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Abstract. We introduce a robust optimization method for flip-free distortion energies used, for example, in
parametrization, deformation, and volume correspondence. This method can minimize a variety of
distortion energies, such as the symmetric Dirichlet energy and our new symmetric gradient energy.
We identify and exploit the special structure of distortion energies to employ an operator splitting
technique, leading us to propose a novel Alternating Direction Method of Multipliers (ADMM) al-
gorithm to deal with the non-convex, non-smooth nature of distortion energies. The scheme results
in an efficient method where the global step involves a single matrix multiplication and the local
steps are closed-form per-triangle/per-tetrahedron expressions that are highly parallelizable. The
resulting general-purpose optimization algorithm exhibits robustness to flipped triangles and tetra-
hedra in initial data as well as during the optimization. We establish the convergence of our proposed
algorithm under certain conditions and demonstrate applications to parametrization, deformation,
and volume correspondence.
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1. Introduction. Distortion energies measure how much a mapping from one shape to
another deforms the initial shape. Minimizing these energies can yield maps between domains
with as little distortion as possible. Minimization of distortion energies with a variety of
constraints is employed in a wide array of computer graphics applications, such as UV mapping
(where one seeks to embed a 3D surface into 2D while minimizing distortion, Figure 1 left),
deformation (where parts of a surface or volume are deformed, and the goal is to find the
overall deformation with least distortion, Figure 1 center), and volume correspondence (two
boundary surfaces are given, and a distortion-minimizing map between the two volumes is
desired, Figure 1 right). We are interested in computing maps that minimize distortion
energies on triangle and tetrahedral meshes.

Flip-free distortion energies comprise an important subset of distortion energies. A map-
ping that minimizes such an energy will never invert (flip) a triangle or tetrahedron. Flip-free
distortion energies are difficult to optimize: they are usually non-linear and non-convex, and
have singularities that correspond to collapsed elements. Typical optimization methods based
on line-search require feasible, flip-free iterates. Thus, they must exercise great care to avoid
singularities, where they will fail. For applications such as volume correspondence, it is diffi-
cult to even initialize with a feasible flip-free configuration. Certain line-search-free approaches
can struggle with the problem’s non-convexity in both objective function and feasible set.

We focus on distortion energies that depend only on the mapping’s Jacobian, are invariant
to rotations, and are convex over symmetric positive definite matrices. This includes popular
flip-free distortion energies such as the symmetric Dirichlet energy, as well as our new symmet-
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Figure 1. Minimizing distortion energies in a variety of applications using our splitting method: UV
mapping (left, computing a distortion-minimizing map from the surface to R2), shape deformation (center,
fixing control points to deformed position and find the distortion-minimizing map), volume correspondence
(right, finding the distortion-minimizing map between the interior of two different surfaces). Our method
produces a flip-free result, unlike methods based on energies such as ARAP (EA), which can exhibit flips when
performing the same operation (flipped elements in red).

ric gradient energy. Previous methods optimizing the symmetric Dirichlet energy can, to our
knowledge, not be mathematically proven to converge in the limit. We exploit the convexity
in these energies by splitting the Jacobian of the mapping W into a rotational part U and a
flip-free, symmetric part P . We propose a novel ADMM algorithm to leverage this splitting in
an efficient fashion, which results in three sub-problems: optimize the vertex positions of the
mapping W , optimize the Jacobian’s rotational part U , and optimize the Jacobian’s rotation-
free part P . The optimization in W is linear, the optimization in U is an explicitly-solvable
Procrustes problem, and the optimization in P (the only part containing the objective func-
tion) has a closed-form solution for both energies considered in this article. The optimizations
in U and P also decouple over triangles/tetrahedra, and can thus be parallelized, while the
optimizations in W and P are convex.

In our approach, the target mapping does not need to be flip-free for every iteration
until convergence is attained—since P is always flip-free, the distortion energy will never be
singular and can be evaluated even if W contains flips. Thus, our approach is naturally robust
to flipped elements in the iterates and can be initialized with flipped elements.

ADMM-based algorithms are, in general, not guaranteed to converge for non-convex non-
linear problems, such as the ones involving distortion energies. For our method, however,
we can present theoretical analysis of convergence behavior that can show convergence given
certain conditions. This mathematical proof goes beyond what is usual for other flip-free opti-
mization algorithms, yielding the first optimization of the symmetric Dirichlet energy that can
be proven to converge. Beyond describing the circumstances under which we reach a critical
point of the optimization problem, this analysis significantly informs our algorithm: it lets us
automatically choose appropriate augmented Lagrangian penalty weights.
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Our contributions are:
• a parallelizable optimization method for non-linear non-convex flip-free distortion energies

that is robust to the presence of flipped triangles in the initial data;
• a convergence analysis that discusses the convergence of our algorithm to a stationary point

given certain conditions;
• a novel distortion energy, the symmetric gradient energy, which yields flip-free distortion-

minimizing maps that are similar to popular non-flip-free methods (but are flip-free).
We demonstrate our method on applications in UV parametrization, surface and volume
deformation, and volume correspondence (see Figure 1).

2. Related Work.

2.1. Optimizing Distortion Energies. Distortion energies have a long history in geometry
processing and related fields like physical simulation and differential geometry. They are part
of tools for parametrization, deformation, and related tasks.

Early approaches include optimizing harmonic and conformal energies to produce angle-
preserving mappings with a variety of optimization methods [26,28,37,54,67,94]. As they can
be measured and optimized efficiently, conformal energies remain popular and are the subject
of ongoing research [35, 86,93,99,103].

A different way to measure distortion is to quantify the deviation of a mapping’s local
structure from rotation, as in the As-Rigid-As-Possible (ARAP) energy [101], which can be
efficiently optimized using a per-element local-global approach [60]. ARAP is similar to other
quasi-elastic energies [19].

Optimization of flip-free distortion energies goes back to the work of Tutte [108], who
showed that minimizing Tutte’s energy while fixing boundary vertices to a convex polygon
yields a flip-free mesh parametrization. Recent methods compute flip-free maps while si-
multaneously minimizing some kind of distortion for surfaces [53, 57], volumes [2], simplicial
maps [58], non-standard boundary conditions [112], or with a focus on numerical robust-
ness [95]. Conformal and harmonic energies can be augmented to produce flip-free maps, e.g.
by including cone singularities in the parametrization [39]. Cone singularities can be used in
a variety of ways to produce parametrizations [20,99].

The symmetric Dirichlet energy [91, 98] combines the idea of measuring the deviation of
the Jacobian from the identity with flip-free maps: the energy is singular for zero-determinant
Jacobians, which means that during the minimization process elements can not collapse and
invert. Since the symmetric Dirichlet energy is non-convex and singular, it requires specialized
optimization algorithms. The symmetric Dirichlet energy can be optimized in a wide variety
of ways: with a modified line-search to avoid the energy’s singularities in a L-BFGS-style
optimization (augmented with techniques for global bijectivity) [98], with a quadratic proxy
to accelerate convergence [53], with a local-global modification of line-search that can also be
applied to a variety of other rotation-independent distortion energies [84], with a precondi-
tioned line search based on Killing field approximation [22], and by progressively adjusting
the reference mesh [59]. These approaches require initialization with a flip-free map whose
distortion is then further reduced.

A different approach to generating flip-free distortion-minimizing relies on custom distor-
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tion energies that can be optimized efficiently without line-search methods [34]. Concurrent
work introduces a framework for flip-free conformal maps [35], and a framework for globally
elastic 3D deformations using physical simulation methods [30]. Yet other approaches include
initializing with a flip-free map by lifting the mesh to a higher dimension and achieving in-
jectivity that way [27], and applying block coordinate descent [70]. Using a barrier-aware
line-search and quasi-Newton methods, one can optimize a variety of distortion energies [121].
One can also discretize physical elasticity energies that naturally model distortion and carry
out a physical simulation [97].

The concurrent work WRAPD [17] also uses ADMM to compute flip-free distortion-
minimizing maps, but with a different splitting technique than ours. They use two-block
ADMM (compared to our three blocks with variables W, U, P), where the non-convex ADMM
sub-step requires a line-search optimization to be solved to convergence every step (without
guarantees on how this might interfere with the ADMM’s convergence). They do not include
a convergence proof (which we do).

There are many other approaches for efficient flip-free distortion minimization [3,21,32,70,
104,105,116] For certain applications, such as quad meshing [51], surface-to-surface mapping
[29, 89, 90], joint optimization of map and domain [56], globally bijective mapping [50], and
input-aligned maps [69], distortion energies with special properties are used.

2.2. Alternating Direction Method of Multipliers. The augmented Lagrangian method
and the alternating direction method of multipliers (ADMM) are popular optimization meth-
ods [16]. While the convergence of ADMM is well-known for convex problems, conver-
gence can also be proven in some other scenarios that often necessitate special proofs, such
as classes of weakly convex problems [120], certain non-convex ADMMs with linear con-
straints [43, 111, 118], non-convex and non-linear, but equality-constrained problems [110],
and bilinear constraints [117]. For specific non-linear non-convex ADMMs, specialized proofs
exist [33, 115]. Our method does not exactly fit any of the above approaches, but uses ideas
from many of them to analyze convergence, such as an explicit boundedness condition [117],
the use of a potential function [118], and the K L condition [33].

ADMM has been employed in many computer graphics and image processing applications.
It is especially useful when a convex problem can be split into multiple simpler sub-problems
that are each convex – in that case, convergence of the method follows from standard results
[16, Section 3.2]. Such convex ADMM is used, for example, to produce developable surfaces
after convex relaxation [92], to speed up optimization in computer vision and machine learning
[113], for aligning point sets with rigid transforms through relaxation of a non-convex problem
[85], as a sub-step in a rotation-strain simulation of elastic objects [79], to compute the Earth
Mover’s Distance [100], and for isogeometric analysis after transforming a non-convex problem
into a biconvex problem [73].

