Automatically Robustifying Verified Hybrid Systems in KeYmaera X

Nathan Fulton Carnegie Mellon University September 13, 2016

Dagstuhl, Germany

Robustness

A system is **robust** if it operates correctly despite:

- Disturbances in actuation
- Uncertainty in sensing
- Deviation from typical dynamics
- Adversarial agents
- . .

Robustness

A system is **robust** if it operates correctly despite:

- Disturbances in actuation
- Uncertainty in sensing
- Deviation from typical dynamics
- Adversarial agents
- . . .

Expressible by systematically modifying a hybrid system

Robustness

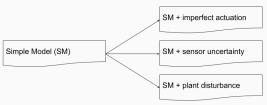
A system is **robust** if it operates correctly despite:

- Disturbances in actuation
- Uncertainty in sensing
- Deviation from typical dynamics
- Adversarial agents
- . . .

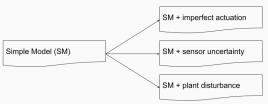
Expressible by systematically modifying a hybrid system

Can we automatically robustify hybrid systems?

Typical verification approach: begin with a **simplified model**, then incrementally add **complexity**.



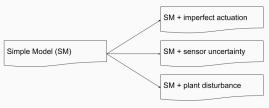
Typical verification approach: begin with a **simplified model**, then incrementally add **complexity**.



Advantages:

- Initial verification task exposes essential aspects of the safety argument.
- Successive verification tasks are tractable.

Typical verification approach: begin with a **simplified model**, then incrementally add **complexity**.



Advantages:

- Initial verification task exposes essential aspects of the safety argument.
- Successive verification tasks are tractable.

Disadvantages:

- Re-verification is expensive.
- Verification efforts are non-compositional.

Typical verification approach: begin with a **simplified model**, then incrementally add **complexity**.

Advantages:

- Initial verification task exposes essential aspects of the safety argument.
- Successive verification tasks are tractable.

Disadvantages:

- Re-verification is expensive.
- Verification efforts are non-compositional.

Goal: Automatic Incremental Robustification

Specifying Hybrid Systems

Definition (Hybrid Programs)

```
Assign x:=\theta
Sequence \alpha; \beta
Test ?\varphi
Iteration \alpha^*
Choice \alpha \cup \beta
```

ODEs $\{x'_1 = \theta_1, \dots, x'_n = \theta_n \& H\}$

Specifying Hybrid Systems

Definition (Hybrid Programs)

```
Assign x := \theta

Sequence \alpha; \beta

Test ?\varphi

Iteration \alpha^*

Choice \alpha \cup \beta

ODEs \{x_1' = \theta_1, \dots, x_n' = \theta_n \& H\}
```

Differential Dynamic Logic (d \mathcal{L}) formulas describe reachability properties of hybrid programs using modalities: $[\alpha]\varphi$ and $\langle\alpha\rangle\varphi$.

Specifying Hybrid Systems


```
[{
 \{?(x \ge \frac{(AT + v)^2}{2B} + obs); a := A \cup a := -B \}; 
 c := 0; \{x' = v, v' = a, c' = 1 \land v \ge 0 \land c \le T \} 
 \}^*]x \le obs
```

[{
$$\{?(x \ge \frac{(AT + v)^2}{2B} + obs); a := A \cup a := -B \};$$

$$c := 0; \{x' = v, v' = a, c' = 1 \land v \ge 0 \land c \le T \}$$

$$\}^*]x \le obs$$

Parametric controller design

```
[{
 \{?(x \ge \frac{(AT + v)^2}{2B} + obs); a := A \cup a := -B \}; 
 c := 0; \{x' = v, v' = a, c' = 1 \land v \ge 0 \land c \le T \} 
 \}^*]x \le obs
```

- Parametric controller design
- Non-determinism

$$A > 0 \land B > 0 \land T > 0 \land v \ge 0 \land \frac{v^{2}}{2B} + obs \le x \le obs$$

$$\to [\{\{(x \ge \frac{(AT + v)^{2}}{2B} + obs); a := A \cup a := -B \};$$

$$c := 0; \{x' = v, v' = a, c' = 1 \land v \ge 0 \land c \le T \}$$

$$\}^{*}]x \le obs$$

- Parametric controller design
- Non-determinism
- Symbolic constraints on parameters

Verifying a Simple Hybrid System in KeYmaera X

KeYmaera X is a **trustworthy** and **scriptable** hybrid systems theorem prover.

- Trustworthy: All prover automation passes through a small soundness-critical core (< 2 KLOC).
- Scriptable: KeYmaera X provides a DSL for writing proof search programs.

