
Kindr Library – Kinematics and Dynamics for Robotics
Christian Gehring, C. Dario Bellicoso, Michael Bloesch, Hannes Sommer, Peter Fankhauser,

Marco Hutter, Roland Siegwart

Nomenclature
(Hyper-)complex number Q normal capital letter
Column vector a bold small letter
Matrix M bold capital letter
Identity matrix 1n×m n×m-matrix
Coordinate system (CS) eAx , e

A
y , e

A
z Cartesian right-hand system A with basis (unit) vectors e

Inertial frame eIx, e
I
y , e

I
z global / inertial / world coordinate system (never moves)

Body-fixed frame eBx , e
B
y , e

B
z local / body-fixed coordinate system (moves with body)

Rotation Φ ∈ SO(3) generic rotation (for all parameterizations)
Machine precision ε

Operators

Cross product/skew/unskew a× b =

a1

a2

a3

×
b1b2
b3

 = (a)∧b = âb =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

b1b2
b3


a = â∨, â = −âT, a× b = −b× a

Euclidean norm ‖a‖ =
√

aT a =
√
a2

1 + . . .+ a2
n

Exponential map for matrix exp : R3×3 → R3×3,A 7→ eA, A ∈ R3×3

Logarithmic map for matrix log : R3×3 → R3×3,A 7→ log A, A ∈ R3×3

Position & Orientation
Position
Vector rOP from point O to point P
Position vector BrOP ∈ R3 from point O to point P expr. in frame B
Homogeneous pos. vector B r̄OP =

[
BrTOP 1

]T from point O to point P expr. in frame B

Orientation/Rotation
1) Active Rotation: ΦA : IrOP 7→ IrOQ (rotates the vector rOP)
2) Passive Rotation: ΦP : IrOP 7→ BrOP (rotates the frame (eIx, e

I
y , e

I
z))

3) Elementary Rotations IrOP = CIBBrOP

around z-axis: CIB =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


around y-axis: CIB =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


around x-axis: CIB =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


4) Inversion: ΦA

−1
(r) = ΦP (r)

5) Concatenation:
ΦA2

(
ΦA1 (r)

)
=
(

ΦA2 ⊗ ΦA1

)
(r) =

(
ΦA
−1

1 ⊗ ΦA
−1

2

)−1
(r)

ΦP2

(
ΦP1 (r)

)
=
(

ΦP2 ⊗ ΦP1

)
(r) =

(
ΦP
−1

1 ⊗ ΦP
−1

2

)−1
(r)

6) Exponential map: exp : R3 → SO(3),v 7→ exp(v̂), v ∈ R3

7) Logarithmic map: log : SO(3)→ R3,Φ 7→ log(Φ)∨, Φ ∈ SO(3)
8) Box plus: Φ2 = Φ1 � v = exp (v)⊗ Φ1, Φ1,Φ2 ∈ SO(3),v ∈ R3

9) Box minus: v = Φ1 � Φ2 = log (Φ1 ⊗ Φ−1
2), Φ1,Φ2 ∈ SO(3),v ∈ R3

10) Discrete integration: Φk+1
IB = ΦkIB � (Iω

k
IB∆t), Φk+1

BI = ΦkBI � (−BωkIB∆t)

11) Discrete differential: Iω
k
IB = (Φk+1

IB � ΦkIB)/∆t, Bω
k
IB = −(Φk+1

BI � ΦkBI)/∆t

12) (Spherical) linear inter-
polation t ∈ [0, 1]:

Φt = Φ0 � ((Φ1 � Φ0)t) , Φt = Φ(t),Φ0 = Φ(0),Φ1 = Φ(1)

= (Φ1 ⊗ Φ−1
0)t ⊗ Φ0

O

eIx

eIy

eIz e
B
z

P

IrOP ,BrOP
eBx

eBy

Q
IrOQ,BrOQ

θ θ

Rotation Parameterizations
Rotation Matrix CIB ∈ SO(3) The rotation matrix (Direction Cosine Matrix)

IrOP = CIBBrOP is a coordinate transformation matrix,
CIB = CT

BI which transforms vectors from frame B to frame I.
Rotation qIB = [q0 q1 q2 q3]THamiltonian unit quaternion (hypercomplex number)
Quaternion Q = q0 + q1i+ q2j + q3k ∈ H, qi ∈ R, ‖Q‖ = 1
Angle-axis (θ,n)IB Rotation with unit rotation axis n and angle θ ∈ [0, π].

