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Nomenclature
(Hyper-)complex number @ normal capital letter
Column vector a bold small letter
Matrix M bold capital letter
Identity matrix Tnxm n X m-matrix

Coordinate system (CS)

el el el Cartesian right-hand system A with basis (unit) vectors e

y
Inertial frame eI e{l, el global / inertial / world coordinate system (never moves)
Body-fixed frame ef, ef, eB local / body-fixed coordinate system (moves with body)

Rotation

® € SO(3) generic rotation (for all parameterizations)

Machine precision

€

Operators
ay b1 0 —as az b1
Cross product/skew/unskew ax b= |a2| x |b2| =(a)"b=4ab= | a3 0 —aq bo
as b3 —a2 al 0 b3
a=4aY, a=-a axb=—-bxa

Euclidean norm

la = VaTa = \/a} + ...+ a2

Exponential map for matrix  exp : R3X3 — R3%X3 A s &,

Ac R3X3

Logarithmic map for matrix

log : R3X3 5 R3¥3 A —logA, A €R3X3

Position & Orientation

Position
Vector rop from point O to point P
Position vector Brop € R3 from point O to point P expr. in frame B

Homogeneous pos. vector

Bfop = [Brgp 1]T from point O to point P expr. in frame B

Orientation/Rotation

1) Active Rotation:
2) Passive Rotation:
3) Elementary Rotations

4) Inversion:
5) Concatenation:

6) Exponential map:
7) Logarithmic map:
8) Box plus:
9) Box minus:
10) Discrete integration:
11) Discrete differential:

12) (Spherical) linear inter-

polation ¢ € [0, 1]:

4 rop 1roqQ (rotates the vector rop)
®F . ;rop — prop (rotates the frame (el, e el))
rop = Cipprop

. cos6 —sin® 0
around z-axis: C;g = [sin0  cos6 0
0 0 1
. cos§ 0 sing B
around y-axis: c;5 = 0 1 0 €y
—sin6 0  cos6 e
. 1 0 0 €y
around x-axis: Cip = |0 cos 6 —sin 6 Q
0 sin 6 cos 6

ITOQs BTOQ

o
1Topr, BYOP

) = 2P(
_ — -1
( r) = ( doof)m=(2of et ) @
1 1\ —1
of (of () = (eF @ol) (1) = (of " @l ') ()
exp : R? = SO(3),v — exp(Vv), v ERS
log : SO(3) — R3,® = log(®)V, & € SO(3)
Oy =0 Bv =exp(v)®@P1, P1,P2€S0(3),vecR3
v=3Bd; =log(®1 ®P;'), 1,82 €SO(3),veR3
k+1 _ k+1 _
7 5 = ok +ala (IwiBAt) Ll quﬂgl aak(Jr—le';%At)
IwIB—(q> E|<I) )/At BwIB:_(QBI EIq)BI)/At
P = CPQEH((‘IHE"PQ) ), @ =d(t),Po = P(0),P1 = P(1)

= (@108, @

Rotation Parameterizations

Rotation Matrix

Cis € SO(3)

The rotation matrix (Direction Cosine Matrix)

rop = Cigprop is a coordinate transformation matrix,

Cig = C};’I which transforms vectors from frame B to frame I.
Rotation arB = [90 q1 ¢2 3] Hamiltonian unit quaternion (hypercomplex number)
Quaternion Q=g +tqaiteiteakcl, ¢eR, [Q|=1
Angle-axis (6,n)p Rotation with unit rotation axis n and angle 6 € [0, .
Rotation Vector b1B Rotation with rotation axis n = ﬁ and angle 6 = ||@||.

