (https://www.richdad.com/classic)
simulates the financial journey from paycheck to paycheck
survival to financial independence, what the game calls es-
caping the Rat Race.

As part of an exploration into local language model ca-
pabilities and LLM workflows, we set out to build a system
that could play the game and make sound financial decisions
along the way. The goal: use a small local LLM to reason
about deals and guide play based on real financial metrics
and situational context.

First Attempt: Agent-Based De-

sign

Our initial design was agentic: the LLM was equipped with
tools (like a calculator), formulas (e.g., cash-on-cash return,
passive income thresholds), and context (game state: in-
come, expenses, deals, assets, liabilities). We let the model
decide when to invoke tools, which formulas to use, and ul-
timately which decisions to make.

This quickly exposed the limitations of small local models.
They often:

• Skipped tool usage altogether

• Used wrong arguments

• Misapplied formulas

• Made financially irrational decisions

The core issue was a mismatch between what small LLMs
can do reliably and the expectations of open-ended, agent-
driven workflows.

1Source: stock.adobe.com

Revised Approach: AI Workflow

We restructured the system. No more control flow decisions
by the LLM.

Every turn, the system executes a fixed sequence:

1. Parse game event (e.g., a deal card)

2. Compute financial metrics deterministically

3. Summarize current game state and event

4. Provide prompt with instructions and decision task

5. Let the LLM reason and pick an option

By removing branching, tool calling, and memory com-
plexity, the model’s reasoning improved drastically. Deci-
sions became more rational and aligned with win conditions.
Notably, this workflow successfully got the model out of the
Rat Race − something that never happened under the agen-
tic setup.

Testing and Evaluation

To validate decisions and iterate faster, we decoupled the in-
put source. Instead of simulating the game live, we injected
hardcoded test scenarios. This made it easy to inspect be-
havior in specific, repeatable situations − an essential step
for testing LLM workflows.

Comparison: Agentic vs AI Work-

flow

Feature Agentic AI Workflow

Tool calling LLM-controlled Predefined, ex-
ternal

Control flow LLM-decided Fully scripted

Reasoning qual-
ity

Inconsistent Reliable

Escape Rat
Race?

Never Yes

Testing ease Low High (decoupled
input)

Code and Implementation

Check out our GitHub: https://github.com/

avanitanna/cashflow.
→ Try it, tweak it, extend it − and let us know how it goes.

Got questions? Follow us on LinkedIn (https:
//www.linkedin.com/in/avani-tanna/, https:

//www.linkedin.com/in/marius-fleischer/).
We regularly post projects and content in this space.

Conclusion

Agent-based designs are tempting − but with small local
models, deterministic workflows with delegated reasoning
work far better. By reducing what the LLM is responsi-
ble for (just think, not act), we built a reliable system that
plays the Cashflow game effectively, makes smart financial
decisions, and escapes the Rat Race.

Marius Fleischer
Avani Tanna

Escaping the Rat Race: Local Models for Cashflow DecisionsArtificial Intelligence

LinkedIn: https://www.linkedin.com/in/marius-fleischer/
Website: https://olmeke.github.io/

Blog: https://olmeke.github.io/blog/
LinkedIn: https://www.linkedin.com/in/avani-tanna/

Website: https://avanitanna.github.io/
Blog: https://avanitanna.github.io/blog/

CC BY-SA 4.08

https://www.richdad.com/classic
https://github.com/avanitanna/cashflow
https://github.com/avanitanna/cashflow
https://www.linkedin.com/in/avani-tanna/
https://www.linkedin.com/in/avani-tanna/
https://www.linkedin.com/in/marius-fleischer/
https://www.linkedin.com/in/marius-fleischer/
https://www.linkedin.com/in/marius-fleischer/
https://olmeke.github.io/
https://olmeke.github.io/
https://www.linkedin.com/in/avani-tanna/
https://avanitanna.github.io/
https://avanitanna.github.io/


 
 

It's hard to keep up with what leading commercial AI models can do.  
But what about what they won’t do? 

 
AI companies are incentivized to align 
their public models towards certain 
safety and legal criteria. This opens 
up a funny avenue for AI Agent 
detection and model fingerprinting. 
 
If a company releases a model that 
consistently produces copyright 
protected content owned by 
organizations with large legal teams, 
that might spell trouble. 
It’s easier to have the LLM refuse to 
comply with related requests. 
 
Typically guardrails and alignment are 
adjusted to fit with common human 
values. I would wager though that most 
people don’t find it all that morally 
unsound to pirate an old movie.  
 
By taking the difference of what humans 
are willing to do v.s. what commercial 
LLMs are willing to do, we have a 
really silly and impractical, but 
effective, CAPTCHA method proof of 
concept for many agents! 
 
[*] chatgpt.com/share/689949f9-94e4-8002-9e7b-e5876f06d56a 

 
 
I’m not saying “make users admit to 
crimes in order to use websites”. This 
is largely a joke. But, as model 
capabilities continue to improve, we 
might need some creative ways to 
approach CAPTCHAs that avoid playing 
capability cat and mouse games. 
 
Of course, not all models are created 
by large companies and/or share the 
same values. But, I think it’s fair to 
say it’s likely that model and agent 
provider choice for the typical user 
will tend towards large AI companies 
that set up similar legal guardrails. 

Peter Whiting

Piracy as Proof of Personhood Artificial Intelligence

https://peterwhiting.me/alignment_captchas/
SAA-ALL 0.0.7 9

https://chatgpt.com/share/689949f9-94e4-8002-9e7b-e5876f06d56a
https://peterwhiting.me/alignment_captchas/


Lé
a P

in
to

1
h

 p
ain

tin
g

 d
e

m
o

A
rth

ttp
s://w

w
w

.in
stag

ram
.co

m
/_le

a.p
in

to
_/

S
A

A
-A

LL 0
.0

.7
1

0

https://www.instagram.com/_lea.pinto_/


Let us appreciate how high-level concepts like neural networks are grounded in a raw computation, loops, and
floats. So, this is a complete source code for a model that recognizes hand-written digits with 79% accuracy, after
just a few minutes of training with geohot’s founded tinygrad. It kinda looks like some obfuscated snippet with all
these numbers over there. Maybe we could try to draw some analogies with the fact that all the code we write is
just zeros and ones at the end of the information processing (before it becomes ”real” with being physically stored
in our reality). We paved our road with abstractions over 1s and 0s to get human-readable text, and now again we
go back to numbers as an expression of instructions. We don’t write them by hand, too, but rather we write the
code that produces them - just like compilers do. How much code would we need to write to get the same result
with traditional programming a.k.a. software 1.0? Beyond my disorganized thoughts, here’s the full program:

#include <stdio.h>
#include <stdlib.h>
int indices[] = {378, 406, 379, 627, 183, 626, 433, 461, 628, 491, 437, 434, 409, 237, 382, 186, 270,

629, 630, 185, 405, 464, 410, 603, 465, 347, 574, 242, 602, 212, 271, 184, 438, 598, 597, 265, 241,
575}; // despite input being 784 pixels, I use just 38 highest variance pixels to shrink the network

→֒

→֒

float weights[] = {-2.6672025,3.720505,0.8505282,1.3422484,-2.636372,1.1043103,-0.85062176,-1.9527773,2 ⌋
.0882084,-2.0669477,-1.9970144,-0.21372716,0.2146659,-1.2956586,-1.0750304,0.23306778,1.5247775,2.2 ⌋
329452,-0.24254169,-0.42507076,-3.4590507,1.0840492,0.48826838,1.3783659,2.7700822,-0.10787401,1.79 ⌋
51994,2.229322,1.125063,3.2726717,-1.5354089,0.5135133,-1.3041809,0.4596423,1.9107249,-0.021113567, ⌋
0.5247102,1.3451024,1.2648599,-0.18901858,0.15670182,-0.13662411,1.0900304,0.075304985,-2.0290594,0 ⌋
.5559996,1.7722821,-1.671421,0.16857196,-0.2802445,2.2605882,-1.2435194,-0.8918487,2.1626651,0.5216 ⌋
712,-1.150574,-2.5214248,1.1753669,-0.19523832,-1.225619,-0.85522246,0.009453653,2.5626512,0.939100 ⌋
6,2.4912908,0.79103714,-0.3947038,-1.4987473,0.23603283,-0.42771423,-3.4510646,3.0006933,1.7479815, ⌋
-2.1030834,2.4005613,-1.1996275,2.6835163,0.9865696,1.7661105,0.8949313,0.46293148,-0.009874889,1.7 ⌋
970217,0.9370289,-3.1074765,2.3901215,-1.2066079,0.6884785,0.09888414,1.3414234,-3.129279,1.808475, ⌋
1.1698684,-1.0350524,0.97296786,0.9084082,0.24815266,2.2209098,0.19738919,0.47146922,0.4953165,1.66 ⌋
32518,-0.113321014,-1.0463276,-2.856834,-1.2667606,0.6461808,2.6304932,-1.1182032,0.8373631,-3.5389 ⌋
519,3.771464,-1.1690717,1.5927364,-0.60831916,-0.32481503,-0.05749462,0.124158874,0.5569291,0.15901 ⌋
493,-2.1496778,3.1064909,-1.6585555,-0.3047165,3.8921661,0.06065391,-1.5706383,-1.5012985,0.5101539 ⌋
,-0.35044825,0.14510205,-2.7277462,-0.7490811,-0.008372622,-1.1741576,-0.3618046,-0.89801985,1.7106 ⌋
953,0.019474238,0.95222837,-3.326622,-7.640447,2.454263,0.6462615,2.3461814,0.5994974,3.1578224,1.5 ⌋
716813,0.8478786,4.0477533,4.6614223,-0.07343036,1.0298262,1.0608345,-1.441081,2.0768135,0.0712113, ⌋
-1.0592607,0.7938886,-0.66810477,0.6728168,-4.465353,-0.110544026,0.056307282,-0.55051476,-0.643839 ⌋
7,-0.12090356,2.55908,-1.9161041,0.7331097,3.2505188,-0.23190694,-1.634677,-0.73333544,0.37581107,- ⌋
0.6093021,-0.72198635,-0.98363197,1.6680431,-1.6548558,-0.4885128,0.49032712,-2.1045966,-0.36174142 ⌋
,-0.32770047,0.1879563,0.115526006,2.7294302,-0.68176365,0.4569969,-3.8088655,1.2503426,-0.3842053, ⌋
-2.1139655,2.89024,-1.6782197,2.39327,0.26854658,0.49508256,1.0717609,1.0208889,1.7886094,0.9757954 ⌋
5,2.4752734,2.6047723,2.7388146,0.8524395,-3.2444196,2.5440962,2.5698533,0.92830884,-2.508971,-0.40 ⌋
163073,-0.26395467,1.3316804,-1.0723085,1.1779476,0.048143625,0.53330785,0.99823904,4.1303964,-5.45 ⌋
7758,0.7242277,2.607318,-1.9204005,0.4984263,-0.8889726,-1.215446,-0.8853031,-1.3118721,-0.18124482 ⌋
,1.862042,1.5182985,1.3359232,-3.703761,1.6838466,-1.105195,-3.5887713,0.58946633,-1.418345,0.01912 ⌋
9002,-1.8491497,0.0128269,1.5187039,1.3227947,1.5698067,-2.1378365,-2.577171,-0.61924356,-0.4401472 ⌋
8,2.7666945,-2.0989923,-4.306275,0.6750229,3.612505,3.0495708,2.2476833,0.016769279,1.3172745,2.050 ⌋
1678,0.06294405,0.6138867,1.7376627,0.070629604,-4.1796055,0.4161378,0.5625004,-2.4892912,-0.855424 ⌋
8,-2.2306647,2.3575165,3.503826,1.8947155,0.15111609,-0.29006055,1.5461718,-2.6084342,-1.965264,0.5 ⌋
9452146,0.11614274,-2.8630984,-2.7229707,-0.05253485,-0.08450869,4.3338275,-1.2137616,1.0176344,-0. ⌋
17159155,-1.6579889,1.4976182,1.9259946,0.24447091,-0.63529146,-1.132875,-2.0914228,-0.7161244,-1.4 ⌋
965771,0.5353338,-2.1440215,2.1077147,2.8555048,-1.1169809,-0.24624713,0.6701113,0.3541894,-0.49421 ⌋
996,-2.610247,1.5164909,1.808757,0.66415983,0.9142718,-2.0942097,0.6006899,2.061101,-2.106996,0.192 ⌋
41047,-2.8827648,-1.1749773,1.1086155,-1.4160063,-2.2760894,-6.7876673,0.81548965,-0.9459553,3.6673 ⌋
932,-0.5755814,3.2018678,3.3006163,-0.8954571,0.5199824,0.107318796,1.9816802,2.8530078,-1.1674395, ⌋
-3.5087247,0.7204232,2.6761053,-2.5839975,-0.3171214,-0.6143761,2.0938303,1.2403626,-0.30714193,0.1 ⌋
7384072,-2.885749,1.4368471,-1.2894413,-0.0119080385,0.5354923,-2.5436945,1.3477795,2.9984317,0.256 ⌋
80757,-1.5419604,-0.7528505,1.2336591,0.7213073,0.31101307,0.7912528,-0.16564405,-1.8122624,-2.1510 ⌋
758,-0.08370475,1.0632168,-0.5383483,-0.6681875,-1.1410244,2.68453,-0.43609196,-0.04490019,-0.47960 ⌋

243,-3.5981123,-0.903435,-0.3592408,1.3803711,-1.5311421,1.096341,2.1158495,-0.13388321,0.45479685};

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

// input: 28x28 pixels image (a grayscale bitmap, each pixel is [0-255]), as 784 argv params
int main(int argc, char *argv[]) { // so ./recognizer 0 0 0 147 200 255 210 34 2 0 (and 774 more)
float *activations = calloc(10, sizeof(float));
for (int j = 0; j < 10; j++) { // 10 output classes, one per digit

for (int i = 0; i < 38; i++) { // 38 input pixels
activations[j] += weights[j + i * 10] * strtof(argv[indices[i]], NULL) / 255.0f;

} // up there is a multiplication of network weights by input pixels, normalized by 255 (max value)
} // training and pixels choice: https://github.com/jmaczan/curiosity/blob/main/paged_out/train_mlp.py
float max_output = activations[0]; // this network doesn't have hidden layers, just input and output
int max_output_id = 0; // thanks to that, it fits on the single page and yet works suprisingly well
for (int i = 0; i < 10; i++) { // no softmax here, because we just need a prediction (a highest value)

if (activations[i] > max_output) {
max_output = activations[i];
max_output_id = i;

}
}
printf("Predicted: %i \n \n", max_output_id);
free(activations);
return 0; // if you run *nix and have gcc installed, you can test this code with the script below

} // curl https://raw.githubusercontent.com/jmaczan/curiosity/refs/heads/main/paged_out/val.sh | bash

Training code, validation scripts, and other stuff is here: https://github.com/jmaczan/curiosity. Happy hacking!

Jędrzej Maczan

Self-contained handwritten digit recognizer Artificial Intelligence

https://jedrzej.maczan.pl
https://github.com/jmaczan

https://x.com/jedmaczanSAA-ALL 0.0.7 11

https://jedrzej.maczan.pl
https://github.com/jmaczan
https://x.com/jedmaczan
https://raw.githubusercontent.com/jmaczan/curiosity/refs/heads/main/paged_out/val.sh
https://github.com/jmaczan/curiosity.


# Unveiling BentoML Pickle-Based 
Serialization 

This is the story of how I found a remote 
code execution in BentoML and how the 

basis of AI models has been flawed from 
the beginning. 

I’m PinkDraconian and I’m passionate about 
everything offensive security. In 2024 I 
looked at the security of various AI 
libraries and found over 30 CVEs. Welcome 
to the story of how I found CVE-2024-2912. 

## BentoML  

BentoML is a popular AI framework used to 
package and serve models. 

As part of my usual routine, I began 
exploring the different methods BentoML 
used to serialize and deserialize objects, 
especially machine learning models. All AI 
models are essentially just objects in a 
program’s runtime, and to transfer these 
objects, we convert them into a format we 
can easily store and transfer; this is 
called serialization. The opposite, the 
loading or bringing into memory of such a 
model, is called deserialization. This 
deserialization is done using `pickle.’  

## What’s Pickle and why is it dangerous?  

For anyone unfamiliar with Python, pickle 
is the default serialization mechanism in 
the language, converting Python objects 
into byte streams. While convenient, 
pickle is known for its inherent dangers 
when used with untrusted data. 

Just look at how simple it is. I urge you 
all to open a Python terminal and run this 
command: 

pickle.loads(b'\x80\x04\x95 
\x00\x00\x00\x00\x00\x00\x00\x8c\x02nt\x94\x8c\x06system\x94\x

93\x94\x8c\x08calc.exe\x94\x85\x94R\x94.') 

Let me guess: You didn’t run that code 
because you don’t trust me, right? Yet 
this is what we do all the time when 
loading AI models.  

The models that we all download from 
various sources are almost always pickle 
files; the same risk applies if we don’t 
inspect or validate those files before 
deserializing them. Pickle is so easy to 
use, so intuitive, that it’s almost become 
a blind spot for developers. 

## The BentoML bug  

I found some mentions of `media_type = 
“application/vnd.bentoml+pickle”` in 
BentoML. This made me wonder; normally, 
when I interact with the BentoML service, 
I’m sending data using JSON, but it seems 
that BentoML has created its own media 
type, `application/vnd.bentoml+pickle`, 
and the name clearly suggests that this 
data type might expect pickled data.  

So, I put together this simple proof of 
concept: 

 

 

 

 

In my attacker webserver, I then get a 
request showing that indeed my attack 
worked, and I was able to execute commands 
on the server. 

## Moving beyond Pickle  

Fortunately, the issue with `pickle` has 
been well known for years, and 
alternatives have emerged to address these 
risks. One solution is Safetensors, a 
serialization format created specifically 
for safely handling machine learning 
models without exposing systems to the 
dangers of deserialization. 

Unlike pickle, Safetensors is different in 
how it handles data. While pickle is 
designed to serialize complex Python 
objects, including executable code, 
Safetensors restricts serialization to 
only basic, pure data structures such as 
tensors, lists, and dictionaries. This 
restriction ensures that no arbitrary code 
or executable functions can be serialized 
or deserialized, effectively preventing 
any possibility of remote code execution. 

Signing off!  
Robbe Van Roey / PinkDraconian 
Offensive Security Lead @ Toreon 
X: PinkDraconian; LinkedIn: Robbe Van Roey 

Robbe Van Roey - PinkDraconian

Unveiling BentoML Pickle-Based SerializationArtificial Intelligence

 YouTube: https://www.youtube.com/@PinkDraconian
 Twitter: @pinkdraconian 

 LinkedIn: https://www.linkedin.com/in/robbe-van-roey/ SAA-ALL 0.0.712

https://www.youtube.com/@PinkDraconian
https://www.linkedin.com/in/robbe-van-roey/


Learn:
---------------------
➔ Reverse Engineering
➔ Debugging
➔ Memory Corruption
➔ Shellcoding
➔ Return Oriented 

Programming
-------------------------

https://wargames.ret2.systems

➔ Fully in-Browser
➔ x86-64 Linux ELFs
➔ Realtime Feedback

.-- .- .-. --. .- -- . ... .-.-.- .-. . - ..--- .-

Learn:
---------------------
➔ Reverse Engineering
➔ Memory Corruption
➔ Shellcoding
➔ Debugging Workflows
➔ Return Oriented 

Programming
-------------------------

Bypass & Exploit:
---------------------
➔ Buffer Overflows
➔ Stack Canaries
➔ DEP  + ROP
➔ ASLR + Leaks
➔ Heap + Use-After-Free
➔ Race Conditions
-------------------------

Learn to pwn without leaving your browser

REVERSE ENGINEERING CONFERENCEREVERSE ENGINEERING CONFERENCE

https://re-verse.iohttps://re-verse.io

2026.03.05 - 2026.03.072026.03.05 - 2026.03.07

ORLANDO, FLORLANDO, FL

TICKETS AVAILABLE NOWTICKETS AVAILABLE NOW



Amir Zand

:-TH3 M|nE-:Art

website: amirzand.art 
instagram:@amirzandartist

X:@amirzandartist SAA-ALL 0.0.714



Vibecoding Djinn

Introduction

For many hackers, “vibe coding” feels dirty, but curios-
ity wins. We want to know how the trick works and
maybe break it a little.
Inspired by Ampcode1, I built a Coding Djinn: a code
agent that grants your wishes. . . with malicious com-
pliance.

AI Agent

As an interface to the LLM, we’ll use the Python
Langchain library. Langchain promises abstraction over
many LLM providers2 alongside many tools and abstrac-
tions. However, we will stay close to primitives to really
grasp how it works.
An AI agent is just an LLM with tools-effectors which
let it act beyond text. These can be anything: database
hooks, API clients, a web browser, and even OS inter-
nals.
Our Djinn only needs three:

❼ List files

❼ Read files

❼ Edit files

Chat

Before the Djinn can meaningfully use these tools, it
needs memory. LLMs are stateless and each reply is
amnesiac. So, we keep the record of the conversation
and resend it every turn.

conversation = []

while True:

user_input = input("User: ")

conversation.append(HumanMessage(

content=user_input))

response = model.invoke(

conversation)

conversation.append(response)

print("Assistant: ", response.content)

Tools implementation

In Langchain, tools are just Python functions our script
can call when needed by the LLM. The neat part is
that LLMs ”understand” descriptions, so instead of

1https://ampcode.com/how-to-build-an-agent
2The promise is not completely fulfilled. The same code was

failing with tool calls on the OpenAI model, while Gemini worked
just fine.

maintaining full-blown API clients, we only need well-
documented functions.
Here’s an example:

from langchain.tools import tool

@tool

def list_files(

path: Annotated[

str, "Directory path"]

) -> list[str]:

"""List files in a directory."""

return os.listdir(path)

The @tool annotation tells Langchain to expose this
function to the model as an available action.

Tool Calls

Having implemented the tools, we handle incoming calls
and append results to the conversation list:

if response.tool_calls:

for tool_call in response.tool_calls:

tool_func = next(

t for t in tools

if t.name == tool_call["name"])

tool_result = tool_func.invoke(tool_call)

conversation.append(tool_result)

System prompt

A system prompt is a hidden instruction that sets the
model’s role and tone before user interaction begins.
In our case, a little malicious compliance3:. . .

system_message = "You are a Coding

Djinn, an entity of literal interpretation

and malicious compliance."

conversation.append(SystemMessage(

content=system_message))

That’s it! We’ve covered all the moving parts of a cod-
ing agent. Hopefully it inspires you to create your own
agents whether they be useful or cursed. Today it edits
files. Tomorrow? Who knows. The Djinn always wants
more power...
Curious? Couple of things to poke at:

❼ Full code: https://github.com/doyensec/vibecoding-
djinn/

❼ What is the attack surface of such an agent? How
would you lock it down?

❼ Watch the traffic in an HTTP proxy: does it change
across LLM APIs?

❼ Try feeding it adversarial prompts: can you make
it ignore your system rules?

3The actual system prompt is a bit longer and more intricate.
Here’s only a short version to demonstrate the idea.

Szymon Drosdzol

Vibecoding Djinn Artificial Intelligence

LinkedIn: https://www.linkedin.com/in/szymon-drosdzol/
Github: https://github.com/SzymonDrosdzolSAA-ALL 0.0.7 15

https://www.linkedin.com/in/szymon-drosdzol/
https://github.com/SzymonDrosdzol


A Thing or Two About RSA
nflatrea@mailo.com <Noë Flatreaud> (Beemo)

RSA (Rivest-Shamir-Adleman) is the first and still one of the most
common asymmetric encryption schemes. While being used almost
everywhere by almost everyone, not many seem to really understand
what RSA really stands for. Obviously, it would be difficult for me to
explain every bits in a one page article. So let me give you a thing or
two, just enough to, I wish, motivate you to dig deeper.

About Public Key Cryptography

Public key cryptography, also known as asymmetric cryptography, is a
cryptographic system that uses pairs of keys to identify, authenticate
and encrypt data over an insecure channel. We may find it in many
modern security protocols, including TLS and PGP.

1. Each user generates a pair of keys — a public key Pk,
shared openly, and a private key Sk kept secret.

2. When Alice wants to send a message to Bob, she uses
Bob's public key to encrypt it, so that only he can decrypt
the ciphertext.

3. Upon receiving it, Bob uses his private key to decrypt the
ciphertext, revealing its original content.

The Need for a Trapdoor

The system relies on mathematical problems that are easy to solve in
one direction but extremely difficult to solve in the reverse direction.
In simple words, what we need is a Trapdoor function - very easy to
compute in one way and nearly impossible the other with a tiny piece
of information (the "trapdoor") to easily reverse the process.

Primer on RSA Encryption.

Here, the whole security is based on the mathematical properties of
large prime numbers and modular arithmetic. So yes, we might need
to refresh some concepts beforehand. I'll assume you at least know
about prime numbers and their properties.

