Muen System Specification

Adrian-Ken Rueegsegger, Reto Buerki

v0.7.2, April 9, 2024

Copyright © 2024 codelabs GmbH
Copyright © 2024 secunet Security Networks AG

Further publications, reprints, duplications or recordings - no matter in which form, of the entire
document or parts of it - are only permissible with the prior consent of codelabs GmbH or secunet
Security Networks AG.

Contents

1 Introduction 5
2 System Policy 6
2.1 Policy Format 6
3 System Integration 8
4 Tau0 Concept 11
4.1 Static Mode of Operation e 11
4.2 Dynamico e e e e e e e e e 11
5 Toolchain 13
5.1 Overview oL e e e 13
5.2 Plugin System 16
5.3 Core Tools. o o o e e e e e 16
5.4 Plugins o e 23
5.5 Additional Tools 24
6 Policy Validation 28
6.1 Configuration e 28
6.2 Devices e e e e 28
6.3 Device Domains L e 29
6.4 Events e e 29
6.5 Files e e e e e e 30
6.6 Hardware e e e e e 30
6.7 Kernel e 31
6.8 Memory e e e e e 31
6.9 Model Specific Registers (MSR) L 33
6.10 Platform e 33
6.11 Scheduling« . L e 33
6.12 Subjects L e 34
7 Policy Structure 36
7.1 Policy Schema Documentation 36
8 Appendix 105
8.1 Amnnotated Example Policy 105
9 Bibliography 143

List of Figures

3.1 System Integration
5.1 Build process e e e e e e

Listings

5.1 70 Command Stream
8.1 Demo System (VT-d)

Chapter 1

Introduction

The Muen system policy is a description of a component-based system running on top of the
Muen Separation Kernel (SK). It defines what hardware resources are present, how many active
components (called subjects) the system is composed of, how they interact and which system
resources they are allowed to access. The contents a Muen system policy is composed of are
outlined in chapter 2.

A system integrator specifies and configures such a component-based system at integration
time in XML format. The Muen toolchain transforms the system description in multiple steps
to the final system description, resolving abstractions which exist to make life simpler and less
error-prone to the integrator. Additionally, the toolchain also creates various build artifacts which
are incorporated into the system image. Chapter 3 gives an overview of the system integration
process.

The Muen SK can be regarded as a policy enforcement engine, in the sense that it has no
knowledge about the actual content of the generated data structures and in consequence the policy.
For example, it knows nothing about the contents of subject page tables which define a subject’s
address space, nor does it know anything about its own page tables. In fact, these structures are
not even mapped into the kernel.

The most important and final step in the integration of a Muen system is the actual generation
of the data structures which guarantee subject isolation and the composition of the final system
image. This step is performed by a trusted system composer called (static) 70 (Tau Zero). The
concept of 70 is introduced in chapter 4.

Section 5 explains every tool and the system image composer in detail. It also presents the
usage of each tool. Section 6 then outlines all semantic checks performed on the system policy
primarily by the validation tool, but also by other tools in the toolchain.

Finally section 7 specifies the XML schema and structure of the source format of the Muen
system policy. Explanations and examples illustrate how to configure a component-based system
with the Muen SK.

Chapter 2

System Policy

The Muen policy specifies the following properties of a system:

¢ Configuration values

o Hardware resources

o Platform description

e Physical memory regions
e Device domains

o Events

¢ Communication channels
e Components

e Subjects

¢ Scheduling plans

The policy serves as a static description of a Muen system. Since all aspects of the system are
fixed at integration time the policy is very well suited for automated as well as manual validation
prior to system execution.

The details of each property above is outlined with examples in the XSD-schema of the format
source policy in section 7.

2.1 Policy Format
The system policy is specified in XML. There are currently three different main policy formats:

e Source Format
e Format A

o Format B

The motivation to have several policy formats is to provide abstractions and a compact way
for users to specify a system in format source while simultaneously facilitate traceability as well as
reduced complexity of tools operating on the policy formats A and B.

The implementation of such tools is simplified by the absence of higher-level abstractions in
the latter formats which would make the extraction of input data more involved.

Furthermore, the final format B must specify every aspect of the system explicitly, e.g. all
attributes have a concrete value assigned, something which would be very tedious and repetitive
and that burden should not be put on an integrator.

The following sections give more detail about each policy format.

I<5" Only the policy in format source intended for system integrators is specified in this
document. Other formats are processed by the toolchain and thus considered internal.
While it is possible to specify a system policy in format A or B, it is not recommended.

Additionally to these three main formats, there may be extended versions of these formats if
plugins are used. See section 5.2 for details about the plugin system.

2.1.1 Source Format

The user-specified policy is written in the so called source format. Constructs such as channels
provide abstractions to simplify the specification of component-based systems. Many XML ele-
ments and attributes are optional and are expanded during later steps of the policy compilation
process.

Kernel and 70 subject (4.2) resources are not part of the source format since they are automat-
ically added as part of the policy expansion step.

The use of configuration values enables parametrization of the system policy.

The policy in source format is specified in detail in section 7, while appendix 8.1 provides an
annotated example policy illustrating the various policy elements.

2.1.2 Format A

Format A is a processed version of the source format where all inclusions of external files are
resolved and abstractions such as channels have been deconstructed into their constituent parts.
For example, a channel is expanded to a physical memory region and the corresponding writer and
reader subject mappings with the appropriate access rights. Optional associated events have been
automatically created and correctly linked with the designated subjects.

In this format all implicit elements, such as for example automatically generated page table
memory regions, are specified. The kernel and 70 configuration is also declared as part of format
A.

The only optional attributes are addresses of physical memory regions.

2.1.3 Format B

Format B is equivalent to Format A except that all physical memory regions have a fixed location
(i.e. their physical address is set).

Chapter 3

System Integration

A Muen system defined via the system policy is transformed and integrated by various tools to
generate a bootable system image.

The directed graph 3.1 on page 9 illustrates the process.

At the top, the graph shows how configuration and build parameters are applied to the following
constituents of the system policy:

o Hardware description (static)
Contains manually specified devices by the integrator, e.g. common hardware like I/O ports
of a PC speaker. Such devices are not automatically collected by the hardware configuration
generator.

o Hardware description (generated)
Hardware description extracted from a running Linux system by the mugenhwcfg tool (sec-
tion 5.5.3).

¢ Platform description
Common names and abstractions to form a unifying view over different hardware configura-
tions. Additionally, platform-specific configuration values can be provided here.

e System description
Specification of an actual component-based system running on the Muen SK.

These combined inputs form the parameterized system policy in format source, which can be
used by components to extract system information. Such information might be for example the
log channel count of a debug server subject, or whether a specific debug facility has been enabled
by the system integrator.

The CSPECs mechanism outlined in the Muen Component Specification document [1] can be
used by components to generate source specifications (e.g. in SPARK/Ada) from the component
description. Furthermore, a component might expand its own component description with infor-
mation extracted from system information, or it might use the mucbinsplit tool (section 5.5.4)
to automatically fill in the memory regions provided by its binary after compilation. The expanded
component description is then merged with the system policy for further processing.

After all component descriptions have been merged into the system policy, it is expanded by the
expander tool (section 5.3.5). This step transforms the system policy from format source to format
A. Abstractions like directed channels are now resolved to basic shared memory mechanisms and
events, non-present optional attributes are added and set to default values.

The allocator tool (5.3.6) then loops over all physical memory regions which have no address
assigned and places them in memory by allocating a region and thus a physical start address from
the usable pool. The usable pool information is extracted from the allocatable memory block list
(7.1.17) in the system policy. This process transforms the policy to format B where all elements
must be present and attributes specified.

The policy is then checked for consistency and configuration errors by the validator tool (5.3.7).
If a misconfiguration is found, the user is informed and the build aborts. The extensive checks
performed by the validator tool are listed in section 6. If no error is found, the system policy is
then ready to be used for three subsequent steps:

Platform
description

System
Description

Apply
Parameters

Apply
Parameters

Parameterized
Platform
Description

Parameterized
System
Description

Hardware Generated Build
R Hardware
Description D P Parameters
escription
/
/
/
Apply /

Parameters ,
!
! Parameterized
| Hardware
| Description
|
|
|
|
|
|
|
|
|

Component |
|
|
|

Component
Description

Component
Specification
Generation

Source

Component
Specs (.ads)

’ Component ‘

Expanded
Component
Description

Component
Binary

Generate
Command
Stream

Policy (B)

Validate
Policy
Invariants

Policy (src)

Spec

Generate Kernel

Command Stream

Kernel
Specs (.ads)

Kernel
Source

Generate
Structures

Generate Subject

Artifacts

Generated
Structures

Subject
Artifacts

Kernel
Binary

Create
Image

Figure 3.1: System Integration

o Generate kernel specifications (SPARK/Ada source files)
o Generate structures for subjects

¢ Create a command stream for 70

The kernel source specifications contain tables and constants which represent the policy that
is compiled into the kernel as part of the kernel build process and enforced at runtime.

An example of generated subject structures are ACPI tables, which are mapped into a Linux
VM to announce the available hardware resources.

The command stream generator (5.3.9) generates instructions in XML format for the 70 system
composer explained in the following section.

10

Chapter 4

Tau0 Concept

The XML command stream together with the other build artifacts like subject structures or the
kernel binary is provided as input to the trusted system composer 70. Its task is to compose a
system image while making sure that certain invariants are not violated. The 70 concept is a
mechanism to gradually increase the flexibility of a component based system while keeping a high
level of assurance regarding the correctness of isolation enforcement.

There are two modes of operation for 70:

e static
o dynamic

In the static scenario, the task of 70 is to construct a bootable system image by assembling the
input files and generating data structures such as page tables, all while checking that invariants
necessary for correct isolation are valid. An example for such an invariant is that no subject
memory mapping may reference a memory region containing paging structures.

For the dynamic case, the goal is to have a trusted 70 subject with additional privileges to
interact with the Muen SK over a special 70 interface. This will allow 70 to change certain clearly
defined aspects of the system state at runtime. A potential use-case would be to set up a new
subject, assign resources like memory and devices to it and then instruct the kernel to schedule it.

Since it must be guaranteed that a dynamic system is as secure as the static one, 70 must be
developed with the same care as the kernel itself, meaning it must be written in SPARK/Ada and
security properties which provide hard isolation must be formally proven. This process is currently
ongoing.

4.1 Static Mode of Operation

The static variant is the one which is currently implemented. 70 runs at integration time and
assembles the system image by constructing the data structures guaranteeing isolation and merging
in the build artifacts of the other Muen tools, like untrusted ACPI data structures for Linux VMs.

Static 70 fulfills its task by creating the system image in memory while processing the commands
from the command stream. See listing 5.1 on page 20 for an example command stream.

70 is written in SPARK/Ada and it applies memory typization to formally prove aspects of
the system. Command processing starts from a well-known good state and it is enforced that
each system state transition resulting from a new command input results in a good state again by
showing that invariants hold after the transition. If not, the command is rejected and the build
aborts.

See the project README or the webpage® for more information about the current state of 70.

4.2 Dynamic

While the system image is composed by the static variant of 70, the goal is to run the same
code as 70 subject at runtime. Note that this is not yet implemented but planned as a way

Thttps://muen.sk/tau0.html

11

forward to achieve more dynamic systems while having the same assurance about security and
safety properties.

The dynamic 70 running as subject will reconstruct the system state defined at integration
time and continue to process commands starting from there. Depending on the system use case,
commands might be sent to dynamic 70 by a special control subject.

The dynamic variant can be divided into multiple sub-variants, depending on how much dy-
namic system behavior is allowed. For example, the initial dynamic variant might only allow entity
construction, not destruction.

12

Chapter 5

Toolchain

5.1 Overview

While the previous section 3 presented an overview of the system integration process and section
4 introduced the 70 concept, this section focuses on the detailed description of the tools forming
the Muen toolchain.

The tool-based processing of the Muen system policy can be divided into the following steps:

e Policy merging

e Components build

o Components specification merging
e Policy compilation

e Policy validation

o Structure generation

o Command stream generation for 70

o Image generation by 70

Following the Unix philosophy "A program should do only one thing and do it well" each of the
tools only performs a specific task. They work in conjunction to process a user-defined policy and
build a bootable system image. Figure 5.1 presents another illustration of the policy processing,
this time laying the focus on the tools. The following sections explain each processing step while
section 5.3 describes each tool separately.

5.1.1 Policy Merging

The Merger tool outlined in section 5.3.3 is responsible to merge XML files stored at different
locations on the file system into one system policy in format source.
The tool reads a system configuration in XML format to locate the following files:

e System policy

e Hardware specification

o Additional hardware specification
o Platform specification

To make the system description flexible and modular the following features are supported in
the input policy:

13

o The tool provides an implementation of the XML XInclude mechanism'. Using includes,

the policy writer is able to separate and organize the system policy as desired. Instead of
specifying the whole policy in one file, the subject specifications can be split into separate
files, or common parts shared by different system descriptions can be extracted.

« Expressions can be used to formulate (nested) terms using equality/inequality, numeric and
logical operators as well as concatenation of strings. Expressions can be used just like con-
figuration variables to provide parameters for other mechanisms.

e The use of conditionals enables selective activation of parts of the source policy depending
on the value of a given configuration variable. This allows flexible customization of a system
during policy compilation by setting the value of a configuration variable or formulating an
appropriate expression.

o Configuration variable substitution enables the policy writer to set the value of attributes to
those of referenced configuration variables or expressions. Attributes that start with a dollar
sign followed by a variable name are substituted by the value of the variable.

¢ The policy may define templates for XML code, including parameters that can be used within
expressions, conditionals and references within that template. Templates can be employed
to avoid code duplication and to encapsulate portions of code. Hence, templates can define
building blocks and help to provide a high-level view of a system.

e When two building blocks are connected via a channel or when a subject behaves like a
client of another subject, it is desirable to insert a communication channel into a subject
from “outside” of that subject. Such additions to an XML node are possible with amend
statements. On evaluation, the children of an amend-node are merged into the children of
the node specified by the given XPath.

After the merge step, the resulting policy is well formatted to minimize the difference in the
generated policies resulting from the subsequent tasks. This allows the user to easily review (diff)
and therefore verify the results of each policy compilation task.

5.1.2 Components Build

After hardware, platform and high-level system policy are merged into a single source policy file,
components may extract relevant information. For example an XSL transformation (XSLT') script
could extract the I/O port of a specific device and create a corresponding configuration value based
on it, which is then included in the component specification.

The mucfgcvresalloc tool described in 5.3.1 implements the blue Component VR Allocator
task shown in figure 5.1. It is primarily used to automatically allocate attributes of component
resources like virtualAddress for channels. Furthermore, similar to the policy merger, it supports
inclusions, conditionals, expressions and configuration value substitutions.

After the component specification has been processed, the mucgenspec tool described in
5.3.11 generates Ada/SPARK packages containing constants derived from the declared component
resources and config values. These constants can be used to reliably address specific or configurable
resources in the source code. With these constants the component source code is compiled into a
binary.

The mucbinsplit tool described in 5.5.4 can be used to extract ELF sections of the compo-
nent binary into separate files. It automatically extends the component specification by adding
a corresponding memory region with the appropriate access rights (e.g. executable, writable) for
text, rodata, data, bss and stack sections.

5.1.3 Components Specification Merging

The processed component specifications are merged into the system source policy by the Muen
component specification joiner tool described in section 5.3.4.

This step is optional as static component specifications which need no processing can also be
manually specified in the system policy directly.

Inttp://www.w3.0org/TR/xinclude-11/

14

http://www.w3.org/TR/xinclude-11/

5.1.4 Policy Compilation

Policy compilation encompasses the tasks involved to transform the policy from source format to
format A and finally to format B, which is the fully expanded format with no implicit properties.

The Virtual Resource Allocator tool sets virtual resources that are left unassigned in the joined
policy. These resources include virtual addresses, event numbers and vectors of channels. Often,
the precise values of these resources do not matter to the integrator and make the policy harder
to read and write. Section 5.3.2 explains the Virtual Resource Allocator tool in detail.

The Expander tool takes care of completing the user-specified policy with additional informa-
tion and resolving abstractions only available in format source to their corresponding low-level
constructs.

For example, the concept of channels only exists in format source. Therefore a channel specified
in format source must be expanded to shared memory regions with optional associated events in
format A. Also, the Expander tool inserts specifications for the Muen kernel itself so the user is
lifted from that burden. Generally, the aim of the expansion task is to make the life of a policy
writer as easy as possible by expanding all information which can be derived automatically. Section
5.3.5 explains the Expander tool in detail.

The result of the expansion task is a policy in format A which is the input for the Allocator
tool. This tool is responsible to assign physical memory addresses to all memory regions which
are not already explicitly placed in memory. By querying the hardware section of the policy, the
tool is aware of the total amount of available RAM on a specific system and allocates regions
of it for memory elements with no explicit physical address. The Allocator tool also implements
optimization strategies to keep the resulting system image as small as possible. For example,
file-backed memory regions (e.g. a memory region storing a component executable) are preferably
placed in lower physical regions. See section 5.3.6 for a description of the Allocator tool.

After the allocation task is complete, the policy is stored in format B. This format states all
system properties explicitly and is used as input for the Validation step.

5.1.5 Policy Validation

Before structures required to pack the final system image are generated, the policy must be thor-
oughly validated to catch errors in the system specification. Such errors might range from over-
lapping memory, undefined resource references to incomplete scheduling plans etc. The Validator
task performs checks that assure the policy in format B is sound and free from higher-level errors
that are not covered by XML schemata restrictions.

It is important to always run the Validator as the system could otherwise exhibit unexpected
behavior. This is especially true if a policy writer decides to specify the system directly in format
B which is also possible but not advised. Section 5.3.7 explains the usage of the Validator tool,
while section 6 outlines all performed checks.

It should be noted that correct memory typization and all invariants enforced by 70 when
constructing the system image cannot be bypassed, since the checks are inherent to the generation
of the bootable image file.

5.1.6 Structure Generation

The structure generation step encompasses various tools which extract information from a policy
in format B and generate files in different formats.

While some generated files are directly linked into the Muen kernel (i.e. Source Specifications,
see 5.3.11), most of them are subject-related. Depending on the subjects included in the actual
system policy, the following subject structures are generated:

e MSR store regions

« Sinfo regions

e Regions for Linux VMs
— ACPI tables

— Linux zero-page (ZP) regions

15

 Regions for MirageOS/Solo5? unikernels

— Solob boot info

As these structures do not affect isolation between subjects or subjects and the kernel, they
are not generated by 70 but only included as binary data via XML command stream and build
artifacts.

The structure generator tools are explained in section 5.3.11.

5.1.7 Image Creation

The system image composer assembles the final system image. This task is performed by 70 static
introduced in the previous section 4.1. The usage of it is specified in 5.3.10.

5.2 Plugin System

As is shown in figure 5.1, the build process includes two steps where plugins may be inserted if
needed. The intention of the plugin system is to simplify the introduction of small, less critical
modifications to the toolchain and keep those separate from the “core“-toolchain of Muen. A tool
is considered to be part of the core-toolchain if it is needed to build the bootable system image.
Additionally, Mucfgvalidate is considered part of the core-toolchain, too.

An example of a plugin is the documentation-plugin (see 5.4.2). It can help to build documen-
tation for a system and the user can easily adjust its functionality and the underlying XSD-schema
as needed. Similarly, a plugin can be used to extend the automatically generated headers of
components.

To hide the additional information in the policy from tools that may not be able to digest them,
muxmlfilter (see 5.4.1) is used to remove such parts of the policy before processing it. That
way, changes in the plugins have minimal impact on the core toolchain.

To enable the validation of extended policies, the plugin system includes tools that extend
policy format definitions. Hence, there may be extended versions of Source Format, Format A and
Format B, depending on plugin usage.

5.3 Core Tools

This section describes the tools which form the core of the Muen toolchain.

5.3.1 Component Virtual Resource Allocator

The tool mucfgcvresalloc processes a user provided component specification and outputs a
finished, schema compliant description of the component interface. Just like mucfgmerge it
supports inclusion of external files, conditionals, expressions and substitutions. Furthermore, it
can automatically allocate virtual resources as described below.

Name

mucfgcvresalloc
Input

Component configuration as XML, colon-separated list of include paths
Output

Component specification as XML in component format

The main processing steps are:
1. Merge XIncludes of main XML file, i.e., insert the referenced files at the given location;
2. Evaluate expressions, conditionals and substitutions;

3. Assign missing virtual addresses of channels and memory regions, as well as arrays of channels
and memory regions;

2nttps://github.com/Solo5/s0lo5

16

https://github.com/Solo5/solo5

4. Assign missing IRQs of channel reader events and arrays of channel readers;
5. Assign missing event IDs of channel writer events and arrays of channel writers;

Virtual addresses, IRQs and event IDs are considered to be wvirtual resources. Each of the
three virtual resources has its own domain. To request automatic allocation of the attribute
virtualAddress (or virtualAddressBase for arrays) omit the attribute. To request auto-
matic allocation of event ids of readers or writers the respective attribute must be set to auto.

To determine which addresses or ids to choose, mucfgcvresalloc looks at the addresses and
ids already present in the file. Dependencies of virtual resources through libraries or the system
policy can be resolved by manually assigning such resources.

5.3.2 Virtual Resource Allocator

The tool mucfgvresalloc processes the joined system policy and outputs a system policy in
format source. Its purpose is to automatically allocate virtual resources within subject descriptions.

Name
mucfgvresalloc
Input
Joined system policy as XML
Output
System policy where all virtual resources of subjects have been assigned

mucfgvresalloc can assign virtual addresses of channels and memory regions, IRQs of chan-
nel reader events, and IDs of channel writer events. These attributes are considered to be wvirtual
resources. Each of the three virtual resources has its own domain. To request automatic allocation
of the attribute virtualAddress omit the attribute. For the other two resources the respective
attribute must be set to auto.

To determine which value to choose for a virtual resource, mucfgvresalloc processes each
subject separately. For each subject, it gathers virtual resources already set in the component
that is referenced by the subject and resources set in the subject itself. Thereafter, missing virtual
resources are either set to the value fixed by the component (if possible) or chosen from the
remaining space in the respective domain.

Dependencies of virtual resources through libraries or devices can be resolved by manually
assigning such resources.

5.3.3 Policy Merger

The merger tool mucfgmerge combines user-provided system policy files into a single XML doc-
ument.

Name

mucfgmerge
Input

System configuration as XML, colon-separated list of include paths
Output

System policy in format source (merged)

This tool reads the system configuration and merges the specified system policy, hardware and
platform files into a single file. To ease the creation of many similar variants of a system the
provided system policy may use templates, expressions, conditionals and amend statements. The
main processing-steps are:

1. Merge XlIncludes of system policy into the system policy, i.e., insert the referenced files at
the given location;

2. Merge hardware, additional hardware and platform specifications into the system policy. This
includes merging the platform configuration section into the global configuration section;

3. Instantiate the templates, using the provided values and variable names;

17

Evaluate expressions, resulting in new configuration variables;
Replace all references to configuration variables with their value;

Evaluate conditionals, i.e., decide which sub-trees of the XML-tree to discard;

NS o e

Evaluate amend statements, i.e., move sub-trees within the XML-tree.

The result is in policy source format and re-formatted so changes to the policy by subsequent
build steps can be manually reviewed or visualized by diffing the files. In particular, the result
does not contain any templates, expressions, conditionals or amend statements. The tool has debug
modes that increase the verbosity of the output, in particular in case of errors.

5.3.4 Component Specification Joiner

The Muen component specification joiner adds component XML specifications to the component
section of a specified system policy and writes the result to a designated output file. Each given
component/library specification is loaded and validated against the component specification XML
schema. If it is correct the content is added to the components section of the system policy specified
as input file. If the given system policy does not yet contain a components section, it is created.
The result is written to the file specified by the —o parameter. In-place processing is supported by
passing in the same value for input and output file.

Name

mucfgcjoin
Input

System policy in format source, comma-separated list of component specs
Output

System policy in format source (joined)

5.3.5 Expander

The expander completes the user-provided system policy by creating or deriving additional con-
figuration elements.

Name

mucfgexpand
Input

System policy in format source
Output

System policy in format A (expanded)

The Expander performs the following actions:

o Pre-check the system policy to make sure it is sound
o Expand channels

o Expand device resources

o Expand device isolation domains

o Expand kernel sections

¢ Expand minimal 70 subject

o Expand additional memory regions

o Expand hardware-/platform-related information
o Expand additional subject information

o Expand profile-specific information

o Expand scheduling information

e Post-check resulting policy

18

5.3.6 Allocator

The Allocator is responsible to assign a physical address to all global memory regions.

Name
mucfgalloc
Input
System policy in format A
Output
System policy in format B (allocated)

First, the Allocator initializes the physical memory view of the system based on the physical
memory blocks specified in the XML hardware section. It then reserves memory that is occupied
by pre-allocated memory elements (i.e. memory regions with a physical address or device memory).
Finally it places all remaining memory regions in physical memory. In order to reduce the size of
the final system image file-backed memory regions are placed at the start of memory.

5.3.7 Validator

The Validator performs additional checks that go beyond the basic restrictions imposed by the
XML schema validation. For example it checks that the hardware provides an IOMMU device and
that all references to subjects are resolvable. See 6 for a complete list of all executed checks. The
tool aborts with a non-zero exit status and an explanatory message to the user if checks fail.

Name

mucfgvalidate
Input

System policy in format B
Output

None, raises exception on error

5.3.8 Hasher

The mucfgmemhashes tool is used to add memory integrity hashes to a given policy.