When a problem is non-convex, ADMM is more difficult to employ in a way that assures
convergence. As a result, some applications of ADMM do not provide an explicit convergence
guarantee but are able to show convergence empirically. Past work uses non-convex ADMM
with a linear constraint for the physical simulation of elastic bodies with collisions [75], an
approach applied later to character deformation [66] and cloth simulation [65]. In later con-
current work this approach is extended to globally injective maps [76] by adding a step to
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the ADMM that promotes injectivity through a nonlinear optimization procedure while tem-
porarily tolerating non-injective maps; this ADMM uses a line-search in the inner loop.

For some specific non-convex applications of ADMM, convergence can be proven, just as
we do in this article, although these examples do not cover our use case [74,119].

Unlike past applications of ADMM to the problem of distortion-minimizing maps, our
distortion minimization technique has all of the following features:
• We solve a non-convex problem with a non-linear constraint, (GW)i = UiPi.
• Our splitting contains three ADMM blocks instead of the usual two, designed so that each

block is solvable in closed-form.
• We present a convergence analysis specialized to our algorithm; to our knowledge, this

theoretical analysis is new and adds to the cases in which non-convex multi-block ADMM
is proven to converge.

3. Problem setup.

3.1. Preliminaries. We compute a map from a source mesh to a deformed target mesh
composed of triangle or tetrahedra. The goal is to measure the distortion of the map and to
optimize the map (and the target mesh) subject to certain constraints. V ∈ Rn×dι contains
the coordinates of the vertices of the source mesh, where n is the number of vertices and
dι = 2, 3 is their dimension. The individual vertices are denoted by Vi, i = 1, . . . , n.

The optimization variable W ∈ Rn×do contains the target coordinates of the vertices under
the map, where do ≤ di is the dimension of the output vertices. The dimension do can be
different from the input dimension, for example when we compute the UV mapping of a surface
in 3D, where dι = 3 and do = 2. The individual vertices are denoted by Wi, i = 1, . . . , n.
The number of triangles or tetrahedra (elements) in the mesh is m and the dimension of the
elements is d (d = 2 for triangles and d = 3 for tetrahedra). wi is the area or volume of
the i-th element, depending on d. We will deal with collections of matrices associated with
each triangle or tetrahedron of a mesh. For this purpose, we let (Rd×d)m be the space of m
independent d× d matrices. If J ∈ (Rd×d)m, we denote by Ji the i-th matrix in J.

Our energies depend on the Jacobian of the map V 7→ W. Assuming our map is affine
when restricted to the interior of each element, the Jacobian is piecewise constant.

Definition 3.1 (Piecewise constant Jacobian). Let V ∈ Rn×dι be the source coordinates
and W ∈ Rn×do the target coordinates of a mapping of a mesh with m triangles or tetrahedra.
Then G : Rn×do → (Rdo×do)m is the linear operator (dependent on V) such that the mapping’s
Jacobian for the i-th triangle or tetrahedron is given by the matrix (GW)i.

Supplemental material describes how to compute the Jacobian from target vertex positions.

We use the Frobenius product and norm for vectors and matrices. The Frobenius product
(or dot product for vectors) is defined as X · Y := traceX>Y . The Frobenius norm (or L2

norm for vectors) is defined via ‖X‖2 := X ·X.
At last we define spaces for the rotation and flip-free parts of the Jacobian.

Definition 3.2 (Rotation and semidefinite matrices). SO(d) is the space of rotation matrices
of dimension d. Sd+ is the space of symmetric positive definite (spd) matrices of dimension d.
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Figure 2. Our optimization method visually matches the results of a variety of other methods when tasked
with producing a UV map with the same energy ED.

3.2. Optimization Target. We can understand a variety of algorithms for parametriza-
tion, deformation, and related tasks as optimizing a generic energy of the following form:

(3.1) Egeneric(W) :=
m∑
i=1

wif
(
(GW)i

)
.

Here, f(·) denotes a per-element distortion energy, summed over the triangles/tetrahedra i of
the mesh; we call f the defining function of our problem. It is evaluated on the Jacobian GW
of the map V 7→W and is typically designed to be a rotation-invariant function quantifying
how much (GW)i deviates from being a rigid motion. Rotation invariance implies we can
think of f(·) as a function of the singular values of (GW)i.

Each possible choice of distortion energy f(·) captures a different trade-off between dif-
ferent means of deforming the source domain onto the target, e.g., between angle and area
preservation. Below, we discuss some choices for f(·) used in our experiments; we refer the
reader to [84, Table I] for an exhaustive list, many of which can be easily plugged into our op-
timization framework. In Section 7, we propose one additional option, the symmetric gradient
energy, which appears to yield flip-free maps in practice that are similar to the popular—but
not flip-free—ARAP energy (discussed in Appendix A.2.3).

Of particular interest are distortion energies that explicitly avoid inverted elements in
the computed mapping. To achieve this, we augment (3.1) with a term that forbids flipped
triangles or tetrahedra, and add conditions on f :

(3.2) E(W) :=

m∑
i=1

wif
(
(GW)i

)
+ χ+

(
det(GW)i

)
.

Here, χ+ denotes the indicator function

χ+(x) :=

{
0 if x ≥ 0

∞ otherwise.

If f is smooth on all Jacobians with positive determinant, then the energy E is smooth on
all maps with positive determinant. The extra term in (3.2) containing the characteristic
function χ+ can be understood as a constraint preserving local injectivity of the map in the
interior of each element. This needs to be combined with an appropriate f(x) which goes to
∞ for x → 0, to create an appropriate barrier that ensures the region where χ+ is infinite is



A SPLITTING SCHEME FOR FLIP-FREE DISTORTION ENERGIES 7

Energy Symbol Definition Discussed in... Properties

Tutte ET ET(W) =
∑

edges (i,j)

‖Wi−Wj‖2
‖Vi−Vj‖ Appendix

A.2.1
flip-free in 2D (not

3D); linear; no initial-

ization needed

Conformal EC (3.1) with f(X) = 1
2
‖X‖2 plus

additional area term

Appendix
A.2.2

not flip-free; linear; no

initialization needed

ARAP EA (3.1) with f(X) = fA(X) =

1
2
‖X − rotX‖2, rotX is the

rotational part of X

Appendix
A.2.3

not flip-free; nonlinear;

desirable rigidity prop-

erty; needs initializer;

efficient optimizer

Symmetric
Dirichlet

ED (3.2) with f(X) = fD(X) =

1
2

(
‖X‖2 +

∥∥X−1
∥∥2
) Appendix A.1 flip-free; strong singu-

larity; nonlinear; needs

initializer

Symmetric
gradient

EG (3.2) with f(X) = fG(X) =

1
2
‖X‖2 − log detX

Section 7 flip-free; weak singu-

larity; nonlinear; needs

initializer

Table 1
A table summarizing all deformation energies featured in this article. Energies from previous work are

introduced in more detail in Appendix A; the symmetric gradient energy is introduced in Section 7.

never reached. This constraint is implicit in the design of many past algorithms [22,59,84,98],
but we choose to expose it explicitly as it will inform our design in Section 4.

The main thrust of our research is to propose an efficient algorithm for optimizing energies
of the form (3.2). Table 1 offers a quick overview over all energies that are used in this article.
Figure 2 shows our optimization reproducing a parametrization with an energy popular in
previous work, the symmetric Dirichlet energy ED.

4. Our Optimization Method. Our optimization method can be applied to distortion
energies of the form (3.2) where the defining function f is convex over the set of symmetric
positive semidefinite matrices Sd+ (a property which holds for many distortion energies). There
are two main challenges in optimizing energies of this form. One challenge is the non-convexity
of the defining function f when applied to arbitrary matrices (GW)i ∈ Rd×d. Another
challenge is the non-smoothness of the characteristic function χ+ and potential singularities
in f . Previous work solves these issues by, e.g., employing line search methods which can
handle non-convex problems, and are specifically constructed to avoid the singular regions of
χ+ and f during time stepping (see the discussion in Section 2).

We address these challenges differently, starting with the polar decomposition [38, The-
orem 2.17]. Every matrix J ∈ Rd×d with positive determinant can be decomposed into a
rotation matrix U ∈ SO(d) and a symmetric matrix P ∈ Sd+ such that

(4.1) J = UP .
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Applying the decomposition to our problem, we can reformulate (3.2) as

min
W

U∈(SO(d))m

P∈(Sd+)m

m∑
i=1

wif(Pi)

s.t. (GW)i −UiPi = 0, ∀i .

(4.2)

This new formulation is now convex in both W and P if f is convex over the positive semi-
definite cone Sd+: fG and fD are non-convex for arbitrary matrices, but convex for matrices
in Sn+, like many distortion energies. The non-convexity is now entirely contained in U. We
have thus extracted the hidden convexity of the problem, and restricted the non-convexity to
rotational matrices only (this extraction of salient parts of the energy mirrors approaches that
extract the singular values [22, 59,84,98] and appears in concurrent work [17]).

The constraint from (4.2) is still difficult to accommodate. We deal with this problem by
employing an ADMM [16] tailored for our problem. Let W be our target vertex positions,
and let U ∈ (SO(d))m, P ∈ (Sd+)m, Λ ∈ (Rd×d)m. Our augmented Lagrangian function is

(4.3) Φ(W,U,P,Λ) :=
∑m

i=1wif(Pi) + µi
2

(
‖(GW)i −UiPi + Λi‖2 − ‖Λi‖2

)
where µi > 0 are a set of m Lagrangian penalty weights. The variable Λ is a scaled Lagrange
multiplier for the constraint (GW)i = UiPi.

In the formulation of (4.3), the function f that contains a singularity for matrices with
zero determinant is only ever evaluated on Pi, which cannot have zero determinant, as it is
symmetric and positive definite. If the Jacobian map (GW)i inverts or degenerates a triangle,
i.e., has zero or negative determinant, this manifests as a feasibility error (which is finite).

The augmented Lagrangian method now consists of successively optimizing Φ in each of its
primal arguments in an alternative way, and then updating the dual variable Λ. Our method
is described in pseudocode form in Algorithm 4.1; a description of each of the substeps follows.