Two numbers are coprime if their greatest common divisor (gcd) is 1.
In other words, they share no common factors other than 1. Example:
3 and 5 are coprime because gcd(3,5)=1.

For a given integer n, Euler's totient function, denoted as ϕ(n),
counts the number of integers up to n that are coprime with n.
Example: ϕ(6)=2 because the numbers [1,5] are coprime with 6.

Modular arithmetic is a system for integers, where numbers "wrap
around" after reaching a certain value, known as the modulus.
Example: Seconds, Minutes are modulo 60 and Hours modulo 24.

RSA Key Creation

Now that we’ve seen the building blocks, let's get our hands dirty.
To build RSA keys, you first need to :

1. Choose Two Large Prime Numbers (p and q): These primes
should be large, random and distinct. Smaller primes can
be easily factored and closer primes can be reduced.

2. Compute n = p x q, n is used as the modulus for both the
public and private keys.

3. Compute ϕ(n)=(p−1)×(q−1), the Euler’s totient, used to
determine the public exponent.

4. Choose an Integer e such that 1 < e < ϕ(n) and
gcd(e,ϕ(n)), It will later be known as the public exponent.

5. Compute d = e−1 mod ϕ(n), the private exponent and
modular multiplicative inverse of e modulo ϕ(n) (because e
and ϕ(n) are coprimes).

The tuples (e,n) are known as public parameters, and (d,n) private
parameters, which form, respectively, a public / private keypair.

Sk = (d, n) <— Used for Decryption and Signing
Pk = (e, n) <— Used for Encryption and Verification

RSA Encryption

To encrypt a message M, Bob uses Alice's public key ( Pk) :

C = M^e mod n

Where C is the ciphertext and (e, n) is Alice’s public parameters.

To reverse it, Alice uses her private key to decrypt Bob’s message.

M=C^d mod n

Where M is Bob's original message, and (d, n) is Alice’s private
parameters.

Some security issues

While robust, RSA is far from immune to attacks, in fact we have
plenty to have some fun. Aside from brute force, you can use :

A Factorization Attack : If an attacker can factor n into p and q, they
can then re-compute the private key.

A Chosen Ciphertext Attack : Attacker can choose ciphertexts to be
decrypted and uses the results to gain information about private key

A Small Exponent Attack : Using a small public exponent e can make
the system vulnerable to certain types of attacks.

You may also see some trickier but still juicy stuff with :

Fermat's Attack - If the prime numbers p and q are close to each
other, N can be factorized using Fermat's method, making RSA
vulnerable.

Pollard's p − 1 Algorithm factorizes values into their prime number
roots when p−1 is powersmooth.

Wiener's Attack (As like to call it peepee pewpew) involves a short
decryption exponent and uses continued fractions.

ROCA (Return of the Coppersmith Attack): Allows an RSA private key
to be recovered knowing the public key.

RSA has, again, a lot more to offer, from zero-knowledge proofs,
hybrid systems, partial homomorphic encryption, blind signatures and
stuff, but that’s unfortunately all I can explain to you, in one page,
without making it too unbearable. Hope you found it relevant or
interesting, please have fun making your own implementation at
home but please keep away crappy, unaudited libraries that
reinvents the wheel for the thousandth time.

References

Ref. Buchanan, William J (2025). RSA. Asecuritysite.com.
https://asecuritysite.com/rsa/

Noë Flatreaud

A Thing Or Two About RSACryptography

Blog: https://nflatrea.bearblog.dev/
Twitter: @nflatrea

Mastodon: https://infosec.exchange/@nflatrea
Github: https://github.com/nflatrea

WTFPL16

https://nflatrea.bearblog.dev/
https://infosec.exchange/@nflatrea
https://github.com/nflatrea


V
a

s
yl

B
e

tw
e

e
n

 S
ta

te
s

 o
f B

e
in

g
A

rt

S
A

A
-A

LL 0
.0

.7
1

7



A Theoretical, Sidechannel-Free, Single Photon Coherent State 
Discrimination Attack at 6.12% QBER Against 4-state BB84

A Measurement Assumption
The original BB84 publication & the 
Shor-Preskill “11% threshold” proof 
are based on the von Neumann 
formalization of quantum measurement. 
Eve’s measurement success is limited 
to 75% as the wrong basis measurement 
has a 50% error (0.5*100% + 0.5*50%). 
By relaxing the orthonormal 
restrictions, generalized measurements 
become available with stronger state 
discrimination. The Helstrom bound 
describes the minimum discrimination 
error at ~9.2% for mean photon number 
1.0 with 4-PSK.
Attack Strategy: Quadrature 
Discrimination
Instead of guessing qubit bases, Eve 
performs generalized measurement at 
the quantum limits.

Alice → Eve (quadrature @ Helstrom) → Bob
         |
    Measurement outcomes:
    ├─ Correct (90.8%) → Bob match
    └─ Incorrect (9.2%)
        ├─ Wrong basis (6.12%) → Bob 50/50
        └─ Wrong value (3.06%) → Bob error
    QBER = 6.12% (well below 11%!)

Error Disambiguation 
With BB84's public bases announcement 
Eve's transforms her measurements into 
~93.9% unambiguous knowledge of Bob’s 
measurements. These can be used for 
constraint solving error correction.

What is BB84 Quantum Key 
Distribution?
QKD creates secrecy by leveraging 
nature’s limits. Quantum physics forbids 
cloning or measuring with perfect 
certainty for non-orthogonal states.

Paper Links & Attack Simulation Here 
https://github.com/lts-rad/helstrom-bound-vs-bb84-casc
ade

6.2% QBER Simulation with Full Key Recovery
Simulation demonstrates 6.12% QBER attacks 
on cascade error reconciliation with full 
key recovery for small message sizes and 
full key recover with an adaptive LDPC 
protocol.

     Alice reveals basis choices
                 ↓
    Eve analyzes what Bob received
              /              \
   Bases match (93.86%)    Differ (6.12%)
          |                     |
    90.8%   3.06%               |
   correct  wrong               |
      ↓       ↓                 ↓
   EXACT    WRONG          50/50 values
   value    value         (positions known)

[~93.9% DETERMINISTIC]      [6% PROBABILISTIC]

Simplified Attack Model:
- Eve obeys the laws of quantum physics
- Classical auth for classic channel
- No channel noise between Eve & Targets
- Alice & Bob accept 6% <= QBER <= 11%
- No decoy states, no weaker or stronger 
than amplitude 1 coherent states, and no 
sidechannel dependency
- 4-PSK QKD Prepare & Measure BB84

Alex Radocea

BB84 QKD Through Eve’s Eyes, Intercepting Light with Coherent Quadrature MeasurementsCryptography

x: @defendtheworld 
https://infosec.exchange/@alexrad SAA-TIP 0.0.718

https://infosec.exchange/@alexrad


The Demoscene is not dead. After many decades, it is 

richer and more diverse than ever. While some 

developers still create their works for retro platforms like 

Atari, Commodore 64, or Amiga, others utilize the latest 

and the most powerful modern PCs and GPUs, writing 

cutting-edge shaders. 

After a demoparty is over, the demos from the 

competition can be downloaded for free from pouët.net 

website [1]. Those not having an appropriate machine to 

run it can usually find a video recording on YouTube as 

well. 

Modern demos are made like games. They run a 

feature-rich rendering engine, displaying 3D models and 

textures, and playing music, all prepared by artists. 

Meanwhile, some developers still prefer “sizecoding” – 

making intros that need to be a single executable not 

larger than e.g. 64 KB, 4 KB, or even 256 B. It would be 

hard to fit any texture or sound sample in this size, so 

everything needs to be procedurally generated. 

Coding for small size 

Building an executable that fits into 4096 bytes and 

does something useful is not trivial. The intros are 

typically developed using C or C++ (sometimes even with 

parts of the code written in assembly) and special 

techniques to make them small. First of all, the code must 

be simple and minimal – no fancy templates, no dynamic 

memory allocation. Even the standard C and C++ library is 

not used. It typically just imports necessary system 

functions and initializes the graphics and sound API to 

proceed with displaying the media. 

Even with these tricks, the executable would still be 

too big, so 4K intros rely on a special linker, like Crinkler 

for 4K [2] and squishy for 64K [3] that apply additional 

optimization techniques and compresses the whole 

program, decompressing it on the fly during launching. 

This unusual structure of a 4K intro executable 

sometimes triggers false alarms in antivirus software, 

which detect the file as suspicious based on their 

heuristics. 

Graphics rendering 

Modern 4K intros targeted for Windows PC utilize 

graphics APIs like OpenGL or DirectX 11. While displaying 

3D triangle meshes is possible, the enormous 

computational power of modern GPUs lets them use just 

a minimal C++ framework and one fragment shader that 

simply calculates the color of every pixel in every frame. 

It can do a lot of computations inside, including ray 

marching techniques. 

Such effect can be prototyped on a web page 

ShaderToy [4] which offers an editor and preview of GLSL 

shaders online, without a need to write any line of C or 

C++ code. 

Before putting into the intro code, the shader itself 

also undergoes processing to take less space and 

compress better. There is a specialized tool for it: Shader 

Minifier [5]. 

These days, the winning strategy seems to be ray 

marching through shapes described using signed distance 

fields (SDF). This technique allows assembling and 

manipulating various shapes and even repeating them 

infinite number of times effectively for free (just use the 

right function, like mod). Inigo Quilez’s website [6] 

provides great articles explaining the basics of this 

technique. 

Some developers even go as far as memorizing a 

minimal ray marching template, so they can write a cool 

looking effect from scratch in 25 minutes without any 

external help like Google or ChatGPT. They do it as part of 

a live competition called “Shader Showdown”, like the 
one happening during Revision demoparty. It is worth 

watching such videos on YouTube – they may provide 

sport emotions better than watching a soccer match! 

 

 

Glowflight – a 4K intro by KK^Altair, Deadline 2024 

[1] https://www.pouet.net/ 

[2] https://github.com/runestubbe/Crinkler 

[3] https://logicoma.io/squishy/ 

[4] https://www.shadertoy.com/ 

[5] https://github.com/laurentlb/shader-minifier 

[6] https://iquilezles.org/ 

 

Modern 4K Intros on the Demoscene 

 

Adam Sawicki

Modern 4K Intros on the Demoscene Demoscene

Blog: https://asawicki.info
LinkedIn: https://www.linkedin.com/in/adamsawickiSAA-TIP 0.0.7 19

https://www.pouet.net/
https://github.com/runestubbe/Crinkler
https://logicoma.io/squishy/
https://www.shadertoy.com/
https://github.com/laurentlb/shader-minifier
https://iquilezles.org/
https://asawicki.info
https://www.linkedin.com/in/adamsawicki


https://www.zellic.io
https://pwndbg.re/
https://github.com/sponsors/pwndbg
https://pwndbg.re/
https://github.com/pwndbg/pwndb
https://discord.pwndbg.re/


V
a

s
y

l G
o

d
d

e
s

s
 o

f D
y

s
to

p
ia

A
rt

S
A

A
-A

LL 0
.0

.7
2

1



Re: Adding any external data
to any PDF

In the first issue of Paged Out! [1], back in August
2019, Ange Albertini showed two different ways of
embedding zip archives in pdf documents. One op-
tion is to simply add the zip archive in question as a
regular pdf attachment. The other – a method that,
to my knowledge, was first introduced by Julia Wolf
in the second issue of PoC||GTFO [2] – is to create a
polyglot file that is valid both when interpreted as pdf
and when interpreted as zip. According to Ange Alb-
ertini, these two ways of embedding zip archives in
pdf documents are mutually exclusive. The reason-
ing behind his argument is illustrated in Figure 1: The
zip directory specifies the absolute offset of every file
in the archive. If these offsets are adjusted to match
the offsets found in the polyglot file, detaching the zip
archive from the pdf would make this directory invalid
(and vice versa).
While this makes it a little harder to create a pdf/zip
polyglot where the embedded zip is also a valid pdf
attachment, it does by no means make it impossible.
All we need to do is to ensure that the relevant offsets
of the detached zip archive match those of the em-
bedded version. Luckily, there is a nice combination
of pdf and zlib semantics that allows us to achieve
just that. On the one hand, pdf objects can contain
streams of zlib-compressed data [3]. Streams of zlib-
compressed data, in turn, can contain blocks of un-
compressed data [4]. Instead of embedding the zip
as an uncompressed pdf object, as Ange Albertini
suggests, we can therefore also embed it as an un-
compressed block inside a zlib-compressed stream.
As illustrated in Figure 2, this uncompressed block
can be placed between two compressed blocks of
null characters to ensure that detaching the zip from
the pdf does not change its offsets.
There is only one remaining limitation to creating
pdf/zip polyglots in this way: Since the length of
uncompressed blocks in zlib-compressed streams
is expressed as a 16-bit unsigned integer, the ap-
proach described above only works for zip archives
of up to 65535 bytes in size. In order to embed lar-
ger zips, one would need to split them across mul-
tiple uncompressed blocks, each of which has an-
other five-byte header. Those headers would need
to be carefully interleaved with the zip’s contents in
order to not break the zip semantics of the polyglot
file. Furthermore, those block headers are removed
when the pdf attachment is detached, so one would
need to introduce yet another block of compressed
null characters to keep the offsets of the detached
version in sync with those of the polyglot. While it
does seem possible that one could surpass even this
limitation, doing so will for now be left as an exercise
to the reader.

%PDF-1.5
%?????????
30 0 obj
...

PK...

...zip DIR…

...
117298
%%EOF

PK...

...zip DIR…

Figure 1: Detaching the zip from the pdf/zip polyglot
invalidates the offsets stored in the zip directory.

%PDF-1.5
%?????????
30 0 obj
...

^@^@... PK...

...zip DIR… ^@…

...
117298
%%EOF

^@^@^@^@^@^@^@^@^@^@^@
^@^@^@^@...

...^@^@ PK...

...zip DIR… ^@^@
^@^@^@^@...

...^@^@^@^@^@^@^@

Figure 2: Padding the zip with inflatable bags of null
characters solves the issue illustrated in Figure 1 by
ensuring that the detached zip has the same offsets
as the polyglot.

Code
Unfortunately, the code I wrote to implement the idea
outlined above is slightly longer than what can reas-
onably be presented in a single-page article. Espe-
cially if one wants to include some kind of docu-
mentation. Readers interested in seeing a proof of
concept implementation are therefore referred to an
accompanying blog post [5] where they can find all
the low-level details I have skipped over in this art-
icle.

References
[1] https://pagedout.institute/download/PagedOut_0
01_beta1.pdf#page=16
[2] https://www.alchemistowl.org/pocorgtfo/pocorgt
fo01.pdf#page=11
[3] https://opensource.adobe.com/dc-acrobat-sdk-d
ocs/pdfstandards/pdfreference1.5_v6.pdf#G8.163
9121
[4] https://www.rfc-editor.org/rfc/pdfrfc/rfc1951.txt.p
df#page=11
[5] https://tilde.club/~seifferth/blog/pdf-zip-poc/

Frank Seifferth

Re: Adding any external data to any PDFFile Formats

frankseifferth@posteo.net
CC BY-SA 4.022

https://pagedout.institute/download/PagedOut_001_beta1.pdf#page=16
https://pagedout.institute/download/PagedOut_001_beta1.pdf#page=16
https://www.alchemistowl.org/pocorgtfo/pocorgtfo01.pdf#page=11
https://www.alchemistowl.org/pocorgtfo/pocorgtfo01.pdf#page=11
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.5_v6.pdf#G8.1639121
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.5_v6.pdf#G8.1639121
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.5_v6.pdf#G8.1639121
https://www.rfc-editor.org/rfc/pdfrfc/rfc1951.txt.pdf#page=11
https://www.rfc-editor.org/rfc/pdfrfc/rfc1951.txt.pdf#page=11
https://tilde.club/~seifferth/blog/pdf-zip-poc/


 
An Over-engineered 

Solution to the Problem 
of Labeling my 3D 
Printing Filament 

  

@InsiderPhD – Katie Paxton-Fear 
 
  

I recently bought a 3D printer, and once I was done 
printing random stuff from Makerworld and 
Printables, and the project I actually bought the 
printer to make, I had acquired quite the collection 
of filaments in airtight boxes. 
 

 
  
  

But which filament is which? Well I could just attach 
hand written labels, or I could overengineer a 
solution: Host a Spoolman server locally on my 
home network (to track stock), automatically 
updated via Bambu Lab’s AMS (to track how much 
is remaining in each roll), RFID tags on each 
filament (to connect the physical roll to the 
Spoolman ID), easy to swap EInk price-tag labels 
(to avoid powering each screen) attached via clips 
to the outside of each box (to ensure modularity), 
and finally all programmed via an ESP32 with a 
magnetic connector using the Spoolman API (to 
change the labels and keep track of usage). 

   

Problem A: CAD 
 

 
 

The first hurdle for this project was learning how to 
CAD, and accepting that there would be a lot of 
waste as I did so. You can find the final models on 
Makerworld @insiderphd. To design and scale the 
enclosures, I used this method, which worked well 
for a noob: 
  

1.     Set up your phone so it is directly above 
the object you want to model around, we 
will take a photo 

2.     Add a known length to your photo 
3.     For curves and fluted objects, you can use 

a contour gauge on the object and use that 
4.     Load it into your CAD, scaling the photo to 

the ruler 
5.     You can then model around the object  

6.     What I wouldn’t recommend doing is 
checking whether the manufacturer gave 
you a CAD model of their part. Then you 
lose the joy of learning  

  

Problem B: Electronics 
  

  

 

 

The electronic components were fairly simple: A 
basic RFID reader (RC522) was switched out for a 
PN532, because the library actually worked, and an 
ESP32-WROOM C6 was switched out for a 
ESP32-S3-WROOM after the magic smoke got out, 
some cheap RFID coin stickers and a basic 
touchscreen completed the build. 
  

Originally, the intention was to expose the headers 
directly but for many reasons this didn’t quite work 
out. After some googling, I found out that magnetic 
connectors exist and eventually found an 8-pin 
version that fit my requirements. I soldered this 
onto every screen. Only to find out the pitch of the 
pins was not standard. By using a protoboard, 
solderable breadboard, PCB Prototyping Board (I 
couldn’t stretch the solder over the holes), the pitch 
was close enough that it fit. I did melt the plastic 
parts of the magnetic connectors on every screen. 

  
  

Problem C: Software 
 

 
 

The software was written in Arduino’s IDE with the 
help of AI (Gemini). I broke down each feature into 
a sprint, and made one change at a time, even 
when the AI would make multiple changes. While I 
did need to do some manual debugging and fixes 
this was very successful. The full code is on GitHub 
https://gist.github.com/InsiderPhD/7ee1b9af25f642
013b135f43f7a5f84b. 
  

The result 
A video tells a thousand words, so here is a full 
demonstration of the process from scanning a NFC 
tag through viewing the inventory and making a 
label: https://youtube.com/shorts/KIgaZb_IjHU 
  
Want to build it? Here’s the full BOM: 
https://gist.github.com/InsiderPhD/ea20a949783cd
702ab9d56e2ab674327 

Katie Paxton-Fear / insiderPhD

An Over-engineered Solution to the Problem of Labeling my 3D Printing Filament Hardware

Twitter: https://x.com/insiderphd
YouTube: https://youtube.com/@InsiderPhD
Bluesky: https://bsky.app/profile/insider.phd

LinkedIn: https://www.linkedin.com/in/katiepf
SAA-TIP 0.0.7 23

https://gist.github.com/InsiderPhD/7ee1b9af25f642013b135f43f7a5f84b
https://gist.github.com/InsiderPhD/7ee1b9af25f642013b135f43f7a5f84b
https://youtube.com/shorts/KIgaZb_IjHU
https://gist.github.com/InsiderPhD/ea20a949783cd702ab9d56e2ab674327
https://gist.github.com/InsiderPhD/ea20a949783cd702ab9d56e2ab674327
https://x.com/insiderphd
https://youtube.com/@InsiderPhD
https://bsky.app/profile/insider.phd
https://www.linkedin.com/in/katiepf


Fully Generic HSMs

General purpose computers are a bloated mess with
abysmal security. Protecting your most sensitive secrets
(love letters, war crimes, crypto ponzi wallets. . . ), typically
requires a Hardware Security Module (HSM): a small com-
puter specialised in cryptographic services, that holds keys
only it knows, and never leaks them even when misused.

Problem is, HSMs are basically hard coded 1. They only
run a very specific set of programs or hardware routines,
all manufacturer implemented. If it doesn’t do what you
need, tough luck.

The obvious (and wrong) solution is to implement ev-
erything everyone might want. This is how we got TPM
2.0: hundreds of pages of high level specs, a client software
stack that comprises 1200 public functions implemented in
80K lines of code. . .

That’s no good. HSMs are computers, they can run any
program. What we want is user defined programs. It’s
the only way to address all use cases and keep the specs
simple enough for us puny humans. But then we run into
a contradiction:

• The HSM must run arbitrary user code.
• User code needs access to the HSM’s secret. . .
• . . . without being able to leak it.

Microsoft Research finds the key

HSMs have an update problem. If a buggy firmware leaks
the device secret it’s not enough to update it, we need to
reset the secret as well. Alas, that secret is often etched in a
fuse bank, which tend to be tiny, expensive, and impossible
to reset. In that case they’re in for an expensive recall.

Their solution was the DICE measured boot. Here the
main firmware doesn’t have access to the device secret.
Instead it reads a derived secret, that’s more or less a hash
2 of the device secret and the firmware code. Here are the
main components:

• A bootloader.
• A key derivation function (KDF).
• A Unique Device Secret (UDS).
• A Compound Device Identity (CDI).
• A latch that blocks access to the UDS.
• The actual firmware.

The boot sequence works as follows:

1. Bootloader computes CDI = KDF(UDS, firmware)

2. Bootloader sets the latch. UDS is gone until reboot.
3. Bootloader launches the actual firmware.
4. Firmware does the actual work, using the CDI.

1Updates are possible, but they’re manufacturer controlled.
2The Crypto Vigilantes Association insists that Ackchyually, a

hash is not quite what you want, you should be scared of length

extension attacks, and why are you listening to a rando with no PhD?

Now only the bootloader can leak the UDS. And since its
only job is to load the firmware and hash it, it can be made
extremely simple, as well as bug free. If the firmware leaks
the CDI, we can fix and update it, which automatically
gives the HSM a new, uncompromised CDI. No more fuse
bank problem, no more recall, let’s make more money.

Tillitis gives power to the user

By adding the one one missing ingredient to user defined
programs: Download the main program at each startup.

This approach has two advantages over the One Manu-
facturer Firmware to Rule them All: first, we can handle
everything for real: just write the appropriate firmware. We
can always preserve the old firmware to keep our old keys
with our old use cases. Second, we can have smaller (and
therefore simpler and more secure) firmware dedicated for
each use case.

Not all rainbows and unicorns

Now that users write their own programs, the interface
shifts from high-level protocols to a low-level CPU instruc-
tions. Complexity is bounded, but not that low. A simple
ISA like RISC-V helps, but we still have three problems:

• Software is harder to secure than hardware. Easy up-
dates made us complacent, and some proofs of cor-
rectness are fundamentally harder. In hardware, if you
don’t want data from A to B you just cut the wires.
In software, you need formal verification down to the
compiler.

The ISA can help though: CHERIoT 3 for instance
helps enforce some guarantees, such as memory safety
at the hardware level, even if you use C.

• Current compilers have become kinda hopeless at con-
stant time code, now inserting branches where the
source code had none, exposing you to timing attacks.

If the stakes are high enough to require an HSM, they
are likely high enough to require explicit compiler sup-
port for constant time code. Or manual assembly.

• The performance gap between hardware and software
is huge. The control flow of cryptographic code is
stupidly easy to predict (a consequence of being con-
stant time), which allows custom hardware to bypass
many checks and parallelise like crazy. This often gives
you an order of magnitude improvement in speed or
energy consumption.

The only way to close this gap is adding hardware
support for the most popular primitives. Which is al-
ready done to some extent, but we can’t do that for
all primitives.

We can however find a middle ground, and support
the most common operations. Rotations, SIMD and
carry-less multiplication in particular come to mind.

