

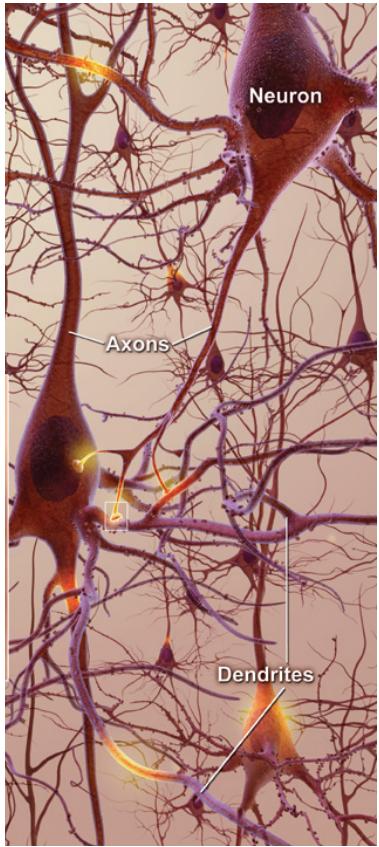
Neurodata MRI to Graphs (NDMG)

A low resource multimodal pipeline to democratize
connectome estimation and analysis

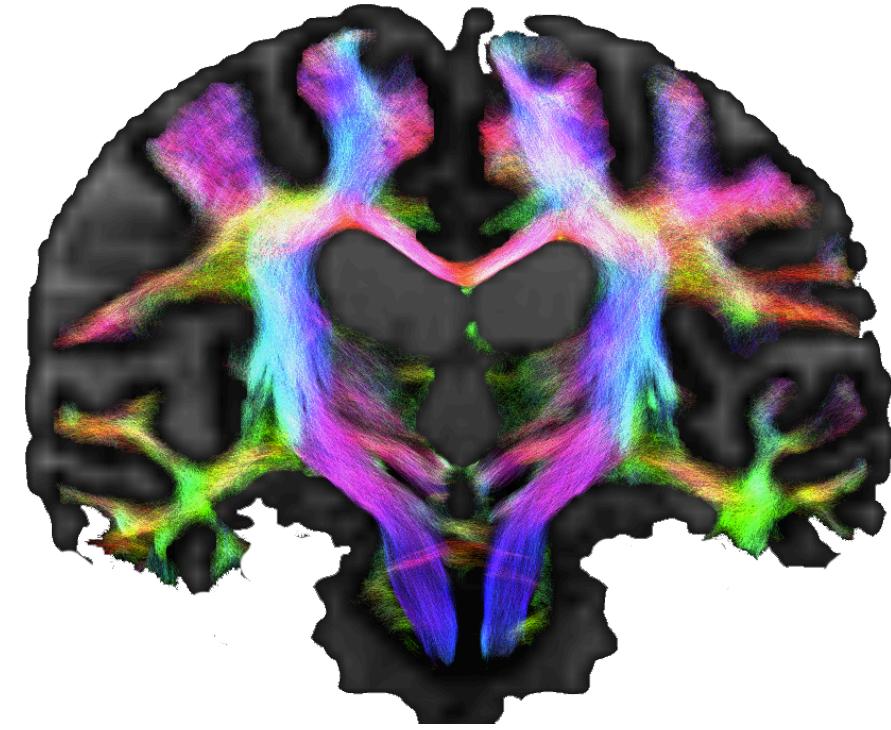
Derek Pisner, Alex Loftus, and Ross Lawrence
08/19/2019

A brief overview of diffusion MRI (dMRI)

White-matter imaging as a study of microstructural *connectivity*



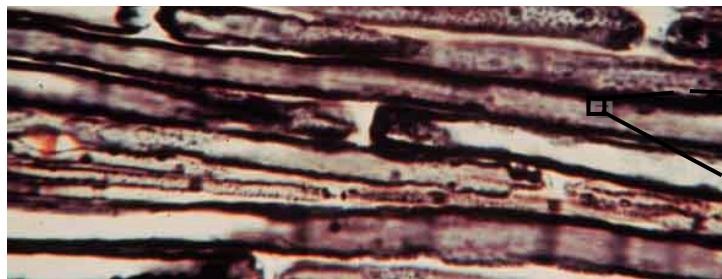
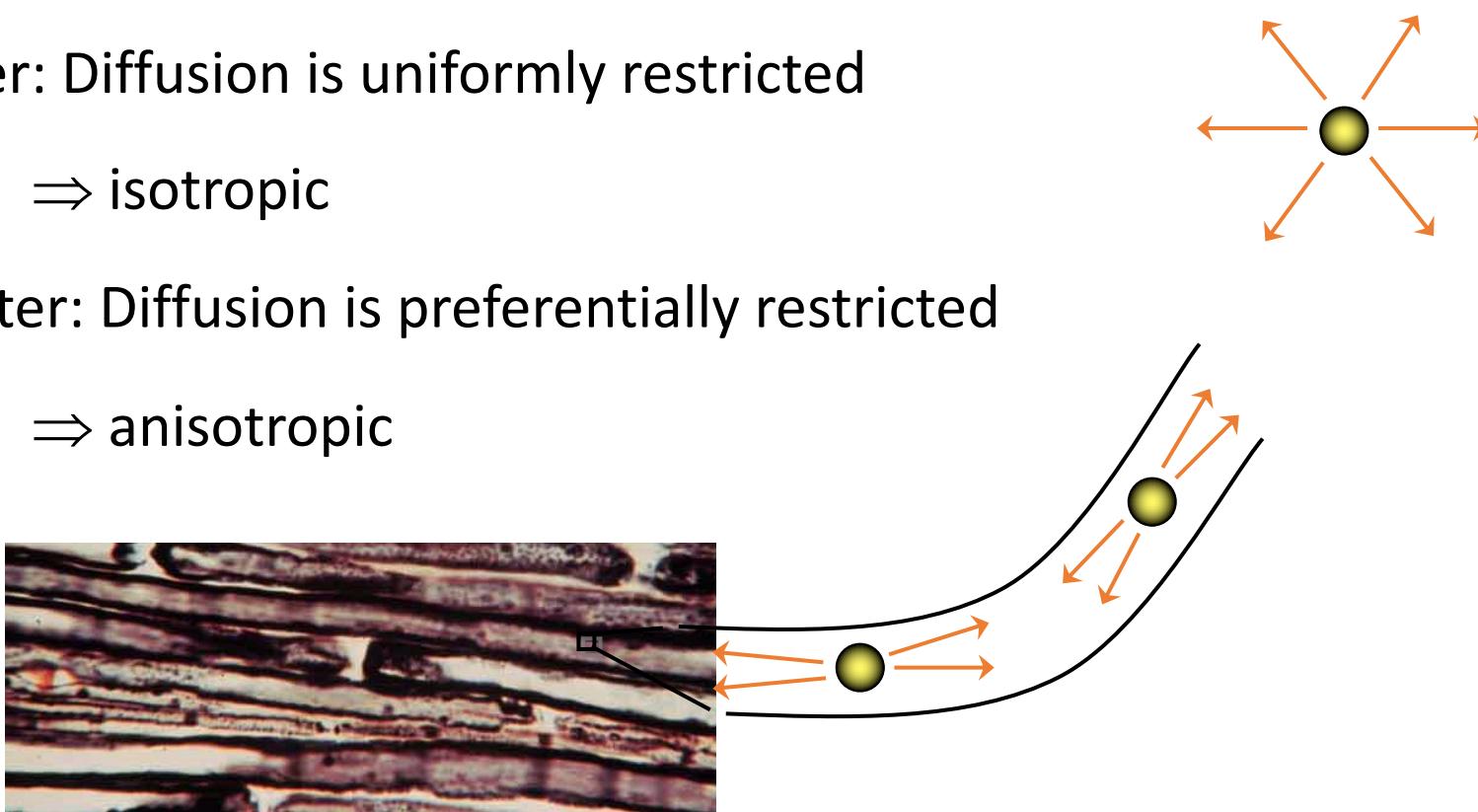
- Axons measure $\sim \mu\text{m}$ in width
- Group together in bundles that traverse the white matter
- Can't image individual axons but we can image *bundles* (i.e. and more broadly *fascicles*) with dMRI
- Useful for studying neurodegenerative diseases, stroke, aging, development...



\approx

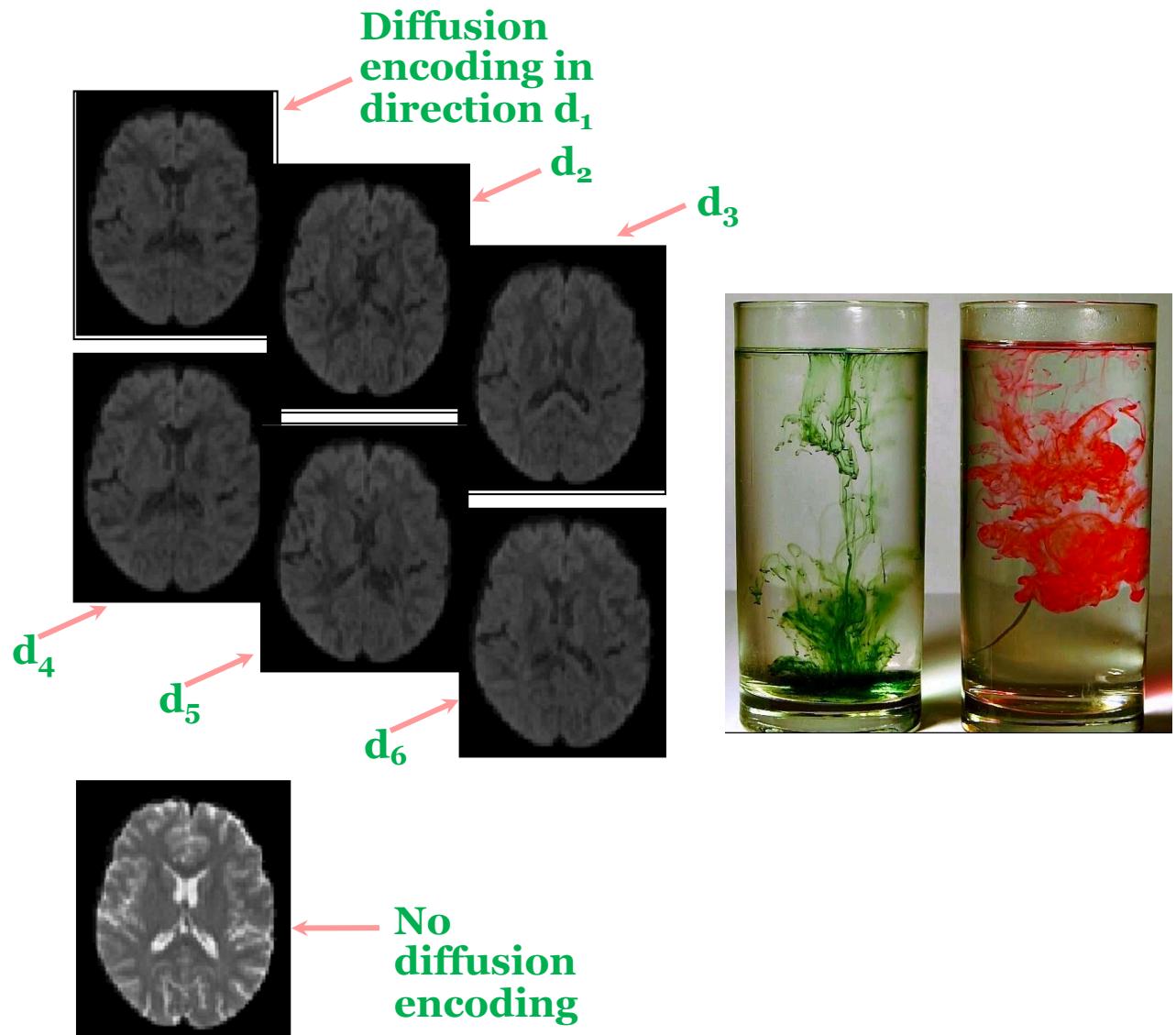
Diffusion in brain tissue

- Differentiate tissues based on the diffusion (random motion) of water molecules within them
- Gray matter: Diffusion is uniformly restricted
 ⇒ isotropic
- White matter: Diffusion is preferentially restricted
 ⇒ anisotropic



