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Abstract

This document provides technical specifications for the implementation of the ouroboros-network component
of cardano—node. It provides specifications of all mini-protocols, multiplexing, and low-level wire encoding. It
provides necessary information about both node-to-node and node-to-client protocols.

The primary audience for this document is engineers wishing to build clients interacting with a node via node-to-client
or node-to-node protocols or independent implementations of a node. Although the original implementation of
ouroboros—network is done Haskell, this specification is made language agnostic. We may provide some
implementation details which are Haske11 specific.
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Chapter 1

System Architecture

1.1 Protocols and node design

There are two protocols which support different sets of mini-protocols:

* node-to-node protocol for communication between different nodes usually run by different entities across the
globe. It consists of chain-sync, block-fetch, tx-submission and keep-alive mini-protocols.

* node-to-client protocol for intra-process communication, which allows to build applications that need access
to the blockchain, ledger, e.g. a wallet, an explorer, etc. It consists of chain-sync, local-tx-submission and
local-state-query mini-protocols.

Chain-sync mini-protocol (the node-to-node version) is used to replicate a remote chain of headers; block-fetch
mini-protocol to download blocks and tx-submission to disseminate transactions across the network.

Figure 1.1 illustrates the design of a node. Circles represents threads that run one of the mini-protocols. Each
mini-protocols communicate with a remote node over the network. Threads communicate by means of shared mutable
variables, which are represented by boxes in Figure 1.1. We heavily use Software transactional memory (STM), which
is a mechanism for safe and lock-free concurrent access to mutable state (see Harris and Peyton Jones (2006)).

The ouroboros-network supports multiplexing mini-protocols, which allows us to run the node-to-node or the
node-to-client protocol on a single bearer, e.g. a TCP connection; other bearers are also supported. This means that
chain-sync, block-fetch and tx-submission mini-protocols will share a single TCP connection. The multiplexer and its
framing are described in Chapter 2.

1.2 Congestion Control

A central design goal of the system is robust operation at high workloads. For example, it is a normal working condition
of the networking design that transactions arrive at a higher rate than the number that can be included in blockchain. An
increase in the rate at which transactions are submitted must not cause a decrease in the blockchain quality.

Point-to-point TCP bearers do not deal well with overloading. A TCP connection has a certain maximal bandwidth,
i.e. a certain maximum load that it can handle relatively reliably under normal conditions. If the connection is ever
overloaded, the performance characteristics will degrade rapidly unless the load presented to the TCP connection is
appropriately managed.

At the same time, the node itself has a limit on the rate at which it can process data. In particular, a node may have
to share its processing power with other processes that run on the same machine/operation system instance, which
means that a node may get slowed down for some reason, and the system may get into a situation where there is more
data available from the network than the node can process. The design must operate appropriately in this situation and
recover from transient conditions. In any condition, a node must not exceed its memory limits, that is there must be
defined limits, breaches of which are treated like protocol violations.

Of course, it makes no sense if the system design is robust but so defensive that it fails to meet performance goals.
An example would be a protocol that never transmits a message unless it has received an explicit ACK for the previous
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message. This approach might avoid overloading the network but would waste most of the potential bandwidth. To
avoid such performance problems our implementation relies upon protocol pipelining.

1.3 Real-time Constraints and Coordinated Universal Time

Ouroboros models the passage of physical time as an infinite sequence of time slots, i.e. contiguous, equal-length
intervals of time, and assigns slot leaders (nodes that are eligible to create a new block) to those time slots. At the
beginning of a time slot, the slot leader selects the blockchain and transactions that are the basis for the new block, then
it creates the new block and sends the new block to its peers. When the new block reaches the next block leader before
the beginning of the next time slot, the next block leader can extend the blockchain upon this block (if the block did not
arrive on time the next leader will create a new block anyway).

There are some trade-offs when choosing the slot time that is used for the protocol, but basically, the slot length
should be long enough such that a new block has a good chance of reaching the next slot leader in time. It is assumed
that the clock skews between the local clocks of the nodes is small with respect to the slot length.

However, no matter how accurate the local clocks of the nodes are with respect to the time slots, the effects of a
possible clock skew must still be carefully considered. For example, when a node time-stamps incoming blocks with
its local clock time, it may encounter blocks that are created in the future with respect to the local clock of the node.
The node must then decide whether this is because of a clock skew or whether the node considers this as adversarial
behaviour of another node.

1.4 Nodes behind NAT firewalls

Many end-user systems, as well as enterprise systems, operate behind firewalls, in particular NATs. Such environments
require specific support from the software to operate a P2P distributed system on equal terms. One of the requirements
for cardano-node was for nodes operating behind a NAT to be able to contribute to the network. This includes
full-node wallets (e.g. Daedalus) or enterprise deployments of relays/BPs to supply blocks, instead of only submitting
transactions and consuming the blockchain. This requires a way for the outside world to traverse through the NAT.
ouroboros—network uses a hole-punching method for this purpose.

1.4.1 Implementation details

ouroboros—network allows for promoting an inbound (or outbound) connection to be used as an outbound (inbound)
connection. This way, an outgoing connection from behind a NAT can be reused as an inbound one, allowing access to
blocks produced (or relayed) behind the firewall. Collected data shows that such nodes (primarily coming from Daedalus
users) meaningfully contribute to the network.

ouroboros—network goes one step forward and binds all outbound connections to the same port as inbound
connections (with some exceptions, controlled by a topology file). This allows us to reduce the number of open
file-descriptors used by the node (at most by the number of all established outbound connections, e.g. 70 by default, and
much more for some specific configurations).


https://en.wikipedia.org/wiki/Network_address_translation

Chapter 2

Multiplexing mini-protocols

The role of the multiplexing layer is to take an established underlying point-to-point bearer (e.g. a TCP connection, a
UNIX socket or similar) and offer a multiplexed, sequenced-record delivery service for a fixed collection of services
(fixed after negotiation).

Carrying all the related services between two peers has several advantages over multiple TCP connections: It reduces
overheads (in the kernel and network path), improves congestion window management by minimising network capacity
over-allocation during periods of congestion while, at the same time, gaining more dynamic responsiveness to changing
end-to-end transport conditions.

Finally, it helps with performance exception detection and mitigation by creating a logical unit-of-failure - if a single
component should ‘fail’ all the associated services on that peer can be failed together.

2.1 The Multiplexing Layer

Multiplexing is used to run several mini-protocols in parallel over a bidirectional bearer (for example, a TCP connection).
Figure 2.1 illustrates multiplexing of three mini-protocols over a single duplex bearer. The multiplexer guarantees a
fixed pairing of mini-protocol instances, each mini-protocol only communicates with its counter part on the remote end.

Node A Node B

XNN3A 8 XNIN
XNWN3A B8 XNIN

Figure 2.1: Data flow through the multiplexer and demultiplexer

The multiplexer is agnostic to the bearer it runs over. However, it assumes that the bearer guarantees an ordered
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Table 2.1: Multiplexer’s segment data unit (SDU) encoding, see Network.Mux.Codec.

and reliable transport layer' and it requires the bearer to be full-duplex to allow simultaneous reads and writes>. The
multiplexer is agnostic to the serialisation used by a mini-protocol (which we specify in section 3). Multiplexer has
its own framing / binary serialisation format, described in section 2.1.1. The multiplexer allows the use of each
mini-protocol in either direction.

The multiplexer exposes an interface that hides all the multiplexer details, and a single mini-protocol communication
can be written as if it would only communicate with its instance on the remote end. When the multiplexer is instructed
to send bytes of some mini-protocol, it splits the data into segments, adds a segment header, encodes it and transmits
the segments over to the bearer. When reading data from the network, the segment’s headers are used to reassemble
mini-protocol byte streams.

2.1.1 Wire Format

Table 2.1 shows the layout of the service data unit (SDU) of the multiplexing protocol in big-endian bit order. The
segment header contains the following data:

Transmission Time The transmission time is a time stamp based on the lower 32 bits of the sender’s monotonic clock
with a resolution of one microsecond.

Mini Protocol ID The unique ID of the mini-protocol as in tables 3.14 and 3.16.

Payload Length The payload length is the size of the segment payload in Bytes. The maximum payload length that is
supported by the multiplexing wire format is 2'6 — 1. Note that an instance of the protocol can choose a smaller
limit for the size of segments it transmits.

Mode The single bit M (the mode) is used to distinguish the dual instances of a mini-protocol. The mode is set to 0 in
segments from the initiator, i.e. the side that initially has agency and 1 in segments from the responder.

2.1.2 Fairness and Flow-Control in the Multiplexer

The Shelley network protocol requires that the multiplexer uses a fair scheduling of the mini-protocols. Haskell’s
implementation of the multiplexer uses a round-robin schedule of the mini-protocols to choose the next data segment to
transmit. If a mini-protocol does not have new data available when it is scheduled, it is skipped. A mini-protocol can
transmit at most one segment of data every time it is scheduled, and it will only be rescheduled immediately if no other
mini-protocol is ready to send data.

From the point of view of the mini-protocols, there is a one-message buffer between the egress of the mini-protocol
and the ingress of the multiplexer. The mini-protocol will block when it sends a message and the buffer is full.

A concrete implementation of a multiplexer may use a variety of data structures and heuristics to yield the overall
best efficiency. For example, although the multiplexing protocol itself is agnostic to the underlying structure of the data,
the multiplexer may try to avoid splitting small mini-protocol messages into two segments. The multiplexer may also try
to merge multiple messages from one mini-protocol into a single segment. Note that the messages within a segment
must all belong to the same mini-protocol.

ISlightly more relaxed property is required: in order delivery of multiplexer segments which belong to the same mini-protocol.
2Note that one can always pair two unidirectional bearers to form a duplex bearer; we use this to define a duplex bearer out of unix pipes or queues
(for intra-process communication only).


https://ouroboros-network.cardano.intersectmbo.org/network-mux/Network-Mux-Codec
https://www.wikiwand.com/en/Duplex_(telecommunications)#/Full-duplex

2.1.3 Flow-control and Buffering in the Demultiplexer

The demultiplexer eagerly reads data from the bearer. There is a fixed-size buffer between the egress of the demultiplexer
and the ingress of the mini-protocols. Each mini-protocol implements its own mechanism for flow control, which
guarantees that this buffer never overflows (see Section 3.15.). If the demultiplexer detects an overflow of the buffer, it
means that the peer violated the protocol and the MUX/DEMUX layer shuts down the connection to the peer.

For ingress buffer limits for each mini-protocol see 3.15.

For Cardano Node, each SDU for the node-to-node mini-protocol has the size at most of 12 288 bytes. This is not a
protocol limit, Cardano Node can handle larger SDUs. In general this is implementation dependent.

Each SDU for the node-to-client mini-protocol has the size at most 12 288 bytes (24 576 bytes on Windows).

When receiving SDU we place a timeout. For the handshake mini-protocol we use a /0s timeout, for all other
node-to-node and node-to-client mini-protocols a 30s timeout is used.

2.2 Node-to-node and node-to-client protocol numbers

haddock documentation: Network .Mux.Types
haddock documentation: Ouroboros .Network .NodeToNode
haddock documentation: Ouroboros.Network.NodeToClient

Ouroboros network defines two protocols: node-to-node and node-to-client protocols. Node-to-node is used for
inter-node communication across the Internet, while node-to-client is an inter-process communication used by clients,
e.g. a wallet, db-sync, etc. Each of them consists of a bundle of mini-protocols (see chapter 3). The protocol numbers of
both protocols are specified in tables 3.14 and 3.16.


https://ouroboros-network.cardano.intersectmbo.org/network-mux/Network-Mux-Types
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-NodeToNode
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-NodeToClient

Chapter 3

Mini Protocols

3.1 Mini Protocols and Protocol Families

https://hackage.haskell.org/package/typed-protocols-doc A mini protocol is a well-defined and modular building block
of the network protocol. Structuring a protocol around mini-protocols helps manage the overall complexity of the
design and adds useful flexibility. The design turns into a family of mini-protocols that can be specialised to particular
requirements by choosing a particular set of mini-protocols.

The mini-protocols in this section describe the initiator and responder of a communication. The initiator is the
dual of the responder and vice versa. (The terms client/server, consumer/producer or initiator/responder are also used
sometimes.) At any time, a node will typically run many instances of mini-protocols, including many instances of the
same mini-protocol. Each mini-protocol instance of the node communicates with the dual instance of exactly one peer.

The set of mini protocols that run on a connection between two participants of the system depends on the role of the
participants, i.e. whether the node acts as a full node or just a blockchain consumer, such as a wallet.

3.2 Protocols as State Machines

The implementation of the mini protocols uses a generic framework for state machines. This framework uses
correct-by-construction techniques to guarantee several properties of each mini-protocol. In particular, it guaran-
tees that there are no deadlocks. At any time, only one side has the agency (is expected to transmit the next message)
while the other side is waiting for the message (or both sides agree that the mini-protocol has terminated). If either side
receives a message that is not expected according to the mini-protocol the communication is aborted (the connection is
closed).

For each mini-protocol based on this underlying framework, the description provides the following pieces of
information:

* An informal description of the mini-protocol.

* States of the state machine.

* The messages (transitions) of the mini-protocol.

* A transition graph of the global view of the state machine.
¢ The client implementation of the mini-protocol.

* The server implementation of the mini-protocol.

State Machine Each mini-protocol is described as a state machine. This document uses simple diagram representations
for state machines and also includes corresponding transition tables. Descriptions of state machines in this section
are directly derived from specifications of mini protocols using the state machine framework.

The state machine framework that is used to specify the mini-protocol can be instantiated with different im-
plementations that work at different levels of abstraction (for example, implementations used for simulation,
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implementations that run over virtual connections and implementations that actually transmit messages over the
real network).

States States are abstract: they are not a value of some variables in a node, but rather describe the state of the two-party
communication as a whole, e.g. that a client is responsible for sending a particular type of message and the server
is waiting on it. This, in particular, means that if the state machine is in a given state, then both the client and
server are in this state. An additional piece of information that differentiates the roles of peers in a given state is
the agency, which describes which side is responsible for sending the next message.

In the state machine framework, abstract states of a state machine are modelled as promoted types, so they do not
correspond to any particular the value held by one of the peers.

The document presents this abstract view of mini protocols and the state machines where the client and server are
always in identical states, which also means that the client and server simultaneously transit to new states. For this
description, network delays are not important.

An interpretation which is closer to the real-world implementation but less concise is that there are independent
client and server states and that transitions on either side happen independently when a message is sent or received.

Messages Messages exchanged by peers form edges of a state machine diagram; in other words, they are transitions
between states. They are elements from the set

{(label, data) | label € Labels,data € Data}

Protocols use a small set of Labels typically |Labels| < 10. The state machine framework requires that messages
can be serialised, transferred over the network and de-serialised by the receiver.

Agency A node has agency if it is expected to send the next message. The client or server has agency in every state,
except a termination state in which nor the client, nor the server can send any message. All our mini-protocols
have a single terminating state StDone.

State machine diagrams States are drawn as circles in state machine diagrams. States with the agency on the client
side are drawn in green, states with the agency on the server side are drawn in blue, and the termination states are
in black. By construction, the system is always in exactly one state, i.e. the client’s state is always the same state
as the server’s, and the colour indicates who the agent is. It is also important to understand that the arrows in the
state transition diagram denote state transitions and not the direction of the message that is being transmitted. For
the agent of the particular state, the arrow means: “send a message to the other peer and move to the next state”.
For a non-agent, an arrow in the diagram can be interpreted as: “receive an incoming message and move to the
next state”. This may not be very clear because the arrows are labelled with the messages, and many arrows go
from a green state (the client has the agency) to a blue state (the server has the agency) or vice versa.

Message
0 0

A'is green, i.e in state A the client has agency. Therefore, the client sends a message to the server and both client
and server transition to state B. As B is blue, the agency also changes from client to server.

Message

C is blue, i.e in state C' the server has agency. Therefore, the server sends a message to the client and both client
and server transition to state D. As D is also blue, the agency remains on the server.

Client and server implementation The state machine describes which messages are sent and received and in which

order. This is the external view of the protocol that every compatible implementation MUST follow. In addition to
the external view of the protocol, this part of the specification describes how the client and server actually process
the transmitted messages, i.e. how the client and server update their internal mutable state upon the exchange of
messages.
Strictly speaking, the representation of the node-local mutable state and the updates to the node-local state are
implementation details that are not part of the communication protocol between the nodes and will depend on
an application that is built on top of the network service (wallet, core node, explorer, etc.). The corresponding
sections were added to clarify the mode of operation of the mini protocols.
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3.3 Overview of all implemented Mini Protocols

3.3.1 Dummy mini-protocols

Dummy mini-protocols are not used by ‘cardano-node‘; however, they might be helpful when writing demos, testing
purposes or getting familiar with the framework.

Ping Pong Protocol Section 3.5.1
A simple ping-pong protocol for testing.
typed-protocols/src/Network/TypedProtocol/PingPong/Type.hs

Request Response Protocol Section 3.5.2
A ping-pong-like protocol which allows the exchange of data.
typed-protocols/src/Network/TypedProtocol/RegResp/Type.hs

3.3.2 Handshake

Handshake mini-protocol is shared by the node-to-node and node-to-client protocols (it is polymorphic to allow that).

Handshake Mini Protocol Section 3.6
This protocol is used for version negotiation.
ouroboros—-network/framework/lib/Ouroboros/Network/Protocol/Handshake/Type.hs

3.3.3 Node-to-node mini-protocols

In this section, we list all the mini-protocols that constitute the node-to-node protocol.

