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What Are Large Reasoning Models? Rinsite
Large Reasoning Models (LRMs) are Al models with extensive parameters and advanced logical reasoning

capabilities.

Beyond Human-Level Performance High-Value Application Scenarios
Mathematical proofs - Code generation - STEM Medical diagnosis - Industrial optimization - Scientific
competitions research - Complex decision systems
Solver-Informed Reinforcement Learning
We introduce the first reasoning model for mathematical modeling: SIRL-Qwen2.5-7B. %
1. Reasoning Paradigm: Reasoning — Modeling — Code generation. Y3k S5

Cardinal Operations

2. Data Synthesis: Utilizes seed data + a precisely designed synthesis framework for model
distillation, enabling access to high-quality reinforcement learning training data.

3. Training Framework: Based on Reinforcement Learning with Verifiable Reward (RLVR). We
propose a novel agent function design bridging DeepSeek-GRPO and ByteDance-DAPO
approaches.
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B Reasoning Paradigm: System Prompt QrunpE

The system prompt guides the LLM through a sequential process: first asking it to analyze the problem,
then to formulate a mathematical model, and finally to output the corresponding solver codes.

System Prompt

SYSTEM: You are a helpful Assistant with expertise in operations research and the COPT solver.
When the User provides an OR question, you will analyze it, build a detailed mathematical model, and
provide the COPT code to solve it.

Your response should follow these steps:

1. <think> Carefully analyze the problem to identify decision variables, objective, and con-
straints.</think>

2. <model> Develop a complete mathematical model, explicitly defining: * Sets * Parameters * Deci-
sion Variables (and their types) * Objective Function * Constraints </model>

3. <python> Provide the corresponding COPT Python code to implement the model. </python>

The output must be in Markdown format, with each step enclosed in the specified tags.

USER: Answer the following mathematical modeling question:

{{Question}}
Please think step by step.
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B Reasoning Paradigm: Generated Response

Figure: 'code’ segment

Figure: 'think' and 'model' segments

<think> To solve this problem, we need to identify the decision variables, the objective func-
tion, and the constraints.

1. **Decision Variables:**

- Let z be the number of plane trips.

- Let y be the number of truck trips.

2. **Qbjective Function:**

We need to minimize the total number of trips, which is x + y.

3. **Constraints: **

- The total number of tires transported must be at least 200: 10z + 6y > 200.
- The total cost must not exceed $22000: 1000z + 700y < 22000.

- The number of plane trips cannot exceed the number of truck trips: z < y.

- Non-negativity constraints: x > 0,y > 0.

Since these are linear constraints, we can use linear programming to solve this problem.
</think>

<model>

#iH# Sets

- There are no sets in this problem as it is a simple linear programming problem.
##H# Parameters

- The number of tires each plane can transport: 10.

- The cost per plane trip: $1000.

- The number of tires each truck can transport: 6.

- The cost per truck trip: $700.

#i## Decision Variables

- z: Number of plane trips.

- y: Number of truck trips.

### Objective Function

Minimize the total number of trips: = + y.

### Constraints

1. 10z + 6y > 200

2. 1000z + 700y < 22000

3.x<y

4.z>0,y>0

</model>
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<python>

import coptpy as cp

from coptpy import COPT

### Create a new model

config = cp.Envr()

env = cp.Envr(config)

m = env.createModel("tire_transport™)

### Decision variables

x = m.addVar(name="x", vtype=COPT.INTEGER) # Number of plane trips
y = m.addVar(name="y", vtype=COPT.INTEGER) # Number of truck trips
### Objective function

m.setObjective(x + y, COPT.MINIMIZE)

### Constraints

m.addConstr(10 * x + 6 * y >= 200, "tire_constraint”

m.addConstr(1000 * x + 700 * y <= 22000, "cost_constraint”)
m.addConstr(x - y <= 0, "trip_constraint")

##+4# Optimize the model

m_solve()

### Print the solution

if m.status == COPT.OPTIMAL.:
print(f" Optimal solution found:")

print(f"Plane trips: x.x")
print(f" Truck trips: y.x")
print(f"Total trips: x.x + y.x")
print(f"Total cost: $m.objVal")

else:
print("No optimal solution found.")