Euler Angles ZYX [z, 7]

Euler Angles YPR

Tait-Bryan angles (Flight conv.): z —y’ — z”/, i.e

yaw-pitch-roll. Singularities are at y = ig.
z € [-mn),y€l-F, 2) z 6 [—m, )

Euler Angles XYZ  [z,y,2]15

Euler Angles RPY

Cardan angles: x —y’ — 2/, i.e. roll-pitch-yaw.
Singularities are at y = + 7.
z €[-m, ),y € [—%, g),z € [—m,m)

Rotation Quaternion

A rotation quaternion is a Hamiltonian unit quaternion:

Q=qo+ q1i+q2j +q3k € H,
= (g0, q1,92,93) = (g0, &) with & := (q1,q2,93)7

Tuple: Q

4 X 1-vector: q= [qo
Conjugate: Q* = (qo, —
Inverse:

Q- P =1(q0,9) - (po,p) =

a@p=Q(a)p = (¥
N~ q

quaternion matrix
-aw)a - (%
N~ P

conjugate quat. matrix

G eERPZF=52=k=

Q' =Q" = (q,—

Quaternion multiplication:

ijk = —1,

(q0po — @' D, gD +pod+da xp) &

Po qgo —q1 —q2 —qs3 Po
pi| _ |41 q0 —qs3 q2 p1
p2 | |a2 g3 o —q P2
P3 3 —92 q q0 P3
q0 bo —p1 —PpP2 —P3 qo0
q | _ | p1 Po p3 —DP2 q1
@] |p2 —-p3 po P1 q2
q3 b3 D2 —p1 Po q3

Note that Qp and —Q B represent the same rotation, but not the same unit quaternion.

Rotation Quaternion < Rotation Vector

qiB

[11e7]"

T T
L [eoscion, Gy simian]iliol = <

Rotation Quat ernion < Angle-Axis

nsin

0
COS &
amB = { : 24 < (0n)B :{

2

2 atan?2 (||q]|, qo 4
otherwise gm0
(2 arccos (¢o), 1Ufl ) if lall > €
(07[ 0 OJ ) otherwise

Rotation Quaternion < Rotation Matrix

Cip = l3x3 +2¢0q +2§% =
@B+al—d3—ak

= | 2qoqs + 2q1q2
29193 — 290q2

@B+q—q3—q3

29192 — 29093
2q0q2 + 29143

29oq3 + 2q192
@ —a}+ a3 — 3
29293 — 2q90q1

(2¢2 — 1)13x3 + 290G +29G"
24192 — 2qoqs
@ —a} + g3 — g2
2q0q1 + 29293

Cis = Cpr = 13x3 — 2qoq + 2§°

2q0q2 + 29193
24293 — 2q0q1
@ — a7 — a3+ ¢

2q193 — 29092
2qoq1 + 2g2q3
@ — a2 — a3+

all

QI =1/a5 + 5 +a5 +a3 =1

if [lall > e
otherwise



Rotation Matrix < Rotation Vector

sin (|G | (—cos IBINS° 11411 >
I+ =g T 112 it llgll = e
1+ ¢ otherwise

Cis =

Euler Angles ZYX < Rotation Matrix

Figure 1: Rotation from A-frame to D-frame: (z —y’ — z’’) — (yaw-pitch-roll) — (50° — 25° — 30°)

Euler Angles XYZ < Rotation Matrix

Cap = CapCpcCop = AT =Cappr

.>)
ittt

Figure 2: Rotation from A-frame to D-frame: (z —y' — 2"") — (roll—pltch—yaw) - (500 25° — 30°)

n(z)
() + cos(e) sin(y) sin(=)

Yegn

Homogeneous Transformation Matrix

ITIP BTBP Cisp ITIB 1 cl, -Clyrp
|:1}:TIB{ 1 ], TIB:|:0T 1], Ty =Ter = OITB I?