Name

mucfgmemhashes
Input

System policy in format B, colon-separated list of input directories containing build artifacts
Output

System policy in format B with memory integrity hashes

The tool appends a hash to all memory regions with fill and file content. It must run after all
files have been generated by the structure generator tools.

The actual hash is generated using the SHA-256 algorithm and is intended to be used to verify
the integrity of memory regions during runtime.

Note that no hashes are generated for sinfo memory regions. Since the hash information is
exported via sinfo, and the sinfo region is itself part of the memory information of a subject, this
hash would be self-referential.

The tool also replaces all occurrences of hashRef elements. A hash reference element instructs
the tool to copy the hash element of the referenced memory region after message digest generation.

From an abstract point of view, the hashRef element is a way to link multiple memory regions
by declaring that the hash of the content is the same. The hash may serve as an indicator on how to
reconstruct the (initial) content of a memory region. This mechanism is used by e.g. the subject
loader (SL) during subject init and reset operation. The subject loader expansion step remaps
writable memory regions of the loadee (the subject under loader control) to SL and replaces the
original regions with new ones containing a hash reference to the associated physical memory
region. This way SL is able to determine the intended content of the target memory region by
looking up the region in its sinfo page using the hash value as key.

19

5.3.9 Tau0 Command Stream Generator

The mugentaulOcmds tool creates an XML command stream for 70 to let it compose the system
image specified by the system policy given as input.

The tool reads the policy in format B and translates it to a sequence of commands as shown
in the following listing:

<tau0>

<commands>
<addMemoryBlock address="16#0000#" size="157"/>
<addMemoryBlock address="16#0010_0000#" size="130816"/>
<addMemoryBlock address="16#2020_0000#" size="130564"/>
<addMemoryBlock address="16#4000_5000#" size="453932"/>
<addMemoryBlock address="16#bae9_f000#" size="256"/>
<addMemoryBlock address="16#baf9 f000#" size="96"/>
<addMemoryBlock address="16#0001_0000_0000#" size="3401216"/>
<addMemoryBlock address="16#ba3b_a000#" size="23"/>
<addMemoryBlock address="16#bb80_0000#" size="16896"/>
<addProcessor id="0" apicId="0"/>
<addProcessor id="1" apicId="2"/>
<addIoapic sid="16#f0£f8#"/>
<createlegacyDevice device="0"/>
<addIOPortRangeDevice device="0" from="16#03c0#" to="16#03df#"/>
<addMemoryDevice device="0" caching="WC" address="16#000a_0000#" size="32"/>
<activateDevice device="0"/>
<createlegacyDevice device="1"/>
<addIOPortRangeDevice device="1" from="16#0060#" to="16#0060#"/>
<addIOPortRangeDevice device="1" from="16#0064%" to="16#0064#"/>
<addIRQDevice device="1" irg="1"/>
<addIRQDevice device="1" irg="12"/>
<activateDevice device="1"/>
<createlegacyDevice device="2"/>
<addIOPortRangeDevice device="2" from="16#0070#" to="16#0071#"/>
<activateDevice device="2"/>
<createlegacyDevice device="3"/>
<addIOPortRangeDevice device="3" from="16#0cfo#" to="16#0cfo#"/>
<addIOPortRangeDevice device="3" from="16#0404#" to="16#0404#"/>
<activateDevice device="3"/>
<createlegacyDevice device="4"/>
<addMemoryDevice device="4" caching="UC" address="16#fec0_0000#" size="1"/>
<activateDevice device="4"/>

Listing 5.1: 70 Command Stream

As 70 strictly enforces certain invariants, the system must be constructed in a way not to
violate these invariants. For example, before memory can be typed as being a VT-d root table,
this memory must be cleared. Otherwise the memory typing model of 70 is violated.

The mugentaulOcmds tool must take this into consideration when iterating over the resources
specified in the input system policy and generating commands which instruct 70 to create the
specified system.

Name
mugentaulcmds
Input
System policy in format B
Output
XML command stream for 70 static

5.3.10 TauO Static

The 70 static component serves as an image composer during integration. The concept and moti-
vation of this approach is described in chapter 4.

Name
taul0_main
Input
XML command stream, colon-separated list of input directories containing build artifacts
Output
Muen system image
Output format
Command Stream Loader (CSL) image®, bootable by any compliant bootloader.

3https://www.codelabs.ch/download/bsbsc-spec.pdf

20

https://www.codelabs.ch/download/bsbsc-spec.pdf

If a command is received which violates a constraint enforced by 70 static, the tool aborts
system image construction, displays an error message and returns with a non-zero exit status.

5.3.11 Structure Generators

These tools do not change the policy and use it read-only.

MSR Stores Generator
Generate MSR store for each subject with MSR access.

Name
mugenmsrstore
Input
System policy in format B
Output
MSR store files of subjects in binary format
Output format
Intel SDM Vol. 3C, "24.8.2 VM-Entry Controls for MSRs" and Intel SDM Vol. 3C, "24.7.2
VM-Exit Controls for MSRs".

The tool generates MSR stores for each subject. The MSR store is used to save/load MSR
values of registers not implicitly handled by hardware on subject exit/resumption.

MSR stores are used by hardware (VT-x) to enforce isolation of MSR (i.e. subjects that have
access to the same MSRs cannot transfer data via these registers).

ACPI Tables

Generate ACPI tables for all Linux subjects.

Name
mugenacpi
Input
System policy in format B
Output
ACPI tables of all Linux subjects
Output format
Advanced Configuration and Power Interface (ACPI) Specification®

ACPI tables are used to announce available hardware to VM subjects. A set of tables consists
of an RSDP, XSDT, FADT and DSDT table. See the ACPI specification for more information
about a specific table.

Linux Zero Pages

Generate Zero Pages for all Linux subjects.

Name

mugenzp
Input

System policy in format B
Output

Zero pages of all Linux subjects
Output format

Linux Boot Protocol®

Zero Page®

4nttp://www.acpi.info/DOWNLOADS/ACPIspec50.pdf
Snttps://www.kernel.org/doc/Documentation/x86/boot .txt
Shttps://www.kernel.org/doc/Documentation/x86/zero—page.txt

21

http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf
https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.kernel.org/doc/Documentation/x86/zero-page.txt

The so-called Zero Page (ZP) exports information required by the boot protocol of the Linux
kernel on the x86 architecture. The kernel uses the provided information to retrieve settings about
its runtime environment:

o Type of bootloader
e Map of physical memory (820 map)
o Address and size of initial ramdisk(s)

e Kernel command line parameters

Solo5 Boot Info

Generate Solo5 boot info structures for MirageOS unikernels” running on the Solo5 platform.

Name
mugensolob
Input
System policy in format B
Output
Solob boot info for all MirageOS subjects
Output format
struct hvt_ boot_ info®

The boot info structure exports information required by Solo5. The unikernel uses the provided
information to retrieve settings about its runtime environment:

o Memory size in bytes

e Address of end of unikernel

e CPU cycle counter frequency, Hz

o Address of command line (C string)

e Address of application manifest

Kernel Source Specifications

Generate source specifications used by kernel.

Name
mugenspec
Input
System policy in format B
Output
Source specifications in SPARK, C and GPR format

Gathers data from the system policy to generate various source files in SPARK, C and GNAT
project file (GPR) format. Created output includes constant values for memory addresses, device
resources, scheduling plans, etc. See the description of the Skp package hierarchy in the Muen
Kernel Specification document [2] for the exact information these packages provide.

"https://mirage.io
8https://github.com/Solo5/solo5/blob/master/include/solo5/hvt_abi.h

22

https://mirage.io
https://github.com/Solo5/solo5/blob/master/include/solo5/hvt_abi.h

Component Source Specifications

Process component description and generate source specifications from it.

Name
mucgenspec
Input
Component description in XML
Output
Component source specifications in SPARK

The component spec generation tool generates Ada/SPARK packages containing constants
of the declared logical component resources. The generated specifications can be used in the
component source code to access the declared resources.

Subject Info (sinfo)

Generate subject information data for each subject.

Name
mugensinfo
Input
System policy in format B
Output
Subject info data in binary format
Output format
As specified in [1] and common/musinfo/musinfo.ads

The Sinfo page is used to export subject information data extracted from the system policy to
subjects. Currently, information about available memory regions, communication channels, events,
vectors and assigned PCI devices is provided.

5.4 Plugins

This section lists tools which are either plugins for the toolchain or support the plugin system.

5.4.1 XML Filtering

The muxmlfilter tool can filter a given XML-file such that the output satisfies a given schema
definition.

Name
muxmlfilter
Input
XSD-Schema, XML-file
Output
Filtered XML-file where all nodes not allowed by the given schema have been deleted

The filter is intended for XML files that satisfy the target schema, except for some added
element-nodes that are not allowed by the schema. The possibility to filter out some elements is
needed to make toolchain-plugins possible (see 5.2).

The given schema can either be one of the built-in schemata (in which case it can be given
by name), or it can be specified by a file-path. While muxmlfilter is not specific to Muen
policies, the used schema needs to satisfy a number of technical restrictions. These are described
in tools/libmuxml/schema_plugins/README.md

23

5.4.2 Documentation Transfer
The doc_transfer script can extend a given policy B with documentation nodes.

Name

doc_transfer
Input

Policy B XML-file, joined policy XML-file
Output

Policy B with added documentation

The tool processes the given joined policy and extracts a list of target XPath-addresses paired
with an XML-node containing documentation. This list is then applied to the given policy B,
which effectively transfers documentation from the given joined policy to the given policy B. This
way, documentation information that was present in policy src can be reinserted in policy B. The
amended policy B can serve as a single source for documentation information.

5.5 Additional Tools

This section lists additional helper tools which simplify the process of generating and validating a
Muen system.

5.5.1 Kernel ELF Checker

The mucheckelf tool enforces that the format of a given Muen kernel ELF binary matches the
kernel memory layout specified in a system policy. Furthermore, the ELF kernel entry point is
compared to the expected value.

Size, VMA (Virtual Memory Address) and permissions of binary ELF sections are validated
against kernel memory regions defined in the policy. The following table lists the correspondence
of ELF section names to logical kernel memory region names.

ELF Section | Memory Name
text kernel text

.data kernel data

.rodata kernel ro

.bss kernel bss
.globaldata kernel global_ data

5.5.2 Stack Usage Checker

The mucheckstack tool statically calculates the worst-case stack usage of a native Ada/SPARK
component or the Muen kernel compiled with the -fcallgraph-info switch®.

The tool takes a GNAT project file and a stack limit in bytes as input. All control-flow
information (.ci) files found in the object directory of the main project and all of its dependencies are
parsed. Once the control-flow graph is constructed the maximum stack usage of each subprogram
is calculated and checked against the user-specified limit. The tool exits with a failure if a stack
usage exceeding the limit is detected.

Note that the tool is not applicable to arbitrary software projects as it does not handle dynam-
ic/unbounded stack usage and recursion. In the context of the Muen project these cases can not
occur since they are prohibited by the following restriction pragmas:

e No Recursion
e No_Secondary Stack
e No_ Implicit_ Dynamic_ Code

Additionally, the ~-Wstack—-usage compiler switch warns about potential unbounded stack
usage.

9https://www.adacore.com/uploads/technicalfpapers/Stackii—\nalysis.pdf

24

https://www.adacore.com/uploads/technical-papers/Stack_Analysis.pdf

5.5.3 Hardware Config Generator

The mugenhwcfg'® tool has been created to automate the process of gathering all necessary
hardware information. To collect data for a new target hardware all that is required is to run the
tool on a common Linux distribution'!. See the project README for more information.

Name
mugenhwcfg
Input
None
Output
Hardware description in output .xml

The tool is implemented in a way to extract as much information from the system and generate
a hardware configuration even if problems are encountered. The aim is to assist the integrator as
much as possible in writing a hardware configuration for the target hardware.

Therefore, the tool only fails with a non-zero exit status and no output if essential required data
can not be extracted from the system. Other problems are reported in the potentially incomplete
output .xml file as XML comments, making the encountered problems on the actual machine
evident. The following snippet provides an example of such a warning comment in the header of
the generated output .xml file:

* WARNING x: Unable to resolve device class 0c80. Please update pci.ids
(-u) and try again

The comments should be rather self-explanatory. In this case, the problem is only a minor issue
since the tool was simply unable to resolve a device class number to a human-readable string.
The next example has more consequences:

* WARNING x: Skipping invalid IRQ resource for device 0000:00:1f.3: None

This has the effect that no IRQ resource is appended in the specification of the device exhibiting
this problem. While the device can still be assigned to a subject, it is missing the IRQ element
and as a result the IRQ resource itself. It can be assumed that this leads to problems with the
driver interacting with the device. For proper operation, it is the policy writer’s task to rectify the
hardware specification by determining the correct configuration manually.

5.5.4 Component Binary Splitter

The mucbinsplit tool splits component binaries into multiple files, one per ELF section.

Name
mucbinsplit
Input
Component description in XML, Component ELF binary
Output
Binary files corresponding to ELF sections, processed component description in XML

The component binary splitter tool processes component binaries and creates a separate file for
each ELF section. The component XML description is extended by adding a file-backed memory
region for each ELF section with the appropriate virtual mapping address, size and access rights.
The RIP value is set to the ELF entry point of the component binary.

The resulting processed component description is written to the given output location while
the binary section files are written to the specified output path.

10https ://git.codelabs.ch/?p=muen/mugenhwcfg.git
Hnttps://github.com/roburio/mugenhwcfg-1live

25

https://git.codelabs.ch/?p=muen/mugenhwcfg.git
https://github.com/roburio/mugenhwcfg-live

5.5.5 Microcode Updates

The mucfgucode tool is used to enable Intel processor microcode updates (MCU) on Muen.

Name
mucfgucode
Input
System policy in format source, directory containing Intel microcode updates
Output
System policy in format source containing a file-backed microcode memory region. The Intel
microcode update blob is copied to the specified output directory

The microcode update tool processes a system policy in format source, extracts the signature
of the target processor from the CPUID leaf 1 eax register value and executes the iucode—tool'?
for the specified directory containing Intel microcode updates. See the Intel SDM Vol. 3A, "9.11
Microcode Update Facilities" for more information on Intel MCU.

The tool adds a file-backed physical memory for a matching MCU of the given processor. Also,
the MCU is copied to the specified output directory with a .ucode suffix.

If a physical memory region for MCU already exists, it is removed before further processing.
The system policy is left unchanged if the tool does not find an applicable MCU for the target
processor.

12https://gitlab.com/iucode-tool/iucode-tool /- /wikis /home

26

Kernel Source

Hardware de-
scription (.xml)

scription (.xml)

‘ ‘ Platform de- ‘ ‘ System descrip-

tion (.xml)

Y

!

Policy Merger
(mucfgmerge

Policy Source (.xml)

Join system and com-

(mucfgjoin)

!

Joined policy (.xml)

Virtual Re-
source Allocation
(mucfgvresalloc)

'

Policy with virtual
resources (.xml)

XML Filter
(muxmlfilter

Core policy (.xml)

Logical expansion
(mucfgexpand)

Core Policy A (.xml)

Physical ad-
dress allocation
(mucfgalloc)

‘ Toolchain plugins

‘4—‘ Core Policy B (.xml) }—\

Extended Pol-
icy B (.xml)

Policy Validation
(mucfgvalidate)

—

Muen Kernel
Spec Generator
(mugenspec)

Command Stream
Generator
(mugentauOcmds)

Structure Generators
(mugenacpi, mu-
genmsrstore, ...)

'

!

!

Specification for Muen
Kernel (.ads, .c, .gpr)

Kernel Binary

Tau0 com-
mand stream

> Tau0
_E (taan“llnain) <

ponent descriptions < —— e

for each, component:

Sources for Com-
ponent Spec

Extract con-
tent and merge
(xslt)

Parametrized

Cspecs Source

Virtual Resource Allo-
cation for Component
(mucfgvresalloc)

XML Component
Specification (.xml)

XML Filter
(muxmlfilter)

Core XML
Cspecs (.xml)

Header generation
(mucgenspec)

Component
headers (.ads)

Toolchain plugins | ——

Extended
Headers (.ads)

‘ Component Source

(.adb, .ads)

Compiler
Component binary

Binary Splitting
(mucbinsplit)

Subject spe-
cific artifacts

XML Cspec with Refs

Separated Sec-
tions of Binary

Hash Generation |~
(mucfgmemhashes)

Core Policy B
with hashes

Extract Subject Infos
(mugensinfo)

Sinfo binary data

Bootabe Sys-
tem Image

Figure 5.1: Build process

27

Chapter 6

Policy Validation

Prior to operate on the policy, any tool outlined in the toolchain section 5.3 checks all required
preconditions by running validator procedures. For example a tool accessing physical devices via
subject logical device references will execute a validator checking such references for validity.

Before the policy is used to generate system structures like sinfo regions, or the command
stream for 70, the expanded policy in format B is validated by executing a comprehensive set of
checks. This is done by the mucfgvalidate tool outlined in section 5.3.7.

The following sections list the various checks executed by mucfgvalidate and the other Muen
build tools in the toolchain.

6.1 Configuration

The following checks are performed to guarantee correctness of configuration options in the system
policy.

o Validate config variable name uniqueness.

e Check that all booleans defined in config contain a valid value.

e Check that all integers defined in config contain a valid value.

e Check that all expression config variable references are valid.

e Check that all integers defined in expressions contain a valid value.
¢ Check that all booleans defined in expressions contain a valid value.

e Check that all conditional config variable references are valid.

6.2 Devices

The following checks are performed to guarantee that hardware devices are correctly configured in
the system policy.

o Validate that devices referenced by logical devices exist.

o Validate that device names (including device aliases/classes) are unique.
o Validate that all physical IRQs are unique.

o Validate that physical device IRQs referenced by logical IRQs exist.

« Validate that ISA TRQs fulfill their constraints.

¢ Validate that PCI LSI IRQs fulfill their constraints.

¢ Validate that PCI MSI IRQs fulfill their constraints.

o Validate that PCI MSI IRQs are consecutive.

28

Validate that physical IRQ names are unique per device.

Validate that all I/O start ports are smaller than end ports.

Validate that physical I/O ports referenced by logical I/O ports exist.

Validate that all physical I/O ports are unique.

Validate that physical I/O port names are unique per device.

Validate that device memory names are unique per device.

Validate that device memory referenced by logical device memory exists.

Validate that PCI device bus, device, function triplets are unique.

Validate that logical device references of each subject do not refer to the same physical device.
Validate that PCI device reference bus, device, function triplets are unique per subject.

Validate that all device references specifying a bus, device, function triplet are references to
physical PCI devices.

Validate that all device references to PCI multi-function devices belong to the same subject
and have the same logical device number.

Validate that all device references not specifying a bus, device, function triplet are references
to physical legacy (non-PCI) devices.

Validate that all logical PCI devices specify bus number zero.

Validate that all IOMMU memory-mapped IO regions have a size of 4K.

6.3 Device Domains

The following checks are performed to guarantee that IOMMU device domains are correctly con-
figured in the system policy.

Validate that domain device references are unique.

Validate that no virtual memory regions of a domain overlap.

Validate that domain memory referenced by subjects is mapped at the same virtual address.
Validate memory type of physical memory referenced by domains.

Validate that each device referenced by a device domain is a PCI device.

Validate that each device domain has a physical PT memory region.

Validate that each PCI bus has a physical VT-d context memory region.

6.4 Events

The following checks are performed to guarantee that events are correctly configured in the system
policy.

Check that all physical event names are unique.

Check that each global event has associated sources and one target.

Check subject event references.

Validate that there are no self-references in subject’s event notification entries.

Validate that notification entries switch to a subject running on the same core and in the
same scheduling group.

29

Validate that target subjects of IPI notification entries run on different logical CPUs.
Validate that target event IDs as well as logical names are unique.

Validate that source event IDs as well as logical names are unique per group.

Check source event ID validity.

Check that source event IDs of the VMX Exit group are all given or a default is specified.
Check that self events provide a target action.

Check that kernel-mode events have an action specified.

Check that system-related actions are only used with kernel-mode events.

Check that level-triggered IRQs have a corresponding unmask TRQ event.

6.5 Files

The following file-specific checks are performed.

Check existence of files referenced in XML policy.

Check if files fit into corresponding memory region.

6.6 Hardware

The following checks are performed on the hardware section of the policy.

Validate that memory regions fit into available hardware memory.

Validate that no memory blocks overlap.

Validate that the size of memory blocks is a multiple of page size.

Validate that PCI config space address and size are specified if PCI devices are present.
Validate that the hardware provides enough physical CPU cores.

Validate that the processor CPU sub-elements are correct.

Validate that at least one I/O APIC device is present.

Validate that all I/O APICs have a valid source ID capability.

Validate that at least one and at most eight IOMMU devices are present.

Validate that all IOMMUSs have the AGAW capability set correctly and that multiple IOM-
MUs specify the same value.

Validate that all IOMMUs have correct register offset capabilities.

Check that the hardware contains a system board device providing the expected configura-
tion.

30

6.7 Kernel

The following kernel-specific checks are performed on the policy.

Validate that all CPU-local data section virtual addresses are equal.
Validate that all CPU-local BSS section virtual addresses are equal.

Validate that all global data section virtual addresses are equal and that the expected number
of mappings exists.

Validate that all stack virtual addresses are equal.
Validate that all crash audit mappings exist and that their virtual addresses are equal.
Validate that all (if any) microcode update virtual addresses are equal.

Validate that every kernel has a stack and interrupt stack region mapped and both regions
are guarded by unmapped pages below and above.

Validate that all IOMMU memory-mapped 1O regions are consecutive.
Validate that each active CPU has a memory section.
Validate that no virtual memory regions of the kernel overlap.

Validate that the system board is referenced in the kernel logical devices section and that it
provides a logical reset port.

Validate that the debug console device and its resources matches the kernel diagnostics device
specified in the platform section.

6.8 Memory

The following checks are performed to verify that the memory is correctly configured in the system
policy.

Validate that a VMXON region exists for every specified kernel.
Validate size of VMXON regions.

Validate that VMXON regions are in low-mem.

Validate that all VMXON regions are consecutive.

Validate that a VMCS region exists for each declared subject.
Validate size of VMCS regions.

Validate that physical memory region names are unique.
Validate that physical memory referenced by logical memory exists.
Validate that all physical memory addresses are page aligned.
Validate that all virtual memory addresses are page aligned.
Validate that all memory region sizes are multiples of page size.

Validate kernel or subject entities encoded in physical memory names (e.g. linux|zp or
kernel _0|vmxon).

Validate that no physical memory regions overlap.
Validate that an uncached crash audit region is present.

Validate that there is either zero or exactly one MCU region present.

31

Validate that a kernel data region exists for every CPU.

Validate that a kernel BSS region exists for every CPU.

Validate that a kernel stack region exists for every CPU.

Validate that a kernel interrupt stack region exists for every CPU.
Validate that a kernel PT region exists for every CPU.

Validate that kernel PT regions are in the first 4G.

Validate that scheduling info regions are mapped by the kernel running subjects of that
scheduling partition. Also verify that the kernel mapping is at the expected virtual location.

Validate that a subject state memory region with the expected size exists for every subject.

Validate that a subject interrupts memory region with the expected size exists for every
subject.

Validate that memory of type kernel is only mapped by kernel or Tau0.
Validate that memory of type system is not mapped by any entity.
Validate that memory of type 'device’ (e.g. device rmrr) is only mapped by device domains.

Validate that subject state memory regions are mapped by the kernel running that subject.
Also verify that the kernel mapping is at the expected virtual location.

Validate that subject interrupts memory regions are mapped by the kernel running that
subject. Also verify that the kernel mapping is at the expected virtual location.

Validate that subject MSR store memory regions are mapped by the kernel running that
subject. Also verify that the kernel mapping is at the expected virtual location.

Validate that subject timed event memory regions are mapped by the kernel running that
subject. Also verify that the kernel mapping is at the expected virtual location.

Validate that subject VMCS regions are mapped by the kernel running that subject. Also
verify that the kernel mapping is at the expected virtual location.

Validate that subject FPU state regions are mapped by the kernel running that subject. Also
verify that the kernel mapping is at the expected virtual location.

Validate that a subject FPU state memory region with the expected size exists for every
subject.

Validate that a subject timed event memory region with the expected size exists for every
subject.

Validate that a subject I/O Bitmap region with the expected size exists for every subject.
Validate that a subject MSR Bitmap region with the expected size exists for every subject.

Validate that a subject MSR store memory region exists for each subject that accesses MSR
registers not managed by VMCS.

Validate that a subject pagetable memory region exists for each subject.
Validate that a scheduling info memory region exists for each scheduling partition.
Validate that subjects map the scheduling info region of their associated scheduling partition.

Validate that subject state, timed event and pending interrupts memory regions are only
mapped writable by subjects in the same scheduling group or by siblings.

Validate size of VT-d root table region.
Validate size of VT-d context table region.
Validate that a V'T-d root table region exists if domains are present.

Validate that a VT-d interrupt remapping table region exists.

32

6.9 Model Specific Registers (MSR)

The following checks are performed to verify Model Specific Register (MSR) specifications in the
system policy.