Rotation Vector φIB Rotation with rotation axis n =
φ
‖φ‖ and angle θ = ‖φ‖.

Euler Angles ZYX [z, y, x]TIB Tait-Bryan angles (Flight conv.): z − y′ − x′′, i.e.
Euler Angles YPR yaw-pitch-roll. Singularities are at y = ±π

2
.

z ∈ [−π, π), y ∈ [−π
2
, π

2
), x ∈ [−π, π)

Euler Angles XYZ [x, y, z]TIB Cardan angles: x− y′ − z′′, i.e. roll-pitch-yaw.
Euler Angles RPY Singularities are at y = ±π

2
.

x ∈ [−π, π), y ∈ [−π
2
, π

2
), z ∈ [−π, π)

Rotation Quaternion
A rotation quaternion is a Hamiltonian unit quaternion:

Q = q0 + q1i+ q2j + q3k ∈ H, qi ∈ R, i2 = j2 = k2 = ijk = −1, ‖Q‖ =
√
q2
0 + q2

1 + q2
2 + q2

3 = 1

Tuple: Q = (q0, q1, q2, q3) = (q0, q̌) with q̌ := (q1, q2, q3)T

4× 1-vector: q =
[
q0 q1 q2 q3

]T
Conjugate: Q∗ = (q0,−q̌)
Inverse: Q−1 = Q∗ = (q0,−q̌)
Quaternion multiplication:
Q · P = (q0, q̌) · (p0, p̌) = (q0p0 − q̌Tp̌, q0p̌ + p0q̌ + q̌× p̌) ⇔

q⊗ p = Q(q)︸ ︷︷ ︸
quaternion matrix

p =

(
q0 −q̌T

q̌ q013×3 + ˆ̌q

)
p0

p1

p2

p3

 =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0



p0

p1

p2

p3



= Q̄(p)︸ ︷︷ ︸
conjugate quat. matrix

q =

(
p0 −p̌T

p̌ p013×3 − ˆ̌p

)
q0
q1
q2
q3

 =


p0 −p1 −p2 −p3

p1 p0 p3 −p2

p2 −p3 p0 p1

p3 p2 −p1 p0



q0
q1
q2
q3


Note that QIB and −QIB represent the same rotation, but not the same unit quaternion.

Rotation Quaternion ⇔ Rotation Vector

qIB =


[
cos (1

2
‖φ‖), φ

T

‖φ‖ sin (1
2
‖φ‖)

]T
if ‖φ‖ ≥ ε[

1, 1
2
φT
]T otherwise

⇔ φIB =

{
2 atan2 (‖q̌‖, q0) q̌

‖q̌‖ if ‖q̌‖ ≥ ε
2 sign(q0)q̌ otherwise

Rotation Quat ernion ⇔ Angle-Axis

qIB =

[
cos θ

2
n sin θ

2

]
⇔ (θ,n)IB =

{
(2 arccos (q0), q̌

‖q̌‖) if ‖q̌‖ ≥ ε
(0,
[
1 0 0

]T
) otherwise

Rotation Quaternion ⇔ Rotation Matrix
CIB = 13×3 + 2q0 ˆ̌q + 2ˆ̌q2 = (2q2

0 − 1)13×3 + 2q0 ˆ̌q + 2q̌q̌T

=

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q0q2 + 2q1q3
2q0q3 + 2q1q2 q2