Algorithm 4.1 Three-block ADMM for flip-free distortion energies

1: method SplittingOptimization
(
W(0),U(0),P(0),Λ(0)

)
:

2: for k ← 1, . . . do
3: W(k) ← argminW,AW=b Φ

(
W,U(k−1),P(k−1),Λ(k−1)

)
4: U(k) ← argminU Φ

(
W(k),U,P(k−1),Λ(k−1)

)
+ p
(
U,U(k−1)

)
5: P(k) ← argminP Φ

(
W(k),U(k),P,Λ(k−1)

)
6: Λ

(k)
i ← Λ

(k−1)
i + (GW(k))i −U

(k)
i P

(k)
i ∀i

Updating W. To update W we optimize Φ with respect to W. Φ is a quadratic function
in W, and can thus be optimized by solving the linear system

LW = G>r ,(4.4)
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Figure 3. Log-log plots of the optimizations performed in Figure 5 showing eprim, edual, the
largest energy gradient ‖∇f(P

(k)
i )‖ (as a proxy for Bi from Condition 5.1, and the largest ratio∥∥∥Λ

(k+1)
i −Λ

(k)
i

∥∥∥/∥∥∥ 1
2

(
Λ
(k+1)
i −Λ

(k)
i +U

(k+1)
i (Λ

(k+1)
i )>U(k+1)

i −U(k)
i (Λ

(k)
i )>U(k)

i

)∥∥∥ (as a proxy for γ1/2 from Condition 5.2,
where the Λi are scaled by µi to be able to compare them across rescalings). The errors steadily decrease, and
gradient & Λ ratio remain bounded, except for rescaling events that lead to temporary spikes that the bounds
quickly recover from. Rescaling is not part of Algorithm 4.1 for which we analyze convergence, but are employed
in Algorithm 6.1 to speed up the performance.

where

ri = µi (UiPi − Λi) ∈ (Rd×d)m and L =
m∑
i=1

µiG
>
i Gi ∈ Rn×n .

As G is implemented as a simple finite element gradient matrix (see supplemental material),
we can write L = G>MG, where M is a mass matrix with the respective entries of µi on the
diagonal. As a result, it is a sparse Laplacian matrix similar to the cotangent Laplacian [81].

At this step, we can also enforce constraints, e.g., for deformation, on the vertex positions
W. The quadratic optimization problem can be solved, with any feasible linear constraint of
the form AW = b, at negligible additional cost. In fact, since G maps constant functions to
0, there needs to be a minimum number of constraints to make (4.4) solvable; in the absence
of any constraints (such as in UV mapping) we simply fix the first vertex of W to the origin.

Updating U. To update U, we optimize Φ augmented with a proximal function p,

(4.5) p(U,U(k−1)) :=
m∑
i=1

hi
2

∥∥∥Ui −U
(k−1)
i

∥∥∥2
,

where hi > 0 is the proximal parameter and U(k−1) is the iterate from a previous step. This
proximal function p is needed for the algorithm to converge (see Section 5).
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Both Φ and p decouple in U over elements, giving the problem

(4.6) argmin
Ui∈SO(d)

µi
2
‖(GW)i −UiPi + Λi‖2 +

hi
2

∥∥∥Ui −U
(k−1)
i

∥∥∥2
.

Since Ui ∈ SO(d) and Pi ∈ Sd+, we get that (4.6) is equivalent to the Procrustes problem [36]

(4.7) argmin
Ui∈SO(d)

‖Ui −Qi‖2 ,

where Qi = ((GW)i + Λi) Pi + hi
µi

U
(k−1)
i . Supplemental material describes our approach to

solving the Procrustes problem in detail; there is an explicit closed-form solution.

Updating P. To update P we optimize Φ with respect to P. As Φ decouples in P over
elements, we can solve optimize it separately for each triangle/tetrahedron,

(4.8) argmin
Pi∈Sd+

wif(Pi) +
µi
2
‖(GW)i −UiPi + Λi‖2 .

Since both fG and fD are convex over Sd+, the problem (4.8) is convex. We merely need to
find the single critical point by finding the solution in Sd+ of

(4.9) wi∇f(Pi) + µiPi = µi symm
(
U>i ((GW)i + Λi)

)
,

where symm(·) symmetrizes a matrix: symm(X) = 1
2(X +X>). This can be solved explicitly

in closed-form for both fG and fD. Due to floating point issues, closed-form solvers for fD can
fail in certain scenarios, we then use a simple iterative scheme (see supplemental material).

Updating Λ. To update the estimate of the Lagrange multiplier Λ, we apply a gradient
ascent approach for the scaled augmented Lagrangian method [16, Section 3.1.1],

(4.10) Λi = Λ
(k−1)
i + (GW)i −UiPi ,

where Λ(k−1) is the iterate from a previous step of the optimization method.

As we will see in Section 5, Algorithm 4.1 can be proven to converge under certain condi-
tions. The algorithm requires the choice of both a Lagrangian penalty parameter µi, as well
as a proximal parameter hi. The choice of both of these will be informed directly by the proof.
The actual algorithm implemented in our code (which is slightly different), the initialization
of W(0),U(0),P(0),Λ(0), as well as the termination condition are discussed in Section 6.

Robustness to Flipped Elements. Algorithm 4.1 can be robust with respect to flipped
triangles in the target mesh iterate W. Since the defining energy function f is only ever
evaluated on the iterate P, which consists of symmetric positive definite matrices (Sd+) this
evaluation can never be undefined, even if the target mesh iterate W currently contains
flipped triangles. This is a property of the augmented Lagrangian method’s weakly enforced
constraint. (GW)i = UiPi is only ever strongly active when the algorithm has converged,
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Figure 4. Using the robustness of our method with respect to flipped triangles in the initial iterate, we can
use our method to unflip the outputs of other methods. In this example, a flip-containing UV parametrization
computed with EA is unflipped by running our method to optimize EG until a flip-free configuration is obtained,
resulting in a parametrization that is very similar to EA’s, but flip-free (flipped triangles in red).

allowing us to circumvent the problem of evaluating f of a singularity which can affect pre-
vious work based on line search optimization. We can use this robustness property to unflip
parametrizations produced by other methods that do not guarantee flip-free minimizers, such
as EA. In Figure 4 we initialize our optimization with the result of an EA UV map, and run
it until the map contains no flipped triangles, unflipping the triangles left over by EA. The
limits of this robustness are discussed in Section 9.

Closed-Form Solutions for Every Substep. The four substeps of our method are explicitly
computable with closed-form solutions for the energies EG and ED (unlike, e.g., [17]) and do
not require parameter tuning. This makes our method easy to implement.

Efficient Evaluation & Parallelization. Every step of our method can be computed effi-
ciently. The W step contains only a single linear solve, and the matrix L does not change as
long as the penalties µi do not change. This allows us to precompute the decomposition once,
and only apply a cheap backsubstitution every iteration. To achieve this, we use Suitesparse’s
CHOLMOD if the constraints make the problem in W definite, and Suitesparse’s UMFPACK
if the constraints result in an indefinite problem [25]. The U, P and Λ steps all decouple
over elements, and can thus be computed for each triangle/tetrahedron separately, in parallel.
This makes the algorithm highly parallelizable. We implement parallelization using OpenMP.

5. Convergence Analysis. Even though the proposed Algorithm 4.1 looks like the usual
ADMM scheme, there is an important caveat: the constraints in our formulation (4.2) is
non-linear and non-convex. As a result, standard ADMM convergence analysis [16] does not
apply. This distinguishes our method from many other computer graphics ADMM methods
discussed in Section 2.2. As (4.2) is non-convex, a natural question is whether the ADMM will
converge or not. We confirm that this is true in this section. Specifically, we show that, under
certain conditions (which in practice often hold), the sequence {(W(k),U(k),P(k),Λ(k))}k≥0

generated by proposed ADMM method will converge to a Karush–Kuhn–Tucker (KKT) point
(W∗,U∗,P∗,Λ∗) of (4.2) that is defined by the conditions

(5.1)


wi∇f(P∗i )− µiU∗i

>Λ∗i = 0, ∀i,

∂g(Ui
∗)− µiΛ∗iP∗i

> 3 0, ∀i,
(GW∗)i = Ui

∗Pi
∗, ∀i.

Here, g(Ui) is the indicator function over the rotation matrix set SO(d) and ∂g(·) is the
limiting subdifferential. We refer to [55] for a recent review of stationarity in non-convex
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problems for the concrete definition. The second condition of the KKT system can be written

as Ui
∗ = argminUi∈SO(d)

(
Ui ·Λ∗iP∗i

>
)

.

We now present the convergence condition. First, we introduce an explicit boundedness
condition on the gradient norm of f(·) with respect to the sequence {P(k)}.

Condition 5.1. The gradient of f evaluated at the iterates (P(k))k≥0 generated by our

ADMM algorithm is bounded, i.e., ‖∇f(P
(k)
i )‖ ≤ Bi, ∀i.

This condition must be verified by the user when employing the method. Such boundedness
conditions are common for nonconvex ADMM [33, 117, 120]. Figure 3 shows that this bound
holds in practice for a variety of UV parametrization experiments, but it does not have to
hold for every problem (see Section 9). This is because the energy function f is not globally,
but only locally Lipschitz continuous. However, the usual convergence results for general non-
convex ADMM (e.g., even with linear constraints) rely on a global Lipschitz condition, which
is the key for obtaining a bounded sequence for both primal and dual variables. Without
global Lipschitz continuity it is challenging to bound the difference between two iterates. To
address this, we build our convergence analysis on Condition 5.1, which not only enables us to
use a local Lipschitz property, but also plays an important role in providing us with an explicit
bound for the penalty parameter. The bound is crucial for our practical implementation as
well, as elaborated in Section 6.

Our second condition lets us bound the difference between Λ
(k+1)
i and Λ

(k)
i .

Condition 5.2. There exists a γ > 0 such that∥∥∥Λ
(k+1)
i − Λ

(k)
i

∥∥∥2
≤ γ

4

∥∥∥Λ
(k+1)
i + U

(k+1)
i (Λ

(k+1)
i )>U

(k+1)
i − Λ

(k)
i − U

(k)
i (Λ

(k)
i )>U

(k)
i

∥∥∥2
.