Validate that all MSR start addresses are smaller than end addresses.
Validate that subject MSRs are in the allowed list:

— IA32_SYSENTER_CS/ESP/EIP

— IA32_DEBUGCTL

— IA32_EFER/STAR/LSTAR/CSTAR/FMASK
— IA32_FS_BASE/GS_BASE/KERNEL_GS_BASE
— MSR_PLATFORM_INFO

— IA32_THERM_STATUS

— IA32_TEMPERATURE_TARGET

— IA32_PACKAGE_THERM_STATUS

— MSR_RAPL_POWER_UNIT

— MSR_PKG_POWER_LIMIT

— MSR_PKG_ENERGY_STATUS

— MSR_DRAM_ENERGY_STATUS

— MSR_PP1_ENERGY_STATUS

— MSR_CONFIG_TDP_CONTROL

— IA32_PM_ENABLE

— IA32_HWP_CAPABILITIES

— IA32_HWP_REQUEST

6.10 Platform

The following checks are performed to verify the correctness of the platform configuration in the
system policy.

Validate that physical devices referenced by device aliases exist.
Validate that physical device resources referenced by device aliases exist.
Validate that physical devices referenced by device classes exist.

Validate that subject devices that reference an alias only contain resources provided by the
device alias.

Validate that the physical device and resources referenced by the kernel diagnostics device
exists.

Validate that the kernel diagnostics device resources match the requirements of the specified
diagnostics type.

6.11 Scheduling

The following checks are performed to verify the correctness of the scheduling configuration in the
system policy.

Validate that scheduling partition IDs are unique.
Validate that scheduling group IDs are unique.

Validate that each major frame specifies the same number of CPUs.

33

Validate that scheduling partitions are scheduled in at least one minor frame and that all
minor frame references are on the same logical CPU.

Validate subject references.

Validate that subjects are scheduled on the correct logical CPU.
Validate that subjects are part of exactly one scheduling group.
Validate that all subjects of a scheduling group are runnable.
Validate tick counts in major frame.

Validate that barrier IDs do not exceed barrier count and are unique.
Validate that barrier sizes do not exceed the number of logical CPUs.

Validate that the barrier sizes and count of a major frame corresponds to the minor frame
synchronization points.

Validate that minor frame barrier references are valid.

Validate partition references in minor frames.

6.12 Subjects

The following checks are performed to verify the correctness of the subject configuration in the
system policy.

Validate subject name uniqueness.

Validate subject CPU ID.

Validate uniqueness of global subject IDs.

Validate per-CPU uniqueness of local subject IDs.

Validate memory types of memory mappings (ie. allow access by subjects).
Validate that no subject references an IOMMU device.

Validate that all subjects are runnable, i.e. referenced in a scheduling group.

Validate that subject scheduling group IDs match values as determined by the scheduling
plan and handover events.

Validate that logical names of subject memory regions are unique.
Validate that logical names of subject devices are unique.
Validate that IRQ vector numbers of PCI device references with MSI enabled are consecutive.

Validate that logical names of subject unmask IRQ events conform to the naming scheme
(unmask_irg $IRONR) and that the unmask number matches the physical IRQ.

Validate that no virtual memory regions of a subject overlap.
Validate that multiple initramfs regions are consecutive.

Validate that no subject has write access to the crash audit region.
Validate that subject device mmconf mappings are correct.

Validate that the VMX controls conform to the checks specified in Intel SDM Vol. 3C, "26.2.1
Checks on VMX Controls".

Validate that the Pin-Based VM-Execution controls meet the requirements for the execution
of Muen.

34

Validate that the Processor-Based VM-Execution Controls meet the requirements for the
execution of Muen.

Validate that the secondary Processor-Based VM-Execution Controls meet the requirements
for the execution of Muen.

Validate that the VM-Exit Controls meet the requirements for the execution of Muen.
Validate that the VM-Entry Controls meet the requirements for the execution of Muen.

Validate that the VMX CRO guest/host masks meet the requirements for the execution of
Muen.

Validate that the VMX CR4 guest/host masks meet the requirements for the execution of
Muen.

Validate that the VMX Exception bitmap meet the requirements for the execution of Muen.

35

Chapter 7

Policy Structure

7.1 Policy Schema Documentation

7.1.1 systemType

A Muen system policy specifies all hardware resources such as physical memory, devices, CPU
time, etc and how these resources are accessed by the separation kernel, the subjects and devices.
The system section is the top-level element in the Muen system policy. It contains various
sub-elements which specify all aspects of a concrete system.
This is the source format of the Muen system policy. It allows for abstractions, such as channels,
which are broken down into their constituent parts by the toolchain in format A and B accordingly.
See line 3 and following in listing 8.1 on page 105 for an annotated system policy example.

36

Structure

configy. . 1
configType
hardware; . 1
7 hardwareType
platformg. . 1
> platformType
memory;. . .1
memRegionsType
deviceDomainsg. . 1
deviceDomainsType
eventsy. . 1
eventsType
channelsp. . 1
> channelsType
com t
ponentsy. . 1
> componentsType
subjectsy. . 1
subjectsType
schedulin
g1...1

scheduling Type

7.1.2 configType

The purpose of a config section is to specify configuration values which parameterize a system or
a component. It allows to declare boolean, string and integer values. The following sections in the
system policy provide support for configuration values:

e System
e Platform

o Component

During the build process, configuration values provided by the platform are merged into
the global system configuration. Component configuration values allow the parameterization of
component-local functionality.

Besides component parameterization, configuration options can be used in if conditionals, as
shown in the following example.

<if variable="xhcidbg_enabled" value="true">

</if>

37

If the type of the referenced variable is ’string’ the comparison is case-sensitive. A second use
case is XML attribute value expansion as follows:

<channel name="debuglog" size="$logchannel_size"/>

The size attribute value is not specified directly, but parameterized via an integer configura-
tion option.
See line 17 in listing 8.1 for an example config section.

Structure

booleang = *
booleanConfigValueType

integerg. *
— integerConfigValueType

stringg, | *
stringConfigValueType

7.1.3 booleanConfigValueType

Configuration option for values in boolean format.

Attributes
Name Type Use
name nameType optional

Name of the configuration option.

value booleanType optional
Value of the configuration option.

7.1.4 nameType

Base: xs:string
The nameType is used to give (unique) names to elements.

Restrictions

minimal length = 1, maximal length = 63

7.1.5 booleanType

Base: xs:string
Boolean type.

Restrictions

values:
e true

o false

38

7.1.6 integerConfigValueType

Configuration option for values in integer format.

Attributes
Name Type Use
name nameType optional

Name of the configuration option.

value xs:integer optional
Value of the configuration option.

7.1.7 stringConfigValueType

Configuration option for values in string format.

Attributes
Name Type Use
name nameType optional

Name of the configuration option.

value xs:string optional
Value of the configuration option.

7.1.8 hardwareType

Systems running the Muen SK perform static resource allocation at integration time. This means
that all available hardware resources of a target machine must be defined in the system policy in
order for these resources to be allocated to subjects.

The hardware element is the top-level element of the hardware specification in the system
policy. Information provided by a hardware description includes the amount of available physical
memory blocks including reserved memory regions (RMRR), the number of physical CPU cores
and hardware device resources.

The Muen toolchain provides a handy tool to automate the cumbersome process of gathering
hardware resource data from a running Linux system: mugenhwcfg?.

See line 81 in listing 8.1 for an example hardware section.

Structure

processorg. . .1

—>
processor Type

3 memoryop. . .1
—] physicalMemoryType

devicesg. . 1
devicesType

7.1.9 processorType

The processor element specifies the number of CPU cores, the processor speed in kHz and the
Intel VMX preemption timer rate.

Since Intel CPUs can have arbitrary APIC identifiers, the APIC IDs of all physical CPUs are
enumerated here. The APIC ID is required for interrupt and IPI routing.

Thttps://git.codelabs.ch/?p=muen/mugenhwcfg.git

39

The processor element also lists register values for all CPUID leaves of the hardware target,
and some MSR values of interest.

See line 100 in listing 8.1 for an example processor element. The cpu elements must fulfill the
following constraints to be valid:

¢ A node exists for every physical core of the system
e The optional cpuId attribute of all elements must be consecutive
o If specified, a node with cpuId value 0 must exist

e A node with apicId value 0 must exist and, if specified, it must have a cpuId value within
the active CPU range, i.e. the BSP is part of the system scheduling plan

e All apicId attributes must have even numbers

Attributes
Name Type Use
cpuCores xs:positivelnteger required

Number of available CPU cores. Note that this value designates physical,
hardware cores, not Hyper-Threading (HT) threads. HT is disabled on Muen.

speed xs:positivelnteger required
Tick rate of CPU cores in kHz.

vmxTimerRate vmxTimerRateType required
The VMX-premption timer counts down at a rate proportional to that of the
timestamp counter (TSC). This value specifies this proportion, see Intel SDM Vol.
3C, "25.5.1 VMX-Preemption Timer" for more details.

Structure

Ccpuy. . *
cpuCoreType

cpuidg, | *
—] cpulDValueType

msrg, | *

msrValueType

7.1.10 cpuCoreType
Specification of one physical CPU core.

Attributes
Name Type Use
apicId xs:unsignedByte required

CPU local APIC ID, see Intel SDM Vol. 3A, "10.4.6 Local APIC ID".

cpuld xs:unsignedByte optional
Unique CPU ID.

40

7.1.11 cpulDValueType
Register values for a CPUID leaf, see Intel SDM Vol. 2A, "3.2 Instructions (A-L)", CPUID.

Attributes
Name Type Use
leaf word32Type required

CPUID leaf.

subleaf byteType required
CPUID subleaf.

eax word32Type required
EAX register value of this leaf.

ebx word32Type required
EBX register value of this leaf.

ecx word32Type required
ECX register value of this leaf.

edx word32Type required
EDX register value of this leaf.

7.1.12 word32Type

Base: word64Type < xs:string
32-bit machine word.

Restrictions

value < 13

7.1.13 byteType

Base: xs:string
Machine octet (8-bits).

Restrictions

Pattern = 16#[0-9a-fA-F|2#

7.1.14 msrValueType
Register value of an MSR of interest.

Attributes
Name Type Use
address word32Type required

MSR address.

name xXs:string required
Name of MSR.

regval word64Type required
Register value.

41

7.1.15 word64Type

Base: xs:string
64-bit machine word.

Restrictions

Pattern = 16#[0-9a-fA-F]4(_([0-9a-fA-F]4))0,3#

7.1.16 vmxTimerRateType

Base: xs:nonNegativelnteger

VMX-preemption timer count down rate.

Restrictions

value <31

7.1.17 physicalMemoryType

The hardware memory element specifies the available physical memory blocks including reserved
memory regions (RMRR, see Intel VT-d Specification, "8.4 Reserved Memory Region Reporting

Structure").

Only memory blocks reported by the BIOS E820 map as non-reserved must be configured in
this section, e.g. usable or ACPI NVS, ACPI data.
See line 165 in listing 8.1 for an example memory element.

Structure

7.1.18 memoryBlockType

Base: memoryBlockBaseType

memoryBlocky | *
memoryBlockType

reservedMemoryy = *
reservedMemRegionType

Consecutive block of memory provided by the hardware.

Attributes
Name Type
name nameType

Name of memory block.

physicalAddress word64Type
Start address of memory block.

size memorySizeType
Size of memory block.

allocatable booleanType
Indication to a physical memory

allocator that this block allows allocation

of physical memory regions. If this attribute is false, an allocator should

only place fixed memory regions in this range,
physicalAddress attribute set by the integrator.

i.e. memory regions with the

Note that host physical memory below 1 MiB is considered special, the attribute
must be set to false. Only unmapped memory of type system is allowed in that

special memory block.

42

7.1.19 memorySizeType

Base: word64Type < xs:string
The memorySizeType is used to declare memory sizes.

Restrictions

no restriction

7.1.20 reservedMemRegionType

Base: memoryBlockBaseType

A reservedMemory element is a special memory block declaration. It specifies a reserved
memory region as outlined in the Intel VT-d Specification, "8.4 Reserved Memory Region Reporting
Structure" (RMRR).

Reserved memory regions are BIOS allocated memory ranges that may be DMA targets for
certain legacy device use-cases. Devices that require access to such a region refer to it by name.

See line 181 in listing 8.1 for an example RMRR element.

Attributes
Name Type Use
name nameType required

Name of memory block.

physicalAddress word64Type required
Start address of memory block.

size memorySizeType required
Size of memory block.

7.1.21 devicesType

The devices element enumerates all devices provided by the hardware platform. Different kinds
of devices, be it PCI(e) or legacy (non-PCI), can be declared in this section.
See line 194 in listing 8.1 for an example devices enumeration.

Attributes

Name Type Use

pciConfigAddress word64Type optional
Physical base address of the PCI configuration space region.

pciConfigSize word64Type optional
Size of the PCI configuration space region.

43

Structure

devicey | *
deviceType

7.1.22 deviceType

Base: deviceBaseType
The device element specifies a physical device and its associated resources. There are three
main device resource types:

« IRQ
e I/0O port range

e Memory

The presence of a PCI element indicates whether the device is a PCI or a legacy device.

Capabilities can be used to convey additional device-specific information. The base address of
the memory mapped PCI config space is defined by the pciConfigAddress attribute.

See line 200 in listing 8.1 for an example device declaration.

Attributes
Name Type Use
name nameType required

Unique device name.

Structure

descriptiong. . 1

deviceDescriptionType
3 PC_'O. o1
pciType
3 irgg, . *
irqgType
—>> _—
memoryq. . x
deviceMemoryType
ioPorty .
ioPortType
capabilitiesg. . 1
capabilitiesType
reservedMemoryq = *
L > >

namedRefType

44

7.1.23 namedRefType

The namedRefType is used to reference a named element in the policy.

Attributes
Name Type Use
ref nameType required

Name of referenced element.

7.1.24 deviceDescriptionType
Base: xs:string

Device description (free text).
Restrictions

no restriction

7.1.25 pciType

Base: pciAddressType
PClI(e) devices are specified using the pci element.
The element provides the following information:

o PCI device address (BDF)
o Identification
o« IOMMU group information

The location of the PCI device in the PCI topology is specified by the Bus, Device, Function
triplet (BDF).
See line 334 in listing 8.1 for an example PCI element declaration.

Attributes
Name Type Use
bus byteType required

PCI Bus number.

device pciDeviceNumberType required
PCI Device number.

function pciFunctionNumberType required
PCI Function number.

45

Structure

identificationy. . 1
deviceldentification Type

iommuGroupg. . 1
iommuGroupType

7.1.26 deviceldentificationType

The identification element specifies the PCI device class, device, revision and vendor ID.
For more information, consult the PCI Local Bus Specification, "Configuration Space Decod-

ing".

See line 349 in listing 8.1 for an example PCI identification.

Attributes
Name Type Use
classcode wordl6Type required

PCI device class.

vendorId wordl6Type required
PCI vendor ID.

deviceId wordl6Type required
PCI device ID.

revisionId byteType required
PCI device revision ID.

7.1.27 word16Type

Base: word64Type < xs:string
16-bit machine word.

Restrictions

length = 8

7.1.28 iommuGroupType

Devices in the same IOMMU group cannot be properly isolated from each other because they may
perform inter-device transactions directly, without going through the IOMMU.

Note that this information is currently not used by the toolchain. It is a hint to the system
integrator whether two devices can be properly isolated from each other or not.

See line 358 in listing 8.1 for an example IOMMU group declaration.

Attributes
Name Type Use
id xs:nonNegativeInteger required

IOMMU group number.

46

7.1.29 pciDeviceNumberType
Base: xs:string
PCI Device number.

Restrictions

Pattern = 164[0|1][0-9a-fA-F|#

7.1.30 pciFunctionNumberType

Base: xs:nonNegativelnteger
PCI Function number.

Restrictions

value <7

7.1.31 irqType

The irqg element specifies a device IRQ resource.
The specified IRQ number is one of:

o Legacy IRQ (ISA)
Range 0 .. 15.

o PCI INTx IRQ, line-signaled
Range 0 .. Max_LSI_IRQ, whereasMax_LSI_IRQ is defined by the hardware I/O APIC
configuration gsi_base + max_redirection_entry of I/O APIC with max (gsi_base).
gsi_base and max_redirection_entry are I/O APIC device capabilities.

msi sub-elements are present if the device supports MSI interrupts. The element count desig-
nates the number of supported MSI interrupts.
See line 237 in listing 8.1 for an example device IRQ declaration.

Attributes
Name Type Use
name nameType required

Name of device IRQ resource.

number irgNumberType required
Legacy or PCI line-based IRQ.

47

Structure

msig, *

——r_)>vnerqupe

7.1.32 msilrqType

There are two different interrupt types which devices may trigger: legacy/PCI LSI IRQs and
Message Signaled Interrupts (MSI). The legacy /PCI LSI IRQ is specified by the number attribute
of the irqg element. For MSIs, each msi element defines an MSI TRQ that may be assigned to
subjects. Each MSI may be individually routed.

See line 400 in listing 8.1 for example device MSI elements.

Attributes
Name Type Use
name nameType required

Name of MSI resource.

7.1.33 irgNumberType

Base: xs:nonNegativelnteger
IRQ number. High TRQs are reserved for kernel usage.

Restrictions

value <220

7.1.34 deviceMemoryType

Base: memoryBlockBaseType

A device memory element specifies a memory region which is used to interact with the associated
device.

For PCI devices, the specified region is programmed into one device BAR (Base Address Regis-
ter) by system firmware. See the PCI Local Bus Specification or the PCI Express Base Specification
for more details.

See line 218 in listing 8.1 for an example device memory declaration.

Attributes
Name Type Use
name nameType required

Name of memory block.

physicalAddress word64Type required
Start address of memory block.

size memorySizeType required
Size of memory block.

caching cachingType required
Device memory caching type.

48

7.1.35 cachingType

Base: xs:string
Memory caching type, see Intel SDM Vol. 3A, "11.3 Methods of Caching Available".

¢ Strong Uncacheable (UC)
o Write Combining (WC)

o Write Through (WT)

o Write Back (WB)

o Write Protected (WP)

Restrictions

Pattern = UC|WC|WT|WB[WP

7.1.36 ioPortType

The ioPort element specifies a device I/O port resource from start octet up to and including
end octet. A single byte-accessed port is designated by specifying the same start and end values.
See line 228 in listing 8.1 for an example device IRQ declaration.

Attributes
Name Type Use
name nameType required

Name of I/O port resource.

start wordl6Type required
Start port of this resource.

end wordlé6Type required
End port of this resource.

7.1.37 capabilitiesType

List of device capabilities.

Structure

capability;
capability Type

7.1.38 capabilityType

Base: xs:string

A device capability is used to assign additional information to a device. Such a capability
might be used by the Muen toolchain to perform certain actions on devices with a given capability
(e.g. ioapic). A system integrator may use this facility to define its own capabilities used by
custom tools.

A capability element can have an optional value.

See line 290 in listing 8.1 for example capabilities.

Attributes

49

Name Type Use

name xXs:string required
Capability name (free text).

7.1.39 platformType

To enable a uniform view of the hardware resources across different physical machines from the
system integrators perspective, the platform description layer is interposed between the hardware
resource description and the rest of the system policy. This allows to build a Muen system for
different physical target machines using the same system policy.

See line 556 in listing 8.1 for an example platform section.

Structure
3 configg. . .1
configType
5 mappingso. . .1

— mappingsType

kernelDiagnostics;. . .1
kernelDiagType

7.1.40 mappingsType

Platform device alias and class mappings section. Used to assign a stable name to a hardware
device or to group (multiple) devices under a given name.
See line 565 in listing 8.1 for an example platform mappings section.

Structure
aliasesp. . .1
aliasesType
classesg. . 1

devClassesType

7.1.41 aliasesType

Aliases are a renaming mechanism for physical hardware devices and their resources. By using alias
names in the system policy references to concrete hardware resources can be avoided. Additionally,
aliases may be used to define a device which only contains a subset of the resources of the physical
device. This can be achieved by only renaming the resources that the device alias should export.
See line 571 in listing 8.1 for an example aliases section.
Aliases are resolved in the following system policy sections.

e /system/subjects/subject/component/map
e /system/subjects/subject/devices/device

e /system/deviceDomains/domain/devices/device

Structure

aliasg, | *

—> namePhysRefType

50

7.1.42 namePhysRefType

Named resource reference. Used for device aliases and device alias resource references.

Attributes
Name Type Use
name nameType required

Alias name.

physical nameType required
Reference to physical device or device resource.

Structure

resourceqy, | *

—> namePhysRefType

7.1.43 devClassesType

The classes element specifies a list of device classes.

Structure

classy | *
devClassType

7.1.44 devClassType

Device classes enable the grouping of devices and allow referencing all devices by a single name.
This simplifies the process of assigning multiple devices to a subject.

Note: A device class may contain an arbitrary number of devices, including zero.

See line 603 in listing 8.1 for a device class example.

Attributes
Name Type Use
name nameType required

Device class name.

Structure

deviceg | *
physRefType

7.1.45 physRefType

Reference to physical device or physical device resource.

Attributes
Name Type Use
physical nameType required

Physical resource name (device or resource sub-element).

51

7.1.46 kernelDiagType

The debug build Muen SK can be instructed to output debugging information during runtime.
The platform diagnostics device specifies which device the kernel is to use for this purpose.

The presence of this device and the necessary resources are checked by the validator tool.

See line 623 in listing 8.1 for an example platform diagnostic device configuration.

Attributes
Name Type Use
type kernelDiagKindType required

Specifies the type of diagnostics device to use.

Structure

deviceg. . 1
—> kernelDiagDeviceType

7.1.47 kernelDiagDeviceType

Reference to physical device for uart and vga diagnostic device type.

If an UART device is referenced via type uart, an I/O port resource must be provided. If a
VGA device is referenced via type vga, a memory resource must be provided (both checked via
validator).

Attributes
Name Type Use
physical nameType required

Name of physical device to use for kernel diagnostics output.

Structure

memorygy. . x
physRefType

ioPorty »
physRefType

7.1.48 kernelDiagKindType

Base: xs:string

Type of diagnostics device. While none disables kernel diagnostics output, uart specifies an
Universal Asynchronous Receiver-Transmitter serial device. hsuart is a High-Speed UART with
memory mapped I/0.

vga outputs the kernel diagnostics information to a VGA console, which is mainly useful for
initial bring-up of a new hardware platform with no UART device.

52

Restrictions
values:

e none

e uart

e hsuart

e VvVga

7.1.49 memRegionsType

This section declares all physical memory regions (RAM) and thus the physical memory layout of
the system. Regions declared in this section can be assigned to subjects and device domains.
Memory regions are defined by the following attributes:

o Name

¢ Caching type

e Size

o Physical address*
e Alignment*

¢ Memory type*

Attributes with an asterisk are optional. While alignment and memory type are set to a
default value if not specified, the physical address is filled in by the allocator tool, which allocates
all memory regions and finalizes the physical memory layout.

Additionally, the content of a region can be declared as backed by a file or filled with a pattern.

Note: The caching type is an attribute of the physical memory region by design to avoid
inconsistent typing, even though the Intel Page Attribute Table (PAT) mechanism allows to set it
for each memory mapping, see Intel SDM Vol. 3A, "11.12.4 Programming the PAT".

See line 637 in listing 8.1 for an example memory region section.

Structure

memoryy *
memory Type

_r—>

7.1.50 memoryType

Base: physicalMemBaseType < memoryBaseType

The memoryType specifies a physical memory region by name, size and caching.

If no explicit physical address is specified for the region, the mucfgalloc tool will allocate a
free one in usable memory, honoring the optional alignment attribute.

If no explicit alignment attribute is specified, it is set to 16#1000# by the expander. If no
explicit type attribute is specified, it is set to subject by the expander.

Attributes
Name Type Use
size memorySizeType required

Size of region. Must be a multiple of page size (4K). Enforced by validator.

name nameType required
Name of region.

caching cachingType required
Caching type to use for memory region.

53

(continuation)
Name Type Use

type srcMemoryKindType optional
Optional subject memory type.

alignment alignmentType optional
Alignment the physical address of the memory region must honor (checked by the
validator tool) .

physicalAddress word64Type optional
Physical address of memory region.

Structure

fi|e1, 1
fileContentType

—> choiceg. . 1
filly, 1

fillContentType

hashy. . 1
hash256Type

L > choiceg. . 1

hashRef;, 1
hashRefType

7.1.51 srcMemoryKindType

Base: memoryKindType < xs:string

Memory types allowed in policy format source physical memory section. For information about
subject memory types, see 7.1.120.

Besides subject types, the following memory types are allowed:

e kernel _microcode
Memory region designating a CPU microcode update, e.g. added by the mucfgucode tool
(5.5.5).

Restrictions
values:
e kernel microcode
e subject
e subject_info
e subject_ state
e subject_ binary
e subject_ channel
e subject_ crash_audit
e subject_ initrd
e subject_ bios
e subject_acpi_ rsdp

e subject_acpi_ xsdt

54

e subject_acpi_ fadt

e subject_acpi_ dsdt

e subject_ zeropage

e subject_solo5_boot_info
e subject_ device

e subject_ timed_ event

7.1.52 alignmentType

Base: word64Type < xs:string
Memory alignment constraint for memory region. Taken into account by the allocator tool and
checked by the validator.

Restrictions

values:
o 16#10004#
o 16#£0020_ 00004
o 16#£4000_ 00004

7.1.53 fileContentType

The file child element designates a file-backed memory region.
The filename attribute specifies the name of the file to use as content for the physical memory
region, the of fset attribute is none by default but can be customized to include a partial file.
See line 714 in listing 8.1 for a file-backed memory region example. The following checks on
the file content are performed.

e If offset is none, the size of the file must be less than the memory region size.

e If offset is not none, the offset must be less than the file size. The file size is not checked
but the memory region size is used as upper bound.