Chain Synchronisation Protocol Section 3.7
The protocol by which a downstream chain consumer follows an upstream chain producer.
ouroboros—-network/protocols/lib/Ouroboros/Network/Protocol/ChainSync/Type.hs

Block Fetch Protocol Section 3.8
The block fetching mechanism enables a node to download ranges of blocks.
ouroboros—network/protocols/lib/Ouroboros/Network/Protocol/BlockFetch/Type.hs

Transaction Submission Protocol v2 Section 3.9
A Protocol for transmitting transactions between core nodes.
ouroboros—-network/protocols/lib/Ouroboros/Network/Protocol/TxSubmission2/Type.hs

Keep Alive Protocol Section 3.10
A protocol for sending keep alive messages and doing round trip measurements
ouroboros-network/protocols/lib/Ouroboros/Network/Protocol/KeepAlive/Type.hs
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Peer Sharing Protocol Section 3.11
A mini-protocol which allows to share peer addresses
ouroboros-network/protocols/lib/Ouroboros/Network/Protocol/PeerSharing/Type.hs

3.3.4 Node-to-client mini-protocols

Mini-protocols used by node-to-client protocol. The chain-sync mini-protocol is shared between node-to-node and
node-to-client protocols, but it is instantiated differently. In node-to-client protocol, it is used with full blocks rather
than just headers.

Chain Synchronisation Protocol Section 3.7
The protocol by which a downstream chain consumer follows an upstream chain producer.
ouroboros-network/protocols/lib/Ouroboros/Network/Protocol/ChainSync/Type.hs

Local State Query Mini Protocol Section 3.13
Protocol used by local clients to query ledger state
ouroboros-network/protocols/lib/Ouroboros/Network/Protocol/LocalStateQuery/Type.hs

Local Tx Submission Mini Protocol Section 3.12
Protocol used by local clients to submit transactions
ouroboros—network/protocols/lib/Ouroboros/Network/Protocol/LocalTxSubmission/Type.hs

Local Tx Monitor Mini Protocol Section 3.14
Protocol used by local clients to monitor transactions
ouroboros-network/protocols/lib/Ouroboros/Network/Protocol/LocalTxMonitor/Type.hs

3.4 CBOR and CDDL

All mini-protocols are encoded using the concise binary object representation (CBOR), see https://cbor.io. Each
codec comes along with a specification written in CDDL, see ’Coincise data definition language (CDDL)’.

The networking layer knows little about blocks, transactions or their identifiers. In ouroboros—network we use
parametric polymorphism for blocks, tx, txids, etc, and we only assume these data types have their own valid CDDL
encoding (and CDDL specifications). For testing against the ouroboros—network CDDL, we need concrete values;
for this reason, we use any in our CDDL specification. This describes very closely what the ouroboros—network
implementation does. It doesn’t mean the payloads are not validated, the full codecs of messages transferred on the
wire are composed from network, consensus & ledger codecs. There is an ongoing effort to capture combined CDDLs.
If you want to find concrete instantiations of these types by ‘Cardano‘, you will need to consult cardano-ledger and
ouroboros-consensus (in particular ouroboros-consensus#1422). Each ledger era has its own CDDL spec, which you can
find here. Note that the hard fork combinator (HFC) also allows us to combine multiple eras into a single blockchain. It
affects how many of the data types are encoded across different eras.

We want to retain the ability to decode messages incrementally, which for the Praos protocol might allow us to
improve performance.

3.5 Dummy Protocols

Dummy protocols are only used for testing and are not needed either for Node-to-Node nor for the Node-to-Client
protocols.
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3.5.1 Ping-Pong mini-protocol

haddock documentation: Network . TypedProtocol .PingPong. Type

Description

A client can use the Ping-Pong protocol to check that the server is responsive. The Ping-Pong protocol is very simple
because the messages do not carry any data and because the Ping-Pong client and the Ping-Pong server do not access the
internal state of the node.

State Machine

MsgDone
start | StIdle »|StDone

MsgPing MsgPong

StBusy

state | agency
StIdle | Client
StBusy | Server

The protocol uses the following messages. The messages of the Ping-Pong protocol do not carry any data.
MsgPing The client sends a Ping request to the server.
MsgPong The server replies to a Ping with a Pong.

MsgDone Terminate the protocol.

from state | message | to state
StIdle MsgPing | StBusy
StBusy MsgPong | StIdle
StIdle MsgDone | StDone

Table 3.1: Ping-Pong mini-protocol messages.

3.5.2 Request-Response mini-protocol

haddock documentation: Network . TypedProtocol .RegResp. Type

Description

The request-response protocol is polymorphic in the request and response data that is being transmitted. This means
that there are different possible applications of this protocol, and the application of the protocol determines the types of
requests and responses.
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State machine

MsgResp

N

start P |StIdle

MsgReq

MsgDone

v
IStDoneI
state | agency
StIdle | Client
StBusy | Server

The protocol uses the following messages.
MsgReq (request) The client sends a request to the server.
MsgResp (response) The server replies with a response.

MsgDone (done) Terminate the protocol.

from | message | parameters | to

StIdle | MsgReq request StBusy
StBusy | MsgResp | response StIdle
StIdle | MsgDone StDone

Table 3.2: Request-Response mini-protocol messages.

3.6 Handshake mini-protocol

protocol haddocks: Ouroboros.Network.Protocol.Handshake.Type
codec haddocks: Ouroboros.Network.Protocol.Handshake.Codec
node-to-node mini-protocol number: 0

node-to-client mini-protocol number: 0O

node-to-client handshake CDDL spec

3.6.1 Description

The handshake mini protocol is used to negotiate the protocol version and the protocol parameters that are used by the
client and the server. It is run exactly once when a new connection is initialised and consists of a single request from the

client and a single reply from the server.

The handshake mini protocol is a generic protocol that can negotiate version number and protocol parameters (these
my depend on the version number). It only assumes that protocol parameters can be encoded to and decoded from
CBOR terms. A node that runs the handshake protocol must instantiate it with the set of supported protocol versions and
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callback functions to handle the protocol parameters. These callback functions are specific to the supported protocol
versions.

The handshake mini protocol is designed to handle simultaneous TCP open.

3.6.2 State machine

MsgAcceptVersion

MsgReplyVersion ———>

MsgProposeVersions

start —|StPropose StConfirm

MsgRefuse

state | agency
StPropose | Client
StConfirm | Server

Messages of the protocol:

MsgProposeVersions (versionTable) The client proposes a number of possible versions and protocol para-
meters. versionT'able is a map from version numbers to their associated version data. Note that different version
numbers might use different version data (e.g. supporting a different set of parameters).

MsgReplyVersion (versionTable) This message must not be explicitly sent, it’s only to support TCP simultan-
eous open scenario in which both sides sent MsgProposeVersions. In this case, the received MsgProposeVersions
is interpreted as MsgReplyVersion and thus it MUST have the same CBOR decoding as MsgProposeVersions.

MsgAcceptVersion (versionNumber, extraParameters) The server accepts version Number and re-
turns possible extra protocol parameters.

MsgRefuse (reason) The server refuses the proposed versions.

from | message | parameters | to
StPropose | MsgProposeVersions | versionT able StConfirm
StConfirm | MsgReplyVersion versionT able StDone
StConfirm | MsgAcceptVersion (versionNumber, versionData) | StDone
StConfirm | MsgRefuse reason StDone

3.6.3 Size limits per state

These bounds limit how many bytes can be sent in a given state; indirectly, this limits the payload size of each message.
If a space limit is violated, the connection SHOULD be torn down.

state | size limit in bytes
StPropose 5760
StConfirm 5760

3.6.4 Timeouts per state

These limits bound how much time the receiver side can wait for the arrival of a message. If a timeout is violated, the
connection SHOULD be torn down.
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state | timeout
StPropose 10s
StConfirm 10s

Table 3.3: timeouts per state

3.6.5 Node-to-node handshake

codec haddocks: Cardano.Network.NodeToNode

The node-to-node handshake instantiates version data' to a record which consists of
network magic a Word32 value;
diffusion mode a boolean value: True value indicates initiator only mode, False - initiator and responder mode;

peer sharing either O or 1: 1 indicates that the node will engage in peer sharing (and thus it will run the PeerSharing
mini-protocol);

query a boolean value: True will send back all supported versions & version data and terminate the connection.

When negotiating a connection, each side will have access to local and remote version data associated with the
negotiated version number. The result of negotiation is a new version data record which consists of:

« if the network magic agrees, then it is inherited by the negotiated version data, otherwise the negotiation fails;

* diffusion mode SHOULD be initiator only if and only if any side proposes the initiator-only mode (i.e. the logical
disjunction operator);

e peer sharing SHOULD be inherited from the remote side;

e query SHOULD be inherited from the client (the side that sent MsgProposeVersions).
If the negotiation is successful, the negotiated version data is sent back using MsgAcceptVersion, otherwise
MsgRefuse SHOULD be sent.
Size limits per state

These bounds limit how many bytes can be sent in a given state; indirectly, this limits the payload size of each message.
If a space limit is violated, the connection SHOULD be torn down.

state | size limit in bytes
StPropose 5760
StConfirm 5760

Timeouts per state

These limits bound how much time the receiver side can wait for the arrival of a message. If a timeout is violated, the
connection SHOULD be torn down.

ITo be precise, in ouroboros-network, we instantiate version data to CBOR terms and do encoding / decoding of version data lazily (as required)
rather than as part of the protocol codec (the protocol codec only decodes bytes to CBOR terms, and thus fails only if received bytes are not a valid
CBOR encoding). This is important in order to support receiving a mixture of known and unknown versions. The same the remark applies to the
node-to-client protocol as well.
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state | timeout
StPropose 10s
StConfirm 10s

3.6.6 Node-to-client handshake

codec haddocks: Cardano .Network.NodeToClient

The node-to-node handshake instantiates version data to a record which consists of
network magic a Word32 value;
query a boolean value: True will send back all supported; versions & version data and terminate the connection.
The negotiated version data is computed similarly as in the node-to-node protocol:
« if the network magic agrees, then it is inherited by the negotiated version data, otherwise the negotiation fails;
» query SHOULD be inherited from the client (the side that sent M\sgProposeVersions).
If the negotiation is successful, the negotiated version data is sent back using MsgAcceptVersion, otherwise
MsgRefuse SHOULD be sent.
Size limits per state

These bounds limit how many bytes can be sent in a given state; indirectly, this limits the payload size of each message.
If a space limit is violated, the connection SHOULD be torn down.

state | size limit in bytes
StPropose 5760
StConfirm 5760

Timeouts per state

No timeouts are used for node-to-client handshake.

3.6.7 Client and Server Implementation

Section 3.6.9 contains the CDDL specification of the binary format of the handshake messages. The version table is
encoded as a CBOR table with the version number as the key and the protocol parameters as a value. The handshake
protocol requires that the version numbers ( i.e. the keys) in the version table are unique and appear in ascending
order. (Note that CDDL is not expressive enough to precisely specify that requirement on the keys of the CBOR table.
Therefore, the CDDL specification uses a table with keys from 1 to 4 as an example.)

In a run of the handshake mini protocol, the peers exchange only two messages: The client initiates the protocol
with a MsgProposeVersions message that contains information about all protocol versions it wants to support.
The server replies either with an MsgAcceptVersion message containing the negotiated version number and
version data or a MsgRefuse message. The MsgRefuse message contains one of three alternative refuse reasons:
VersionMismatch, HandshakeDecodeError or just Refused.

When a server receives a MsgProposeVersions message, it uses the following algorithm to compute the
response:

1. Compute the intersection of the set of protocol version numbers that the server supports and the version numbers
requested by the client.
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2. If the intersection is empty: Reply with MsgRefuse(VersionMismatch) and the list of protocol numbers
the server supports.

3. Otherwise, select the protocol with the highest version number in the intersection.
4. Run the protocol-specific decoder on the CBOR term that contains the protocol parameters.

5. If the decoder fails: Reply with MsgRefuse(HandshakeDecodeError), the selected version number and
an error message.

6. Otherwise, test the proposed protocol parameters of the selected protocol version

7. If the test refuses the parameters: Reply with MsgRefuse(Refused), the selected version number and an error
message.

8. Otherwise, compute negotiation parameters according to the algorithm 3.6.5 or 3.6.6, encode them with the
corresponding CBOR codec and reply with MsgAcceptVersion, the selected version number and the extra
parameters.

Note that in step 4), 6) and 8) the handshake protocol uses the callback functions that are specific for a set of protocols
that the server supports. The handshake protocol is designed so that a server can always handle requests for protocol
versions that it does not support. The server simply ignores the CBOR terms that represent the protocol parameters of
unsupported versions.

In case of simultaneous open of a TCP connection, both handshake clients will send their MsgProposeVersions,
and both will interpret the incoming message as MsgReplyVersion (thus, both must have the same encoding; the
implementation can distinguish them by the protocol state). Both clients should choose the highest version of the
protocol available. If any side does not accept any version (or its parameters), the connection can be reset.

The protocol does not forbid, nor could it detect a usage of MsgReplyVersion outside of TCP simultaneous
open. The process of choosing between the proposed and received version must be symmetric in the following sense.

We use acceptable :: vData -> vData —> Accept vData function to compute accepted version data
from local and remote data, where

data Accept vData = Accept vData
| Refuse Text
deriving Eqg

See ref. Both acceptable local remote and acceptable remote local must satisfy the follow-
ing conditions:

« if either of them accepts a version by returning Accept, the other one must accept the same value, i.e. in
this case acceptable local remote == acceptable remote local

« if either of them refuses to accept (returns Refuse reason) the other one SHOULD return Refuse as
well.

Note that the above condition guarantees that if either side returns Accept, then the connection will not be closed by
the remote end. A weaker condition, in which the return values are equal if they both return Accept does not guarantee
this property. We also verify that the whole Handshake protocol, not just the acceptable satisfies the above property,
see Ouroboros-Network test suite.

The fact that we are using non-injective encoding in the handshake protocol side steps typed-protocols strong
typed-checked properties. For injective codecs (i.e. codecs for which each message has a distinguished encoding), both
sides of typed-protocols are always in the same state (once all in-flight the message arrived). This is no longer true in gen-
eral; however, this is still true for the handshake protocol. Even though the opening message MsgProposeVersions
of a simultaneous open will materialise on the other side as a termination message MsgReplyVersion, and the
same will happen to the MsgProposeVersions transmitted in the other direction. We include a special test case
(prop_channel_simultaneous_open) to verify that simultaneous open behaves well and does not lead to
protocol errors.
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3.6.8 Handshake and the multiplexer

The handshake mini protocol runs before the multiplexer is initialised. Each message is transmitted within a single
MUX segment, i.e. with a proper segment header, but as the multiplexer is not yet running, the messages MUST not
be split into multiple segments. The Handshake protocol uses the mini-protocol number 0 in both node-to-node and

node-to-client cases.

3.6.9 CDDL encoding specification

There are two flavours of the mini-protocol that only differ with type instantiations, e.g., different protocol versions
and version data carried in messages. First, one is used by the node-to-node protocol, and the other is used by the

node-to-client protocol.

Node-to-node handshake mini-protocol

; NodeToNode Handshake (>=vI4)
handshakeMessage

= msgProposeVersions

/ msgAcceptVersion

/ msgRefuse

/" msgQueryReply

msgProposeVersions
msgAcceptVersion

msgRefuse [2, refuseReason]
msgQueryReply = [3, versionTable]

[0, versionTable]

; The codec only accepts definite —length maps.

versionTable = { « versionNumber_v14 => v14.nodeToNodeVersionData }

versionNumber_vi14 = 14 / 15

;s All version numbers
versionNumbers = versionNumber_vi14

refuseReason
= refuseReasonVersionMismatch
/ refuseReasonHandshakeDecodeError
/ refuseReasonRefused

refuseReasonVersionMismatch
refuseReasonHandshakeDecodeError
refuseReasonRefused

[0, [ =versionNumbers ] ]
[1, versionNumbers, tstr]
[2, versionNumbers, tstr]

;# import node—to—node—version—data—vi4 as vi4
s# import network.base as base

Node-to-client handshake mini-protocol
; NodeToClient Handshake

handshakeMessage
= msgProposeVersions
/ msgAcceptVersion
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18
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20
21
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38

/ msgRefuse
/" msgQueryReply

msgProposeVersions [0, versionTable]
msgAcceptVersion [1, versionNumber, nodeToClientVersionData]
msgRefuse = [2, refuseReason]
msgQueryReply = [3, versionTable]

; Entries must be sorted by version number. For testing , this is handled in ‘handshakeFix ‘.

; The codec only accepts definite —length maps.
versionTable = { » versionNumber => nodeToClientVersionData }

; as of version 2 (which is no longer supported) we set 16th bit to 1
; 16 / 17 / 18 / 19 / 20 / 21 / 22 / 23
versionNumber = 32784 / 32785 / 32786 / 32787 / 32788 / 32789 / 32790 / 32791

; As of version 15 and higher
nodeToClientVersionData = [networkMagic, query]

networkMagic = uint
query = bool
refuseReason

= refuseReasonVersionMismatch
/ refuseReasonHandshakeDecodeError
/ refuseReasonRefused

refuseReasonVersionMismatch
refuseReasonHandshakeDecodeError
refuseReasonRefused

[0, [ =versionNumber ] ]
[1, versionNumber, tstr]
[2, versionNumber, tstr]

3.7 Chain-Sync mini-protocol

protocol haddocks: Ouroboros .Network.Protocol.ChainSync.Type
codec haddocks: Ouroboros.Network.Protocol.ChainSync.Codec
node-to-node mini-protocol number: 2

node-to-client mini-protocol number: 5

3.7.1 Description

The chain synchronisation protocol is used by a blockchain consumer to replicate the producer’s blockchain locally.
A node communicates with several upstream and downstream nodes and runs an independent client instance and an
independent server instance for every other node it communicates with. (See Figure 1.1.)