< /python>




B Reasoning Paradigm: Generated Response & LurE

Tire Transportation Linear Programming
Problem

Thinking

To solve this problem, we need to clarify the decision variables, objective
function and constraint conditions:

1. Decision Variables:

¢ Let x be the number of airplane transportation trips

¢ Lety be the number of truck transportation trips

2. Objective Function:

We need to minimize the total transportation trips: x +y

3. Constraint Conditions:
* The total quantity of tire transportation must reach at least 200 pieces:
10x + 6y = 200

« Total transportation cost cannot exceed $22000: $22000: 1000x + 700y <
22000
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B Data Synthesis: Overall Framework
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® "LLM as a judge" validates the generated problems.
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® An iterative reflection and refinement process is employed to address execution issues.
® Multiple LLM roles (10 roles) per problem for self-consistency.
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B Data Synthesis: Instance-Enhanced Self-Consistency

fTransfer from Clinicl to Clinicl: 330.0 Transfer from Clinic2 to Clinicl: 57.0
Math model I Transfer from Clinic2 to Clinic2: 120.0 Transfer from Clinic2 to Clinic4: 117.0

+ Code Solver “| Transfer from Clinic3 to Clinicl: 89.0 Transfer from Clinic3 to Clinic3: 385.0
KTransfer from Clinic4 to Clinic4: 86.0 Total transportation cost: 4813.0

Question: Imagine you're coordinatila v (Objective function value @(0,): 5
the distribution of medical supplies to Optimization direction ¢(D,): 8 . .
four different clinics to prepare for an LP file | Binary variables @(Np;, 1): 4 Final score $(1): 9.51

-/ N\ J

upcoming health drive. Each clinic e Integer variables @(N;,; 1): 6
starts with a certain stock of supplies, N )
but each has a specific requirement to — LLMs — s Mini Answert. 4313.0
inimum cos d
e e et Prepered From Clinic 3 to Clinic 1: 60.0
What is the minimum cost required to Math model Sol From Chmc 3o Cl%n%c 4 117.0
ensure all clinics have the necessary + Code over bimgmn Cliis & it Gt 12 6.0
\ . / Optimal Cost: 3833.0
supplies?
v Objective function value ¢(0,.): 3

Optimization direction @(D,.): 8
Binary variables @ (Np;;,,.): 3
Integer variables @(N,,,): 2

LP file —>| Final score S(r): 7.71 -

® Instance-Enhanced Self-Consistency (I-ESC): Incorporates structural metadata from
generated LP files (e.g., objective value, direction, binary/integer variable counts) to enforce
consensus.

® Complexity Expansion: Systematically enhances the dataset's coverage of complex and
challenging problems.
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®.SIRL: Training framework overall
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B Surrogate Function Design: Partial KL

Three distinct surrogate function designs:

1. Full KL: the standard approach applying full KL-divergence regularization
against the reference policy: PPO, Reinforce ++;

2. Without KL: an approach omitting KL-divergence regularization, which is
popular in RLVR training for mathematical problems: DAPO;

3. Partial KL: our novel design that applies the KL penalty selectively
to the mathematical formulation and code segments.

Partial KL employs selective KL regularization, serving a dual purpose:

1. Exploration: KL reqgularization is omitted for early reasoning steps (z', .. .,
z'2), promoting exploration and the identification of diverse problem

structures.

2. Stability: For critical modeling z”~' and code generation z” segments,
KL regularization ensures well-structured output and prevents policy
collapse, facilitating stable, reward-driven improvement.
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B, Surrogate Function Design: Partial KL @*ﬁﬁ”ﬁ

Reasoning paradigm: the system prompt guides the reasoning response generation into
m distinct segments:

e (Z',...,z™?): Initial reasoning and problem analysis segments.

e z™ ! modeling formulation segment.

m

e z": executable codes segment.

The final output y is generated by executing the code segment z™ using the
deterministic execution function g, resulting in y = g(x, z).

