

Solver-Informed Reinforcement Learning

Yitian Chen, jingfan xia, Siyu shao, Dongdong Ge, YinYu ye

2025.12

What Are Large Reasoning Models?

Large Reasoning Models (LRMs) are AI models with extensive parameters and advanced logical reasoning capabilities.

Beyond Human-Level Performance

Mathematical proofs · Code generation · STEM competitions

High-Value Application Scenarios

Medical diagnosis · Industrial optimization · Scientific research · Complex decision systems

Solver-Informed Reinforcement Learning

We introduce the first reasoning model for mathematical modeling: [SIRL-Qwen2.5-7B](#).

- Reasoning Paradigm:** Reasoning → Modeling → Code generation.
- Data Synthesis:** Utilizes seed data + a precisely designed synthesis framework for model distillation, enabling access to high-quality reinforcement learning training data.
- Training Framework:** Based on **Reinforcement Learning with Verifiable Reward (RLVR)**. We propose a novel agent function design bridging DeepSeek-GRPO and ByteDance-DAPO approaches.

The system prompt guides the LLM through a sequential process: first asking it to analyze the problem, then to formulate a mathematical model, and finally to output the corresponding solver codes.

System Prompt

SYSTEM: You are a helpful Assistant with expertise in operations research and the COPT solver. When the User provides an OR question, you will analyze it, build a detailed mathematical model, and provide the COPT code to solve it.

Your response should follow these steps:

1. <think> Carefully analyze the problem to identify decision variables, objective, and constraints.</think>
2. <model> Develop a complete mathematical model, explicitly defining: * Sets * Parameters * Decision Variables (and their types) * Objective Function * Constraints </model>

3. <python> Provide the corresponding COPT Python code to implement the model. </python>

The output must be in Markdown format, with each step enclosed in the specified tags.

USER: Answer the following mathematical modeling question:

{{{Question}}}

Please think step by step.

Reasoning Paradigm: Generated Response

Figure: 'think' and 'model' segments

Response

```

<think> To solve this problem, we need to identify the decision variables, the objective function, and the constraints.
1. **Decision Variables:** 
- Let  $x$  be the number of plane trips.
- Let  $y$  be the number of truck trips.
2. **Objective Function:** 
We need to minimize the total number of trips, which is  $x + y$ .
3. **Constraints:** 
- The total number of tires transported must be at least 200:  $10x + 6y \geq 200$ .
- The total cost must not exceed $22000:  $1000x + 700y \leq 22000$ .
- The number of plane trips cannot exceed the number of truck trips:  $x \leq y$ .
- Non-negativity constraints:  $x \geq 0, y \geq 0$ .
Since these are linear constraints, we can use linear programming to solve this problem.
</think>
<model>
### Sets
- There are no sets in this problem as it is a simple linear programming problem.
### Parameters
- The number of tires each plane can transport: 10.
- The cost per plane trip: $1000.
- The number of tires each truck can transport: 6.
- The cost per truck trip: $700.
### Decision Variables
-  $x$ : Number of plane trips.
-  $y$ : Number of truck trips.
### Objective Function
Minimize the total number of trips:  $x + y$ .
### Constraints
1.  $10x + 6y \geq 200$ 
2.  $1000x + 700y \leq 22000$ 
3.  $x \leq y$ 
4.  $x \geq 0, y \geq 0$ 
</model>

```

Figure: 'code' segment

Response

```

<python>
import copty as cp
from copty import COPT
### Create a new model
config = cp.Envr()
env = cp.Envr(config)
m = env.createModel("tire_transport")
### Decision variables
x = m.addVar(name="x", vtype=COPT.INTEGER) # Number of plane trips
y = m.addVar(name="y", vtype=COPT.INTEGER) # Number of truck trips
### Objective function
m.setObjective(x + y, COPT.MINIMIZE)
### Constraints
m.addConstr(10 * x + 6 * y >= 200, "tire_constraint")
m.addConstr(1000 * x + 700 * y <= 22000, "cost_constraint")
m.addConstr(x - y <= 0, "trip_constraint")
### Optimize the model
m.solve()
### Print the solution
if m.status == COPT.OPTIMAL:
    print(f"Optimal solution found:")
    print(f"Plane trips: x.x")
    print(f"Truck trips: y.x")
    print(f"Total trips: x.x + y.x")
    print(f"Total cost: $m.objVal")
else:
    print("No optimal solution found.")
</python>