The chain synchronisation protocol is polymorphic. The node-to-client protocol uses an instance of the chain
synchronisation protocol that transfers full blocks, while the node-to-node instance only transfers block headers. In the
node-to-node case, the block fetch protocol (Section 3.8) is used to diffuse full blocks.

3.7.2 State Machine

The protocol uses the following messages:

MsgRequestNext Request the next update from the producer. The response can be a roll forward, a roll back or
wait.

MsgAwaitReply Acknowledge the request but require the consumer to wait for the next update. This means that the
consumer is synced with the producer, and the producer is waiting for its own chain state to change.
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StIntersect

MsgIntersectNotFound

MsgIntersectFound

MsgFindIntersect

<4—__ MsgDone
start P|StDone
MsgRequestNext MngollBackward
/
MsgRollForward MsgRollForward
/
MsgRollBackward

StCanAwait StMustReply

MsgAwaitReply

Figure 3.1: State machine of the Chain-Sync mini-protocol

MsgRollForward (header, tip) Tell the consumer to extend their chain with the given header. The message also
tells the consumer about the ¢ip of the producer’s chain.

MsgRollBackward (point,iq4, tip Tell the consumer to roll back to a given point,;q on their chain. The message
also tells the consumer about the current ¢ip of the chain the producer is following.

MsgFindIntersect [pointpeqd| Ask the producer to try to find an improved intersection point between the
consumer and producer’s chains. The consumer sends a sequence [point], which shall be ordered by preference
(e.g. points with the highest slot number first), and it is up to the producer to find the first intersection point on its
chain and send it back to the consumer. If an empty list of points is sent with MsgFindIntersect, the server
will reply with MsgIntersectNotFound.

MsgIntersectFound (pointintersect, tip) The producer replies with the first point of the request, which is on his
current chain. The consumer can decide whether to send more points. The message also tells the consumer about
the tep of the producer. Whenever the server replies with MsgIntersectFound, the client can expect the next
update (i.e. a reply to MsgRequestNext) to be MsgRol1lBackward, either to the specified point;, ersect OF
an earlier point if the producer switched to a different fork in the meantime. This makes handling state updates on
the client side easier.

MsgIntersectNotFound (tip) Reply to the consumer that no intersection was found: none of the points the
consumer supplied are on the producer chain. The message only contains the ¢ip of the producer chain.

MsgDone Terminate the protocol.
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state | agency
StIdle Client

StIntersect | Server
StCanAwait Server
StMustReply | Server

Figure 3.2: Chain-Sync state agencies

from state message parameters to state
StIdle MsgRequestNext StCanAwait
StIdle MsgFindIntersect [point] StIntersect
StIdle MsgDone StDone
StCanAwait MsgAwaitReply StMustReply
StCanAwait MsgRollForward header, tip StIdle
StCanAwait MsgRollBackward point g, tip StIdle
StMustReply | MsgRollForward header, tip StIdle
StMustReply | MsgRollBackward pointyid, tip StIdle
StIntersect | MsgIntersectFound POintintersect, tip | StIdle
StIntersect | MsgIntersectNotFound | tip StIdle

Table 3.4: Chain-Sync mini-protocol messages.

3.7.3 Node-to-node size limits per state

Table 3.5 specifies how many bytes can be sent in a given state in the chain-sync mini-protocol of the node-to-node
protocol; indirectly, this limits the payload size of each message. If a space limit is violated, the connection SHOULD
be torn down.

state size limit in bytes
StIdle 65535
StCanAwait 65535
StMustReply 65535
StIntersect 65535

Table 3.5: size limits per state

3.7.4 Node-to-node timeouts per state

The table 3.6 specifies message timeouts in a given state. If a timeout is violated, the connection SHOULD be torn
down.

state timeout
StIdle 3673s
StCanAwait 10s
StMustReply | random between 135s and 269s
StIntersect 10s

Table 3.6: timeouts per state
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3.7.5 Node-to-client size limits and timeouts

There are no size-limits nor timeouts for the chain-sync mini-protocol of the node-to-client protocol.

3.7.6 Implementation of the Chain Producer

This section describes a stateful implementation of a chain producer that is suitable for a setting where the producer
cannot trust the chain consumer. An important requirement in this setting is that a chain consumer must never be able
to cause excessive resource use on the producer side. The presented implementation meets this requirement. It uses a
constant amount of memory to store the state that the producer maintains per chain consumer. This protocol is only used
to reproduce the producer chain locally by the consumer. By running many instances of this protocol against different
peers, a node can reproduce chains in the network and make chain selection, which by design is not part of this protocol.
Note that when we refer to the consumer’s chain in this section, we mean the chain that is reproduced by the consumer
with the instance of the chain-sync protocol and not the result of the chain selection algorithm.

We call the state which the producer maintains about the consumer the read-pointer. The read-pointer basically
tracks what the producer knows about the head of the consumer’s chain without storing it locally. It points to a block
on the current chain of the chain producer. The read-pointers are part of the shared state of the node (Figure 1.1), and
read-pointers are concurrently updated by the thread that runs the chain-sync mini-protocol and the chain tracking logic
of the node itself.

We first describe how the mini-protocol updates a read-pointer and later address what happens in case of a fork.

Initializing the read-pointer. The chain producer assumes that a consumer which has just connected, only knows
the genesis block and initialises the read-pointer of that consumer with a pointer to the genesis block on its chain.

Downloading a chain of blocks A typical situation is when the consumer follows the chain of the producer but is
not yet at the head of the chain (this also covers a consumer booting from the genesis). In this case, the protocol follows
a simple, consumer-driven, request-response pattern. The consumer sends MsgRequestNext messages to ask for the
next block. If the read-pointer is not yet at the head of the chain, the producer replies with a MsgRollForward and
advances the read-pointer to the next block (optimistically assuming that the client will update its chain accordingly).
The MsgRol1lForward message contains the next block and also the head-point of the producer. The protocol follows
this pattern until the read-pointer reaches the end of its chain.

Consumer Producer
Re
\\q\uesu\,ex ¢

\\\\\ N head
] block: 39 block: 40 block: 41 block: 42
hash: fa40 hash: 5de3| hash: e4e0 hash: cdf0
head
block: 39 block: 40 block: 41 block: 42
hash: fa40 hash: 5de3 hash: e4e0) hash: cdf0

T |

5de3
/ y

Figure 3.3: Consumer-driven block download.
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Producer driven updates If the read-pointer points to the end of the chain and the producer receives a
MsgRequestNext the consumer’s chain is already up to date. The producer informs the consumer with an
MsgAwaitReply that no new data is available. After receiving a MsgAwaitReply, the consumer waits for a
new message, and the producer keeps agency. The MsgAwaitReply switches from a consumer-driven phase to a
producer-driven phase.

The producer waits until new data becomes available. When a new block is available, the producer will send a
MsgRollForward message and give agency back to the consumer. The producer can also get unblocked when its
node switches to a new chain fork.

Producer switches to a new fork The node of the chain producer can switch to a new fork at any time, independent
of the state machine. A chain switch can cause an update of the read-pointer, which is part of the mutable state that is
shared between the thread that runs the chain sync protocol and the thread that implements the chain following the logic
of the node. There are two cases:

1) If the read-pointer points to a block that is on the common prefix of the new fork and the old fork, no update of
the read-pointer is needed.

2) If the read-pointer points to a block that is no longer part of the chain that is followed by the node, the read-pointer
is set to the last block that is common between the new and the old chain. The node also sets a flag that signals the
chain-sync thread to send a MsgRol1lBackward instead of a MsgRollForward. Finally, the producer thread must
unblock if it is in the StMustReply state.

Old chain fork greeentt qreeeett
no longer tracked : F— : :
by the producer ememd  Meeot
- head
. 1,/
New Chaln block: 39 /7 [plock: 40 block: 41 block: 42
hash: fa40 / hash: Sde3j hash: e4e0j hash: cdfo

A
¢

Next message:
Read pointer RollBackward
to block 39, fa40

Figure 3.4: read-pointer update for a fork switch in case of a rollback.

Figure 3.4 illustrates a fork switch that requires an update of the read-pointer for one of the chain consumers. Before
the switch, the read-pointer of the consumer points to block 02660 f. The producer switches to a new chain with the
head of the chain at block Ozcdf0. The node must update the read-pointer to block Oz fa40, and the next message to
the consumer will be a MsgRollBackward.

Note that a node typically communicates with several consumers. For each consumer, it runs an independent
version of the chain-sync-protocol state machine in an independent thread and with its own read-pointer. Each of those
read-pointers has to be updated independently, and for each consumer, either case 1) or case 2) can apply.

Consumer starts with an arbitrary fork Typically, the consumer already knows some fork of the blockchain
when it starts to track the producer. The protocol provides an efficient method to search for the longest common prefix
(here called intersection) between the fork of the producer and the fork that is known to the consumer.

To do so, the consumer sends a MsgFindIntersect message with a list of chain points on the chain known to
the consumer. If the producer does not know any of the points, it replies with MsgIntersectNotFound. Otherwise,
it replies with MsgIntersectFound and the best (i.e. the newest) of the points that it knows and also updates the
read-pointer accordingly. For efficiency, the consumer should use a binary search scheme to search for the longest
common prefix.

It is advised that the consumer always starts with MsgFindIntersect in a fresh connection and it is free to
use MsgFindIntersect at any time later as it is beneficial. If the consumer does not know anything about the
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producer’s chain, it can start the search with the following list of points: [point(b), point(b— 1), point(b—2), point(b—
4), point(b — 8), ...] where point(b — 1) is the point of the ith predecessor of block b and b is the head of the consumer
fork. The maximum depth of a fork in Ouroboros is bounded, and the intersection will always be found with a small
number of iterations of this algorithm.

Additional remarks Note that by sending MsgFindIntersect, the server will not modify its read-pointer.

3.7.7 Implementation of the Chain Consumer

In principle, the chain consumer has to guard against a malicious chain producer as much as the other way around.
However, two aspects of the protocol play a role in favour of the consumer here.

* The protocol is consumer-driven, i.e., the producer cannot send unsolicited data to the consumer (within the
protocol).

* The consumer can verify the response data itself.
Here are some cases to consider:

MsgFindIntersect Phase The consumer and the producer play a number guessing game, so the consumer can
easily detect inconsistent behaviour.

The producer replies with a MsgRol1lForward The consumer can verify the block itself with the help of the ledger
layer. (The consumer may need to download the block first if the protocol only sends block headers.)

The producer replies with a MsgRol1Backward The consumer tracks several producers, so if the producer sends
false MsgRol1lBackward messages, the consumer’s node will, at some point, switch to a longer chain fork.

The Producer is just passive/slow The consumer’s node will switch to a longer chain coming from another producer
via another instance of chain-sync protocol.

3.7.8 CDDL encoding specification

chainSyncMessage
msgRequestNext

/ msgAwaitReply

/ msgRollForward

/ msgRollBackward

/ msgFindIntersect

/ msglntersectFound

/ msglntersectNotFound

/ chainSyncMsgDone
msgRequestNext = [0]
msgAwaitReply = [1]
msgRollForward = [2, base.header, base.tip]
msgRollIBackward = [3, base.point, base.tip]
msgFindlntersect = [4, base.points]
msglntersectFound = [5, base.point, base.tip]
msglntersectNotFound = [6, base.tip]
chainSyncMsgDone = [7]

;# import network.base as base
See appendix A for common definitions.

3.8 Block-Fetch mini-protocol

protocol haddocks: Ouroboros .Network.Protocol.BlockFetch.Type
codec haddocks: Ouroboros.Network.Protocol.BlockFetch.Codec
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node-to-node mini-protocol number: 3

3.8.1 Description

The block fetching mechanism enables a node to download a range of blocks.

3.8.2 State machine

MsgClientDone
start | StTdle p|StDone

MsgRequestRange / ygoNoBlocks s gBatchDone

S/

/—\
lStBusyl p|StStreaming MsgBlock
MsgStartBatch -

Figure 3.5: State machine of the block-fetch mini-protocol

state agency
StIdle Client
StBusy Server

StStreaming | Server

Figure 3.6: Block-Fetch state agencies

Protocol messages

MsgRequestRange (range) The client requests a range of blocks from the server. The range is inclusive on
both sides.

MsgNoBlocks The server tells the client that it does not have all of the blocks in the requested range.
MsgStartBatch The server starts block streaming.

MsgBlock (body) Stream a single block’s body.

MsgBatchDone The server ends block streaming.

MsgClientDone The client terminates the protocol.

The transitions are shown in table 3.7.

3.8.3 Size limits per state

These bounds limit how many bytes can be sent in a given state; indirectly, this limits the payload size of each message.
If a space limit is violated, the connection SHOULD be torn down.

27



[c BN o) SR N

DO DO B DD = = et et e ek e e e e
W= OOV W —O\0

from state message parameters | to state
StIdle MsgClientDone StDone
StIdle MsgRequestRange | range StBusy
StBusy MsgNoBlocks StIdle
StBusy MsgStartBatch StStreaming
StStreaming | MsgBlock body StStreaming
StStreaming | MsgBatchDone StIdle

Table 3.7: Block-Fetch mini-protocol messages.

3.8.4 Timeouts per state

These limits bound how much time the receiver side can wait for the arrival of a message. If a timeout is violated, the

connection SHOULD be torn down.

state size limit in bytes
StIdle 65535
StBusy 65535
StStreaming 2500000
state timeout
StIdle -
StBusy 60s
StStreaming 60s

Table 3.8: timeouts per state

3.8.5 CDDL encoding specification

; BlockFetch mini—protocol

; reference implementation of the codec in
; ouroboros—network/src/Quroboros/Network/Protocol/BlockFetch/Codec. hs

blockFetchMessage

[0, base.point, base.point]

= msgRequestRange

/ msgClientDone

/ msgStartBatch

/ msgNoBlocks

/ msgBlock

/ msgBatchDone
msgRequestRange =
msgClientDone = [1]
msgStartBatch = [2]
msgNoBlocks = [3]
msgBlock = [4, base.block]
msgBatchDone = [5]

;# import network.base as base

See appendix A for common definitions.

28



3.9 Tx-Submission mini-protocol

protocol haddocks: Ouroboros.Network.Protocol.TxSubmission2.Type
codec haddocks: Ouroboros.Network.Protocol.TxSubmission2.Codec
node-to-node mini-protocol number: 4

Description

The node-to-node transaction submission protocol is used to transfer transactions between full nodes. The protocol
follows a pull-based strategy where the initiator asks for new transactions, and the responder sends them back. It is
suitable for a trustless setting where both sides need to guard against resource consumption attacks from the other side.
The local transaction submission protocol, is a simpler which is used when the server trusts a local client, is described in
Section 3.12.

The tx-submission mini-protocol is designed in a way that the information (e.g. transactions) flows across the
system in the other direction than in the chain-sync or block-fetch protocols. Transactions must flow toward the block
producer, while headers and blocks disseminate from it to the rest of the system. This is reflected in the protocol graphs,
transactions are sent from a client to a server. However, to preserve that all mini-protocols start on the client, the
StInit state was added in version 2 of the protocol.

Note that Version 1 of the tx-submission protocol is no longer supported. Version 2 is used since NodeToNode_V6
of the node-to-node protocol.

3.9.1 State machine

N

MsgRequestTxs

MsgReplyTxs

MsgInit

MsgReplyTxIds

/

MsgRequestTxIdsNonBlocking

[SthIdsNonBlocking] [SthIdsBlockinq]W}
sgDone

Figure 3.7: State machine of the Tx-Submission mini-protocol (version 2).

sgRequestTxIdsBlocking

MsgReplyTxIds

Protocol messages

MsgInit initial message of the protocol
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state agency
StInit Client
StIdle Server
StTxIdsBlocking Client
StTxIdsNonBlocking | Client
StTxs Client

Figure 3.8: Tx-Submission state agencies

MsgRequestTxIdsNonBlocking (ack,req) Request a non-empty list of transaction identifiers from the client,
and confirm a number of outstanding transaction identifiers.

This is a non-blocking operation: the response may be an empty list and this does expect a prompt response. This
covers high throughput use cases where we wish to pipeline, by interleaving requests for additional transaction
identifiers with requests for transactions, which requires these requests not block.

The request gives the maximum number of transaction identifiers that can be accepted in the response. Either the
numbers acknowledged or the number requested MUST be non-zero. In either case, the number requested MUST
not put the total outstanding over the fixed protocol limit (see below in section 3.9.2).

The request also gives the number of outstanding transaction identifiers that can now be acknowledged. The actual
transactions to acknowledge are known to the peer based on the FIFO order in which they were provided.

The request MUST be made (over MsgRequestTxIdsBlocking) if there are non-zer remaining unacknow-
ledged transactions.

MsgRequestTxIdsBlocking (ack,req) The server asks for new transaction ids and acknowledges old ids. The
client will block until new transactions are available, thus the respond will always have at least one transaction
identifier.