Attributes
Name Type Use
filename xXs:string required

Filename of file to (partially) include. Note that the actual file processed by
the toolchain also depends on the working directory passed as command line option
to the specific tool.

offset optionalOffsetType required
Read file offset in bytes.

55

7.1.54 optionalOffsetType
Optional file offset value in bytes.

Restrictions
Union of
o word64Type

e noneType

7.1.55 fillContentType

The £i11 element designates a memory region which is initialized with the given pattern.
See line 671 in listing 8.1 for a file-backed memory region example.

Attributes
Name Type Use
pattern byteType required

Fill pattern (hex).

7.1.56 hash256Type

The hash child element of a memory region designates a 256-bit hash over the memory content.
The Mucfgmembhashes tool in the Muen toolchain generates such a hash-sum for every content-
backed memory region in a given policy.

Attributes
Name Type Use
value optionalHashType required

256-Bits message digest over file-backed memory content.

7.1.57 optionalHashType

Allows the specification of a hash digest or none.

Restrictions
Union of

¢ hash256DigestType

¢ noneType

7.1.58 hashRefType

The optional hashRef child element of a physical memory region instructs the Mucfgmemhashes
tool to copy the hash element of the referenced memory region after message digest generation.

From an abstract point of view, the hashRef element is a way to link multiple memory regions
by declaring that the hash of the content is the same. This concept is e.g. used by the subject
loader mechanism to restore writable memory regions to their initial state.

Attributes

56

Name Type Use

memory nameType required
Name of referenced physical memory region.

7.1.59 deviceDomainsType

The physical memory accessible by PCI devices is specified by so called device domains. Such
domains define memory mappings of physical memory regions for one or multiple devices. Device
references select a subset of hardware devices provided by the hardware/platform. Devices may
be referenced by device name, alias or device class.

Device references can optionally set the mapReservedMemory attribute so RMRR regions
referenced by the device are also mapped into the device domain.

Device domains are isolated from each other by the use of Intel VT-d.

See line 734 in listing 8.1 for a device domain example.

Structure

domaing. . 255
—> deviceDomainType

7.1.60 deviceDomainType

A device domain allows referenced devices access to the specified memory regions. It also provides
handling for reserved memory region reporting (RMRR), see Intel VT-d Specification, "8.4 Reserved
Memory Region Reporting Structure'.

Attributes
Name Type Use
name nameType required

Name of the device domain.

Structure

memoryg. . 1
devdomMemoryRefsType

devices;. . 1
devsRefType

7.1.61 devdomMemoryRefsType

List of physical memory region references and optional map subject memory elements.

Structure

memoryq, . *
memRefType

mapSubjectMemory, = *
mapSubjectMemoryType

57

7.1.62 memRefType

A memory element maps a physical memory region into the address space of a device domain or
subject entity. The region will be accessible to the entity at the specified virtualAdress with
permissions defined by the executable and writable attributes.

See line 759 in listing 8.1 for an example of such a mapping.

Attributes
Name Type Use
virtualAddress word64Type required

Address 1in entity address space where the physical memory region is mapped.

physical nameType required
Name of referenced physical memory region.

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

7.1.63 mapSubjectMemoryType

This element instructs the expander to map memory regions of the specified subject into the device
domain. Only regions which are writable and of type Subject and Subject Initrd are mapped.

Attributes
Name Type Use
subject nameType required

Name of the subject.

virtualAddressOffset word64Type optional
Optional offset value. If this attribute it specified, the given value will be
added to the virtualAddress value of a mapped memory region.

7.1.64 devsRefType

Device domain device references.

Structure

devicey | *
—> devRefType

7.1.65 devRefType

Device domain device reference. Referenced devices gain access to memory regions of device
domain.

Attributes
Name Type Use
logical nameType required

Logical name in this context.

physical nameType required
Physical device or device alias to include in given device domain.

58

(continuation)
Name Type Use

mapReservedMemory booleanType optional
Whether to automatically map RMRR memory associated with device.

7.1.66 eventsType

Events are an activity caused by a subject (source) that impacts a second subject (target) or is
directed at the kernel. Events are declared globally and have a unique name to be unambiguous.
An event must have a single source and one target.

Subjects can use events to either deliver an interrupt, hand over execution to or reset the state
of a target subject. The first kind of event provides a basic notification mechanism and enables
the implementation of event-driven services. The second type facilitates suspension of execution
of the source subject and switching to the target. Such a construct is used to pass the thread of
execution on to a different subject, e.g. invocation of a debugger subject if an error occurs in the
source subject. The third kind is used to facilitate the restart of subjects.

An event can also have the same source and target, which is called self event. Such events are
useful to implement para-virtualized timers in VM subjects for example.

Kernel events are special in that they are targeted at the kernel. The currently supported
events are system reboot and shutdown.

For documentation about linking physical events to source and target subjects, see section
7.1.133.

See line 775 in listing 8.1 for an example events section.

Structure

eventy x

—> eventType

7.1.67 eventType

The event Type specifies an event by name and mode.
The following event modes are currently supported:

e asap
The asap event is an abstraction to state that the event should be delivered as soon as
possible, depending on the CPU of the target subject. If the target runs on another CPU
core, this mode is expanded to mode ipi, which is only available in policy formats A and B,
instructing the kernel to preempt the kernel running the target subject and inject the event
immediately. If the target subject runs on the same core as the source subject, the mode is
expanded to mode async.

e async
Async events trigger no preemption at the target subject. The event is marked as pending
in the target subject’s pending event table and inserted on the next VM exit/entry cycle of
the target subject.

e self
An event can also have the same source and target, which is called a self event. Such events
are useful to implement para-virtualized timers in VM subjects for example. A subject sends
itself a delayed event, using the timed event mechanism. Note that a self event must always
have a target action assigned, which is checked by the validator.

e switch
The switch mode facilitates suspension of execution of the source subject and switching to the
target. This can only happen between subjects running on the same core. Such a construct
is used to pass the thread of execution on to a different subject, e.g. invocation of a debugger
subject if an error occurs in the source subject. It is called handover or handover event.

59

e kernel
These kinds of events are directed at the kernel an thus only specify a source since the target
is the kernel. They are used to enable specific subjects to unmask level-triggered IRQs and
trigger a system reboot, poweroff or explicit panic (crash audit slot allocation and reboot).

See line 799 in listing 8.1 for an example global event declaration.

Attributes
Name Type Use
name nameType required

Name of the event.

mode eventModeType required
Mode of the event.

7.1.68 eventModeType

Base: xs:string
Event mode.
See 7.1.67 for details about the supported event modes.

Restrictions
values:
e asap
e async
o self
o switch

e kernel

7.1.69 channelsType

Inter-subject communication is specified by so called channels. These channels represent directed
information flows since they have a single writer and possibly multiple readers. Optionally a
channel can have an associated notification event (doorbell interrupt).

Channels are declared globally and have an unique name to be unambiguous.

Note that channels are a policy source format abstraction. The toolchain resolves this concept
into memory regions and events as well as the appropriate subject mappings.

For documentation about linking physical channels to subjects see section 7.1.141. For docu-
mentation about declaring requested channels in components see section 7.1.102. For information
how to map a physical channel with a logical component channel at subject level, see section
7.1.150.

See line 865 in listing 8.1 for an example channel section.

Structure

channely, *
channelType

7.1.70 channelType

The channel element declares a physical channel.

Besides the name and size of the channel, the optional hasEvent attribute can be set
to declare that the given channel requests an associated event. The expander tool will then
automatically create a global event of the requested event type.

See line 879 in listing 8.1 for an example channel declaration.

60

Attributes

Name Type Use

name nameType required
Channel name.

size memorySizeType required
Size of the channel in bytes. Must be a multiple of page size (4K). Enforced by
validator.

hasEvent eventModeType optional
Associated event type (if any).

7.1.71 componentsType

The components element holds a list of components and component libraries.

Note that components are a policy source format abstraction. The toolchain resolves this
concept into subjects by adding the appropriate memory regions, events and devices.

See line 914 in listing 8.1 for an example components section.

Structure

libraryg,
libraryType

component; =
componentType

7.1.72 libraryType

A component library is a specialized component specification which is used to share common
resources required for library code to operate. Component libraries can be included by multiple
components in order to share functionality. An example is a logging service provided by a dedicated
component, whereas the logging client is provided as a library with a shared memory channel for
the actual log messages.

A component specification declares library dependencies to request the library resources from
the system through the inclusion of the library specification in the depends section. This way
components inherit the resources of libraries.

On the source code level, a library is included by mechanisms provided by the respective
programming language. Note that the component library code is not shared between components
but lives in the isolated execution environment of a subject instantiating the component (i.e.
statically linked libraries).

Libraries can request the same resources as ordinary components. A subject instantiating the
component must also map the resources requested by libraries the component depends on.

See line 923 in listing 8.1 for example library specifications.

Attributes
Name Type Use
name nameType required

Component/library name.

61

Structure

configo. . .1
configType

dependsp. . 1
libraryDepsType

requiresp. . .1
requiredResourcesType

providesy. . .1
providedResourcesType

7.1.73 libraryDepsType

Components and libraries are allowed to declare dependencies to other libraries. All resources
required by the included library are merged with the ones specified by the component or library.
Libraries can depend on other libraries.

A subject realizing this component must correctly map all component and library resource
requirements to physical resources in order to fulfill the expectations.

See line 1067 in listing 8.1 for an example dependency section.

Structure

library; *
namedRefType

7.1.74 requiredResourcesType

Declaration of resources a component or library requires to operate.
Structure

vepuo. . .1
vcpuType

memoryg. . 1
logicalMemoryType

channelsg. . 1
— logicalChannelsType

devicesg. . 1
logicalDevicesType

eventsp, . 1
logicalEventsType

62

7.1.75 vcpuType

The vcpu element controls the execution behavior of the virtual CPU (vCPU). A default vCPU
profile is selected by the component profile, but CPU execution settings can be customized both
at component and subject level.

See line 1024 in listing 8.1 for an example on how to customize a vCPU profile.

Structure

vmXp. . .1
—>
vmxType
msrs
| 0...1
msrsType

registersp. . .1
registersType

7.1.76 vmxType
Controls Intel VMX vCPU settings.

Structure

controlsg. . 1
controlsType

masksg. . 1
masksType

7.1.77 controlsType
Configures the following Intel VMX settings:

e Pin-Based VM-Execution Controls

e Primary Processor-Based VM-Execution Controls

¢ Secondary Processor-Based VM-Execution Controls
¢ VM-Entry Controls

e VM-Exit Controls

63

Structure

> pir??t(illf;pe
— pr(‘;;%c’cor'l;l';pe

— prz:;%zt?"l;l';pe
> umEntryCeriType
[5 exity. . .1

vmExitCtrl Type

7.1.78 pinCtrlType

Configures Intel VMX pin-based VM-execution controls. These controls constitute a 32-bit vector
that governs the handling of asynchronous events (for example: interrupts) while running in VMX
non-root mode.

See Intel SDM Vol. 3C, "24.6.1 Pin-Based VM-Execution Controls" for more details and the
meaning of the different bit-fields.

I Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

Structure

ExternallnterruptExitingg. . 1

bitValueType
L 5 VirtualNMlsp, | 1
bitValueType
ActivateVMXTimerg. . 1
bitValueType
ProcessPostedInterruptsg. . .1
L >

bitValueType

7.1.79 DbitValueType

Base: xs:nonNegativelnteger
The value of one bit, either 1 (True) 0 (False).

64

Restrictions

0<1

7.1.80 procCtrlType

The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling
of synchronous events, mainly those caused by the execution of specific instructions. These are the
primary processor-based VM-execution controls and the secondary processor-based VM-execution
controls.

The proc element configures the primary processor-based VM-execution controls, see Intel
SDM Vol. 3C, "24.6.2 Processor-Based VM-Execution Controls" for more details and the meaning
of the different bit-fields.

I Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

65

Structure

InterruptWindowExitingg. . .1

> bitValueType
5 UseTSCOffsettingp. . .1
bitValueType
HLTExitingp. . 1
> bitValueType
INVLPGEXitingo. . .1
> bitValueType
MWAITExitingo. . .1
> bitValueType
RDPMCExitingp. . .1
> bitValueType
RDTSCEXxitingo. . .1
> bitValueType
CR3LoadExitingo. . .1
> bitValueType
CR3StoreExitingg. . .1
e bitValueType
CR8LoadExitingo. . .1
> bitValueType
CR8StoreExitingo. . .1
—] bitValueType
S UseTPRShadowo. . .1
bitValueType
| 5 NMIWindowExitingo. . .1
bitValueType
MOVDREXxitingp. . .1
e bitValueType
| 5 Unconditional lOExitingp. . .1
bitValueType
UselOBitmapso. . .1
> bitValueType
MonitorTrapFlagp. . .1
> bitValueType
UseMSRBitmapso. . .1
> bitValueType
MONITOREXitingo. . .1
> bitValueType
PAUSEEXitingo. . .1
> bitValueType
L, Activate2ndaryControlsg. . 1

bitValueType

66

7.1.81 proc2CtrlType

The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling
of synchronous events, mainly those caused by the execution of specific instructions. These are the
primary processor-based VM-execution controls and the secondary processor-based VM-execution
controls.

The proc?2 element configures the secondary processor-based VM-execution controls, see Intel
SDM Vol. 3C, "24.6.2 Processor-Based VM-Execution Controls" for more details and the meaning
of the different bit-fields.

I Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

67

Structure

Virtual APICAccessesy. . .1

> bitValueType
EnableEPTq. . 1
—> bitValueType
DescriptorTableExitingp. . .1

—> bitValueType

| 5 EnableRDTSCPq. . 1
bitValueType

S Virtualizex2APICModeg. . 1
bitValueType

[5 EnableVPIDg. . 1
bitValueType

| 5 WBINVDEXitingp. . .1
bitValueType

[UnrestrictedGuestg. . 1
bitValueType

[5 APICRegisterVirtualizationg, . 1
bitValueType

VirtuallnterruptDeliveryg. . 1
> bitValueType
PAUSELoopExitingg. . 1

> bitValueType

S RDRANDEXxitingp. . .1
bitValueType

L 5 EnableINVPCIDg. . 3
bitValueType

EnableVMFunctionsy. . 1
L >

bitValueType

7.1.82 vmEntryCtrlType

Configures Intel VMX VM-entry controls. These controls constitute a 32-bit vector that governs
the basic operation of VM entries.

68

See Intel SDM Vol. 3C, "24.8.1 VM-Entry Controls" for more details and the meaning of the
different bit-fields.

<" Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

Structure

LoadDebugControlsy, . 1

N bitValueType
| S 1A32eModeGuesty. . 1
bitValueType
| 5 EntryToOSMMg. . 1
bitValueType
DeactiveDualMonitorTreatmentg. . 1
— bitValueType
5 LoadlA32PERFGLOBALCTRLy. . 1
bitValueType
| 5 LoadlA32PATy. . 1
bitValueType
LoadlA32EFERy. . 1
L >

bitValueType

7.1.83 vmExitCtrlType

Configures Intel VMX VM-exit controls. These controls constitute a 32-bit vector that governs
the basic operation of VM exits.

See Intel SDM Vol. 3C, "24.7.1 VM-Exit Controls" for more details and the meaning of the
different bit-fields.

I Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

69

Structure

SaveDebugControlsg. . 1

> bitValueType
HostAddressspaceSizeg. . .1
— bitValueType
5 LoadlA32PERFGLOBALCTRLy. . 1
bitValueType
[5 AcklnterruptOnExitg. . 1
bitValueType
S SavelA32PATy. . 1
— bitValueType
[5 LoadlA32PAT,. . 1
bitValueType
| 5 SavelA32EFERqy. . 1
bitValueType
5 LoadlA32EFERy. . 1
bitValueType
SaveVMXTimerValueg. . 1
L >

bitValueType

7.1.84 masksType

The masks element configures the Intel VMX CR0/CR4 guest/host masks and the guest/host
exception bitmap.

In general, bits set to 1 in a guest/host mask correspond to bits owned by the host, causing a
VM exit if the associated event occurs.

Reading from host owned bits in CRO/CR4 does not result in a VM exit but the value of the
CRO/CRA4 read shadow is returned instead (see Intel SDM Vol. 3C, "24.6.6 Guest/Host Masks and
Read Shadows for CRO and CR4").

Structure

exceptiong, . .1
exceptionType

3 crO. . .1

—] crOType
crdg. . .1

cr4Type

70

7.1.85 exceptionType

Configures Intel VMX exception bitmap. The exception bitmap is a 32-bit field that contains one
bit for each exception. When an exception occurs, its vector is used to select a bit in this field. If
the bit is 1, the exception causes a VM exit. If the bit is 0, the exception is delivered normally
through the IDT, using the descriptor corresponding to the exceptions vector.

See Intel SDM Vol. 3C, "24.6.3 Exception Bitmap" for more details on the exception bitmap
configuration.

71

Structure

DivideErrorg, . 1

> bitValueType
Debugp. . .1
— bitValueType
Breakpointg. . 1
— bitValueType
| 5 Overflowg, . 1
bitValueType
BOUNDRangeExceededy. . 1
> bitValueType
InvalidOpcodeg. . 1
— bitValueType
e DeviceNotAvailableg. . 1
bitValueType
| 5 DoubleFaultg. . 1
bitValueType
| 5 CoprocessorSegmentOverrung, . 1
—] bitValueType
5 InvalidTSSo. . 1
bitValueType
e SegmentNotPresenty, . 1
bitValueType
StackSegmentFaultgy. . 1
— bitValueType
| 5 GeneralProtectiong, | 1
bitValueType
PageFaultg. . 1
— bitValueType
x87FPUFloatingPointErrorg. . 1
> .
bitValueType
AlignmentCheckg. . 1
— bitValueType
L, SIMDFloatingPointExceptiong. . .1

bitValueType

72

7.1.86 crOType

Allows to set initial values of the CRO control register or bits in the CRO guest/host ownership
mask.

Structure

ProtectionEnableg. . 1
bitValueType

MonitorCoprocessory. . .1
bitValueType

Emulationg. . 1
bitValueType

TaskSwitchedg. . 1
bitValueType

WriteProtectp. . 1
bitValueType

AlignmentMaskg. . 1
bitValueType

Pagingp. . .1
bitValueType

7.1.87 crd4dType

Allows to set initial values of the CR4 control register or bits in the CR4 guest/host ownership
mask.

73

Structure

Virtual8086g. . .1

> bitValueType
ProtectedVirtuallntsy, | 1
> bitValueType
TimeStampDisableg. . 1
> bitValueType
DebuggingExtensionsg. . .1
> bitValueType
PageSizeExtensionsy. . 1
> bitValueType
LS PhysicalAddressExtensiong. . .1
bitValueType
PageGlobalEnableg. . 1
> bitValueType
PerfCounterEnableg, . 1
> bitValueType
OSSupportFXSAVE,. . 1
> bitValueType
OSSupportSIMDExceptionsg. . .1
> bitValueType
UMiInstructionPreventiong, . 1
> bitValueType
SMXEnableg. . 1
> bitValueType
FSGSBASEEnableg, . 1
> bitValueType
PCIDEnabIeo_ .1
> bitValueType
XSAVEEnableg. . 1
> bitValueType
| 5 SMEPEnableg. | 1
bitValueType
SMAPEnabIeo_ .1
> bitValueType
L5 ProtectionKeyEnableg. . 1

bitValueType

74

7.1.88 msrsType

List of model-specific registers (MSRs) a subject is allowed to access. The settings in this section
are translated to the MSR bitmaps of the associated subject (as described by Intel SDM Vol. 3C,
'24.6.9 MSR-Bitmap Address").

Structure

msrg, | x

—> msrType

7.1.89 msrType

An msr element allows a subject direct access to the specified model-specific register (MSR).

I Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator granting direct access to MSRs must
be aware of the potential side-effects.

Attributes
Name Type Use
start msrAddressType required

MSR start address.

end msrAddressType required
MSR end address.

mode msrModeType required
MSR access permissions.

7.1.90 msrAddressType

Base: xs:string
Start/end address value for MSRs in the low or high range:

o Low: 16#0000_0000# .. 16#0000_1fff#
e High: 16#C000_0000# .. 16#CO00_1fff#
See also Intel SDM Vol. 3C, "24.6.9 MSR-Bitmap Address".

Restrictions

Pattern = 16#([cC0]000_)?[01]([0-9a-fA-F]3)#

7.1.91 msrModeType

Base: xs:string
MSR access rights.

Restrictions

values:
o T

e W

(0]

7.1.92 registersType

The registers element specifies the initial value of general-purpose (GPR), CR0/CR4, CR0/CR4
read shadow and segment registers.

Structure

3 gPro.. .1

gprType

; crQo. . .1

crOType
crOShadowg. . 1
crOShadow Type

crdo. . 1

cr4Type
cr4Shadowg. . 1
cr4Shadow Type

segmentsp. . 1

segmentsType

7.1.93 gprType

The gpr element specifies the initial values of subject general-purpose registers (GPRs).

76

Structure

ripo. . .1
word64 Type

rspo.. .1
word64 Type

raxop...1
word64 Type

rbxo. . .1
word64 Type

rcXp. . .1
word64 Type

rdxo. . .1
word64 Type

rdio. . .1
word64 Type

rSio_ 1
word64 Type

rbpo. . .1
word64 Type

r08o. . .1
word64 Type

r09. . .1
word64 Type

r10o. . .1
word64 Type

rllo. . 1
word64 Type

r12. . 1
word64 Type

r13o.. .1
word64 Type

rldo. . 1
word64 Type

r15o.. .1
word64 Type

7

7.1.94 crOShadowType

Allows to set initial values of the CR0O shadow control register.
See Intel SDM Vol. 3C, "24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4" for
more details on the CRO shadow.

Structure

ProtectionEnableg. . 1

bitValueType
MonitorCoprocessory. . .1

> bitValueType

Emulationg, . 1

3 bitValueType
S TaskSwitchedg. . 1

bitValueType
ExtensionTypeg. . .1

—> bitValueType
. NumericErrorg, | 1

— bitValueType
| 5 WriteProtecty. . 1

bitValueType

AlignmentMaskg, . 1
— bitValueType
NotWritethroughg, . 1

3 bitValueType
CacheDisableg. . 1

> bitValueType

Pagi
agingo. . .1

bitValueType

7.1.95 cr4ShadowType

Allows to set initial values of the CR4 shadow control register.
See Intel SDM Vol. 3C, "24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4" for
more details on the CRO shadow.

78

Structure

Virtual8086y. . .1

g bitValueType
| 5 ProtectedVirtuallntsg, . 1
bitValueType
| 5 TimeStampDisableg. . 1
bitValueType
DebuggingExtensionsg. . .1
> bitValueType
PageSizeExtensionsy, . 1
> bitValueType
| 5 PhysicalAddressExtensiong. . 1
bitValueType
| 5 MachineCheckEnableg. . 1
bitValueType
| 5 PageGlobalEnableg. . 1
bitValueType
| 5 PerfCounterEnableg, . 1
bitValueType
| 5 OSSupportFXSAVEy. . 1

bitValueType

OSSupportSIMDExceptionsy. . 1
bitValueType

UMInstructionPreventiong. . 1

> bitValueType
VMXEnableg. . 1
> bitValueType
| 5 SMXEnableg. . 1
bitValueType
| > FSGSBASEEnableg. . 1
bitValueType
PCIDEnableg. . 1
> bitValueType
| 5 XSAVEEnableg, . 1
bitValueType
| 5 SMEPEnableg. . 1
bitValueType
| > SMAPEnableg. . 1
bitValueType
L > ProtectionKeyEnableg, . 1

bitValueType

79

7.1.96 segmentsType

The segments element specifies the initial values of subject segment registers.

Structure

CSo...1
segmentType

dso. . .1
segmentType

€sp. . .1
segmentType

fso.. .1
segmentType

gs0...1
segmentType

SSo.. .1
segmentType

tro.. 1
segmentType

Idtro. . .1
segmentType

7.1.97 segmentType

Initial value of a segment register, including hidden part. See Intel SDM Vol. 3A; "3.4.3 Segment
Registers" for more details on segment registers.

Attributes
Name Type Use
selector wordl6Type required

Segment selector value.

base word64Type required
Segment base address.

limit word32Type required
Segment limit.

access word32Type required
Segment access information.

80

7.1.98 logicalMemoryType

In this section, components can specify expected memory mappings with given access rights and
region size.
See line 948 in listing 8.1 for an example specification.

Structure

IMEMODY, Mg
logicalMemType

_,—) choicey. . *

arrayi. . .1
memoryArray Type

7.1.99 logicalMemType

The memory element requests a memory region with the specified size and permissions from
the system. The region is expected to be placed at the address given via the virtualAddress
attribute.

See line 953 in listing 8.1 for an example specification.

Attributes
Name Type Use
size word64Type required

Size of memory in bytes. Must be a multiple of page size (4K).

virtualAddress word64Type required
Expected address of memory mapping.

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

7.1.100 memoryArrayType

The memory array abstraction simplifies the declaration of consecutive memory mappings with a
given base address, region size and executable and writable attributes. The child elements
declare the number of expected regions.

Attributes
Name Type Use
logical nameType required

Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

virtualAddressBase word64Type required
Expected address of memory mapping.

elementSize word64Type required
Size of one array element in bytes. Must be a multiple of page size (4K).

81

Structure

memoryq, . *
arrayEntry Type

>
7.1.101 arrayEntryType

Array entries specify the number of array elements and assign a logical name to each element.
See line 1104 in listing 8.1 for an example array entry declaration.