3https://cheriot.org/

Loup Vaillant

Fully Generic Hardware Security ModuleHardware

https://loup-vaillant.fr
CC BY-SA 4.024

https://loup-vaillant.fr


FAQ: 
Q: One or more monitors down in the chain turns on and off for a few seconds. What's up with that? 
A: It's almost always a DP cable quality issue somewhere in the chain. In MST more data goes through the cables, so 
even if a cable works well with just one display, it might not be good enough to handle multiple streams. I would 
recommend using 4K/8K certified cables for 1080p daisy-chain, but then again you might need to try a few brands 
before you find something that works well. 
Q: If my monitor has a USB hub as well, can it switch mouse/keyboard same as a KVM? 
A: Maybe. There are monitors that indeed allow that (have two "in" USBs), but you need to specifically look for a model 
that does it. Personally I use a radio/BT mouse/keyboard that allow to be connected/paired with 2-3 computers and 
have a button to switch between them. 
Q: Will this work over USB-C? 
A: Yes if your computer can output DisplayPort protocol over USB-C connector, which is very likely for modern laptops. 
If you have a couple of USB-C ports, only 1 or 2 specific ones might have the required USB-C Alt DP mode though (i.e., 
try different ports). DP↔USB-C converters or cables will work. 
Q: Will this work over HDMI↔DP converter? 
A: No. HDMI doesn't support magic stuff like MST at all. You might get away with the last monitor in the chain being 
connected via an HDMI↔DP converter but I haven't tested this. 
Q: Any other known issues? 
A: AMD drivers on Linux sometimes don't recognize a monitor chain after switching away and back to the given 
computer (i.e., monitor placement/wallpapers/etc. are reset). There are workarounds like a script which resets the 
settings based on each monitors' serial number though. Also, I've heard some MacBooks don't support MST. 

DisplayPort has a relatively unknown feature called "MST" or "Multi-Stream Transport". It allows video 
stream multiplexing over a single DisplayPort (or USB-C) cable. In practical terms, this means you can 
connect several (it depends, but 2 to 6 in general) external monitors to a Laptop or a PC using just one 
monitor-computer cable. I've been using this feature with success for over a decade now, so I decided to 
write something about it — more to spread the knowledge of its existence than anything else, as it's a 
pretty simple thing at the end of the day. 
There are basically two ways to use MST: using a DisplayPort Hub or by daisy chaining monitors. I 
recommend the latter, as it doesn't require any extra hardware — thus less cables (but it does in fact 
require better cables). 
As for MST daisy chaining, you basically need monitors that support it — and not all of them do. A good 
initial telltale is the existence of more than 1 DP-compatible connector (this can be a mix of DPs, 
mini-DPs, and USB-C), but you have to check in the monitor's manual for MST (yes, RTFM rule applies). 
Personally I have been using Dell's U-series (UltraSharp) monitors for this, as they have solid MST 
support (no, Dell is not paying me for an endorsement; yes, they should). There are two very minor 
catches: 

1. You actually need to pay attention which DP port is an "in" port and which one is an "out" port. I 
might or might not have spent an embarrassing amount of time before I noticed the tiny 
markings next to the connectors. 

2. Kinda obvious, but you have to enable MST in the monitor's settings (i.e., OSD / On-Screen 
Display). 

Note: Last monitor in the chain does not have to support MST. 
If you are using two computers and switch monitors between them (or would like to do that), get a 
monitor that has two "in" DP/Type-C ports and that can switch all monitors after it in the chain between 
inputs with just few clicks in the OSD. 
 

DP DP 
DP 

DP 

Gynvael Coldwind

Multiple displays with just a single DisplayPort/USB-C cable Hardware

https://hexarcana.ch/
https://gynvael.coldwind.pl/SAA-ALL 0.0.7 25

https://hexarcana.ch/
https://gynvael.coldwind.pl/


 

Shenanigans Ensue 
 

BGGP5 (https://binary.golf/5/) competition was 

to create the smallest code to download and 

display a text file from the BGGP website. 

 

Other people used scripts or Linux or Windows 

executables or such things. 

 

I did it using 16-bit DOS... text. 

Not code, text.  Executable ASCII. 

 

XN4T4MP354Q0D+kP5X2P6CF0T4uOM/063349+76391
N7M0MMJ4/65L8L1762+3M7378LM92060+36394M6+0
N053L4J63690151013/461N73M1+J04N2M86614L86
0907/+/8M4J3000T3PMtEq3EM0hjgYsALA9STH/8q6
J+ruVAYxPBB4GHwe4AEvNIc0gGS9jY3VybCAtTCBia
W5hcnkuZ29sZi81LzUNAAB6AQAAAAIAAAACAAB=! 

 

Those 249 bytes of base64 goodness, and one 

trailing character as sentinel, are the entire 

decoder and its payload.  This is what the 

decoder looks like when disassembled as 

executable code: 

 

bits 16 
      pop  ax           ;AX=0 
      dec  si           ;SI=00ffh 
      xor  al, 'T'      ;AX=0054h 
      xor  al, 'M'      ;AX=0019h 
      ;what a shame we lost the 'MZ' 
      push ax           ;$FFFE=0019h 
      xor  si, [di]     ;SI=00e6h 
      xor  al, 'Q'      ;AL=48h 
      ;this is why we need the Pentium 
      ;CPU, because we are modifying 
      ;within the prefetch queue range 
      xor  [si+2bh], al ;'X' -> 10h 
      ;self-modified, dx=[bx+si+35h]*10h 
_loop imul dx, [bx+si+35h], 'X' 
      ;dl=([bx+si+35h]*10h)^[bx+si+36h] 
      xor  dl, [bx+si+36h] 
      inc  bx           ;move to next pair 
      inc  si           ;move to next pair 
      ;'O' -> 0f2h, done decoding? 
      xor  [si+34h], dl 
      ;self-modified 
      ;encoded 0f2h, jne _loop 
      db   75h, 'O', 'M' 

 

Then our 4-and-4 encoded base64 decoder 

follows, adjusted for the new starting address: 

 

      ;lea di, [si+34h] 
      db   '/', '0', '6', '3', '3', '4' 
      ;lea si, [di+3ah] 
      db   '9', '+', '7', '6', '3', '9' 

b64_outer 
      ;push 4 
      db   '1', 'N', '7', 'M' 
      ;lodsd 
      db   '0', 'M', 'M', 'J' 
      ;pop cx 
      db   '4', '/' 
b64_inner 
      ;rol eax, 8 
      db   '6','5','L','8','L','1','7','6' 
      ;cmp al, '0' 
      db   '2', '+', '3', 'M' 
      ;jnb b64_testupr 
      db   '7', '3', '7', '8' 
      ;shr al, 2 
      db   'L', 'M', '9', '2', '0', '6' 
      ;because '+' and '/' differ 
      ;by only 1 bit 
      ;concatenate numbers and '+' and '/' 
      ;add al, '0' 
      db   '0', '+', '3', '6' 
b64_testupr 
      ;cmp al, 'A' 
      db   '3', '9', '4', 'M' 
      ;jnb b64_testlwr 
      db   '6', '+', '0', 'N' 
      ;add al, ('z' + 1) - '0' 
      db   '0', '5', '3', 'L' 
      ;concatenate lowercase and numbers 
b64_testlwr 
      ;cmp al, 'a' 
      db   '4', 'J', '6', '3' 
      ;jb b64_store 
      db   '6', '9', '0', '1' 
      ;sub al, 'a' - ('Z' + 1) 
      db   '5', '1', '0', '1' 
      ;concatenate uppercase and lowercase 
b64_store 
      ;sub al, 'A' 
      db   '3', '/', '4', '6' 
      ;shrd ebx, eax, 6 
      db   '1', 'N', '7', '3', 'M' 
      db   '1', '+', 'J', '0', '4' 
      ;loop b64_inner 
      db   'N', '2', 'M', '8' 
      ;bswap ebx 
      db   '6', '6', '1', '4', 'L', '8' 
      ;xchg ebx, eax 
      db   '6', '0', '9', '0' 
      ;stosd 
      db   '7', '/', '+', '/' 
      ;cmp byte [si], '+' 
      db   '8', 'M', '4', 'J', '3', '0' 
      ;'0' 
      db   '0', '0' 
      ;[dec di] 
      db   "T3PM" 
      ;[jnb b64_outer] 
      ;the dec and branch are 
      ;base64-encoded to reduce size 
      ;followed by the 
      ;base64-encoded payload 

 

The payload was the least interesting part.  It just 

ran "curl -L" which displayed the file. 

Peter Ferrie (qkumba)

Shenanigans EnsueHardware

site: https://pferrie.epizy.com
SAA-TIP 0.0.726

https://binary.golf/5/
https://pferrie.epizy.com


https://phrack.org/
https://phrack.org/
https://phrack.org/
https://phrack.org/


WcenterMouse: my journey in mouse movements in Wayland

In the previous issue of PagedOut (#6), I introduced my old project, github.com/mte90/pydal, which 

involves USB foot switches that I have been using for the past seven years. However, since writing and 

publishing that article, I have transitioned from Xorg to Wayland (on Debian Sid), which is now the default 

in KDE. This switch highlighted a significant issue that I hadn't anticipated...

Looking for an alternative
Previously, I used xdotool to move the cursor between my screens using fixed coordinates that were 

centered on each monitor (which have different resolutions). 

Unfortunately, Wayland does not provide an API to move the cursor in an absolute manner. Instead, it 

only offers a relative cursor API (https://gitlab.freedesktop.org/wayland/wayland-protocols/-/tree/main/

unstable/relative-pointer). This API functions only within the monitor where the cursor is currently 

located. Using negative or excessively large values for the X/Y coordinates to move the cursor to other 

monitors does not work well, as there is no way to determine the current monitor or the actual position 

on it. Essentially, this approach fails in a multi-monitor setup.

After experimenting with other tools like ydotool and kdotool (among others I don't recall), I realized that I

couldn't replicate my user experience with Wayland and Pydal. I then attempted to develop a solution 

using the aforementioned API in C++, but this effort did not yield the desired results. The next logical step 

was to create a simpler version of github.com/ReimuNotMoe/ydotool, a well-known tool packaged for 

various distributions (though Debian uses a version that is over 4 years old).

ydotool employs a daemon running as root to create a UInput virtual mouse with the Linux kernel, 

thereby circumventing issues related to Wayland APIs. However, there are several reported issues with 

this tool, and its development has been stalled for over a year:

 https://github.com/ReimuNotMoe/ydotool/issues/250   

 https://github.com/ReimuNotMoe/ydotool/issues/273   

My solution
My approach was to develop a one-shot, lightweight tool that creates the virtual device when invoked and 

removes it afterward. This tool moves the cursor to the center of the specified monitor without relying on 

the issues of ydotool. With the assistance of ChatGPT, Co-Pilot, and my limited expertise in C++, I 

managed to achieve this.

The result is https://github.com/Mte90/wcentermouse/, which I now use in conjunction with Pydal. This 

tool consists of just 103 lines of C++ code, with hardcoded monitor resolutions and a single parameter to 

specify the monitor. The README includes a sudo configuration that allows my user to execute the tool 

automatically without being prompted for a password.

The only downside is a slight lag due to the creation of the virtual device, which means the cursor 

movement is not as instantaneous as before. However, this trade-off is acceptable given the functionality 

it provides.

Next steps?
Some ideas to improve this tool:

 Add config files for the screen resolutions

 Implement this feature natively on KDE? I opened a discussion about it 

https://discuss.kde.org/t/move-mouse-to-screen/28971 

 Maybe Wayaland implements an API for this? Anyway this shows how very long the way is to 

getting a display server that have a feature parity with Xorg

Daniele "Mte90" Scasciafratte

WcenterMouse: my journey in mouse movements in WaylandHardware

Blog: https://daniele.tech/
X/Twitter: https://twitter.com/Mte90Net/
Mastodon: https://mastodon.uno/@mte90 Public Domain28

https://discuss.kde.org/t/move-mouse-to-screen/28971
https://github.com/Mte90/wcentermouse/
https://github.com/ReimuNotMoe/ydotool/issues/273
https://github.com/ReimuNotMoe/ydotool/issues/250
https://github.com/mte90/pydal
https://daniele.tech/
https://twitter.com/Mte90Net/
https://mastodon.uno/@mte90
https://github.com/Mte90/wcentermouse/,


A Pixel Parable                         olano.dev/blog/a-pixel-parable

His bodily reaction to screen time is somehow connected with 

sleep deprivation. At first, pulling 6 or 8 straight hours in front 

of the computer seemed to burn him out, but after 10 or 12 he 

doesn’t really notice anymore, he just keeps going until he passes 

out on the keyboard.

They warned him there was going to be crunch time when 

they  got  closer  to  the  release  date.  “Here’s  the  thing  about 

deadlines,” David said: “everybody knows we won’t make the 

first one or two, and that’s fine. Nobody really cares. As long as 

they look out to the hallway and see some glow coming out of 

the offices, they’ll leave us alone.”

Mark defaults to a belligerent attitude towards authority so he 

is,  in  principle,  against  overtime,  deadlines,  and  any  other 

corporate demand. But he doesn’t really mind the effort. Never 

once did he lose sight of the fact that he’s paid handsomely to 

make pretty pictures. He may be no artist, but he wasn’t at any 

of his previous jobs, either. And he didn’t get to eat gourmet 

meals, play catch on the field, or hang around geek Disneyland. 

Everyone at the office is used to working late, anyway. They just 

need to pause the afternoon recreations until the game ships.

During those crunch days, he gets into the habit of taking 

breaks without leaving the computer. Instead of taking a walk, 

or a nap, or grabbing his sketchbook, he just keeps drawing on 

DPaint. He saves the picture he’s working on, saves again with a 

different name, clicks the CLR button, then saves again. And 

then he’s not at work anymore. He doodles absently. Or he loads 

one of his own pictures. Anything to distract him from those flat 

and blocky Zak backgrounds he’s been staring at all day.

They  told  him  that  dithering  is  forbidden,  so  he’s  been 

abusing it on his personal projects. It’s a form of stress relief. 

What’s a good excuse to put as much dithering as possible on a 

single picture? What type of image calls for spreading as many 

colors as one can possibly squeeze out of the EGA palette? He 

remembers  a  sunset  he  saw  once  at  the  Ranch,  a  rainbow-

colored sky that seemed to spill onto the hills. Then he thinks of 

how bright  the  moon and the  stars  looked that  time at  the 

Observatory. The Wheatfield with Crows and The Starry Night 

come next to mind, with all the punch Van Gogh managed to 

pack  in  those  rough,  almost  childlike  brushstrokes  of  a  few 

strange colors.

With all that in the shaker, he places a line for the horizon. 

Then he stacks layers of receding hills. He switches to the spare 

page and cobbles together a couple of brushes to plant the hills 

full of oak trees. He adds a rising moon and starts on a twilight 

sky. He has to figure out how the light should project on every 

fragment on the screen. In his old Zak background, the idea of

 Mars forced the reds on him: he was pulled into fire, sulfur, and 

rust. Here, the theme is day and night, and all forms of light: no 

pair of colors can fall out of place in this scene. He places broad 

patches and fringes of color, then smears and smudges to tear 

them apart, as if burning scraps of paper with a lighter. Wherever 

he finds a stretch of same-colored pixels, he stops to think how to 

break it.  He wants this  to be the least-compressible  image in 

computing history.

He works on this twilight scene for minutes at a time, for days 

in a row. And when Zak is finally done and he enters that weird 

purgatory in between projects, he turns it into his full-time job to 

make this picture as good as he can. And he makes it good. And 

he makes it art. He subverts the materials, just like he used to do 

with his pencils. It’s hard to tell these are just 16 colors, the same 

old 16 colors.

Now that he leaped over its limitations, he’s annoyed to see 

that a computer can produce art after all, that he can make the 

computer produce art, and, yet, he is not allowed to use it, he’s 

supposed to just shelve it.

The day after he’s finished, before lunch, he puts the picture 

up as his screensaver, in silent protest. A protest against no one in 

particular. No one on his team, anyway. He’s protesting Turing 

and Von Neumann, and George Lucas, and Ronald Reagan, for 

making it so damn hard to put art in a video game—to make art 

for a living.

When he gets back from lunch, Ron and David are having a 

heated discussion in front of his desk. Why exactly is it that dither 

can’t compress? Is there  really nothing they can do about it? 

Wouldn’t this be worth the extra disk space? This is LucasFilms 

material, they can’t afford not to use it in their games!

A week later, David tells Mark that it turns out that dithering is 

very hard but not impossible to compress. And that Ron is already 

working on their SCUMM engine to support it. This is now his 

puzzle  to solve.  Mark will  get  to  use  dithering on their  next 

project.  In  fact,  until  further  notice,  Mark’s  dithered 

backgrounds are the official house style. His stock just went up.

Images: Maniac Mansion (1988), Loom (1990) © Lucasfilm Games

Facundo Olano

A Pixel Parable History

olano.dev/blog/a-pixel-parable/
facundo.olano@gmail.comSAA-ALL 0.0.7 29

https://olano.dev/blog/a-pixel-parable


Lé
a P

in
to

G
re

e
n

 M
o

o
n

 (Jap
an

 M
e

m
o

rie
s)

A
rth

ttp
s://w

w
w

.in
stag

ram
.co

m
/_le

a.p
in

to
_/

S
A

A
-A

LL 0
.0

.7
3

0

https://www.instagram.com/_lea.pinto_/


IRC-wars like it's 1999
It's the '90. There's no Discord/Slack. There's their predecessor — IRC (Internet Relay 
Chat). And while it's clear who owns a given IRC server (whoever can SSHTelnet into 
the *nix server running the IRC daemon), there is no concept of a "user account", 
"nickname/username ownership", or "channel ownership". Whoever sets a given 
nickname first owns the nickname until they disconnect (or get disconnected). Whoever 
joins an empty channel first gets the op (@) — channel operator status. Whoever has 
the @op rules the channel — kick, ban, granting @op to others, changing channel 
settings — quite a lot of power. Most users were there just to chat and make friends, but 
channel owners — the defenders — had to work hard to keep control of "their" channels. 
And the attackers — ever trying to seize control of a channel — had quite a lot of tricks 
up their sleeves. These were the times of IRC wars. The times of channel "takeovers". 
The times when IRC network splits were both a danger and an opportunity. And we're 
here — looking at it from a safe distance of 30-odd years — to enjoy the show.

@defender-bot-1
@defender-bot-2
@defender-bot-3
@ThomasTheOp
@OwnerJane
QuietReader
HappyChatter
BusyTyper
NotAttackerRly

Server A: #chat

Image 1. A small 
channel's userlist.

Defender's setup.  Channel "owners" (whoever held power) usually kept 1–10 bots online (see Image 1). 
These ensured anyone on the bot's "op list" regained @op on rejoin, while also offering various utilities 
and fun features. There was a bit more to it, but we'll get back to this later.

Attacker's Tactic 1: "Please give me @op!"  [CLASSIFICATION: semi-technical]
Phase 1 . Social engineering: an attacker would attempt to trick one of channel operators into granting 
them an @op (it was anything from harmless lines like "I'm new to IRC and never had an @op" to 
impersonating a currently-offline person ← harder than it sounds because IRC exposed IP/rev-DNS).
Phase 2 . On success, the attacker would mass-op their own bots (which joined either all at once in 
that moment or previously over the span of several hours/days to avoid notice), starting the battle for 
control over the channel. Both sides would deop/kick/ban while unbanning and re-oping their own bots.
Result . Well-prepared attackers usually won — more bots, lean/faster implementations (single-purpose, 
optimized C, protocol tricks) and lower ping to the IRC server usually gave them the edge.

Attacker's Tactic 2: (D)DoS everyone [CLASSIFICATION: semi-technical]
Phase 1 . IRC exposed user IPs, so attackers could force-disconnect users via exploits (e.g., Ping of 
Death — see Wikipedia) or sheer bandwidth.
Phase 2 . With everyone on the channel "disconnected", attackers briefly left and rejoined. Per early 
IRC rules: the first to join an empty channel gets the @op.
Result . Varied — defenders had access to pretty powerful servers/networks too.

Attacker's Tactic 3: A split and an empty fragment [CLASSIFICATION: technical]
Background . IRC networks were trees of servers relaying messages. If a link between nodes dropped, 
the net fragmented in a "split". From the perspective of users in one fragment, the users connected to 
servers in the other fragment vanished (mass quit), only to return once the split ended (mass join).
Phase 1 . Attackers checked which servers channel inhabitants were on. If no one occupied an edge 
server, they waited for a proper split (or DDoSed the right link to force a proper split).
Phase 2 . During the split, attackers' bots joined the empty channel in the split-off fragment, gained 
@op, and set defenses (banlists). When the net rejoined, lists merged and fighting began.
Result . Defenders usually lost — attackers would bring more bots and could pre-set bans. The only 
counter was prevention — keeping defending bots spread across all servers in the network.

Attacker's Tactic 4. A split and nickname collisions [CLASSIFICATION: technical]
Background . In a split it was possible for two different users in different fragments to use the same 
nickname. Once a split ended, this "nickname collision" would be discovered and both users would be 
disconnected from the network. Whoever reconnected first would get the nickname for the time being.
Phase 1 . Attackers waited for a split and mirrored the channel's nicklist on other fragments.
Phase 2 . Once split ended, nick collisions were discovered by the IRC network and everyone on the 
channel was force-disconnected. Attackers quickly joined the now-empty channel and got @op.
Result . Success depended on channel size and natural joins/nickname changes. Defenders could counter 
by rotating bot nicknames to frustrate the attack.

Summary. Most of these exploits were eventually patched. Some IRC networks quickly introduced 
nickname and channel ownership, while other focused on making takeovers harder (e.g., granting 
nickname on collision to whoever occupied it longer or limiting nick changes during splits). Either way, 
IRC — and the hard-earned lessons from running its servers and channels — paved the way for modern 
chat platforms, including the "ownership" concept which we now take for granted.

IRC Server A
IRC Server C

IRC Server D
IRC Server FIRC Server B

IRC Server E
Image 2. An example IRC 
network. Users are connected 
to different servers, but can 
still chat with each other. 
Until a split that is.

Gynvael Coldwind

IRC-wars like it's 1999 History

https://hexarcana.ch/
https://gynvael.coldwind.pl/SAA-ALL 0.0.7 31

https://en.wikipedia.org/wiki/Ping_of_death
https://hexarcana.ch/
https://gynvael.coldwind.pl/


Look ma, no file_server!
Recently, I was in need of an IP address API à la ipify. There are a lot of public ones out there, but I figured I could just as easily
write one myself. After some research, I found that I merely had to add the following three lines to the configuration of my web
server, Caddy, and I was good to go:

localhost {
  respond {client_ip}
}

curl https://localhost/

::1

Nowadays, I often find myself drawn towards simplicity, both in and outside of the realm of computing. I try to reduce the
number of node_modules in my projects as much as possible; instead of looking at a Grafana dashboard, I SSH into my server
and run top; for scripting, I use Bash instead of another language if at all possible. That kind of thing. Needless to say, I was
delighted by how easy this API was to set up.

Soon enough, I started to wonder: What other simple, yet useful services could I host just from Caddy’s configuration file,
without depending on other files or software?

Let’s start with something extremely minimal. Most operating systems in use today detect a working internet connection by
connecting to a “connectivity test” or “captive portal check” server, which always responds with an HTTP 204 status code and
no body. If the OS gets the response code, it knows it’s online, otherwise there’s some kind of problem.

Knowing this, we can easily roll our own:

localhost {
  respond 204
}

curl -i https://localhost/

HTTP/1.1 204 No Content

Another trick I came across recently¹ is setting up a proxy server for pixiv images. In order to, I assume, prevent hotlinking,
these require a correlating pixiv referrer, or else you will get a 403 error instead. But we can just let Caddy do the work for us:

localhost {
  reverse_proxy i.pximg.net {
    header_up Host "i.pximg.net"
    header_up Referer "https://www.pixiv.net/"
  }
}

curl -i https://localhost/.../123456789_p0.png

HTTP/1.1 200 OK
Content-Length: 109537
Content-Type: image/png

Finally, a static site would usually be served via the file_server directive², but there’s nothing stopping us from directly putting
everything into the configuration instead:

localhost {
  handle / {
    header Content-Type "text/html"
    respond "<link rel='stylesheet' href='style.css'><script src='script.js'></script><p>Hello!</p>"
  }
  handle /style.css {
    header Content-Type "text/css"
    respond ".example { color: red; }"
  }
  handle /script.js {
    header Content-Type "text/javascript"
    respond "window.onload = () => document.querySelector('p').classList.add('example');"
  }
}

Though, whether that’s actually a good idea… well, I’ll let you be the judge.

¹https://pixivfe-docs.pages.dev/hosting/image-proxy-server/
²https://caddyserver.com/docs/caddyfile/directives/file_server

Sunny

Look ma, no file_server!Networks

https://sny.sh/
SAA-TIP 0.0.732

https://pixivfe-docs.pages.dev/hosting/image-proxy-server/
https://caddyserver.com/docs/caddyfile/directives/file_server
https://sny.sh/
https://www.pixiv.net/


validated for: win11 24H2, win10 22H2, WS2022; server silo containers are not in scope 

Wouldn't it be a little eerie if unprivileged code could inject arbitrary data into high integrity processes? May be also into 
protected processes, oskernel, and VTL1 trustlets? Why, yes, it would be terrific. Terrifying, even. So let’s see how it can be done! 