0 − q2
1 + q2

2 − q2
3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 q2
0 − q2

1 − q2
2 + q2

3


C−1
IB = CBI = 13×3 − 2q0 ˆ̌q + 2ˆ̌q2

=

q2
0 + q2

1 − q2
2 − q2

3 2q0q3 + 2q1q2 2q1q3 − 2q0q2
2q1q2 − 2q0q3 q2

0 − q2
1 + q2

2 − q2
3 2q0q1 + 2q2q3

2q0q2 + 2q1q3 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3



Rotation Matrix ⇔ Rotation Vector

CIB =

 1 +
sin (‖φ‖)φ̂
‖φ‖ +

(1−cos (‖φ‖))φ̂
2

‖φ‖2 if ‖φ‖ ≥ ε
1 + φ̂ otherwise

Euler Angles ZYX ⇔ Rotation Matrix

1)

eAx
eAy

eAz , e
B
z′

eBx′

eBy′

z

2)

eAx
eAy

eAz eBz′

eBx′

y

eCx′′

eCy′′ , e
B
y′

eCz′′

z

CAD = CABCBCCCD ⇒ Ar = CADDr

=

cos z − sin z 0
sin z cos z 0
0 0 1

 cos y 0 sin y
0 1 0

− sin y 0 cos y

1 0 0
0 cos x − sin x
0 sin x cos x


=

cos(y) cos(z) cos(z) sin(x) sin(y) − cos(x) sin(z) sin(x) sin(z) + cos(x) cos(z) sin(y)
cos(y) sin(z) cos(x) cos(z) + sin(x) sin(y) sin(z) cos(x) sin(y) sin(z) − cos(z) sin(x)
− sin(y) cos(y) sin(x) cos(x) cos(y)



3)

eAx
eAy

eAz eBz′

eBx′

y
eCy′′ , e

B
y′

eCz′′

eDx′′′ , e
C
x′′

eDy′′′
eDz′′′

z

x

Figure 1: Rotation from A-frame to D-frame: (z − y′ − x′′) – (yaw-pitch-roll) – (50◦ − 25◦ − 30◦)

Euler Angles XYZ ⇔ Rotation Matrix

1)

eAx , e
B
x′ eAy

eAz
eBy′

eBz′ x
2)

eAx , e
B
x′ eAy

eAz

eBy′ , e
C
y′′

eBz′

y

x

eCx′′

eCz′′
CAD = CABCBCCCD ⇒ Ar = CADDr

=

1 0 0
0 cos z − sin x
0 sin x cos x

 cos y 0 sin y
0 1 0

− sin y 0 cos y

cos z − sin z 0
sin z cos z 0
0 0 1


=

 cos(y) cos(z) − cos(y) sin(z) sin(y)
cos(x) sin(z) + cos(z) sin(x) sin(y) cos(x) cos(z) − sin(x) sin(y) sin(z) − cos(y) sin(x)
sin(x) sin(z) − cos(x) cos(z) sin(y) cos(z) sin(x) + cos(x) sin(y) sin(z) cos(x) cos(y)



3)

eAx , e
B
x′ eAy

eAz

eBy′ , e
C
y′′

eBz′

y

x

eCx′′

eCz′′ , e
D
z′′′ z

eDx′′′

eDy′′′

Figure 2: Rotation from A-frame to D-frame: (x − y′ − z′′) – (roll-pitch-yaw) – (50◦ − 25◦ − 30◦)

Homogeneous Transformation Matrix[
IrIP

1

]
= TIB

[
BrBP

1

]
, TIB =

[
CIB IrIB
0T 1

]
, T−1

IB = TBI =

[
CT
IB −CT

IBIrIB
0T 1

]
Time Derivatives of Position & Orientation
Linear Velocity
Velocity of point P expressed in a rotating frame B w.r.t. to the inertial frame I using a moving point A:
BvP = BvA + B ṙAP + BωIB × BrAP
Velocity of point Q on rigid body B that rotates with BΩ, where point P is on the same rigid body B:
BvQ = BvP + BΩ× BrPQ, BΩ = BωIB