Partial KL surrogate function design: selectively applies the KL penalty to the
mathematical formulation z"~! and solver code z™ segments. The value for the KL
term, KL(j, t), within these segments is computed using the unbiased estimator
described in [17]:

g (zelx,2<)
7o,y (2e1x,2<))

g (z¢]x,z2~)

KL(J-; t) = { Tbqg (z¢|x,z<)) log
0 otherwise.

© 2025 Cardinal Operations PowerPoint Business Theme. All Rights Reserved. 10



5 Reward Design: Two-Stage, Rule-Based Mechanism QrunpE

the two-stage reward function r(x, z, y™) is defined as follows:

r(X y 4 *) = Rformat(z) + Rexec(Z) + Raccur(xa z, y*) Stage_l’
&Y B Rformat(z) + Rexec(z) + Raccur(xa Z, y*) + Rbo"US(Xa Z, y*) Stage_z'

1. Stage-1 focuses on building fundamental skills for standard
optimization problem formulation and solving.

2. Stage-2 aims to address more complex problems by using a bonus
reward Rbonus based on the generated mathematical model to
encourage advanced modeling techniques (e.g., Big-M, nonlinear).

© 2025 Cardinal Operations PowerPoint Business Theme. All Rights Reserved.
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% Main Results 172
Table: Performance comparison of models on benchmarks.

T A Acc (pass@1) . N

Jpes e NL4OPT MAMO MAMO IndustryOR OptMATH = °
Easy Complex

. GPT-4 89.0%* 87.3%* 49.3%*  33.0%* 16.6%*  55.0%*
DeepSeek-V3.1 84.8%  88.9% 63.5%  44.0% 43.9% 65.0%
B DeepSeek-R1 824% 872% 619%  45.0% 40.4% 64.6%
OpenAl-03 69.4% 71.1% 512%  44.0% 44.0% 57.1%
Agent-based  OptiMUS 78.8%*  T1.2%* 43.6%* 31.0%*  202%*  49.4%*

ORLM-LLaMA-3-8B 8o:l% 623 4w’ 240% 2.6%* 46.4%

Offline-learnine  LEMOpt-Qwen2.5-14B - 80.3%*  89.5%* 44.1%*  29.0%* 12.5%° 31 1%
& OptMATH-Qwen2.5-7B  94.7%*  86.5%* 51.2%*  20.0%* 24.49%* 55.4%
OptMATH-Qwen2.5-32B 95.9%* 89.9%* 54.1%* 31.0%* 34.7%* 61.1%

Online-RL SIRL-Qwen2.5-7B 96.3% 91.7% 51.7% 33.0% 30.5% 60.6%
SIRL-Qwen2.5-32B 980% 94.6% 61.1% 42.0% 45.8% 68.3 %

Values marked with * are from original or reproduced papers with the criterion: relative error < 107° .

1. Our SIRL-7B Our SIRL-7B model consistently and significantly outperforms all other 7B and 14B offline
learning models.

2. Furthermore, our 32B model surpasses the Macro Average of much larger models, including the 671B
Deepseek-V3.1 and leading reasoning models like DeepSeek-R1 and OpenAl-o03.
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5 Surrogate Function Design: Ablation Study & LurE

Table: Ablation study on different surrogate function designs.

- S’ S’

MAMO Complex IndustryOR OptMATH
Type Acc(pass@1)  ER Acc(pass@1) ER Acc(pass@1)  ER
Partial KL  51.7% 98.1% 33.0% 96.0% 30.5% 92.2%
Full KL 48.3%(13.4%) 98.5%(10.4%) 30%(13.0%)  95.0%(}1.0%) 28.3%(12.2%) 93.4%(11.2%)

Without KL 47.3%({4.4%) 95.6%(12.5%) 29%(|{4.0%)  87.0%(19.0%) 29.5%(]1.0%) 80.1%(]12.1%)

This table reports both pass@1 accuracy and execution rate (ER), which measures the
percentage of generated solutions that successfully compile and return a valid result.

Full KL: the standard approach applying full KL-divergence regularization against the reference
policy;

Without KL: an approach omitting KL-divergence regularization, which is popular in RLVR
training for mathematical problems such as AIME;

Partial KL: our novel design that applies the KL penalty selectively to the mathematical
formulation and code segments.