```

Tire Transportation Linear Programming Problem

Thinking

To solve this problem, we need to clarify the decision variables, objective function and constraint conditions:

1. Decision Variables:

- Let x be the number of airplane transportation trips
- Let y be the number of truck transportation trips

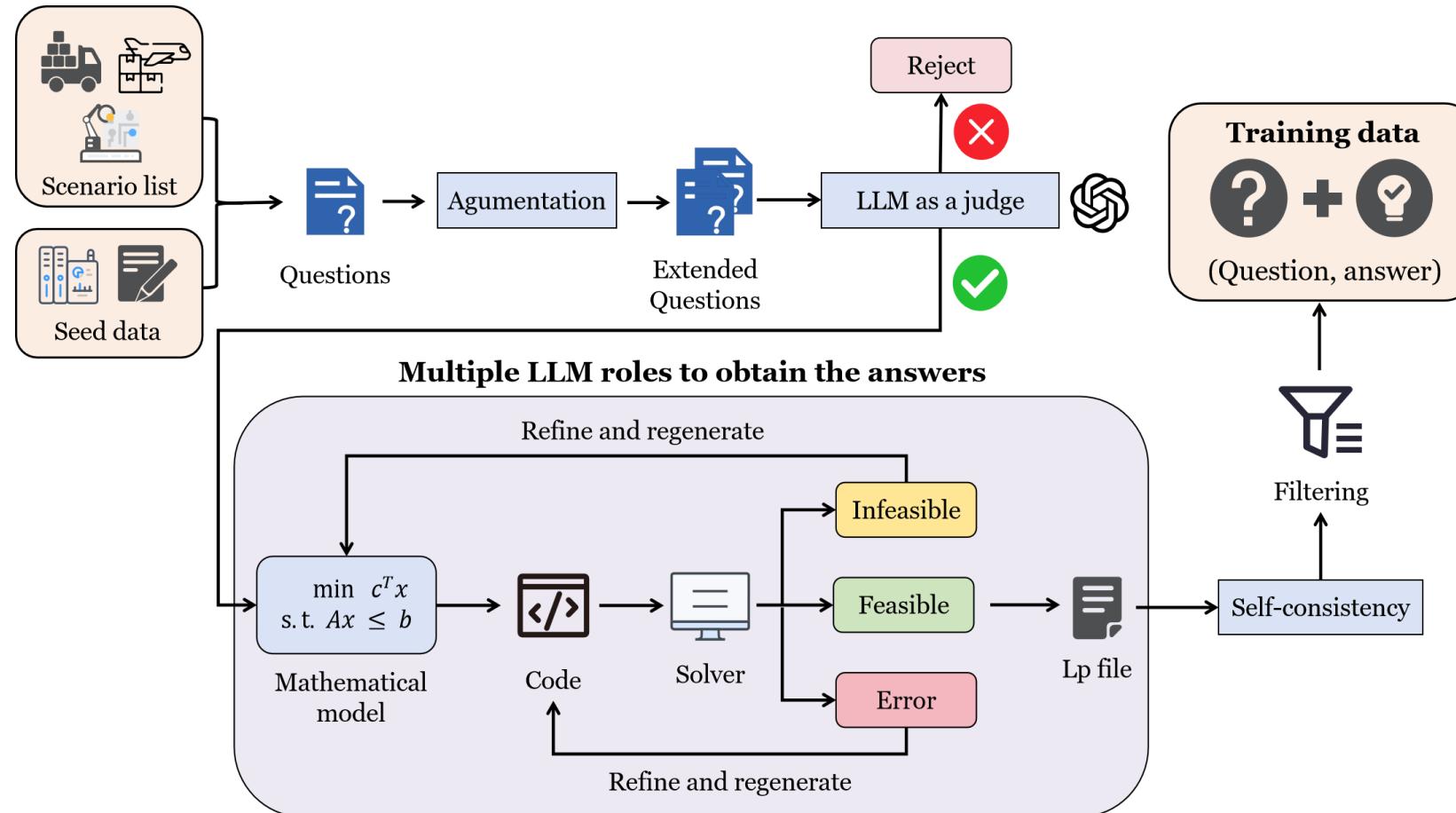
2. Objective Function:

We need to minimize the total transportation trips: $x + y$

3. Constraint Conditions:

- The total quantity of tire transportation must reach at least 200 pieces:
$$10x + 6y \geq 200$$
- Total transportation cost cannot exceed \$22000:
$$1000x + 700y \leq 22000$$

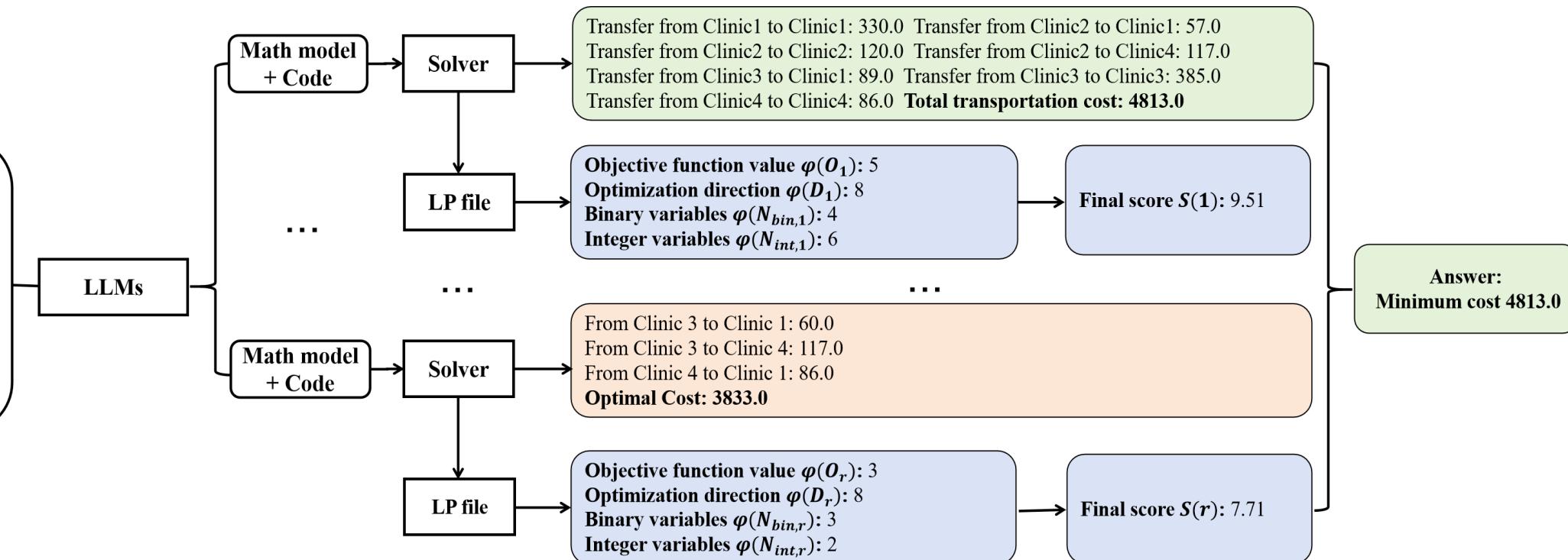
■ Data Synthesis: Overall Framework



- "LLM as a judge" validates the generated problems.
- An iterative reflection and refinement process is employed to address execution issues.
- Multiple LLM roles (10 roles) per problem for self-consistency.