Attributes
Name Type Use
logical nameType required

Logical name of array entry.

7.1.102 logicalChannelsType

Components and libraries use the channels sub-section of requires to specify expected com-
munication channels.
See line 969 in listing 8.1 for an example specification.

Structure

reader;. 1
logicalChannelReaderType

choicey | » — writery. 1
logicalChannelWriterType

arrayi. . .1
channelArrayType

7.1.103 logicalChannelReaderType

The reader element requests a read-only channel of the specified size, address and optional
notification vector.
See line 986 in listing 8.1 for an example channel reader specification.

Attributes
Name Type Use
logical nameType required

Logical name of reader channel.

virtualAddress word64Type required
Expected address of channel memory mapping.

size word64Type required
Expected size of channel. Must be a multiple of page size (4K).

vector vectorType optional
Notification vector.

82

7.1.104 vectorType
Base: xs:nonNegativelnteger

Vector number.
Restrictions

value <255

7.1.105 logicalChannelWriterType

The writer element requests a channel with write permissions of the specified size, address and
optional notification event number. For valid event ID ranges, see vmcall group in 7.1.137.
See line 974 in listing 8.1 for an example channel writer specification.

Attributes
Name Type Use
logical nameType required

Logical name of writer channel.

virtualAddress word64Type required
Expected address of channel memory mapping.

size word64Type required
Expected size of channel. Must be a multiple of page size (4K).

event eventIdType optional
Notification event number.

7.1.106 eventldType
Base: xs:nonNegativelnteger

Event number.
Restrictions

value <63

7.1.107 channelArrayType

The channel array abstraction simplifies the declaration of consecutive channel mappings with a
given base address, channel size and optional event/vector bases. The child elements declare the
number of expected channels and either the reader or writer role.

See line 1097 in listing 8.1 for an example specification.

Attributes
Name Type Use
logical nameType required

Logical channel array name.

eventBase xs:nonNegativeInteger optional
The eventBase attribute specifies the event number of the first element in
the array. This number is incremented for all further elements in the array
(eventBase + 1). For valid event ID ranges see vmcall group in 7.1.137.
Note that this attribute is only taken into consideration for a writer array.

vectorBase vectorType optional
The vectorBase attribute specifies the vector number of the first element in
the array. This number is incremented for all further elements in the array
(vectorBase + 1).
Note that this attribute is only taken into consideration for a reader array.

83

(continuation)
Name Type Use

virtualAddressBase word64Type required
Expected address of memory mapping.

elementSize word64Type required
Size of one array element in bytes. Must be a multiple of page size (4K).

Structure
readery. *
arrayEntryType
choice;. . 1
writerg | *
arrayEntryType

7.1.108 logicalDevicesType

The devices sub-section of the requires section is used to specify expected devices with their
associated resources.
See line 1117 in listing 8.1 for an example specification.

Structure

deviceg, *

—> logicalDeviceType

7.1.109 logicalDeviceType

A device element specifies an expected logical device with its resources. Possible resources are
irqg, memory and ioPort.
See line 1122 in listing 8.1 for an example specification.

Attributes
Name Type Use
logical nameType required

Logical device name.

Structure

irqo. .
logicallrqType

memoryg, *
—] logicalMemType

ioPorty | *
logicalloPortType

7.1.110 logicallrqType

An irqg element of a logical device reference requests an IRQ with given number from the system
policy. The specified number will be injected when the device requires attention for the associated
logical function.

See line 1127 in listing 8.1 for an example IRQ reference.

84

Attributes

Name Type Use

logical nameType required
Logical name of IRQ resource.

vector vectorType required
Expected IRQ number.

Structure

msig. . *
—> logicalMsilrq Type

7.1.111 logicalMsilrqType

The presence of msi child elements of an 1 rg device resource specifies that the component expects
the device to be operated in MSI mode. The number of elements defines the expected MSI vector
number count to be provided by the referenced device.

Attributes
Name Type Use
logical nameType required

Name of MSI resource.

7.1.112 logicalloPortType

The ioPort element requests a device I/O port resource with given range start .. end from
the system.
See line 1294 in listing 8.1 for an example I/O port reference.

Attributes
Name Type Use
logical nameType required

Logical I/O port name.

start wordl6Type required
I/0 port start address.

end wordl6Type required
I/0 port end address.

7.1.113 logicalEventsType

The events sub-section of the requires section is used to specify expected events with optional
event actions.

A component can specify both source as well as target events.

See line 1211 in listing 8.1 for an example specification.

Structure

sourcep. . .1
logicalEventSource Type

targetp. . 1
logicalEventTarget Type

85

7.1.114 logicalEventSourceType

Specifies expected source events.

Structure

event;
logicalSourceEventEntry Type

>
7.1.115 logicalSourceEventEntryType

Base: baseLogicalEventType
An entry in the component’s source event list.

Attributes
Name Type Use
logical nameType required

Logical name of event.

id eventIdType required
ID of source event. For valid ID ranges see vmcall group in 7.1.137.

7.1.116 logicalEventTargetType

Specifies expected event targets.

Structure

event; =
logicalTargetEventEntry Type

_r—>
7.1.117 logicalTargetEventEntryType

Base: baseLogicalEventType
An entry in the component’s target event list.

Attributes
Name Type Use
logical nameType required

Logical name of event.

id xs:nonNegativeInteger optional
ID of target event entry.

86

7.1.118 providedResourcesType

Components usually come in the form of an executable file. To this end, the provides section
specifies the memory regions of the component binary executable with their content.

From a security perspective, it is often desirable to provide the different binary section as
separate memory regions with the appropriate access rights, i.e. only the text section is executable,
rodata is not writable and so on.

Memory specified in this sections are expanded to mapped physical regions for each subject
that instantiates this component.

Note: the Mucbinsplit tool can be used to extract these section from an ELF binary into
separate files and automatically add the corresponding memory elements to the component speci-
fication.

See line 1140 in listing 8.1 for an example provides section.

Structure

memory; *

—> providedMemType

7.1.119 providedMemType

Base: memoryBaseType

A memory element in the provides section declares memory region provided by the compo-
nent. Mostly used to provide (a part) of the component binary.

See line 1158 in listing 8.1 for an example specification.

Attributes
Name Type Use
size memorySizeType required

Size of region. Must be a multiple of page size (4K). Enforced by validator.

virtualAddress word64Type required
Virtual address in component address space.

type subjectMemoryKindType optional
Memory type (e.g. subject_binary).

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

87

Structure

filer. . 1
fileContentType

—> choiceg. . 1
filly, 1

fillContentType

hash;. . 1
hash256Type

L > choiceg. . 1

hashRef;, 1
hashRefType

7.1.120 subjectMemoryKindType

Base: memoryKindType < xs:string

Subject memory type to categorize memory assigned to a subject. The validator tool checks
that a subject only maps memory regions of types outlined in this section (6.12).

Also used by build tools to lookup certain elements by type. For example, the mugenzp tool
looks for subject memory of type subject_zeropage to process all Linux zero-pages in the
policy.

The following memory types are currently supported:

subject
Generic subject memory, used e.g. for RAM regions of VM subjects. The mugenzp tool used
for Linux VMs (5.3.11) exports such regions as E820_RAM in the ZP E820 memory map.

subject_info

Subject info (sinfo) region provided to all subjects. The sinfo region is used to query infor-
mation about the execution environment. The file backing of this region is created by the
mugensinfo tool (5.3.11).

subject_state

Subject execution state. Mapped into the SK kernel executing the given subject, kernels
running on other CPUs have no access. Accessible by subject monitors running on the
same CPU if specified in the policy. Validator enforces that each subject has an associ-
ated subject_state region and that it is mapped at the expected virtual address in the
executing kernel (6.12).

subject_binary

Subject executable as a whole or separate subject executable regions (text, rodata, data,
bss, stack) with access rights (writable/executable). The mucbinsplit tool automatically
creates a component provides section with separate binary regions and associated backing
files from a component binary (5.5.4).

subject_channel

Physical memory region used as shared channel between two subjects. The expander tool
transforms channels in system policy source format to memory regions with this type in
system policy format A/B, as described in section 7.1.69.

subject_crash_audit
Memory region used by crash audit facility to store system crash information into slots, see
[2]. This information is preserved after a crash by performing a system warm start. Validators
enforce that

— Region is present and uncached, 6.8

— Region does not overlap with image, 6.8

88

— Kernel mappings are present and correct, 6.7

— No subject has write access to this region, 6.12

subject_initrd

Physical memory of this type designates an initial ramdisk. This memory type is mostly used
by Linux VMs. If multiple initrd regions are mapped into a subject, they must be adjacent
(6.12).

The mugenzp tool (5.3.11) extracts the virtual address and size of a subject-mapped region
of this memory type and stores the values in the generated Linux zero-page (ZP) backing
file.

subject_bios
Indicates to subjects that the memory region is reserved for BIOS/firmware and must not be
used as regular RAM.

subject_acpi_x*
Indicates to subjects that the memory region contains an ACPI table. See the ACPI spec-
ification for more information about RSDP, XSDT, FADT and DSDT ACPI tables. The

mugenzp tool (5.3.11) exports such regions as E820_ACPI in the ZP E820 memory map.

subject_zeropage
Indicates to Linux subjects that the memory region contains a zero-page. See the Linux
kernel Zero Page documentation for more information.

subject_solo5_boot_info
Indicates to a VM running Solo5/Mirage that the memory region contains a boot info struc-
ture. The file-backing of such a region may be created using the mugensolo5 tool (5.3.11).

subject_device

Designates a memory region which is allowed to be added to a subject and a device domain.
The difference to the subject memory type is that the region is not exported as E820_RAM
but E820_RESERVED to Linux subjects. Therefore, such a region is useful to implement
custom drivers without interference from Linux DMA zone handling.

subject_timed_event

Region designates a subject timed event page, as described in [1]. The expander tool creates
a physical memory region for each subject and maps it into the associated subject and the
SK kernel executing this subject.

Restrictions

values:

subject

subject__info
subject__state
subject__binary
subject__channel
subject__crash_audit
subject__initrd
subject__bios
subject__acpi_ rsdp
subject__acpi_ xsdt

subject__acpi_ fadt

89

e subject_acpi_ dsdt

e subject_ zeropage

e subject_solo5_boot_info
e subject_ device

e subject_ timed_ event

7.1.121 componentType

Base: libraryType

A component is a piece of software which shall be executed by the SK. Components represent
the building blocks of a component-based system and can be regarded as templates for executable
entities instantiated by subjects.

The specification of a component declares the binary program by means of (file-backed mem-
ory) regions. It also specifies the component’s view of the expected execution environment. A
component may request the following resources from the system:

e Logical channels
¢ Logical memory regions
e Logical devices

e Logical events

Components are identified by name and specify a profile. The profile controls the settings of
the virtual CPU (vCPU).
See line 1044 in listing 8.1 for an example component.

Attributes
Name Type Use
name nameType required

Component/library name.

profile componentProfileType required
Component profile.

Structure

configo. . .1
configType

dependsp. . 1
libraryDepsType

requiresp. . .1
requiredResourcesType

providesp. . .1
providedResourcesType

90

7.1.122 componentProfileType
Base: xs:string

The component profile defines default vCPU settings and triggers profile specific actions in the
expander tool. The following actions are performed for the ’linux’ profile.

¢ Add Linux zero-page (ZP, generated by Mugenzp)

o Add ACPI table regions (generated by Mugenacpi)

o Append sinfo address to boot parameters (muen_sinfo)

¢ Add dummy legacy BIOS regions (start address 16000c_0000)

o Invalidate guest state of Linux SMP emulation sibling subjects

Restrictions
values:

e native

e VI

e linux

7.1.123 subjectsType

The subjects element holds a list of subjects.
See line 1854 in listing 8.1 for an example subjects section.

Structure

subject; .

—> subjectType

7.1.124 subjectType

A subject is an instance of a component, i.e. an active component in the system policy that may

be scheduled. Its specification references a component and maps all requested logical resources

to physical resources provided by the system. Additional resources to the ones requested by the

component can be specified here. This enables specialization of the base component specification.
See line 1858 in listing 8.1 for an example subject declaration.

Attributes
Name Type Use
name nameType required

Unique subject name.

91

Structure

3 vcpuo. . .1
vepuType
bootp?rar.nsa o
xs:string
3 memoryo. . .1
memoryRefsTypeOptVa
devicesg. . 1
devicesRefType
eventsy, 1
subjectEventsType
channelsp. . 1
channelReferencesType
monitorg. | 1
monitor Type
componenty, 1
componentReference Type
—> choicey. . 1
siblingl. .1
namedRefType

7.1.125 memoryRefsTypeOptVa

List of physical memory region references where ’virtualAddress’ is optional.

Structure

memoryg, . *

— mem RefTypeOptVa

7.1.126 memRefTypeOptVa

A memory element maps a physical memory region into the address space of a device domain
or subject entity. The region will be accessible to the entity at the specified virtualAdress
with permissions defined by the executable and writable attributes. If virtualAddress
is omitted, it will be automatically generated by mucfgvresalloc.

Attributes
Name Type Use
virtualAddress word64Type optional

Address in entity address space where the physical memory region is mapped.

92

(continuation)
Name Type Use

physical nameType required
Name of referenced physical memory region.

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

7.1.127 devicesRefType

List of device references. Used to grant a subject access to hardware devices and their resources.
See line 2257 in listing 8.1 for example device references.

Structure

deviceg | =
—> deviceRefType

7.1.128 deviceRefType

The device element allows a subject access to devices referenced via the physical attribute.

For PCI devices only a single virtual bus is provided (bus 0). The pci element may be used to
place the device at a specific location (BDF). If no other logical device resources of the device are
specified, then the expander tool will map all physical devices resources into the subject. When
logical device resources are explicitly specified, then only access to those are actually granted. The
physical attribute must be either a reference to an existing physical device, device alias or device
class. Validators check that this is the case.

See line 2262 in listing 8.1 for an example reference.

Attributes
Name Type Use
logical nameType required

Logical device name.

physical nameType required
Name of physical device to reference.

Structure

pcio. . .1
pciAddressType

irqg. . *
irqgRefType
memoryg *
devMemRefType

ioPorty .
physicalRefType

93

7.1.129 pciAddressType
PCI Bus, Device, Function triplet (BDF).

Attributes
Name Type Use
bus byteType required

PCI Bus number.

device pciDeviceNumberType required
PCI Device number.

function pciFunctionNumberType required
PCI Function number.

7.1.130 irqRefType

The device 1 rqg element assigns the referenced physical IRQ to the subject, i.e. if the device triggers
the referenced physical IRQ, the specified vector number will be injected into the subject by the

SK.

The presence of msi sub-elements enforces MSI mode (the default for MSI-capable devices and

automatic device resource expansion).

Attributes
Name Type Use
logical nameType required

Logical IRQ name.

physical nameType required
Name of physical device IRQ.

vector vectorType optional

Vector to inject into subject if device triggers IRQ. Will be allocated by the

expander if none is specified.

Structure

msig, | *

—> physicalRefType

7.1.131 physicalRefType

References a physical resource given by the physical attribute, and assigns a 1ogical name to

it.

Attributes

Name Type Use
logical nameType required

Logical name for resource reference.

physical nameType required
Name of physical resource.

94

7.1.132 devMemRefType

The device memory element maps the device memory region referenced via the physical attribute
into the subject address space at address virtualAddress. The executable, writable
attributes define the access permissions for the subject.

See line 2277 in listing 8.1 for an example device memory reference.

Attributes
Name Type Use
virtualAddress word64Type optional
Address of mapping in subject address space. If none is specified, an identity

mapping is applied by the expander tool.

physical nameType required
Name of referenced physical memory region.

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

7.1.133 subjectEventsType

The subject events element specifies all events originating from or directed at this subject. The
physical attribute is the name of a event defined in the global events section.
See line 1877 in listing 8.1 for an example subject events section.

Structure

sourcep, . 1
eventSourceType

targeto. . .1
eventTargetType

7.1.134 eventSourceType

The event source element specifies events that are allowed to be triggered by the associated
subject.

Source events are divided into two groups: vmx_exit and vmcall. For event group vmx_exit
the id attribute specifies the trap number while in the vmcall group it designates the hypercall
number. For the valid range of IDs for each group see section 7.1.137.

The vmx_exit group is translated to a lookup table for handling VMX exit traps as defined
by Intel SDM Vol. 3D, "Appendix C VMX Basic Exit Reasons". The vmcall group on the other
hand is translated into a lookup table to handle hypercalls.

See line 1883 in listing 8.1 for an example event source section.

Structure

groupy, x

—> eventGroupType

95

7.1.135 eventGroupType

Source event group element. Currently, two groups are supported: vmcall for hypercalls and
vmx_exit for all other supported traps.

Attributes
Name Type Use
name eventGroupNameType required

Name of event group.

Structure

defaultg. . 1
defaultEventEntryType

eventy x
sourceEventEntry Type

7.1.136 defaultEventEntryType

Base: baseDefaultEventType

The default element entry can be used to specify an event which should be added for all
event ids that have not been explicitly specified.

See line 1894 in listing 8.1 for a default source event example.

Attributes
Name Type Use
physical nameType required

Global event reference.

7.1.137 sourceEventEntryType

Base: baseEventWithIDType < baseEventType

A source event entry specifies a source event node, i.e. it registers a handler for the given
event id. These IDs, depending on the event group, are either hypercall numbers or VMX basic
exit reasons. The valid ID ranges of the respective groups are:

vmx__exit 0 .. 59

vmcall 0 .. 63
Additionally, the following IDs in vmx_exit group are reserved and may not be used:
e Used by kernel: 1, 7, 41, 52, 55
e Reserved by Intel: 35, 38, 42

It is possible to assign event actions to event source entries. Currently supported source event
actions are subject_sleep, subject_yield, unmask_irqg, system_reboot, system_poweroff
and system_panic, which all have the kernel itself as endpoint.

See line 1951 in listing 8.1 for a source event entry example.

96

(continuation)

Name Type Use
Attributes

Name Type Use
logical nameType required

Logical event name.

physical nameType required
Physical event name.

id eventIdType required
ID of event.

7.1.138 eventGroupNameType
Base: xs:string
Supported event groups.
Restrictions
values:
o vINX exit

e vmcall

7.1.139 eventTargetType

The event target element specifies events that the subject is an endpoint of.
See line 1981 in listing 8.1 for an example event target section.

Structure

event;

—> targetEventEntryType

7.1.140 targetEventEntryType

Base: baseEventType

The event element in the target section specifies one event endpoint by referencing a physical
event and assigning a logical name to it.

See line 1986 in listing 8.1 for an example event endpoint.

Attributes
Name Type Use
logical nameType required

Logical event name.

physical nameType required
Physical event name.

id xs:nonNegativeInteger optional
Event ID.

97

7.1.141 channelReferencesType

The channel section of a subject declares references to communication channels. The referenced
channels become accessible to the requesting subject either as reader or writer endpoint.
See line 2389 in listing 8.1 for an example section.

Structure
reader;. 1
channelReaderType
choicey . *
writery, | 1
channelWriterType

7.1.142 channelReaderType

A channel reader element references a global communication channel as reader endpoint, i.e. the
channel is mapped read-only into the subject address space.
See line 2395 in listing 8.1 for an example reader declaration.

Attributes
Name Type Use
logical nameType required

Logical name of reader channel.

physical nameType required
Name of physical channel.

virtualAddress word64Type optional
Address of mapping in subject address space.

vector vectorOrAutoType optional
Associated vector. Must be set if a physical channel with hasEvent mode !=
switch is referenced (enforced by validator). The vector attribute is optional

in the case of mode switch.

7.1.143 vectorOrAutoType

Vector number or "auto" to request automatic assignment.

Restrictions
Union of
e vectorType

« constantAuto

7.1.144 channelWriterType

A channel writer element references a global communication channel as writer endpoint, i.e. the
channel is mapped with write permissions into the subject address space.
See line 2402 in listing 8.1 for an example writer declaration.

98

(continuation)

Name Type Use
Attributes

Name Type Use
logical nameType required

Logical name of writer channel.

physical nameType required
Name of physical channel.

virtualAddress word64Type optional
Address of mapping in subject address space.

event eventIdOrAutoType optional
Associated event number. Must be set if a physical channel with hasEvent
attribute is referenced.

7.1.145 eventldOrAutoType

Event number or "auto" to request automatic assignment.

Restrictions

Union of
o eventldType

« constantAuto

7.1.146 monitorType

The monitor abstraction enables subjects to request access to certain data of another subject
specified by name. Possible child elements are:

e State
¢ Timed Events
o Interrupts

e Loader

See the Muen Component Specification document for details about these subject monitor in-
terfaces.
See line 1997 in listing 8.1 for an example monitor section.

Structure
stateg . *
monitorSubjectRef Type
timed_eventy .
monitorSubjectRef Type
interruptsg . *
monitorSubjectRefType
loaderg. . 1
loaderSubjectRefType

99

7.1.147 monitorSubjectRefType

Base: loaderSubjectRefType
Give subject monitor (SM) access to the referenced subject state.

Attributes
Name Type Use
subject nameType required

Name of monitored subiject.

logical nameType required
Logical name of state mapping.

virtualAddress word64Type required
Address to map requested subject address space.

writable booleanType required
Whether or not the given state is mapped writable into the SM.

7.1.148 loaderSubjectRefType

The loader mechanism effectively puts the loaded subject denoted by the subject attribute
under loader control, as it is not able to start without the help of the loader.

In more detail, the 1oader monitor element instructs the expander tool to map all memory
regions of the referenced subject into the address space of the monitor subject, using the specified
virtualAddress as offset in the address space of the loader.

If a memory region of the loaded subject is writable and file-backed, the region is replaced with
an empty region and linked via the hashRef mechanism to the original region which is mapped
into the loader.

The state of the loaded subject is then invalidated by clearing the CR4 . VMXE bit in the initial
subject CR4 register value. If such a subject is scheduled by the kernel, a VMX exit VM-entry
failure due to invalid guest state (33) occurs. See Intel SDM Vol. 3C, "23.7 Enabling and Entering
VMX Operation" and Intel SDM Vol. 3C, "23.8 Restrictions on VMX Operation" for more details.
This trap is linked to the loader via normal VMX event handling. After handover, the loader
initializes the memory regions replaced by the expander with the designated content.

All information required to load the loaded subject is provided to the loader subject via its own
sinfo API. Memory regions prefixed with monitor_sinfo_ provide access to the sinfo regions of
the loaded subjects. Regions prefixed with monitor_state_ specify memory regions containing
the subject register state of the loaded subject.

The difference between the monitor_sinfo_ memory region address in the loader and the
address of the sinfo memory region in the target sinfo information denotes the virtualAddress
offset attribute of the loader element in the policy. This information combined is enough to fully
construct the initial state of the loaded subject, or to reset a subject to its initial state on demand.

The loader may also optionally check the hashes of the restored regions, as this information is
provided via the sinfo mechanism as well.

See line 2014 in listing 8.1 for an example loader element.

Attributes
Name Type Use
subject nameType required

Name of monitored subject.

logical nameType required
Logical name of state mapping.

virtualAddress word64Type required
Address to map requested subject address space.

100

7.1.149 componentReferenceType

The component reference element specifies which component this subject instantiates. All logical

resources required by the component must be mapped to physical resources of the appropriate type.

Validators make sure that all requirements are satisfied and that no mapping has been omitted.
See line 1908 in listing 8.1 for an example component reference.

Attributes
Name Type Use
ref nameType required

Name of referenced component.

Structure

Mapg;F+

— resourceMapping Type

7.1.150 resourceMappingType

The map element maps a physical resource provided by the system with a resource requested by
the referenced component.

This element allows recursion to map child resources as well (e.g. device memory, I/O ports
etc).

See line 1924 in listing 8.1 for an example mapping.

Attributes
Name Type Use
logical nameType required

Name of logical resource requested by the component.

physical nameType required
Physical name of resource.

Structure

mapg, . *

—> resourceMapping Type

7.1.151 schedulingType

The Muen SK implements a fixed, cyclic scheduler. The scheduling element is used to specify
such a static plan by means of a major frame. A major frame consist of an arbitrary number of
minor frames. Minor frames in turn specify a duration in number of ticks a scheduling partition is
scheduled.

Scheduling partitions defined in the partitions element consist of one or more scheduling
groups, which in turn specify one or more subjects to be scheduled. Scheduling groups are used to
define groups of cooperating subjects, which are allowed to hand over execution to a subject in the
same scheduling group. This is done via handover events. Membership of a scheduling group must
be specified explicitly in the policy, validators enforce that these settings are correct by calculating
the chain of handover events.

While scheduling groups support the efficient cooperation of multiple subjects, subjects which
need to be spatially but not temporally isolated from each other cannot profit from it. To efficiently
support this use-case, the scheduling partition concept is implemented.

101

Within a scheduling partition, all scheduling groups are scheduled round robin with preemption
and the opportunity to yield and/or sleep. If a subject in a scheduling group sleeps or yields, the
next scheduling group in the scheduling partition is scheduled. More precisely: the active subject
of the next scheduling group is executed by the SK.

Note that prioritization is not implemented on purpose to avoid any starvation issues®. The
yield operation maps to the x86_ 64 PAUSE instruction, while sleep corresponds to HLT. See the
Muen Component Specification document [1] for more information on this topic.