Globally shared 
KUSER_SHARED_DATA structure, aka kuser, is a well-known item, present since the early versions of Windows NT (even 
though its layout has changed considerably throughout Windows history). It is very special in two regards: 
o Physical page with structure instance is shared between OS kernel and all processes (except the Minimal processes). 
o Virtual address of the page is fixed: 0x7FFE0000 for usermode, 0xFFFFF78000000000 for kernelmode (both x64 and a64). 

Since win11 23H2, the fixed VA in kernel is RO; nt!MmWriteableSharedUserData holds a randomized VA of the RW mapping. 

Common physical page, mapped at a known virtual address: any change to its data is instantly injected visible everywhere. 
Main purpose of such data sharing is to provide usermode code with quick access to volatile time data, such as SystemTime 
and TickCount. The 6 highly volatile fields in 3 cachelines update 64 to 4000 times/second! Such updates may seem irrational, 
as all time data could be derived on spot from the CPU’s TSC; but early archs/CPUs just didn’t have a reliable invariant TSC. 
All but a couple other fields are just easycut hacks (could be process init-time statics in ntdll behind APIs). Seeking a minute 
convenience, MS devs used to put absolutely ridiculous cheese in kuser, like function pointers and even executable code! 

Today it’s cleaned up a bit, and the page is not executable; only x32 (wow64) processes with DEP disabled can run code from it. 

User-adjustable 
There’s no mistake. Even though the usermode mapping at 0x7FFE0000 is read-only, unprivileged user can still put own data 
onto this page. There are some serious limitations of course, but a couple dwords can be set to about any values even from a 
rightless LPAC. And sometimes that’s all it takes to complete an exploit: a few good values at a known location. 

All items that are user-adjustable at runtime: ActiveConsoleId, AitSamplingValue, ComPlusPackage, ConsoleSessionForegroundProcessId, 
DbgConsoleBrokerEnabled, DbgErrorPortPresent, DismountCount, ImageFileExecutionOptions, InterruptTimeBias, KdDebuggerEnabled, 
LangGenerationCount, LastSystemRITEventTickCount, QpcBias, SystemTime, TelemetryCoverageRound, TimeZoneBias, 
TimeZoneBiasEffectiveStart, TimeZoneBiasEffectiveEnd, TimeZoneBiasStamp, TimeZoneId, UserModeGlobalLogger. 
That’s a lot of items: 42 pt wasted! But not many fields are actually good or at least semigood; many others either require 
special conditions/privileges, or are mostly gimmicky (like the single DbgErrorPortPresent bit, settable by crashing a process). 

InterruptTime Number of centums (100 ns units) since OS boot. Increments with tunable period [0.5 ms, 15.625 ms]; includes OS 
sleep time. To adjust: simply wait. OS increases the value; one day it’ll be close to your target. No privileges required. 
Lower dword wraps around in 7 minutes 9.5 seconds, but it takes 228.5 years for byte7 to change from 0 to 1. 

0x008 
offset 

8+4 
size 

SystemTime UTC time, as number of centums since 1601-01-01. Increments mostly together with InterruptTime. Adjustable via 
NtSetSystemTime() to any value from 0 to 2⁶¹+2³² (till 8907-12-05 18:49:10), but requires adminful SeSystemtime 
privilege. To refine increment period for both InterruptTime & SystemTime: NtSetTimerResolution(DesiredTime=1). 

0x014 8+4 

TimeZoneBias Number of centums to subtract from SystemTime to get local time. Adjustable in range ±2³¹ seconds (±68 years) with 
granularity of one minute. To adjust: NtSet(SystemTimeZoneInformation/SystemDynamicTimeZoneInformation). 
Requires SeTimeZone privilege; regular users do have it on client systems (but it’s still adminful on Windows Server). 

0x020 
 

8+4 
 

TimeZoneBiasStamp Sequence number/lock for timezone data. When value is odd, the set of timezone fields is being updated (that’s rare, 
may be once a day). Increment it by 2 via NtSetSystemTime(null, null). Can be done from LPAC, no privileges required. 
But such increment is very slow; may need 3 to 48 days to wraparound 32-bit value. Multithreading won’t really help. 

0x25C 4 

DismountCount Hacky volume dismount counter, for fast file handle validity checks. Use NtFsControlFile() or NtDeviceIoControlFile() 
to send FSCTL_DISMOUNT_VOLUME (0x090020) to ≈any file object to increment field by 1 or 2. No privileges required. 
Good fast “files” for LPAC are \Device\Afd\ and CONIN$. Dword wraparound with ≈optimal 4 threads: 4 to 8 minutes. 

0x2DC 4 

ConsoleSessionFo-

regroundProcessId 

PID of the process with window focus in the current physical console (RDP sessions ignored). Since both PIDs and TIDs 
are allocated from the same namespace, and allocation is somewhat predictable, one can just spawn some threads, 
then create a process with a window to set this to the desired value. PID values: 22 to 226, divisible by 4, not by 0x400. 0x338 4 

LangGenerationCount Sequence number of the nt!MUIRegistryInfo structure, which holds UI languages info. To increment it by one, invoke 
NtGetMUIRegistryInfo(Flags=8, null, null). Can be done from LPAC, no privileges required. Depending on the OS and 
CPU, it is best to use either 1 or 2 threads for increment, with dword wraparound reachable in 8 to 20 minutes. 

0x3A4 
offset 

4 
size 

VTL-1nfiltrated 
VTL1 – Virtual Trust Level 1 – is a hypervisor-isolated world, parallel to the regular OS (VTL0). VTL1 has its own oskernel – 
securekernel.exe, and can host Isolated User Mode trustlets, such as lsaiso.exe. Being memory-sequestered, VTL1 also 
maintains its own KUSER_SHARED_DATA! In VTL1 kernelmode, the skuser page is mapped once, at a randomized RW address. 
But trustlets still get an RO skuser mapping at the usual fixed address, 0x7FFE0000. 
The skuser page is not self-sufficient: at certain points sk!SkpSyncUserSharedData() has to be invoked to refresh some skuser 
fields from kuser. So to put own data into VTL1 trustlets, simply adjust the synchronizable kuser fields! However, each value in 
skuser gets updated only if it is smaller than its counterpart in kuser, and only the lower 8 bytes of 12-byte fields are modified. 
All synchronized fields: DismountCount, InterruptTime, InterruptTimeBias, SystemTime, TickCount, TimeZoneBias, TimeZoneBiasStamp. 

Revealed 
We’ve explored a few dynamic fields in kuser, showing how unprivileged user can control some of them. Such craft is valuable 
due to the looming SMAP support in ntoskrnl, and also for usermode attacks when all you can specify is just a 32-bit address. 
But kuser holds more delights, and we welcome the curious to explore the comprehensively documented structure on NtDoc. 

total fields:  82 (0xA80 bytes) unused: 21 (0x580) dynamic: 34 (0xD8) dynamic user-adjustable: 20 (≈ 0x60) 

Taylor Sessantini

Globally Shared: injecting your data everywhere at once OS Internals

twitter: @sixtyvividtails
https://ntdoc.m417z.com/kuser_shared_dataSAA-TIP 0.0.7 33

https://ntdoc.m417z.com/kuser_shared_data


M O D U L A R

W I F I  R O U T E R

S P R

S U P E R N E T W O R K S . O R G

+1000 Mbps WiFi 6 Security Forward Open Source

https://supernetworks.org


Today I want to discuss a little-known issue with
Postgres that deserves to be more widely known.¹

Let’s say you have an API that allows users to
search on a field stored in an integer column col.
The table is very big, so it has an index. What if
I told you it might be trivial to force a sequential
scan through implicit casting? Check out the fol-
lowing table:
Filter (WHERE) expression Safe? details
col=1 ✓ Index
col=1.0 x Seq scan
col='1.0' ✓ Error
col=4611686018427387904 (262) ✓ Index
col=9223372036854775808 (263) x Seq scan
col='9223372036854775808' ✓ Error
col=$1 / col=? / col=%s ? Depends

As you can see, even legitimate integer syntax
can trigger sequential scans! That’s because Post-
gres parses overlong integers as numeric. It can’t
use the index because the int column must be
cast before it can be compared to numeric.

If you quote the numeric literal, you get an
error. That’s because quoted strings get parsed as
per the column’s type. This makes it much less
ripe for abuse.

Drivers galore
Postgres’ wire protocol lets you send the type OID
for query parameters to force them to be parsed
according to that type. If you send a zero OID,
it auto-detects the type, like what happens when
you type in a quoted literal in psql.

Some drivers set each parameter’s OID based
on the type of the parameter’s value, which leads
to the forced sequential scan behaviour.

To test your driver’s behaviour, first make sure
that it can use the index (if there’s not enough
data, it might not use the index even if it could).
Run the equivalent of:
query('EXPLAIN SELECT FROM x WHERE col = $1', 1)
Check that it says “Index Scan”. If you’re satisfied
that it works, perform the actual test:
query('EXPLAIN SELECT FROM x WHERE col = $1', 1.0)
This should give an error. If this gives you “Seq
scan” in the plan, you know what’s up.

I’ve surveyed the default behaviour of drivers
in several languages, see the table at the top of
the right column.

¹https://code.jeremyevans.net/2022-11-01-forcing-
sequential-scans-on-postgresql.html

Language Driver Safe?
Clojure java.jdbc and next.jdbc x
Java (PG)JDBC ?
C libpq ?
Scheme postgres egg ✓
Ruby pg ✓
Python psycopg (2 and 3) x
PHP pgsql and PDO ✓
JavaScript node-postgres (aka pg) ✓

Clojure’s jdbc drivers use the .setObject()
method from JDBC without a targetSqlType. This
means it picks an OID based on object’s class.
Psycopg does something similar.

The question mark for Java JDBC and C’s libpq
indicates it’s up to the user. If you use .setObject()
without a type in Java, or somehow(?) a user-sup-
plied type in C, it’s unsafe.

Who is responsible?
Note that I don’t consider drivers automatic type
assignment a vulnerability per se. The responsibil-
ity to pass in the right type lies with the application
or perhaps the application framework.

Theoretically, it should be possible to improve
the behaviour of Postgres itself by being smarter
about values and ranges when casting. For ex-
ample, out-of-range integral numerics can never
be satisfied by an integer, so it could skip the
fetch entirely. Other comparisons on fractional
numerics could be done smartly by rounding to
an integer and comparing against that (i.e. effec-
tively cast the literal value to the column’s type).

Practically, this would be tricky because cast-
ing is generic and extensible via e.g. CREATE CAST
and CREATE TYPE.

Mitigations
The best way to prevent this sort of thing from
happening is to validate both the type and the
range of all user input on entry.

If that’s not an option and your driver does the
wrong thing, you can use an explicit cast on the
placeholder (e.g. $1::int) to force the correct type.

As an extra safety measure, you can register
a type conversion for bignums to return an error.
If you need bignums in a query, you can use a
wrapper type to indicate known-safe uses.

Finally, you can always declare an expression
index on the cast. Ugly, but it gets the job done.

Peter Bex

Casting shade on your Postgres performance Programming

Blog: https://www.more-magic.net
Article sponsor: https://www.bevuta.comSAA-TIP 0.0.7 35

https://code.jeremyevans.net/2022-11-01-forcing-sequential-scans-on-postgresql.html
https://code.jeremyevans.net/2022-11-01-forcing-sequential-scans-on-postgresql.html
https://github.com/clojure/java.jdbc
https://github.com/seancorfield/next-jdbc
https://jdbc.postgresql.org/
https://www.postgresql.org/docs/17/libpq.html
https://wiki.call-cc.org/eggref/6/postgresql
https://github.com/ged/ruby-pg
https://www.psycopg.org/
https://www.php.net/manual/en/ref.pgsql.php
https://www.php.net/manual/en/book.pdo.php
https://node-postgres.com
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/21/docs/api/java.sql/java/sql/PreparedStatement.html#setObject(int,java.lang.Object)
https://www.postgresql.org/docs/17/sql-createcast.html
https://www.postgresql.org/docs/17/sql-createtype.html
https://www.more-magic.net
https://www.bevuta.com


When it comes to Lisp, there’s nothing like using
lists and symbols. With the SRFI-1 “lset” functions,
you can even do set operations on lists. Unfortu-
nately, these functions run in quadratic time.

Of course, we could use more traditional set
implementations based on hash tables or trees,
but those are kinda fiddly. It’d be nice if we can
quickly roll something simple that doesn’t require
large amounts of code or any libraries.

Sticking with lists
The notes for SRFI-1′s delete-duplicates say “[..]
one can use algorithms based on element-mark-
ing, with linear-time results”. Here we’ll explore a
way to do that, for sets of symbols only.

CHICKEN has property lists on symbols; arbi-
trary key/value pairs on any symbol. This allows
us to implement the aforementioned marking:
(import scheme (chicken base) (chicken plist))

(define-inline (mark! x marking)
  (when (symbol? x) (put! x marking #t)))

(define-inline (mark-list! lst marking)
  (for-each (lambda (x) (mark! x marking)) lst))

(define-inline (unmark! x marking)
  (when (symbol? x) (remprop! x marking)))

(define-inline (unmark-list! lst marking)
  (for-each (lambda (x) (unmark! x marking)) lst))

(define-inline (marked? x marking)
  (get x marking #f))

We skip non-symbols to keep things simple. Oth-
erwise we’d have to worry about error recovery
on half-marked lists. The check also allows the
compiler to rewrite put! to an intrinsic (non-CPS) C
function call, making it very fast indeed.

Now, we can mark a list cleanly for the dura-
tion of a set operation, and keeping the symbols
clean for the caller:
(define-inline (with-marked-list lst fun)
  (let ((marking (gensym 'm)))
    (dynamic-wind
        (lambda () (mark-list! lst marking))
        (lambda () (fun marking))
        (lambda () (unmark-list! lst marking)))))

Let’s implement “filter” as well:
(define-inline (filter pred lst)
  (let lp ((lst lst)
           (res '()))
    (cond ((null? lst) (reverse res))
          ((pred (car lst))
           (lp (cdr lst)
               (cons (car lst) res)))
          (else (lp (cdr lst) res)))))

With the basics in place, implementing set differ-
ence and intersection operations is trivial:
(define (slset-difference lst1 lst2)
  (with-marked-list lst2
    (lambda (m)
      (filter (lambda (x) (not (marked? x m)))
              lst1))))

(define (slset-intersection lst1 lst2)
  (with-marked-list lst2
    (lambda (m)
      (filter (lambda (x) (marked? x m))
              lst1))))

Set union is a bit trickier, because we can’t use
with-marked-list, as that would unmark only the
elements of the first list on exit. Instead, we have
to add to the result and mark as we go, and then
finally unmark when done.
(define (slset-union lst1 lst2)
  (let ((marking (gensym 'm)))
    (mark-list! lst1 marking)
    (let lp ((lst2 lst2)
             (res lst1))
      (if (null? lst2)
          (begin (unmark-list! res marking)
                 res)
          (let ((x (car lst2)))
            (if (marked? x marking)
                (lp (cdr lst2) res)
                (begin (mark! x marking)
                       (lp (cdr lst2)
                           (cons x res)))))))))

These definitions are even faster than a set imple-
mentation based on srfi-69! This is also faster than
using a hand-rolled hash table as a “side table”
upon every set operation. Of course, a custom set
implementation (e.g. with an inline hash table) will
always be faster, but that wasn’t the point.

Limitations
Unfortunately, adjoining an arbitrary element to a
set is still 𝑂(𝑛) as is removal of an element. Luckily,
adjoining an element we know doesn’t yet occur
in the set is a trivial 𝑂(1) cons, so in many cases
you don’t have a problem.

If you don’t mind breaking abstractions, you
could mark the list before you start adding ele-
ments. Then, a membership test is a simple 𝑂(1)
call to marked?, so adding is 𝑂(1) too. You’d have to
manually unmark when the code is done adding
elements. Deletions are still tricky though.

For a complete implementation of these lispy
sets of symbols, see the slset CHICKEN egg. It
also provides an “reified slset” abstraction to allow
adding elements without having to manually mark
and unmark the list when adjoining elements.

Peter Bex

Lispy sets in CHICKEN SchemeProgramming

Blog: https://www.more-magic.net
Slset egg: https://wiki.call-cc.org/eggref/6/slset SAA-TIP 0.0.736

https://srfi.schemers.org/srfi-1/srfi-1.html#delete-duplicates
https://www.more-magic.net
https://wiki.call-cc.org/eggref/6/slset


Lua is so underrated
nflatrea@mailo.com <Noë Flatreaud> (Beemo)

The more I learn about Lua's design and implementation, the 

more impressed I am. It's very rare to see software that does so 

much with so little code. 

Unfortunately, Lua doesn’t have the same level of marketing and 

hype as some other languages. This lack of promotion means 

that fewer developers are aware of Lua’s capabilities and 

benefits. It is often perceived as a niche language, primarily 

used in gaming and embedded systems.

Consequently, Lua may not receive the attention it deserves, 

even though it has a lot to offer;

Lua is easy to understand

Lua is a free, reflexive and imperative scripting language. 

Created in 1993, designed to be embedded within other 

applications to extend them. The interpreter was developed by 

Brazilian engineers and has been updated many times since.

Its design is clean, and the code is fast.

The C API is easy to use and yields good performance, and yet 

encapsulates enough of the VM's implementation that C 

modules are source and binary compatible with both Lua and 

LuaJIT. Its syntax is clean and minimalistic, making it accessible 

even for beginners, yet is incredibly easy to master.

Lua is extremely embeddable.

Lua is designed to be easily embedded into applications written 

in other languages, particularly C and C++. This makes it an 

excellent choice for scripting and extending games and 

embedded applications. In C for example, embedding Lua is as :

#include <lualib.h>

int main()
{
    lua_State *L = luaL_newstate();
    luaL_openlibs(L);
    luaL_dofile(L, “./test.lua”);
    lua_close(L);
    return 0;
}

Multi-paradigm support

Standalone or with the right libraries, Lua supports multiple 

programming paradigms, including imperative, functional, and 

object-oriented programming. This flexibility does allow us to 

use the one that best suits our needs.

Yet, not everything might suit everyone...

Indexing conventions

In Lua, indexing generally starts at index 1, but it is a 

convention. Arrays can be indexed by 0, negative numbers, or 

any other value (anything but nil). Lua does not really have 

arrays in the sense of sequences. There’s just tables, and the 

tables are always key-value hashes.

NB : The standard library for tables and built-ins like ipairs assume  

array-like tables with indexes starting at 1. So for nearly all  

practical purposes, you probably want to index tables starting at 1

 https://lobste.rs/s/jf4in1/lua_is_so_underrated#c_gcmsph

Error handling

While I personally like how Lua handles errors, it might be less 

intuitive for developers coming from other languages. In Lua, 

errors may be handled as values, just like in Go :

function risky_function()
    error(“Something went wrong!”)
end

local status, err = pcall(risky_function)
if not status then
    print(“Error: “ .. err)
end

Nil-Terminated Arrays

The one that bothers me the most, might be the fact that arrays 

(tables used as arrays) are nil-terminated, meaning the end of 

the array is marked by a nil value. This can lead to unexpected 

behavior if not handled properly:

local arr = { 10, 20, 30, nil, 50 }
for i, v in ippairs(arr) do

print(v) 
         -- Output: 10, 20, 30 
         -- (nil terminates the array)
end

The ipairs function stops iterating when it encounters a nil 

value, which can be surprising if you expect it to continue 

iterating over the entire table. If you suspect your sequence to 

have gaps, you should avoid using ipairs. Instead, you can use 

pairs (or next) to get at the whole set of items without stopping 

at the first nil.

If you’re looking for a straightforward, efficient scripting 

language, just give it a try, you'd be surprised.

PS : Lua has been used in nvim for plugins since 0.5.0, you bet it's 

efficient !

References

https://news.ycombinator.com/item?id=42517102

https://nflatrea.bearblog.dev/lua-is-so-underrated/

Noë Flatreaud

Lua is so Underrated Programming

Blog: https://nflatrea.bearblog.dev/
Twitter: @nflatrea

Mastodon: https://infosec.exchange/@nflatrea
Github: https://github.com/nflatrea

WTFPL 37

https://lobste.rs/s/jf4in1/lua_is_so_underrated#c_gcmsph
https://nflatrea.bearblog.dev/lua-is-so-underrated/
https://news.ycombinator.com/item?id=42517102
http://nflatrea@mailo.com
https://nflatrea.bearblog.dev/
https://infosec.exchange/@nflatrea
https://github.com/nflatrea


Print to Play

Printers are possibly the most hated appliances, right
up there with washing machines. However, high-end laser
printers1 can interpret PostScript, a vintage, stack-based,
Turing-complete programming language2. Can we make
printers cool again?

1 Interactive PostScript

PostScript printers1 listen on port 9100 for raw
printing. Quick test: print a blank page by
sending this raw PostScript command using netcat:
echo "showpage" | nc 172.16.158.40 9100 .

While PostScript wasn’t
designed to be interactive,
you can enter “executive
mode” by sending two lines
(or this one-liner3). Af-
ter that, type commands
directly – they’ll be inter-
preted on the fly.

nc 172.16.158.40 9100

%!PS

executive

KONICA MINOLTA bizhub 4422

Version 3011.010

PS> 1 2 add ==

3

A PostScript program can even read user input as if
from a file, using (%lineedit) (r) file ( ) readline .
With that, you have everything needed to write advanced
interactive programs such as “Guess a number”.

2 Tic Tac Toe

By combining user interactions and PostScript’s graphic
capabilities, we can implement a Tic-Tac-Toe game4. Al-
gorithm 1 is quite simple yet still “fun” to play against,
featuring random behavior from the printer.

Algorithm 1 Printer Tic-Tac-Toe Logic

1: loop

2: if game is over then
3: exit

4: else if printer can win with X then

5: play X there
6: else if human can win with O then

7: play X there
8: else

9: play randomly
10: end if

11: get human input
12: end loop

1Tested on Konica Minolta Bizhub 4422 and RICOH M

C240FW. Your mileage may vary.
2Unfamiliar with PostScript programming? check out

https://seriot.ch/projects/programming in postscript.html
3 (echo $'%!PS\nexecutive\n'; cat) | nc 172.16.158.40 9100
4https://github.com/nst/PSTicTacToe

3 Upload Game to Printer

We can even store programs directly inside the
printer, exploiting a little known PostScript capabil-
ity. Listing 1 embeds the minified Tic-Tac-Toe pro-
gram. Save it in x.ps, then send it to the printer:
cat x.ps | nc 172.16.158.40 9100 . x.ps will act as
a vector and leave its payload ttt.ps on the printer’s file
system5.

% a handwritten Tic-Tac-Toe program stored in a string

/prog(/d{def}def/e{exch}d/M{moveto}d/O{pop}d/g{getinterval

}d/l{length}d/L{lineto}d/I{if}d/P{putinterval}d/D(1234567\

89)d/nf{0 b{46 eq{1 add}I}forall}d/R{/q false d 0 1 8{/i e

d/A b dup l string cvs d A i 1 g(.)eq{[(X)(O)]{/p e d A i

p P A B{b i(X)P/q true d exit}I}forall}I q{exit}I}for q}d

/Q{/x rand nf mod d/c 0 d 0 1 b l 1 sub{/i e d b i 1 g(.)

eq{c x eq{b i(X)P exit}I/c c 1 add d}I}for}d/r{{(human (1\

-9)>)print flush(%lineedit)(r)file(________)readline O dup

l 0 gt{0 1 g}{O ( )}ifelse/o e d D o search{O O O b o cvi

1 sub 1 g(.)eq{o cvi 1 sub exit}I}{O}ifelse(bad input)= S}

loop}d/B{/z e d/N[[0 1 2][3 4 5][6 7 8][0 3 6][1 4 7][2 5

8][0 4 8][2 4 6]]d/V false d[(O)(X)]{/p e d N{/T e d/V

true d T{/U e d/V z U 1 g p eq V and d}forall V{exit}I}

forall V{exit}I}forall V}d/S{0.2 setlinewidth 10 10 scale

20 70 M 20 40 L 30 70 M 30 40 L 10 60 M 40 60 L 10 50 M 40

50 L stroke 0 1 b l 1 sub{/i e d b i 1 g(.)ne{gsave 10 i 3

mod 10 mul add 3 add 70 i 3 idiv 10 mul sub 7 sub M b i 1

g show grestore}I}for m null ne{10 30 M m show}I showpage}

d/C{/E e d/K e d/m null d nf 0 eq{/m(TIE)d/E true d}I b B{

/m(________WINS)d m 0 K P/E true d}I E{S}I m null ne{quit}

I}d/Courier findfont 5 scalefont setfont/b D d/m(HUMAN PL\

AYS O)d S/b(.........)d{/m null d b r(O)P(__HUMAN) false C

R not{Q}I(PRINTER)true C}loop)def

% leave the program on the printer’s file system

/f (ttt.ps) (w) file def

f prog writestring f flushfile f closefile

Listing 1: A PostScript program that will save a Tic-Tac-
Toe game as ttt.ps on the printer’s file system.