Angular Velocity
BωIB =: BΩ (local) absolute angular velocity of rigid body B expr. in frame B
BωIB = −BωBI inverse of angular velocity
IωIB = CIBBωIB (global) angular velocity from frame B to frame I
I ω̂IB = CIBBω̂IBCT

IB coord. transformation of angular velocity from frame B to frame I
DωAD = DωAB + DωBC + DωCD composition of (relative) angular velocity

Derivatives
The derivation of the following identities can be found in [1].

∂

∂t
ΦBI(t) = −BωIB(t)

∂

∂r
(Φ(r)) = C(Φ)

∂

∂Φ
(Φ(r)) = −(Φ(r))∧

∂

∂Φ
(Φ−1) = −C(Φ)T

∂

∂Φ1
(Φ1 ⊗ Φ2) = 1

∂

∂Φ2
(Φ1 ⊗ Φ2) = C(Φ1)

∂

∂v
(exp (v)) = Γ(v)

∂

∂Φ
(log (Φ)) = Γ−1(log Φ)

∂

∂Φ1
(Φ1 � Φ2) = Γ−1(Φ1 � Φ2)

∂

∂Φ2
(Φ1 � Φ2) = Γ−1 (− (Φ1 � Φ2))

d

dv1
(v̂1v2) = −v̂2

d

dv2
(v̂1v2) = v̂1

Φ1 � Φ2 = − (Φ2 � Φ1)

C(Φ1Φ2) = C(Φ1)C(Φ2)

(C(Φ))−1 = C(Φ−1)

Γ(v)v = v

Γ−1(v)v = v

Γ(−v) = Γ(v)T

Γ−1(−v) = Γ(v) + v̂

Γ−1(v) ·C(v) = Γ−1(v) + v̂

Γ−1(v) ≈ 1−
1

2
v̂, ‖v‖ ≈ 0

Jacobian of exponential map: Γ(v) =

{
1 +

1−cos (‖v‖)v̂
‖v‖2 +

(‖v‖−sin (‖v‖))v̂2

‖v‖3 if ‖v‖ 6= 0

1 + 1
2
v̂ otherwise

Time Derivative of Rotation Matrix ⇔ Angular Velocity

I ω̂IB = ĊIBCT
IB = ĊT

BICBI ⇔ ĊIB = I ω̂IBCIB

Bω̂IB = CT
IBĊIB = CBIĊ

T
BI ⇔ ĊIB = CIBBω̂IB

Time Derivative of Rotation Quaternion ⇔ Angular Velocity

IωIB = 2H(qIB)q̇IB ⇔ q̇IB = 1
2
H(qIB)TIωIB

BωIB = 2H̄(qIB)q̇IB ⇔ q̇IB = 1
2
H̄(qIB)TBωIB

H(q) =
[
−q̌ ˆ̌q + q013×3

]
∈ R3×4

=

−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0


H̄(q) =

[
−q̌ −ˆ̌q + q013×3

]
∈ R3×4

=

−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0


Time Derivative of Angle-Axis ⇔ Angular Velocity

IωIB = nθ̇ + ṅ sin θ + n̂ṅ(1− cos θ)

BωIB = nθ̇ + ṅ sin θ − n̂ṅ(1− cos θ)