Minor frames designate the scheduling partition that is to be executed for the given amount of
ticks. The scheduling partition attribute name uniquely identifies a scheduling partition. On first
activation, the first scheduling group (in XML-order) is scheduled. Within the scheduling group,
the first subject (again in XML-order) is executed. The active subject of a scheduling group may
change over time, as the cooperating subjects initiate handover events.

The tickRate attribute of the scheduling element has the unit Hertz (Hz) and specifies the
number of clock ticks per second. The ticks attribute of minor frames is expressed in terms of this
tick rate. As an example: if we want to declare the minor frame duration in terms of microseconds
(1075) then a tick rate of 1000000 must be used.

The duration of a major frame must be the same on each CPU, meaning the sum of all minor
frame ticks for any given CPU must be identical. However, different major frames can have
arbitrary length.

The Tau0 subject designates to the kernel which major frame is the currently active one. At
the end of each major frame, the kernel determines the active major frame and switches to that
scheduling plan for the duration of the major frame.

See line 2465 in listing 8.1 for an example scheduling plan.

Attributes
Name Type Use
tickRate xs:positivelnteger required

Scheduling clock ticks in Hz.

Structure

partitions; . . 1
schedulingPartitionsType

majorFrame;
majorFrameType

7.1.152 schedulingPartitionsType
The partitions element is used to specify all scheduling partitions of the system.

See line 2524 in listing 8.1 for an example partitions element.

Structure

partitiony

— schedulingPartition Type

7.1.153 schedulingPartitionType

Base: baseSchedulingPartitionType
The scheduling partition element is used to specify a collection of scheduling groups consist-
ing of subjects that require spatial but not temporal isolation from each other. Within a scheduling

2Prioritization with starvation protection cannot be implemented with low complexity

102

partition, all scheduling groups are scheduled round robin with preemption (i.e. non-cooperatively)
and the opportunity to yield and/or sleep.

A scheduling partition must contain at least one scheduling group.

See line 2529 in listing 8.1 for an example scheduling partition.

Attributes
Name Type Use
name nameType required

Name of the scheduling partition.

Structure

groups. . .64

—> schedulingGroupType

7.1.154 schedulingGroupType

Base: baseSchedulingGroupType

The scheduling group element is used to specify a collection of subjects that may cooperatively
schedule each other via handover events. Scheduling groups must contain at least one subject. As
an example, a Linux subject and its associated Subject Monitor (SM), Subject Loader (SL) and
Device Manager (DM) form a scheduling group.

See line 2539 in listing 8.1 for an example scheduling group.

Structure

subject; .
namedType

7.1.155 namedType

The namedType is used for simple elements in the policy, that only specify a name.

Attributes
Name Type Use
name nameType required

Name of element.

7.1.156 majorFrameType

A major frame consists of a sequence of minor frames for a given CPU. When the end of a major
frame is reached, all CPUs synchronize and the scheduler starts over from the beginning using the
first minor frame again. This means that major frames are repeated in a cyclic fashion until a
different major frame is designated via the Tau0 interface.

See line 2602 in listing 8.1 for an example major frame.

Structure

Cpuy, . x

— cpuType

103

7.1.157 cpuType

The cpu element is used to specify major frames for each CPU of the system.
See line 2610 in listing 8.1 for an example cpu element.

Attributes

Name Type Use

id xs:nonNegativeInteger required
ID of CPU.

Structure

minorFrame; «
minorFrameType

>

7.1.158 minorFrameType

A minor frame specifies the number of scheduling ticks a partition is allowed to run on the CPU
specified by the parent cpu element.
See line 2615 in listing 8.1 for an example minor frame.

Attributes
Name Type Use
partition nameType required

Name of scheduled partition.

ticks xs:positivelInteger required
Number of scheduling ticks in minor frame.

104

o

-

23

29

31

33

39

41

43

47

61

Chapter 8

Appendix

8.1 Annotated Example Policy

<?xml version=’"1.0’ encoding=’utf-8’7?>

<system>

<l
A Muen system policy specifies all hardware resources such as physical
memory, devices, CPU time, etc and how these resources are accessed by
the separation kernel, the subjects and devices.

The ‘system' section is the top-level element in the Muen system policy.
It contains various sub-elements which specify all aspects of a concrete
system.

This is the xsource formatx of the Muen system policy. It allows for
abstractions, such as channels, which are broken down into their
constituent parts by the toolchain in format A and B accordingly.
——>
<config>
<l-=
The purpose of a config section is to specify configuration values which
parameterize a system or a component. It allows to declare boolean,
string and integer values. The following sections in the system policy
provide support for configuration values:

- System
- Platform
- Component

During the build process, configuration values provided by the platform
are merged into the global system configuration. Component configuration
values allow the parameterization of component-local functionality.

Besides component parameterization, configuration options can be used in
‘if' conditionals, as shown in the following example.

VY yml
<if variable="xhcidbg_enabled" value="true">

</if>

Vi

If the type of the referenced variable is string the comparison is
case-sensitive. A second use case is XML attribute value expansion as
follows:

Vi

xml
<channel name="debuglog" size="$logchannel_size"/>

R

The ‘size' attribute value is not specified directly, but parameterized
via an integer configuration option.

-—>

<boolean name="pciconf_emulation_enabled" value="true"/>
<boolean name="pciconf_emulation_xhci_enabled" value="false"/>
<boolean name="xhcidbg_supported" value="false"/>

<boolean name="xhcidbg_enabled" value="true"/>

<boolean name="dbgserver_sink_serial" value="true"/>

<boolean name="ahci_supported" value="true"/>

<boolean name="serial_ supported" value="true"/>

<boolean name="dbgserver_sink_xhcidbg" value="false"/>
<boolean name="linux_debug" value="false"/>

105

79

81

83

87

89

93

97

99

117

119

<boolean name="ahci_drv_enabled" value="false"/>
<boolean name="dbgserver_sink_shmem" value="false"/>
<boolean name="uefi_gop_rmrr_access" value="false"/>
<boolean name="hsuart_supported" value="false"/>

<boolean name="ahci_drv_active" value="false"/>

<boolean name="dbgserver_sink_pcspkr" value="false"/>

<boolean name="dbgserver_serial_enabled" value="true"/>

<string name="pciconf_emulation_xhci_devid" value="16402#"/>

<string name="pciconf_emulation_nic_devid" value="16#01#"/>

<string name="logchannel_size" value="16#0002_0000#"/>

<string name="platform" value="platform/lenovo-t430s.xml"/>

<string name="hardware" value="hardware/lenovo-t430s.xml"/>

<string name="pciconf_emulation_xhci_physdev" value="usb_controller_1"/>
<string name="system" value="xml/demo_system_vtd.xml"/>

<string name="pciconf_emulation_nic_physdev" value="ethernet_controller_1"/>
<string name="igd_opregion_address" value="16#baf5_5000#"/>

<string name="additional_hardware" value="hardware/common_hardware.xml"/>
</config>

<hardware>

<=

Systems running the Muen SK perform static resource allocation at
integration time. This means that all available hardware resources of a
target machine must be defined in the system policy in order for these

resources to be allocated to subjects.

The
specification in the system policy.

including reserved memory regions (RMRR),
cores and hardware device resources.

The Muen toolchain provides a handy tool to automate the cumbersome

‘hardware' element is the top-level element of the hardware
Information provided by a hardware
description includes the amount of available physical memory blocks
the number of physical CPU

process of gathering hardware resource data from a running Linux system:

‘mugenhwcfg‘["~1].

[~1]:
>
<processor cpuCores="2"

<=

The

‘processor' element specifies the number of CPU cores,

https://git.codelabs.ch/?p=muen/mugenhwcfg.git

speed="2893431" vmxTimerRate="5">

speed in kHz and the Intel VMX preemption timer rate.

Since Intel CPUs can have arbitrary APIC identifiers,
The APIC ID is required for

all physical CPUs are enumerated here.
interrupt and IPI routing.

The
of the hardware target,
——>
<cpu apicId="0"/>
<cpu apicId="2"/>
<cpuid eax="16#0000_000d#" ebx="16#756e_6547#"
16#0000_0000#" subleaf="16#00#"/>
<cpuid eax="16#0003_06a9%#" ebx="16#0010_0800#"
16#0000_00014#" subleaf="16#00#"/>
<cpuid eax="16#7603_5a01l#" ebx="16#00£0_b2ff#"
16#0000_0002#" subleaf="16#00#"/>
<cpuid eax="16#0000_0000#" ebx="16#0000_0000#"
16#0000_0003#" subleaf="16#00#"/>
<cpuid eax="16#1c00_4121#" ebx="16#01c0_003f#"
16#0000_00044#" subleaf="16#00#"/>
<cpuid eax="16#1c00_4122#" ebx="16#01c0_003f#"
16#0000_0004#" subleaf="16#01#"/>
<cpuid eax="16#1c00_4143#" ebx="16#01c0_003f#"
16#0000_00044#" subleaf="16#02#"/>
<cpuid eax="16#1c03_cl63#" ebx="16#03c0_003f#"
16#0000_0004#" subleaf="16#03#"/>
<cpuid eax="16#0000_0040#" ebx="16#0000_0040#"
16#0000_0005#" subleaf="16#00#"/>
<cpuid eax="16#0000_0077#" ebx="16#0000_0002#"
16#0000_0006#" subleaf="16#00#"/>
<cpuid eax="16#0000_0000#" ebx="16#0000_0281#"
16#0000_0007#" subleaf="16#00#"/>
<cpuid eax="16#0000_0000#" ebx="16#0000_0000#"
16#0000_0008#" subleaf="16#00#"/>
<cpuid eax="16#0000_0000#" ebx="16#0000_0000#"
16#0000_00094" subleaf="16#00#"/>
<cpuid eax="16#0730_0403#" ebx="16#0000_0000#"
16#0000_000a#" subleaf="16#00#"/>
<cpuid eax="16#0000_0001#" ebx="16#0000_0002#"
16#0000_000b#" subleaf="16#00#"/>
<cpuid eax="16#0000_0004#" ebx="16#0000_0004#"
16#0000_000b#"™ subleaf="16#01#"/>
<cpuid eax="16#0000_0000#" ebx="16#0000_0000#"
16#0000_000c#" subleaf="16#00#"/>
<cpuid eax="16#0000_0007#" ebx="16#0000_0340#"
16#0000_000d#"™ subleaf="16#00#"/>

ecx="16#6c65_746e#"
ecx="16#7fba_e3ff#"
ecx="16#0000_0000#"
ecx="164#0000_0000#"
ecx="16#0000_003f#"
ecx="16#0000_003f#"
ecx="16#0000_01ff#"
ecx="16#0000_0fff#"
ecx="16#0000_0003#"
ecx="16#0000_0009#"
ecx="164#0000_0000#"
ecx="16#0000_0000#"
ecx="1640000_0000#"
ecx="16#0000_0000#"
ecx="16#0000_0100#"
ecx="16#0000_0201#"
ecx="16#0000_0000#"

ecx="164#0000_0340#"

106

the processor

the APIC IDs of

‘processor' element also lists register values for all CPUID leaves
and some MSR values of interest.

edx="16#4965_6e69#"
edx="16#bfeb_fbff#"
edx="16#00ca_0000#"
edx="16#0000_0000#"
edx="16#0000_0000#"
edx="16#0000_0000#"
edx="16#0000_0000#"
edx="16#0000_0006#"
edx="16#0002_1120#"
edx="16#0000_0000#"
edx="16#9c00_0400#"
edx="16#0000_0000#"
edx="16#0000_0000#"
edx="16#0000_0603#"
edx="16#0000_0000#"
edx="16#0000_0000#"
edx="16#0000_0000#"

edx="16#0000_0000#"

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

leaf="

131

133

139

141

159

161

163

165

193

<cpuid eax="16#0000_0001#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#0000_000d#" subleaf="16#01#"/>

<cpuid eax="16#0000_0100#" ebx="16#0000_0240#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#0000_000d#" subleaf="16#02#"/>

<cpuid eax="16#0000_0007#" ebx="16#0000_0340#" ecx="16#0000_0340#" edx="16#0000_0000#" leaf="
16#2000_0000#" subleaf="16#00#"/>

<cpuid eax="16#8000_0008#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#8000_0000#" subleaf="16#00#"/>

<cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0001#" edx="16#2810_0800#" leaf="
16#8000_0001#" subleaf="16#00#"/>

<cpuid eax="16#2020_2020#" ebx="16#4920_2020#" ecx="16#6c65_T746e#" edx="16#2029_5228#" leaf="
16#8000_00024#" subleaf="16#00#"/>

<cpuid eax="16#6572_6f43#" ebx="16#294d_5428#" ecx="16#2d37_6920#" edx="16#3032_35334" leaf="
16#8000_0003#" subleaf="16#00#"/>

<cpuid eax="16#5043_204d#" ebx="16#2040_2055#" ecx="16#3039_2e32#" edx="16#007a_4847#" leaf="
16#8000_00044#" subleaf="16#00#"/>

<cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#8000_0005#" subleaf="16#00#"/>

<cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0100_6040#" edx="16#0000_0000#" leaf="
16#8000_0006#" subleaf="16#00#"/>

<cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0100#" leaf="
16#8000_00074#" subleaf="16#00#"/>

<cpuid eax="16#0000_3024#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#8000_0008#" subleaf="16#00#"/>

<cpuid eax="16#0000_0007#" ebx="16#0000_0340#" ecx="16#0000_0340#" edx="16#0000_0000#" leaf="
16#8086_0000#" subleaf="16#00#"/>

<cpuid eax="16#0000_0007#" ebx="16#0000_0340#" ecx="16#0000_0340#" edx="16#0000_00004" leaf="164%#

c000_0000#" subleaf="16#00#"/>

<msr address="16#0000_003a#" name="IA32_FEATURE_CONTROL" regval="16#0000_0000_0000_0005#"/>
<msr address="16#0000_01a0#" name="IA32_MISC_ENABLE" regval="16#0000_0000_0085_0089#"/>

<msr address="16#0000_0480#" name="IA32_VMX_BASIC" regval="16#00da_0400_0000_0010#"/>

<msr address="16#0000_0481#" name="IA32_VMX_PINBASED_CTLS" regval="16#0000_007£_0000_0016#"/>
<msr address="16#0000_0482#" name="IA32_VMX_PROCBASED_CTLS" regval="16#fff9_fffe 0401_el72#"/>
<msr address="16#0000_0483#" name="IA32_VMX_EXIT_CTLS" regval="16#007f_ffff_ 0003_6dff#"/>

<msr address="16#0000_0484#" name="IA32_VMX_ENTRY_CTLS" regval="16#0000_ffff 0000_11ff#"/>

<msr address="16#0000_0485#" name="IA32_VMX_MISC" regval="16#0000_0000_1004_0le5#"/>

<msr address="16#0000_0486#" name="IA32_VMX_CRO_FIXEDO" regval="16#0000_0000_8000_0021#"/>

<msr address="16#0000_0487#" name="IA32_VMX_CRO_FIXED1" regval="16#0000_0000_ffff ffff#"/>

<msr address="16#0000_0488#" name="IA32_VMX_CR4_FIXEDO" regval="16#0000_0000_0000_2000#"/>

<msr address="16#0000_0489#" name="IA32_VMX_CR4_FIXED1" regval="16#0000_0000_0017_67ff#"/>

<msr address="16#0000_048b#" name="IA32_VMX_PROCBASED_CTLS2" regval="16#0000_08ff_0000_0000#"/>
<msr address="16#0000_048c#" name="IA32_ VMX_EPT_VPID_CAP" regval="16#0000_0£f01_0611_4141#"/>
<msr address="16#0000_048d#" name="IA32_VMX_TRUE_PINBASED_CTLS" regval="16#0000_007£f_0000_0016#"/
>

<msr address="16#0000_048e#" name="IA32_ VMX_ TRUE_PROCBASED_CTLS" regval="16#fff9 fffe 0400_6172#"
/>

<msr address="16#0000_048f#" name="IA32_VMX_TRUE_EXIT_CTLS" regval="16#007f_ffff 0003_o6dfb#"/>
<msr address="16#0000_0490#" name="IA32_VMX_TRUE_ENTRY_CTLS" regval="16#0000_ffff 0000_11fb#"/>

</processor>

<memory>

<t--

The hardware
blocks including reserved memory regions
Specification,

see Intel VT-d

‘memory ' element specifies the available physical memory
(RMRR,
"8.4 Reserved Memory Region Reporting Structure").

Only memory blocks reported by the BIOS E820 map as non-xreservedx must

be configured in this section, e.g. xusablex or xACPI NVSx, *xACPI datax.

——>

<memoryBlock allocatable="false" name="System RAM" physicalAddress="16#0000#" size="16#0009_d000#
l|/>

<memoryBlock allocatable="true" name="System RAM" physicalAddress="16#0010_0000#" size="16#1
££0_0000#"/>

<memoryBlock allocatable="true" name="System RAM" physicalAddress="16#2020_0000#" size="16#1
fe0_40004"/>

<memoryBlock allocatable="true" name="System RAM" physicalAddress="16#4000_5000#" size="16#6

ed2_c000#"/>

<memoryBlock allocatable="false" name="ACPI Non-volatile Storage" physicalAddress="16#bae9_f000#"

size="16#0010_00004"/>

<memoryBlock allocatable="false" name="ACPI Tables" physicalAddress="16#baf9_f000#" size="16#0006

_0o00#"/>

<memoryBlock allocatable="true" name="System RAM" physicalAddress="16#0001_0000_0000#" size="

16#0003_3e60_0000#"/>

<reservedMemory name="rmrrl" physicalAddress="16#ba3b_a000#" size="16#0001_7000#">

<!--

A ‘reservedMemory' element is a special memory block declaration. It
specifies a reserved memory region as outlined in the Intel VT-d
Specification, "8.4 Reserved Memory Region Reporting Structure" (RMRR).

Reserved memory regions are BIOS allocated memory ranges that may be DMA

targets for certain legacy device use-cases. Devices that require access

to such a region refer to it by name.

——>
</reservedMemory>
<reservedMemory name="rmrr2" physicalAddress="16#bb80_0000#" size="16#0420_00004"/>
</memory>
<devices pciConfigAddress="16#£800_0000#" pciConfigSize="16#0400_0000#">
<t-=

107

195 The ‘devices' element enumerates all devices provided by the hardware
platform. Different kinds of devices, be it PCI(e) or legacy (non-PCI),

197 can be declared in this section.
-—>
199 <device name="vga">
<l--
201 The ‘device' element specifies a physical device and its associated
resources. There are three main device resource types:
203
- IRQ
205
- I/0 port range
207
- Memory
209

The presence of a PCI element indicates whether the device is a PCI or a
211 legacy device.

213 Capabilities can be used to convey additional device-specific
information. The base address of the memory mapped PCI config space is
215 defined by the ‘pciConfigAddress' attribute.
-—>
217 <memory caching="WC" name="buffer" physicalAddress="16#000a_0000#" size="16#0002_0000#">
<t-=
219 A device ‘memory‘ element specifies a memory region which is used to

interact with the associated device.

For PCI devices, the specified region is programmed into one device BAR
223 (Base Address Register) by system firmware. See the PCI Local Bus
Specification or the PCI Express Base Specification for more details.
225 —>

</memory>
227 <ioPort end="16#03df#" name="ports" start="16#03c0#">
<t--
229 The ‘ioPort‘ element specifies a device I/O port resource from ‘start’
octet up to and including ‘end‘ octet. A single byte-accessed port is
231 designated by specifying the same ‘start' and ‘end‘ values.
——>
233 </ioPort>
</device>
235 <device name="ps2">
<irg name="kbd_irqg" number="1">
237 <l
The ‘irqg‘' element specifies a device IRQ resource.
239
The specified IRQ number is one of:
241
- Legacy IRQ (ISA)a
243 Range ‘0 .. 15°%.
245 - PCI INTx IRQ, line-signaleda
Range ‘0 .. Max_LSI_IRQ‘, whereas ‘Max_LSI_IRQ' is defined by the
247 hardware I/O APIC configuration ‘gsi_base' + ‘max_redirection_entry®
of I/0 APIC with ‘max(gsi_base) ‘. ‘gsi_base' and
249 ‘max_redirection_entry' are I/0 APIC device capabilities.
251 ‘msi' sub-elements are present if the device supports MSI interrupts.

The element count designates the number of supported MSI interrupts.
253 —=>

</irg>
255 <irg name="mouse_irg" number="12"/>
<ioPort end="16#0060#" name="port_60" start="16#0060#"/>
257 <ioPort end="16#0064#" name="port_64" start="16#0064#"/>
</device>
259 <device name="cmos_rtc">
<ioPort end="16#0071#" name="ports" start="16#0070#"/>
261 </device>
<device name="pcspeaker">
263 <ioPort end="16#0061#" name="Port_ 61" start="16#00614#"/>
<ioPort end="16#0043#" name="Port_42_43" start="16#0042#"/>
265 </device>
<device name="system_ board">
267 <=
The system board must provide a reset and pmla_cnt port as well as
269 the pmla_cnt_slp_typ capability. The presence of this device and
the necessary resources are checked by the Mucfgvalidate tool. The
271 resources are used by the kernel for system reboot and poweroff.
——>
273 <ioPort end="16#0cf9#" name="reset" start="16#0cfo#"/>
<ioPort end="16#0404#" name="pmla_cnt" start="16#0404#"/>
275 <capabilities>
<capability name="systemboard"/>
277 <capability name="pmla_cnt_slp_typ">7168</capability>
</capabilities>
279 </device>
<device name="iocapic_1">
281 <=

108

297

299

301

303

305

313

315

317

325

327

329

331

339

341

343

345

347

The I/0 Advanced Programmable Interrupt Controller (I/O APIC) is
used by the kernel for interrupt routing of legacy IRQs. The
presence of this device and the necessary resources are checked by
the validator tool.
—-—>
<memory caching="UC" name="meml" physicalAddress="16#fec0_0000#" size="16#1000#"/>
<capabilities>
<capability name="ioapic">
<!--

A device ‘capability' is used to assign
device. Such a capability might be used
certain actions on devices with a given
system integrator may use this facility

additional information to a

by the Muen toolchain to perform
capability (e.g. ‘ioapic'). A

to define its own capabilities

used by custom tools.

A capability element can have an optional value.

-—>
</capability>
<capability name="gsi_base">0</capability>
<capability name="max_redirection_entry">23</capability>
<capability name="source_id">16#f0f8#</capability>
</capabilities>

</device>
<device name="iommu_1">

<=

This device specifies an Intel VT-d DMA and interrupt remapping
hardware. It is used by the Muen SK to implement device separation
by means of device domains, see below. The capabilities define
specific properties of the IOMMU, such as Guest Address Width,
Fault Register Offset etc. Refer to the Intel VT-d Specification,
"10.4 Register Descriptions".
——>
<memory caching="UC" name="mmio" physicalAddress="16#fed9_0000#" size="164#1000#"/>
<capabilities>

<capability name="iommu"/>

<capability name="agaw">39</capability>

<capability name="fr_ offset">512</capability>

<capability name="iotlb_invalidate_offset">264</capability>
</capabilities>

</device>
<device name="iommu_2">

<memory caching="UC" name="mmio" physicalAddress="16#fed9_1000#" size="16#1000#"/>
<capabilities>

<capability name="iommu"/>

<capability name="agaw">39</capability>

<capability name="fr_offset">512</capability>

<capability name="iotlb_invalidate_offset">264</capability>

</capabilities>

</device>
<device name="host_bridge_1">

<description>Intel Corporation 3rd Gen Core processor DRAM Controller</description>
<pci bus="16#00#" device="164#00#" function="0">

<P-=

PCI(e) devices are specified using the ‘pci‘ element.

The element provides the following information:
- PCI device address (BDF)

- Identification

- IOMMU group information

The location of the PCI device in the PCI topology is specified by the
Bus, Device, Function triplet (BDF).
——>
<identification classcode="16#0600#" deviceId="16#0154#" revisionId="16#09#" vendorId="16#8086#
"
<P—=
The ‘identification' element specifies the PCI device class, device,
revision and vendor ID.

For more information, consult the PCI Local Bus Specification,
"Configuration Space Decoding".

-—>
</identification>
<iommuGroup id="0">

<t-=

Devices in the same IOMMU group cannot be properly isolated from each
other because they may perform inter-device transactions directly,
without going through the IOMMU.