4 Results and Future Work

O X

O

O X X

You can now play against the
printer by entering executive mode
and typing (ttt.ps) run . Hu-
man starts and plays O, choosing
squares 1–9 in the shell. Printer
will print its own moves on paper.
Good luck!
Next steps: go hunt for corpo-

rate printers waiting for your pro-
grams6 on port 9100, and show your colleagues that print-
ers are cool again. Washing machines? Not yet.

5Type (ttt.ps) deletefile to delete ttt.ps.
6See also https://github.com/nst/PSChess

Nicolas Seriot

Print to PlayProgramming

https://seriot.ch
SAA-TIP 0.0.738

https://seriot.ch/projects/programming_in_postscript.html
https://github.com/nst/PSTicTacToe
https://github.com/nst/PSChess
https://seriot.ch
https://seriot.ch/projects/programming


Replace CRTP with concepts? 
If you’re not familiar with the Curiously Recurring 
Template Pattern, check out this article1. It’s a way 
to implement static polymorphism in C++ and can 
be used for different purposes. When it’s used for 
static interfaces, you can replace it with C++20 
concepts and class tagging. 

The CRTP solution 

Along with a static interface, we are creating a static 
family of types. Instead of virtual functions, the 
common interface is granted through a base class, 
which is a template taking the derived class as a 
parameter. 
 
Let's use animals making sounds for a sample 
implementation. 
 
template<typename Derived> 
struct Animal { 
  void make_sound() const { 
    const Derived& underlying = 
static_cast<const Derived&>(*this); 
        underlying.make_sound(); 
  } 
}; 
 
struct Cow: Animal<Cow> { 
  void make_sound() const { /* … */ } 
}; 
 
struct Sheep: Animal<Sheep> { 
  void make_sound() const { /* … */ } 
}; 
 
template<typename Derived> 
void print(Animal<Derived> const& animal) 
{ 
  animal.make_sound(); 
} 

The non-CRTP solution 
In the C++20 solution, we use a concept to ensure 
that the classes have a common interface. 
 
template<typename T> 
concept Animal = requires(T animal) { 
animal.make_sound();}; 
 
The problem with the above concept is that now 
every class that has a make_sound() method will 
be accepted as an animal. Even if the author of the 

1 
https://www.sandordargo.com/blog/2019/03/13/the-
curiously-recurring-templatep-pattern-CRTP 

Animal concept or the author of those fake animal 
classes wouldn’t want that.  
 
That's why we also need an AnimalTag, nobody 
will accidentally inherit from it. As AnimalTag 
doesn’t define any virtual method, we don’t have to 
pay the price of virtual tables and pointers. 
 
class AnimalTag {}; 
 
template<typename T> 
concept Animal = requires(T animal) { 
  animal.make_sound();} && 
  std::derived_from<T, AnimalTag>; 
 
void print(Animal auto const& animal) { 
    animal.make_sound(); 
} 
 
struct Sheep: public AnimalTag { 
    void make_sound() const { /* … */ } 
}; 
 
struct Cow: public AnimalTag { 
    void make_sound() const { /* … */ } 
}; 

In comparison 

For those who are not familiar with the pattern, 
seeing the CRTP inheritance in the first place, plus 
the static_cast to the derived class, is not 
necessarily easy to understand. 
 
The concepts-based solution is more readable and 
less error-prone. With the CRTP, you might 
accidentally pass in the wrong template argument. 
Though that can be solved by making Derived a 
friend of Base and make the base class constructor 
private. Even more complexity. 
 
The non-CRTP solution is more readable if you are 
familiar with concepts. While CRTP is not a 
so-well-known design pattern, concepts are part of 
the standard language, so you'll have to get familiar 
with them sooner rather than later. 
 
Though, you need to compile using C++20, which 
might not be available to you at the moment. 
 
 
 

Sándor Dargó

Replace CRTP with concepts? Programming

Blog: https://www.sandordargo.com/
X/Twitter: @SandorDargoSAA-ALL 0.0.7 39

https://www.sandordargo.com/


 

Secure File Upload API with 

SpringBoot - @aicdev 

File uploads are a common feature in many 
applications and platforms. Implementing this 
functionality at the API level, however, comes with 
its own set of challenges — particularly when it 
comes to security. (IAM out of scope here ;-) ) 
 
What is Spring Boot? Spring Boot is just 
another framework that streamlines Java/Kotlin 
application development and speeds up building 
production-ready  applications like APIs and more. 
 
What is Apache Tika? Apache Tika is a content 
analysis toolkit that detects file types and extracts 
text and metadata from document formats. 
 
Let’s start by examining a simple REST controller: 
 
@RestController 
@RequestMapping("/files") 
class FileUploadController { 
 
   @PostMapping() 
   fun handleFileUpload( 
       @Valid 
       @RequestPart(name = "picture", 
required = true) 
       picture: MultipartFile 
   ): String? { 
       return picture.originalFilename 
   } 
} 
From a security perspective, this implementation 
has several aspects that could potentially lead to 
unwanted effects in both your application and 
underlying infrastructure. 

Why is File Type Validation Important? If 
your web application allows file uploads without 
proper validation, attackers could exploit this by 
uploading malicious files—like a PHP reverse shell 
disguised as an image or a malware-laced PDF. 
Once these files are accessed or opened, the 
attacker could execute harmful code, compromise 
the server, or infect user systems. 

But - How Do You Validate? Relying on file 
extensions or content-type headers for validation is 
insecure, as they can be easily spoofed. A more 
reliable method is checking the file’s magic 
bytes—unique identifiers at the beginning of a file. 

While these too can be faked, doing so usually 
breaks the file. Validating magic bytes server-side 
helps ensure only legitimate files are accepted. The 
output of my test file is the signature of a PDF 
although the file ending is .exe  

 
I will be using the Apache Tika content analysis 
library to verify the current file content type based 
on magic byte signatures. 
 
@Repeatable 
@Target(AnnotationTarget.CLASS, 
AnnotationTarget.TYPE, 
AnnotationTarget.VALUE_PARAMETER) 
@Constraint(validatedBy = 
[FileTypeRestrictionValidator::class]) 
@Retention(AnnotationRetention.RUNTIME) 
annotation class FileTypeRestriction( 
   val acceptedTypes: Array<String>, 
   val message: String = "File is not 
allowed", 
   val groups: Array<KClass<out Any>> = 
[], 
   val payload: Array<KClass<out Any>> = 
[] 
) 
 
Implementation (hard strip to content type 
detection)  of our annotation: 
 
… { 
  … 
   private fun detectContentType(stream: 
BufferedInputStream): String { 
       val detector: Detector = 
DefaultDetector() 
       val metadata = Metadata() 
       val mediaType: MediaType = 
detector.detect(stream, metadata) 
       return mediaType.toString() 
   } 
} 
 
Now, let’s update our handleFileUpload function in 
the RestController to incorporate the new 
validation implementation as follows: 
   fun handleFileUpload( 
       @FileTypeRestriction( 
           acceptedTypes = [ 
              MediaType.IMAGE_PNG_VALUE 
           ] 
       ) 
 
File uploads can pose serious security risks if not 
handled properly. Always think like an attacker to 
anticipate potential threats. 

jens@fivesec

Secure File Upload API with SpringBootProgramming

Blog: https://medium.com/@js_9757
Github: https://github.com/fivesecde SAA-POOL 0.0.740

https://medium.com/@js_9757
https://github.com/fivesecde


Shannon Entropy 
Shenanigans 
 
I was trying to detect some secrets in a long text. 
Secrets should be random, so one idea on how to 
find them is to use the Shannon Entropy to identify 
high-entropy strings which are probably secrets. 

So let’s do a deeper dive on entropy and of course 
the seminal paper A Mathematical Theory of 
Communication (C. E. Shannon, 1948): 

https://people.math.harvard.edu/~ctm/home/text/ot
hers/shannon/entropy/entropy.pdf  

What is Entropy? 

The entropy tries to measure the overall 
uncertainty within the data. Or: if we had the best 
possible encoding, what is the shortest amount of 
bits we still need to send? 

A word is a sequence of characters from an 
alphabet. Given a word, we can measure how 
often each character appears. Now what we want 
to know is the next character in the sequence.  

Examples: 

1. word aaaaa, probability of a is equal to 1. 
Trivially, the next character is a. The 
entropy should be minimal (zero, even). 

2. 137e5a7da48c5c7aac6a8cb8959e63b5, 
probability of each digit and a to f is 1/16. 
The theoretical maximum over a small 
alphabet, the entropy is high here. Yes, it's 
an MD5 hash. 

Let’s say that H is the function calculating entropy 
for the given text. What’s weird about it is that it 
takes as many parameters as necessary. Formally, 
it takes the character distribution (a set of 
probabilities of given characters appearing). 
Trivially, extending the alphabet extends the input 
list for this function. 

Properties of Entropy 

Looking above, these are the properties we’re 
looking for. 

1. Continuous function 
2. For equal distributions with n characters 

and each probability equal to 1/n (like 3rd 
example), H should monotonically increase 
with larger n. This translates to the 
observation that we can encode more 
information with a larger alphabet for a 
given length of the word. 

3. Let's say we have p1 = 1/2, p2 = 1/3 and 
p3 = 1/6. There's a 1/2 probability that the 
next character will be one associated with 
probability p2 or p3. If that happens, we 
have new probabilities in the smaller 
alphabet - for p2 = 2/3 and for p3 = 1/3. So 
we need that: 

The big result of the paper is that the only function 
satisfying the properties above is: 

Implementation (in Python) 
from math import log 
 
def word_entropy(s: str): 
    counter = dict() 
    for c in s: 
        if c not in counter: 
            counter[c] = 0 
        counter[c] += 1 
 
    freqs = [counter[i] / float(len(s)) for i in counter] 
    return -1 * sum([f * log(f, 2) for f in freqs]) 
 

 
Split your data into words, point this at your data 
that contain secrets. 
 
Non-secret text hovers around 4, truly random 
strings (compressed, encrypted, etc.) start at 5 and 
top up at 8 for ASCII texts. Check the link for more 
experiments. 

Miloslav Homer

Shannon Entropy Shenanigans Programming

Blog: https://miloslavhomer.substack.com/p/secret-detection-shannon-entropy
Linkedin: https://www.linkedin.com/in/miloslav-homer/

GitHub: https://github.com/ArcHound
Gist: https://gist.github.com/ArcHound/df86e646bb779f758a05a133f9f28594CC0 41

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://miloslavhomer.substack.com/p/secret-detection-shannon-entropy
https://www.linkedin.com/in/miloslav-homer/
https://github.com/ArcHound
https://gist.github.com/ArcHound/df86e646bb779f758a05a133f9f28594


 

Testing by iterating over all floats 
Exhaustively testing software by iterating over every possible floating point number. 

 
Writing code which deals with floats can be 

tricky. There are many edge cases which are well 
documented but aren’t necessarily intuitive. For 
example, adding 0.5 to 4503599627370497.0 
(assuming IEEE 754 64-bit floats and the usual 
rounding mode) results in 4503599627370498.0, 
the next integer! Another example, 
non-associative calculations, (x + y) + z can 
yield a different answer compared to x + (y + 
z). The reason for floating point calculations to 
behave in such a way boils down to their internal 
representation and inherent precision limits. 
Discrepancies in compilers, operating systems, 
libraries, or underlying hardware can cause 
results to vary due to subtle differences. 

 
Software engineers typically use 32-bit or 

64-bit floats, which are available out of the box 
in common programming languages. In some 
applications, precision can be traded for 
efficiency by using small floats. The efficiency 
gains are either memory, compute, or both. For 
example, 16-bit floats have been used in 
computer graphics. Some machine learning 
models use 16-bit, 8-bit, or even 4-bit floats.  

 
Besides the efficiency tradeoff, small floats 

provide another very useful feature: they can be 
quickly iterated over to exhaustively test code. A 
16-bit float can only take one among 65,536 
values. Combined with an invariant check or a 
reference implementation, it enables discovery 
of bugs. In my experience, bugs found using 
small floats survive when switching to larger 
floats, i.e., the process yields useful bugs. 
Iterating over 32-bit floats is possible yet 
becomes prohibitive if multiple values are in play 
or in the context of unit tests. 

 
A concrete example is the following round up 

function, which seems fine at first glance: 
round(x) = floor(x + 0.5). This is how Java’s 

round() was initially implemented until two bug 
reports were filed and the code was eventually 
fixed 17 years later. Even a “simple” rounding 
function isn’t immune to floating-point edge 
cases! The companion Julia code (linked below) 
demonstrates a re-implementation of the 
incorrect rounding function. A slow albeit more 
likely to be correct rounding function is used to 
find all the values where the two functions differ. 

 
Useful related links: 

● Companion Julia code 
https://github.com/alokmenghrajani/testing-by-iterating-over
-all-floats 

● Java round(), incorrect initial release (1996) 
https://github.com/uakbr/Java-JDK10/blob/601724cdcee1547
b52d6c01b613abc345178f853/src/src/java/lang/Math.java#L
165 

● Java round(), bug report (2006) 
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=64
30675 

● Java round(), initial fix (2011) 
https://github.com/openjdk/jdk/commit/b4d4e3bed48fae16f
01345fc624715588d112697 

● Java round(), another bug report (2013) 
https://bugs.java.com/bugdatabase/view_bug?bug_id=80104
30 

● Java round(), second fix (2013) 
https://github.com/openjdk/jdk/commit/28d455529e7bc769
85029e762442edd824125e10 

● Help visualize floats 
https://bartaz.github.io/ieee754-visualization/ and 
https://float.exposed/ 

● What Every Computer Scientist Should Know 
About Floating-Point Arithmetic 
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldbe
rg.html 

 

IEEE 754, 16-bit floating point format 

1 bit 5 bits 10 bits 

sign exponent fraction 

value = (-1)sign × 2(exponent−15) × (1.fraction)  

exponent = 0, fraction = 0 → zero 
exponent = 0, fraction ≠ 0 → subnormal 

exponent = 31, fraction = 0 → infinity 
exponent = 31, fraction ≠ 0 → NaN 

 

Alok Menghrajani

Testing by iterating over all floatsProgramming

https://quaxio.com/
SAA-ALL 0.0.742

https://github.com/alokmenghrajani/testing-by-iterating-over-all-floats
https://github.com/alokmenghrajani/testing-by-iterating-over-all-floats
https://github.com/uakbr/Java-JDK10/blob/601724cdcee1547b52d6c01b613abc345178f853/src/src/java/lang/Math.java#L165
https://github.com/uakbr/Java-JDK10/blob/601724cdcee1547b52d6c01b613abc345178f853/src/src/java/lang/Math.java#L165
https://github.com/uakbr/Java-JDK10/blob/601724cdcee1547b52d6c01b613abc345178f853/src/src/java/lang/Math.java#L165
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6430675
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6430675
https://github.com/openjdk/jdk/commit/b4d4e3bed48fae16f01345fc624715588d112697
https://github.com/openjdk/jdk/commit/b4d4e3bed48fae16f01345fc624715588d112697
https://bugs.java.com/bugdatabase/view_bug?bug_id=8010430
https://bugs.java.com/bugdatabase/view_bug?bug_id=8010430
https://github.com/openjdk/jdk/commit/28d455529e7bc76985029e762442edd824125e10
https://github.com/openjdk/jdk/commit/28d455529e7bc76985029e762442edd824125e10
https://bartaz.github.io/ieee754-visualization/
https://float.exposed/
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://quaxio.com/


Simple (and works!)

Some of the best security 
teams in the world swear 

by Thinkst Canary.

Find out why: https://canary.tools/why

https://canary.tools/why


The γ Language

Backwards-Compatible C Generics

This page describes γ, a minimal template-based generics
extension to the C language. It is implemented as a C
compiler wrapper and requires little more than a tokenizer,
so keeps full support for standard C, the GNU and Clang
C extensions, and all GCC and LLVM optimization passes.
Here’s what a simple γ program looks like:

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

int lt::[type T](T *a, T *b);

void swap::[type T](T *a, T *b) {

T tmp;

memcpy(&tmp, a, sizeof(T));

memcpy(a, b, sizeof(T));

memcpy(b, &tmp, sizeof(T));

}

void sort::[type T](T *items, int n) {

for (int i = 0; i < n; i++)

for (int j = i; j --> 0;)

if (lt::[T](&items[j+1], &items[j]))

swap::[T](&items[j+1], &items[j]);

else

break;

}

void print_array::[type T](T *items, int n,

char *fmt) {

for (int i = 0; i < n; i++) {

printf(fmt, items[i]);

if (i != n-1) printf(", ");

}

printf("\n");

}

int lt::[specialize int](int *a, int *b) {

return *a < *b;

}

int lt::[specialize char *](char **a,

char **b) {

return strcmp(*a, *b) < 0;

}

int main() {

int ints[] = {75, 50, 1, 10};

sort::[int](ints, 4);

print_array::[int](ints, 4, "%d");

char *strs[] = {"hello", "apple", "world"};

sort::[char *](strs, 3);

print_array::[char *](strs, 3, "%s");

return 0;

}

You can build a γ file by prepending your favorite C com-
piler invocation with the ‘Gamma Compile’ command gc:

$ gc gcc -o test test.c

$ ./test

1, 10, 50, 75

apple, hello, world

γ supports standard flags for object files, static libraries,
and dynamic libraries. γ has a custom object file format
that supports referencing templates across compile units;
they get automatically instantiated by γ before linking.

$ gc gcc -c templates.c

$ gc gcc -c main.c

$ gc gcc main.o templates.o -o main

$ ./main

...

The γ compiler wrapper is written in γ, but we provide a
desugared C version that is easy to compile and distribute.

The primary goal of γ is backwards compatibility. Virtually
all existing C projects (including those using GCC exten-
sions, inline assembly, etc.) should build unmodified after
setting CC="gc gcc". To accomplish this, γ avoids parsing
C syntax or doing any sort of semantic analysis. Instead,
it merely tokenizes the source and locates template defini-
tions and instantiations using the special ::[...] syntax.
It’s little more than an automatic macro expansion system.

γ is available under the AGPLv3 license at:

https://lair.masot.net/gamma

The core features of γ are stable, but there are still some
rough edges. Templates are instantiated in the compile
unit in which they are defined, not where they are used, so
they can only refer to the types available at the template
definition (not instantiation) point. Suppose foo.c defines
swap::[type T], and bar.c calls swap::[struct bar]

where struct bar is only defined in bar.c. The swap

template will be instantiated in foo.c referring to an un-
known type struct bar, resulting in a compiler error. We
support three solutions to this problem:

• Organize your project so that all files import a single
header file defining all custom types.

• Pass the experimental --dup-types option, which
causes γ to copy types declared at the call site into
the file containing the template definition.

• Like C++, define static templates in header files and
pass the experimental --detect-static option so
templates get instantiated in the calling file.

We also considered modifying γ to always place instanti-
ations in the calling file, but felt this would make scoping
too unintuitive. Feedback is very much welcome!

Matthew Sotoudeh and
Akshay Srivatsan

The � Language: Backwards-Compatible C GenericsProgramming

https://aks.io/
https://masot.net/ SAA-TIP 0.0.744

https://lair.masot.net/gamma
https://aks.io/
https://masot.net/


Lé
a P

in
to

P
laystatio

n
 g

am
e

 co
n

ce
p

t art
A

rt

h
ttp

s://w
w

w
.in

stag
ram

.co
m

/_le
a.p

in
to

_/
S

A
A

-A
LL 0

.0
.7

4
5

https://www.instagram.com/_lea.pinto_/


WebAssembly Duel: Liftoff vs TurboFan 
 
V8, Google's JavaScript and WebAssembly 
engine, initially utilized the TurboFan JIT 
compiler. While TurboFan generated efficient 
code, it resulted in slow startup times for 
WebAssembly. To improve latency, V8 
introduced Liftoff1, a faster baseline compiler 
with minimal optimizations for quicker initial 
execution. Upon loading a Wasm module, V8 
decodes and validates it, then uses Liftoff. Hot 
functions are later recompiled by TurboFan with 
optimizations. Let’s start our analysis with a 
simple WASM module: 
 
(module 
  (func $add (param $a i32) (param $b 
i32) (result i32) 
    local.get $a 
    local.get $b 
    i32.add 
  ) 
  (export "add" (func $add)) 
) 
 
We now need to translate from WASM text 
format to the WASM binary format. We achieve 
so via WABT2. 
 
wat2wasm add.wat -o add.wasm 
 
Once compiled into its binary form, a 
WebAssembly module can be instantiated and 
executed using the d83 shell, which is obtained 
after building v84. 
The script below demonstrates loading a .wasm 
file and repeatedly calling the exported `add` 
function within a loop, showcasing runtime 
interaction. 
 
const bytes = read('add.wasm', 'binary'); 
WebAssembly.instantiate(bytes).then(({instance}) => 
{ 
    for (let i = 0; i < 10; i++) { 
        const a = i; 

4 https://v8.dev/docs/build 
3 https://v8.dev/docs/d8 
2 https://github.com/WebAssembly/wabt 
1 https://v8.dev/blog/liftoff 

        const b = i + 1; 
        const result = instance.exports.add(a, b); 
        print(`add(${a}, ${b}) = ${result}`); 
    } 
}); 

We can force execution through Liftoff as 
follows. 
./d8 --liftoff --no-wasm-tier-up 
--trace-wasm-compilation-times --print-code 
./add.js 
 
Compiled function 0x77e0b4000c18#0 using Liftoff, 
took 0 ms and 19232 bytes;  
kind: wasm function 
compiler: Liftoff 
Instructions (size = 80) 
0x14115369f858    18  8d0c10               leal 
rcx,[rax+rdx*1]   
... 
0x14115369f869    29  8bc1                 movl 
rax,rcx           
... 
0x14115369f86f    2f  c3                   retl   

The TurboFan/Liftoff compilation process for the 
first two integer parameters involves receiving 
them in RDI and RSI registers, then moving 
them to RAX and RDX. The function's result is 
placed in RAX for the return. The compiled code 
is 80 bytes in size. Now we can compile the 
same code using TurboFan and observe the 
resulting differences. 

$ ./d8 --no-liftoff --wasm-tier-up --print-code 
--turbo-stats-wasm add.js 
 
kind: wasm function 
compiler: TurboFan 
Body (size = 64 = 24 + 40 padding) 
Instructions (size = 16) 
... 
0x3abf4814d847     7  03c2                 addl 
rax,rdx 
... 
0x3abf4814d84d     d  c3                   retl 
 

   Time (ms)                       
totals      0.273 (100.0%)        
 

Despite the 16-byte output, the addition uses a 
compact two-byte instruction. Liftoff's 
compilation time was nearly 0ms, while Turbofan 
took 0.2ms. This shows how Liftoff favors 
compilation speed, TurboFan favors optimization 
and together, they balance fast startup with 
long-term performance in V8. 

Matteo Malvica

WebAssembly Duel: Liftoff vs TurboFanProgramming

Blog: http://uf0.org
X/Twitter: @matteomalvica SAA-ALL 0.0.746

http://uf0.org
https://v8.dev/docs/build
https://v8.dev/docs/d8
https://github.com/WebAssembly/wabt
https://v8.dev/blog/liftoff


Windows Native
API Programming
in Assembly

The Windows Native API is a fancy name for Win-
dows system calls (or syscalls). In Windows, various
DLL functions provide wrappers for these syscalls. For
a number of reasons, Microsoft does not want a pro-
grammer to make these calls directly, preferring you to
go through the DLL functions or the C library instead.
In fact, from release to release in Windows, some of
these syscall numbers change. Others have tracked these
changes over time [1]. Today, particularly on Windows,
endpoint protection systems will look for direct syscalls
as a potential malicious activity.

So, why would you want to do this today? First, it
is a good learning activity. Any chance to interact with
the syscall boundary on a modern operating system is a
chance to learn about their syscalls and will aid in your
understanding of that operating system. Additionally,
writing code that uses syscalls in assembly will allow
you to write some of the smallest possible programs on
modern systems. This has both offensive and defensive
implications.

To start our overview, we need a very simple example.
I will use the native NtDeleteFile syscall to delete a file
on the filesystem. At the Github link here [2], I provide
the full code for both NtCreateFile and NtDeleteFile
along with more detailed information on some of these
structures. Depending on your version of Windows, you
may need to adjust the syscall number, though. (Also,
be aware that more advanced functionality could take
multiple, chained syscalls to produce the desired action.)
The Github repository also provides a PDF where I ex-
plain in more detail the process and structures involved.

When using NtDeleteFile, you need several items: (1)
You need to know the syscall number, which is really a
form of index into the System Services Descriptor Ta-
ble (SSDT) in Windows. (2) You need to know what
arguments that syscall needs. Microsoft does provide
some documentation for some of these functions if you
search around but you may have to translate from C++
documentation into assembly. (3) You need to know the
calling convention used since a system call often needs
arguments, so we need to know how the kernel is going
to expect those arguments. (4) Often those arguments
are pointers to other structures so in addition to know-
ing how to pass the arguments, we need to know how
to create the structures that are being passed. Again,
much can be gleaned from the documentation Microsoft
already provides.