θ̇ = nT
IωIB , ṅ =

(
− 1

2
sin θ

1−cosθ n̂2 − 1
2
n̂
)
IωIB ∀θ ∈ R\{0}

θ̇ = nT
BωIB , ṅ =

(
− 1

2
sin θ

1−cosθ n̂2 + 1
2
n̂
)
BωIB ∀θ ∈ R\{0}

Time Derivative of Rotation Vector ⇔ Angular Velocity

IωIB =
(
13×3 + φ̂

(
1−cos ‖φ‖
‖φ‖2

)
+ φ̂

2
(
‖φ‖−sin ‖φ‖
‖φ‖3

))
φ̇ ∀‖φ‖ ∈ R\{0}

BωIB =
(
13×3 − φ̂

(
1−cos ‖φ‖
‖φ‖2

)
+ φ̂

2
(
‖φ‖−sin ‖φ‖
‖φ‖3

))
φ̇ ∀‖φ‖ ∈ R\{0}

φ̇ =
(
13×3 − 1

2
φ̂+ φ̂

2 1
‖φ‖2

(
1− ‖φ‖

2
sin ‖φ‖

1−cos ‖φ‖

))
IωIB ∀‖φ‖ ∈ R\{0}

φ̇ =
(
13×3 + 1

2
φ̂+ φ̂

2 1
‖φ‖2

(
1− ‖φ‖

2
sin ‖φ‖

1−cos ‖φ‖

))
BωIB ∀‖φ‖ ∈ R\{0}

Time Derivative of Euler Angles ZYX ⇔ Angular Velocity

żẏ
ẋ

 =


0

sin(x)

cos(y)

cos(x)

cos(y)
0 cos(x) − sin(x)

1
sin(x) sin(y)

cos(y)

cos(x) sin(y)

cos(y)

BωIB ∀y ∈ R\{π
2

+ kπ}, k ∈ Z

żẏ
ẋ

 =


cos(z) sin(y)

cos(y)

sin(y) sin(z)

cos(y)
1

− sin(z) cos(z) 0
cos(z)

cos(y)

sin(z)

cos(y)
0

 IωIB ∀y ∈ R\{π
2

+ kπ}, k ∈ Z

BωIB =

 − sin(y) 0 1
cos(y) sin(x) cos(x) 0
cos(x) cos(y) − sin(x) 0

żẏ
ẋ


IωIB =

0 − sin(z) cos(y) cos(z)
0 cos(z) cos(y) sin(z)
1 0 − sin(y)

żẏ
ẋ



Dynamics of a Multi-Rigid-Body System

DoFs Degrees of Freedom
n Number of bodies in system
nj Number of DoFs of the joints
nq Number of generalized coordinates
nu Number of generalized velocities
M Mass matrix
g Gyroscopic and Coriolis forces
f Generalized external forces and torques
h Combined force vector
JP Jacobi matrix for translation of point P
JR Jacobi matrix for rotation
Ω Abosolute angular velocity of a body
fAQ External forces on point Q
tA External torques
m Mass
Θ Inertia tensor
(...)− Variable before impact
(...)+ Variable after impact
(...)± Variable before/after impact
∆t Time step duration
∆u Velocity change over one time step
W Generalized force directions for contact forces
λ Lebesgue-measurable contact forces
Λ Purely atomic impact impulses
P Contact percussions
COM Center of mass

Generalized Coordinates of a Floating-Base System with Rotational Joints

Recommended set of generalized coordinates q with quaternion qIB and generalized velocities u:

q =


IrIB
qIB
ϕ1

...
ϕnj

 ∈ SE(3)× Rnj u =


IvB
BωIB
ϕ̇1

...
ϕ̇nj

 ∈ R6+nj = Rnu u̇ =


IaB
BψIB
ϕ̈1

...
ϕ̈nj

 ∈ R6+nj

q̇ = Fu, F =

13×3 0 0
0 1

2
H̄T 0

0 0 1nj×nj

 ⇔ u = F̄q̇, F̄ =

13x3 0 0
0 2H̄ 0
0 0 1nj×nj


[
IvIQ
IωIQ

]
= IJQ(q) · u, IJQ(q) =

[
IJP (q)

IJR(q)

]
=

[
13×3 −CIB · B r̂BQ CIB · BJPqj (qj)

03×3 CIB CIB · BJRqj (qj)

]