This is a blocking operation: the response will always have at least one transaction identifier, and it does not
expect a prompt response: there is no timeout. This covers the case when there is nothing else to do but wait. For
example this covers leaf nodes that rarely, if ever, create and submit a transaction.

The request gives the maximum number of transaction identifiers that can be accepted in the response. This must
be greater than zero. The number requested ids MUST not put the total outstanding over the fixed protocol limit
(see below in section 3.9.2).

The request also gives the number of outstanding transaction identifiers that can now be acknowledged. The actual
transactions to acknowledge are known to the peer based on the FIFO order in which they were provided.

The request MUST be made (over MsgRequest TxIdsNonBlocking) if there are zero remaining unacknow-
ledged transactions.

MsgReplyTxIds ([(id, size)]) The client replies with a list of available transactions. The list contains pairs of
transaction ids and the corresponding size of the transaction in bytes. In the blocking case, the reply MUST
contain at least one transaction identifier. In the non-blocking case, the reply may contain an empty list.

These transactions are added to the notional FIFO of outstanding transaction identifiers for the protocol.
The order in which these transaction identifiers are returned must be the order in which they are submitted to the
mempool, to preserve dependent transactions.

MsgRequestTxs ([ids]) The server requests transactions by sending a non-empty list of transaction-ids.

While it is the responsibility of the replying peer to keep within pipelining in-flight limits, the sender must also
cooperate by keeping the total requested across all in-flight requests within the limits.

It is an error to ask for transaction identifiers that were not previously announced (via MsgReplyTxIds).

It is an error to ask for transaction identifiers that are not outstanding or that were already asked for.
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MsgReplyTxs ([txs]) The client replies with a list of transactions. It may implicitly discard transaction-ids which

were requested.

Transactions can become invalid between the time the transaction identifier was sent and the transaction being
requested. Invalid (including committed) transactions do not need to be sent.

Any transaction identifiers requested but not provided in this reply should be considered as if this peer had never
announced them. (Note that this is no guarantee that the transaction is invalid, it may still be valid and available

from another peer).

MsgDone Termination message, initiated by the client when the server is making a blocking call for more transaction

identifiers.
from state message parameters | to state
StInit MsgInit StIdle
StIdle MsgRequestTxIdsNonBlocking | ack,req StTxIdsNonBlocking
StIdle MsgRequestTxIdsBlocking ack,req StTxIdsBlocking
StTxIdsNonBlocking | MsgReplyTxIds [(id, size)] | stIdle
StTxIdsBlocking MsgReplyTxIds [(id, size)] | stIdle
StIdle MsgRequestTxs [ids] StTxs
StTxs MsgReplyTxs [tas] StIdle
StTxIdsBlocking MsgDone StDone

Table 3.9: Tx-Submission mini-protocol (version 2) messages.

3.9.2 Size limits per state

Table 3.10 specifies how many bytes can be sent in a given state; indirectly, this limits the payload size of each message.
If a space limit is violated, the connection SHOULD be torn down.

state size limit in bytes
StInit 5760
StIdle 5760
StTxIdsBlocking 2500000
StTxIdsNonBlocking 2500000
StTxs 2500000

Table 3.10: size limits per state

Maximum number of unacknowledged transaction identifiers

The maximal number of unacknowledged transactions ids is 1 0. It is a protocol error to exceed it.

3.9.3 Timeouts per state

The table 3.11 specifies message timeouts in a given state. If a timeout is violated, the connection SHOULD be torn

down.

3.9.4 CDDL encoding specification

; TxSubmission mini—protocol v2
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state timeout
StInit -
StIdle -
StTxIdsBlocking -
StTxIdsNonBlocking 10s
StTxs 10s

Table 3.11: timeouts per state

; reference implementation of the codec in
;s ouroboros—network/src/QOuroboros/Network/Protocol/TxSubmission2/Codec. hs

txSubmission2Message
= msglnit
; corresponds to either MsgRequestTxldsBlocking or
MsgRequestTxIldsNonBlocking in the spec
msgRequestTxlds
msgReplyTxlds
msgRequestTxs
msgReplyTxs
tsMsgDone

—~— — ~— ~— ~— .

msglnit = [6]
msgRequestTxIds [0, tsBlocking, txCount, txCount]
msgReplyTxIds [1, txldsAndSizes ]

msgRequestTxs = [2, txldList ]

msgReplyTxs = [3, txList ]

tsMsgDone = [4]

tsBlocking = false / true

txCount = base.word16

; The codec only accepts indefinite —length lists .
txldList = [ ~base.txld ]

txList = [ «base.tx ]

txIdAndSize = [base.txld, txSizelnBytes]

; The codec only accepts indefinite —length lists.
txldsAndSizes [ »txIdAndSize ]
txSizelnBytes base.word32

;# import network.base as base

3.9.5 Client and Server Implementation

The protocol has two design goals: It must diffuse transactions with high efficiency and, at the same time, it must rule
out asymmetric resource attacks from the transaction consumer against the transaction provider.

The protocol is based on two pull-based operations. The transaction consumer can ask for a number of transaction
ids, and it can use these transaction ids to request a batch of transactions. The transaction consumer has flexibility in
the number of transaction ids it requests, whether to actually download the transaction body and flexibility in how it
batches the download of transactions. The transaction consumer can also switch between requesting transaction ids
and downloading transaction bodies at any time. It must, however, observe several constraints that are necessary for a
memory-efficient implementation of the transaction provider.

Conceptually, the provider maintains a limited size FIFO of outstanding transactions per consumer. (The actual
implementation can, of course, use the data structure that works best). The maximum FIFO size is a protocol parameter.
The protocol guarantees that, at any time, the consumer and producer agree on the current size of that FIFO and on the
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outstanding transaction ids. The consumer can use a variety of heuristics to request transaction ids and transactions. One
possible implementation for a consumer is to maintain a FIFO that mirrors the producer’s FIFO but only contains the
transaction ids (and the size of the transaction) and not the full transactions.

After the consumer requests new transaction ids, the provider replies with a list of transaction ids and puts these
transactions in its FIFO. As part of a request, a consumer also acknowledges the number of old transactions, which are
removed from the FIFO at the same time. The provider checks that the size of the FIFO, i.e. the number of outstanding
transactions, never exceeds the protocol limit and aborts the connection if a request violates the limits. The consumer
can request any batch of transactions from the current FIFO in any order. Note, however, that the reply will omit any
transactions that have become invalid in the meantime. (More precisely, the server will omit invalid transactions from the
reply, but they will still be counted in the FIFO size, and they will still require an acknowledgement from the consumer).

The protocol supports blocking and non-blocking requests for new transactions ids. If the FIFO is empty, the
consumer must use a blocking request; otherwise, it must be a non-blocking request. The producer must reply
immediately (i.e. within a small timeout) to a non-blocking request. It replies with not more than the requested number
of ids (possibly with an empty list). A blocking request, on the other side, waits until at least one transaction is available.

3.10 Keep Alive Mini Protocol

protocol haddocks: Ouroboros.Network.Protocol .KeepAlive.Type
codec haddocks: Ouroboros.Network.Protocol.KeepAlive.Codec
node-to-node mini-protocol number: 8

3.10.1 Description

Keep-alive mini-protocol is a member of the node-to-node protocol. It is used for two purposes: to provide keep alive
messages and do round trip time measurements.

3.10.2 State machine

MsgKeepAlive

MsgKeepAliveResponse

MsgDone

v
IStDoneI

Figure 3.9: State machine of the keep-alive protocol.

Protocol messages

MsgKeepAlive cookie Keep alive message. The cookie value is a Word16 value, which allows to match requests
with responses. It is a protocol error if the cookie received back with MsgKeepAliveResponse does not
match the value sent with MsgKeepAlive.
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Figure 3.10: Keep-Alive state agencies

MsgKeepAliveResponse cookie Keep alive response message.

MsgDone Terminating message.

3.10.3 Size limits per state

These bounds limit how many bytes can be sent in a given state; indirectly, this limits the payload size of each message.
If a space limit is violated, the connection SHOULD be torn down.

state | size limit in bytes
StClient 65535
StServer 65535

3.10.4 Timeouts per state

These limits bound how much time the receiver side can wait for the arrival of a message. If a timeout is violated, the
connection SHOULD be torn down.

state | timeout
StClient 97s
StServer 60s

Table 3.12: timeouts per state

3.10.5 CDDL encoding specification

; KeepAlive Mini—Protocol
keepAliveMessage msgKeepAlive
msgKeepAliveResponse
msgDone

~ 1

msgKeepAlive [0, base.word16]
msgKeepAliveResponse = [1, base.word16]
msgDone [2]

;# import network.base as base
3.11 Peer Sharing mini-protocol

protocol haddocks: Ouroboros.Network.Protocol.PeerSharing.Type
codec haddocks: Ouroboros.Network.Protocol.PeerSharing.Codec
node-to-node mini-protocol number: 10
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3.11.1 Description

The Peer-Sharing mini-protocol is a simple Request-Reply mini-protocol. The mini-protocol is used by nodes to share
their upstream peers (a subset of their Known Peers).

3.11.2 State machine

MsgShareRequest

start | StTdle StBusy

MsgSharePeers

MsgDone

v
IStDoneI

Figure 3.11: State machine of the peer sharing protocol.

state | agency
StIdle | Client
StBusy | Server

Figure 3.12: Peer-Sharing state agencies

Protocol messages

MsgShareRequest amount The client requests a maximum number of peers to be shared (amount). Ideally, this
amount should limited by a protocol level constant to disallow a bad actor from requesting too many peers.

MsgSharePeers [peer Address| The server replies with a set of peers. The amount of information send is limited
by message size limit (see below).

It is a protocol error to send more peers than it was requested.

The server should only share peers with which it has (or recently had) an successful inbound or outbound session.

MsgDone Terminating message.

3.11.3 Size limits per state

These bounds limit how many bytes can be sent in a given state; indirectly, this limits the payload size of each message.
If a space limit is violated, the connection SHOULD be torn down.

3.11.4 Timeouts per state

These limits bound how much time the receiver side can wait for the arrival of a message. If a timeout is violated, the
connection SHOULD be torn down.
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state | size limit in bytes

StIdle 5760
StBusy 5760
state | timeout
StIdle -
StBusy 60s

Table 3.13: timeouts per state

3.11.5 Client Implementation Details

The initiator side will have to be running indefinitely since protocol termination means either an error or peer demotion.
Because of this, the protocol won’t be able to be run as a simple request-response protocol. To overcome this, the
client-side implementation will use a registry so that each connected peer gets registered and assigned a controller with
a request mailbox. This controller will be used to issue requests to the client implementation, which will be waiting for
the queue to be filled up to send a MsgShareRequest. After sending a request, the result is put into a local result
mailbox.

If a peer gets disconnected, it should get unregistered.

Deciding from whom to request peers (and how many)

First of all, peer-sharing requests should only be issued if:

* The current number of known peers is less than the target for known peers;
* The rate limit value for peer sharing requests isn’t exceeded;

» There are available peers to issue requests to;

If these conditions hold, then we can pick a set of peers to issue requests to. Ideally, this set respects the rate limit
value for peer-sharing requests.

If a peer has PeerSharingDisabled, flag value, do not ask it for peers. This peer won’t even have the
Peer-Sharing miniprotocol server running.

The number of peers to request from each upstream peer should aim to fulfil the target for known peers. This number
should be split for the current peer target objective across all peer-sharing candidates for efficiency and diversity reasons.

Picking peers for the response

Apart from managing the Outbound Governor state correctly, the final result set should be a random distribution of the
original set.

This selection should be done in such a way that when the same initial PRNG state is used, the selected set does not
significantly vary with small perturbations in the set of published peers.

The intention of this selection method is that the selection should give approximately the same replies to the same
peers over the course of multiple requests from the same peer. This is to deliberately slow the rate at which peers can
discover and map out the entire network.

3.11.6 Server Implementation Details

As soon as the server receives a share request, it needs to pick a subset not bigger than the value specified in the request’s
parameter. The reply set needs to be sampled randomly from the Known Peer set according to the following constraints:

* Only pick peers that we managed to connect to at some point

* Don’t pick known-to-be-ledger peers
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* Pick peers that have public willingness information (e.g. DoAdvertisePeer).

* Pick peers that haven’t behaved badly (e.g. PeerFailCount == 0)

Computing the result (i.e. random sampling of available peers) needs access to the PeerSelectionState, which
is specific to the peerSelectionGovernorLoop. However, when initialising the server side of the mini-protocol,
we have to provide the result computing function early on the consensus side. This means we will have to find a way to
delay the function application all the way to diffusion and share the relevant parts of PeerSelectionState with
this function via a TVar.

3.11.7 CDDL encoding specification (> 14)

; Peer Sharing MiniProtocol

B

peerSharingMessage = msgShareRequest
/ msgSharePeers
/ msgDone
msgShareRequest = [0, base.word8]
msgSharePeers = [1, peerAddresses]
msgDone = [2]

peerAddresses [+ peerAddress]

peerAddress = [0, base.word32, portNumber] ; ipv4 + portNumber
/ [1, base.word32, base.word32, base.word32, base.word32, portNumber] ; ipv6 + portNumbe

portNumber = base.word16

;# import network.base as base

3.12 Local Tx-Submission mini-protocol

protocol haddocks: Ouroboros.Network.Protocol.LocalTxSubmission.Type
codec haddocks: Ouroboros.Network.Protocol.LocalTxSubmission.Codec
node-to-client mini-protocol number: 6

3.12.1 Description

The local transaction submission mini protocol is used by local clients, For example, wallets or CLI tools are used to
submit transactions to a local node. The protocol is not used to forward transactions from one core node to another. The
protocol for the transfer of transactions between full nodes is described in Section 3.9.

The protocol follows a simple request-response pattern:

1. The client sends a request with a single transaction.
2. The Server either accepts the transaction (returning a confirmation) or rejects it (returning the reason).

Note that the local transaction submission protocol is a push-based protocol where the client creates a workload for the
server. This is acceptable because this mini-protocol is only to be used between a node and a local client.
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Figure 3.13: State machine of the Local Tx-Submission mini-protocol.

state | agency
StIdle | Client
StBusy | Server

Figure 3.14: Local Tx-Submission state agencies

3.12.2 State machine
Protocol messages
MsgSubmitTx (¢t) The client submits a single transaction. It MUST wait for a reply.

MsgAcceptTx The server confirms that it accepted the transaction.

MsgRejectTx (reason) The server informs the client that it rejected the transaction and provides a reason.

MsgDone The client terminates the mini protocol.

3.12.3 Size limits per state

No size limits.

3.12.4 Timeouts per state

No timeouts.

3.12.5 CDDL encoding specification

; LocalTxSubmission mini—protocol

; Reference implementation of the codec in:

B

localTxSubmissionMessage
= msgSubmitTx
/ msgAcceptTx
/ msgRejectTx
/ ItMsgDone
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14
15
16
17
18
19
20
21
22

msgSubmitTx
msgAcceptTx
msgRejectTx

[tMsgDone

[0, base.tx ]

[1]

[2, rejectReason ]
= [3]

rejectReason = int

;# import network.base as base

See appendix A for common definitions.

3.13 Local State Query mini-protocol

protocol haddocks: Cardano .Network.Protocol.LocalStateQuery.Type
codec haddocks: Cardano.Network.Protocol.LocalStateQuery.Codec
node-to-client mini-protocol number: ]

3.13.1 Description

Local State Query mini-protocol allows querying of the consensus/ledger state. This mini protocol is part of the
node-to-client protocol; hence, it is only used by local (and thus trusted) clients. Possible queries depend on the
era (Byron, Shelly, etc.) and are not specified in this document. The protocol specifies basic operations like acquir-
ing/releasing the consensus/ledger state, which is done by the server, or running queries against the acquired ledger

state.

3.13.2 State machine

MsgDone

MsgAcquire MsgAcquired MsgQuery

MsgReAcquire

MsgResult

MsgFailure

MsgRelease

A

4

IStDoneI

Figure 3.15: State machine of the Local State Query mini-protocol.

state | agency
StIdle Client
Acquiring | Server
Acquired Client
Querying Server
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Protocol messages See Figure 3.16, where AcquireFailure is either:
e AcquireF ailurePointT 0oOld, or
e AcquireFailurePoint N otOnChain

Target is either ImmutableTip, VolatileTip, or Speci ficPointpt.

The primary motivation for being able to acquire the ImmutableT'ip is that it’s the most recent ledger state that the
node will never abandon: the node will never rollback to a prefix of that immutable chain (unless the on-disk ChainDB is
corrupted/manipulated). Therefore, answers to queries against the ImmutableT'ip is necessarily not subject to rollback.

MsgAcquire The client requests that the T'arget ledger state on the server’s be made available to query, and waits
for confirmation or failure.

MsgAcquired The server can confirm that it has the state at the requested point.

MsgFailure The server can report that it cannot obtain the state for the requested point.
MsgQuery The client can perform queries on the current acquired state.

MsgResult The server must reply with the queries.

MsgRelease The client can instruct the server to release the state. This lets the server free resources.

MsgReAcquire This is like MsgAcquire but for when the client already has a state. By moving to another state
directly without a MsgRelease it enables optimisations on the server side (e.g. moving to the state for the
immediate next block).

Note that failure to re-acquire is equivalent to MsgRelease, rather than keeping the exiting acquired state.