Time Derivatives of Position & Orientation
Linear Velocity

Velocity of point P expressed in a rotating frame B w.r.t. to the inertial frame I using a moving point A:

BVP = BVA+ BTAP + BWIB X BrAP
Velocity of point @ on rigid body B that rotates with €2, where point P is on the same rigid body B:

BVQ = BVP + B X prpg, B2 = pwip

Angular Velocity

Bwip =: gN2 (local) absolute angular velocity of rigid body B expr. in frame B
BWIB = —BWRBI inverse of angular velocity
wiB =CipBwiB (global) angular velocity from frame B to frame I
1w =CiBpwin CIB coord. transformation of angular velocity from frame B to frame [
DWAD = pwap + pwpe + pwep  composition of (relative) angular velocity
Derivatives
The derivation of the following identities can be found in [1].

b5} 0

54’31(15) = —pwip(t) g(exp (v))=T(v) Q1 Py =— (228 ®1)

9 ) C(®1P2) = C(P1)C(P2)

17} 0 1 T'(v)jv=v

— (P = —(P Nl —(P1BdP) =T [OP =R

S (@) = ~(@E) | g ) =T ) RN

1o}
a—q)@*l) =-C(®)" 59, (P18 ®2) = ! (— (21 Bd2)) L(-v)=Tw)"
8 2 I Y(—v)=T(v)+v
A dvy (V1V2) =2 I(v)-C(v) =T (v) +
1o} _1 1.
P QD o 2 % =3 r~v)y=1-_v, |vl
6%( 1® P2) = C(P1) Ju, (V1v2) =v1 2

—sin (||v]))v? .
14 1zeosUvD¥ | (lvli=sin (i) it v 0

Jacobian of exponential map: I'(v) = vi? vl
1+5v otherwise
Time Derivative of Rotation Matrix < Angular Velocity
WIB = C]BQ}—B = CE}QBI < C::IB = jwBCip
@ =ClzCr=CpCL < Cmr=Crpims
Time Derivative of Rotation Quaternion < Angular Velocity

1wip = 2H(asp)as &  am = 3H(am) 1wis
pwip = 2H(arms)am &  qm=3H(qmp) pwis
H(q) = [-4 d+qolsxs] € R**! H(q) = [-a —a+qolsxs] € R¥
-1 g —g @ -1 9 @3 —q2
= |79 q3 q0 —q1 = |1—92 —g3 qo0 q1
—q3 —q2 q 9 -4 @2 —q

Time Derivative of Angle-Axis < Angular Velocity
IWIB = n9_+ nsind + nn(1 — cosh)

Bwig = nd +nsinf — an(l — cos0)

é:nleIB, h:(,l sin 6 fl27% )[W]B V@GR\{O}

2 T—cosd
6=nTpwp, 0= (-1250% + 1h) pw V0 € R\{0}
Time Derivative of Rotation Vector < Angular Velocity
1w = (Taxa + ¢ (g hel) + ¢7 (”"5”;;“‘“ 121)) ¢ vigl € R\{0}
pwm = (Tsxs — & (“;;;l“f”) +¢° (12Loml 1)) 6 viigll € R\{0}
¢ = (13x3 -1+ ¢ W”z ( - HL;H%)) wip Vel € R\{0}
6= (taxs+ s+ 6"y (1- 121 IPLN) poop Vil € R\{0}
Time Derivative of Euler Angles ZYX < Angular Velocity

o [ sin(x) cos(z)
: cos(y) cos(y)
gyl =10 cos(x) —sin(x) pwp Yy €R\{J +kn},kcZ
Ed sin(x)sin(y)  cos(z) sin(y)
L cos(y) cos(y)
o cos(z)sin(y)  sin(y) sin(z)
: cos(y) cos(y)
yl = —sin(z) cos(z) 0| ;jwip Yy €eR\{F +kn},kecZ
Ed cos(z) sin(z) 0
cos(y) cos(y)
—sin(y) 0 z
pwip = |cos(y)sin(xz)  cos(z) |:y
cos(z) cos(y) —sin(z) x
0 —sin(z) cos(y) Cos(z z:|
jwip = |0 cos(z) cos(y)sin(z) | |y
0 —sin(y) &



Dynamics of a Multi-Rigid-Body System

DoFs  Degrees of Freedom
n Number of bodies in system
n; Number of DoFs of the joints
ng Number of generalized coordinates
Nay Number of generalized velocities
M Mass matrix
g Gyroscopic and Coriolis forces
f Generalized external forces and torques
h Combined force vector
Jp Jacobi matrix for translation of point P
Jr Jacobi matrix for rotation
Q Abosolute angular velocity of a body
fé‘ External forces on point Q
t4 External torques
Mass
Inertia tensor
) Variable before impact
)T Variable after impact
)£ Variable before/after impact
t Time step duration
u Velocity change over one time step
Generalized force directions for contact forces
Lebesgue-measurable contact forces
Purely atomic impact impulses
Contact percussions
Center of mass