Equations of Motion with Contacts and no Impulses

Projected Newton-Euler Equations

Mu̇− h = Wλ with h := f − g, and

M =
n∑
i=1

[
(JT

COMmJCOM + JT
RΘCOMJR)

]
i

g =
n∑
i=1

[
(JT

COMmJ̇COMu + JT
R(ΘCOMJ̇Ru + Ω×ΘCOMΩ))

]
i

f =

n∑
i=1

[
(JT
QfAQ + JT

RtA)
]
i

Equations of Motion with Contacts and Impulses

M∆u− h∆t = WP


M(u+ − u−) = WΛ

M (u̇dt+ (u+ − u−)dη)︸ ︷︷ ︸
du

−hdt = W (λdt+ Λdη)︸ ︷︷ ︸
dP

Transformation of Equations of Motion

Transformation from M̄(q̄), h̄(q̄, ū) to M(q),h(q,u), where ū = Bu:
M = BTM̄B

h = BTh̄−BTM̄Ḃu

Appendix I: Euler Angles ZYX Velocities to Angular Velocity
Mapping
Given a set of Euler angles χ =

[
z y x

]T and velocities χ̇ =
[
ż ẏ ẋ

]T , we wish to find the
mapping E(χ) ∈ R3×3 that maps χ̇ to IωIB :

IωIB = E(χ) · χ̇ (1)

The columns of E(χ) are the components of the unit vectors around which the rotational velocities are
applied expressed in fixed frame. These are obtained by selecting the columns of a rotation matrix
which is built up by successive elementary rotations specified by the Euler angle parametrization.
Starting from the reference frame I, the first rotation will be an elementary rotation around Ie

z
I , which

is simply given by:

Ie
z
I = I3×3

0
0
1

 =

0
0
1

 (2)

After an elementary rotation around Ie
z
I , the y axis Ie

y
I′ will be expressed by:

Ie
y
I′ = CII′ (z) ·

0
1
0

 =

cos(z) − sin(z) 0
sin(z) cos(z) 0

0 0 1

0
1
0

 =

− sin(z)
cos(z)

0

 (3)

After an elementary rotation around Ie
y
I′ , the x axis IexI′′ will be expressed by:

Ie
x
I′′ = CII′ (z) ·CI′I′′ (y) ·

1
0
0

 =

cos(z) − sin(z) 0
sin(z) cos(z) 0

0 0 1

 cos(y) 0 sin(y)
0 1 0

− sin(y) 0 cos(z)

1
0
0

 =

cos(y) cos(z)
cos(y) sin(z)
− sin(z)


(4)

Finally, the mapping E(χ) will be computed as:

E(χ) =
[
Ie
z
I Ie

y
I′ Ie

x
I′′
]

=

0 − sin(z) cos(y) cos(z)
0 cos(z) cos(y) sin(z)
1 0 − sin(y)

 (5)

It is easy to find that det(E(χ)) = − cos(y). The mapping then becomes singular when
y = π/2 + kπ,∀k ∈ Z. This means that although we can always describe an angular velocity using Euler
angle velocities, the inverse is not always possible. The inverse mapping is given by:

Ē(χ) = E−1(χ) =


cos(z) sin(y)

cos(y)

sin(y) sin(z)

cos(y)
1

− sin(z) cos(z) 0
cos(z)

cos(y)

sin(z)

cos(y)
0

 (6)

If we compute the rotation matrix CIB = CIB(z, y, x) = Cz(z) ·Cy(y) ·Cx(x), we can also derive the
following mappings:

BωIB = CT
IB ·E(χ) · χ̇ (7)

χ̇ = Ē(χ) ·CIB · BωIB (8)

The mapping described by (8) is valid ∀y 6= π/2 + kπ,∀k ∈ Z.