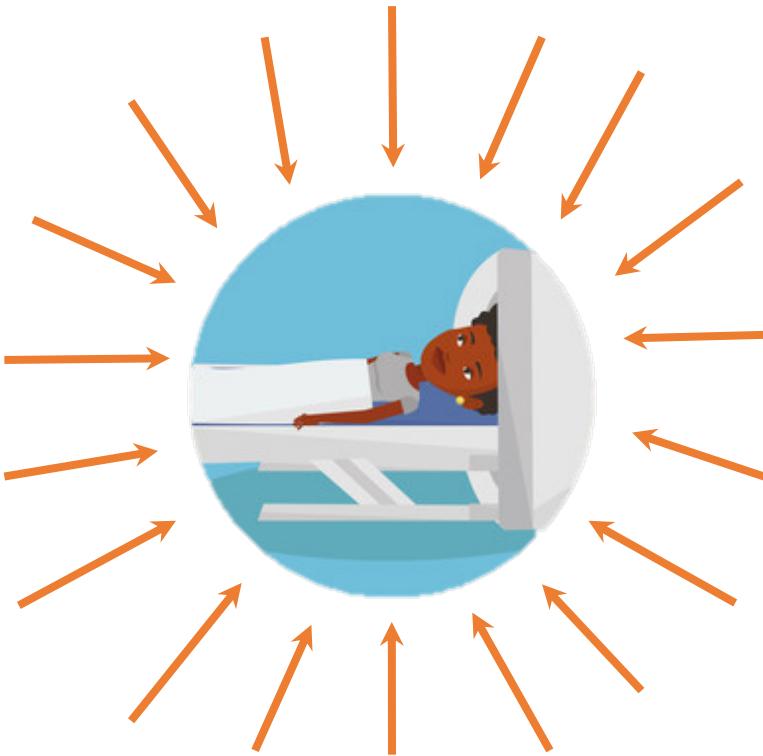
Diffusion MRI

- Magnetic resonance imaging can provide “diffusion encoding”
- Magnetic field strength is varied by gradients in different directions
- Image intensity is attenuated depending on *water diffusion* in each direction
- Compare with reference image(s) to infer diffusion relative to non-diffusion signal



Diffusion MRI =
Gradient Magnitudes + Directions

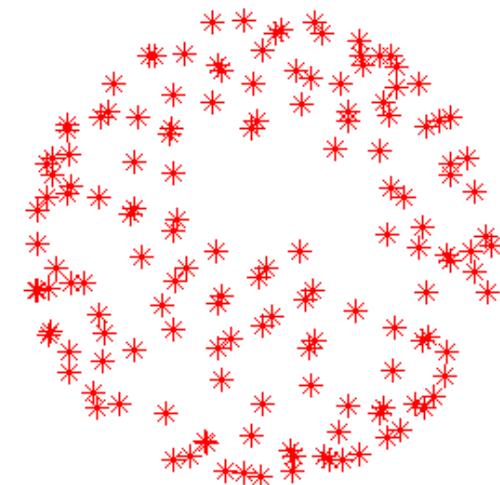
Gradient directions



B-vectors are the x, y, z coordinates whose polarity is set by the scanner gradients and are described with respect to the person in the scanner

Number of gradient directions matters

- In principle, \uparrow directions = \uparrow reliable estimation of diffusion.
 - Caveat: increased imaging time = \uparrow cumulative noise (Jones, 2004)
- DTI:
 - >6 , but usually 10's of directions
- DSI:
 - Usually few 100's of directions

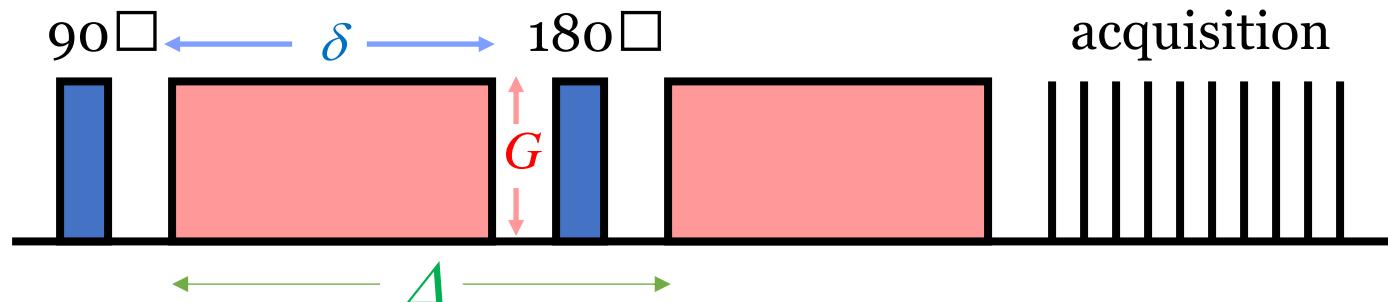


Gradient magnitude

- **B-values** depend on acquisition parameters:

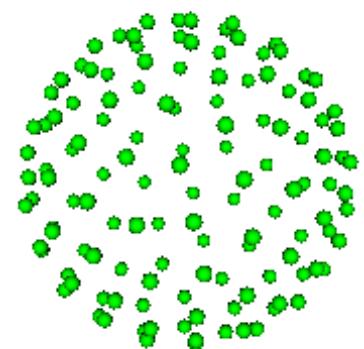
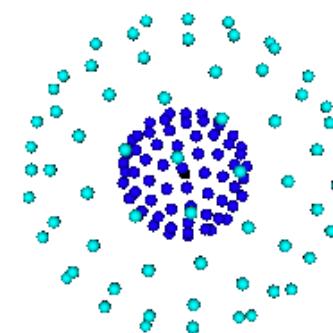
$$b = \gamma^2 \mathbf{G}^2 \mathbf{\delta}^2 (\Delta - \delta/3)$$

- γ gyromagnetic ratio
- \mathbf{G} strength of diffusion-encoding gradient
- $\mathbf{\delta}$ duration of diffusion-encoding pulse
- Δ interval of diffusion-encoding pulses



Strength of gradients matters

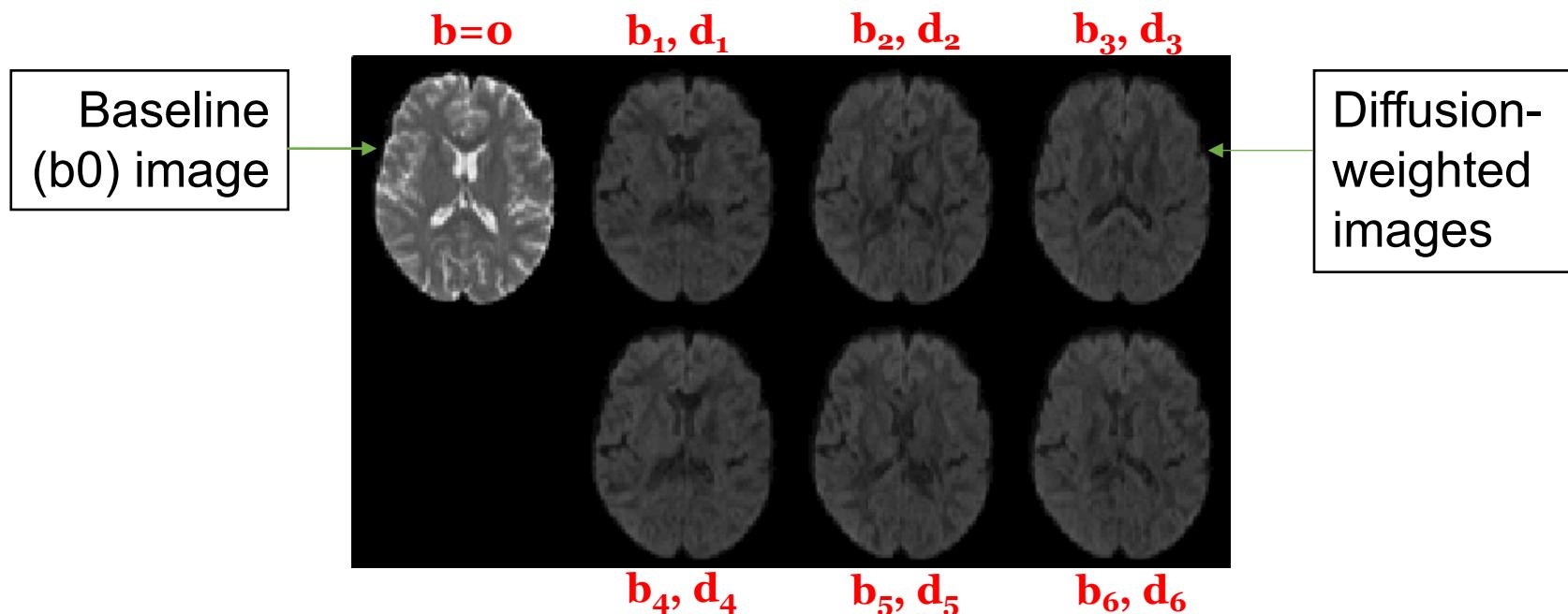
- Increasing b-value leads to:
 - Increased tissue contrast with areas of higher / lower diffusivity
 - More noise relative to signal (\downarrow SNR) $\Rightarrow \downarrow$ reliable estimation of diffusion
- DTI(*uniform b-values*): $b \sim 1000 \text{ sec/mm}^2$
- DSI (*many directions*): $b \sim 10,000 \text{ sec/mm}^2$
- Multi-shell (*multiple b-values*): $b \sim 1,000; 2,500; 5,000 \text{ sec/mm}^2$