MsgDone The client can terminate the protocol.

from state message parameters to state
StIdle MsgAcquire Target point Acquiring
Acquiring | MsgFailure AcquireFailure | StIdle
Acquiring | MsgAcquired Acquired
Acquired MsgQuery query Querying
Querying MsgResult result Acquired
Acquired MsgReAcquire | Target point Acquiring
Acquired MsgRelease StIdle
StIdle MsgDone StDone

Figure 3.16: Local State Query mini-protocol messages.

3.13.3 Size limits per state

No size limits.

3.13.4 Timeouts per state

No timeouts.
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3.13.5 CDDL encoding specification
; LocalStateQuery mini—protocol.

localStateQueryMessage

= msgAcquire
/ msgAcquired
/ msgFailure
/ msgQuery
/ msgResult
/ msgRelease
/ msgReAcquire
/ IsqMsgDone
acquireFailurePointTooOld =0
acquireFailurePointNotOnChain = 1
failure = acquireFailurePointTooOld
/ acquireFailurePointNotOnChain
query = any
result = any
msgAcquire = [0, base.point]
/ 8]
/ [10]
msgAcquired = [1]
msgFailure = [2, failure]
msgQuery = [3, query]
msgResult = [4, result]
msgRelease = [5]
msgReAcquire = [6, base.point]
! [9]
[/ [11]

IsgMsgDone [7]

;# import network.base as base

See appendix A for common definitions.

3.14 Local Tx-Monitor mini-protocol

protocol haddocks: Cardano.Network.Protocol.LocalTxMonitor. Type
codec haddocks: Cardano .Network.Protocol.LocalTxMonitor.Codec
node-to-client mini-protocol number: 9

3.14.1 Description

A mini-protocol which allows the monitoring of transactions in the local mempool. This mini-protocol is stateful; the
server side tracks transactions already sent to the client.

3.14.2 State machine

Protocol messages
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StBusy NextTx

g

MsgNextTx
MsgReplyNextTx
MsgAcquired
MsgHasTx
MsgAcquire . ,
g MsgReplyHasTx
MsgAwaitAcquire AN
MsgGetSizes
MsgDone MsgRelease MsgReplyGetSizes
MsgGetMeasures
MngeplyGetMeasuresz
v

IStDoneI [StBusy GetMeasures] [StBusy GetSizes]

Figure 3.17: State machine of the Local Tx-Monitor mini-protocol.

state | agency
StIdle Client
Acquiring | Server
Acquired Client
StBusy Server

Figure 3.18: Local Tx-Monitor state agencies

MsgAcquire Acquire the latest snapshot. This enables subsequent queries to be made against a consistent view of the
mempool.

MsgAcquired (SlotNo) The server side is now locked to a particular mempool snapshot. It returns the slot number
of the ’virtual block’ under construction.

MsgAwaitAcquire Like "MsgAcquire’ but await a new snapshot different from the one currently acquired.
MsgRelease Release the acquired snapshot in order to loop back to the idle state.
MsgNextTx The client requests a single transaction and waits for a reply.

MsgReplyNextTx (Nothing | Just x) The server responds with a single transaction if one is available in the mem-
pool. This must be a transaction that was not previously sent to the client for this particular snapshot.

MsgHasTx The client checks whether the server knows of a particular transaction identified by its id.
MsgReplyHasTx (Bool) The server responds True when the given tx is present in the snapshot, False otherwise.
MsgGetSizes The client asks the server about the mempool current size and max capacity.
MsgReplyGetSizes (Word32,Word32,Word32) The server responds with three sizes. The meaning of them are:
capacity in bytes the maximum capacity of the mempool (note that this may dynamically change when the ledger state

is updated);
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size in bytes the summed byte size of all the transactions in the mempool;

number of transactions the number of transactions in the mempool.
MsgGetMeasures The client asks the server for information on the mempool’s measures.

MsgReplyGetMeasures (Word32, Map Text (Integer, Integer)) The server responds with the total number of
transactions currently in the mempool, and a map of the measures known to the mempool. The keys of this map
are textual labels of the measure names, which should typically be considered stable for a given node version, and
the values are a pair of integers representing the current size and maximum capacity respectively for that measure.
The maximum capacity should not be considered fixed and is likely to change due to mempool conditions. The
size should always be less than or equal to the capacity.

from state message parameters to state

StIdle MsgAcquire Acquiring
Acquiring MsgAcquired SlotNo Acquired
Acquired MsgAwaitAcquire Acquiring
Acquired MsgRelease StIdle
Acquired MsgNextTx StBusy NextTx
StBusy NextTx MsgReplyNextTx (Nothing | Just tx) Acquired
Acquired MsgHasTx StBusy HasTx
StBusy HasTx MsgReplyNextTx Bool Acquired
Acquired MsgGetSizes StBusy GetSizes
StBusy GetSizes MsgReplyGetSizes Word32,Word32,Word32 Acquired
Acquired MsgGetMeasures StBusy GetMeasures
StBusy GetMeasures | MsgReplyGetMeasures | Word32,Map Text (Integer,Integer) | Acquired

StIdle MsgDone StDone

Figure 3.19: Local Transaction Monitor mini-protocol messages.

3.14.3 Size limits per state

No size limits.

3.14.4 Timeouts per state

No timeouts.

3.14.5 CDDL encoding specification

; LocalTxMonitor mini—protocol.
; reference implementation of the codec in
;s ouroboros—network/src/QOuroboros/Network/Protocol/LocalTxMonitor/Codec. hs

localTxMonitorMessage
msgDone
msgAcquire
msgAcquired
msgNextTx
msgReplyNextTx
msgHasTx
msgReplyHasTx
msgGetSizes

~ e~~~ o~ ~ — |
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/ msgReplyGetSizes

/ msgGetMeasures

/ msgReplyGetMeasures

/ msgRelease
msgDone = [0]
msgAcquire = [1]
msgAcquired = [2, base.slotNo]
msgAwaitAcquire = msgAcquire
msgRelease = [3]
msgNextTx = [5]
msgReplyNextTx = [6] / [6, base.tx]
msgHasTx = [7, base.txld]
msgReplyHasTx = [8, bool]
msgGetSizes = [9]
msgReplyGetSizes = [10, [base.word32, base.word32, base.word32]]
msgGetMeasures = [11]

msgReplyGetMeasures = [12, base.word32, {+ text => [integer, integer]}]

s# import network.base as base
See appendix A for common definitions.

3.15 Pipelining of Mini Protocols

Protocol pipelining is a technique that improves the performance of some protocols. The underlying idea is that a client
that wants to perform several requests just transmits those requests in sequence without blocking and waiting for the
reply from the server. In the reference implementation, pipelining is used by the clients of all mini-protocols except
Chain-Sync. Those mini-protocols follow a request-response pattern that is amenable to pipelining such that pipelining
becomes a feature of the client implementation and does not require any modifications to the server implementation.

As an example, let’s consider the Block-Fetch mini protocol. When a client follows the protocol and sends a
sequence of MsgRequestRange messages to the server, the data stream from the client to the server will only consist
of MsgRequestRange messages (and a final MsgClientDone message) and no other message types. The server
can simply follow the state machine of the protocol and process the messages in turn, regardless of whether the client
uses pipelining or not. The MUX/DEMUX layer (Chapter 2) guarantees that messages of the same mini protocol are
delivered in transmission order. Therefore, the client can determine which response belongs to which request.

The MUX/DEMUX layer also provides a fixed-size buffer between the egress of DEMUX and the ingress of mini
protocol thread. The size of this buffer is a protocol parameter that determines how many messages a client can send
before waiting for a reply from the server (see Section 2.1.3). The protocol requires that a client must never cause an
overrun of these buffers on a server node. If a message arrives at the server that would cause the buffer to overrun, the
server treats this case as a protocol violation of the peer (and closes the connection to the peer).

3.16 Node-to-node protocol

haddock documentation: Ouroboros .Network .NodeToNode
haddock documentation: Ouroboros .Network.NodeToNode.Version

The node-to-node protocol consists of the following protocols:

e chain-sync mini-protocol for headers (section 3.7)

* block-fetch mini-protocol (section 3.8)

e tx-submission mini-protocol; from NodeToNodeV__6 the version 2 is used (section 3.9)

e keep alive mini-protocol; from NodeToNodeV_3 (section 3.10)
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 peer-sharing mini-protocol; from NodeToNodeV_11 (section 3.11)

Currently supported versions of the node-to-node protocol are listed in table 3.20.

version ‘ description
NodeToNodeV_14 | No changes, identifies Plomin HF nodes mandatory on mainnet as of 2025.01.29
NodeToNodeV_15 | No changes, identifies nodes which support SRV records

Figure 3.20: Node-to-node protocol versions

Previously supported node-to-node versions are listed in table B.1.

3.16.1 Node-to-node mux mini-protocol numbers

The following table 3.14 shows mux mini-protocol numbers assigned to each node-to-node mini-protocol.

mini-protocol mini-protocol number
Handshake 0
Chain-Sync 2
Block-Fetch 3
Tx-Submission 4
Keep-Alive 8
Peer-Sharing (optional) 10

Table 3.14: Node-to-node protocol numbers

3.16.2 Node-to-node mux ingress buffer size limits

Ingress buffer is the buffer which holds received data for a given mini-protocol. It is an internal detail of the multiplexer.
Each implementation should define its ingress buffer size limits. Here we specify the default choices we made for
Cardano Node. These limits depend on how much pipelining depth a given mini-protocol can do. This is an internal
implementation detail since the amount of pipelining is controlled by the peer who owns its ingress buffer.

mini-protocol | ingress size limit in bytes
Handshake -
Chain-Sync 462000
Block-Fetch 230686 940
Tx-Submission 721424
Keep-Alive 1408
Peer-Sharing 5760

Table 3.15: Mux ingress buffer sizes for each mini-protocol

3.17 Node-to-client protocol

haddock documentation: Ouroboros .Network.NodeToClient
haddock documentation: Ouroboros.Network.NodeToClient.Version

The node-to-client protocol consists of the following protocols:

e chain-sync mini-protocol for blocks (section 3.7)
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¢ local-tx-submission mini-protocol (section 3.12)
* local-state-query mini-protocol; from version NodeToClientV_2 (section 3.13)
¢ local tx-monitor mini-protocol; from version NodeToClientV_12 (section 3.14)

Supported versions of node-to-client protocol are listed in table 3.21.

version description

NodeToClientV_16 | Conway era, ImmutableTip and Get StakeDelegDeposits queries
NodeToClientV_17 | GetProposals, GetRatifyState queries

NodeToClientV_18 | GetFuturePParams query

NodeToClientV_19 | GetBigLedgerPeerSnapshot query

NodeToClientV_20 | QueryStakePoolDefaultVote query;

added MsgGetMeasures and MsgReplyGetMeasures queries
NodeToClientV_21 | new codecs for PParams and CompactGenesis

Figure 3.21: Node-to-client protocol versions

Previously supported node-to-client versions are listed in table B.2.

3.17.1 Node-to-client mux mini-protocol numbers

The following table 3.16 show mux mini-protocol numbers assigned to each node-to-client mini-protocol.

mini-protocol mini-protocol number
Handshake 0
Chain-Sync 5
Local Tx-Submission 6
Local State Query 7
Local Tx-Monitor 9

Table 3.16: Node-to-client protocol numbers

3.17.2 Node-to-client mux ingress buffer size limits

All node-to-client protocols are using very large ingress buffer size limits of 4 294 967 295 bytes, effectively there are
no size limits.
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Chapter 4

Time and size limits

4.1 Timeouts

There are several layers, where timeouts play a crucial way in making the system secure. At the lowest layer is a mux
timeout which we explain next. After establishing a connection (either a Node-to-Node or Node-to-Client one), the
handshake is using a bearer with 10s timeout on receiving each mux SDU. Note, this is a timeout which bounds how
long it takes to receive a single mux SDU, e.g. from receiving the leading edge of the mux SDU until receiving its
trailing edge, not how long we wait to receive a next SDU. Handshake protocol is then imposing its own timeouts, see
table 3.3.

After handshake negotiation is done, mux is using a bearer with 30 s timeout on receiving a mux SDU (the previous
note applies as well). Once a mini-protocol is in execution it must enforce it’s own set of timeouts which we included in
the previous chapter and for convenience we referenced them in the table 4.1 below.

mini-protocol  timeouts
Handshake table 3.3
Chain-Sync table 3.6
Block-Fetch table 3.8
Tx-Submission table 3.11
Keep-Alive table 3.12
Peer-Share table 3.13

Figure 4.1: Node-To-Node mini-protocol timeouts

On the inbound side of the Node-to-Node protocol, we also include a 5s idleness timeout. It starts either when
a connection is accepted or when all responder mini-protocols terminated. If this timeout expires, without receiving
any message from a remote end, the connection must be closed unless it is a duplex connection which is used by the
outbound side.

Once all outbound and inbound mini-protocols have terminated and the idleness timeout expired, the connection is
reset and put on a 60s timeout. See section 5.8.6 why this timeout is required.

4.2 Space limits

All per mini-protocol size limits are referenced in table 4.2:
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mini-protocol

space limits

Handshake
Chain-Sync
Block-Fetch
Tx-Submission
Keep-Alive
Peer-Share

table 3.6.3
table 3.5
table 3.8.3
table 3.10
table 3.10.3
table 3.11.3

Figure 4.2: Node-To-Node mini-protocol size limits
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Chapter 5

Connection Manager State Machine
Specification

5.1 Introduction

As described in the Network Design document, the goal is to transition to a more decentralised network. To make that
happen, a plan was designed to come up with a P2P network that is capable of achieving desired network properties.
One key component of such design is the p2p governor, which is responsible for managing the cold/warm/hot peer
selection, managing the churn of these groups, and adjusting the targets in order for the network to reach the desired
properties. However, having warm and hot peers implies establishing a bearer connection; kot peers need to run several
mini-protocols, and each mini-protocol runs two instances (client and server). This means that with a large enough
warm/hot peer target, there’s going to be a lot of resource waste when it comes to file descriptor usage. There’s also the
problem of firewalls, where it matters who tries to start a communication with whom (if it’s the client or the server).

Knowing this, it would be good to make the most of each connection and, in order to do so, the Connection manager
was designed.

5.2 Components

Figure 5.1 illustrates the three main components of the decentralisation process from the perspective of a local node. In
the Outbound side, the p2p governor, as said previously, takes care of all connection initiation (outbound connections)
and decides which mini-protocols to run (established, warm or hot). In the Inbound side, the Server is just a
simple loop, responsible for accepting incoming connections; and the Inbound Protocol Governor role is
starting/restarting the required mini-protocols, to detect if its local peer was added as a warm/hot peer in some other
remote node and to set timers in some cases, e.g. if the remote end opened a connection and did not send any message;
the Inbound Protocol Governor will timeout after some time and close the connection. The arrows in Figure
5.1 represent dependencies between components: The server accepts a connection, which is then given to Connection
manager. Connection manager exposes methods to update its state whenever the Inbound Protocol Governor
notices that the connection was used (could be used due to warm

hot transitions). If peer sharing is enabled, the incoming address will eventually be added to the known set of the
outbound governor.

Using a TCP connection in both directions rather than two independent TCP connections is suitable for efficient use
of network resources, but more importantly, it is crucial to support certain essential scenarios where one node is behind
a firewall that blocks incoming TCP connections. For example, it is good practice to have a block-producing node
behind a firewall while deploying relay nodes outside of it. If the node behind the firewall can establish an outbound
TCP connection to its relays but still has those relays select the block-producing node as an upstream peer, which means
that node operators do not need to configure any holes and/or port forwarding in the firewall. If we were only to support
running mini-protocols in one direction, then this scenario would require a hole in the firewall to allow the relays to
establish incoming connections to the block-producing node. That would be both less secure and also require additional
configuration.
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Figure 5.1: Main components

Consider, however, what is required to make this scenario work.

1.
2.

We must start with an outbound connection being established from the block-producing node to a relay.

The block-producing node wants the relay as an upstream peer — to receive blocks from the rest of the network
— so the normal mini-protocols need to be run with the block-producing node in the client role and relay in the
server role. So initially, at least, the relay had to act as a server to accept the connection and to run the server side
of the mini-protocols.

. Next, however, we want the relay to be able to select the block-producing node as an upstream peer, and we want
it to do so by reusing the existing connection since we know the firewall makes it impossible to establish a new
outbound connection to the block-producing node. Thus, we must be able to have the relay start the client side of
the usual mini-protocols and The block-producer must be running on their server side.

. So, notice that this means we have started with just running the mini-protocols in one direction and transitioned to
running them in both directions, what we call full duplex.

. Furthermore, such transitions are not a one-off event. It is entirely possible for a node to select another peer as an
upstream peer and later change its mind. This means we could transition from duplex back to unidirectional — and
that unidirectional direction need not even be the same as the initial direction!

This leads to a couple of observations:

1

2

. that, in the general case, we need to support any number of transitions between unidirectional and duplex use of a
connection and

. that once a bearer has been established, the relationship between the two ends is symmetric: the original direction
hardly matters.
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A consequence of all this is that we cannot use a classic client/server design. We are decoupling the ongoing role of
the connection from who initiated it. That is, we cannot just run a server component that manages all the connections
and threads for the server (inbound) side of things and a separate component that manages the connections and threads
for the client (outbound) side of things. The connections have to be a shared resource between the inbound and outbound
sides so that we can use connections in either or both directions over the lifetime of a connection.