Appendix II: Jacobians
We wish to derive the relationship between the generalized velocities u and the operational space
velocities IvQ of a point Q, which is fixed at the end of a kinematic chain that stems from a floating
base B. The position vector IrIQ = IrIQ(q) of a point w.r.t. the inertial frame I is given by:

IrIQ(q) = IrIB(q) + CIB(q) · BrBQ(q), (9)

where the rotation matrix CIB(q) describes the orientation of the floating base B w.r.t. the inertial
frame I, IrIB(q) represents the position of the floating base B w.r.t. the inertial frame I expressed in
the inertial frame and q = q(t) is a function of time t.
Time differentiation yields:

IvQ = IvB + ĊIB · BrBQ + CIB · B ṙBQ

= IvB + CIB · Bω̂IB · BrBQ + CIB · B ṙBQ

= IvB −CIB · B r̂BQ · BωIB + CIB · B ṙBQ

= IvB −CIB · B r̂BQ · BωIB + CIB · BJPqj (qj) · q̇j

=
[
13×3 −CIB · B r̂BQ CIB · BJPqj (qj)

]
· u

(10)

If we attach a frame at IrIQ, we can derive a similar mapping for angular velocities. The orientation of
frame Q w.r.t. the inertial frame I is described by:

CIQ = CIB ·CBQ (11)

Time differentiation of both sides of (11) yields:

I ω̂IQ ·CIQ = I ω̂IB ·CIB ·CBQ + CIB · Bω̂BQ ·CBQ

= I ω̂IB ·CIQ + CIB ·CBI · I ω̂BQ ·CT
BI ·CBQ

= I ω̂IB ·CIQ + I ω̂BQ ·CIQ,

(12)

which gives finally:

IωIQ = IωIB + IωBQ

=
[
03×3 CIB CIB · BJRqj (qj)

]
· u

(13)

Hence, the mapping from generalized velocities u to the operational space twist
[
Iv
T
Q Iω

T
IQ

]T
of

frame Q is realized by the spatial Jacobian:

IJQ(q) =

[
IJP
IJR

]
=

[
13×3 −CIB · B r̂BQ CIB · BJPqj (qj)

03×3 CIB CIB · BJRqj (qj)

] (14)

Appendix III: Hessians and Time Derivatives of Jacobians
Consider a kinematic chain which connects two rigid bodies. We represent the set of indexes of the rigid
bodies in this chain with UA. As shown in [2], the i− th column of the spatial Hessian matrix of the
spatial Jacobian J w.r.t. the j-th configuration variable qj can be computed as:

∂Ji

∂qj
=


∂JPi
∂qj
∂JRi
∂qj

 =



[
JRj × JPi
JRj × JRi

]
i ≥ j[

JRi × JPj
0

]
i < j[

0

0

]
i, j 6∈ UA

(15)

The Hessian Hk(q) is then expressed by:

Hk(q) =

[
∂J1

∂qk

∂J2

∂qk
. . .

∂Jn

∂qk
.

]
(16)

Knowledge of the Hessian matrix w.r.t. each configuration variable qk enables the computation of the
time derivative of J(q(t)). Its generic element i, j can be computed as:

dJi,j(q)

dt
=
∂Ji,j(q)

∂q
·
dq

dt
=

n∑
k=1

∂Ji,j(q)

∂qk
·
dqk

dt
=

n∑
k=1

Hki,j (q) ·
dqk

dt
, (17)

which yields:

dJ(q)

dt
=
∂J(q)

∂q
·
dq

dt
,=

n∑
k=1

Hk(q) ·
dqk

dt
. (18)

References
[1] M. Bloesch, H. Sommer, T. Laidlow, M. Burri, G. Nuetzi, P. Fankhauser, D. Bellicoso, C. Gehring,

S. Leutenegger, M. Hutter, and R. Siegwart, “A Primer on the Differential Calculus of 3D
Orientations,” ArXiv e-prints, Jun. 2016.

[2] M. Iwamura and M. Nagao, “A method for computing the Hessian tensor of loop closing conditions
in multibody systems,” Multibody System Dynamics, vol. 30, no. 2, pp. 173–184, 2013.