Note that this information is currently not used by the toolchain. It is
a hint to the system integrator whether two devices can be properly
isolated from each other or not.
—-—>
</iommuGroup>

109

369

389

393

395

397

399

401

403

405

407

409

411

435

439

441

443

</pci>
<memory caching="UC" name="mmconf" physicalAddress="16#£800_0000#" size="16#10004"/>
</device>
<device name="vga_compatible_controller_1">
<description>Intel Corporation 3rd Gen Core processor Graphics Controller</description>
<pci bus="16#00#" device="164#02#" function="0">
<identification classcode="16#0300#" deviceId="16#0166#" revisionId="16#09#" vendorId="16#8086#
V|/>
<iommuGroup id="1"/>
</pci>
<irg name="irgl" number="16">
<msi name="msil"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d000_0000#" size="16#0040_0000#"/>
<memory caching="WC" name="mem2" physicalAddress="16#c000_0000#" size="16#1000_0000#"/>
<memory caching="WC" name="mem3" physicalAddress="16#000c_0000#" size="164#0002_0000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#£801_0000#" size="16#10004"/>
<ioPort end="16#603f#" name="ioportl" start="16#6000#"/>
<reservedMemory ref="rmrr2">
<=
This device specifies that it requires access to the reserved
memory range (RMRR) with the given name.
-—>
</reservedMemory>
</device>
<device name="usb_controller_1">
<description>Intel Corporation 7 Series/C210 Series Chipset Family USB xHCI Host Controller</
description>
<pci bus="16#00#" device="16#14#" function="0">
<identification classcode="16#0c03#" deviceId="16#1e31#" revisionId="16#04#" vendorId="16#8086#
V|/>
<iommuGroup id="2"/>
</pci>
<irg name="irgl" number="16">
<msi name="msil">
<P-=
There are two different interrupt types which devices may trigger:
legacy/PCI LSI IRQs and Message Signaled Interrupts (MSI). The
legacy/PCI LSI IRQ is specified by the number attribute of the ‘irqg’
element. For MSIs, each '‘msi‘ element defines an MSI IRQ that may be
assigned to subjects. Each MSI may be individually routed.
-—>
</msi>
<msi name="msi2"/>
<msi name="msi3"/>
<msi name="msid"/>
<msi name="msi5"/>
<msi name="msi6"/>
<msi name="msi7"/>
<msi name="msi8"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d252_0000#" size="16#0001_0000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#£80a_0000#" size="16#1000#"/>
<reservedMemory ref="rmrrl"/>
</device>
<device name="communication_controller_1">
<description>Intel Corporation 7 Series/C216 Chipset Family MEI Controller #1</description>
<pci bus="16#00#" device="164#16#" function="0">
<identification classcode="16#0780#" deviceld="16#le3a#" revisionId="16#04#" vendorId="16#8086#
V|/>
<iommuGroup id="3"/>
</pci>
<irg name="irgl" number="16">
<msi name="msil"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d253_5000#" size="16#10004"/>
<memory caching="UC" name="mmconf" physicalAddress="16#£80b_0000#" size="16#1000#"/>
</device>
<device name="serial_controller_1">
<description>Intel Corporation 7 Series/C210 Series Chipset Family KT Controller</description>
<pci bus="16#00#" device="16#16#" function="3">
<identification classcode="16#0700#" deviceId="16#le3d#" revisionId="16#04#" vendorId="16#8086#
ll/>
<iommuGroup id="3"/>
</pci>
<irg name="irgl" number="19">
<msi name="msil"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d253_c000#" size="164#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#£80b_3000#" size="16#1000#"/>
<ioPort end="16#60b7#" name="ioportl" start="16#60b0#"/>
</device>
<device name="ethernet_controller_1">
<description>Intel Corporation 82579LM Gigabit Network Connection (Lewisville)</description>
<pci bus="16#00#" device="16#19#" function="0">
<identification classcode="16#0200#" deviceId="16#1502#" revisionId="16#04#" vendorId="16#80864#
ll/>

110

461

491

493

495

497

499

501

503

505

507

509

o
w

ey
o

~

o

519

<iommuGroup id="4"/>
</pci>
<irqg name="irgl" number="20">
<msi name="msil"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d250_0000#" size="1640002_0000#"/>
<memory caching="UC" name="mem2" physicalAddress="16#d253_b000#" size="16#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#£80c_8000#" size="16#1000#"/>
<ioPort end="16#609f#" name="ioportl" start="16#6080#"/>
</device>
<device name="usb_controller_2">
<description>Intel Corporation 7 Series/C216 Chipset Family USB Enhanced Host Controller #2</
description>
<pci bus="16#00#" device="1l6#la#" function="0">
<identification classcode="16#0c03#" deviceId="16#le2d#" revisionId="16#04#" vendorId="16#8086+#
ll/>
<iommuGroup id="5"/>
</pci>
<irqg name="irqgl" number="16"/>
<memory caching="UC" name="meml" physicalAddress="16#d253_a000#" size="16#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#£80d_0000#" size="16#10004"/>
<reservedMemory ref="rmrrl"/>
</device>
<device name="audio_device_1">
<description>Intel Corporation 7 Series/C216 Chipset Family High Definition Audio Controller</
description>
<pci bus="16#00#" device="164#1b#" function="0">
<identification classcode="16#04034" deviceld="16#1e20#" revisionId="16#04#" vendorId="16#8086#
H/>
<iommuGroup id="6"/>
</pci>
<irg name="irqgl" number="22">
<msi name="msil"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d253_0000#" size="16#4000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#£80d_8000#" size="16#10004"/>
</device>
<device name="usb_controller_3">
<description>Intel Corporation 7 Series/C216 Chipset Family USB Enhanced Host Controller #1</
description>
<pci bus="16#00#" device="16#1d#" function="0">
<identification classcode="16#0c03#" deviceId="16#1le26#" revisionId="16#04#" vendorId="16#8086#
n"/>
<iommuGroup id="11"/>
</pci>
<irqg name="irqgl" number="23"/>
<memory caching="UC" name="meml" physicalAddress="16#d253_9000#" size="164#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#£80e_8000#" size="16#1000#"/>
<reservedMemory ref="rmrrl"/>
</device>
<device name="isa_bridge_1">
<description>Intel Corporation QM77 Express Chipset LPC Controller</description>
<pci bus="16#00#" device="16#1f#" function="0">
<identification classcode="16#0601#" deviceId="16#1e55#" revisionId="16#04#" vendorId="16#8086#
V|/>
<iommuGroup id="12"/>
</pci>
<memory caching="UC" name="mmconf" physicalAddress="16#f80f_8000#" size="16#1000#"/>
</device>
<device name="sata_controller_1">
<description>Intel Corporation 7 Series Chipset Family 6-port SATA Controller [AHCI mode]</
description>
<pci bus="16#00#" device="16#1f#" function="2">
<identification classcode="16#0106#" deviceId="16#1e03#" revisionId="16#04#" vendorId="16#8086#
V|/>
<iommuGroup id="12"/>
</pci>
<irg name="irgl" number="19">
<msi name="msil"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d253_8000#" size="164#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#f80f_al000#" size="16#1000#"/>
<ioPort end="16#60af#" name="ioportl" start="16#60a8#"/>
<ioPort end="16#60bf#" name="ioport2" start="16#60bc#"/>
<ioPort end="16#60a7#" name="ioport3" start="16#60a0#"/>
<ioPort end="16#60bb#" name="ioport4" start="16#60b8#"/>
<ioPort end="16#607f#" name="ioportS5" start="16#6060#"/>
</device>
<device name="smbus_1">
<description>Intel Corporation 7 Series/C216 Chipset Family SMBus Controller</description>
<pci bus="16#00#" device="16#1f#" function="3">
<identification classcode="16#0c05#" deviceId="16#1e22#" revisionId="16#04#" vendorId="16#8086#
ll/>
<iommuGroup id="12"/>
</pci>
<irqg name="irqgl" number="18"/>
<memory caching="UC" name="meml" physicalAddress="16#d253_4000#" size="16#1000#"/>

111

597

599

601

603

605

607

609

<memory caching="UC" name="mmconf" physicalAddress="16#£80f_b000#" size="16#10004"/>
<ioPort end="l6#efbf#" name="ioportl" start="16#efal#"/>
</device>
<device name="network_controller_1">
<description>Intel Corporation Centrino Advanced-N 6205 [Taylor Peak]</description>
<pci bus="16#03#" device="164#00#" function="0">
<identification classcode="16#0280#" deviceId="16#0085#" revisionId="16#34#" vendorId="16#8086#
l|/>
<iommuGroup id="13"/>
</pci>
<irg name="irgl" number="17">
<msi name="msil"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d1c0_0000#" size="16#2000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#f830_0000#" size="16#1000#"/>
</device>
<device name="system peripheral 1">
<description>Ricoh Co Ltd PCIe SDXC/MMC Host Controller</description>
<pci bus="16#04#" device="16#00#" function="0">
<identification classcode="16#0880#" deviceId="16#e823#" revisionId="16#07#" vendorId="16#1180+#
"/>
<iommuGroup id="14"/>
</pci>
<irg name="irgl" number="18">
<msi name="msil"/>
</irg>
<memory caching="UC" name="meml" physicalAddress="16#d140_0000#" size="16#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="164#£840_0000#" size="16#10004"/>
</device>
</devices>
</hardware>
<platform>
<t-=
To enable a uniform view of the hardware resources across different
physical machines from the system integrators perspective, the platform
description layer is interposed between the hardware resource
description and the rest of the system policy. This allows to build a
Muen system for different physical target machines using the same system
policy.
——>
<mappings>
<!--
Platform device alias and class mappings section. Used to assign a
stable name to a hardware device or to group (multiple) devices under a
given name.
—>
<aliases>
<=
Aliases are a renaming mechanism for physical hardware devices and their
resources. By using alias names in the system policy references to
concrete hardware resources can be avoided. Additionally, aliases may be
used to define a device which only contains a subset of the resources of
the physical device. This can be achieved by only renaming the resources
that the device alias should export.
——>
<alias name="serial device_1" physical="serial_controller_1">
<resource name="ioportl" physical="ioportl"/>
</alias>
<alias name="nic_1" physical="ethernet_controller_ 1">
<resource name="irqgl" physical="irqgl">
<resource name="msil" physical="msil"/>
</resource>
<resource name="meml" physical="meml"/>
<resource name="mem2" physical="mem2"/>
</alias>
<alias name="storage_controller" physical="sata_controller_1"/>
<alias name="ahci_controller" physical="sata_controller_1">
<resource name="irql" physical="irqgl">
<resource name="msil" physical="msil"/>
</resource>
<resource name="ahci_registers" physical="meml"/>
<resource name="mmconf" physical="mmconf"/>
</alias>
</aliases>
<classes>
<!--
The ‘classes' element specifies a list of device classes.
——>
<class name="desktop_devices">
<!t-=
Device classes enable the grouping of devices and allow referencing all
devices by a single name. This simplifies the process of assigning
multiple devices to a subject.

Note: A device class may contain an arbitrary number of devices,

including zero.
——>

112

611 <device physical="audio_device_1"/>
<device physical="ethernet_controller_1"/>
613 <device physical="network_controller_1"/>
<device physical="sata_controller_1"/>
615 <device physical="system_peripheral_1"/>
</class>
617 <class name="additional_nics">
<device physical="network_controller_1"/>
619 </class>
</classes>
621 </mappings>
<kernelDiagnostics type="uart">
623 <l--
The debug build Muen SK can be instructed to output debugging
625 information during runtime. The platform diagnostics device specifies
which device the kernel is to use for this purpose.
627
The presence of this device and the necessary resources are checked by
629 the validator tool.
——>
631 <device physical="serial controller_ 1">
<ioPort physical="ioportl"/>
633 </device>
</kernelDiagnostics>
635 </platform>
<memory>
637 g
This section declares all physical memory regions (RAM) and thus the
639 physical memory layout of the system. Regions declared in this section
can be assigned to subjects and device domains.
641
Memory regions are defined by the following attributes:
643
- Name
645
- Caching type
647
- Size
649
- Physical address\=*
651
- Alignment\«x
653
- Memory type\=
655
Attributes with an asterisk are optional. While alignment and memory
657 type are set to a default value if not specified, the physical address
is filled in by the allocator tool, which allocates all memory regions
659 and finalizes the physical memory layout.
661 Additionally, the content of a region can be declared as backed by a
file or filled with a pattern.
663
Note: The caching type is an attribute of the physical memory region by
665 design to avoid inconsistent typing, even though the Intel Page
Attribute Table (PAT) mechanism allows to set it for each memory
667 mapping, see Intel SDM Vol. 3A, "11.12.4 Programming the PAT".
——>
669 <memory caching="WB" name="control_example" size="16#1000#">
<fill pattern="16#00#">
671 <l--
The ‘fill' element designates a memory region which is initialized with
673 the given pattern.
——>
675 </fill>
<hash value="none"/>
677 </memory>
<memory caching="WB" name="control_sm_1" size="16#1000#">
679 <fill pattern="16#00#"/>
<hash value="none"/>
681 </memory>
<memory caching="WB" name="control_sm_2" size="16#1000#">
683 <fill pattern="1l6#ff#"/>
<hash value="none"/>
685 </memory>
<memory caching="WB" name="control_time" size="16#1000#">
687 <fill pattern="16#ff#"/>
<hash value="none"/>
689 </memory>
<memory caching="WB" name="control_ linux_ 1" size="16#1000#">
691 <fill pattern="16#ff#"/>
<hash value="none"/>
693 </memory>
<memory caching="WB" name="status_example" size="16#1000#">
695 <hash value="none"/>
</memory>
697 <memory caching="WB" name="status_sm_1" size="16#1000#">

113

699

701

703

705

707

715

717

719

721

731

733

735

737

739

741

743

745

74T

749

761

763

765

767

769

771

773

775

<hash value="none"/>
</memory>
<memory caching="WB" name="status_sm_ 2" size="16#1000#">

<fill pattern="16#00#"/>

<hash value="none"/>
</memory>
<memory caching="WB" name="status_time" size="16#1000#">

<fill pattern="16#00#"/>

<hash value="none"/>
</memory>
<memory caching="WB" name="status_linux_1" size="16#1000%#">

<fill pattern="16#004"/>

<hash value="none"/>
</memory>
<memory caching="WB" name="initramfs" size="16#0113_0000#" type="subject_initrd">
<file filename="initramfs.cpio.gz" offset="none">

<P—=

The ‘file' child element designates a file-backed memory region.

The ‘filename' attribute specifies the name of the file to use as
content for the physical memory region, the ‘offset‘ attribute is ‘none’
by default but can be customized to include a partial file.
-—>
</file>
</memory>
<memory caching="WB" name="nic_linux|ram" size="16#1000_0000#"/>
<memory caching="WB" name="nic_linux|lowmem" size="1640008_0000#"/>
<memory caching="WB" name="storage_linux|ram" size="16#1000_0000#"/>
<memory caching="WB" name="storage_linux|lowmem" size="16#0008_0000#"/>
<memory caching="WB" name="example_filled_region" size="16#1000#">
<fill pattern="1l6#5a#"/>
</memory>
<memory caching="UC" name="crash_audit" physicalAddress="16#0001_00al_1000#" size="16#1000#" type=
"subject_crash_audit">
</memory>
</memory>
<deviceDomains>
<=
The physical memory accessible by PCI devices is specified by so called
device domains. Such domains define memory mappings of physical memory
regions for one or multiple devices. Device references select a subset
of hardware devices provided by the hardware/platform. Devices may be
referenced by device name, alias or device class.

Device references can optionally set the ‘mapReservedMemory' attribute
so RMRR regions referenced by the device are also mapped into the device
domain.

Device domains are isolated from each other by the use of Intel VT-d.
——>
<domain name="nic_domain">
<memory>
<mapSubjectMemory subject="nic_linux"/>
</memory>
<devices>
<device logical="first_nic" physical="ethernet_controller_1"/>
<device logical="additional_nics" physical="additional_nics"/>
</devices>
</domain>
<domain name="storage_domain">
<memory>
<memory executable="false" logical="dmal" physical="storage_linux|lowmem" virtualAddress="
16#0002_0000#" writable="true">
<l—=
A ‘memory‘ element maps a physical memory region into the address space
of a device domain or subject entity. The region will be accessible to
the entity at the specified ‘virtualAdress' with permissions defined by
the ‘executable' and ‘writable‘ attributes.
——>
</memory>
<memory executable="false" logical="dma2" physical="storage_linux|ram" virtualAddress="16#0100
_0000#" writable="true"/>
</memory>
<devices>
<device logical="storage_controller" physical="storage_controller"/>
<device logical="xhci" physical="usb_controller_1"/>
</devices>
</domain>
</deviceDomains>
<events>
<!-=
Events are an activity caused by a subject (source) that impacts a
second subject (target) or is directed at the kernel. Events are
declared globally and have a unigque name to be unambiguous. An event
must have a single source and one target.

Subjects can use events to either deliver an interrupt, hand over

114

execution to or reset the state of a target subject. The first kind of

783 event provides a basic notification mechanism and enables the
implementation of event-driven services. The second type facilitates

785 suspension of execution of the source subject and switching to the
target. Such a construct is used to pass the thread of execution on to a

787 different subject, e.g. invocation of a debugger subject if an error

occurs in the source subject. The third kind is used to facilitate the
789 restart of subjects.

791 An event can also have the same source and target, which is called
xselfx event. Such events are useful to implement para-virtualized

793 timers in VM subjects for example.

795 Kernel events are special in that they are targeted at the kernel. The

currently supported events are system reboot and shutdown.
797 ——>
<event mode="switch" name="resume_linux_1">

799 <l-=
The ‘eventType' specifies an event by name and mode.
801
The following event modes are currently supported:
803
- ‘asap‘a
805 The asap event is an abstraction to state that the event should be
delivered as soon as possible, depending on the CPU of the target
807 subject. If the target runs on another CPU core, this mode is
expanded to mode xipix, which is only available in policy formats A
809 and B, instructing the kernel to preempt the kernel running the
target subject and inject the event immediately. If the target
811 subject runs on the same core as the source subject, the mode is
expanded to mode *asyncx.
813
- ‘async‘a
815 Async events trigger no preemption at the target subject. The event
is marked as pending in the target subjects pending event table and
817 inserted on the next VM exit/entry cycle of the target subject.
819 - ‘self'a
An event can also have the same source and target, which is called a
821 self event. Such events are useful to implement para-virtualized
timers in VM subjects for example. A subject sends itself a delayed
823 event, using the timed event mechanism. Note that a self event must

always have a target action assigned, which is checked by the
825 validator.

827 - ‘switch‘a
The switch mode facilitates suspension of execution of the source
829 subject and switching to the target. This can only happen between
subjects running on the same core. Such a construct is used to pass
831 the thread of execution on to a different subject, e.g. invocation
of a debugger subject if an error occurs in the source subject. It
833 is called xhandoverx or xhandover eventx.
835 - ‘kernel‘a
These kinds of events are directed at the kernel an thus only
837 specify a source since the target is the kernel. They are used to
enable specific subjects to unmask level-triggered IRQs and trigger
839 a system reboot, poweroff or explicit panic (crash audit slot
allocation and reboot) .
841 —>
</event>
843 <event mode="switch" name="resume_linux_2"/>
<event mode="switch" name="trap_to_sm_1"/>
845 <event mode="switch" name="trap_to_sm_2"/>
<event mode="switch" name="load_linux_1"/>
847 <event mode="switch" name="start_linux_1"/>
<event mode="switch" name="reset_linux_1"/>
849 <event mode="switch" name="reset_linux_2"/>
<event mode="async" name="reset_sm_1"/>
851 <event mode="async" name="reset_slot_1"/>
<event mode="async" name="request_reset_slot_1"/>
853 <event mode="async" name="serial irqg4_linux_1"/>
<event mode="async" name="serial irg4_linux_2"/>
855 <event mode="self" name="timer_linux_1"/>
<event mode="self" name="timer_linux_2"/>
857 <event mode="kernel" name="subject_sleep"/>
<event mode="kernel" name="subject_yield"/>
859 <event mode="kernel" name="system_reboot"/>
<event mode="kernel" name="system_poweroff"/>
861 <event mode="kernel" name="system_panic"/>
<event mode="self" name="example_self"/>
863 </events>
<channels>
865 <P-=

Inter-subject communication is specified by so called channels. These
867 channels represent directed information flows since they have a single
writer and possibly multiple readers. Optionally a channel can have an

115

869 associated notification event (doorbell interrupt).
871 Channels are declared globally and have an unique name to be
unambiguous.
873
Note that channels are a policy source format abstraction. The toolchain
875 resolves this concept into memory regions and events as well as the
appropriate subject mappings.
877 —-—>
<channel hasEvent="asap" name="input_events" size="16#1000#">
879 <t-=
The ‘channel' element declares a physical channel.
881
Besides the ‘name‘ and ‘size‘ of the channel, the optional ‘hasEvent‘
883 attribute can be set to declare that the given channel requests an
associated event. The expander tool will then automatically create a
885 global event of the requested event type.
——>
887 </channel>
<channel hasEvent="asap" name="virtual input_1" size="16#1000#"/>
889 <channel hasEvent="asap" name="virtual input_ 2" size="16#1000#"/>
<channel hasEvent="asap" name="virtual_console_1" size="16#0001_0000#"/>
891 <channel hasEvent="asap" name="virtual_console_ 2" size="16#0001_0000#"/>
<channel name="time_info" size="16#10004#"/>
893 <channel name="debuglog_subjectl" size="16#0002_0000#"/>
<channel name="debuglog_subject2" size="16#0002_0000#"/>
895 <channel name="debuglog_subject3" size="16#0002_00004#"/>
<channel name="debuglog_subject4" size="16#0002_0000#"/>
897 <channel name="debuglog_subject5" size="16#0002_0000#"/>
<channel name="debuglog_subject6" size="16#0002_0000#"/>
899 <channel name="debuglog_subject7" size="16#0002_00004"/>
<channel hasEvent="switch" name="nic_dm_request" size="16#1000#"/>
901 <channel hasEvent="switch" name="nic_dm_ response" size="16#1000#"/>
<channel hasEvent="switch" name="storage_dm_request" size="16#1000#"/>
903 <channel hasEvent="switch" name="storage_dm_response" size="16#1000#"/>
<channel name="debuglog_controller" size="16#0002_0000#"/>
905 <channel name="testchannel 1" size="16#1000#"/>
<channel name="testchannel_ 2" size="16#10004"/>
907 <channel name="testchannel_3" size="16#0010_0000#"/>
<channel name="testchannel_ 4" size="16#0010_0000#"/>
909 <channel name="debuglog_example" size="16#0002_0000#"/>
<channel hasEvent="asap" name="example_request" size="16#1000#"/>
911 <channel hasEvent="asap" name="example_response" size="16#10004"/>
</channels>
913 <components>
<P-=
915 The ‘components' element holds a list of components and component
libraries.
917
Note that components are a policy source format abstraction. The
919 toolchain resolves this concept into subjects by adding the appropriate
memory regions, events and devices.
921 ——>
<library name="libmucontrol">
923 <l==
A component library is a specialized component specification which is
925 used to share common resources required for library code to operate.
Component libraries can be included by multiple components in order to
927 share functionality. An example is a logging service provided by a
dedicated component, whereas the logging client is provided as a library
929 with a shared memory channel for the actual log messages.
931 A component specification declares library dependencies to request the
library resources from the system through the inclusion of the library
933 specification in the ‘depends‘' section. This way components inherit the
resources of libraries.
935
On the source code level, a library is included by mechanisms provided
937 by the respective programming language. Note that the component library
code is xnotx shared between components but lives in the isolated
939 execution environment of a subject instantiating the component (i.e.
statically linked libraries).
941
Libraries can request the same resources as ordinary components. A
943 subject instantiating the component must also map the resources
requested by libraries the component depends on.
945 ——>
<requires>
947 <memory>
<!t-=
949 In this section, components can specify expected memory mappings with
given access rights and region size.
951 ——>
<memory executable="false" logical="control" size="16#1000#" virtualAddress="16#000f_ffff 30004
" writable="false">
953 <!--
The ‘memory' element requests a memory region with the specified ‘size’

116

959

961

963

965

967

969

971

973

975

977

981

983

985

987

989

991

993

995

997

999

1001

1003

1005

1007

1009

1011

1013

1023

1025

1027

1029

1031

1033

1035

1037

and permissions from the system. The region is expected to be placed at
the address given via the ‘virtualAddress‘' attribute.
——>
</memory>
<memory executable="false" logical="status" size="16#1000#" virtualAddress="16#000f_ffff 2000#"
writable="true"/>
</memory>
</requires>
</library>
<library name="libmudebuglog">
<config>
<string name="logchannel_size" value="16#0002_0000#"/>
</config>
<requires>
<channels>
<l-=
Components and libraries use the ‘channels' sub-section of ‘requires' to
specify expected communication channels.
——>
<writer logical="debuglog" size="16#0002_0000#" virtualAddress="16#000f_fff0_0000#">
<P—=

-—>
</writer>
</channels>
</requires>
</library>
<library name="libmudm">
<requires>
<channels>
<writer event="8" logical="dm_pciconf_reqg" size="16#1000#" virtualAddress="16#2000_0000#"/>
<reader logical="dm_pciconf_res" size="16#1000#" virtualAddress="16#2000_1000#">
<=
The ‘reader' element requests a read-only channel of the specified size,
address and optional notification vector.
——>
</reader>
</channels>
</requires>
</library>
<library name="libmuinit">
<depends>
<library ref="libmucontrol"/>
</depends>
</library>
<library name="libmutime">
<requires>
<channels>
<reader logical="time_info" size="16#1000#" virtualAddress="16#000f_ffd0_0000#"/>
</channels>
</requires>
</library>
<library name="libxhcidbg">
<requires>
<memory>
<memory executable="false" logical="xhci_dma" size="16#0004_1000#" virtualAddress="16#0100_0000
#" writable="true"/>
</memory>
<devices>
<device logical="xhci">
<memory executable="false" logical="xhci_registers" size="16#0001_0000#" virtualAddress="16#
e000_0000#" writable="true"/>
</device>
</devices>
</requires>
</library>
<library name="muinit">
<depends>
<library ref="libmuinit"/>
</depends>
<requires>
<vcpu>
<=
The ‘vcpu' element controls the execution behavior of the virtual CPU
(vCPU) . A default vCPU profile is selected by the component profile, but
CPU execution settings can be customized both at component and subject
level.
——>
<registers>
<gpr>
<rip>16#0010_0000#</rip>
</gpr>
</registers>
</vcpu>
</requires>
<provides>

117

1039

1041

1043

1045

1047

1049

1051

1053

1055

1057

1059

1061

1063

1065

1067

1069

1071

1073

1075

1077

1079

1081

1083

1085

1087

1089

1091

1093

1095

1097

1099

1101

1103

1105

1107

1109

1111

1113

1115

1117

1119

<memory executable="true" logical="muinit" size="16#9000#" type="subject_binary" virtualAddress=
"16#0010_0000#" writable="false">
<file filename="muinit" offset="none"/>

</memory>

</provides>

</library>

<component name="ahci_drv" profile="native">

<t--
A component is a piece of software which shall be executed by the SK.
Components represent the building blocks of a component-based system and
can be regarded as templates for executable entities instantiated by
subjects.