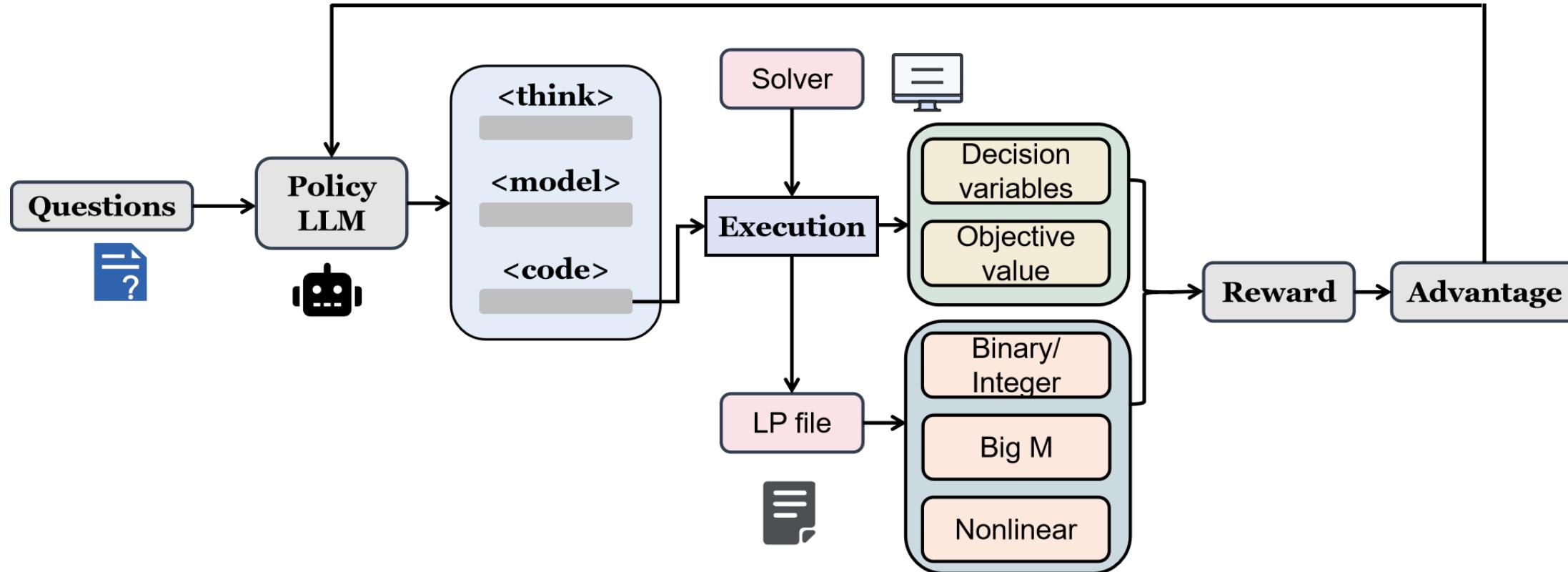
Data Synthesis: Instance-Enhanced Self-Consistency

Question: Imagine you're coordinating the distribution of medical supplies to four different clinics to prepare for an upcoming health drive. Each clinic starts with a certain stock of supplies, but each has a specific requirement to ensure they are adequately prepared. (...parameter information)
What is the minimum cost required to ensure all clinics have the necessary supplies?



- **Instance-Enhanced Self-Consistency (I-ESC):** Incorporates structural metadata from generated LP files (e.g., objective value, direction, binary/integer variable counts) to enforce consensus.
- **Complexity Expansion:** Systematically enhances the dataset's **coverage of complex and challenging problems**.

Rollout



Three distinct surrogate function designs:

1. **Full KL:** the standard approach applying full KL-divergence regularization against the reference policy: PPO, Reinforce++;
2. **Without KL:** an approach omitting KL-divergence regularization, which is popular in RLVR training for mathematical problems: DAPO;
3. **Partial KL:** our novel design that applies the KL penalty selectively to the mathematical formulation and code segments.

Partial KL employs selective KL regularization, serving a dual purpose:

1. **Exploration:** KL regularization is omitted for early reasoning steps (z^1, \dots, z^{m-2}), promoting exploration and the identification of diverse problem structures.
2. **Stability:** For critical modeling z^{m-1} and code generation z^m segments, KL regularization ensures well-structured output and prevents policy collapse, facilitating stable, reward-driven improvement.

Surrogate Function Design: Partial KL

Reasoning paradigm: the system prompt guides the reasoning response generation into m distinct segments:

- (z^1, \dots, z^{m-2}) : Initial reasoning and problem analysis segments.
- z^{m-1} : modeling formulation segment.
- z^m : executable codes segment.

The final output y is generated by executing the code segment z^m using the deterministic execution function g , resulting in $y = g(x, z)$.