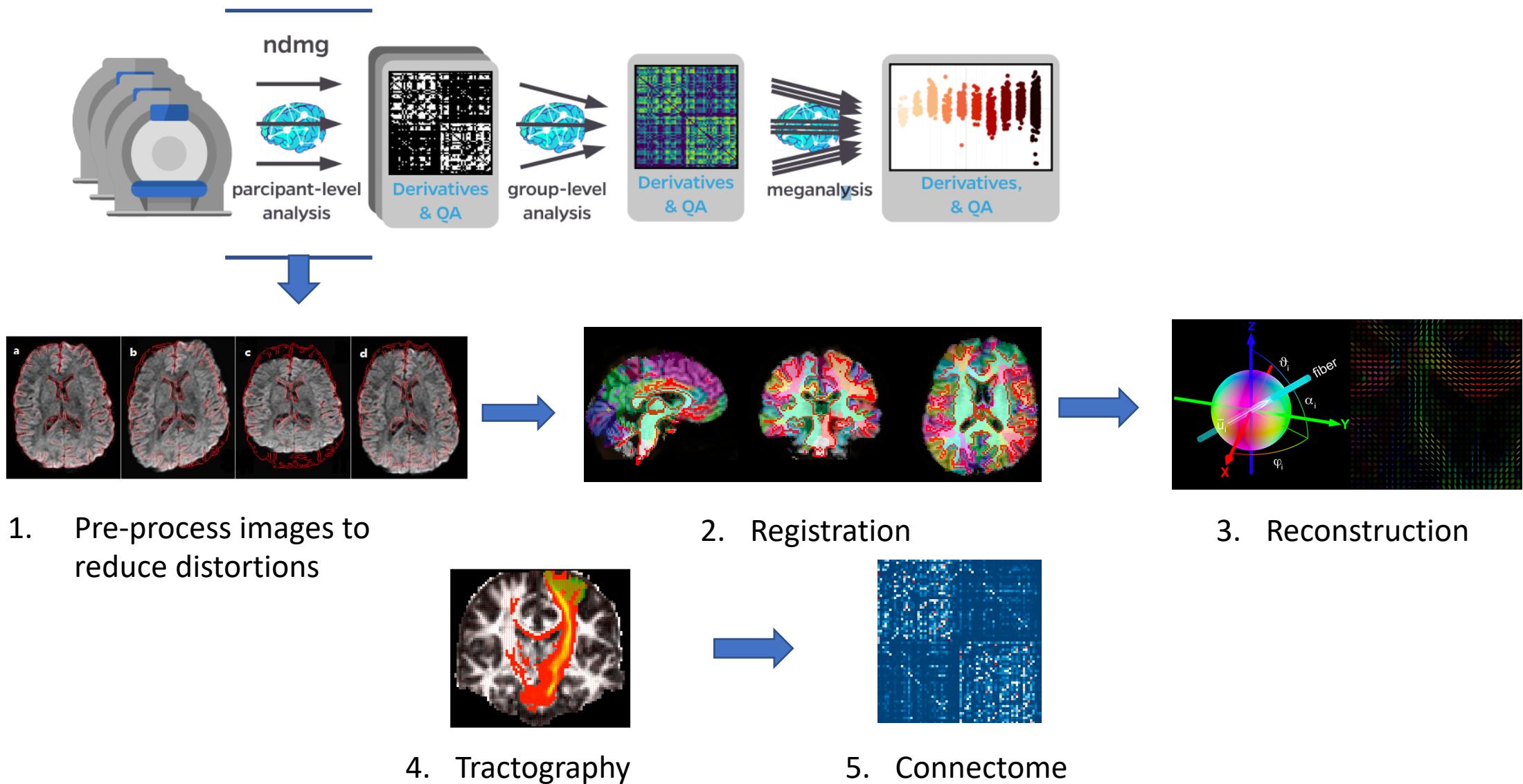
Looking at the data

A diffusion dataset consists of:

- Non-diffusion-weighted a.k.a “low-b” reference images (b-value = 0)
- Diffusion-weighted images (DWI) with different gradient directions d_1, d_2 , and b-value >0.
 - bvec: B-vectors
 - bval: B-values
- DWI have lower intensity values



Data analysis steps



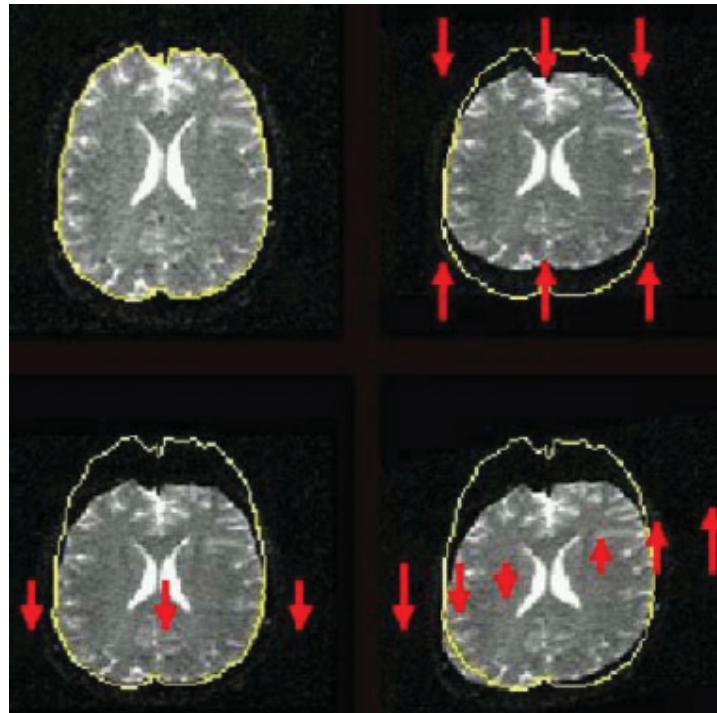
NDMG

- An end-end tool for efficiently generating high quality structural connectomes.
- Scalable to large datasets, intended for mega-analysis
- Begin with raw NIFTI1 data ([BIDS spec](#)), end with graph(s)
- Total runtime 20 min – 1 hour
- Tractography in different spaces:
 - native-space, native-space with MNI-normalization, and MNI-space
- Different types of tractography:
 - Deterministic, probabilistic, particle
- Use different diffusion models:
 - CSA, CSD

Preprocessing

Distortions: Eddy currents

- Cause: Fast switching of diffusion-encoding gradients induces eddy currents in conducting components
- Eddy currents lead to residual gradients that shift the diffusion gradients
- The shifts are **direction-dependent**, *i.e.*, different for each DW image
- Result: Geometric distortions



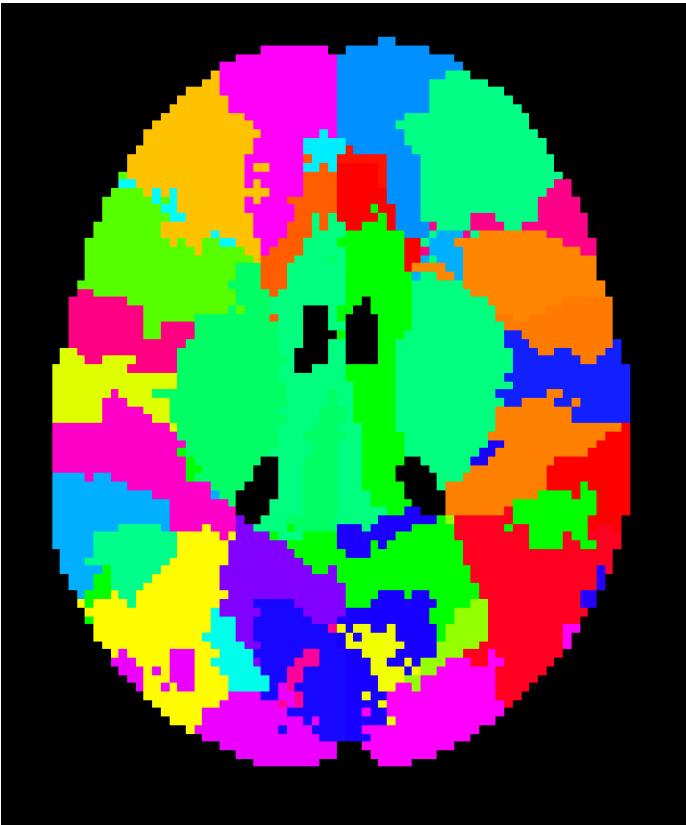
From Le Bihan *et al.*, Artifacts and pitfalls in diffusion MRI, JMRI 2006

NDMG Preprocessing

- Perform eddy correction on the dMRI series.
- Reorient all neuroimages to RAS+ and reslice to either 1 mm or 2 mm voxel resolution
- Create a mean B0 brain mask of all B0's found in the dMRI series

Registration

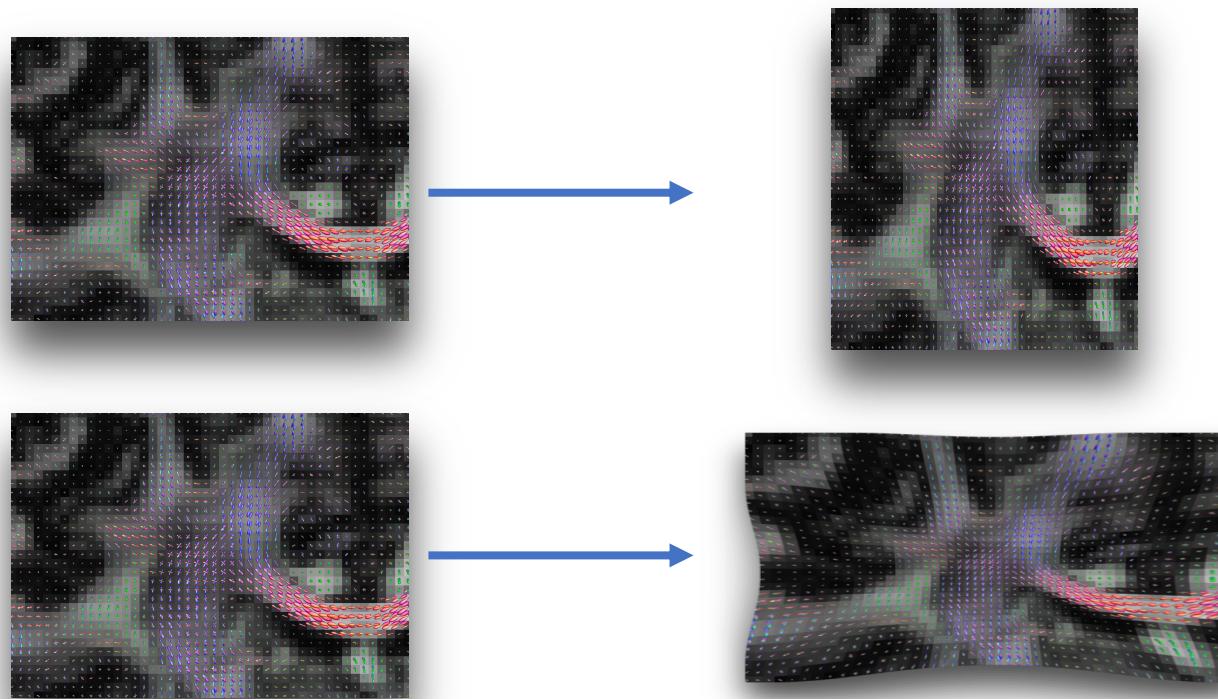
GOAL: Get atlas (what's that?) to native diffusion space (what's that?)