This condition is needed to be able to bound the Λ update by the U and P updates. Because of
the symmetrization in the P update (4.9), we lose information on the antisymmetric part of Λ –
this additional condition allows us to control the antisymmetric part using only the symmetric
part. Figure 3 shows appropriate bounds γ for a few UV parametrization applications. We
conjecture that Condition 5.2 may not be necessary to prove convergence.

We leave the investigation of convergence behavior with weaker conditions to future work.
These conditions are needed to enable our particular proof; different proof strategies could
use other conditions. For many practical applications, however, our conditions are reasonable
to impose. Figure 3 shows that these conditions are realistic for our UV parametrization
examples presented in Figure 5. Both the gradient bound from Condition 5.1, as well as the
Λ ratio from Condition 5.2 can be bounded during the optimization.

Since ADMM algorithms are primal-dual methods, the crux of our convergence analysis
is to use the primal variable (W,U,P) to bound the dual update of Λ, leading to a sufficient
decrease in the augmented Lagrangian function. To start, we derive an explicit local Lipschitz
constant for various deformation energies, which is central to our convergence analysis.

Lemma 5.3. We have

‖∇f(P
(k+1)
i )−∇f(P

(k)
i )‖ ≤ Fi‖P(k+1)

i −P
(k)
i ‖, ∀i.
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Figure 5. Optimizing EG with our splitting scheme to compute UV maps for a variety of surfaces. The
surfaces are textured with a regular checkerboard texture. All generated UV maps are flip-free. The errors over
the runtime of the optimizations are displayed in Figure 3.

• For f = fG, we have Fi =

(
1 +

√
d

CL
i

2

)
.

• For f = fD, we have Fi =

(
1 + 3

√
d

CLGi
4

)
.

The constants are given by

• CLi = −Bi
2 +

√
4+B2

i

2 ; and
• CLGi is the positive root of the quartic equation, i.e., x4 +Bix

3 − 1 = 0.
Moreover, CLi ≤ CLGi ≤ 1.

Based on Lemma 5.3 establishing an explicit local Lipschitz constant, we can now derive a
few basic properties of our ADMM algorithm.

Proposition 5.4 (Sufficient decrease property).

Suppose that µi >
1
2

(
−(wi − 2ε) +

√
(wi − 2ε)2 + 16γw2

i F
2
i

)
, hi ≥

4γw2
iB

2
i

µi
+ 2ε, and 0 < ε <

mini wi
2 . Let {(W(k),U(k),P(k),Λ(k))}∞k=0 be the sequence of iterates generated by our ADMM

algorithm, and denote Φ(W(k),U(k),P(k),Λ(k)) by Φk. Then

Φk+1 − Φk ≤− 1

2
λmin(L)‖W(k+1) −W(k)‖2

−
m∑
t=1

ε
(
‖U(k+1)

i −U
(k)
i ‖

2 + ‖P(k+1)
i −P

(k)
i ‖

2
)
.

We are now ready to prove a global convergence result for our ADMM algorithm by
characterizing the cluster point of the generated sequence.

Theorem 5.5 (Global convergence of our splitting method). If the set of KKT solutions for
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control points

Figure 6. Computing low-distortion deformation of surfaces in R2 by minimizing ED, initializing with the
identity map. The highlighted control points in the target mesh are fixed to the desired position, and our method
is employed to minimize distortion.

(4.2) that satisfy (5.1) is non-empty, then the augmented Lagrangian function Φ(W,U,P,Λ)
is a Kurdyka- Lojasiewicz function, and hence the sequence generated by Algorithm 4.1,
{(W(k),U(k),P(k),Λ(k))}∞k=0, converges to a KKT point of (4.2).

For a discussion on Kurdyka- Lojasiewicz functions, we refer the reader to [12] for details. The
proofs for the statements in this section are given in Appendix B.

6. Implementation. Algorithm 4.1 is the basic algorithm underlying our method, and we
can analyze its properties theoretically (see Section 5). The method we implement in code is
slightly different, taking practical considerations into account.

Termination Condition. There is no termination condition provided in Algorithm 4.1. We
support a variety of termination conditions, such as a target energy, or no flipped triangles
present (see Figure 4). The general-purpose termination condition, which we use in all exper-
iments unless indicated, is a modified version of the primal and dual augmented Lagrangian
errors [16, Section 3.3.1], adjusted for our setting:

(
eprim
i

)2
=
∥∥∥(GW(k))i −U

(k)
i P

(k)
i

∥∥∥2
,

(
eprim

)2
=

m∑
i=1

(
eprim
i

)2
,

(
edual
i

)2
= µ2

i

∥∥∥(GW(k))i − (GW(k−1))i

∥∥∥2

(
edual

)2
=

m∑
i=1

(
edual
i

)2
.

(6.1)
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control points

Figure 7. Computing low-distortion deformation of volumes in R3 by minimizing ED, initializing with the
identity map. The highlighted control points in the target mesh are fixed to the desired position, and our method
is employed to minimize distortion.

We terminate the method if both of these errors are below the thresholds

eprim < εabs

√
dm+ εrel max

{∥∥∥GW(k)
∥∥∥ ,∥∥∥P(k)

∥∥∥} ,
edual < εabs

√
dm+ εrel

∥∥∥G>Λ(k)
∥∥∥ .

(6.2)

For most examples throughout this article, we choose εabs = 10−6, εrel = 10−5. For defor-
mation experiments, we use εabs = 5 · 10−10, εrel = 5 · 10−9. Additionally, we add to the
termination condition that all elements in the iterate W(k) have to be flip-free.

Rescaling µi and Λ. To speed up the optimization, we dynamically adjust the penalty
parameters µi [16, Section 3.4.1]. The goal of the rescaling algorithm is to keep eprim and edual

from (6.1) roughly equal. Thus,

• if eprim
i > ρedual

i , we multiply µi by ρ
2 and divide Λ

(k)
i by ρ

2 ;

• if edual
i > ρeprim

i , we divide µi by ρ
2 and multiply Λ

(k)
i by ρ

2 ,
where, in our implementation, we set ρ = 5. We employ a lower bound for µi of 1

2µmin,

where µmin is the bound from Section 5 computed with Bi =

√
5(1 + ‖∇f(P

(k)
i )‖2), and F 2

i

is capped at ε
−1/4
m (εm is the floating point machine epsilon). The changing µi and Bi as well

as the lower bound of 1
2µmin do not reflect the conditions of our convergence proof, but such

heuristic modifications to ADMM algorithms for actual implementations are used in practice:
See, e.g., [16, Section 3.4.1] for rescaling, and [109, Section 6.1] for an example of gradient
descent step sizes larger than suggested by the Lipschitz continuity bound (which is also where
our µmin originates).

Since changing the penalties µi requires decomposition of L, we rescale sparingly: five
times directly after initialization, and every 5(3

2)p iterations, where p is the number of past
rescaling events. This way we rescale more in the beginning of the optimization, when the
iterates are changing a lot, and less afterwards, when the iterates are not changing as much
anymore. The initial penalty parameters (before rescaling) are set to µi = wi. hi is set to
its value from Section 5, and disabled if we expect many flipped triangles in the input. γ is
always set to 1 and ε to 0.

Initializing U,P,Λ. The user does not need to supply U(0),P(0),Λ(0). We can use the
supplied W(0) to initialize U,P by employing a polar decomposition,

(6.3) (GW(0))i = U
(0)
i P

(0)
i .
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2D interactive deformation (surface) 3D interactive deformation (volume)

Figure 8. Since each step of our iteration method can be evaluated cheaply, the method is well-suited for
interactive deformation. In our tool, the user picks which vertices they would like to constrain, and then drags
them around while the shape deforms. For a video of this interactive application, see supplemental material.

This is, in practice, computed using the singular value decomposition (svd). For
(GW(0))i = R1ΣR>2 , we set

U
(0)
i = R1R

>
2

P
(0)
i = R2ΣR>2 .

(6.4)

If (GW(0))i is flipped, then R1R
>
2 is not a rotation matrix. In this case we multiply its last

column by −1 such that det U
(0)
i = 1, and set Σ = εI. To avoid numerical problems, we also

set all values on the diagonal of Σ to ε should they be smaller. We set ε = ε
1/4
m when opti-

mizing EG, and ε = ε
1/8
m when optimizing ED, where εm is the machine epsilon. Λ(0) is set to 0.

Algorithm 6.1 Our implementation of Algorithm 4.1

1: method SplittingOptimization
(
W(0)

)
:

2: U(0),P(0) ← polar decomposition(W(0))
3: Λ(0) ← 0
4: µi ← max(µmin,i, wi) ∀i
5: decompose(L)
6: for k ← 1, . . . ,max iter do
7: W(k) ← argminW,AW=b Φ

(
W,U(k−1),P(k−1),Λ(k−1)

)
8: U(k) ← argminU Φ

(
W(k),U,P(k−1),Λ(k−1)

)
+ p

(
U,U(k−1)

)
9: P(k) ← argminP Φ

(
W(k),U(k),P,Λ(k−1)

)
10: Λ

(k)
i ← Λ

(k−1)
i + (GW(k))i −U

(k)
i P

(k)
i ∀i

11: if rescale at iter(k) then
12: µi ← rescale(µi,W

(k),U(k),P(k),Λ(k)) ∀i
13: decompose(L)

14: if termination condition(W(k),U(k),P(k),Λ(k)) then
15: break

Our complete practical method is described in pseudocode form in Algorithm 6.1. We use
IEEE double precision as our floating point type. The actual C++ implementation built on
libigl [49] will be publicly released under an open-source license after publication. We run our
implementation on a 2.4GHz Quad-Core Intel i5 MacBook Pro with 16GB RAM.
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Figure 9. EG (left) exhibits more qualitative similarity to EA (center) than ED (right). The L2 area
distortions are, from left to right, 0.000120, 0.000103, 0.000213 (flipped triangles in red).

The user needs to initialize our method with a map to a target mesh W0. This map
does not need to be flip-free, however it can not be arbitrary (see Section 9). We initialize,
depending on the application, either with minimizers of ET or EC, which can be optimized
very cheaply. Figure 3 shows the primal and dual errors over the entire optimization, as well
as proxies for Conditions 5.1 & 5.2, for applications of Algorithm 6.1 to UV parametrization.