Although actual TCP connections must be a shared resource, we do not wish to Intermingle the code to handle the
inbound and outbound directions. As noted above, the selection of upstream (outbound) peers is quite complicated,
and we would not want to add to that complexity by mixing it with a lot of other concerns, and vice versa. To
minimise complexity, it would be preferable if the code that manages the outbound side would be completely unaware
of the inbound side and vice versa. Yet, we still want the inbound and outbound sides to opportunistically share TCP
connections where possible. This appears to be eminently achievable given that we are using multiplexing to run
mini-protocols in either direction and concurrency for mini-protocol handlers to achieve a degree of modularity.

The use of a single TCP connection helps simplify exception processing and mitigate poor peer performance in a
timely manner (whether connection-related or otherwise). This is covered in more detail in Section 5.3.

These ideas lead to the design illustrated in Figure 5.1. In this design, there is an outbound and inbound side — which
are completely unaware of each other — mediated by a shared connection manager component.

The connection manager is there to manage the underlying TCP connection resources. It has to provide an interface
to the outbound side to enable the use of connections in an outbound direction. Correspondingly, it must provide an
interface to the inbound side to enable the use of connections in an inbound direction. Internally, it must deal with
connections being used in a unidirectional or duplex way, as well as the transitions between them. Of course, it can be
the case that connections are no longer required in either direction, and such connections should be closed in an orderly
manner. This must be the responsibility of the connection manager since it is the only component that can see both
inbound and outbound sides to be able to see that a connection is no longer needed in either direction and, hence, not
needed at all.

In the next couple of sections, we will review the inbound and outbound sides need to be able to do, and what service
does the connection manager need to provide?

5.3 Exception Processing

We maintain a one-to-one correspondence between peers and connections, which simplifies exception handling since
if there’s a single mini-protocol violation, we need to shut down the thread that handles that particular connection.
Although multiple threads handle a single connection: two threads per a pipelined mini-protocol, one thread per a
non-pipelined one, plus two multiplexer threads (muxer & demuxer threads). However, all these threads are spawned
and managed by the multiplexer, which has the property that if any of the threads throws an exception, all of the
threads will be killed. This property allows us to have a single error handling policy (called RethrowPolicy) per
connection handler thread. A RethrowPolicy classifies exceptions into two categories, depending on whether an
exception should terminate the connection or be propagated to terminate the whole process. RethrowPolicy-ies can
be composed in terms of a semi-group. Network code only makes ITOManagerErrors fatal. On top of that, consensus
introduces its own consensusRethrowPolicy for the Node-To-Node protocol.

5.4 Mini-protocol return values

Handling of mini-protocol return values is a complementary feature to exception processing, hence it’s described here,
although it is done at the Outbound-Governor level rather than Connection-Manager level, which is primarily described
in this part of the documentation.

We classify mini-protocol return values for initiator/client mini-protocols (this feature is only needed for the
chain-sync mini-protocol). For a given return value, we compute the re-promotion delay used by the Outbound-Governor.
Here is the returnPolicy. introduced in Ouroboros-Consensus for the Node-To-Node protocol. Cardano-Node is
not managing outbound node-to-client connection; hence, a policy for the node-to-client protocol is not needed.

The outbound governor is also given a policy which controls how long to wait until re-promote a peer after an
exception (for now, we use a fixed delay).
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5.5 Outbound side: the outbound governor

A key component of the design for decentralisation is the outbound governor. It is responsible for:
* managing the selection of upstream peers;
* managing the transitions of upstream peers between cold/warm/hot states;
* continuously making progress towards the target number of peers in each state; and
* adjusting these targets over time to achieve a degree of ‘churn’.

Taken together, and with appropriate policies, a network of nodes should be able to self-organise and achieve the desired
properties. We have simulation results that give us a good degree of confidence that this is indeed the case at a large
scale.

Fortunately, while the outbound governor’s decision-making procedures are relatively complex, the use of connec-
tions is quite simple. The governor needs only two interactions.

Acquire a connection. The governor decides when to promote a peer from cold to warm. To perform the promotion, it
needs to acquire access to a connection — either fresh or pre-existing. To complete the promotion, the client side
of warm mini-protocols will be started.

Release a connection. The governor also decides when to demote a peer to cold. As part of the demotion, the client-side
mini-protocols are terminated. The connection is then no longer needed by the governor and is released.

It is worth noting again that the outbound governor does not require exclusive access to the TCP bearer. It has
no special TCP-specific needs during setup or shutdown. It needs access to the multiplexer to be able to run a set of
mini-protocols in one direction. So, in a sense, it needs exclusive access to ‘half’ of a multiplexer for a connection, but it
does not need to coordinate with or even be aware of any use of the other ‘half’ of the multiplexer. It is this separation
of concerns that enables a modular design and implementation.

5.6 Inbound side: the server

The inbound side has a less complex task than the outbound governor, but its interactions with the connection manager
are slightly more complicated.

The inbound side is split into two components: the server and the inbound governor.

The server is responsible for accepting new TCP connections on the listening socket. It is responsible for not
exceeding resource limits by accepting too many new connections. It is also responsible for a little bit of DoS protection:
limiting the rate of accepting new connections.

The server component is much simpler than in most network server applications because it does not need to manage
the connection resources once created. The server hands new connections over to the connection manager as soon as
they are accepted. The server’s responsibilities end there. The server needs only two interactions with the connection
manager.

Query number of connections The server component needs to query the connection manager to find the current
number of connections. It uses this information to decide if any new connections can be accepted or if we are at
the resource limits. Below the hard limits, the current number can be used as part of rate-limiting decisions.

Hand over a new connection Once the server component has successfully accepted a new connection, it needs to hand
over responsibility for it to the connection manager.

5.7 Inbound side: the inbound governor

The inbound governor is responsible for starting, restarting and monitoring the the server side of the mini-protocols.

One of the high-level design choices is that when a server-side mini-protocol terminates cleanly (usually because the
client chose to terminate it), then the the server side of the mini-protocol should be restarted in its initial state in case the
client wishes to use the protocol again later. It is the inbound governor that is responsible for doing this.
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The mux component provides a mechanism to start mini-protocol handlers on a connection for a specific mini-protocol
number in a particular direction. These handlers can then be monitored to see when they terminate. The inbound
governor relies on this mechanism to monitor when the protocol handler terminates cleanly. When it does terminate
cleanly, the governor restarts the mini-protocol handler.

All the mini-protocols have the property that agency starts with the client/initiator side'. This allows all of the
server/responder side protocols to be started in the mux ‘on-demand’ mode. In the on-demand mode, the protocol
handler thread is not started until the client’s first message arrives.

The inbound governor gets informed of new connections that should be monitored either via the server or by the
connection manager. The server informs the governor about fresh inbound connections. The connection manager
informs the governor about connections that started due to a request for an outbound connection — at least for those
connections that are to be available to use in duplex mode.

As illustrated in Figure 5.1, both the connection manager and server components communicate with the inbound
governor directly. They do this to inform the inbound governor about new connections so that it can start to run and
monitor the server-side protocols. The server notifies about new connections established inbound, while the connection
manager acquires new connections established outbound (at least the duplex ones) through the connection manager APL
A slight simplification would be to have only one of these routes of notification.

The inbound governor

One simple illustration of how these three components interact together:

» Server accepts a connection;

» Server registers that connection to the connection manager (which puts the connection in UnnegotiatedState
Inbound);

* Assuming the handshake was successful, the connection is put in InboundIdleState” Duplex;
* The remote end transitions the local node to warm (using the connection) within the expected timeout;

¢ IPG (Inbound Protocol Governor) notifies the Connection manager about this state change, via promotedToWarmRemote.
Now the connection is in InboundState Duplex;

* Connection manager is asked for an outbound connection to that peer (by the p2p governor), it notices that it
already has a connection with that peer in InboundState Duplex, so it gives that connection to p2p governor
and updates its state to DuplexState.

You can find more information about the possible different connection states in the section 5.8.3.

5.8 Connection Manager

5.8.1 Overview

Connection manager is a lower-level component responsible for managing connections and its resources. Its responsibil-
ities consist of:

* Tracking each connection, in order to keep an eye on the bounded resources;

« Starting new connections, negotiating if the connection should be full-duplex or half-duplex, through the Connec-
tion Handler;

* Be aware of warm/hot transitions, in order to try and reuse already established connections;
* Negotiating which direction, which mini-protocol is going to run (Client — Server, Server—Client, or both);

 Taking care of a particularity of TCP connection termination (lingering connections).

!Originally transaction submission protocol had agency start with the responder/server side. A later protocol update reversed the initial agency so
that they are now all consistent.
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Mini-protocols are running within the TCP connection from A to B
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Figure 5.2: Duplex connection running several mini-protocols

The Connection manager creates and records accepted connections and keeps track of their state as negotiations
for the connection and start/stop mini-protocols are made. There’s an internal state machine that helps the Connection
manager keep track of the state of each connection, and help it make decisions when it comes to resource management
and connection reusing.

The Connection Handler drives through handshake negotiation and starts the multiplexer. The the outcome of the
handshake negotiation is:

* the negotiated version of the protocol

* negotiated parameters, which include the mode in which the connection will be run (InitiatorOnlyMode,
ResponderOnlyMode,
InitiatorAndResponderMode - the first two are half-duplex, the last one is full-duplex mode)

* Handshake might error

The Connection Handler notifies the Connection manager about the result of a negotiation, which triggers a state
transition. If we can run the connection in full-duplex mode, then it is possible to run the bundles of mini-protocols in
both directions and otherwise only in one direction. So, Figure 5.2 shows 6 mini protocols running, 3 in each direction.
If we negotiated only a unidirectional connection, then we’d only be running 3 (The direction is based on which peer
established the connection).

From the point of view of the connection manager, it only matters whether an unidirectional or duplex connection
was negotiated. Unidirectional connections are the ones that run exclusively on either the initiator or responder side
of mini-protocols, while duplex connections can run either or both initiator and responder protocols. Note that in
the outbound direction (initiator side), it is the p2p governor responsibility to decide which set of mini-protocols:
established, warm or hot, are running. On the inbound side (responder mini-protocols), we have no choice but to run all
of them.

The connection manager should only be run in two MuxModes:



* ResponderMode or

¢ InitiatorAndResponderMode

,the ITnitiatorMode is not allowed, since that mode is reserved for special leaf nodes in the network (such as the
blockchain explorer, for example), and it doesn’t make sense to run a node-to-client client side.

The duplex mode: InitiatorAndResponderMode is useful for managing connection with external nodes
(node-to-node protocol), while Re sponderMode is useful for running a server which responds to local connections
(server side of node-to-client protocol).

Connection manager can use at most one ipv4 and at most one ipv6 address. It will bind to the correct address
depending on the remote address type (ipv4/ipv6).

In this specification, we will often need to speak about two nodes communicating via a TCP connection. We will
often call them local and remote ends of the connection or local / remote nodes; we will usually take the perspective of
the local node.

5.8.2 Types

Connection manager exposes two methods to register a connection:

data Connected peerAddr handle handleError
—— | We are connected, and mux is running.
= Connected !(Connectionld peerAddr) lhandle

—— | There was an error during the handshake negotiation .
| Disconnected !(Connectionld peerAddr) !|(Maybe handleError)

—— | Include the outbound connection in ’ConnectionManager’.

—— This executes:

—— % \(Reserve\) to \( Negotiated"{+}_{Outbound}\) transitions

—— = \( PromotedToWarm"{ Duplex}_{Local}\) transition

—— « \(Awake™{Duplex}_{Local)\) transition

requestOutboundConnection
:: Haslnitiator muxMode ~ True
= ConnectionManager muxMode socket peerAddr handle handleError m
— peerAddr — m (Connected peerAddr handle handleError)

—— | Include an inbound connection into ’ConnectionManager’.

—— This executes:
—— = \(Accepted\) V \( Overwritten\) to \( Negotiated"{+}_{Inbound}\) transitions
includelnboundConnection

:: HasResponder muxMode ~ True

= ConnectionManager muxMode socket peerAddr handle handleError m

— socket — peerAddr — m (Connected peerAddr handle handleError)

The first one asks the connection manager to either connect to an outbound peer or, if possible, reuse a duplex
connection. The other one allows registering an inbound connection, which was accepted. Both methods block
operations and return either an error (handshake negotiation error or a multiplexer error) or a handle to a negotiated
connection.

Other methods which are discussed in this specification:

—— | Custom Either type for the result of various methods.
data OperationResult a

= UnsupportedState !InState

| OperationSuccess a
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—— | Enumeration of states , used for reporting; constructors elided from this
—— specification .
data InState

—— | Unregister an outbound connection.

—— This executes:
—— % \(DemotedToCold" +}_{Local)\) transitions
unregisterOutboundConnection
i Haslnitiator muxMode ~ True
= ConnectionManager muxMode socket peerAddr handle handleError m
— peerAddr — m (OperationResult ())

—— | Notify the ’ConnectionManager’ that a remote end promoted us to a
—— /warm peer/.

—— This executes :

—— % \( PromotedToWarm”{ Duplex}_{Remote}\) transition,

—— x \(Awake™ +}_{Remote}\) transition .

promotedToWarmRemote
i Haslnitiator muxMode ~ True
= ConnectionManager muxMode socket peerAddr handle handleError m
— peerAddr — m (OperationResult InState)

—— | Notify the ’ConnectionManager’ that a remote end demoted us to a /cold
—— peer/.

—— This executes :

—— % \( DemotedToCold"{ +}_{Remote)\) transition .

demotedToColdRemote
:: HasResponder muxMode ~ True
= ConnectionManager muxMode socket peerAddr handle handleError m
— peerAddr —> m (OperationResult InState)

—— | Unregister outbound connection. Returns if the operation was successful .

—— This executes :

—— x \(Commit={*)\) transition

—— =« \( TimeoutExpired\) transition

unregisterinboundConnection
:: HasResponder muxMode ~ True
= ConnectionManager muxMode socket peerAddr handle handleError m
— peerAddr — m (OperationResult DemotedToColdRemoteTr)

—— | Number of connections tracked by the server.

numberOfConnections
:: HasResponder muxMode ~ True
= ConnectionManager muxMode socket peerAddr handle handleError m
— STM m Int

5.8.3 Connection states

Each connection is either initiated by Inbound or Outbound side.

data Provenance
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= Inbound
| Outbound

Each connection negotiates dataFlow:

data DataFlow
= Unidirectional
| Duplex

InUnidirectional data flow, the connection is only used in one direction: The outbound side runs the initiator
side of mini-protocols, and the inbound side runs responders; in Dup1ex mode, both the inbound and outbound side runs
the initiator and responder side of each mini-protocol. Negotiation of DataF 1ow is done by the handshake protocol;
the final result depends on two factors: the negotiated version and InitiatorOnly flag, which is announced through
a handshake. Each connection can be in one of the following states:

data ConnectionState
—— The connection manager is about to connect with a peer.
= ReservedOutboundState

—— Connected to a peer, handshake negotiation is ongoing.
| UnnegotiatedState Provenance

—— Outbound connection, inbound idle timeout is ticking .
| OutboundState™ DataFlow

—— Outbound connection, inbound idle timeout expired .
| OutboundState DataFlow

—— Inbound connection, but not yet used.
| InboundldleState™ DataFlow

—— Active inbound connection.
| InboundState DataFlow

—— Connection runs in duplex mode: either outbound connection negotiated
—— "Duplex’ data flow, or ’InboundState Duplex’ was reused.
| DuplexState

—— Connection manager is about to close (reset) the connection, before it
——will do that it will put the connection in ’OutboundldleState’ and start
—— a timeout.

| OutboundldleState™

—— Connection has terminated; socket is closed, thread running the

—— the connection is killed . For some delay (‘TIME_WAIT®) the connection is kept
——in this state until the kernel releases all the resources.

| TerminatingState

—— Connection is forgotten .
| TerminatedState

The above type is a simplified version of what is implemented. The real implementation tracks more detail, e.g.
connection id (the quadruple of IP addresses and ports), multiplexer handle, thread id, etc., which we do not need to take
care of in this specification. The rule of thumb is that all states that have some kind of timeout should be annotated with
a 7. In these cases, we are waiting for any message that would indicate a warm or hot transition. If that does not happen
within a timeout, we will close the connection.

In this specification, we represent OutboundState”™ Unidirectional, which is not used, the implementation
avoids this constructor, for the same reasons that were given above, regarding ITnitiatorMode.

Figure 5.3 shows all the transitions between ConnectionStates. Blue and Violet states represent states of an
Outbound connection, and Green and Violet states represent states of an Inbound connection. Dashed arrows indicate
asynchronous transitions that are triggered, either by a remote node or by the connection manager itself.
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Note that the vertical symmetry in the graph corresponds to the local vs remote state of the connection, see table 5.1.
The symmetry is only broken by InboundIdleState” dataFlow, which does not have a corresponding local
equivalent. This is simply because, locally, we immediately know when we will start initiator protocols, and the
implementation is supposed to do that promptly. This, however, cannot be assumed to be the case on the inbound side.

local connection state remote connection state

UnnegotiatedState Outbound UnnegotiatedState Inbound
OutboundIdleState” dataFlow | InboundIdleState” dataFlow

OutboundState dataFlow InboundState dataFlow
OutboundState” dataFlow InboundState dataFlow
InboundState dataFlow OutboundState dataFlow
DuplexState DuplexState

Table 5.1: Symmetry between local and remote states

Another symmetry that we tried to preserve is between Unidirectional and Duplex connections. The
Duplex side is considerably more complex as it includes interaction between Inbound and Outbound connections
(in the sense that inbound connections can migrate to outbound only and vice versa). However, the state machine for
an inbound-only connection is the same whether it is Duplex or Unidirectional, see Figure 5.4. A connection
manager running in ResponderMode will use this state machine.