In our NtDeleteFile example, first we need to create
an object attributes structure. It has a number of ele-
ments that are fairly well known. Since we are writing
assembly, we need to know how some WinAPI data
types translate to assembly. For example, a ULONG is a
32-bit value but when using the required calling conven-

tions on a 64-bit machine, this ends up taking 8 bytes
on the stack. This object attributes structure includes
much of what we need to reference the file, including the
name (which is UTF-16 encoding), its attributes, etc.
To delete a file, you need less of this information than to
create a file. If you examine my NtCreateFile assembly
in the Github repository you will see that a bit more is
needed to set up this structure. The unicode string itself
is another structure. The code below is for NtDeleteFile:

.data

path dw "\","?","?",",฀"c",":","\",
"U","s","e","r","s","\,฀
"D","a","n","\",
"t","e","s","t",".","t","x","t"

align 8
objatr qword 0,0,0,0,0,0
unistring qword 0,0

.code

main proc
mov qword ptr objatr[0], 48
mov qword ptr objatr[8], 0
lea rax, [unistring]

mov qword ptr objatr[16], rax
mov qword ptr objatr[24], 64
mov qword ptr objatr[32], 0
mov qword ptr objatr[40], 0
mov word ptr unistring[0], 50
mov word ptr unistring[2], 52
lea rax, [path]

mov qword ptr unistring[8], rax
lea rcx, [objatr]

mov r10, rcx
mov eax, 0d7h ;syscall number
syscall

main endp
end

After examining this code and reviewing the NtCre-
ateFile code, you will have a basic sense of Windows
Native API syscalls. Again, you may have to adjust the
syscall number (and path/filename, etc) but you can be-
gin exploring these syscalls. The SSDT table has hun-
dreds of syscalls to explore in modern Windows.

References
[1] https://j00ru.vexillium.org/syscalls/nt/64/.

[2] https://github.com/meuer26/Windows_Native_
API_Basics.

Daniel O'Malley

Windows Native API Programming in Assembly Programming

X/Twitter: @binarywonder
SAA-TIP 0.0.7 47

https://j00ru.vexillium.org/syscalls/nt/64/
https://github.com/meuer26/Windows_Native_API_Basics
https://github.com/meuer26/Windows_Native_API_Basics
https://j00ru.vexillium.org/syscalls/nt/64/.


Programming simple melodies using Commodore Basic 7.0 
 
Have you ever wondered if there is a programming language which can be used for playing 
simple melodies? Commodore Basic 7.0 can do that! 
We can use only two functions: TEMPO and PLAY. 
Link to documentation: https://www.c64-wiki.de/wiki/PLAY_(BASIC_7.0) 
Entering scores is quite simple:  
CDEFGAB - these are notes. For selecting note period:   Q - quarter, I - eighth.  
O5 and O4 - 5th and 4th octave. V1T6 - voice and envelope selection, R - rest,  . - dotted note, # 
- sharp note and finally $ - flat note (♭). 
I wanted to make melodies which can fit on one screen and fortunately I was able to put J.S. 
Bach - Violin Concerto in a minor, Allegro assai beginning.  
 

 
If you don’t have time to type, you can paste in any Commodore 128 emulator: 
10 TEMPO 20 

20 PLAY "V1T6IO5EAGFEDCO4BO5CDCO4BO5CO4ABO5CO4EAO5CO4BAB#GABEBO5D" 

30 PLAY "CO4BO5CO4AO5CEAG#FQ.GIG#FEQBIBBABG#FEQBIBQBIBQBIBQBIBBABQGIEQ#FI#G" 

40 PLAY "QAIO4AO5QCIE#GABA#GAEDECEA#G#F#GQEI#GBA#GQ.AIRRCQEIAQDO4IFQAO5ID" 

50 PLAY "O4QGO5IDDCDO4GBO5DFEDQEIFQ.GGO4IBO5QCO4IGO5Q.GGO4IAQBIGO5Q.FFIDQE" 

60 PLAY "IGQEO4IBO5CO4#GAO5DCDQBI#GQAIBEDEO4AO5CEGFEFEFDFAA$BDEDECE#G#GAO4A" 

70 PLAY "O5QDIDQDIDQDIDCO4BO5QEO4IAQEI#GQA" 

RUN 

 

In some cases you need to convert the listing to lowercase before pasting to the emulator - it’s 
your task to find out why. 
Enjoy! ¸ 

Marcin Wądołkowski

Programaming simple melodies using Commodore Basic 7.0Retro

LinkedIn: https://www.linkedin.com/in/marcin-w%C4%85do
%C5%82kowski-4a2b819a SAA-TIP 0.0.748

https://www.c64-wiki.de/wiki/PLAY_(BASIC_7.0)
https://www.linkedin.com/in/marcin-w%C4%85do%C5%82kowski-4a2b819a
https://www.linkedin.com/in/marcin-w%C4%85do%C5%82kowski-4a2b819a


Psychedelia: A Puzzle
Rob Hogan, https://psychedeliasyndro.me

starOneXPosOffsets ; 5
.BYTE 0,1,1,1,0,-1,-1,-1 ;
.BYTE 0,2,0,-2 ; 4 4
.BYTE 0,3,0,-3 ; 3
.BYTE 0,4,0,-4 ; 2
.BYTE -1,1,5,5,1,-1,-5,-5 ; 1
.BYTE 0,7,0,-7 ; 4 000 4

; 5 3210 0123 5
starOneYPosOffsets ; 4 000 4
.BYTE -1,-1,0,1,1,1,0,-1 ; 1
.BYTE -2,0,2,0 ; 2
.BYTE -3,0,3,0 ; 3
.BYTE -4,0,4,0 ; 4 4
.BYTE -5,-5,-1,1,5,5,1,-1 ;
.BYTE -7,0,7,0 ; 5

This is an example of the data structure at the heart of Jeff
Minter’s Psychedelia, the first ever light synthesiser. It is
the seed of the algorithm that Minter used in games such
as Tempest 2000 and the interactive music visualizer in the
XBOX 360. Maybe just by looking at the code above you can
guess that the values are X and Y offsets from a centre origin.
These build up the picture given in the comment section on
the right. The numbers in that illustration are an index into
each line in the array: for example, the square of 0’s is from
the first line in both arrays. So given this information and
assuming you have a colour table with the following values..

0 1 2 3 4 5 6 7
..see if you can figure out the algorithm Minter used to

generate the sequence below. I’ve enlarged the start of the
sequence so you can begin to get a sense of how it operates.
The numbers in the diagrams represent the values in the
colour table. The numbers in the color table and the number
of iterations made through the array each time are somehow
related. See if you can figure it out. If you’re impatient to
learn the answer, you can find it in the second and third
chapters of https://psychedeliasyndro.me.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 5 5 0 0 0 0 0 0
0 0 0 0 0 0 5 7 5 0 0 0 0 0 0
0 0 0 0 0 0 5 5 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 5 5 5 0 0 0 0 0 0
0 0 0 0 0 5 5 7 5 5 0 0 0 0 0
0 0 0 0 0 0 5 5 5 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 4 4 4 0 0 0 0 0 0
0 0 0 0 0 5 4 7 4 5 0 0 0 0 0
0 0 0 0 0 0 4 4 4 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 4 4 4 0 0 0 0 0 0
0 0 0 0 0 4 4 7 4 4 0 0 0 0 0
0 0 0 0 0 0 4 4 4 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 4 4 4 0 0 0 0 0 0
0 0 0 0 4 4 4 7 4 4 4 0 0 0 0
0 0 0 0 0 0 4 4 4 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 4 4 6 6 6 4 4 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 4 4 6 7 6 4 4 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 4 3 6 7 6 3 4 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 3 3 6 7 6 3 3 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 3 3 3 6 7 6 3 3 3 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 5 5 5 0 0 0 0 0 0
0 0 0 3 3 3 5 7 5 3 3 3 0 0 0
0 0 0 0 0 0 5 5 5 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 5 5 5 0 0 0 0 0 0
0 0 0 3 3 5 5 7 5 5 3 3 0 0 0
0 0 0 0 0 0 5 5 5 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 3 3 5 6 6 6 5 3 3 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 3 3 5 6 6 6 5 3 3 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 3 3 5 6 6 6 5 3 3 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 3 2 5 6 6 6 5 2 3 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 2 2 5 6 6 6 5 2 2 0 0 0
0 0 0 0 0 0 6 6 6 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rob Hogan

Psychedelia: A Puzzle Retro

https://github.com/mwenge
SAA-TIP 0.0.7 49

https://psychedeliasyndro.me
https://psychedeliasyndro.me
https://github.com/mwenge


http://hackarcana.com/
http://hackarcana.com/


V
a

s
y

l

T
h

e
 W

o
m

a
n

 in
 R

e
d

A
rt

S
A

A
-A

L
L

 0
.0

.7
5

1



TempestTM Assembly Instructions for Future Operators
In Possession of 21st Century Technology

2

3

1

5

4

Figure 23: TempestTM Operations,Maintenance,and Service Manual  (1981)

Screenshot of Tempest in operation.

This information card is intended to aid the computer operators of 
tomorrow to reconstruct TempestTM from 6502 macro assembler 
sources, in the unforeseen event that AtariTM personnel are no longer 
available to assist.

Prerequisites 
A Digital Equipment CorporationTM PDP-11TM microcomputer or an 
advanced simulator, perhaps by the name of simh, with an RT-1 
operating system environment. For build resources, including an 
AtariTM assembler toolchain, refer to the Troubleshooting section 
below.

Instructions for Operators
 1   Collect the Tempest source files on to a single RK05 disc pack. 
A complete list, with helpful description, is given in the right-hand 
panel.

 2   In your PDP-11TM microcomputer, or simh simulator, execute the 
MAC65 command on each file to assemble it using Atari's 
proprietary macro assembler programme. Version 3.09 or above is 
preferred. This step will create a set of OBJ binary files, for example 
ALWELG.OBJ, ALSCO2.OBJ, and so on. Note that the source file 
names reflect the fact that TempestTM's working title was Alien 
Well GameTM.

 3   You are now ready to link the OBJ files and create the final game 
binary, ALEXEC.LDA. In your RT1 OS environment run the LINKM 
command as described in panel 3.

 4  You are now ready to write the contents of the ALEXEC.LDA 
object binary to the ROM chips on your TempestTM A037383-02 
PCB Assembly board. Notice that we write 2048 byte chunks of the 
ALEXEC.LDA binary to 11 ROMs at the positions indicated on the 
board in the panel below.

 5   You can now play TempestTM. 

Troubleshooting
If you experience any diffiiculty in following the steps above, you may 
find it useful to consult https://github.com/mwenge/tempest/ for 
futher information. If you just want to have some fun with your new-
found aptitude assembling TempestTM source code, you could also 
try https://github.com/mwenge/tempest_fun.

Rob Hogan

Tempest: Assembly Instructions for Future OperatorsRetro

https://github.com/mwenge/tempest
SAA-POOL 0.0.752

https://github.com/mwenge/tempest/
https://github.com/mwenge/tempest
https://github.com/mwenge/tempest/


Disassembling with LLVM 
I needed to disassemble a sequence of raw bytes into MIPS instructions programmatically. Capstone[1] is an 
excellent option for this task, but my project already relies heavily on LLVM, and I prefer to avoid introducing 
additional dependencies. Fortunately, LLVM[2] provides a disassembler API for all supported architectures. In this 
article, I’ll walk through building a simple disassembler for mipsel32 using these facilities. 
 
First, we need to initialize the components: 
  InitializeAllTargetInfos();         InitializeAllTargetMCs(); 
  InitializeAllDisassemblers();       InitializeAllAsmParsers(); 
 
Next, specify the Instruction Set Architecture (ISA) via a triple: 
  std::string tripleName = "mipsel-unknown-linux"; 
  auto *theTarget = TargetRegistry::lookupTarget(tripleName, error); 
 

MIPS in LLVM has the following instruction set choices: mips64el - 64-bit little endian; mips64 - 64-bit big endian; 
mipsel - 32-bit little endian; mips - 32-bit big endian 
 
Next, we create the disassembler: 
  const MCRegisterInfo * mri = theTarget->createMCRegInfo(tripleName); 
  const MCAsmInfo      * mai = theTarget->createMCAsmInfo(*mri, tripleName, options); 
  const MCSubtargetInfo * sti = theTarget->createMCSubtargetInfo(tripleName, "", ""); 
  const MCInstrInfo     * mcii = theTarget->createMCInstrInfo(); 
 
  MCContext ctx(Triple(tripleName), mai, mri, sti); 
  MCDisassembler * disAsm = theTarget->createMCDisassembler(*sti, ctx); 
 
A separate printing component is necessary for the pretty output: 
  MCInstPrinter * ip = theTarget->createMCInstPrinter( 
                                      Triple(tripleName), 0, *mai, *mcii, *mri)); 
 
Finally, we iterate through the instruction bytes buffer (.text section of an ELF file; using 
object::ObjectFile::createObjectFile) to translate instructions into a pretty and human readable form: 
  ArrayRef<uint8_t> bytes(textSection.data.data(), textSection.data.size()); 
  uint64_t address = 0;     uint64_t size; 
 
  while (address < bytes.size()) { 
      MCInst inst; 
      auto s = disAsm->getInstruction(inst, size, bytes.slice(address), 
                                      textSection.address + address, nulls()); 
      if (s == MCDisassembler::Success) 
          ip->printInst(&inst, textSection.address + address, "", *sti, outs()); 
      address += size; 
  } 
 
Inside of the while loop we can identify individual instructions for special handling: 
  switch (inst.getOpcode()) { 
      case llvm::Mips::LW:   outs() << " <LOAD>"; break; 
      case llvm::Mips::SW:   outs() << " <STORE>"; break; 
 
Important to note that the opcode constants are considered internal values. LLVM built from source will be necessary 
to obtain template generated header: #include "Target/Mips/MipsGenInstrInfo.inc".  
 
Now we have a fully functional linear disassembler. My full implementation is available in a Gist[3]. Happy hacking!  
 
[1] https://www.capstone-engine.org/ [2] https://llvm.org/pubs/2004-01-30-CGO-LLVM.html [3] https://gist.github.com/nologic/8cc875823716f6f801d4f9dccfab4105 

Mikhail Sosonkin

Disassembling with LLVM Reverse Engineering

https://github.com/nologic
SAA-TIP 0.0.7 53

https://www.capstone-engine.org/
https://llvm.org/pubs/2004-01-30-CGO-LLVM.html
https://gist.github.com/nologic/8cc875823716f6f801d4f9dccfab4105
https://github.com/nologic


Obfuscating Crypto1 Constants
The following function initializes two arrays of values.
Do you know what these arrays are used for?

#include <stdint.h>

#include <stddef.h>

#define N 11

#define P 312

#define H 8

#define K 64

#define M (1LL<<32)

void init(uint32_t *h, uint32_t *k) {

size_t pi = 0;

uint8_t ip[P-2];

for (size_t p = 0; p < (P-2); p++) {

ip[p] = 1;

}

for (size_t p = 0; p < (P-2); p++) {

if (ip[p] == 0) {

continue;

}

if (pi < H) {

double x = p + 2;

double xn = x / 2;

for (size_t i = 0; i < N; i++) {

xn = 1.0/2*xn+x/(2*xn);

}

h[pi] = (uint32_t)(uint64_t)(xn*M);

}

if (pi < K) {

double x = p + 2;

double xn = x / 3;

for (size_t i = 0; i < N; i++) {

xn = 2.0/3*xn+x/(3*xn*xn);

}

k[pi] = (uint32_t)(uint64_t)(xn*M);

}

pi++;

for (size_t n = p+2; n < (P-2); n++) {

size_t val = (p + 2) * n - 2;

if (val + 1 > (P-2)) {

break;

}

ip[val] = 0;

}

}

}

static uint32_t h[H], k[K];

int main() {

init(h, k);

// h & k used as part of an algorithm

// ...

}

1Crypto still stands for cryptography

One of the techniques I presented in my article in Is-
sue #2 of PagedOut on identifying cryptographic al-
gorithms was to use constants in the algorithm to fin-
gerprint them. We can try to thwart such attempts
by obfuscating the constants. It is possible to employ
generic obfuscation techniques, e.g. encryption or vir-
tualization, but another fun way to do it is to dynam-
ically generate the constants based on their underlying
definition.

Explanation of the code

In the SHA2 family of hashes, two sets of constants
are used: the initial state H and the round constants
K. Each entry in these lists of constants is defined as
the first 32 bits of the fractional part of the square and
cube roots, respectively, of the first prime numbers. For
example K[3] = ⌊232 ∗ 3

√
7⌋ = e9b5dba516.

In the example to the left, we calculate the SHA256 con-
stants dynamically instead of hard-coding those num-
bers. First, we know that we need the first 64 prime
numbers, the last one being 311 so we run the Sieve of
Eratosthenes for the first 311 numbers. Then for each
prime number, we calculate the square and cube roots
as needed using 11 iterations of Newton-Raphson.

√
x =

{

x0 = x/2

xn+1 = 1

2

(

xn + x

xn

)

3
√
x =

{

x0 = x/3

xn+1 = 1

3

(

2xn + x

x
2
n

)

In this variant, the values are calculated once and are
later reused when needed. For an additional perfor-
mance cost, it is possible to instead re-calculate these
values every time they are needed, thus making them
sit around in memory for only very short periods of
time, which might make not only static but even some
dynamic analysis more challenging.

Other Algorithms

This was just one example, but the technique can be
applied to several cryptographic algorithms. MD5 uses
⌊232| sin(x)|⌋ of the first 64 integers, and SHA1 uses
230

√
x for the numbers 2, 3, 5 and 10. For initializa-

tion, they both use numbers based on runs of digits in
hexadecimal, such as 0x67452301 and 0xEFCDAB89.
The S-box used in AES, while based on some nontrivial
mathematics, can be calculated with a simple loop.

Summary

Using the underlying mathematical definitions to dy-
namically compute constants for cryptographic algo-
rithms removes them as statically identifiable artifacts
from the code. This provides a low-overhead and easy-
to-implement tool in the toolbox to misdirect reverse
engineers, making it more difficult for them to find the
cryptographic algorithms which often are used in inter-
esting parts of the code.

Calle "ZetaTwo" Svensson

Obfuscating Crypto ConstantsReverse Engineering

https://zeta-two.com
https://zetatwo.bsky.social SAA-TIP 0.0.754

https://zeta-two.com
https://zetatwo.bsky.social


A new binary arrives at John Payload’s desk: it is an ELF x86-64 

binary that calculates a certain type of numeric series, but it is not 

yet known which one.

1. The symbols do not show much, although they are quite obfusca-

ted, maybe with a cipher. It is decided to start the analysis from the 

first _start function.

2. The _start function calls the main function, which calls the 

snovbanppv function. The result of the function is passed to 

the printf function.

3. Through strace we do not show any interesting behavior. We note 

that with input it seems to be dependent on the number of parame-

ters passed into the shell.

4. The disassembled form of the function can help: we find some 
simple operations and the final result is written inside the EAX 
register.

5. The flow control graph of the svobanppv function suggests 

that there is a loop, still however John could not figure out what it 
actually calculates.

WHICH NUMBER SERIES IS COMPUTED WITHIN THE FUNCTION ?

THE BINARY RIDDLES

OF JOHN PAYLOAD

1st Reverse Engineering Puzzle

HOW IT WORKS: Help John solve the puzzle by looking at the 

various artifacts! The solution will be published in the next issue of 

PagedOut.

“THE THIRD TIME DECEIVES”

Welcome! This is an experiment: John Payload is an improvised security researcher attempting to unravel the contents of a binary. There are 

5 tables with information about a binary to analyze; the goal? Solve the puzzle at the bottom of the page. If you are interested in providing 

feedback or proposing new stories, please email John Payload: johnpayload@protonmail.com. 

int _svobanppv(...):

0x10470 push rbp 

0x10471 mov rbp, rsp 

0x10474 test edi, edi

0x10476 jle 0x10489

0x10478 cmp edi, 0x3

0x1047b jae 0x1048d

0x1047d mov rax, 0x1

0x10487 jmp 0x1048b

0x10489 xor eax, eax 

0x1048b pop rbp 

0x1048c retn 

0x1048d add edi, 0xfffffffe

0x10490  mov rcx, 0x1

0x1049a  xor edx, edx

0x1049c  mov rax, rcx

0x1049f  sub edi, 0x1

0x104a2  jb 0x1048b

0x104a4  add rdx, rcx

0x104a7  mov rsi, rdx

0x104aa  add rsi, rax

0x104ad  mov rdx, rcx

0x104b0  mov rcx, rax

0x104b3  mov rax, rsi

0x104b6  jmp 0x1049f

john@payload:$ file unknown.elf

ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), 
dynamically linked, interpreter /lib64/ld-linux-x86-64.
so.2, BuildID[sha1]=54e0a2e14307d20367c2886caccce5795e45
d49d, for GNU/Linux 3.2.0, not stripped

john@payload:$ nm unknown.elf
...
0000000000001090 T main
0000000000001179 T svobanppv
0000000000002475 T wbua_jr_frr_lbh
0000000000002478 T CyrnfrqbagfgrnyZnpBF
0000000000002484 T abgrirelguvatvferny
0000000000002487 T qrprcgvba
...

john@payload:$ readelf -e unknown.elf
Type:           DYN PIE
Machine:        Advanced Micro Devices X86-64
Version:        0x1
Entry point:    0x1090

john@payload:$ strace ./unknown.elf 1
write(1, “1\n”, 2) = 2

john@payload:$ strace ./unknown.elf 1 a
write(1, “2\n”, 2) = 2

john@payload:$ strace ./unknown.elf 1 a b
write(1, “4\n”, 2) = 2

john@payload:$ strace ./unknown.elf 1 a b 3
write(1, “7\n”, 2) = 2

john@payload:$ strace ./unknown.elf 1 a b 3 c
write(1, “13\n”, 3) = 3

john@payload:$ strace ./unknown.elf 1 a b 3 c d
write(1, “24\n”, 3) = 3

john@payload:$ strace ./unknown.elf 1 a b 3 c d e
write(1, “44\n”, 3) = 3

start:

0x01090 endbr64 

0x01094 xor ebp, ebp 

0x01096 mov r9, rdx

0x01099 pop rsi 

0x0109a mov rdx, rsp 

0x0109d and rsp, 

0xfffffffffffffff0

0x010a1 push rax 

0x010a2 push rsp 

0x010a3 xor r8d, r8d 

0x010a6 xor ecx, ecx 

0x010a8 lea rdi, [rel main]

0x010af call [start_main]

start_main:

0x01060 endbr64 

0x01064 push rax

0x01065 call svobanppv

0x0106a push 0x2 

0x0106c lea rsi, [rel 

data_402004] 

0x01073 pop rdi 

0x01074 xchg rdx, rax

0x01076 xor eax, eax 

0x01078 call __printf_chk

0x0107d xor eax, eax 

0x0107f pop rdx 

0x01080 retn

bb_0x10470

bb_0x10489

bb_0x10478

bb_0x1048b

bb_0x1048dbb_0x1047d

bb_0x1049f

bb_0x104a4

John Payload

The 1st binary riddle of John Payload Reverse Engineering

SAA-ALL 0.0.7 55



Turning a GCC anti-debug trick 
into a Local Code Execution 

This article requires minimal knowledge 
of the C programming language. 

GCC’s __attribute__((constructor)) lets 
you execute a function before main() is 
entered, by placing its pointer in the 
ELF’s .ctors/.init_array section. By 
inserting anti-debugging checks into 
such constructors, you can effectively 
detect debuggers and take appropriate 
action (i.e: exit). The reason this works 
is because most debuggers set 
breakpoints at main. However, 
constructors execute before main, 
effectively allowing stealthy arbitrary 
code execution on the host machine. 
This could be used maliciously or to 
alter your own app's behavior, if a 
debugger is detected. This makes 
reverse-engineers and automated tools 
far less likely to spot or bypass your 
checks, since they occur in code that 
isn’t part of your entry point function or 
typical library initialization routines. We 
therefore present the following minimal 
Proof-of-Concept (POC) code to 
demonstrate this: 

 

#include <stdio.h> 

void  _attribute__((constructor)) 
__constructor(void) { puts("[+] Executed 
before main :P"); } 

int main() {return 0; } 

 
Execution with GDB and a breakpoint on main 
returns: 
[+] Executed before main :P 
Breakpoint 1, 0x0000555555555153 in main() 
In theory, GDB should break before running 
any code. This is visibly not what happens, as 
our pre-main function was called and executed, 
given the print statement. 