7. The Symmetric Gradient Energy. As a brief aside in the larger story of our optimiza-
tion algorithm, we propose an alternative to the distortion energies mentioned in Appendix A,
which we call the symmetric gradient energy. Although our main method applies to a broad
class of distortion energies, we find that this alternative energy yields maps with favorable
properties.

While fD is symmetric with respect to inversion of its input matrix X, its gradient (A.2)
is not. Moreover, the singularity in the gradient is rather strong (∼ 1/x3).

Definition 7.1 (Symmetric gradient energy). The defining function fG : Rd×d → R of the
symmetric gradient energy is given by

(7.1) fG(X) :=
1

2
‖X‖2 − log detX .

The symmetric gradient energy EG is defined as the flip-free generic distortion energy (3.2)
with f = fG.

Just like ED, EG is continuous and bounded for all flip-free maps. EG is singular exactly
when ED is, just with a weaker singularity of ∼ log x instead of ∼ 1/x (see also Appendix
A.1). EG is also invariant to rotations, as for any rotation matrix U , fG(UX) = fG(X).

To our knowledge, EG has not appeared in previous work on distortion energies in this
form. EG is, however, similar to other alternatives, chiefly among them the norm of the Hencky
strain tensor [40]

∥∥logXTX
∥∥2

, which also features a logarithmic term. Other previous works
discuss a strain energy that consists of only the logarithmic term of fG [71]. EG is, of course,
also similar to ED, which replaces the logarithmic term of EG with an inverse term.

The gradient of EG’s defining function is given by

(7.2) ∇fG(X) = X −X−> .

As X appears both as itself and as its inverse in the gradient of fG, we call this energy the
symmetric gradient energy to parallel the symmetric Dirichlet energy, where both appear in
the function itself. The singularity in the gradient (∼ 1/x) is weaker than ED’s (∼ 1/x3).
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Figure 10. Computing a correspondence between the tetrahedral mesh of a human (far left), and the interior
of a variety of surfaces whose boundaries correspond to the original human. Correspondences computed with
our method using EG exhibit no flipped tetrahedra (top), while correspondences computed using EA can contain
flipped tetrahedra (bottom, highlighted in red).

EG can be an alternative to other distortion energies in certain applications, depending
on specific goals. Minimizers of EG look more visually similar to the popular non-flip-free
minimizers of EA than minimizers of ED. If the goal is a maximally rigid map that is still
flip-free, EG is a valid choice. Additionally, minimizers of EG can exhibit lower area distortion
than minimizers of ED, yielding a more faithful map in terms of area (see Figure 9). Because
of these properties, we prefer using EG for UV parametrization and volume correspondence
(where the lower area distortion is a key feature), and ED for deformation (where the weaker
singularity of EG can lead to distorted elements near the constrained parts of the mesh).

8. Results. We use our splitting scheme to optimize distortion energies for three different
applications: UV mapping, shape deformation, and volume correspondence.

8.1. UV Maps. A UV map of a triangle mesh V ⊆ R3 is a map from V into R2, the
UV space. UV maps have a variety of applications, such as texturing surfaces [5, Section
6.4], quad meshing [13], machine learning on meshes [62], and more [78,89]. We can compute
a UV map by minimizing the distortion of a map from V into UV space. For applications
such as texture mapping, it is especially important to have a low-distortion UV map, since
high distortion will require higher-resolution images for texturing. Figures 1, 5 show our
splitting method used to minimize EG to arrive at a UV map. The surfaces are textured
using a regular checkerboard texture to visualize the distortion of the UV map; the rendered
checkerboard scale is manually set to attain qualitatively similar triangle sizes. In Figure 2
and Table 2 we compare our method with multiple previous works when optimizing ED. We
can see that for some examples the meshes are so challenging (as they contain a lot of branches
and appendages that get squished down into a small area) that the previous methods were
unable to produce a flip-free distortion minimizing optimization – an area where our method’s
robustness to flipped triangles enables us to compute results despite the difficulty. Figure 11
shows our method applied to a large parametrization data set.
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Figure 11. Computing UV parametrizations for all meshes in the D1, D2 and D3 datasets [59] (modified
to exclude degenerate meshes), consisting of 15525 meshes. The method was initialized with ET, run with a
maximal iteration count of 100000, and with termination tolerances εabs = 5 · 10−5, εrel = 5 · 10−4. Successful
meshes are shown in blue, failed meshes (0.38% for EG, 0.53% for ED) in red.

8.2. Deformation. Distortion energies can be used for deformation by constraining a part
of the target mesh W. We can constrain isolated vertices, as well as entire regions of the mesh,
and then run our optimization method, initialized with the identity map. The few initially
distorted (and potentially flipped) elements do not prevent our method from finding a solution.

In Figures 1, 6, 7 we deform a variety of surfaces and volumes by constraining vertices of
the target mesh, and compare the results of the deformation using our method using ED with
the results of minimizing the ARAP energy EA. Our method succeeds in producing natural-
looking deformations while avoiding inverted elements. Figure 8 shows our method applied
to interactive deformation: we created a user interface that allows fixing vertices of the target
mesh and dragging them to the desired location. The displayed mesh is updated interactively
during each iteration of our method. This results in a smooth interactive experience, as each
iteration of our method is cheap to compute.

8.3. Volume Correspondence. Our method can be used to compute a correspondence
between the interior volumes of two given surfaces. To do this, we minimize the distortion of
a map between the interior volume of the first surface (which has been tet-meshed [44, 96]),
and the same volume with its boundary fixed to the second surface. The optimization is
initialized with a minimizer of ET, which can contain flipped tetrahedra, however our method
is able to arrive at a flip-free distortion-minimizing volume correspondence map nevertheless.

Figure 10 shows our method applied to compute correspondences between the interior of a
human and a variety of other surfaces that show the same human, but in a different position.
Figure 1 shows a volume correspondence between two different configurations of a teddy bear.
In both cases, our method produces flip-free distortion-minimizing volume correspondences.
Surface correspondences for applying our method can be computed, e.g., using [29].

9. Limitations. There are a few scenarios in which our method can fail. We can not
initialize our method with arbitrary input (see Figure 12, left), which can cause ‖∇f(P

(k)
i )‖

to grow very large. In this case, our method will not converge to a flip-free optimum; this can
prevent us from initializing with EC in the presence of too many flips (this is the case, e.g., for



20 O. STEIN, J. LI, AND J. SOLOMON

the tree example in Table 2). In Figure 11, a few inputs fail to yield a flip-free parametrization.
While minimizers of ED are guaranteed to be flip-free, this does not mean that the maps

will be bijective. As with previous methods that employ ED, one often obtains bijective maps
in practice, although this is not guaranteed. A k-cover of a triangle mesh can be completely
flip-free, while also failing to be locally injective (see Figure 12, center). This applies to
all methods which optimize flip-free energies that are not specifically bijective, such as ED.
Related works propose solutions to this problem [34,98].

Our method can fail when constraints on W are imposed that constitute a very large
deformation from the initial target mesh W(0). An example of this can be seen in Figure
12, right. The deformation application has the additional limitation that the termination
tolerances need to be set lower than for other applications to achieve good results (although
this can be somewhat remedied by initializing with minimizers of EA.

Theorem 5.5 guarantees convergence, assuming exact arithmetic. The implementation on
the computer uses floating-point arithmetic, which is not exact, which can result in elements
that are flipped for numerical reasons. If such numerical issues occur while the optimization
is still making progress, the method might recover, like it does for maps with flipped elements
such as in Figure 4. If this happens when the method can no longer make useful progress, the
method will fail to terminate (this is a known issue with parametrization methods [95]).

10. Conclusion. In this paper, we have proposed a new splitting scheme for the optimiza-
tion of flip-free distortion energies, discussed the convergence behavior of the resulting ADMM
algorithm under certain conditions, and demonstrated its utility in a variety of applications.

There are opportunities for future work in many directions. On the application side, our
method could be used for other applications where flip-free distortion-minimizing mappings
are required, such as in elasticity simulation combined with contact mechanics, for example
in the context of an efficient solver such as projective dynamics [15]; or to deform shapes
with suitability for fabrication in mind [14]. On the implementation side, our method could
be considerably sped up by implementing some of our parallelized instructions in the P and
U optimization step in a way that exploits simultaneous execution capabilities of modern
CPUs such as SSE or AVX, similar related approaches [64] for the optimization of EA [49,
polar svd3x3.h]. On the algorithm side, further approaches to improve the performance of
the ADMM can be employed. There is a lot of recent work on the topic, and some of it might
be able to speed up our splitting method.
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triceratops 5660 3.27 · 10−7 0.324s 0.233s† 0.968s 2.25s† −‡ 0.403s†

cow 5.80k 0.00132 0.346s 0.212s† 1.53s 1.05s† 0.207s 1.08s†

tooth 9129 3.27 · 10−7 0.426s 0.307s∗ 1.36s 0.367s∗ 0.252s 0.395∗

hand 9.36k 0.00174 − 1.95† 1.31s 1.51s† 0.516s 1.50s†

deer 10.9k 0.000179 − 6.10∗ − 6.76∗ −‡ 240s†

horse 39.7k 0.000429 1.46s 1.23s† 7.64s 10.8s† 1.04s 10.9s†

bread 49.9k 0.000760 2.07s 2.81s† 14.4s 2.84s† 1.10s 2.81s†

falcon 51.5k 0.000180 − 7.71s∗ − 7.48s∗ 1.22s 9.05s∗

cat 90.0k 0.00377 3.54s 19.4s∗ 10.5s 15.7s∗ 3.62s 25.4s∗

car 97.6k 5.25 · 10−6 3.83s 11.0s† 15.5s 11.2s† 1.99s 11.1s†

brain 152k 0.00107 − 308s∗ − 308s∗ 15.7s 16.8s∗

strawberry 313k 1.81 · 10−6 14.8s 55.3s∗ 45.1s 59.8s∗ 9.57s 60.5s∗

slime 567k 0.000980 − 1140s∗ 112s 38.4s∗ 53.7s 42.9s∗

tree 630k 5.84 · 10−5 − 2080s∗ −− 2090s∗ 187s 76.0s∗

pegasus 2390k 1.82 · 10−10 − 859s∗ − 866s∗ − 862s∗

− a previous work was unable to find a distortion-minimizing flip-free mapping (it errored, or flips were
present in the result)