Parcellation	Type of Parcellation	Number of vertices
AAL [8]	anatomical	116
Desikan [7]	anatomical	70
Harvard-Oxford combined [10]	anatomical	111
Harvard-Oxford Cortical [10]	anatomical	48
Harvard-Oxford Subcortical [10]	anatomical	21
Talairach [11]	anatomical	1105
Brodmann	anatomical	41
JHU [9]	anatomical	48
Glasser [15]	semi-automated	180
slab907 [12]	algorithmic	907
slab1068 [13]	algorithmic	1068
CPAC200	algorithmic	200
DS00071 [18]	algorithmic	70
DS00108 [18]	algorithmic	107
DS00140 [18]	algorithmic	139
DS00195 [18]	algorithmic	194
DS00278 [18]	algorithmic	277
DS00350 [18]	algorithmic	349
DS00446 [18]	algorithmic	445
DS00583 [18]	algorithmic	582
DS00833 [18]	algorithmic	832
DS01216 [18]	algorithmic	1215
DS01876 [18]	algorithmic	1875
DS03231 [18]	algorithmic	3231
DS06481 [18]	algorithmic	6481
DS16784 [18]	algorithmic	16784
DS72784 [18]	algorithmic	72784

Why not just register a dMRI directly to MNI-space like we do with fMRI?

This requires *intermodal* registrations, which presents a unique challenge for dMRI.



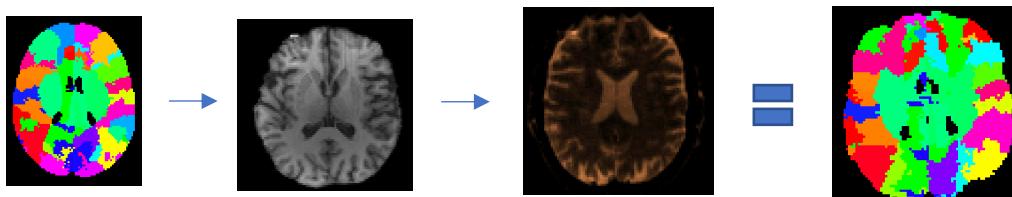
NDMG registration

1. Learn non-linear T1w → MNI

2. Learn non-linear warp from Atlas → T1w in MNI space

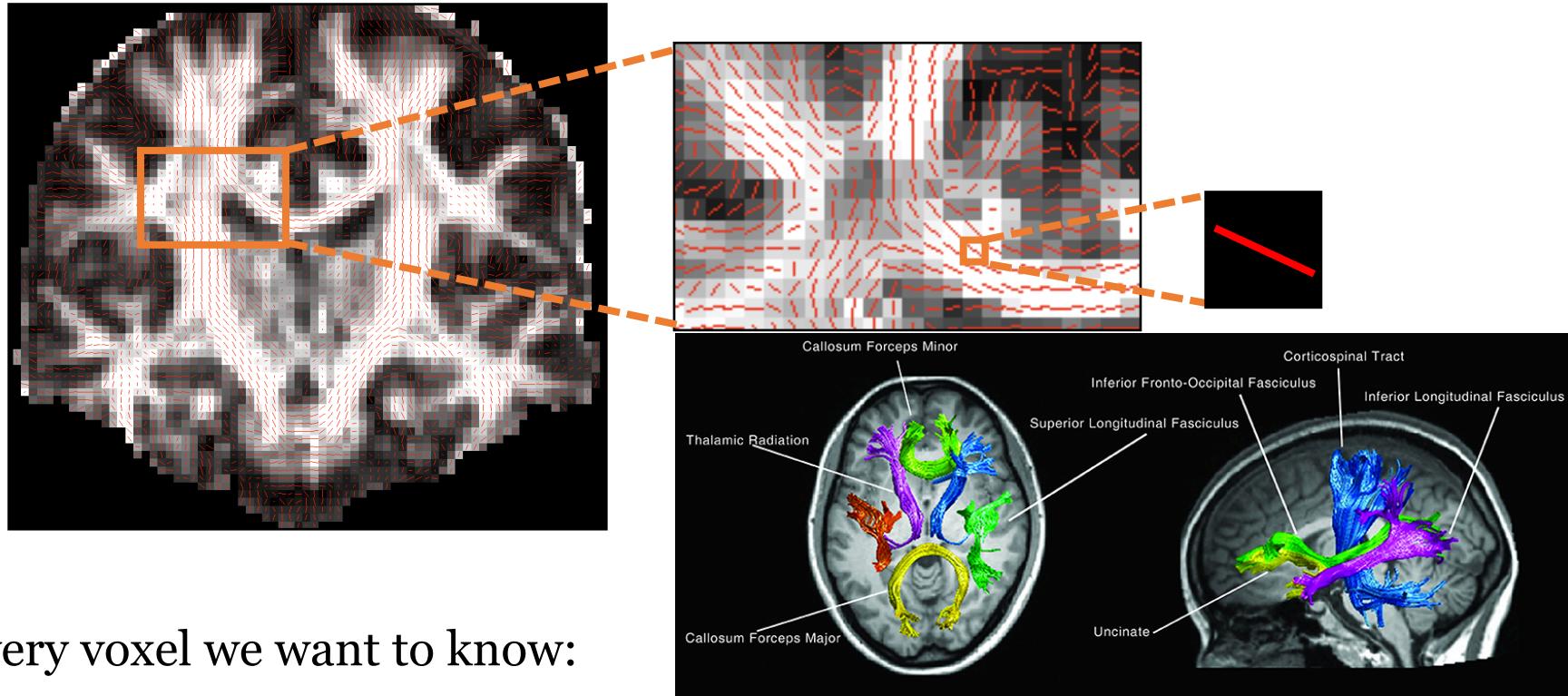
3. Learn T1w → native dMRI (linear with 'boundary-based' tissue priors from T1w white-matter segmentation)

4. Apply T1w MNI → T1w (apply inverse of non-linear warp from (1)) → native dMRI (transform from (3))



Estimate diffusion directions at each voxel
(i.e. ‘Reconstruction’)

How to represent diffusion



- At every voxel we want to know:
 - Is this in white matter?
 - If yes, what pathway(s) is it part of?
 - What is the orientation of diffusion?
 - What is the magnitude of diffusion?
- A standard T1-weighted image cannot capture all this!

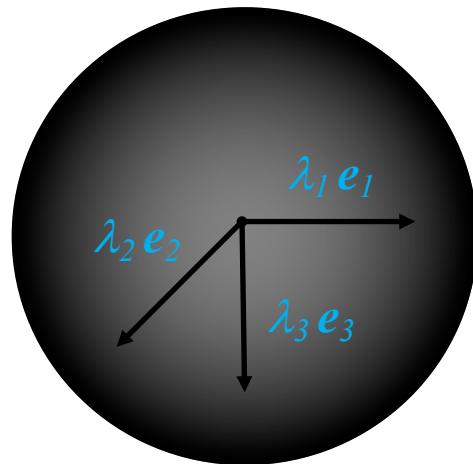
Simplest model: Tensor

- A tensor is a 3×3 symmetric, positive-definite matrix:
- Eigenvectors \rightarrow diffusion direction
- Eigenvalues \rightarrow diffusion magnitude

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ d_{12} & d_{22} & d_{23} \\ d_{13} & d_{23} & d_{33} \end{bmatrix}$$

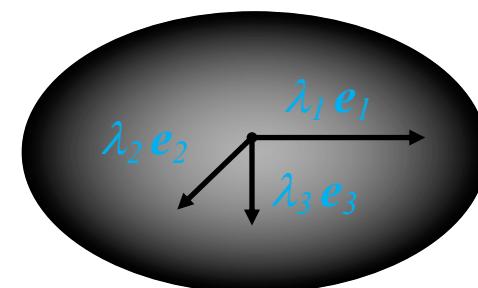
Isotropic diffusion:

$$\lambda_1 \approx \lambda_2 \approx \lambda_3$$



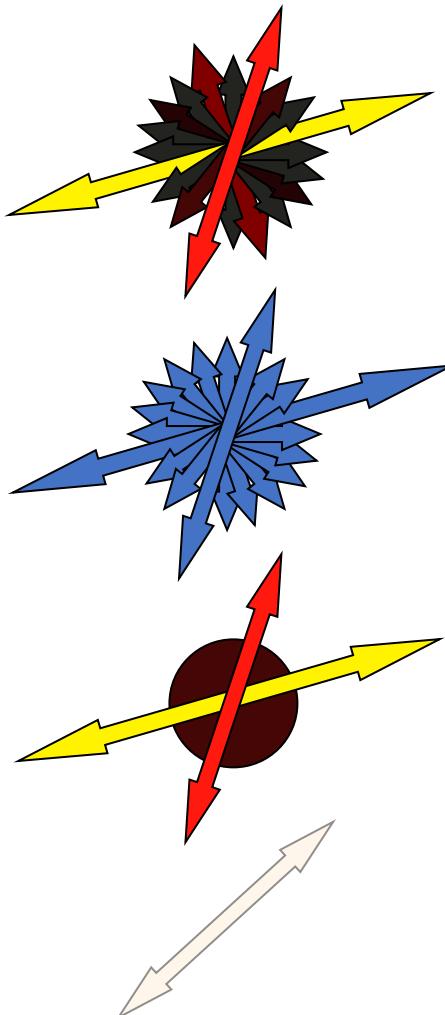
Anisotropic diffusion:

$$\lambda_1 \gg \lambda_2 \approx \lambda_3$$



- Tensor \rightarrow Ellipsoid = Likelihood of water molecule displacements at that voxel