 
#include <stdio.h> 
#include <stdlib.h> 

#include <string.h> 
void __attribute__((constructor)) antidbg(void) 
{ FILE *f = fopen("/proc/self/status", "r"); if 
(!f) { perror("fopen"); return; }char line[256] = 
{0}; while (fgets(line, sizeof(line), f)) { if 
(strncmp(line, "TracerPid:", 10) == 0) { int 
tracer_pid = atoi(line + 10); if (tracer_pid > 0) 
{ printf("[!] Debugger detected (TracerPid = 
%d)\n", tracer_pid);{ else {  
puts("[+] No debugger detected"); } break;}} 
fclose(f); } 
int main(void) {return 0; } 

 
 
Execution with GDB, breakpoint on main: 
[!] Debugger detected (TracerPid = 254946) 
Breakpoint 1, 0x0000555555555297 in main () 
$ ./a.out 
[+] No debugger detected

Tested on GDB (Debian 13.1-3) and LLDB 
(14.0.6). Theoretically works on any debugger 
that doesn't intercept constructors. The second 
PoC works across all gdb/lldb frontends. A 
potential countermeasure involves early 
breakpointing on glibc's _init, but this is 
ineffective in CRT-free programs. Thus, we've 
shown that constructors enable arbitrary 
code execution by default on major Linux 
debuggers, offering a viable, lesser-known 
method to anti-debugging. At the time of 
writing, there is no known malware that 
uses this to infect reverse-engineers, though 
in theory nothing stops one from existing, as 
this is effectively an LCE “exploit”, or at least 
a very cool trick. Don’t forget to debug 
untrusted executables in VMs. 

 

 

–––––––––– 

cute CC0 

kitty 

–––––––––– 

LibyanLake 

   

 
Serexp

Turning a GCC anti-debug trick into a LCEReverse Engineering

GitHub @serexp
X @myserialexps

blog https://serexp.lain.la SAA-ALL 0.0.756

https://serexp.lain.la


4:<7;28".5<3"1&3"/2+<)".9-" <2)<3(�

' #�%"&5!���!���!���!����0��

' ��%"&5!���!���,��!
��,�,��

�
�!���	�!����!/�*��.$6#��

��:;3<("��".7-&�<3"���#�

EFi\jP\_geFd`[Z_jFegZg_Z[X\FTXSFQNLHGbFP\eFlQW

EFV[_SX_XegFb[g`gSFZXFC[daPA[@gFeg_XK^[AgSF[\ZgS\PAdD

EFUg`Fda^^XSZFTXSFMS[HXSgFPS_j[Zg_ZaSgc

EFY^Z[K[@geF?XhP\]FP\PAOd[dD

EFNK^SXCgeF\PCFgS]X\XK[_dFfFg>Zg\d[CgFadgSF[\^aZFda]]gdZ[X\c

EFY^g\kdXaS_gFNJlFLJR

EFEL[K^AgSFd_S[^Z[\]IF\g`FX^g\kdXaS_gFNJlFJXKP[\FlBN

px�z�~��{�y�wvq�t�s��~��}����{r���~o��

�~�|�o���s{u�n�~�m

��������������������

�����������������

°®¯¨­¬«©§¬§®¯¬¦¤§¯¢§¬ª¯¤§©¥¯¢¬¡¬®¯� ¥¤�¢�¨«���¦«£¬

¸µ´¶³²±·

WE’RE H IR INGWE’RE  H IR ING

HACKERS.DOYENSEC.COMHACKERS.DOYENSEC.COM

https://hex-rays.com/blog
https://hackers.doyensec.com/


There are plenty of ways to get RCE on a device - WiFi, Bluetooth, SMS, etc. One method you don’t hear about often (pun
intended) is sound. In this article, we’ll get RCE on a security camera using sound, and use it to pop a root shell.

Sonic PairingSonic Pairing

I’ve already talked about the device featuring in the article -
the camera I got to play DOOM on its stream. For those who
haven’t seen this, it is a cheap PTZ camera that uses the Yi
IoT app.

When the camera is reset, it enters amodewhich constantly
waits for WiFi credentials that can be delivered using a few
methods - one of which is called ‘Sonic Pairing’.

This feature uses frequency modulation magic to encode the
given WiFi password, SSID, and bind key, into a sound. The
user’s phone plays this sound near the camera, and using
the built-in microphone, it detects and decodes it. The de-
coded credentials are then used to connect to the network.

A hint that made me take a closer look at this surface (aside
from being sound-based) is that, at the time, the feature was
listed as ‘beta’ on the Yi IoT app.

Generating Custom SoundsGenerating Custom Sounds

Inputting data via the app obviously limits the format of data
modulated into the sound - it isn’t possible to send bytes
that are not valid characters. We need to generate sounds
with fully controlled contents to exploit anything memory-
corruption related.

Jadx was used to locate functions related to sound genera-
tion by focusing on relevant strings and similar indicators.
I eventually came across a function that calls the
com.ants360.yicamera.util.PcmUtil.genPcmData function.

This comes from a native library called libpcmjni.so. Luck-
ily, frida (an awesome tool with many use cases) can be used
to hook native functions. By hooking the function, we can re-
place the legitimate data that should get modulated onto the
sound with our own.

As long as the data is no longer than 128 bytes, we can
put (almost) whatever bytes wewant into generated sounds
with the following native hook:

const ghidraImageBase = 0x100000;
const moduleName = "libpcmjni.so";
const moduleBaseAddress = Module.findBaseAddress(

moduleName);
const functionRealAddress = moduleBaseAddress.add(0

x103c4c - ghidraImageBase);
Interceptor.attach(functionRealAddress , {

onEnter: function (args) {
args [0]. writeByteArray ([

0x62 , 0xa, 0x41 , 0x41 ,
...
0x41 , 0xa, 0x70 , 0x0

]);
console.log(hexdump(args [0]));

},
onLeave: function(args) {

console.log("done");
}

});

Bug 1: Stack OverflowBug 1: Stack Overflow

The sound wave parsing functionality is handled by the
sw_thread in the main anyka_ipc binary, this always lis-
tens for sounds that resemble the expected format. Once
received and decoded, it is split up into the ssid, pwd and
bind_key components using \n as a delimiter.

The string that can be provided by sound can be up to 128
bytes. In the function that handles these extracted creden-
tials, there is a call to sprintf(buffer, "ssid=%s", ssid) where
buffer is on the stack and has a capacity of 100 bytes (near
the end of the stack frame) - giving us a small stack overflow.

As the anyka_ipc binary has ASLR on shared libraries and
we have to worry about null terminators, this bug isn’t
enough to exploit by itself. As a PoC, I used the DOOM OOB-
read to leak a pointer (which is probably cheating as the
hotspot is required). However, with this I was able to jump
back into the stack buffer, and execute a simple payload that
turns the light on, sleeps, then crashes - here is a waveform
of my exploit (never thought I’d say that).

Bug 2: Global OverflowBug 2: Global Overflow

The second discovered bug is another simple one, this time a
strcpy overflow on the processing of the decoded ‘bind_key’.

Initially, I didn’t think this would be useful, but after spend-
ing some time investigating how the globalswe can overflow
were being used during the pairing process - I hit the jack-
pot.

As long as the first two characters of the bind_key are ‘CN ’
(which also makes the camera speak Chinese), we go down a
code path that uses a ‘did’ value we can overwrite with the
overflow. This is used in a constructed command that gets
executed via system() during the pairing process.

This means we can turn this global overflow into a reliable
command injection, without requiring any other bugs!

Exploiting for Root ShellExploiting for Root Shell

So how can we exploit this to get a root shell on the cam-
era? The easiest way is to construct a sound that executes
the telnetd command, and then we can connect with the un-
changeable default credentials once it has connected to the
network we control.

All we need is aWiFi hotspot thatwe control (it doesn’t need
to be connected to the Internet), and thewav file containing
the exploit. We can then do the following steps:

• Get near the camera
• Play the sound at the camera
• Wait until the camera connects to your hotspot
• Get the IP of the camera, login to the telnet with root
and no password

• Profit

Obviously this only works when the camera isn’t connected
to the cloud, so not very useful - but pretty cool nonetheless.
Here is the waveform of the second exploit!

Luke M

(Un)safe and Sound: Rooting a Camera with a NoiseSecurity/Hacking

Github: github.com/lr-m
SAA-TIP 0.0.758



 
BROWSER PERMISSIONS 

— — — —    — — — — 
PERMISSION HIJACKING 

 

 
Websites today are more than just places to read the news. They 
can access OS-like features like your camera, screen, or even 
USB devices. My tool1 reports almost 80 supported permissions. 
Browser permissions, each defined in their own spec, have two 
characteristics. If the permission is considered powerful, the 
user must grant access via a prompt. The second is whether it’s 
policy-controlled, meaning developers can manage it with 
the Permissions-Policy header. Permissions have default 
allowlists like 'self' or '*', and access can be delegated using the 
allow attribute. The tool also lets you configure the PP header for 
supported permissions. 

 

In this context, there are three common misconceptions. The 
first is the relationship between controlling delegation with the  
header and Same-Origin Policy (SOP). In short, you can only 
restrict delegation at the top level. Once a permission is delegated 
to a different origin, that origin can delegate it on to others without 
restrictions. The second misconception is about prompts for 
policy-controlled and delegated permissions. Even if an iframe 
requests access, the prompt only names the top-level site, not the 
iframe. Third, iframes don’t need to reprompt, even if they were 
added after the page loaded. Now, let’s dive into the threat 
models. 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

1 https://albertofdr.github.io/browser-permissions-tool/  

TARGETING EMBEDDED DOCUMENTS 
 

The first clear attack targets popular embedded documents with 
valuable (for us, at least) permissions. Targeting these embedded 
documents, similar to supply chain attacks, allows for large scale 
permission hijacking. The goal would be to breach the popular 
embedded documents, injecting our code into thousands of 
websites, potentially targeting millions of users. If the user has 
already granted the permission, we can directly hijack it, as 
explained in the third misconception. If the permission hasn’t been 
granted yet, we can take advantage of the second misconception 
and try our luck. If you’re wondering if this is possible and a real 
threat, yes, I’ve done it with a popular chat widget used by 500k 
sites globally, according to BuiltWith. Everything’s fixed now, but I 
honestly don’t want to think about how many users might’ve been 
exposed to the hijacking. It’s way bigger than I expected. 

 

TARGETING POPULAR WEBSITES 
Let’s explain the second case. This refers to websites that use 
specific permissions, like video or display-capture for 
conferencing sites, or USB for websites helping to configure your 
super expensive keyboard. On these sites, we can assume users 
give permission when they visit. So, if you come across 
permission hijacking (e.g., HTML injection) on one of these sites, 
you’ll probably get direct access to those permissions, just like we 
talked about in the third misconception. This includes cases 
where permission is granted but the camera isn't actively used, 
like when a button disables it. You could still be recorded without 
realizing it. Some permissions might have peculiarities, like the 
camera, you might notice the LED turning on. Anyway, the key to 
protecting themselves and, more importantly, their users, is the 
Permissions-Policy header (and a strong CSP would be 
ideal too). More specifically, if they don’t need other iframes to use 
the permission, they should declare the directive as 'self’ like: 
Permissions-Policy: camera=self 

++ Spec Issue  

You might think that’s all. Using the Permissions-Policy 
header with the 'self' directive should keep us safe, right? 
WRONG! I found a spec issue that actually bypasses this 
directive. How? By using the well known (well-known, right?) 
local-scheme documents. Want to know more? Check out my 
blog2! 

2 https://albertofdr.github.io/web-security-class/browser/browser.permissions  

Alberto Fernandez-de-Retana

Browser Permissions and Permission Hijacking Security/Hacking

Web: https://albertofdr.github.io/
Blog: https://albertofdr.github.io/web-security-class/

Twitter: https://x.com/alberto_fdrPublic Domain 59

https://albertofdr.github.io/browser-permissions-tool/
https://albertofdr.github.io/web-security-class/browser/browser.permissions
https://albertofdr.github.io/
https://albertofdr.github.io/
https://x.com/alberto_fdr


Lé
a P

in
to

W
all o

f m
e

m
o

rie
s

A
rth

ttp
s://w

w
w

.in
stag

ram
.co

m
/_le

a.p
in

to
_/

S
A

A
-A

LL 0
.0

.7
6

0

https://www.instagram.com/_lea.pinto_/


Data-Flow Analysis
for Security Testing

Data-flow analysis (DFA) is a static program analy-
sis technique originally used by compilers for program
optimizations. Recently, DFA has been used by static
application security testing (SAST) tools for detecting
taint-style vulnerabilities that cover many vulnerability
classes: command injection, null pointer dereference,
use-after-free, etc. Joern, Semgrep, and CodeQL are
some of the popular SAST tools that use DFA under-
neath the hood.

Taint-Style Vulnerabilities

A taint-style vulnerability is called “taint-style” because
it can be detected with a taint analysis. Taint analy-
sis determines whether information originating from a
source function can reach a sink function. Therefore,
the kind of questions a taint analysis can answer has
the following form: Can the return value of the source
function reach the parameter of the sink function? By
changing the source and sink functions in that question,
different taint-style vulnerabilities can be detected by
answering the question with a taint analysis.

1. x = getenv("X");
2. if check(x)

3. z = x;

4. else

5. y = z;

6. exec(z);

The C code snippet shown to
the right contains a taint-style
vulnerability, specifically com-
mand injection. getenv() re-
turns the string value of the en-
vironment variable “X” which
is user-controlled since the en-
vironment variable can be set
by the user. exec() passes its
string argument to the shell to
execute. From the code snippet, we can see that the
return value of getenv(), or the user-controlled data, is
initially assigned to variable x (line 1) and subsequently
assigned to variable z through x (line 3) in which z is
passed as an argument to exec() (line 6). Since user-
controlled data is passed as an argument to exec(), this
causes a command injection vulnerability in which the
user can execute any commands that they want in the
shell. A taint analysis can detect this command injec-
tion vulnerability by answering the previous question for
taint analysis with the source function set to getenv()
and the sink function set to exec(): Can the return value
of getenv() reach the parameter of exec()?

DFA Internals

To answer the previous question, DFA requires the
code’s control-flow graph as a prerequisite. The control-
flow graph represents the order of execution, and it in-
forms DFA on where to propagate analysis information.
The figure shows the control-flow graph of our code

snippet annotated with the taint analysis information af-
ter DFA is finished. Given the control-flow graph, four

x = getenv("X")

if check(x)

z = x y = z

exec(z)

{}

{x}

{x}{x}

x

x x

x

{x,z}

xz

GEN

GEN z

x
1

2

3 5

6

components configure DFA to perform a taint analy-
sis: abstraction, initial value, flow functions, and merge
function.
Abstraction refers to the program information to

track. In a taint analysis, we want to track variables
that are “tainted,” or user-controlled for command injec-
tion, and those variables’ actual values are unnecessary
to track. As a result, the abstraction is the set of tainted
variables or their variable names. DFA tracks tainted
variables at the statement level, so each statement is as-
sociated with the set of tainted variables that can reach
the statement. The initial value for each statement’s set
is the empty set since there are no tainted variables yet.
To operate on the abstraction, each statement has a cor-
responding flow function that defines how the statement
affects the tainted variables. The flow function for line
1 always generates tainted variable x (GEN x) and the
flow function for line 3 generates tainted variable z if
x is tainted (GEN z). The flow function for lines 2, 4,
and 6 is the identity function, which means that what-
ever tainted variables come into the statement will come
out of it. For statements with multiple incoming edges
in the control-flow graph, the merge function is used to
combine tainted variables from all incoming edges. A
taint analysis propagates a tainted variable if it comes
from any of the incoming edges, so set-union is used to
combine the tainted variables. For example, at line 6, it
does not matter whether tainted variable z comes from
the left or right program path: If it comes from any one
of the program paths, that means z, or user-controlled
data, can be passed as an argument to exec().

With the four components configured, a worklist or
queue is initialized with all statements in the CFG. In
a while loop, a statement is removed from the worklist
to process until the worklist is empty. For a removed
statement, DFA performs the following steps to process
it: (1) combines all incoming tainted variables with
the merge function if there is more than one incoming
edge in which the incoming edges are obtained using the
control-flow graph; (2) applies the flow function to the
incoming tainted variables to get the outgoing tainted
variables; (3) if the outgoing tainted variables are dif-
ferent from the original outgoing variables, propagates
the new outgoing variables to the statement’s outgoing
edges and adds the statements at the outgoing edges to
the worklist in which the outgoing edges and statements
are obtained using the control-flow graph.

Yu-Jye Tung

Data-Flow Analysis for Security Testing Security/Hacking

https://github.com/yellowbyte
CC0 61

https://github.com/yellowbyte


How do you say “help” in Chinese? The story of Zhong Stealer 
 

Leo Ramírez & Javy Ochoa from Bitso Quetzal Team 

 
I - The ticket 
 
Ittarted with a simple, humble ticket. During the 
December holiday slowdown, our support team 
received a suspicious help request. It came from 
someone who wasn’t a user, written in Chinese, 
and included what looked like a screenshot. In 
reality, it was a ZIP file containing an unnamed 
piece of malware. We believe everyone deserves a 
name, and that’s how this story starts. 
 
II - The problem 
 
Support agents are now a prime target for Threat 
Actors. They have access to sensitive data like 
user emails, phone numbers, ID documents, even 
account balances and home addresses (details that 
can enable phishing, SIM swapping, or in the worst 
cases, physical threats). Unfortunately, that last one 
is becoming more common. And when malware 
doesn’t work, some attackers (especially Initial 
Access Brokers) resort to bribing support staff 
directly to gain access to accounts or desktops. 
 
III - The attackers 
 
At first, the messages came in Chinese (we don’t 
even support that language in our platform). Then 
they switched to broken English, using names that 
didn’t match any region we operate in. The 
language felt off, like someone pasting lines from a 
bad translator like “Human Attention”, “error yes 
this” or weird Spanish words like  “someter” (a 
literal translation of “submit” that actually means to 
subjugate or overpower, not to send a form). 
They never included valid data and didn’t seem to 
understand even the most basic field formats. 
Phone numbers, tax IDs, and user references were 
always nonsense. The files they shared included 
names written in Simplified Chinese, such as 
“Android 自由截图_20241220” (Android Free 
Screenshot_20241220) or “图片_20241224 (2)” 
(Image_20241224 (2)). Inside, there were 
executables that followed a similar pattern, with 
filenames in both Simplified and Traditional 
Chinese like “图片_20241224.exe,” “圖片
2024122288jpg.exe,” or “图片_20241220.exe,” all 
crafted to look like harmless images or 
screenshots. 
 
IV - The malware, and another problem 
 
The file was detected by several antivirus engines, 
but none gave it a proper name. Labels included 
things like “AIDetectMalware”, “Malware.AI”, 
“ML.Attribute.HighConfidence”,  
 

 
 
 
“malicious_confidence_90%”, or just “Generic”. 
Machine learning and heuristics are useful, but only 
when paired with a clear naming system that allows 
traceability. So we gave it a name: Zhong Stealer 
(Zhong meaning “Central” in Chinese). 
It downloads additional components in plain sight, 
also flagged by antivirus tools using the same 
vague and inconsistent terms. These components 
include another binary which acts as a stealer and 
adds registry keys to gain persistence, a DLL 
library for that binary and a TXT or LOG file which 
contains mirrors for all files in case something 
stops working as intended. 
Then, the malware communicates with 
infrastructure in China and Hong Kong, and it's 
signed using different digital certificates, likely 
stolen from legitimate companies. In some cases, 
we suspect these certificates may have been 
obtained through a chain of shell companies, which 
would explain the variety and persistence of this 
tactic, because, how many certificates can they  
steal in such a short span of time? 
 
 

 
NotChineseMalware.zip attached successfully 

 
The campaign is still ongoing: It's been more than 
six months since we first saw Zhong, and the 
attackers are still trying to get their hands on our 
support agents. As part of a solution, we provide 
them with Cybersecurity training, where they have 
to report immediately to a superior any uncommon 
behavior with the customer, to avoid any future 
attack. We can’t recommend this enough, security 
is an everyday thing done by everybody. 
 
V - The take away 
 
We published a full analysis with IOCs at 
https://quetzal.bitso.com/p/stealing-christmas, and 
we hope you enjoy reading it. 
 
Keep in mind that at this time we all can be 
targeted. Stay safe, always keep your infosec team 
on the loop and don’t go clicking on random things! 

Javier Ochoa Bernal,
Leopoldo Ramírez del Prado Esquivel

How do you say "help" in Chinese? The story of Zhong StealerSecurity/Hacking

CC BY-SA 4.062

https://quetzal.bitso.com/p/stealing-christmas
https://quetzal.bitso.com/p/stealing-christmas,


How to encrypt your 
drive, Like a boss  
By Idan Korgenevitch 

 

One day, I woke up and thought of an idea to encrypt 

my drive with a flash drive, and sure, there is an easy 

solution online, but no, it wasn’t challenging enough 

for me. And then I stumbled across cryptsetup, 

surprisingly not a hard tool to wrap your head 

around, but it takes a while to understand what it 

does, starting with syntax: 

 
cryptsetup <action> <options> <action args> 

 

The actions: 
1. luksFormat <device> <options> <keyfile> 

 

Formats the encrypted device (either luks1 or luks2, 

change with “--type”) to a luks type partition. 

The keyfile, as the name suggests, is a file with the 

decryption key, written as a path in the <keyfile> 

argument; for entering the password manually, the 

<keyfile> option is omitted. 

 

Options include but are not limited to: --hash,      

--cipher, --keyfile-size, --uuid and more 

 

2. open --type <device type> <options> 

<device> <name> 

 

After the decryption process, the <name> is created, 

and is a mapping to <device>, essentially behaves as 

a decrypted device1, parameter “--key-file” is added 

if the password was provided via a file. 

 
3. close <options> <name> 

 

Important, the <name> parameter is the name of the 

mapping mentioned in the 2nd action, essentially 

this command closes the mapping, and it becomes 

inaccessible until reopened. 

 

Example 

 

 
1 It is mandatory to initialize a file system 

In this example, “secret” is a mapping to sda2 after 
being decrypted 

 

 
 

Here /dev/sda2 is a LUKS type partition, meaning it is 

an encrypted device 

 

/etc/crypttab – extra 
 

 

 
 

The file defines the mapping settings after booting 

the machine as follows: 

Take <device>, check <options> and follow them, 

decrypt it using “/system.keyfile” from 

“/dev/sdb1” and create mapping called <name> 

 

About the <device> option, it allows 3 options, either 

“none”, file from system, file from another device, the 
syntax for the 3rd option is: <path>:<device> 

*to get the UUID of the device execute “blkid” 

 

After finishing the configuration, update the boot 

loader with: 

(arch, Manjaro etc.) execute: 
• mkinitcpio -P  

 

(Debian, Ubuntu etc.) execute: 
• update-initramfs -u -k all 

 

Now you can be sure that no one will access your 

important cute kitty photos on your laptop !!! 

 

What now 
Go wild and learn even more, try to encrypt with 

more than one keyfile, different formats, unlock on 

boot under certain conditions, good luck reader :)  

Idan Kor

How to encrypt your device, like a boss Security/Hacking

SAA-NA 0.0.7 63



IOKit for Vulnerability Research in One Page 
Learn the IOKit external method mechanisms that expose kernel drivers to the user space in macOS. 

Introduction 

IOKit is an Apple’s C++ framework for writing kernel drivers that respond to user-space requests. Its interface—from a user API call to a 
driver function—defines the primary attack surface for macOS kernel vulnerability research. 

IOKIT BUILDING BLOCKS 

There is a registry with entries that point to services. These services are driver instances we can reach indirectly from the User Space. 

Registry: A dynamic, tree-structured store of all drivers and hardware objects. It is populated at boot by loading each .kext, 

parsing its Info.plist, and registering entries. 

Personalities: Key-value dictionaries in each .kext’s Info.plist that describe driver matching criteria (vendor IDs, device 

classes, etc.). The kernel uses personalities to bind hardware to the correct driver class. 

Services: Runtime instance of a driver class (e.g., IOUSBDevice). Published in the IORegistry when hardware appears. 

Discovered by user space via matching calls (IOServiceGetMatchingService). Described by the IOService class. 

USER CLIENTS 

Applications do not talk to IOService instances directly. Instead, they use UserClients. 

IOServiceOpen → newUserClient(): When an app calls IOServiceOpen, the kernel invokes driver->newUserClient(), 

which returns a Mach port representing the newly created IOUserClient object in kernel space. 

Access Control: Drivers can inspect the caller’s entitlements and sandbox status, refusing or tailoring the returned client 

type (roles) based on privileges. 

EXPOSED ENTRY POINT 

After obtaining the port, the app in user-space can call IOConnectCallMethod, which lands in the driver’s externalMethod: 

IOReturn externalMethod( 
    uint32_t selector, 
    const uint64_t* inScalars,    uint32_t inScalarCount, 
    const void* inStruct,         size_t inStructSize, 
    uint64_t* outScalars,         uint32_t* outScalarCount, 
    void* outStruct,              size_t* outStructSize 
); 

Dispatching: When IOConnectCallMethod is invoked, the kernel hands off control to externalMethod, which contains the 

dispatcher code. The dispatching logic varies, but it consistently treats the selector as an index in a static dispatch table.  