−− the algorithm terminated, but with a very high energy, which is counted as unsuccessful
∗ our method initialized with a minimizer of ET

† our method initialized with a minimizer of EC

‡ previous method will sometimes work, and sometimes fail; thus reported as fail here

Table 2
Comparing the runtime of UV maps generated with our method the the previous methods of SLIM [84],

AKVF [22], and PP [59]. Since each of these related works uses their own termination condition, they do not
all arrive at a parametrization with the same ED. To compare against each previous method as intended by
its authors, we run the publicly available implementation of the method until it satisfies its own termination
condition (or is aborted after 150 minutes). We then measure ED of the previous method’s UV map (after
rescaling it to match the total area of the original mesh), and run our own algorithm to produce a flip-free map
matching the previous method’s ED up to a tolerance of 10−6. Thus the runtimes in this table are plotted in
pairs: a previous method, as well as our algorithm set to produce a map with the same distortion. We initialize
our method with minimizers of ET and EC, and report the best time. If the previous method did not terminate
successfully, our method is run with default termination conditions (which, in general, are set to produce lower-
energy result that previous methods’ termination conditions). Values are rounded to three significant digits.
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ruffled
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   collar”

embedded
min,

EG = 40.9

covered
min,

EG = 20.2
no con-

vergence

Figure 12. If our method is initialized with a bad initial target mesh W, it will not converge like it would
with a good initial target mesh (e.g., the minimizer of ET) (left). While our method will always produce a flip-
free map, not all flip-free maps are bijective: the k-cover of this ruffled high-valence vertex has lower distortion
than the bijective map (center). If the target mesh W is constrained to a deformation that is very far from the
initial mesh, our method can fail to converge (right).

Appendix.

A. Distortion Energies. This appendix discusses distortion energies appearing in this
article that have been featured extensively in previous work.

A.1. The Symmetric Dirichlet Energy.

Definition A.1 (Symmetric Dirichlet energy [98]). The defining function fD : Rd×d → R of
the symmetric Dirichlet energy is

(A.1) fD(X) :=
1

2

(
‖X‖2 +

∥∥X−1
∥∥2
)

.

The symmetric Dirichlet energy ED is defined as the flip-free generic distortion energy (3.2)
with f = fD.

ED is finite and continuous on all maps whose Jacobian has positive determinant. By
the definition of (3.2), a negative determinant leads to infinite ED (due to χ+), and since fD

has a singularity for matrices with zero determinant, there is a barrier preventing determi-
nants from approaching zero. Hence, minimizers of ED are flip-free (unless overconstrained).
Furthermore, ED is invariant to rotations: for a rotation matrix U , fD(UX) = fD(X).

The gradient of the defining function is given by

(A.2) ∇fD(X) = X −X−>X−1X−> .

Unlike fD itself, its gradient is not symmetric with respect to inverting its argument. The
gradient also features a stronger singularity (∼ 1/x3) than the defining function (∼ 1/x).

Our optimization method reproduces the output of previous methods [22, 59, 84] when
optimizing ED. Figure 2 shows our method as well as previous methods used to compute UV
maps by minimizing ED: the results visually match. Unlike these previous methods, we will
be able to prove under which conditions our approach converges.

A.2. Non-Injective Distortion Energies. Beyond flip-free energies like the symmetric
Dirichlet energy, many important energies allow elements to invert. Although their optima
might not be desirable as final results, they have a large advantage over flip-free energies: they
are usually much easier to optimize, thanks to linearity or a lack of singularities. Since our
algorithm is resilient to initial iterates that contain flips, we can use optima of these simpler
energies as initializers (with exceptions; see Section 9).
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A.2.1. Tutte’s Energy.

Definition A.2 (Tutte’s energy [108]). Tutte’s energy for the target mesh W is given by

ET(W) :=
∑

edges (i,j)

1

‖Vi −Vj‖
‖Wi −Wj‖2 ,

While Tutte did not define his energy exactly as written above, that definition can be found
in recent references [48].

Minimizers of ET for triangulated surfaces are flip-free if all boundary vertices are con-
strained to a convex shape [108]. ET is a quadratic energy which can be efficiently minimized
by solving a linear system without initialization. Hence, minimizing ET is a popular strategy
for generating initial flip-free parametrizations to launch additional line-search-based opti-
mization steps that further reduce distortion [22,59,84,98].

Minimizers of ET for tetrahedralized volumes, however, are not in general flip-free, even if
all boundary vertices are constrained to a convex shape. This is an obstacle for optimization
methods that need to start with a flip-free map. Our method does not automatically fail if
the initial map contains flipped elements, and can thus use ET even for volumes.

A.2.2. Conformal Energy. As a contrast to Tutte’s energy, one can construct quadratic
energies built on estimates of the derivative of a surface/volume map, sensitive to conformal
(angle-based) geometry. One popular choice is the conformal energy.

Definition A.3 (Conformal energy [67]). The conformal energy for the target mesh W is

EC(W) :=
1

2

m∑
i=1

wi ‖(GW)i‖2 −A(W) ,

where A(W) is the area of the target mesh W.

Similarly to ET, EC is quadratic in W. Unlike ET, however, minimizers of EC are not
guaranteed to be flip-free for surfaces.

Several papers propose ways to discretize and optimize EC in practice (see Section 2.1).
In this work, we employ the method [86], which efficiently minimizes EC with free boundary
and minimal area distortion.

A.2.3. As-Rigid-As-Possible Energy. The linear energies above do not directly measure
the deviation of a map from being rigid The as-rigid-as-possible energy is specifically designed
to be sensitive to non-rigidity.

Definition A.4 (As-Rigid-As-Possible (ARAP) Energy [60,101]). The ARAP energy’s defining
function is

fA(X) :=
1

2
‖X − rotX‖2 ,

where rotX isolates the rotational part of a matrix X by solving a Procrustes problem [36],

rot(X) := argmin
R∈SO(d)

‖R−X‖2 .
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The ARAP energy EA is defined as the generic distortion energy with flips (3.1) and f = fA.

In this article we employ the local-global solver with per-element discretization [60] as
implemented by libigl [49], which we denote by EA. We run the optimization until the relative
error between two subsequent iterates is less than 10−6, but not more than 150 minutes.

EA is a popular distortion energy: it produces results that are reminiscent of elasticity,
while being cheap to optimize. Its minimizers are, however, not always flip-free.

B. Additional Calculations for the Convergence Proof. This appendix contains proofs
for the convergence analysis in Section 5.

Proof of Lemma 5.3. Let Pi = VΣV> be the eigenvalue decomposition of Pi. We con-
sider EG first (f = fG). Recall that f(Pi) = 1

2‖Pi‖2 − log det Pi. Hence,

‖∇f(Pi)‖2 = ‖Pi −Pi
−1‖2 = ‖Σ−Σ−1‖2 =

d∑
i=1

(λi − λ−1
i )2,

where Σ = Diag([λ1, · · · , λd]) and λ1 ≤ λ2 ≤ · · · ≤ λd. By Condition 5.1, we have

(B.1) λ1(Pi) ≤ CLi , −Bi
2

+

√
4 +B2

i

2
.

Next, we aim to use the term ‖P(k+1)
i −P

(k)
i ‖ to bound ‖∇f(P

(k+1)
i )−∇f(P

(k)
i )‖, using the

conditions λ1(P
(k+1)
i ) ≤ CLi and λ1(P

(k)
i ) ≤ CLi , i.e., (B.1).

‖∇f(P
(k+1)
i )−∇f(P

(k)
i )‖ = ‖(P(k+1)

i −P
(k+1)
i

−1
)− (P

(k)
i −P

(k)
i

−1
)‖

≤ ‖P(k+1)
i −P

(k)
i ‖+ ‖P(k+1)

i

−1
−P

(k)
i

−1
‖.

We proceed to bound ‖P(k+1)
i

−1
−P

(k)
i

−1
‖,

‖P(k+1)
i

−1
−P

(k)
i

−1
‖ ≤
√
d‖P(k+1)

i

−1
−P

(k)
i

−1
‖2 =

√
d‖P(k)

i

−1
(P

(k)
i −P

(k+1)
i )P

(k+1)
i

−1
‖2

≤
√
d‖P(k)

i

−1
‖2‖P(k)

i −P
(k+1)
i ‖2‖P(k+1)

i

−1
‖2 ≤

√
d

CLi
2 ‖P

(k)
i −P

(k+1)
i ‖2,

where the last inequality follows from spectral norm of inverse coming from first eigenvalue.
Combining the above two inequalities, we find that

‖∇f(P
(k+1)
i )−∇f(P

(k)
i )‖ ≤

(
1 +

√
d

CLi
2

)
‖P(k+1)

i −P
(k)
i ‖.

Following a similar argument, we can also derive the explicit local Lipschitz constant for
ED (f = fD). Recall that f(Pi) = 1

2

(
‖Pi‖2 + ‖P−1

i ‖2
)
. Hence,

‖∇f(Pi)‖2 = ‖Pi −Pi
−3‖2 = ‖Σ−Σ−3‖2 =

d∑
i=1

(λi − λ−3
i )2.
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Figure 13. A plot of the bounds CLi and CLGi with respect to the maximal gradient norm Bi. One can see
that CLi ≤ CLGi ≤ 1.

By Condition 5.1 we have λ1(Pi) ≤ CLGi , i.e., (B.1), where the CLGi are the positive roots of
the quartic equation x4 +Bix

3 − 1 = 0. Moreover, CLi ≤ CLGi ≤ 1 (see Figure 13).

‖∇f(P
(k+1)
i )−∇f(P

(k)
i )‖ = ‖(P(k+1)

i −P
(k+1)
i

−3
)− (P

(k)
i −P

(k)
i

−3
)‖

≤ ‖P(k+1)
i −P

(k)
i ‖+ ‖P(k+1)

i

−3
−P

(k)
i

−3
‖.