QU > gL LT T T O3

o
=

Generalized Coordinates of a Floating-Base System with Rotational Joints

Recommended set of generalized coordinates q with quaternion q;p and generalized velocities u:

ITIB IVB 1ap
ams BWIB BYiB
q= P1 c SE(S) % R"j u= $p1 c R6+n]- = R"u u= $1 c R6+nj
Pn; <PnJ <PnJ
L3x3 0 - - I3.3 O 0
q=Fu, F=| 0 %H < u=Fq, F=| 0 2H 0
0 0 ]ln jxXn; 0 0 In,xn
(el = ot w ma@=[1d = oy e Gepan (a))
jwig| ~ 7@ Held 1Jr(q) 03x3 Cin Ciz - BIR,, (aj)

Equations of Motion with Contacts and no Impulses

Projected Newton-Euler Equations

3

M

Z [(JgOMmJCQM + J-Il—g@COMJR)} i

.
=

n

Mu —h =W |with h:=f —g, and

s
Il
—

-

s
Il
-

f= [(Jgf@“ + Jgtf‘)} 1-

Equations of Motion with Contacts and Impulses

MAu — hAt = WP | M (adt + (ut — u™)dn)

g= [(J(TJOMWJCOMU +JR(®comI pu + Q2 x ®COMQ))L

du
Transformation of Equations of Motion

Transformation from M(q),

M(ut —u™)
—hdt

h(g, @) to M(q), h(q, u), where @ = Bu:

= WA
= W (Adt + Adn)
dP

M =B'MB
h=BTh -

B"MBu



Appendix I: Euler Angles ZYX Velocities to Angular Velocity
Mapping
i?}T, we wish to find the

Given a set of Euler angles x = [z Y z}T and velocities x = [z' Y

mapping E(x) € R3*3 that maps x to jwig:

@B =E(X) - x (1)

The columns of E(x) are the components of the unit vectors around which the rotational velocities are
applied expressed in fixed frame. These are obtained by selecting the columns of a rotation matrix
which is built up by successive elementary rotations specified by the Euler angle parametrization.

Starting from the reference frame I, the first rotation will be an elementary rotation around ye%, which
is simply given by:

0 0
re7 =1I3x3 |0 = |0 (2)
1 1

After an elementary rotation around je7, the y axis Ie% will be expressed by:

0 cos(z) —sin(z) 0] [0 —sin(z)
re¥, =Cp(z) - (1) = sino(z) co%(z) (1) (1) = co%(z) (3)

Y

After an elementary rotation around ey,

the x axis ref,, will be expressed by:

1 cos(z) —sin(z) O cos(y) O sin(y)] [1 cos(y) cos(z)
1€7n =Cyp(2)-Cppi(y) - |0] = |sin(z) cos(z) 0 0 1 0 0| = |cos(y)sin(z)
0 0 1| [—sin(y) 0 cos(z)| |0 —sin(z)
(4)
Finally, the mapping E(x) will be computed as:
0 —sin(z) cos(y)cos(z)
E(x) = [re] 1€Y, 1€%,]=|0 cos(z) cos(y)sin(z) (5)
1 0 —sin(y)
It is easy to find that det(E(x)) = — cos(y). The mapping then becomes singular when

y =7/2+ kmn,Vk € Z. This means that although we can always describe an angular velocity using Euler
angle velocities, the inverse is not always possible. The inverse mapping is given by:

cos(z)sin(y)  sin(y) sin(z) 1
B cos(y) cos(y)
E()=E ()= | -sin(2) cos(z) 0 (6)
cos(z) sin(z) 0
cos() cos(y)

If we compute the rotation matrix Cig = Cig(z,y,z) = Cx(2) -
following mappings:

Cy(y) - Ca(zx), we can also derive the

pwip =Ch -E(x) - x (7)
X =E(x)-Cs - pwis (8)

The mapping described by (8) is valid Vy # 7/2 + kn,Vk € Z.