Example: Adding Actuation Error

$$A > 0 \land B > 0 \land T > 0 \land v \ge 0 \land$$

 $\frac{v^2}{2B} + obs \le x \le obs \rightarrow$
 $\{\{(x \ge \frac{((A)T + v)^2}{2(B)} + obs); a := A \cup a := -B\};$
 $c := 0; \{x' = v, v' = a, c' = 1 \land v \ge 0 \land c \le T\}$
 $\{x' \le obs\}$

Example: Adding Actuation Error

$$A > 0 \land B > 0 \land T > 0 \land v \ge 0 \land 0 < \epsilon < A \land \epsilon < B \land \frac{v^2}{2B \pm \epsilon} + obs \le x \le obs \rightarrow$$
[{
$$\{?(x \ge \frac{((A \pm \epsilon)T + v)^2}{2(B \pm \epsilon)} + obs\}; a := A \pm \epsilon \cup a := -B \pm \epsilon\};$$

$$c := 0; \{x' = v, v' = a, c' = 1 \land v \ge 0 \land c \le T\}$$

$$\}^*]x \le obs$$

Example: Adding Actuation Error

$$A > 0 \land B > 0 \land T > 0 \land v \ge 0 \land 0 < \epsilon < A \land \epsilon < B \land \frac{v^2}{2B-\epsilon} + obs \le x \le obs \rightarrow \{\{(x \ge \frac{((A+\epsilon)T+v)^2}{2(B-\epsilon)} + obs); a := A+\epsilon \cup a := -B-\epsilon\}; c := 0; \{x' = v, v' = a, c' = 1 \land v \ge 0 \land c \le T\} \}^*]x \le obs$$

Co-Transformation of Models and Tactics

Simple Model

```
ImplyR(1) & loop(p(x,v,a,A,B),
1) <(
    QE, QE,
    splitCases(1) <(
        chase(1) & ODE & QE
        chase(1) & ODE & QE</pre>
```

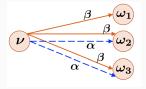
Simple Model + Uncertainty

```
\begin{split} & \mathsf{ImplyR}(1) \ \& \\ & \mathsf{loop}(\mathsf{p}(\mathsf{x},\mathsf{v},\mathsf{a},\!\mathsf{A}\!+\!\epsilon,\!\mathsf{B}\!-\!\epsilon),\ 1) < (\\ & \mathsf{QE},\ \mathsf{QE},\\ & \mathsf{splitCases}(1) < (\\ & \mathsf{chase}(1) \ \& \ \mathsf{ODE} \ \& \ \mathsf{QE}\\ & \mathsf{chase}(1) \ \& \ \mathsf{ODE} \ \& \ \mathsf{QE}\\ & \mathsf{))} \end{split}
```

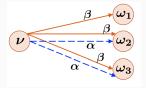
Incremental Robustification via Model/Proof Co-Transformation

- √ Tractable initial verification
- √ Verification of robustified models re-use ideas from initial safety proof
 - ? Compositional robustification
- √ Re-verification is expensive (manual effort)
- × Re-verification is expensive (computationally)

System α refines system β ($\alpha \leq \beta$) if every state reachable by α is also reachable by β .

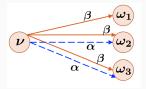


System α refines system β ($\alpha \leq \beta$) if every state reachable by α is also reachable by β .



 Many robustifications are refinements (after changing environment and controller).

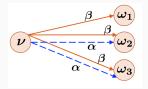
System α refines system β ($\alpha \leq \beta$) if every state reachable by α is also reachable by β .



- Many robustifications are refinements (after changing environment and controller).
- Refinement makes *direct* use the initial safety property:

$$\frac{[\beta]\varphi \qquad \alpha \le \beta}{[\alpha]\varphi}$$

System α refines system β ($\alpha \leq \beta$) if every state reachable by α is also reachable by β .



- Many robustifications are refinements (after changing environment and controller).
- Refinement makes *direct* use the initial safety property:

$$\frac{[\beta]\varphi \qquad \alpha \le \beta}{[\alpha]\varphi}$$

• < has a well-understood algebraic structure.

Conclusions and Further Thoughts

Automatic incremental robustification automates common changes to CPS models

Conclusions and Further Thoughts

Automatic incremental robustification automates common changes to CPS models

Further Thoughts:

- It would be nice to have automatic robustification procedures for high-fidelity models of common sensors and actuators.
- Notions of robustness are describable in differential game logic (dGL); automation story is unclear.

Conclusions and Further Thoughts

Automatic incremental robustification automates common changes to CPS models

Further Thoughts:

- It would be nice to have automatic robustification procedures for high-fidelity models of common sensors and actuators.
- Notions of robustness are describable in differential game logic (dGL); automation story is unclear.

Thanks: KeYmaera X developers (Stefan Mistch, Andrè Platzer, Brandon Bohrer, Jan-David Quesel)

Advertisement: KeYmaera X Tutorial at FM this year!