Similarly to our proof for the symmetric gradient energy, we next bound ‖P(k+1)
i

−3
−P

(k)
i

−3
‖:

‖P(k+1)
i

−3
−P

(k)
i

−3
‖ ≤
√
d‖P(k+1)

i

−3
−P

(k)
i

−3
‖2

≤
√
d

∥∥∥∥P(k+1)
i

−3
(

P
(k+1)
i

3
−P

(k)
i

3
)

P
(k)
i

−3
∥∥∥∥

2

.

We observe that

P
(k+1)
i

3
−P

(k)
i

3

= P
(k+1)
i

2
(P

(k+1)
i −P

(k)
i ) + P

(k+1)
i (P

(k+1)
i −P

(k)
i )P

(k)
i + (P

(k+1)
i −P

(k)
i )P

(k)
i

2
.

Based on the above equality, we find that∥∥∥∥P(k+1)
i

−3
(

P
(k+1)
i

3
−P

(k)
i

3
)

P
(k)
i

−3
∥∥∥∥

2

≤
∥∥∥∥P(k+1)

i

−1 (
P

(k+1)
i −P

(k)
i

)
P

(k)
i

−3
∥∥∥∥

2

+

∥∥∥∥P(k+1)
i

−2 (
P

(k+1)
i −P

(k)
i

)
P

(k)
i

−2
∥∥∥∥

2

+

∥∥∥∥P(k+1)
i

−3 (
P

(k+1)
i −P

(k)
i

)
P

(k)
i

−1
∥∥∥∥

2

≤ 3

CLGi
4

∥∥∥P(k+1)
i −P

(k)
i

∥∥∥ .
Combining all the statements derived above, we conclude

‖∇f(P
(k+1)
i )−∇f(P

(k)
i )‖ ≤

(
1 +

3
√
d

CLGi
4

)
‖P(k+1)

i −P
(k)
i ‖,
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which proves the lemma.

Proof of Proposition 5.4. We begin by deriving a sufficient decrease property for the aug-
mented Lagrangian function. The core strategy here is to use the primal blocks (W,U,P) to
bound the dual variable Λ.

Φk+1 − Φk = Φ(W(k+1),U(k+1),P(k+1),Λ(k+1))− Φ(W(k+1),U(k+1),P(k+1),Λ(k))︸ ︷︷ ︸
(a)

+

Φ(W(k+1),U(k+1),P(k+1),Λ(k))− Φ(W(k+1),U(k+1),P(k),Λ(k))︸ ︷︷ ︸
(b)

+

Φ(W(k+1),U(k+1),P(k),Λ(k))− Φ(W(k+1),U(k),P(k),Λ(k))︸ ︷︷ ︸
(c)

+

Φ(W(k+1),U(k),P(k),Λ(k))− Φ(W(k),U(k),P(k),Λ(k))︸ ︷︷ ︸
(d)

.

Focusing on the dual update,

(a) =
m∑
i=1

µi
2

(∥∥∥(GW(k+1))i −U
(k+1)
i P

(k+1)
i + Λ

(k+1)
i

∥∥∥2
−
∥∥∥Λ(k+1)

i

∥∥∥2
)

−
m∑
i=1

µi
2

(∥∥∥(GW(k+1))i −U
(k+1)
i P

(k+1)
i + Λ

(k)
i

∥∥∥2
−
∥∥∥Λ(k)

i

∥∥∥2
)

=
m∑
i=1

µi
2

(∥∥∥Λ(k+1)
i −Λ

(k)
i + Λ

(k+1)
i

∥∥∥2
−
∥∥∥Λ(k+1)

i

∥∥∥2
)

−
m∑
i=1

µi
2

(∥∥∥Λ(k+1)
i −Λ

(k)
i + Λ

(k)
i

∥∥∥2
−
∥∥∥Λ(k)

i

∥∥∥2
)

=

m∑
i=1

µi‖Λ(k+1)
i −Λ

(k)
i ‖

2.

To use the primal blocks to bound the dual update (a), we first write down the optimality
condition with respect to P(k+1),

P(k+1) = argmin
P∈(Sd+)m

Φ
(
W(k+1),U(k+1),P,Λ(k)

)
⇒ 0 = wi∇f(P

(k+1)
i ) + µi symm

(
U

(k+1)
i

> (
U

(k+1)
i P

(k+1)
i − (GW(k+1))i −Λ

(k)
i

))
, ∀i

⇒ 0 = wi∇f(P
(k+1)
i )− µi symm

(
U

(k+1)
i

>
Λ

(k+1)
i

)
, ∀i.

Then, we have

wi
µi

U
(k+1)
i ∇f(P

(k+1)
i ) =

1

2

(
Λ

(k+1)
i + U

(k+1)
i Λ

(k+1)
i

>
U

(k+1)
i

)
, ∀i.
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Thus, we can use (U,P) to bound (a). By Condition 5.2,∥∥∥Λ(k+1)
i −Λ

(k)
i

∥∥∥2
≤ γ

∥∥∥∥1

2

(
Λ

(k+1)
i −Λ

(k)
i

)
+

1

2

(
U

(k+1)
i Λ

(k+1)
i

>
U

(k+1)
i −U

(k)
i Λ

(k)
i

>
U

(k)
i

)∥∥∥∥2

.

Thus,

‖Λ(k+1)
i −Λ

(k)
i ‖

2

≤ γw
2
i

µ2
i

∥∥∥U(k+1)
i ∇f(P

(k+1)
i )−U

(k)
i ∇f(P

(k)
i )
∥∥∥2

=
γw2

i

µ2
i

‖U(k+1)
i ∇f(P

(k+1)
i )−U

(k)
i ∇f(P

(k+1)
i ) + U

(k)
i ∇f(P

(k+1)
i )−U

(k)
i ∇f(P

(k)
i )‖2

≤ 2γw2
i

µ2
i

(
B2
i ‖U

(k+1)
i −U

(k)
i ‖

2 + ‖∇f(P
(k+1)
i )−∇f(P

(k)
i )‖2

)
≤ 2γw2

iB
2
i

µ2
i

‖U(k+1)
i −U

(k)
i ‖

2 +
2γw2

i F
2
i

µ2
i

‖P(k+1)
i −P

(k)
i ‖

2,

where the last inequality follows from lemma 5.3. Based on the above analysis,

(a) =

m∑
i=1

µi‖Λ(k+1)
i −Λ

(k)
i ‖

2

≤
m∑
i=1

2γw2
iB

2
i

µi
‖U(k+1)

i −U
(k)
i ‖

2 +
2γw2

i F
2
i

µi
‖P(k+1)

i −P
(k)
i ‖

2.

We continue by bounding the terms (b), (c), (d). As Φ(W(k+1),U(k+1),P,Λ(k)) is (wi+µi)-
strongly convex for Pi, we have,

(b) ≤ −
m∑
i=1

wi + µi
2
‖P(k+1)

i −P
(k)
i ‖

2.

See [72, Theorem 2.1.8] for details. Since U(k+1) is the global optimal solution of

Φ(W(k+1),U,P(k),Λ(k)) +
∑m

i=1
hi
2 ‖Ui −U

(k)
i ‖2, we obtain

(c) ≤ −
m∑
i=1

hi
2
‖U(k+1)

i −U
(k)
i ‖

2.

Similarly, we can derive the associated sufficient decrease term for W, i.e.,

(d) ≤ −1

2
λmin(L)‖W(k+1) −W(k)‖2.

By summing up all the inequalities for (a), (b), (c), (d),

Φk+1 − Φk ≤−
m∑
i=1

(
hi
2
− 2γw2

iB
2
i

µi

)
‖U(k+1)

i −U
(k)
i ‖

2
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−
m∑
i=1

(
wi + µi

2
− 2γw2

i F
2
i

µi

)
‖P(k+1)

i −P
(k)
i ‖

2

− 1

2
λmin(L)‖W(k+1) −W(k)‖2.

We now apply the conditions µi > −1
2(wi − 2ε) +1

2

√
(wi − 2ε)2 + 16γw2

i F
2
i and

hi ≥
4γw2

iB
2
i

µi
+ 2ε to arrive at

(B.2)

Φk+1 − Φk ≤− 1

2
λmin(L)‖W(k+1) −W(k)‖2

−
m∑
t=1

ε
(
‖U(k+1)

i −U
(k)
i ‖

2 + ‖P(k+1)
i −P

(k)
i ‖

2
)
,

which proves the statement of the theorem.

Proof of Theorem 5.5. There are four core steps to complete this proof.
• Step 1: Show that the sequence {(W(k),U(k),P(k),Λ(k))}∞k=0 is bounded.
The boundedness of the sequence {P(k)}∞k=0 follows directly from Condition 5.1. Ui is a
rotation matrix and thus bounded. Recall that

(B.3)
∥∥∥Λ(k+1)

i −Λ
(k)
i

∥∥∥2
≤ 2γw2

iB
2
i

µ2
i

‖U(k+1)
i −U

(k)
i ‖

2 +
2γw2

i F
2
i

µ2
i

‖P(k+1)
i −P

(k)
i ‖

2.

Therefore, we can conclude that the dual variable Λ is bounded. Using the update rule for W
directly gives a bound for W. Hence, the sequence {(W(k),U(k),P(k),Λ(k))}∞k=0 is bounded,
and thus a cluster point exists.
• Step 2: Prove that lim

k→+∞
‖U(k+1) − U(k)‖2 + ‖P(k+1) − P(k)‖2 + ‖W(k+1) −W(k)‖2 +

‖Λ(k+1) −Λ(k)‖2 = 0, where the squared norm of A indicates the appropriate sum over all
the squared norms of the Ai.

Suppose that (W∗,U∗,P∗,Λ∗) is a cluster point of the sequence {(W(k),U(k),P(k),Λ(k))}∞k=0.
Let {(W(ki),U(ki),P(ki),Λ(ki))} be a convergent subsequence such that

lim
i→+∞

(W(ki),U(ki),P(ki),Λ(ki)) = (W∗,U∗,P∗,Λ∗).