The many models of diffusion



Variable number of fiber populations:

Probability distribution of fiber populations at different diffusion orientations *and* magnitude (FOD, diffusion spectrum)

Orientation distribution function (ODF):

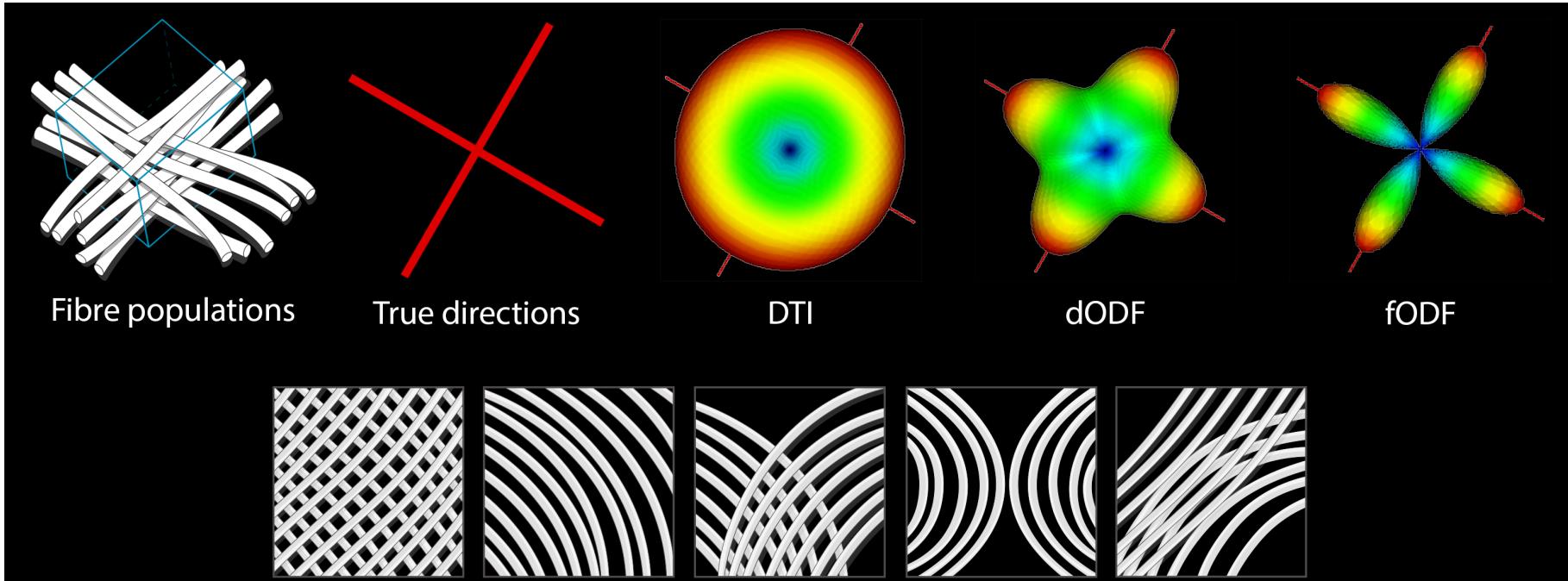
Probability distribution of spin diffusion (orientation only)

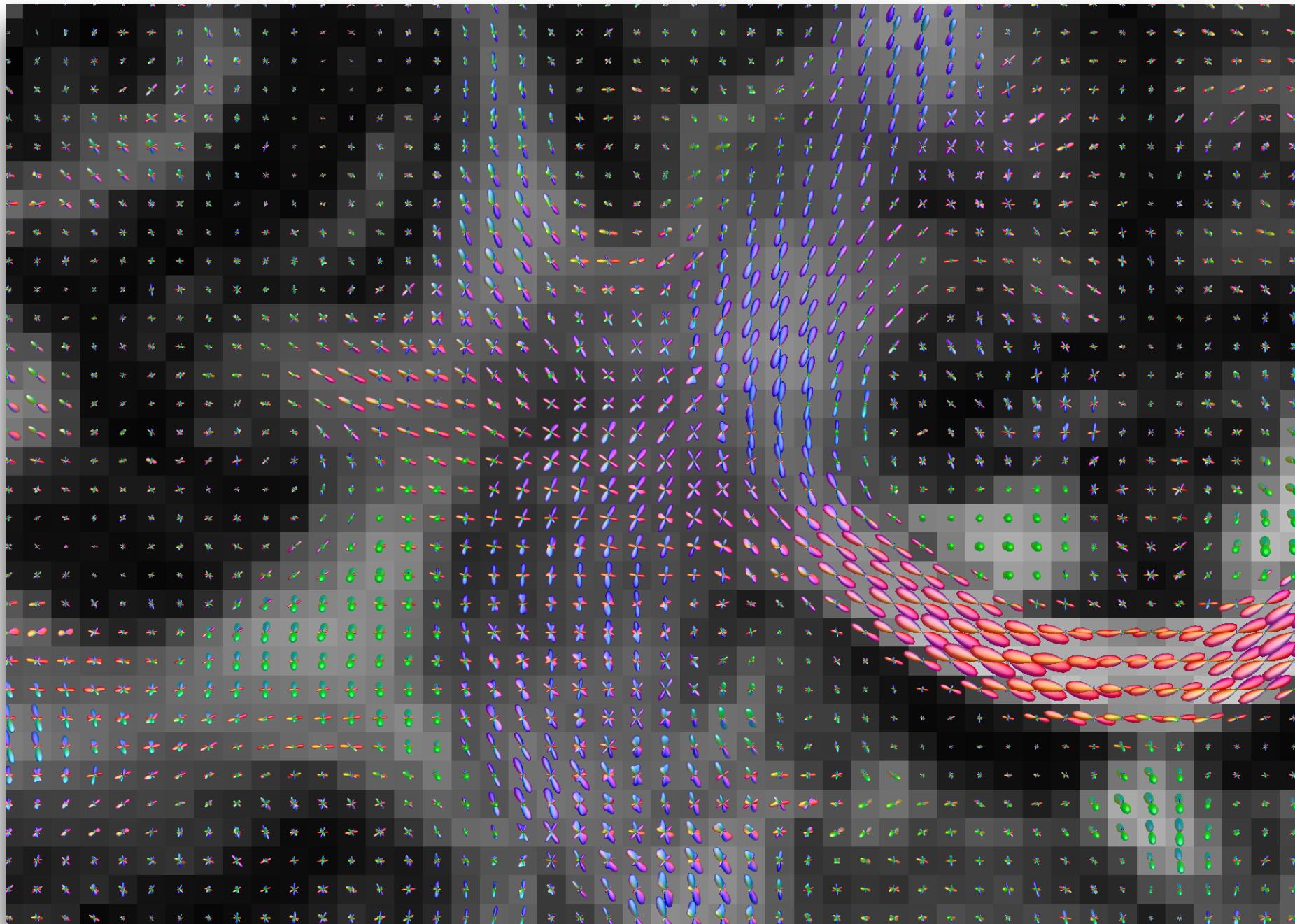
Fixed number of fiber populations:

Diffusion orientation and magnitude for N compartments
(mixture of tensors, ball-and-stick, *etc.*)

Tensor:

Single diffusion orientation and magnitude

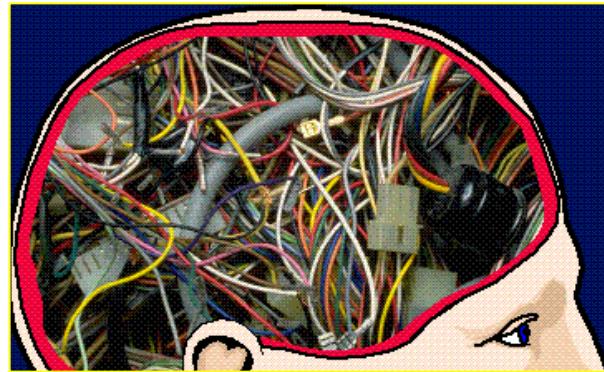




NDMG Reconstruction

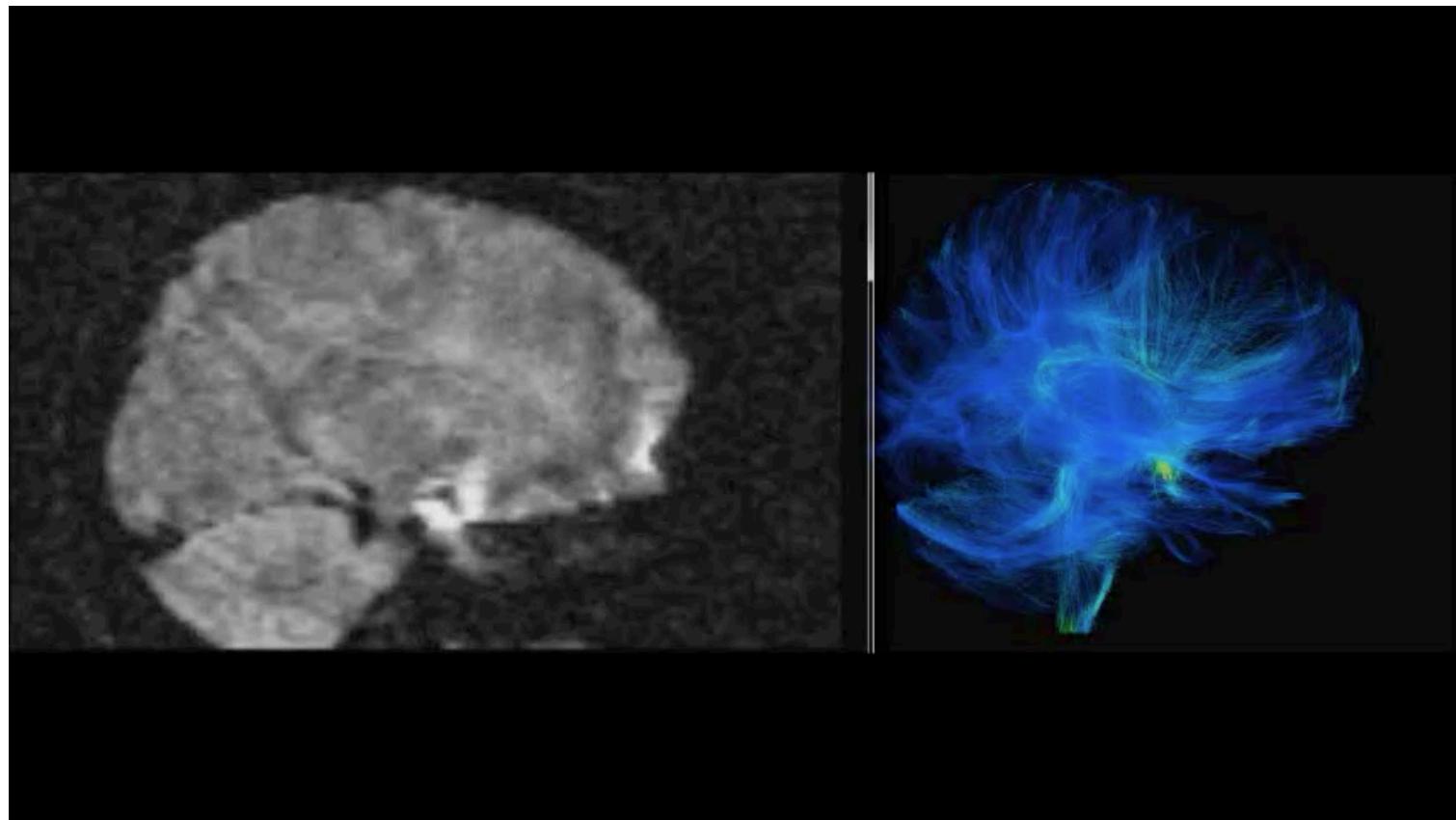
- Multiple options available (dODF or fODF):
 - dODF : Constant Solid Angle (CSA)
 - fODF : Constrained Spherical Deconvolution (CSD)