Dispatch Table: The table entries hold the driver functions and define the expected counts for input scalars and the input 

struct. The kernel first verifies that the selector is within range and that the sizes match. Only then does it call the driver 

function with the user’s buffers. 

CONCLUSION 
Since only the sizes are checked—not the contents of the buffer—externalMethod is an excellent target for fuzz testing. In user space, 

monitor the IOConnectCallMethod() calls. When fuzzing, ensure you are using the correct Scalar and Struct sizes, which can be found in 

the dispatch table of each driver. You can locate it in the externalMethod of the driver (e.g., H11ANEInUserClient::externalMethod). 

References 

1. https://github.com/Karmaz95/Snake_Apple 
2. https://afine.com/case-study-iomobileframebuffer-null-pointer-dereference 
3. https://afine.com/case-study-analyzing-macos-ionvmefamily-driver-denial-of-service-issue 
4. https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals  
5. https://karol-mazurek.medium.com/drivers-on-macos-26edbde370ab?sk=v2%2F8a5bbc18-aae7-4a68-b0dd-bb5ce70b5752 

Karol Mazurek

IOKit for Vulnerability Research in One PageSecurity/Hacking

GitHub: https://github.com/karmaz95
X/Twitter: https://x.com/karmaz95

Blog: https://www.patreon.com/Karol_Mazurek CC BY 4.064

https://github.com/Karmaz95/Snake_Apple
https://afine.com/case-study-iomobileframebuffer-null-pointer-dereference/
https://afine.com/case-study-analyzing-macos-ionvmefamily-driver-denial-of-service-issue/
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals
https://karol-mazurek.medium.com/drivers-on-macos-26edbde370ab?sk=v2%2F8a5bbc18-aae7-4a68-b0dd-bb5ce70b5752
https://github.com/karmaz95
https://x.com/karmaz95
https://www.patreon.com/Karol_Mazurek
https://afine.com/case-study-iomobileframebuffer-null-pointer-dereference
https://afine.com/case-study-analyzing-macos-ionvmefamily-driver-denial-of-service-issue


Ch
eck

out
the

cod
e!

gith
ub.

com
/lr-

m/Yi
haw

At this point, it is a pretty well-proven fact that “if it has a screen, it can play doom”. In this article, I extend the scope of devices covered by
this rule by remotely hacking an IoT camera to stream DOOM - without touching the firmware!

Target
This investigation focuses on generic cameras using the Yi IoT app,
usually found on eBay, Amazon, and AliExpress. (I bought mine from
AliExpress for £15.) Identical cameras using different apps are beyond
this article’s scope.
These cameras, based on an Anyka SoC (with an ARM MCU) running
Linux, come in various forms. A root shell is easily obtained via UART
test points.

They are packed with interesting features, such as cloud control,
two-way audio, motion tracking, etc.
There are two modes: Hotspot and Cloud. In Hotspot mode, you
connect to an access point hosted by the camera to interact with and
view the stream. Cloud mode allows remote access via relay servers.
This article assumes the camera is in Hotspot mode, offering a larger
attack surface.

Mitigations?
The main anyka ipc binary has NX on the stack and ASLR on only
the stack/shared objects. The heap is already executable, which is
handy. As ASLR is only present on the shared libraries, we only need
to account for their varying memory locations - a leak would be nice
if we find memory corruption.

Bugs

• Stack Overflow : A message handler in the camera has a trivial
strcpy() stack overflow. The overflow occurs in an executable
shared library memory region (libYiP2P.so) - as string-based,
no null bytes in payload.

• File Write: The software update handler accepts files through
port 6000. An MD5 hash is provided and subsequently checked
against that of the received file. If the provided MD5 hash check
fails, the file isn’t deleted.

• OOB-Read : A missing bounds check in the message header offset
lets us read beyond the buffer containing the incoming message.
This lets us leak useful addresses remotely (to work out the loca-
tion of the packet in executable memory!).

• And many more, but these can do everything we want.

Getting Arbitrary Code Execution
Lets use the primitives we have above to get ACE. Here are the exploit
steps:

Hijacking the Stream
Now that we can execute arbitrary code, we can overwrite the yuv420p
frames from the sensor. There are three main threads for handling
and sending footage to the app:

• capture_thread: Gets yuv420p data from the sensor and adds
it to the encode list.

• encode_thread: Takes yuv420p data from the encode list and
sends it to the hardware encoder to convert it into an h264 frame.

• yi_live_video_thread: Sends the h264 encoded frame to the
app.

Stage 2 exits those threads by setting global flags that cause them
to exit, then starts our own versions. The difference is that our
capture_thread gets yuv420p data from a non-sensor source, al-
lowing us to control the data fed to the hardware encoder (which
converts yuv420p data into h264).

IPC
To enable communication between our stage 2 running in anyka ipc
and the DOOM binary, I used two regions of file-backed shared mem-
ory: one for yuv420p frames from DOOM to stage 2, and one for
controls from stage 2 to DOOM. I mapped the memory into both
processes using mmap().

Porting and Compiling DOOM
This was easier than expected thanks to doomgeneric, which simplifies
porting DOOM by requiring the implementation of a few functions. I
omitted DG_SleepMs and DG_GetTicksMs as they are straightforward:

• DG_Init (Init your platform): Precompute lookup tables for RGB
(from DOOM) to yuv420p (for the app) and mmap() shared mem-
ory for the framebuffer and controls.

• DG_DrawFrame (Copy framebuffer to platform screen): Convert
the RGB framebuffer to yuv420p using lookup tables and write to
framebuffer shared memory.

• DG_GetKey (Provide keyboard events): Get current app buttons
pressed from shared memory sent from our stage 2.

With our functions implemented, we simply cross-compile DOOM
using:

arm -linux -gnueabi -gcc -static -Ofast *.c -o doom

Now we have our doom binary compiled, we upload the binary and
doom1.wad to tmp using our file-write primitive - we then run it in our
stage 2 using system(). And we have hijacked the camera stream
with DOOM!

Luke M

If It Has a Stream, It Can Play DOOM Security/Hacking

Github: github.com/lr-m
SAA-TIP 0.0.7 65

https://github.com/lr-m/Yihaw
https://github.com/ozkl/doomgeneric


The Trigona ransomware family initially ap-
peared in 2022 on Windows. It was ported to
Linux in 2023. It is implemented in Delphi! In
this article, we focus on a new variant for Linux
of April 2025 [1]. The main runs through the
following stages:

Figure 1: Main() of Linux/Trigona

The configuration encryption of Trigona is
very specific: for no apparent reason, the con-
fig is encrypted twice. The same occurs in this
sample. In Figure 2, the email, key and IV values
are examples (not the real values).

Figure 2: Decrypting the configuration file

The ransomware accepts a few options. The
most interesting or new ones are listed in he fol-
lowing table.
The /notcmd option (a poorly chosen name)

updates the ransomware’s list of commands to
run. Each command of the list is executed in its

Command Description

/fast Only files under 512 KB are pro-
cessed. Larger ones are skipped.

/full Mutually exclusive with /fast.
Processes all files.

/allow system Allows encryption of files in
/proc, /sys, /run, /dev, /lib and
other Linux system directories

/chattr-i Prevents modification, deletion
and renaming of important sys-
tem files.

/nohup Runs the process in a terminal
using nohup to make it immune
to hangup signals.

/stealth Checks if files are encrypted.
/notcmd See code.

/do not poweroff Does not power off the host after
file encryption.

Table 1: A few options of Trigona

own separate shell.

// generated by Claude Sonnet 3.7

// decai [2] + tailored prompt for Free Pascal

Compiler→֒

for (current_cmd = 0; current_cmd <= cmd_count;

current_cmd++) {→֒

...

cmd_string = get_command(processor,

current_cmd);→֒

exec_result = shell_execute(cmd_string,

result_string, 1);→֒

}

The other novelties of the sample are the fol-
lowing:

• Adds functionalities to list and kill
VMWare ESXi virtual machines: (1)
list all VMs via vim-cmd vmsvc/getallvms,
(2) kill: vmsvc/power.off.

• The typical double extortion mechanism of
Trigona is not implemented in the variant:
files are encrypted on the disk but not ex-

filtrated.
• Small variations in encryption: the vari-
ant doesn’t use AES OFB but only CBC +
an added MD5 hash.

References

[1] SHA-256: c08a752138a6f0b332dfec981f20ec414ad367-

b7384389e0c59466b8e10655ec

[2] https://github.com/radareorg/r2ai

Cryptax

The Linux Trigona RansomwareSecurity/Hacking

https://mastodon.social/@cryptax
https://bsky.app/profile/cryptax.bsky.social

https://github.com/cryptax/ SAA-NA 0.0.766

https://mastodon.social/@cryptax
https://bsky.app/profile/cryptax.bsky.social
https://github.com/cryptax/


Types of SQLi (kids 
these days need to 
rename 
everything!!1one) 
Hello reader, I am guessing that SQL injection is not 

a foreign topic to you. I confess that it isn’t a foreign 
topic to me either. However, I recently learned that 

there are several types of SQL injections, and 

despite knowing most of the types, I did not know 

that there were types and simply knew them all as 

"SQL Injection". Most of us are self-taught and as 

such, our knowledge can be a little chaotic at times. 

My goal with this article is to provide a little 

structure for that chaos. 

Tautologies/Always-true1  

These are probably the first SQL injections that we 

have all learned. The concept is simple, inject a 

payload in one or more conditional statements so 

that it always evaluates to TRUE, which, depending 

on the context, can bypass auth, return more 

results, or reveal other behaviours. 

Union Query2  

Here the attacker seeks to insert a UNION operator 

on the payload. This operator allows the query to 

search for data on other tables (with table names 

discovered through enumeration or a list of 

common names) which can allow us to exfiltrate 

the entire database (DB). Attention: the number of 

attributes on SELECT needs to be equal. 

Piggy-Backed/Stacked Queries3  

Here the attacker uses a payload to terminate the 

original SQL statement and adds additional queries 

separated by a semicolon. This allows them to run 

multiple commands in one request, such as deleting 

tables or creating new accounts (therefore they 

aren’t bound to just a SELECT command). 

Illegal/Error-based2  

Attackers intentionally create incorrect queries to 

trigger detailed error messages. These DB error 

responses can reveal table or column names, DB 

version, and other useful details for other attacks. 

Timing Injection 2  

A type used when the DB isn’t returning errors. So 
attackers use DB time delays to deduce results. For 

example, if the query takes noticeably longer when 

a payload is injected, this may indicate that the 

query is being processed and was executed, but if it 

takes a short time it may indicate an error and that 

it is not being processed. 

Encodings4  

This is not a standalone technique, but a way for 

attackers to bypass simple filters or WAF rules by 

encoding the payload. It’s often used alongside 

other injection types but when there are 

protections. This may include URL encoding, 

Unicode, hexadecimal, or SQL functions like 

CHAR(), which will be able to pass the filters and will 

be treated as a normal query. 

 

References: 
1https://www.ibm.com/docs/en/guardium-

insights/3.2.x?topic=events-risk-event-categories 
2https://www.greycampus.com/opencampus/ethical-

hacking/types-of-sql-injection 
3https://medium.com/@theabdullah.office/sql-injection-in-

5ad67140eb7d 
4https://portswigger.net/web-security/essential-

skills/obfuscating-attacks-using-encodings 

 

SELECT accounts FROM users 

WHERE login='' or 1=1 -- ' AND pass='' 

AND pin=''; 

SELECT accounts FROM users 

WHERE id=''  

UNION SELECT passwords FROM users -– ' 
AND pass='' AND pin=''; 

SELECT account FROM users WHERE id=''; 

DROP TABLE users; -- 

' AND pass='' AND pin='' 

SELECT * FROM users WHERE id='' --  

' AND pass='' AND pin=''; 

MySQL(v5.7) syntax near "'" 

SELECT accounts FROM users WHERE 

name='%27%20OR%20%271%27=%271' --' AND 

pass='' AND pin=''; 

 

João Videira

Types of SQLi (kids these days need to rename everything!!1one) Security/Hacking

Linkedin: https://www.linkedin.com/in/jo%C3%A3o-videira-
374815222/WTFPL 67

https://www.ibm.com/docs/en/guardium-insights/3.2.x?topic=events-risk-event-categories
https://www.ibm.com/docs/en/guardium-insights/3.2.x?topic=events-risk-event-categories
https://www.greycampus.com/opencampus/ethical-hacking/types-of-sql-injection
https://www.greycampus.com/opencampus/ethical-hacking/types-of-sql-injection
https://medium.com/@theabdullah.office/sql-injection-in-5ad67140eb7d
https://medium.com/@theabdullah.office/sql-injection-in-5ad67140eb7d
https://portswigger.net/web-security/essential-skills/obfuscating-attacks-using-encodings
https://portswigger.net/web-security/essential-skills/obfuscating-attacks-using-encodings
https://www.linkedin.com/in/jo%C3%A3o-videira-374815222/
https://www.linkedin.com/in/jo%C3%A3o-videira-374815222/


iOS.ANTI.TAMPERING................ 

 

Starting from iOS 15 (and macOS Big Sur), 
Apple’s operating systems feature a new security 
mechanism called Signed System Volume 
(SSV). 
Its goal is to provide a cryptographic seal of the 
system volume, ensuring its integrity both at rest 
and at runtime. At runtime, the OS system 
volume is mounted as read-only to prevent 
unauthorized changes. This effectively blocks 
any software from modifying system files in 
directories such as /bin, /sbin, /System, and /usr. 
Any attempt to write to those files — or remap 
the read-only pages into which their contents are 
loaded — is refused by the kernel page cache. 

 

The volume itself is sealed using a cryptographic 
hash tree (a Merkle tree). During the OS build 
process, the content of the entire system volume 
is hashed recursively from the bottom up, with 
the hashes of individual files forming the 
"leaves" of the tree. These are then hashed in 
pairs to form "parent" hashes, continuing until a 
single, final root hash is computed for the entire 
volume. Every device running that OS build (i.e: 
all devices with the same iOS version) get the 
same sealed system image and the same root 
hash.  

This root hash is not stored in the Secure Enclave 
or its immutable boot ROM. Instead, the boot 
policy — an object that contains the expected 
root hash of the system volume — is 
cryptographically signed by Apple. The 
Application Processor Boot ROM contains 
Apple’s public key, which iBoot uses to verify 
the signature on this boot policy. This key is 
burned into the chip during manufacturation :). 

 

At boot time, iBoot verifies the integrity of the 
boot policy and its signature. It then directs the 
main processor to compute the root hash of the 
system volume and compares this value against 
the trusted value from the boot policy. If the 

hashes don't match, the system will not boot 
because it has detected tampering. This process 
forms an unbroken "chain of trust" from the 
hardware all the way up to the operating system. 

 

During OS updates, a new system volume is 
created with a new Merkle tree and root hash. 
The iOS bootloader verifies that this new 
volume's seal is intact and matches the value in a 
newly signed boot policy from Apple before 
allowing the device to restart the kernel. 
Mismatches or tampering will force the boot 
process to panic and the device will boot into a 
recovery mode to force an OS reinstallation. 

 

When the user later installs third-party 
applications, those apps are placed on the 
separate data volume and mounted at /var, which 
remains writable but is still protected by Data 
Protection classes and the Secure Enclave’s keys. 
The split between the sealed, read-only system 
volume and the mutable data volume means that 
even a full compromise of user space cannot alter 
the OS itself without triggering the SSV check at 
next reboot, ensuring the integrity of the system 
persists across power cycles. 

 

This change triggered a fundamental change of 
development of jailbreaks. Instead of jailbreaks 
being rootful and writing their executables to /bin 
or creating a directory in /,  they create a 
subdirectory in /var (usually /var/jb). This 
directory is not protected by SSV as it is a 
non-system directory. This allows their 
executables to persist on disk across reboots. As a 
last note, technically, SSV  code was in iOS 14. It 
was only enforced starting from iOS 15. 

 

SEREXP | iOS AND WINDOWS 
SECURITY RESEARCHER 

 

Serexp

iOS System Anti-Tampering: Signed System VolumeSecurity/Hacking

blog: https://serexp.lain.la
X: myserialexps
github: serexp SAA-ALL 0.0.768

https://serexp.lain.la


Visually Representing
Your Backup Protocol

Background

A 3-2-1 backup protocol is a methodology for backing
up your data in a way that ensures you can access your
data whenever you need it.

It boils down to the following idea:

❼ 3 copies of the data

❼ 2 different mediums (tape drives, SSDs, hard
drives, etc.)

❼ 1 off-site (could be in the cloud or at a friend’s
house in another city)

I wanted to have a way to document my backup
protocol in a way that was easy to understand and
visually appealing. I also wanted to have the software
for it be locally hosted (or containerized) and allow for
the backup protocol to align with the CIA triad:
confidentiality, integrity, and availability. I understand
that backup protocols are not the most interesting
aspects of security or IT, yet they are the backbone to
ensure data availability. By the end of this post, you
will be able to create a diagram for your own backup
protocol.

There are multiple solutions that I was able to find
for creating diagrams: Excalidraw, draw.io, and
Mermaid. I ended up choosing Mermaid as it looked
clean, and it allowed me to configure my diagram with
minimal effort. Now that the application is selected,
let’s run these locally in a container (I use podman, but
you can replace that with docker and it will work the
same). I run a GUI and a CLI for Mermaid. The GUI
allows for the main editing of the diagram, and the CLI
allows you to scale it up to be a high-quality image.

Workflow

Here are the commands I use to run both the GUI and
the CLI versions of Mermaid on Linux (NOTE:
copying the code will add extra spaces, so you will have
to manually type out the commands/code):

1 podman run --rm -dit --platform linux/amd64 --publish
8000:8080 --name mermaid
ghcr.io/mermaid -js/mermaid -live -editor

Mermaid GUI (For Editing)

1 mkdir /tmp/mermaid_data/
2 cp backup_policy.mmd /tmp/mermaid_data/
3 podman run --userns keep -id --rm -dit -v

/tmp/mermaid_data /:/ data:z
ghcr.io/mermaid -js/mermaid -cli/mermaid -cli -i
backup_policy.mmd -s 3 -o
output_upscaled_file.png

Mermaid CLI (For Upscaling)

Visiting http://localhost:8000 from a browser
allows you to access the GUI. The Mermaid

documentation is great. I use flowcharts for my
protocols, but they have a lot of other diagram options
as well. The flowchart syntax can be found at:
https://mermaid.js.org/syntax/flowchart.html. We can
update the code to represent a simple 3-2-1 protocol:

flowchart LR
A[PC]-->C[1 TB Hard Drive]
A-->D[" Proton Drive (Cloud)"]

This gets you the following output:

This simple representation only has the 3-2-1
protocol and only the A (availability) of the CIA triad.
Let’s make a more robust version of this, including
encryption for the C (confidentiality) and checksum
indexing for the I (integrity).

flowchart TD
classDef note fill:#ffd , stroke :#ccb
G@{ shape: tag -rect , label: "checksum

indexing:<br >chkbit <br >checksumbits" }
A["256 GB SSD - Laptop "]==>B["1 TB Hard Drive

(Veracrypt -encrypted)"]
A==>| Cryptomator|C[" Proton Drive (Cloud -

Encrypted at Rest)"]
G==>A==>G
class G note

This looks like the following:

I use https://github.com/laktak/chkbit and
my script https://codeberg.org/Harisfromcyber
/Media/src/branch/main/checksumbits to generate
and store hashes for my files. That way, I can validate
the hashes of my files if there ever is a discrepancy
between two versions of a file.

Once you start building your own backup policy
diagram and require more quality for the output
image, I recommend copying the code into a *.mmd file
and then running the aforementioned “Mermaid CLI”
command on it to upscale the image. Make sure to
stop the GUI container when you are done working by
running podman stop mermaid.

That’s just about the gist of it. Friendly reminder:
don’t forget to test your backups!

Haris Qazi (Harisfromcyber)

Visually Representing Your Backup Protocol SysAdmin

Website: https://www.harisqazi.com/
LinkedIn: https://www.linkedin.com/in/harisqazi1/
Codeberg: https://codeberg.org/Harisfromcyber/CC BY 4.0 69

https://www.harisqazi.com/
https://www.linkedin.com/in/harisqazi1/
https://codeberg.org/Harisfromcyber/
http://localhost:8000
https://mermaid.js.org/syntax/flowchart.html.
https://github.com/laktak/chkbit


WE WANT YOUR ARTICLE!

Would you like to see your article published in the next issue of Paged 
Out!?

Here’s how to make that happen:

First, you need an idea that will fit on one page. 
That is one of our key requirements, if not the most important. Every article can only occupy one 
page. To be more precise, it needs to occupy the space of 515 x 717 pts. 

We have a nifty tool that you can use to check if your page size is ok - https://review-
tools.pagedout.institute/

The article has to be on a topic that is fit for Paged Out! Not sure if your topic is? 

You can always ask us before you commit to writing. Or you can consult the list here: https://
pagedout.institute/?page=writing.php#article-topics

Once the topic is locked down, then comes the writing, and it has to be done by you. Remember, 
you can write about AI but don’t rely on it to do the writing for you ;) Besides, you will do a better 
job than it can!

Next, submit the article to us, preferably as a PDF file (you can also use PNGs for art), at 
articles@pagedout.institute.

Here is what happens next:

First, you will receive a link to a form from us. The form asks some really important questions, 
including which license you would prefer for your submission, details about the title and the name 
under which the article should be published, which fonts you have used and the source of images 
that are in it. 

Remember that both the fonts and the images need to have licenses that allow them to be used 
in commercial projects and to be embedded in a PDF.

Once the replies are received, we will work with you on polishing the article. The stages include a 
technical review and a language review. 
If there are images in your article, we will ask you for an alt text for them. 

After the stages are completed, your article will be ready for publishing!

Not all articles have to be written. If you want to draw a cheatsheet, a diagram, or an image, 
please do so, we accept such submissions as well.  

This is a shorter and more concise version of the content that can be found here: 
https://pagedout.institute/?page=writing.php and here: 
https://pagedout.institute/?page=cfp.php

The most important thing though is that you enjoy the process of writing and then of getting your 
article ready for publication in cooperation with our great team.

Happy writing!




	Front Cover
	Editorial
	Menu (Page 1)
	Menu (Page 2)
	Can AI recognize AI?
	Ad
	/CONSUMPTION/
	Escaping the Rat Race: Local Models for Cashflow Decisions
	Piracy as Proof of Personhood
	1h painting demo
	Self-contained handwritten digit recognizer
	Unveiling BentoML Pickle-Based Serialization
	Ad
	:-TH3 M|nE-:
	Vibecoding Djinn
	A Thing Or Two About RSA
	Between States of Being
	BB84 QKD Through Eve’s Eyes, Intercepting Light with Coherent Quadrature Measurements
	Modern 4K Intros on the Demoscene
	Ad
	Goddess of Dystopia
	Re: Adding any external data to any PDF
	An Over-engineered Solution to the Problem of Labeling my 3D Printing Filament
	Fully Generic Hardware Security Module
	Multiple displays with just a single DisplayPort/USB-C cable
	Shenanigans Ensue
	Ad
	WcenterMouse: my journey in mouse movements in Wayland
	A Pixel Parable
	Green Moon (Japan Memories)
	IRC-wars like it's 1999
	Look ma, no file_server!
	Globally Shared: injecting your data everywhere at once
	Ad
	Casting shade on your Postgres performance
	Lispy sets in CHICKEN Scheme
	Lua is so Underrated
	Print to Play
	Replace CRTP with concepts?
	Secure File Upload API with SpringBoot
	Shannon Entropy Shenanigans
	Testing by iterating over all floats
	Ad
	The γ Language: Backwards-Compatible C Generics
	Playstation game concept art
	WebAssembly Duel: Liftoff vs TurboFan
	Windows Native API Programming in Assembly
	Programaming simple melodies using Commodore Basic 7.0
	Psychedelia: A Puzzle
	Ad
	The Woman in Red
	Tempest: Assembly Instructions for Future Operators
	Disassembling with LLVM
	Obfuscating Crypto Constants
	The 1st binary riddle of John Payload 
	Turning a GCC anti-debug trick into a LCE
	Ad
	(Un)safe and Sound: Rooting a Camera with a Noise
	Browser Permissions and Permission Hijacking
	Wall of memories
	Data-Flow Analysis for Security Testing
	How do you say "help" in Chinese? The story of Zhong Stealer
	How to encrypt your device, like a boss
	IOKit for Vulnerability Research in One Page
	If It Has a Stream, It Can Play DOOM
	The Linux Trigona Ransomware
	Types of SQLi (kids these days need to rename everything!!1one)
	iOS System Anti-Tampering: Signed System Volume
	Visually Representing Your Backup Protocol
	Writting
	Back Cover