© 2025 Cardinal Operations PowerPoint Business Theme. All Rights Reserved. 13



5, Case Study: Execution Error Under Without KL Strategy QrunpE

4 M T A product can be processed on any one of the four devices: A, B, C, or D. The preparation completion
1 . O m Ittl n g t h e K L d Ive rg ence In th € costs when each device is enabled, the unit production cost for the product, and the maximum process-
ing capacity of each device are shown in Table 5-7. If 2000 units of the product need to be produced,

coO d e com p one nt | ea d S tO how can the total cost be minimized? Try to establish a mathematical model.
. Table 5-7 Device,Prep Completion Cost (Yuan),Unit Production Cost (Yuan/Unit), Maximum Process-
execution errors. ing Capacity (Units) A,1000,20,900 B,920,24,1000 C,800,16,1200 D,700,28,1600

\ J

Case Study 1: Generated response under the Without KL strategy

<python>
import coptpy as cp

2. The response from the Without KL ¥ Defne e model

model attempts to enforce that o cp Envr(contie)

o e . model = env.createModel("Product_Optimization")
decision variables are greater than # Pararucters
. completion_cost = {"A": 1000, "B": 920, "C": 800, "D": 700}
Zero, but th eim plemented COde production_cost = {"A": 20, "B": 24, "C": 16, "D": 28}

max_processing_capacity = {"A": 900, "B": 1000, "C": 1200, "D": 1600}

is non-functional since’ >’ not =

supported between instances of i s i)

, , , , x[i] = model.addVar(name=i, Ib=0, ub=max_processing_capacity[i], vtype=COPT.CONTINUOUS)
1 # Objective function
Va r a n d I nt * model.setObjective(cp.quicksum(completion_cost[i] * (x[i]>0) + production_cost[i] * x[i] fori in com-
pletion_cost.keys()), COPT.MINIMIZE)
# Constraints
model.addConstr(cp.quicksum(x[i] for i in completion_cost.keys()) == 2000, "Total_Production")
# Optimize the model
model.solve()
# Print the solution
if model.status == COPT.OPTIMAL:
print("Optimal Solution:")
for i in completion_cost.keys():
print(f"Device i: {x[i].x}")
print(f"Total Cost: model.objVal")
else:
print("No optimal solution found.")
</python>
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5 Two-Stage Reward Mechanism: Ablation Study & LurE

Table: Performance results of the ablation study on reward design.

- . Acc (pass@1)
it L NL4OPT  MAMO MAMO IndustryOR  OptMATH
Easy Complex
Two-stage rewards  96.3% 91.7% 51.7% 33.0% 30.5%

Stage-1 reward only 96.7% (10.4%) 88.8% (12.9%) 46.8% (14.9%) 27.0% (16.0%) 28.9% (]1.6%)
Stage-2 reward only 92.2% (14.1%) 89.6% ({2.1%) 49.3% (12.4%) 28.0% (15.0%) 33.1% (12.6%)

1. Stage-1 reward yielded strong performance on NL4OPT, indicating effective
learning of fundamental optimization skills.

2. While stage-2 reward optimized OptMATH via advanced strategies, it negatively
impacted simpler NLAOPT performance.

3. The combined two-stage reward successfully balanced learning objectives,
outperforming single-stage rewards across most tasks by resolving inherent
trade-offs.

© 2025 Cardinal Operations PowerPoint Business Theme. All Rights Reserved. 15



% SIRL: Summary

1. Contribution/Novelty: We introduce the first domain-specific reasoning model for
optimization modeling, establishing the initial application of RLVR (Reinforcement
Learning with Variable Reasoning) for LLMs in this domain.

2. Performance: Our 32B model achieves a higher Macro Average than much larger

models, surpassing the 671B Deepseek-V3.1 and leading reasoning models (e.g.,
DeepSeek-R1, OpenAl-03).

3. Technical Innovation : We propose a Partial KL-based surrogate function design for
LLMs in optimization modeling, significantly boosting both confidence and accuracy
across optimization tasks.

Github https://github.com/Cardinal-Operations/SIRL
Huggingface https://huggingface.co/chenyitian-shanshu/SIRL
Modelscope https://modelscope.cn/models/oneday88/SIRL-7B
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