Tractography

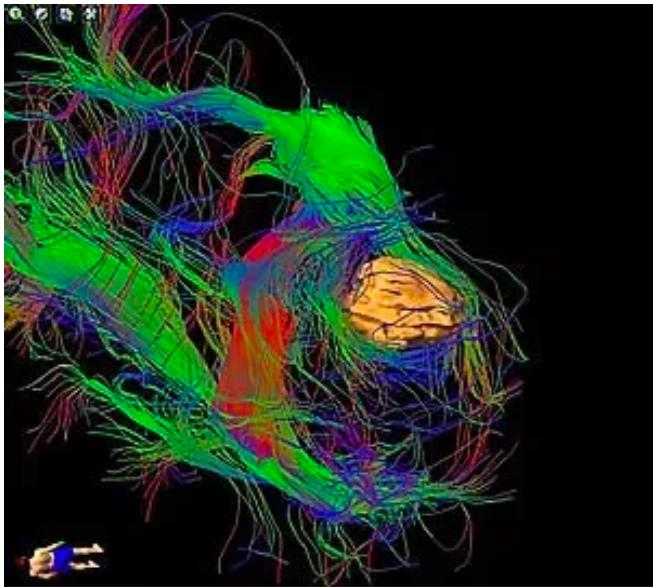


Single Subject
Diffusion Weighted MRI

Single Subject
White Matter Reconstruction



Connectomics is a more recent type of tractography application



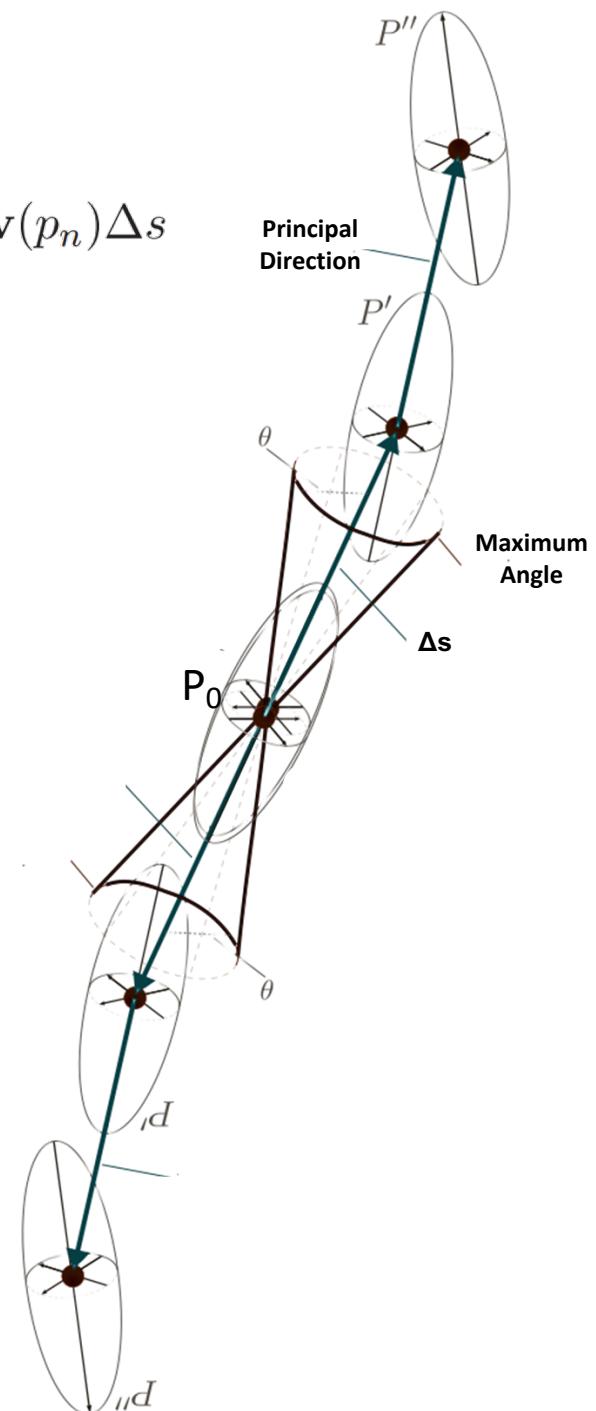
NEUROSURGICAL PLANNING
(E.G. TUMOR REMOVAL)

EXPLORING INDIVIDUAL DIFFERENCES IN
MICROSTRUCTURE OF KNOWN FASCICLES/
BUNDLES OF WHITE-MATTER

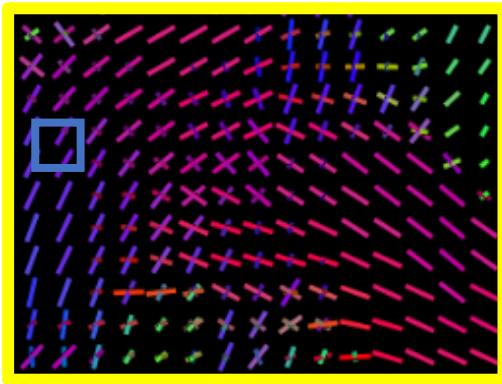
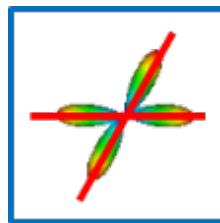
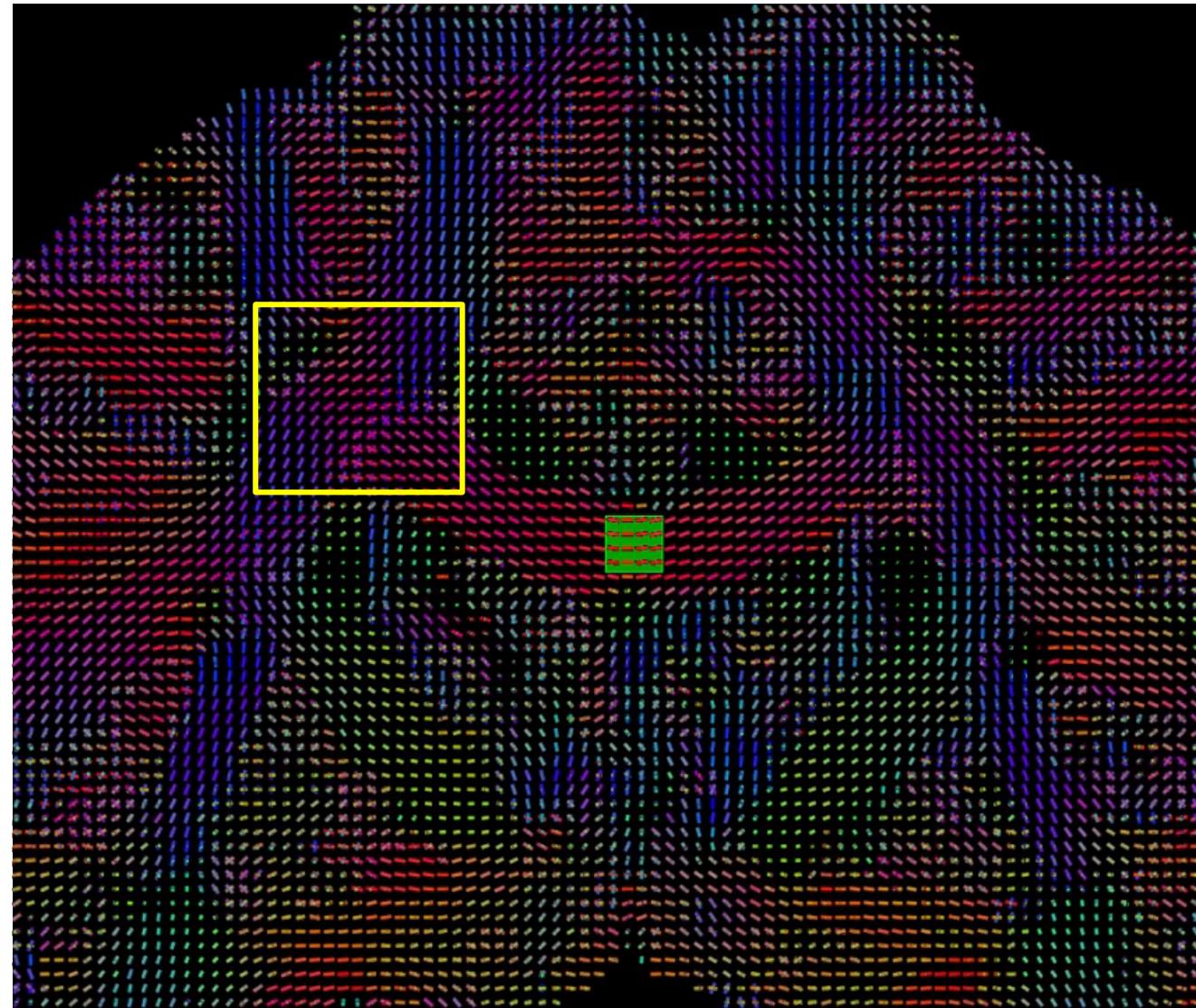
Tracking