By summing (B.2) from k = 0 to k = ki − 1, we have

Φ(W(ki),U(ki),P(ki),Λ(ki))− Φ(W(0),U(0),P(0),Λ(0))

≤ −1

2
λmin(L)

ki−1∑
k=0

‖W(k+1) −W(k)‖2 −
ki−1∑
k=0

m∑
t=1

ε
(
‖U(k+1)

i −U
(k)
i ‖

2 + ‖P(k+1)
i −P

(k)
i ‖

2
)
.

Taking the limit of i→ +∞ in above inequality and rearranging terms, we obtain

1

2
λmin(L)

+∞∑
k=0

‖W(k+1) −W(k)‖2 +

+∞∑
k=0

m∑
t=1

ε
(
‖U(k+1)

i −U
(k)
i ‖

2 + ‖P(k+1)
i −P

(k)
i ‖

2
)

≤ Φ(W(0),U(0),P(0),Λ(0))− Φ(W∗,U∗,P∗,Λ∗) <∞.

(B.4)
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Here the last inequality holds as our augmented Lagrangian function is unbounded only if our
input is unbounded. Moreover, the sequence {(W(k),U(k),P(k),Λ(k))}∞k=0 is bounded and we
can complete the argument.

(B.4) implies that

+∞∑
k=0

‖W(k+1)−W(k)‖2 <∞,
+∞∑
k=0

m∑
i=1

‖U(k+1)
i −U

(k)
i ‖

2 <∞,
+∞∑
k=0

m∑
i=1

‖P(k+1)
i −P

(k)
i ‖

2 <∞.

Hence, W(k+1) −W(k) → 0,U(k+1) −U(k) → 0,P(k+1) − P(k) → 0. Due to the primal-dual
relationship (B.3), we can thus conclude that Λ(k+1) −Λ(k) → 0.
• Step 3: Derive a safeguard property.

Define the extended augmented Lagrangian function G(W,U,P, Λ) = Φ(W,U,P,Λ) +∑m
i=1 g(Ui). Recall the optimization optimality conditions for the ADMM updates (i.e., the

k + 1 iteration).
0 = hi

(
U

(k+1)
i −U

(k)
i

)
+ µi

(
U

(k+1)
i P

(k)
i − (GW(k+1))i −Λ

(k)
i

)
P

(k)
i

>
+ ∂g(U

(k+1)
i ),∀i

0 = wi∇f(P
(k+1)
i )− µi symm

(
U

(k+1)
i

>
Λ

(k+1)
i

)
,∀i

Λ
(k+1)
i = Λ

(k)
i + (GW(k+1))i −U

(k+1)
i P

(k+1)
i .

Moreover, a stationary point satisfying 0 ∈ ∂G(W∗,U∗,P∗,Λ∗) is equivalent to the KKT
point property in (5.1). Subsequently, we want to bound the subgradient
dist(0, ∂G(W(k+1),U(k+1),P(k+1),Λ(k+1))) by the iterate difference, i.e. ‖P(k+1) − P(k)‖,
‖U(k+1) −U(k)‖, ‖W(k+1) −W(k)‖,

dist
(

0, ∂G(W(k+1),U(k+1),P(k+1),Λ(k+1))
)
≤

m∑
i=1

∥∥∥∥wi∇f(P
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(
U
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>
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(k+1)
i

)∥∥∥∥
+
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i P
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>
)

+

m∑
i=1

∥∥∥(GW(k+1))i −U
(k+1)
i P

(k+1)
i

∥∥∥ .
We observe that the first term is 0, and the third term is identical to

∑m
i=1 ‖Λ

(k+1)
i −Λ

(k)
i ‖.

It remains to bound the second term. Starting from the optimality condition w.r.t U
(k+1)
i ,
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As {W(k+1),U(k+1),P(k+1),Λ(k+1)}k≥0 is bounded, i.e., step 1, there exists a constant D
such that

(W(k+1),U(k+1),P(k+1),Λ(k+1)) ∈ C, C = {(W,U,P,Λ)|‖W,U,P,Λ‖ ≤ D} .

Thus,

dist

(
0, µiΛ

(k+1)
i P

(k+1)
i

>
+ ∂g(U

(k+1)
i )

)
≤ hi‖U(k+1)

i −U
(k)
i ‖+ µi

(
D + ‖P(k)

i ‖
)
‖P(k)

i −P
(k+1)
i ‖.

Due to Lemma 5.3, we know that there exists a constant κ > 0 such that

dist
(

0, ∂G(W(k+1),U(k+1),P(k+1),Λ(k+1))
)

≤κ
(
‖U(k+1) −U(k)‖+ ‖P(k+1) −P(k)‖+ ‖Λ(k+1) −Λ(k)‖

)
.

Based on Step 2, i.e., W(k+1)−W(k) → 0,U(k+1)−U(k) → 0,P(k+1)−P(k) → 0, there exists
dk+1 ∈ ∂G(W(k+1),U(k+1),P(k+1),Λ(k+1)) such that ‖dk+1‖ → 0. By the definition of general
subgradient, we have 0 ∈ ∂G(W∗,U∗,P∗,Λ∗). Thus, any cluster point (W∗,U∗,P∗,Λ∗) of
a sequence (W(k),U(k), P(k),Λ(k)) generated by the ADMM is a stationary point, or KKT
point equivalently.
• Step 4: Show that G(W,U,P,Λ) is a Kurdyka- Lojasiewicz function.
Following the proof of Theorem 2.9 in [8], we can infer the global convergence of the sequence
{W(k),U(k), P(k),Λ(k)} from the K L condition of the extended augmented Lagrangian func-
tion G(W,U,P,Λ). Therefore, the final step is to prove that G(W,U,P,Λ) is a Kurdyka-
 Lojasiewicz function.

Recall that

G(W,U,P,Λ) =

m∑
i=1

wif(Pi) +

m∑
i=1

µi
2

(
‖(GW)i −UiPi + Λi‖2 − ‖Λi‖2

)
+

m∑
i=1

g(Ui).

The K L property is closed under summation [8]. Thus, we can check the above sum-
mands one by one.

∑m
i=1wif(Pi) is strongly convex and hence satisfies the uniform convexity

property, and is a K L function [7, Section 4.1].
∑m

i=1
µi
2

(
‖(GW)i −UiPi + Λi‖2 − ‖Λi‖2

)
is

a polynomial function and thus semi-algebraic, and semi-algebraic functions satisfy the K L
property [7, 8]. As g(·) is the indicator function over the special orthogonal group, it is a K L
function (via Stiefel manifolds [7]).

This completes the proof of the theorem.
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1. Supplemental: Implementation Details. This appendix contains details needed to
implement our splitting method. For this supplemental material, εm is the machine epsilon
of the chosen floating point type.

1.1. Computing the Jacobian Map. For triangle and tetrahedral meshes we compute the
Jacobian of the map from V to W using the gradient operator for piecewise linear Langrangian
finite elements. The gradient vector of the k-th coordinate function of W with with respect
to the source mesh V on the triangle/tetrahedron j corresponds to the k-th column of the
Jacobian matrix on the element j. For more background on interpreting the Jacobian as a
finite element gradient, see [81].

On surfaces, where we need to compute a map from R3 to R2, we use the intrinsic gradient
matrix, to get Jacobians in R2×2 [49, grad intrinsic.h]. For volumes, where we are comput-
ing a map from R3 to R3, we use the standard coordinate-aligned gradient matrix [49, grad.h].

1.2. Solving the Optimization in P. To perform the optimization step in P, we need to
solve (4.9). This section explains our approach to solving equations of the form

(1.1) w∇f(P ) + µP = µQ

for P ∈ Sd+, where Q is a symmetric matrix.

1.2.1. Symmetric Gradient Energy. For f = fG, ∇f(P ) = P −P−1. Thus (1.1) becomes

(1.2) (w + µ)P 2 − µQP − wI = 0 ,

where I is the identity matrix. (1.2) is a quadratic equation in P and has a single symmetric
positive definite solution, which can be obtained using the regular quadratic formula:

(1.3) P =
1

2(w + µ)

(
µQ+

√
µ2Q2 + 4w(w + µ)I

)
.

We compute the matrix square root for d = 2, 3 using [31]. If we determine that this
method can not be used reliably because of floating point issues (the discriminant, as of [31],
is smaller than

√
εm), we perform an eigendecomposition and compute the square root of all

eigenvalues instead. If we determine Q to be very small (‖Q‖2 < √εm), we employ a Taylor
approximation of (1.3) in Q.

1.2.2. Symmetric Dirichlet Energy. For f = fD, ∇f(P ) = P −P−3. Thus (1.1) becomes

(1.4) (w + µ)P 4 − µQP 3 − wI = 0 ,

where I is the identity matrix. (1.4) is a quartic equation, for which we know there is a unique
symmetric positive definite solution, as f is convex. We solve this quartic equation by apply-
ing eigendecomposition, transforming the problem into d scalar problems in the eigenvalues,
and using the explicit quartic root finding method [52] to find the unique positive solution to
the scalar quartic equation. If, due to floating point issues, the quartic solver fails to find a
result that is within a specified tolerance, we improve the solver’s result using Newton root
finding.

For both energies, if the determinant or trace of P are smaller than
√
εm, we explicitly

ensure that its eigenvalues are at least
√
εm.
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1.3. Solving the Optimization in U. To perform the optimization step in U, we need to
solve the Procrustes problem (4.7).

1.3.1. d = 2. In two dimensions, we employ our own simple Procrustes solver. Our goal
is to find

ϕ = argmin
ϕ
‖U(ϕ)−Q‖2 = argmin

ϕ
(−U(ϕ) ·Q) ,

where U(ϕ) :=

cosϕ − sinϕ

sinϕ cosϕ

 ,
(1.5)

given an arbitrary Q ∈ R2×2. The objective function from (1.5) will attain its minimum at
a critical point of its objective function, which is a root of a simple trigonometric equation
that can be solved using the atan2 function. The second derivative of the objective function
is then used to pick out the minimum among the critical points.

In practice, we store the rotations in U as the real and imaginary parts of a complex
number, so that atan2 does not need to be computed using any trigonometric functions: we
can simply employ a square root.

1.3.2. d = 3. In three dimensions, we use a standard implementation [49, polar svd.h],
which computes a singular value decomposition to solve the Procrustes problem.
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