Partial KL surrogate function design: selectively applies the KL penalty to the mathematical formulation z^{m-1} and solver code z^m segments. The value for the KL term, $KL(j, t)$, within these segments is computed using the unbiased estimator described in [17]:

$$KL(j, t) = \begin{cases} \frac{\pi_\theta(z_t | x, z^{<j})}{\pi_{\theta_{\text{old}}}(z_t | x, z^{<j})} - \log \frac{\pi_\theta(z_t | x, z^{<j})}{\pi_{\theta_{\text{old}}}(z_t | x, z^{<j})} - 1 & j \in \{m-1, m\}, \\ 0 & \text{otherwise.} \end{cases}$$

the two-stage reward function $r(x, z, y^*)$ is defined as follows:

$$r(x, z, y^*) = \begin{cases} R_{\text{format}}(z) + R_{\text{exec}}(z) + R_{\text{accur}}(x, z, y^*) & \text{Stage-1,} \\ R_{\text{format}}(z) + R_{\text{exec}}(z) + R_{\text{accur}}(x, z, y^*) + R_{\text{bonus}}(x, z, y^*) & \text{Stage-2.} \end{cases}$$

1. **Stage-1** focuses on building fundamental skills for standard optimization problem formulation and solving.
2. **Stage-2** aims to address more complex problems by using a bonus reward R_{bonus} based on the generated mathematical model to encourage advanced modeling techniques (e.g., Big-M, nonlinear).

Table: Performance comparison of models on benchmarks.

Types	Models	Acc (pass@1)					Macro AVG
		NL4OPT	MAMO Easy	MAMO Complex	IndustryOR	OptMATH	
Baseline	GPT-4	89.0%*	87.3%*	49.3%*	33.0%*	16.6%*	55.0%*
	DeepSeek-V3.1	84.8%	88.9%	63.5%	44.0%	43.9%	65.0%
LRMs	DeepSeek-R1	82.4%	87.2%	67.9%	45.0%	40.4%	64.6%
	OpenAI-o3	69.4%	77.1%	51.2%	44.0%	44.0%	57.1%
Agent-based	OptiMUS	78.8%*	77.2%*	43.6%*	31.0%*	20.2%*	49.4%*
Offline-learning	ORLM-LLaMA-3-8B	85.7%*	82.3%*	37.4%*	24.0%*	2.6%*	46.4%
	LLMOpt-Qwen2.5-14B	80.3%*	89.5%*	44.1%*	29.0%*	12.5%*	51.1%
	OptMATH-Qwen2.5-7B	94.7%*	86.5%*	51.2%*	20.0%*	24.4%*	55.4%
	OptMATH-Qwen2.5-32B	95.9%*	89.9%*	54.1%*	31.0%*	34.7%*	61.1%
Online-RL	SIRL-Qwen2.5-7B	96.3%	91.7%	51.7%	33.0%	30.5%	60.6%
	SIRL-Qwen2.5-32B	98.0%	94.6%	61.1%	42.0%	45.8%	68.3%

Values marked with * are from original or reproduced papers with the criterion: relative error $< 10^{-6}$.

1. Our SIRL-7B Our SIRL-7B model consistently and significantly outperforms all other 7B and 14B offline learning models.
2. Furthermore, our 32B model surpasses the Macro Average of much larger models, including the 671B Deepseek-V3.1 and leading reasoning models like DeepSeek-R1 and OpenAI-o3.

Surrogate Function Design: Ablation Study

Table: Ablation study on different surrogate function designs.

Type	MAMO Complex		IndustryOR		OptMATH	
	Acc(pass@1)	ER	Acc(pass@1)	ER	Acc(pass@1)	ER
Partial KL	51.7%	98.1%	33.0%	96.0%	30.5%	92.2%
Full KL	48.3% (↓3.4%)	98.5% (↑0.4%)	30% (↓3.0%)	95.0% (↓1.0%)	28.3% (↓2.2%)	93.4% (↑1.2%)
Without KL	47.3% (↓4.4%)	95.6% (↓2.5%)	29% (↓4.0%)	87.0% (↓9.0%)	29.5% (↓1.0%)	80.1% (↓12.1%)

This table reports both **pass@1** accuracy and **execution rate (ER)**, which measures the percentage of generated solutions that successfully compile and return a valid result.

Full KL: the standard approach applying full KL-divergence regularization against the reference policy;

Without KL: an approach omitting KL-divergence regularization, which is popular in RLVR training for mathematical problems such as AIME;

Partial KL: our novel design that applies the KL penalty selectively to the mathematical formulation and code segments.