1. For each seed position (initial position)
2. Follow the path along sequential voxels based on the underlying directional estimate.
3. Stop if:
 - The position p_n is outside of the mask
 - The angle between the vector v_n and v_{n-1} is greater than the fixed maximum (e.g. opening angle $\theta=60^\circ$)
4. Restart from the seed in the opposite initial direction

$$p_{n+1} = p_n + \mathbf{v}(p_n) \Delta s$$

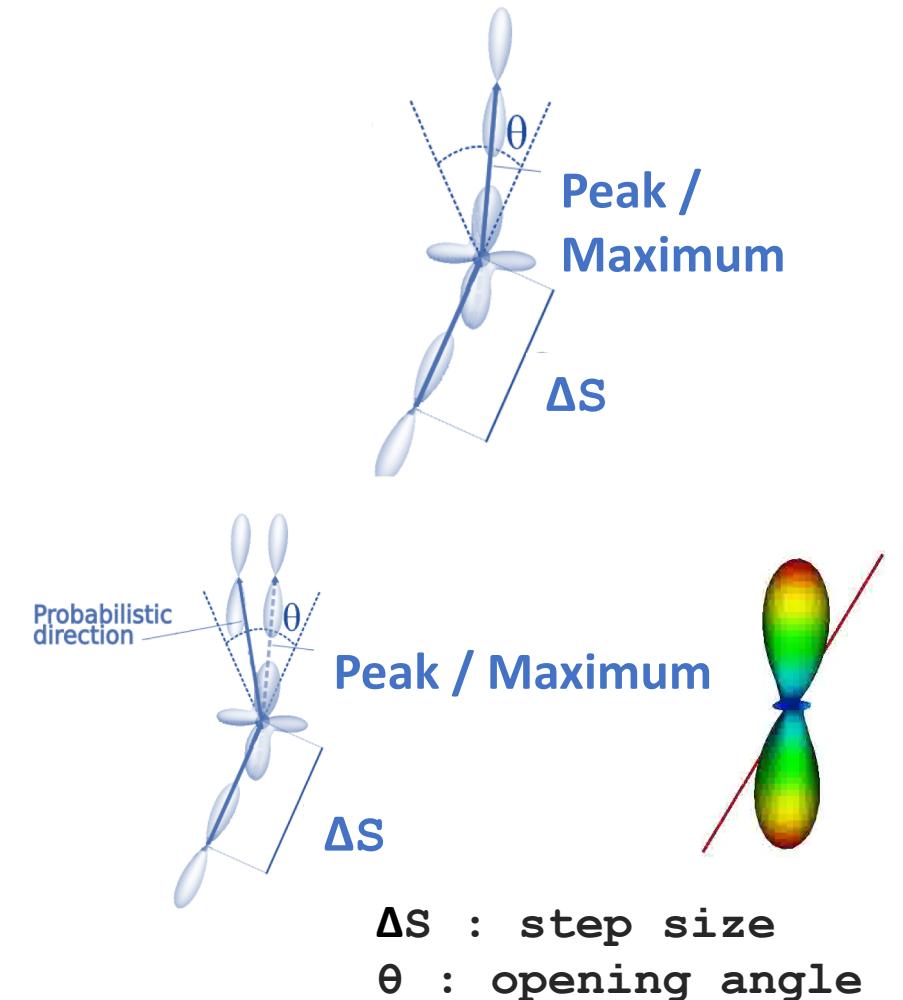


Fiber ODF Tractography



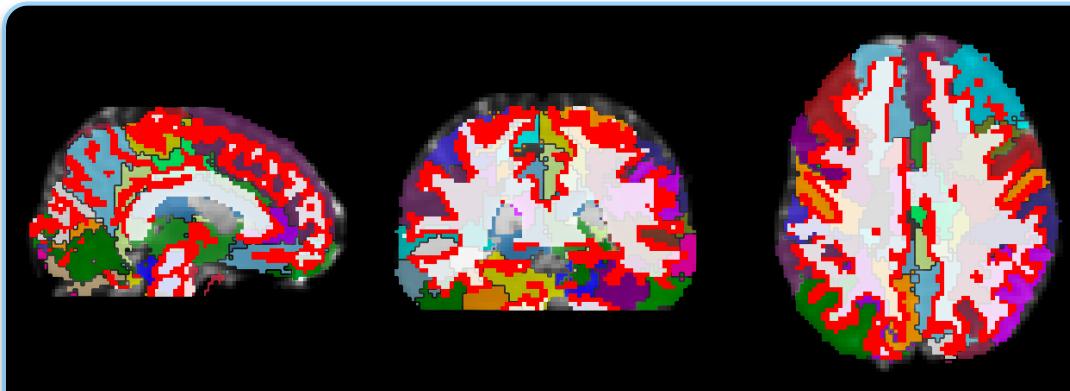
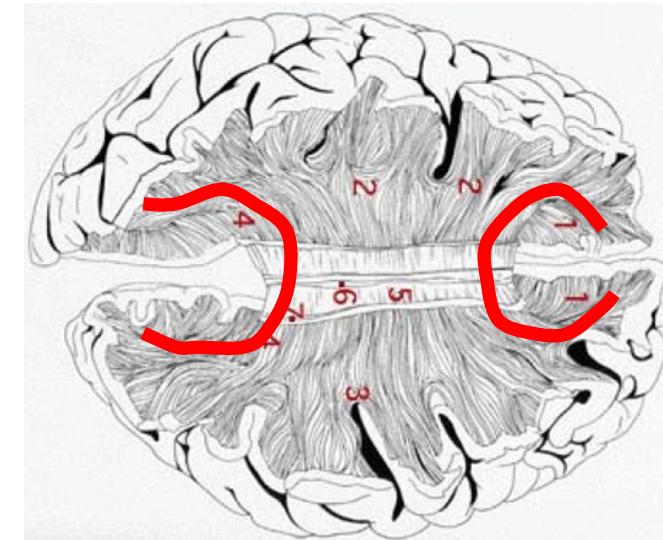
Deterministic vs. Probabilistic Tractography

- Deterministic:
 - Follow the peak direction of the fiber ODF in the (CSA / CSD case)
 - If multiple peaks are available in the distribution, follow the closest to the incoming direction
- Probabilistic:
 - Sample a direction from the model at each voxel to probabilistically select a direction to follow



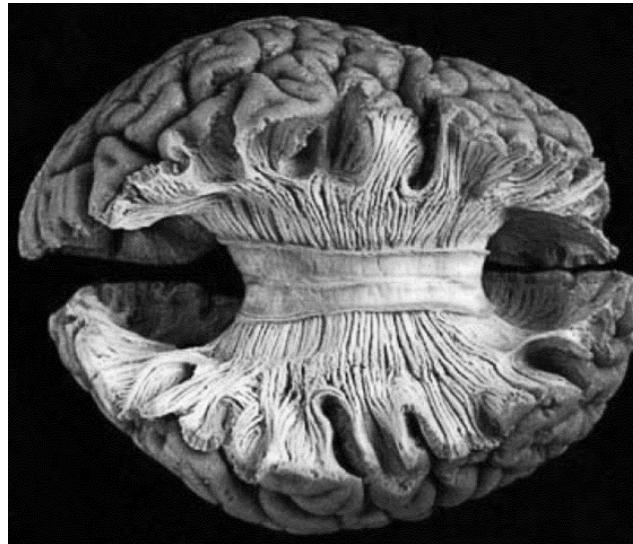
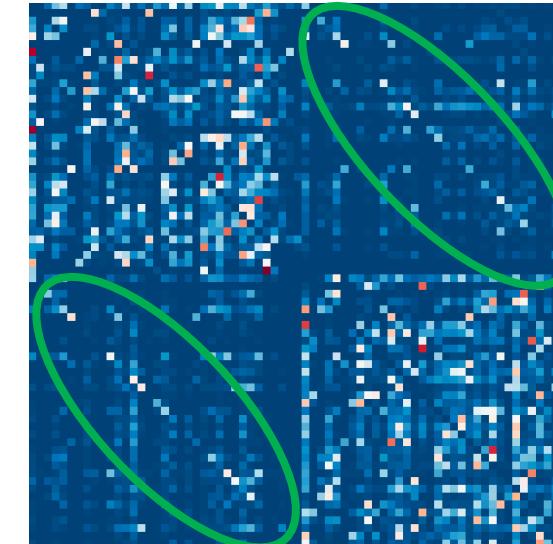
NDMG Tractography

- Probabilistic, deterministic, and particle tracking methods available.
- Denser seeding (configurable with --seed flag) yields more streamlines.
- 500,000 -1 million streamlines recommended (need --seed 20/25) (Roine et al. 2019)
 - Reproducibility increases with streamlines, but it's compute hungry.
- Seeding occurs in:
 - (1) GM-WM interface
 - (2) Corpus Callosum



Challenge: Recovering contralateral connections

- Especially populous (150-200 million) commissural (interhemispheric) fibers need to be tracked somehow!
 - Sufficiently large step-size in tractography can help. NDMG uses 0.2 by default.
 - Denser seeding from Corpus Callosum can also help, so in NDMG we do this.



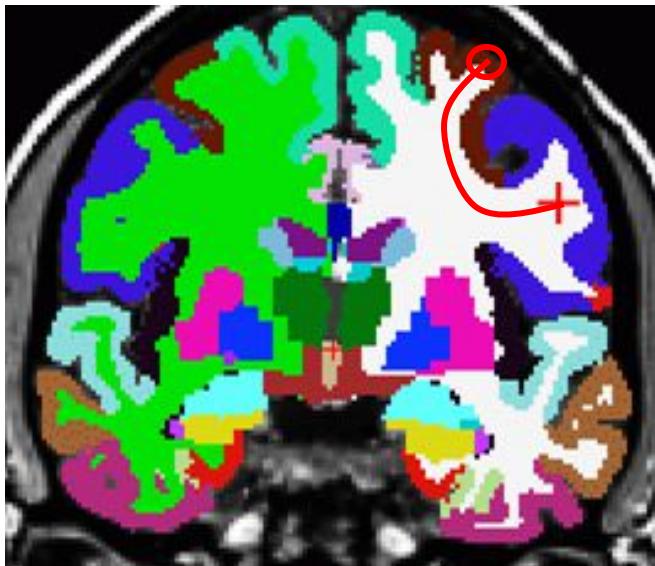
Increasing biological validity

- Step 1: Use underlying tissue information (from the T1w) in the tracking:
 - Avoid ventricular CSF
 - Only track within tissue that has >0.05 probability of being WM.
- Step 2: Use streamline filtering (Malcolm et al., 2010)
 - By minimum fiber length ($>10\text{-}60\text{mm}$)
 - **May reduce false positives by 80-90%!**