For node-to-client server, it will be even simpler, as there we only allow for unidirectional connections. Nevertheless,
this symmetry simplifies the implementation.

5.8.4 Transitions
Reserve

When connection manager is asked for an outbound connection, it reserves a slot in its state for that connection. If
any other thread asks for the same outbound connection, the connection manager will raise an exception in that thread.
Reservation is done to guarantee exclusiveness for state transitions to a single outbound thread.

Connected

This transition is executed once an outbound connection successfully performs the connect system call.

Accepted and Overwritten

Transition driven by the accept system call. Once it returns, the connection manager might either not know about such
connection or, there might be one in ReservedOutboundState. The Accepted transition represents the former
situation, while the Overwritten transition captures the latter.

Let us note that if Overwritten transition happened, then on the outbound side, the scheduled connect call will fail.
In this case, the p2p governor will recover, putting the peer in a queue of failed peers and will either try to connect to
another peer or reconnect to that peer after some time, in which case it would re-use the accepted connection (assuming
that a duplex connection was negotiated).

NegotiatedUnidirectional , .~ 4 and NegotiatedPuP'e*5 .\ 1nd

Once an outbound connection has been negotiated, one of NegotiatedUnidirectional J '+ or NegotiatedPUP'®* 5 iound
transition is performed, depending on the result of a handshake negotiation. Duplex connections are negotiated only for
node-to-node protocol versions higher than NodeToNodeV_7, and neither side declared that it is an initiator only.

If a duplex outbound connection was negotiated, the connection manager needs to ask the inbound protocol governor
to start and monitor responder mini-protocols on the outbound connection.

Implementation detail

This transition is done by the requestOutboundConnection.
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NegotiatedUnidirectional "~ 4 and Negotiated® P'®X| ,  ng

This transition is performed once the handshake negotiated an unidirectional or duplex connection on an inbound
connection.

For NegotiategUnidirectional .~ . NegotiatedPuP'ex, .4, NegotiatedPUP!® o ioung transitions, the inbound pro-
tocol governor will restart all responder mini-protocols (for all established, warm and hot groups of mini-protocols) and
keep monitoring them.

Implementation detail

This transition is done by the includeInboundConnection.

Implementation detail

Whenever a mini-protocol terminates, it is immediately restarted using an on-demand strategy. All node-to-node protocols have initial
agency on the client side; hence, restarting them on-demand does not send any message.

AwakeDuPlexLocal, AwakeDuPlexFlemote and Awakeunidirec“onalRemo‘e

All the awake transitions start either at InboundIdleState” dataFlow, the AwakePUP'®¥ g e can also be
triggered on OutboundIdleState”™ Duplex.

Implementation detail

AwakePuplex . transition is done by reque st OutboundConnect ion on the request of p2p governor, while AwakePuPlexg

and AwakeUnidirectional, - are triggered by incoming traffic on any of the responder mini-protocols (asynchronously if detected any
warm/hot transition).

CommitUmdlrectlonalRemote, COmmitDuPlexnemote

Both commit transitions happen after protocol idle timeout of inactivity (as the TimeoutExpired transition does). They
transition to TerminatingState” (closing the bearer). For duplex connections, a normal shutdown procedure goes
through InboundIdleState” Duplex via CommitPUPlex g, - which gave the name to this transition.

The inactivity of responder mini-protocols triggers these transitions. They both protect against a client that connects
but never sends any data through the bearer; also, as part of a termination sequence, it is protecting us from shutting
down a connection which is transitioning between warm and hot states.

Both commit transitions:

« CommitPUPI g, oie
. CommitUnidirectional Remote

need to detect idleness during a time interval (which we call: protocol idle timeout). If, during this time frame, inbound
traffic on any responder mini-protocol is detected, one of the AwakePUP'®*go 1 o1e or AwakeUnidirectional o - transition
is performed. The idleness detection might also be interrupted by the local AwakePUP'®X| .. transition.

Implementation detail

These transitions can be triggered by unregisterInboundConnection and unregisterOutboundConnection (both
are non-blocking), but the stateful idleness detection during protocol idle timeout is implemented by the server.
The implementation relies on two properties:

« the multiplexer being able to start mini-protocols on-demand, which allows us to restart a mini-protocol as soon as it returns
without disturbing idleness detection;

» the initial agency for any mini-protocol is on the client.
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Implementation detail

Whenever an outbound connection is requested, we notify the server about a new connection. We also do that when the connection
manager hands over an existing connection. If inbound protocol governor is already tracking that connection, we need to make sure that

* inbound protocol governor preserves its internal state of that connection;

¢ inbound protocol governor does not start mini-protocols, as they are already running (we restart responders as soon as they
stop, using the on-demand strategy).

DemotedToColdYnidirectional, . DemotedToColdPurlex .,

This transition is driven by the p2p governor when it decides to demote the peer to cold state; its domain is
OutboundState dataFlow or OutboundState” Duplex. The target state is OutboundIdleState”
dataFlow in which the connection manager sets up a timeout. When the timeout expires, the connection man-
ager will do CommitdataFlow, . . transition, which will reset the connection.

Implementation detail

This transition is done by unregisterOutboundConnection.

DemotedToColdUnidirectional o . DemotedToColdPuPlexp e

Both transitions are edge-triggered, the connection manager is notified by the inbound protocol governor once it notices
that all responders became idle. Detection of idleness during protocol idle timeout is done in a separate step which is
triggered immediately, see section 5.8.4 for details.

Implementation detail

Both transitions are done by demotedToColdRemote.

PromotedToWarmPuplex, .

This transition is driven by the local p2p governor when it promotes a cold peer to warm state. connection manager will
provide a handle to an existing connection, so that p2p governor can drive its state.

Implementation detail

This transition is done by requestOutboundConnection.

TimeoutExpired

This transition is triggered when the protocol idleness timeout expires while the connection is in OutboundState”
Duplex. The server starts this timeout when it triggers DemotedToColdd@t@Flowg, o transition. The connection
manager tracks the state of this timeout so we can decide if a connection in the outbound state can terminate or if it
needs to wait for that timeout to expire.

Implementation detail

This transition is done by unregisterInboundConnection.
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PromotedToWarmPuplex .o

The remote peer triggers this asynchronous transition. The inbound protocol governor can notice it by observing the
multiplexer ingress side of running mini-protocols. It then should notify the connection manager.

Implementation detail

This transition is done by promotedToWarmRemote.
The implementation relies on two properties:

« all initial states of node-to-node mini-protocols have client agency, i.e. the the server expects an initial message;

« all mini-protocols are started using an on-demand strategy, which allows to detect when a mini-protocol is brought to life by
the multiplexer.

Prune transitions

First, let us note that a connection in InboundState Duplex could have been initiated by either side (Outbound or
Inbound). This means that even though a node might not have accepted any connection, it could end up serving peers
and possibly go beyond server hard limit, thus exceeding the number of allowed file descriptors. This is possible via the
following path:

Connected,
Negotiated®“P'® o ip0unds
PromotedToWarmPurlexg o

DemotedToColdPuplex .

which leads from the initial state ® to InboundState Duplex, the same state in which accepted duplex
connections end up. Even though the server rate limits connections based on how many connections are in this state, we
could exceed the server hard limit.

These are all transitions that potentially could lead to exceeding the server hard limit, all of them are transitions
from some outbound/duplex state into an inbound/duplex state:

» DuplexState to InboundState Duplex (via DemotedToColdPuplex 1)

» OutboundState” Duplex to InboundState Duplex (via DemotedToColdPUPleX ..
» OutboundIdleState” Duplex to InboundState Duplex (via AwakePuPlexg i)

* OutboundState” Duplex to DuplexState (via PromotedToWarmPuplexg, )

* OutboundState Duplex toDuplexState (via PromotedToWarmPurlexg, o)

To solve this problem, the connection manager will check to see if the server hard limit was exceeded in any of the
above transitions. If that happens, the connection manager will reset an arbitrary connection (with some preference).

The reason why going from OutboundState” Duplex (orOutboundState Duplex,or OutboundIdleState”
Duplex)to InboundState Duplex mightexceed the server hard limit is exacty the same as the DuplexState to
InboundState Duplex one. However, the reason why going from OutboundState”™ DuplextoDuplexState
might exceed the limit is more tricky. To reach a DuplexState, one assumes there must have been an incoming
accepted connection. However, there’s another way that two end-points can establish a connection without a node
accepting it. If two nodes try to request an outbound connection simultaneously, it is possible for two applications to
both perform an active opening to each other at the same time. This is called a simultaneous open. In a simultaneous
TCP open, we can have 2 nodes establishing a connection without any of them having explicitly accepted a connection,
which can make a server violate its file descriptor limit.

Given this, we prefer to reset an inbound connection rather than close an outbound connection because, from a
systemic point of view, outbound connections are more valuable than inbound ones. If we keep the number of established
peers to be smaller than the server hard limit; with the right policy, we should never need to reset a connection in
DuplexState. However, when dealing with a connection that transitions from OutboundState” Duplex to
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DuplexState, we actually need to make sure this connection is closed, because we have no way to know for sure if
this connection is the result of a TCP simultaneous open there might not be any other connection available to prune that
can make space for this one.

The inbound protocol governor is in a position to make an educated decision about which connection to reset.
Initially, we aim for a decision driven by randomness, but other choices are possible” and the implementation should
allow to easily extend the initial choice.

CommitUmdlrectlonal Remotes Comm itDuPlexRemote

Both commit transitions happen after protocol idle timeout of inactivity (as the TimeoutExpired transition does). They
transition to TerminatingState” (closing the bearer). For duplex connections, a normal shutdown procedure
goes through InboundIdleState” Duplex via CommitPUPlexg, .o - which gave the name to this transition, or
through OutboundIdleState” Duplex via CommitPUuP'eX . transition.

These transitions are triggered by the inactivity of responder mini-protocols. They both protect against a client that
connects but never sends any data through the bearer; also, as part of a termination sequence, it is protecting us from
shutting down a connection which is transitioning between warm and hot states.

Both commit transitions:

» CommitPUPIX . e
. CommitUnidirectional Remote

Need to detect idleness during time interval (which we call: protocol idle timeout). If during this time frame,
inbound traffic on any responder mini-protocol is detected, one of the AwakePUP'e g, o or AwakeUnidirectional o
transition is performed. The local AwakePUP'®X| ;. transition might also interrupt the idleness detection.

Implementation detail

These transitions can be triggered by unregisterInboundConnection and unregisterOutboundConnection (both
are non-blocking), but the stateful idleness detection during protocol idle timeout is implemented by the inbound protocol governor.
The implementation relies on two properties:

« the multiplexer being able to start mini-protocols on-demand, which allows us to restart a mini-protocol as soon as it returns
without disturbing idleness detection;

* the initial agency for any mini-protocol is on the client.

Implementation detail

Whenever an outbound connection is requested, we notify the server about a new connection. We also do that when the connection
manager hands over an existing connection. If inbound protocol governor is already tracking that connection, we need to make sure that

* inbound protocol governor preserves its internal state of that connection;

* inbound protocol governor does not start mini-protocols, as they are already running (we restart responders as soon as they
stop, using the on-demand strategy).

CommitUnidirectional Locals commitDuplex Local

As previous two transitions, these also are triggered after protocol idle timeout, but this time, they are triggered on the
outbound side. This transition will reset the connection, and the timeout ensures that the remote end can clear its ingress
queue before the TCP reset arrives. For a more detailed analysis, see 5.8.6 section.

Terminate

After a connection is closed, we keep it in TerminatingState” for the duration of wait time timeout. When the
timeout expires, the connection is forgotten.

2We can take into account whether we are hot to the remote end, or for how long we have been ot to to the remote node.
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Connecting to oneself

The transitions described in this section can only happen when the connection the manager was requested to connect to
its own listening socket and the address wasn’t translated by the OS or a NAT. This could happen only in particular
situations:

1. misconfiguration a system;
2. running a node on multiple interfaces;
3. in some cases, it could also happen when learning about oneself from the ledger;

4. or due to peer sharing.

In some of these cases, the external IP address would need to agree with the internal one, which is true for some
cloud service providers.

Let us note that these connections effectively only add delay, and thus they will be replaced by the outbound governor
(by its churn mechanism).

These transitions are not indicated in the figure 5.3, instead they are shown bellow in figure 5.5.

SelfConn and SelfConn—! We allow transitioning between
e UnnegotiatedState Outbound and

e UnnegotiatedState Inbound

or the other way. This transition is not guaranteed as on some systems in such case, the outbound and inbound addresses
(as returned by the accept call) can be different. Whether SelfConn or SelfConn~! will happen depending on the
race between the inbound and outbound sides.

SelfConn’ and SelfConn’~! We also allow transitioning between
* InboundIdleState” dataFlow and

* OQutboundState dataFlow

After the handshake is negotiated, there is a race between inbound and outbound threads, which need to be resolved
consistently.

5.8.5 Protocol errors

If a mini-protocol errors, on either side, the connection will be reset and put in TerminatedState. This can happen
in any connection state.

5.8.6 Closing connection

By default, when the operating system is closing a socket, it is done in the background, but when SO_LINGER option is
set, the close system call blocks until either all messages are sent or the specified linger timeout fires. Unfortunately,
our experiments showed that if the remote side (not the one that called c1ose), delays reading the packets, then even
with SO_LINGER option set, the socket is kept in the background by the OS. On FreeBSD it is eventually closed
cleanly, on Linux and OSX it is reset. This behaviour gives the remote end the power to keep resources for an extended
amount of time, which we want to avoid. We thus decided to always use SO_LINGER option with timeout set to 0,
which always resets the connection (i.e. it sets the RST TCP flag). This has the following consequences:

* Four-way handshake used by TCP termination will not be used. The four-way handshake allows one to close
each side of the connection separately. With the reset, the OS is instructed to forget the state of the connection
immediately (including freeing unread ingress buffer).

¢ the system will not keep the socket in TIME_WATIT state, which was designed to:
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— provide enough time for final ACK to be received;

— protect the connection from packets that arrive late. Such packets could interfere with a new connection
(see Stevens et al. (2003)).

The connection state machine makes sure that we close a connection only when both sides are not using the
connection for some time: for outbound connections this is configured by the timeout on the OutboundIdleState”
dataF low, while for inbound connections by the timeout on the InboundIdleState” dataFlow. This ensures
that the application can read from ingress buffers before the RST packet arrives. Excluding protocol errors and prune
transitions, which uncooperatively reset the connection.

We also provide application-level TIME_WATIT state: TerminatingStateT, in which we keep a connection,
which should also protect us from late packets from a previous connection. However, the connection manager does
allow to accept new connections during TerminatingState” - itis the client’s responsibility not to reconnect too
early. For example, p2p governor enforces a 60s idle period before it can reconnect to the same peer, after either a
protocol error or a connection failure.

From an operational point of view, it’s essential that connections are not held in TIME_WATIT state for too long.
This would be problematic when restarting a node (without rebooting the system) (e.g. when adjusting configuration).
Since we reset connections, this is not a concern.

5.8.7 Outbound connection

If the connection state is in either ReservedOutboundState, UnnegotiatedState Inboundor InboundState
Duplex then, when calling requestOutboundConnect ion the state of a connection leads to either OutboundState
Unidirectional or DuplexState.

If Unidirectional connection was negotiated, requestOutboundConnection must error. If Duplex
connection was negotiated, it can use the egress side of this connection leading to DuplexState.

initial state (*): the connection manager does not have a connection with that peer. The connection is put in
ReservedOutboundState before connection manager connects to that peer;

UnnegotiatedState Inbound: if the connection manager accepted a connection from that peer, handshake
is ongoing; requestOutboundConnection will await until the connection state changes to InboundState
dataFlow.

InboundState Unidirectional: if requestOutboundConnection finds a connection in this state it
will error.

InboundState Duplex: if connection manager accepted connection from that peer and handshake negotiated a
Duplex data flow; requestOutboundConnection transitions to DuplexState.

TerminatingState”: block until TerminatedState and start from the initial state.

Otherwise: if connection manager is asked to connect to peer, and there exists a connection in any other state,
e.g. UnnegotiatedState Outbound, OutboundState dataFlow, DuplexState, connection manager
signals the caller with an error, see section 5.2.

Figure 5.6 shows outbound connection state evolution, e.g. the flow graph of requestOutboundConnection.

OutboundState Duplex and DuplexState

Once an outbound connection negotiates Duplex data flow, it transfers to OutboundState Duplex. At this point,
we need to start responder protocols. This means that the connection manager needs a way to inform the server (which
accepts and monitors inbound connections) to start the protocols and monitor that connection. This connection will
transition to DuplexState only once we notice incoming traffic on any of established protocols. Since this connection
might have been established via TCP simultaneous open, this transition to DuplexState can also trigger Prune
transitions if the number of inbound connections becomes above the limit.
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Implementation detail

The implementation is using a TBQueue. The server uses this channel for incoming duplex outbound and inbound connections.