Appendix II: Jacobians

‘We wish to derive the relationship between the generalized velocities u and the operational space
velocities ;v of a point Q, which is fixed at the end of a kinematic chain that stems from a floating
base B. The position vector rrj = rrig(q) of a point w.r.t. the inertial frame I is given by:

rrp(a) = rrig(a) + Cis(a) - Brag(q), 9)

where the rotation matrix Cjp(q) describes the orientation of the floating base B w.r.t. the inertial

frame I, ;ryp(q) represents the position of the floating base B w.r.t. the inertial frame I expressed in

the inertial frame and q = q(t) is a function of time ¢.

Time differentiation yields:
vo=1ve+Cis-reg +Cis - Bipg

=1ve+Cip- BTBQ

BTBEQ

B¥pQ - BwiB + Ciz - BIp, (a)) - 4

BWiB - BrQ + CIB -

=1ve—Cis - BfBy - BwiB +CiB - (10)

=ve—C-

= [hxs

If we attach a frame at jrjg, we can derive a similar mapping for angular velocities. The orientation of
frame @ w.r.t. the inertial frame I is described by:

—Cis - BfBQ Cis - BIp, (Qj)] ‘u

CIQ:C[B~CBQ (11)
Time differentiation of both sides of (11) yields:
1@wQ - Crg =19 -Ci-Cpy +Cia - 3wny - Cpg
= 1@ Cip+C-Cp 1@ - Ch - Chg (12)
=1w0m-Cip+1wpy Cr,
which gives finally:
IWIQ = IWIB + IWBQ
(13)
= [03><3 Cis Cis - BIR,; (qj)] ‘u
T 17
Hence, the mapping from generalized velocities u to the operational space twist [ vy Tw IQ] of
frame Q@ is realized by the spatial Jacobian:
Jp
J =|!
19Q (Q) |:IJR:|
N 14
| tsxs —Cip - BI'BQ Ciz - pIp, (aj) (14)
" |03x3 Cis Cis - BIR,, (q5)

Appendix III: Hessians and Time Derivatives of Jacobians

Consider a kinematic chain which connects two rigid bodies. We represent the set of indexes of the rigid
bodies in this chain with U4. As shown in [2], the ¢ — th column of the spatial Hessian matrix of the
spatial Jacobian J w.r.t. the j-th configuration variable g; can be computed as:

JRJ.Xin i>j
Bin JRjXJRi -
0J; dg; Jr; X Jp; L
= = ° < 15
dq; TR, 0 1<J (15)
0q; 0
L idU
0 1,5 €Ua



The Hessian Hy(q) is then expressed by:

d(a) _ 03(a) da _ 5~ dap, L
Hy(q) = {% Gk m—"} (16) dt aq  dt’ kz::l (@) dt (18)
Oq Oq Oqk

Knowledge of the Hessian matrix w.r.t. each configuration variable gi enables the computation of the References

time derivative of J(q(t)). Its generic element i,j can be computed as: [1] M. Bloesch, H. Sommer, T. Laidlow, M. Burri, G. Nuetzi, P. Fankhauser, D. Bellicoso, C. Gehring,
" " S. Leutenegger, M. Hutter, and R. Siegwart, “A Primer on the Differential Calculus of 3D
dJi j(a) _ 9J; (a) ) dﬁ _ Z 0J; j(a) ) dﬂ _ Z o - (a) - dﬂ’ (17) Orientations,” ArXiv e-prints, Jun. 2016.

dt 9q dt k=1 Oa dt k=1 v dt [2] M. Iwamura and M. Nagao, “A method for computing the Hessian tensor of loop closing conditions

which yields: in multibody systems,” Multibody System Dynamics, vol. 30, no. 2, pp. 173—184, 2013.