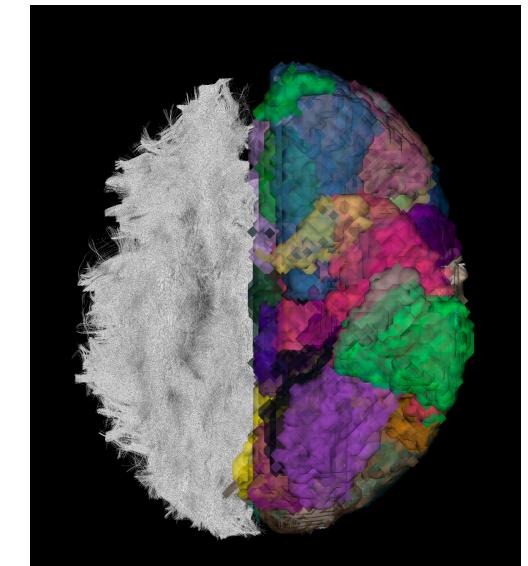
Graph Generation

Nodes = Grey matter regions of interest (from an atlas) containing streamline endpoints

Edges = Properties of white matter revealed by tractography streamlines (i.e. their number and integrity)

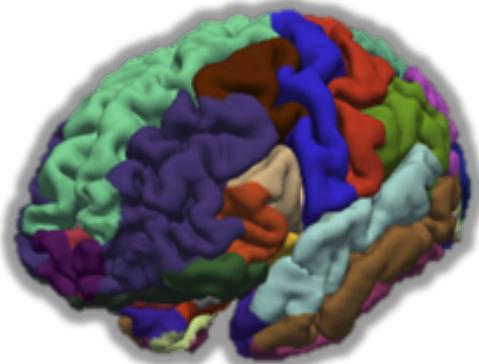


	TL	ML	MR	TR	th	G	Br
TL							
ML				cc		tML	cstL
MR		cc			tMR		cstR
TR							
th		tML	tMR				
G							
Br		cstL	cstR				

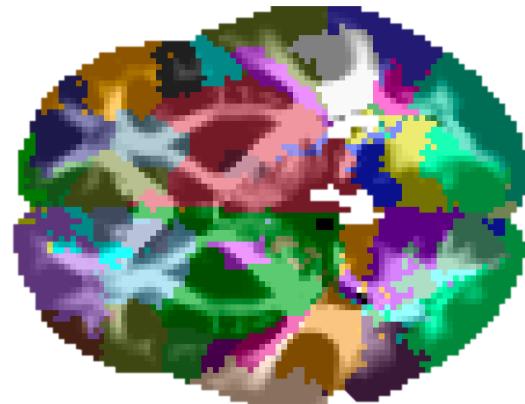


What counts as nodes? (Surfaces vs. Volumes)

Streamlines points intersecting with surfaces

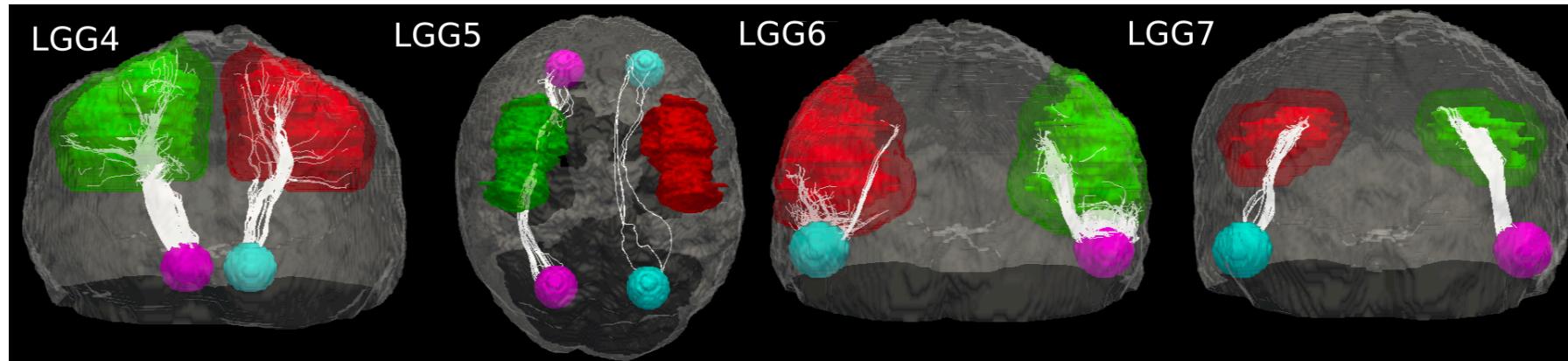


Streamline points intersecting with volumes



What counts as an edge?

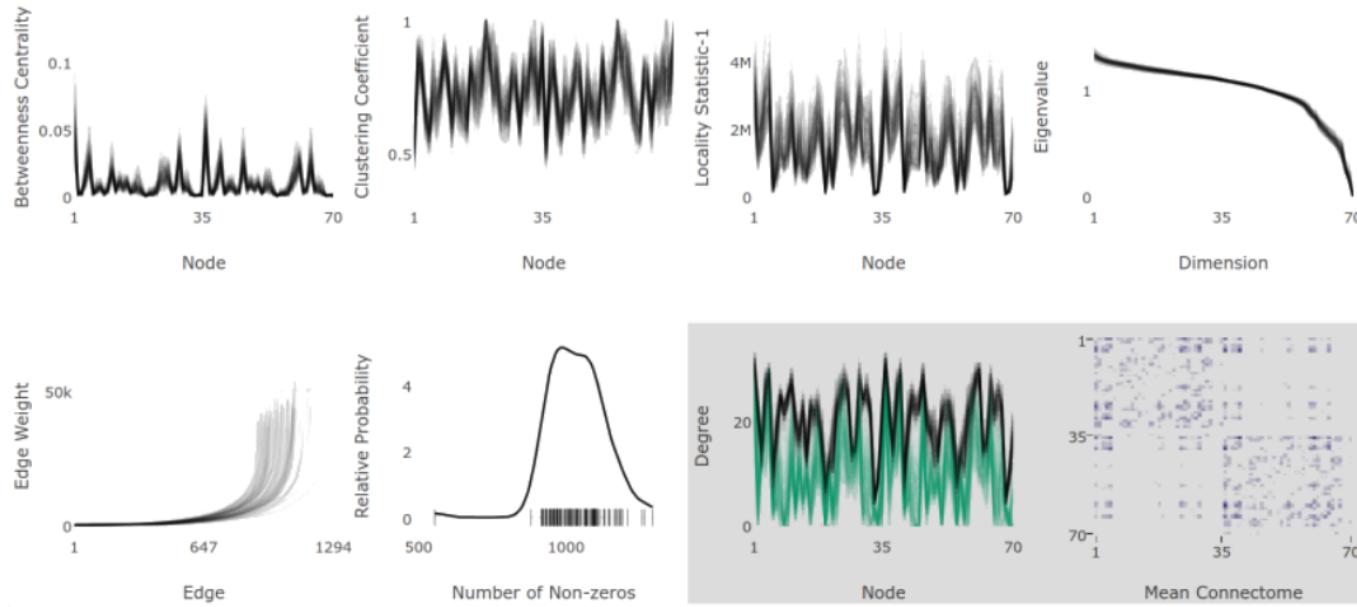
- Must volumetrically pass through the voxels of an atlas label (i.e. node).
 - What degree of overlap constitutes a “connection”?
 - Limitation of volumetric nodes (vs. more compute-demanding surface-style nodes)



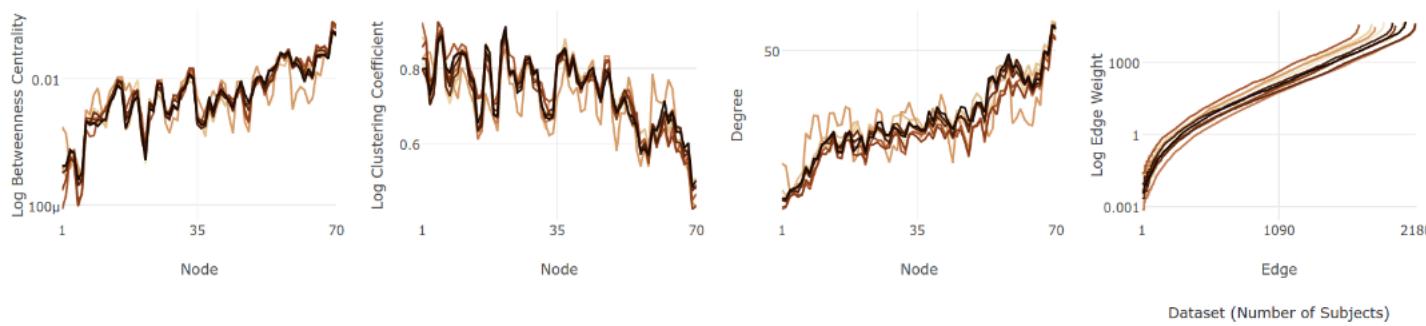
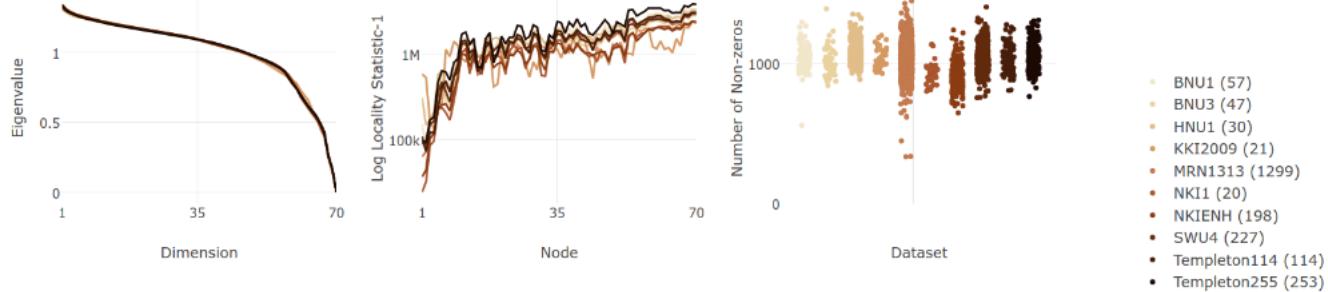
Discriminability

Dataset	Scanner	# Dirs	Age (yrs)	% Male	# Subj's	Rep's	Total Scans	Discr
BNU1 [2]	Siemens	30	23.0 ± 2.3	53	57	2	114	0.999
SWU4 [2]	-	93	20.0 ± 1.3	51	235	2	454	0.815
NKI1 [2]	Siemens	137	34.4 ± 12.8	0	24	2	40	0.918
HNU1 [2]	GE	33	24.4 ± 2.3	50	30	10	300	0.989

dMRI Group Analysis



Multiple Datasets (Desikan parcellation) DWI Multistudy Analysis



Ways to run NDMG:

- Locally on your laptop/desktop
- In a Docker or singularity container
- On Amazon Web Services (AWS)
- On HPC (e.g. SLURM scheduler)
- In Gigantum

dpisner@utexas.edu
<https://github.com/dPys>