Termination

When p2p governor demotes a peer to cold state, an outbound the connection needs to transition from either:

* OutboundState dataFlow to OutboundIdleState” dataFlow
* OutboundState” Duplexto InboundIdleState” Duplex

* DuplexStateto InboundState Duplex

To support that the connection manager exposes a method:

unregisterOutboundConnection :: peerAddr — m ()
This method performs DemotedToColdgUnidiectional ' or DemotedToColdPUP'e* ., transition. In the former case, it
will shut down the multiplexer and close the TCP connection; in the latter case, besides changing the connection state, it
will also trigger Prune transitions if the number of inbound connections is above the limit.
Connection manager methods
The tables 5.2 and 5.3 show transitions performed by

* requestOutboundConnection and

* unregisterOutboundConnection

respectively.

The choice between no-op and error is solved by the following rule: if the calling component (e.g. p2p governor),
can keep its state in a consistent state with connection manager then use no—op, otherwise error. Since both inbound
protocol governor and p2p governor are using mux to track the state of the connection, the state can’t be inconsistent.

5.8.8 Inbound connection
Initial states for inbound connection are either:
¢ initial state e;

* ReservedOutboundState: this can happen when requestOutboundConnect ion reserves a connec-
tion with ReservedOutboundState, but before it calls connect the accept call returned. In this case, the
connect call will fail and, as a consequence, requestOutboundConnection will fail too. Any mutable
variables used by it can be disposed since no thread can be blocked on it: if another thread asked for an out-
bound connection with that peer, it would see ReservedOutboundState and throw ConnectionExists
exception.

To make sure that this case is uncommon, we need to guarantee that the connection manager does not block
between putting the connection in the ReservedOutboundState and calling the connect system call.

Connection manager methods

The following tables show transitions of the following connection manager methods:
* includeInboundConnection: table 5.4
* promotedToWarmRemote: table 5.5

¢ demotedToColdRemote: table 5.6
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State

Action

ReservedOutboundState
UnnegotiatedState Outbound

UnnegotiatedState Inbound

OutboundState dataFlow
OutboundState” Duplex
OutboundIdleState”™ dataFlow
InboundIdleState” Unidirectional
InboundIdleState”™ Duplex
InboundState Unidirectional
InboundState Duplex

DuplexState

TerminatingState”

TerminatedState

* ReservedOutboundState,
» Connected,
e start connection thread (handshake, mux)

R NegotiatedUnidirectionaIoutbound or
Dupl
ated"""*outbound

error ConnectionkExists

error ConnectionExists

await for InboundState dataFlow,
if negotiated duplex connection trans-
ition to DuplexState, otherwise error

ForbiddenConnection

error ConnectionkExists

error ConnectionExists

error ForbiddenOperation

error ForbiddenConnection
transition to OutboundState Duplex
error ForbiddenConnection
transition to DuplexState

error ConnectionExists

await for TerminatedState

can be treated as initial state

Table 5.2: requestOutboundConnect ion; states indicated with a T are forbidden by TCP.

68

Negoti-



ReserV

Accepted

Connected Overwritten

SelfConn
UnnegotiatedState Inbound

AN

Negotiatedumdirectional Inbound

\ SelfConn—!

Negotiated®"P'™ 5 pound

NegotiatedUnldlrectlonal Outbound

Y/

NegotiatedDuP'ex Inbound

SelfConn’
InboundIdleState” Unidirectional
SelfConn’~!
SelfConn’
outboundstate’ Duplex 3 > mboundrdiestate’ Duplex
SelfConn’~!

Figure 5.5: Extra transitions when connecting to onself

State

Action

ReservedOutboundState
UnnegotiatedState Outbound
UnnegotiatedState Inbound
OutboundState dataFlow
OutboundState” Duplex
OutboundIdleState”™ dataFlow
InboundIdleState” Unidirectional
InboundIdleState” Duplex
InboundState Unidirectional
InboundState Duplex

DuplexState

TerminatingState”

TerminatedState

no—-op

error ForbiddenOperation
error ForbiddenOperation
error ForbiddenOperation
DemotedToColddataFlow

Prune or DemotedToColdPuplex, .,
no—-op

assertion error

no—-op

assertion error

no—-op

Prune or DemotedToColdPuplex, .,
no—-op

no—-op

Table 5.3: unregisterOutboundConnection
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no connection
Reservedoutboundstate 4 — L

peer?
connect
v yes
await wait time timeout
handshake
What is the

current
state?
Which data
flow was
negoti-
ated?

await for handshake

Unidirectional

error ConnectionExists
Duplex

I— error ForbiddenConnection

|— error ForbiddenConnection

‘— OutboundState Unidirectional
I— error ConnectionExists

@ —— DuplexState

|—— error ConnectionExi

$—— Oucnounjialestace datariow
I— error Forbi

enOperation

-——y

Figure 5.6: Outbound connection flow graph
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Which data

flow was
negoti-
ated?
Unidirectional Duplex
v

InboundState Unidirectional _

requestOutboundConnection

v

Figure 5.7: Inbound connection flow graph, where both bordered states: ReservedOutboundState and
UnnegotiatedState Inbound are initial states.

* unregisterInboundConnection: table 5.7

States indicated by ‘-* are preserved, though unexpected; promotedToWarmRemote will use UnsupportedState
OperationResult a to indicate that to the caller.

States indicated with a T are forbidden by TCP.
Transitions denoted by T should not happen. The implementation is using assertion, and the production system will

trust that the server side calls unregisterInboundConnection only after all responder mini-protocols where

idle for protocol idle timeout.
unregisterInboundConnection might be called when the connection is in OutboundState Duplex. This

can, though very rarely, happen as a race between AwakePU'e¥ . 1o and DemotedToColdPUP'* . oo, Let’s consider
the following sequence of transitions:

3race is not the right term, these transitions are concurrent and independent
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State Action

. e start connection thread (handshake, mux)
e transition to UnnegotiatedState Inbound.

¢ await for handshake result

e transition to InboundIdleState”
dataFlow.
ReservedOutboundState the same as
UnnegotiatedState prov impossible statel

InboundIdleState” dataFlow impossible statel

InboundState dataFlow impossible statef
OutboundState dataFlow impossible statef
DuplexState impossible statel
TerminatingState” the same as *
TerminatedState the same as *

Table 5.4: includeInboundConnection

Stateln StateOut Transition

ReservedOutboundState -

UnnegotiatedState prov -

OutboundState Unidirectional -

OutboundState Duplex Prune or (DuplexState PromotedToWarmPupleXg o)
InboundIdleState” Unidirectional InboundState Unidirectional AwakeUnidirectional,
InboundIdleState” Duplex InboundState Duplex AwakePUPIeX g oie
InboundState Unidirectional -

InboundState Duplex -

DuplexState -

TerminatingState” -

TerminatedState -

Table 5.5: promotedToWarmRemote
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Stateln

StateOut

Transition

ReservedOutboundState
UnnegotiatedState prov
OutboundState dataFlow
InboundIdleState” dataFlow
InboundState dataFlow
DuplexState

TerminatingState”

TerminatedState

InboundIdleState” dataFlow

OutboundState” Duplex

Table 5.6: demotedToColdRemote

Stateln

StateOut

Returned Value

DemotedToColddataFlow

DemotedToColdPuPlexg,

Transition(s)

ReservedOutboundState
UnnegotiatedState prov

OutboundState”

OutboundState Unidirectional

OutboundState” Duplex
OutboundState Duplex
InboundIdleState” dataFlow

InboundState dataFlow

DuplexState
TerminatingState”

TerminatedState

Table 5.7: unregisterInboundConnection

Unidirectional § -

i -

OutboundState Duplex -

T -

TerminatingState” True

TerminatingStateTf True DemotedToColddataFlowg - e
CommiJ[dataFIoth_}mOte

OutboundState Duplex False DemotedToColdPuPlexg, o

73



Accepted
v

Negotiated®"P'®| g
v

AwakeD“p'ex Local

v

If the protocol idle timeout on the InboundIdleState” Duplex expires the AwakePUP' g, o transition is
triggered and the inbound protocol governor calls unregisterInboundConnection.

5.9 Server

The server consists of an accept loop and an inbound protocol governor. The accept loop is using includeInboundConnnection
on incoming connections, while the inbound protocol governor tracks the state of the responder side of all mini-protocols
and it is responsible for starting and restarting mini-protocols, as well as detecting if they are used to support:

« PromotedToWarmbPurlexg .
. DemotedToCo|dUnidirectionaI Remotes

» CommitYnidirectional o/~ and CommitPUP'eXp. e transitions.

The inbound protocol governor will always start/restart all the mini-protocols using StartOnDemand strategy.
When the multiplexer detects any traffic on its ingress queues, corresponding to responder protocols, it will do the
PromotedToWarmPUPlexg, o transition using promotedToWarmRemote method.

Once all responder mini-protocols become idle, i.e. they all stopped, were restarted (on-demand) but are not yet

running, a DemotedToColdda@Flow, . . transition is run: the inbound protocol governor will notify the connection
manager using:

—— | Notify the ’ConnectionManager’ that a remote end demoted us to a /cold
—— peer/.

—— This executes :

—— % \(DemotedToCold"{ +}_{ Remote}\) transition .

demotedToColdRemote

- HasResponder muxMode ~ True

=> ConnectionManager muxMode socket peerAddr handle handleError m
—> peerAddr —> m (OperationResult InState)

When all responder mini-protocols are idle for protocol idle timeout, the inbound protocol governor will execute
unregisterInboundConnection which will trigger:

o CommitUnidirectional o or CommitPUP'ex . i if the initial state is InboundIdleState” Duplex;
» TimeoutExpired if the initial state is OutboundState” Duplex;

¢ no-op if the initial state is OutboundState Duplex or OutboundIdleState” dataFlow.
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—— | Return the value of ’unregisterInboundConnection’ to inform the caller about
—— the transition .

data DemotedToColdRemoteTr =
—— | @Commit"dataFlow}@ transition from @’ InboundldleState’ dataFlow @.

CommitTr

—— | @DemotedToCold"{ Remote} @ transition from @’InboundState’ dataFlow @

| DemotedToColdRemoteTr

—— | Either @DemotedToCold"{Remote}@ transition from @’DuplexState’ @, or
——a level triggered @Awake™{Duplex}_{Local}@ transition. In both cases
—— the server must keep the responder’s side of all protocols ready.

| KeepTr

deriving Show

unregisterlnboundConnection :: peerAddr = m (OperationResult DemotedToColdRemoteTr)

Both CommijtUnidirectional o - and CommitPUP'eX 5. Will free resources (terminate the connection thread, close the
socket).

5.10 Inbound Protocol Governor

Inbound protocol governor keeps track of the responder side of the protocol for both inbound and outbound duplex
connections. Unidirectional outbound connections are not tracked by inbound protocol governor. The server and
connection manager are responsible for notifying it about new connections once negotiated. Figure 5.9 presents the state
machine that drives changes to connection states tracked by inbound protocol governor. As in the connection manager
case, there is an implicit transition from every state to the terminating state, representing mux or mini-protocol failures.

5.10.1 States

States of the inbound governor are similar to the outbound governor, but there are crucial differences.

RemoteCold

The remote cold state signifies that the remote peer is not using the connection, however the only reason why the
inbound governor needs to track that connection is because the outbound side of this connection is used. The inbound
governor will wait until any of the responder mini-protocols wakes up (AwakeRemote) or the mux will be shut down
(MuxTerminated).

Remoteldle™

The Remoteldle™ state is the initial state of each new connection (NewConnection). An active connection will become
Remoteldle™ once the inbound governor detects that all responder mini-protocols terminated (WaitldleRemote). When
a connection enters this state, an idle timeout is started. If no activity is detected on the responders, the connection will
either be closed by the connection manager and forgotten by the inbound governor or progress to the RemoteCold state.
This depends on whether the connection is used (warm or hot) or not (cold) by the outbound side.

RemoteWarm

A connection dwells in RemoteWarm if there are strictly only any warm or established responder protocols running.
Note also that an established protocol is one that may run in both hot and warm states, but cannot be the only type
running to maintain hot state once all proper hot protocols have terminated. In other words, the connection must be
demoted in that case.
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MuxTerminated

RemoteCold
NewConnection

CommitRemote

VA

Remoteldle™

/ AwakeRemote
Wa|tIdIeRemote

RemoteWarm MiniProtocolTerminated

PromotedToHotRemote

DemotedToWarm Remote

RemoteHot MiniProtocolTerminated

Figure 5.9: Inbound protocol governor state machine

RemoteHot

A connection enters RemoteHot state once any hot responder protocol has started. In particular, if a hot responder is
the first to start, the state cycles through RemoteWarm first. Once all hot responders terminate, the connection will be
put in RemoteWarm regardless of whether there are any warm or established responders left. In the latter case, if there
aren’t any other protocols running, the connection will then follow up with further demotion to Remoteldle™.
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5.10.2 Transitions
NewConnection

Inbound and outbound duplex connections are passed to the inbound governor. They are then put in Remoteldle™ state.

CommitRemote

Once the Remoteldle™ timeout expires, the inbound governor will call unregisterInboundConnection. The
connection will either be forgotten or kept in RemoteCold state depending on the returned value.

AwakeRemote

While a connection was put in Remoteldle” state, it is possible that the remote end will start using it. When the inbound
governor detects that any of the responders is active, it will put that connection in RemoteWarm state.

Implementation detail

The inbound governor calls promotedToWarmRemote to notify the connection manager about the state change.

WaitldleRemote
WaitldleRemote transition happens once all mini-protocol is terminated.

Implementation detail

The inbound governor calls demotedToColdRemote. If it returns TerminatedConnection the connection will be forgotten
(as in MuxTerminated transition), if it returns Operat ionSuccess it will register a idle timeout.

MiniProtocolTerminated

When any of the mini-protocols terminates, the inbound governor will restart the responder and update the internal state
of the connection (e.g. update the stm transaction, which tracks the state of the mini-protocol).

Implementation detail

The implementation distinguishes two situations: whether the mini-protocol terminated or errored. The multiplexer guarantees that if it
errors, the multiplexer will be closed (and thus, the connection thread will exit, and the associated socket will be closed). Hence, the
inbound governor can forget about the connection (perform MuxTerminated).

The inbound governor does not notify the connection manager about a terminating responder mini-protocol.

MuxTerminated
The inbound governor monitors the multiplexer. As soon as it exists, the connection will be forgotten.
The inbound governor does not notify the connection manager about the termination of the connection, as it can
detect this by itself.
PromotedToHotRemote
The inbound governor detects when any kot mini-protocols have started. In such case a RemoteWarm connection is
put in RemoteHot state.
DemotedToWarmRemote

Dually to PromotedToHotRemote state transition, as soon as all of the hor mini-protocols terminate, the connection
will transition to RemoteWarm state.
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Appendix A

Common CDDL definitions

; Mini-protocol codecs are polymorphic in various data types, e.g. blocks, points,
;s transactions , transaction ids, etc. In CDDL we need concrete values so we

; instantiate them using ‘any ‘. See ‘CBOR and CDDL‘ in the network

; technical report

; https ://ouroboros—network.cardano. intersectmbo .org/pdfs/network—spec

; if you need further advise how to find concrete encoding of ‘Cardano‘ data

; types.

block = any
header = any
tip = any
point = any

; The codec only accepts definite —length list.
points = [ «point ]

txId = any

tx = any

; although some of our protocols are polymorphic over slots, e.g.

3

; ‘local —tx—-monitor *, slots are always encoded as ‘word64 ‘.
slotNo = word64

word8 = uint .size 1; I byte
word16 = uint .size 2; 2 bytes
word32 = uint .size 4; 4 bytes
word64 = uint .size 8; 8 bytes
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Appendix B

Historical protocol versions

B.1 Node-to-node protocol

Previously supported versions of the node-to-node protocol are listed in table B.1.

version

description

NodeToNodeV_1
NodeToNodeV_2
NodeToNodeV_3
NodeToNodeV_4
NodeToNodeV_5
NodeToNodeV_ 6
NodeToNodeV_7
NodeToNodeV_8
NodeToNodeV_9
NodeToNodeV_10
NodeToNodeV_11
NodeToNodeV_12
NodeToNodeV_13

initial version

block size hints

introduction of keep-alive mini-protocol

introduction of diffusion mode in handshake mini-protocol

transaction submission version 2

new keep-alive, Alonzo ledger era

chain-sync & block-fetch pipelining

Babbage ledger era

Full duplex connections

Peer sharing willingness

No observable changes

Disabled peer sharing for buggy V11 & V12 and for InitiatorOnly nodes

Figure B.1: Node-to-node protocol versions

B.2 Node-to-client protocol

Previously supported versions of the node-to-client protocol are listed in table B.2.
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version

description

NodeToClientV_1
NodeToClientV_2
NodeToClientV_3
NodeToClientV_4
NodeToClientV_5
NodeToClientV_6
NodeToClientV_7
NodeToClientV_S8
NodeToClientV_9
NodeToClientV_10
NodeToClientV_11
NodeToClientV_12
NodeToClientV_13
NodeToClientV_14
NodeToClientV_15

initial version
added local-query mini-protocol

new queries added to local state query mini-protocol
Allegra era

Mary era

new queries added to local state query mini-protocol
codec changed for local state query mini-protocol
Alonzo era

GetChainBlock & GetChainPoint queries
GetRewardInfoPools query

Added LocalTxMonitor mini-protocol

Babbage era

GetPoolDistr, GetPoolState, GetSnapshots queries
internal changes

Figure B.2: Node-to-client protocol versions
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