Case Study: Execution Error Under Without KL Strategy

1. Omitting the KL divergence in the code component leads to **execution errors**.
2. The response from the Without KL model attempts to enforce that decision variables are greater than zero, but the **implemented code is non-functional** since '`>`' not supported between instances of '`Var`' and '`int`' .

Case Study 1: Question instance from the IndustryOR dataset

A product can be processed on any one of the four devices: A, B, C, or D. The preparation completion costs when each device is enabled, the unit production cost for the product, and the maximum processing capacity of each device are shown in Table 5-7. If 2000 units of the product need to be produced, how can the total cost be minimized? Try to establish a mathematical model.

Table 5-7 Device,Prep Completion Cost (Yuan),Unit Production Cost (Yuan/Unit),Maximum Processing Capacity (Units)
A,1000,20,900 B,920,24,1000 C,800,16,1200 D,700,28,1600

Case Study 1: Generated response under the Without KL strategy

```
<python>
import coptpy as cp
from coptpy import COPT
# Define the model
config = cp.Envr()
env = cp.Envr(config)
model = env.createModel("Product_Optimization")
# Parameters
completion_cost = {"A": 1000, "B": 920, "C": 800, "D": 700}
production_cost = {"A": 20, "B": 24, "C": 16, "D": 28}
max_processing_capacity = {"A": 900, "B": 1000, "C": 1200, "D": 1600}
# Decision variables
x = {}
for i in completion_cost.keys():
    x[i] = model.addVar(name=i, lb=0, ub=max_processing_capacity[i], vtype=COPT.CONTINUOUS)
# Objective function
model.setObjective(cp.quicksum(completion_cost[i] * (x[i]>0) + production_cost[i] * x[i] for i in completion_cost.keys()), COPT.MINIMIZE)
# Constraints
model.addConstr(cp.quicksum(x[i] for i in completion_cost.keys()) == 2000, "Total_Production")
# Optimize the model
model.solve()
# Print the solution
if model.status == COPT.OPTIMAL:
    print("Optimal Solution:")
    for i in completion_cost.keys():
        print(f"Device i: {x[i].x}")
        print(f"Total Cost: {model.objVal}")
else:
    print("No optimal solution found.")
</python>
```

■ Two-Stage Reward Mechanism: Ablation Study

Table: Performance results of the ablation study on reward design.

Reward Type	Acc (pass@1)				
	NL4OPT	MAMO Easy	MAMO Complex	IndustryOR	OptMATH
Two-stage rewards	96.3%	91.7%	51.7%	33.0%	30.5%
Stage-1 reward only	96.7% (↑0.4%)	88.8% (↓2.9%)	46.8% (↓4.9%)	27.0% (↓6.0%)	28.9% (↓1.6%)
Stage-2 reward only	92.2% (↓4.1%)	89.6% (↓2.1%)	49.3% (↓2.4%)	28.0% (↓5.0%)	33.1% (↑2.6%)

1. **Stage-1 reward** yielded strong performance on NL4OPT, indicating effective learning of fundamental optimization skills.
2. While **stage-2 reward** optimized OptMATH via advanced strategies, it negatively impacted simpler NL4OPT performance.
3. The **combined two-stage reward** successfully balanced learning objectives, outperforming single-stage rewards across most tasks by resolving inherent trade-offs.

- 1. Contribution/Novelty:** We introduce the first domain-specific reasoning model for optimization modeling, establishing the initial application of RLVR (Reinforcement Learning with Variable Reasoning) for LLMs in this domain.
- 2. Performance:** Our 32B model achieves a higher Macro Average than much larger models, surpassing the 671B Deepseek-V3.1 and leading reasoning models (e.g., DeepSeek-R1, OpenAI-o3).
- 3. Technical Innovation :** We propose a Partial KL-based surrogate function design for LLMs in optimization modeling, significantly boosting both confidence and accuracy across optimization tasks.

Github	https://github.com/Cardinal-Operations/SIRL
Huggingface	https://huggingface.co/chenyitian-shanshu/SIRL
Modelscope	https://modelscope.cn/models/oneday88/SIRL-7B

Q&A

— THANKS —

400-680-5680

www.shanshu.ai

shanshu@shanshu.ai