The specification of a component declares the xbinary program* by means
of (file-backed memory) regions. It also specifies the components view
of the expected execution environment. A component may request the
following resources from the system:

- Logical channels

- Logical memory regions
- Logical devices

- Logical events

Components are identified by name and specify a profile. The profile
controls the settings of the virtual CPU (vCPU).

——>

<depends>

<P—=
Components and libraries are allowed to declare dependencies to other
libraries. All resources required by the included library are merged
with the ones specified by the component or library. Libraries can
depend on other libraries.

A subject realizing this component must correctly map all component and
library resource requirements to physical resources in order to fulfill
the expectations.
——>
<library ref="libmudebuglog"/>
</depends>
<requires>
<vcpu>
<registers>
<gpr>
<rip>164#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<memory>
<!--— for 32 ports 16#c000# bytes are needed for descriptor tables + 16K for device init -->
<memory executable="false" logical="dma_region" size="16#0001_0000#" virtualAddress="16#
a000_0000#" writable="true"/>
<array elementSize="164#0100_0000#" executable="false" logical="blockdev_shm" virtualAddressBase
="16#al100_0000#" writable="true">
<memory logical="blockdev_shml"/>
<memory logical="blockdev_shm2"/>
</array>
</memory>
<channels>
<array elementSize="16#0000_8000#" logical="blockdev_request" vectorBase="64"
virtualAddressBase="16#0001_0000_0000#">
<!--
The channel array abstraction simplifies the declaration of consecutive
channel mappings with a given base address, channel size and optional
event/vector bases. The child elements declare the number of expected
channels and either the ‘reader‘ or ‘writer‘ role.
——>
<reader logical="blockdev_requestl">
<t
Array entries specify the number of array elements and assign a logical
name to each element.
—>
</reader>
<reader logical="blockdev_request2"/>
</array>
<array elementSize="16#0000_4000#" eventBase="16" logical="blockdev_response"
virtualAddressBase="16#0001_0001_0000#">
<writer logical="blockdev_responsel"/>
<writer logical="blockdev_response2"/>
</array>
</channels>
<devices>
<!--
The ‘devices' sub-section of the ‘requires' section is used to specify
expected devices with their associated resources.

118

1121

1123

1125

1127

1129

1131

1133

1135

1137

1139

1141

1143

1145

1147

1149

1159

1161

1163

1165

1167

1169

1171

1173

1175

1177

1179

1181

1183

1185

1187

1189

1191

1193

1195

1197

——>
<device logical="ahci_controller">

<!--

A ‘device' element specifies an expected logical device with its
resources. Possible resources are ‘irqg‘, ‘memory‘' and ‘ioPort‘.

——>

<irqg logical="irqg" vector="48">

<!--
An ‘irg' element of a logical device reference requests an IRQ with
given number from the system policy. The specified number will be
injected when the device requires attention for the associated logical
function.

——>

</irg>

<memory executable="false" logical="ahci_registers" size="16#1000#" virtualAddress="16#
e000_0000#" writable="true"/>
<memory executable="false" logical="mmconf" size="16#1000#" virtualAddress="16#£800_8000#"
writable="true"/>
</device>
</devices>
</requires>
<provides>
<!--
Components usually come in the form of an executable file. To this end,
the ‘provides' section specifies the memory regions of the component
binary executable with their content.

From a security perspective, it is often desirable to provide the
different binary section as separate memory regions with the appropriate
access rights, i.e. only the text section is executable, rodata is not
writable and so on.

Memory specified in this sections are expanded to mapped physical
regions for each subject that instantiates this component.

Note: the Mucbinsplit tool can be used to extract these section from an
ELF binary into separate files and automatically add the corresponding
memory elements to the component specification.
——>
<memory executable="true" logical="text" size="16#9000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<!--
A ‘memory‘ element in the ‘provides‘ section declares memory region
provided by the component. Mostly used to provide (a part) of the
component binary.
——>
<file filename="ahci_drv_text" offset="none"/>
<hash value="16#270e3253624032bafa782340acf26b056ca2e635ecfdaaa28bf6c74af3cfeabc0#"/>
</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary" virtualAddress
="16#0020_9000#" writable="false">
<file filename="ahci_drv_rodata" offset="none"/>
<hash value="16#f7eba385de0bba39cc5d5e860fca26c765ed0fd05b8ba326639e5c699341251a#"/>
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_a000#" writable="true">
<file filename="ahci_drv_data" offset="none"/>
<hash value="16#1cb2148aef42e097dad59630d8940dced4£8b351f88fcfac9ded03d0a2a831bl#"/>
</memory>
<memory executable="false" logical="bss" size="16#3000#" type="subject_binary" virtualAddress="
16#0020_b000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress=
"16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="controller" profile="native">
<depends>
<library ref="libmudebuglog"/>
</depends>
<requires>
<vcpu>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<memory>
<array elementSize="164#1000#" executable="false" logical="control" virtualAddressBase="1640001
_0000_0000#" writable="true">
<memory logical="control 1"/>
<memory logical="control_ 2"/>
<memory logical="control_3"/>

119

1199

1201

1221

1231

1233

1243

1245

1247

1249

1259

1261

1263

<memory logical="control_4"/>
<memory logical="control 5"/>
</array>
<array elementSize="16#1000#" executable="false" logical="status" virtualAddressBase="16#0001
_0000_50004#" writable="false">
<memory logical="status_1"/>
<memory logical="status_2"/>
<memory logical="status_3"/>
<memory logical="status_4"/>
<memory logical="status_5"/>
</array>
</memory>
<events>
<te-
The ‘events' sub-section of the ‘requires' section is used to specify
expected events with optional event actions.

A component can specify both source as well as target events.
——>
<source>
<event id="10" logical="reset_slot_1_sm"/>
<event id="11" logical="reset_slot_1_linux"/>
</source>
<target>
<event logical="request_reset_slot_1">
<inject_interrupt vector="32"/>
</event>
</target>
</events>
</requires>
<provides>
<memory executable="true" logical="text" size="16#2000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="controller_text" offset="none"/>
<hash value="16#5£81491568d8600bd%p42f6c6d2b49733eabf650690al8b79031d7bcb95ef0£494"/>
</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary" virtualAddress
="16#0020_2000#" writable="false">
<file filename="controller_rodata" offset="none"/>
<hash value="16#df41e836ab51453074£093d2824347d90d272ec8abaf4197c5ddb7636£d833204"/>
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_3000#" writable="true">
<file filename="controller_data" offset="none"/>
<hash value="16#ad7facb2586£fc6e966c004d7d1d16b024£5805ff7cb47c7a85dabd8b48892ca#"/>
</memory>
<memory executable="false" logical="bss" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_4000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress=
"164#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="dbgserver" profile="native">
<config>
<l--
Components may declare their own configuration values in the config
section. Just like global system config values, these can also be
used in ‘<if>' expressions and XML attribute value expansion.
——>
<boolean name="sink_serial" value="true"/>
<boolean name="sink_shmem" value="false"/>
<boolean name="hsuart_enabled" value="false"/>
<boolean name="sink_xhcidbg" value="false"/>
<boolean name="default_channel_enabled_state" value="true"/>
<boolean name="sink_pcspkr" value="false"/>
<string name="logchannel_ size" value="16#0002_0000#"/>
<string name="debugconsole_port_start" value="16#60b0#"/>
<string name="enabled_channels_override" value=""/>
<string name="debugconsole_port_end" value="16#60b7#"/>
</config>
<requires>
<vcpu>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<memory>
<memory executable="false" logical="crash_audit" size="16#1000#" virtualAddress="16#0001
_0000_0000#" writable="false"/>
</memory>
<channels>

120

1289

1291

1293

1295

1297

1299

1301

1303

1305

1307

1309

1311

1313

1315

1321

1323

1325

1327

1329

1331

1333

1335

1337

1339

1341

1343

1345

1347

1349

<array elementSize="16#0002_0000#" logical="log_channels" virtualAddressBase="16#a000_0000#">
<reader logical="log_channell"/>
<reader logical="log_channel2"/>
<reader logical="log_channel3"/>
<reader logical="log_channeld"/>
<reader logical="log_channel5"/>
<reader logical="log_channel_example"/>
<reader logical="log_channel 6"/>
<reader logical="log_channel7"/>
<reader logical="log_channel8"/>
</array>
</channels>
<devices>
<device logical="debugconsole">
<ioPort end="16#60b7#" logical="port" start="16#60b0#">
<P—=
The ‘ioPort‘' element requests a device I/O port resource with given
range ‘start .. end‘ from the system.
-—>
</ioPort>
</device>
</devices>
<events>
<source>
<event id="30" logical="shutdown">
<system_poweroff>
<P-=
An example of a source event action directed at the kernel. If this
event is triggered by the associated subject, the system will power
off.
-—>
</system_poweroff>
</event>
<event 1d="31" logical="reboot">
<system_reboot/>
</event>
</source>
</events>
</requires>
<provides>
<memory executable="true" logical="text" size="16#a000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="dbgserver_text" offset="none"/>
<hash value="16#c8da027b04d470c6e960e4e4178007dec2717d5150206c5feeb5876239d1dceb#"/>
</memory>
<memory executable="false" logical="rodata" size="16#10004" type="subject_binary"
virtualAddress="16#0020_a000#" writable="false">
<file filename="dbgserver_rodata" offset="none"/>
<hash value="16#e02e60elalf04bf00c7cd5f6e95fd1ff443e55425f5b3ed4e5f9bc3bl9e7b0aff#" />
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_b000#" writable="true">
<file filename="dbgserver_data" offset="none"/>
<hash value="16#d43fbd74e74608f7b7a3279%e6a4c24c710752ac5£074a490e5a47705698albcl#"/>
</memory>
<memory executable="false" logical="bss" size="16#ec000#" type="subject_binary" virtualAddress="
16#0020_c000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="dm" profile="native">
<depends>
<library ref="libmudebuglog"/>
</depends>
<requires>
<vcpu>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<channels>
<reader logical="request" size="16#10004#" virtualAddress="16#0001_0000_0000#"/>
<writer event="16" logical="response" size="16#1000#" virtualAddress="1640001_0000_1000#"/>
</channels>
</requires>
<provides>
<memory executable="true" logical="text" size="16#4000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="dm_text" offset="none"/>
<hash value="16#dc81a95b073a39da%a537edbc67267eccaff6e054540ee5aed42651fd0b6eadcd#" />

121

1361

1363

1365

1367

1369

1377

1379

1381

1383

1389

1391

1393

1395

1397

1399

1401

1403

1405

1407

1409

1411

1419

1421

1429

1431

1433

1435

</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_4000#" writable="false">
<file filename="dm_rodata" offset="none"/>
<hash value="16#900f0a96844d7684153e7b7f£87212861£f47de003b5£73881£4f1150c27fe686#"/>
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_5000#" writable="true">
<file filename="dm_data" offset="none"/>
<hash value="16#9348d0aec58fa2e80f74bf3a52440ec842aa7e6bf948bcd98d40dlc30dc218ec#"/>
</memory>
<memory executable="false" logical="bss" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_6000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="example" profile="native">
<config>
<boolean name="ahci_drv_enabled" value="false"/>
<boolean name="print_serial" value="false"/>
<boolean name="print_vcpu_speed" value="true"/>
<integer name="serial" value="123456789"/>
<string name="greeter" value="Subject running"/>
</config>
<depends>
<library ref="libmudebuglog"/>
<library ref="muinit"/>
</depends>
<requires>
<vcpu>
<vmx>
<masks>
<exception>
<Breakpoint>0</Breakpoint>
</exception>
</masks>
</vmx>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
<cr4>
<XSAVEEnable>1</XSAVEEnable>
</cré4>
</registers>
</vcpu>
<memory>
<memory executable="false" logical="filled_region" size="16#1000#" virtualAddress="16#0001
_0000_0000#" writable="true"/>
</memory>
<channels>
<reader logical="example_request" size="16#1000#" vector="64" virtualAddress="16#0001
_0000_1000%#"/>
<writer event="16" logical="example_response" size="16#1000#" virtualAddress="16#0001
_0000_2000#"/>
</channels>
<events>
<source>
<event 1d="2" logical="yield">
<subject_yield/>
</event>
<event id="3" logical="timer"/>
<event 1d="4" logical="sleep">
<subject_sleep/>
</event>
</source>
<target>
<event logical="inject_timer">
<inject_interrupt vector="37"/>
</event>
</target>
</events>
</requires>
<provides>
<memory executable="false" logical="interrupt_stack" size="16#20004" type="subject_binary"
virtualAddress="16#0001_0000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="true" logical="text" size="16#4000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="example_text" offset="none"/>
<hash value="16#f09a98fdd53015ba2c2484b330b68bbadl29d60054a6f610£26e9efe300fb3794"/>

122

1439

1441

1443

1445

1447

1449

1451

1453

1455

1467

1469

1475

1477

1479

1481

1483

1485

1487

1489

1491

1493

1495

1497

1499

1501

1503

505

1507

1509

</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_4000#" writable="false">
<file filename="example_rodata" offset="none"/>
<hash value="16#c647749cba2al51lbe2alc451441bfc4882e76£8a554c74ee497dfdcc550707854#" />
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_5000#" writable="true">
<file filename="example_data" offset="none"/>
<hash value="16#3466ddf188d8d88cef240e0f02dedb3c09d5a21d6c27b3£3299b74dcd3e30393#"/>
</memory>
<memory executable="false" logical="bss" size="16#3000#" type="subject_binary" virtualAddress="
16#0020_6000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="idle" profile="native">
<requires>
<vcpu>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
</requires>
<provides>
<memory executable="true" logical="text" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="idle_text" offset="none"/>
<hash value="16#3f85e2e49adb66104e3292d306517c5581cd7c226ba60e66a4414269083£8e8d#"/>
</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_1000#" writable="false">
<file filename="idle_rodata" offset="none"/>
<hash value="16#db97c62b590d580647fe04fcc6c8a962697fa51f0a7ab475a16967e29cbbdchb9#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="isolation_tests_monitor" profile="native">
<requires>
<vcpu>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<memory>
<memory executable="false" logical="result_state" size="16#1000#" virtualAddress="16#0100_0000
#" writable="true"/>
</memory>
<events>
<source>
<event id="1" logical="resume_tests"/>
</source>
<target>
<event logical="trap_to_monitor"/>
</target>
</events>
</requires>
<provides>
<memory executable="true" logical="text" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="isolation_tests_monitor_text" offset="none"/>
<hash value="16#7feb0756df521a4a652c42169ef4d4f0c665aef9bb29c09f5£55969baf718fa7#"/>
</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_1000#" writable="false">
<file filename="isolation_tests_monitor_rodata" offset="none"/>
<hash value="16#dd605fb441991ff03476a906d81d12420eeeb511a501874bdcdala761a311657#"/>
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_2000#" writable="true">
<file filename="isolation_tests_monitor_data" offset="none"/>
<hash value="1l6#ad7facb2586£fc6e966c004d7d1d16b024£5805ff7cb47c7a85dabd8b48892¢ca7#"/>
</memory>

123

1539

1561

1563

<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="isolation_tests" profile="native">
<config>
<integer name="log_entry_max" value="128"/>
<integer name="log_buffer_size" value="65535"/>
</config>
<depends>
<library ref="libmudebuglog"/>
</depends>
<requires>
<vcpu>
<msrs>
<msr end="16#0174#" mode="r" start="16#0174#"/>
</msrs>
<registers>
<gpr>
<rip>1640020_0000#</rip>
</gpr>
</registers>
</vcpu>
<memory>
<memory executable="false" logical="read_only" size="16#1000#" virtualAddress="16#1000_0000#"
writable="false"/>
<memory executable="false" logical="result_state" size="16#1000#" virtualAddress="16#0100_0000
#" writable="true"/>
</memory>
<events>
<target>
<event logical="resume_tests"/>
</target>
</events>
</requires>
<provides>
<memory executable="true" logical="text" size="16#7000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="isolation_tests_text" offset="none"/>
<hash value="16#1de77853ba33575f9e137963ff8eldbbd6aec62aac3d5026ae3e5aallbcect5£94"/>
</memory>
<memory executable="false" logical="rodata" size="16#3000#" type="subject_binary"
virtualAddress="16#0020_70004" writable="false">
<file filename="isolation_tests_rodata" offset="none"/>
<hash value="16#2c6e5333ad82bfdf14837182£790e8994c8cd3327a12944a3£885c0d0e558fa3#"/>
</memory>
<memory executable="false" logical="data" size="16#b000#" type="subject_binary" virtualAddress=
"16#0020_a000#" writable="true">
<file filename="isolation_tests_data" offset="none"/>
<hash value="16#731b8abc3033235953e353ac5e0d68f1611e9739%edb0elef274a0403ce883bef#"/>
</memory>
<memory executable="false" logical="bss" size="16#0001_1000#" type="subject_binary"
virtualAddress="16#0021_50004#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="linux" profile="linux">
<requires>
<memory>
<memory executable="true" logical="lowmem" size="16#0008_0000#" virtualAddress="16#0002_0000#"
writable="true"/>
<memory executable="true" logical="ram" size="16#1000_0000#" virtualAddress="16#0100_0000#"
writable="true"/>
</memory>
</requires>
<provides>
<memory executable="true" logical="binary" size="16#0078_5000#" type="subject_binary"
virtualAddress="16#0040_0000#" writable="true">
<file filename="bzImage" offset="none"/>
</memory>
<memory executable="false" logical="modules_initramfs" size="16#0002_3000#" type="
subject_initrd" virtualAddress="16#7113_0000#" writable="false">
<file filename="modules_initramfs.cpio.gz" offset="none"/>
</memory>
</provides>
</component>
<component name="ps2_drv" profile="native">
<depends>
<library ref="libmudebuglog"/>
</depends>

124

1589

1591

1597

1599

1601

1603

1605

1607

1609

1611

1613

1615

1617

1619

1621

1623

1625

1627

1629

1631

1633

1635

1637

1639

1641

1643

1645

1647

1649

1651

1653

1655

1659

1661

1663

<requires>
<vcpu>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<channels>
<writer event="16" logical="input_events" size="16#1000#" virtualAddress="16#0001_0000_0000#"/
>
</channels>
<devices>
<device logical="ps2">
<irqg logical="kbd_irqg" vector="49"/>
<irqg logical="mouse_irg" vector="60"/>
<ioPort end="16#0060#" logical="port_ 60" start="16#0060#"/>
<ioPort end="16#0064#" logical="port_64" start="16#0064#"/>
</device>
</devices>
</requires>
<provides>
<memory executable="false" logical="interrupt_stack" size="16#2000#" type="subject_binary"
virtualAddress="16#0001_0000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="true" logical="text" size="16#4000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="ps2_drv_text" offset="none"/>
<hash value="16#f7a71b8b5711d460baf3a73a7e41c66759627598737£2d9e2ffb740187alf40b#"/>
</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_4000#" writable="false">
<file filename="ps2_drv_rodata" offset="none"/>
<hash value="16#690afel32af76£72b625a0399814£37¢c750ecd7¢c333d2a05£36a48535d23c94c#"/>
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_5000#" writable="true">
<file filename="ps2_drv_data" offset="none"/>
<hash value="16#3588778c9b095a6ec7a846d4bf2a083ed54e0c7076ded731568c6a8cbf751f4b#"/>
</memory>
<memory executable="false" logical="bss" size="16#2000#" type="subject_binary" virtualAddress="
16#0020_6000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#10004#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="sl" profile="native">
<depends>
<library ref="libmuinit"/>
</depends>
<requires>
<vcpu>
<registers>
<gpr>
<rip>1640020_0000#</rip>
</gpr>
</registers>
</vcpu>
<events>
<source>
<event id="0" logical="start"/>
</source>
<target>
<event logical="handle_reset"/>
</target>
</events>
</requires>
<provides>
<memory executable="true" logical="text" size="16#3000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="sl_text" offset="none"/>
<hash value="16#e58bf50d4bf40c93e3e55fcbelad63faf0d7e878a45cadb6e7dc9c232e7bda20d#" />
</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_3000#" writable="false">
<file filename="sl_rodata" offset="none"/>
<hash value="16#680bcla5bead02fb9232ce73620ece595c32696b86c6b9cd4f3ebl59cbd270e31#"/>
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_4000#" writable="true">
<file filename="sl_data" offset="none"/>
<hash value="none"/>

125

1665

1667

1669

1671

1673

1675

1677

1679

1681

1683

1685

1687

1689

1691

1693

1695

1697

1699

1701

1703

1705

1707

1709

1719

1721

</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="sm" profile="native">
<config>
<boolean name="debug_wrmsr" value="false"/>
<boolean name="pciconf_emulation_enabled" value="true"/>
<boolean name="debug_rdtsc" value="false"/>
<boolean name="debug_rdmsr" value="false"/>
<boolean name="debug_cpuid" value="false"/>
<boolean name="debug_cr" value="false"/>
<boolean name="debug_ioport" value="false"/>
<boolean name="debug_ept" value="false"/>
</config>
<depends>
<library ref="libmutime"/>
<library ref="libmudebuglog"/>
<library ref="libmudm"/>
<library ref="muinit"/>
</depends>
<requires>
<vcpu>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<events>
<source>
<event id="4" logical="resume_subject"/>
</source>
<target>
<event logical="handle_subject_trap"/>
</target>
</events>
</requires>
<provides>
<memory executable="false" logical="interrupt_stack" size="16#2000#" type="subject_binary"
virtualAddress="16#0001_0000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="true" logical="text" size="16#6000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="sm_text" offset="none"/>
<hash value="16#£fb98715e613cb0e90d2363225f6446c5c99cdldl6edddbaa80ff06ab6b6bctffdd#" />
</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_60004#" writable="false">
<file filename="sm_rodata" offset="none"/>
<hash value="164#270ed58£917c50ceadafa64243d327fa49e0ca5c369465c171738decbecchb3de7#" />
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_7000#" writable="true">
<file filename="sm_data" offset="none"/>
<hash value="16#1645d0c24ddf2415497e7fbfea%90b2c0eed2d82fa7d3£305d2112d88£5d38cc3#"/>
</memory>
<memory executable="false" logical="bss" size="16#2000#" type="subject_binary" virtualAddress="
16#0020_8000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="time" profile="native">
<depends>
<library ref="libmudebuglog"/>
<library ref="libmucontrol"/>
</depends>
<requires>
<vcpu>
<vmx>
<controls>
<proc>
<RDTSCExiting>0<!--—
This is an example of a component that customizes the vCPU
settings. In this case, direct access to the Time-Stamp Counter
(TSC) is enabled. The settings made here are merged with the
(default) values defined by the component profile during policy
expansion by the Mucfgexpand tool.

126

1753

1781

1783

1785

1787

1789

1791

1793

1795

1797

1799

1801

1803

1805

1807

1809

1811

1813

1815

1817

1819

1821

—-></RDTSCExiting>
</proc>
</controls>
</vmx>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<channels>
<array elementSize="16#1000#" logical="export_channels" virtualAddressBase="16#0001_0000_0000#
"
<writer logical="time_exportl"/>
</array>
</channels>
<devices>
<device logical="cmos_rtc">
<ioPort end="16#0071#" logical="ports" start="16#0070#"/>
</device>
</devices>
</requires>
<provides>
<memory executable="true" logical="text" size="16#2000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="time_text" offset="none"/>
<hash value="16#d45b62b5f8afal0a838bac83e854996e9a4059f173aac4905265fcfb22fb2f1d0#"/>
</memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_2000#" writable="false">
<file filename="time_rodata" offset="none"/>
<hash value="16#b0fd849%e1cb2a24c297924bebe30b0d11e47258ded43364b726431e322a233b6#"/>
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_3000#" writable="true">
<file filename="time_data" offset="none"/>
<hash value="16#ad7facb2586fc6e966c004d7d1dl16b024£5805ff7cb47c7a85dabd8b48892ca7#" />
</memory>
<memory executable="false" logical="bss" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_4000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
<component name="vt" profile="native">
<depends>
<library ref="libmudebuglog"/>
</depends>
<requires>
<vcpu>
<registers>
<gpr>
<rip>16#0020_0000#</rip>
</gpr>
</registers>
</vcpu>
<channels>
<array elementSize="16#0001_0000#" logical="console" vectorBase="64" virtualAddressBase="
16#0001_0000_0000#">
<reader logical="NIC Linux"/>
<reader logical="Storage Linux"/>
</array>
<array elementSize="16#1000#" eventBase="16" logical="input_devices" virtualAddressBase="
16#0001_0002_0000#">
<writer logical="input_device_1"/>
<writer logical="input_device_2"/>
</array>
<reader logical="input_events" size="16#1000#" vector="66" virtualAddress="16#0001_0002_2000#"
/>
</channels>
<devices>
<device logical="vga">
<memory executable="false" logical="buffer" size="16#0002_0000#" virtualAddress="16#000a_0000
#" writable="true"/>
<ioPort end="16#03df#" logical="ports" start="16#03c0#"/>
</device>
</devices>
<events>
<source>
<event id="1" logical="request_reset_slot_1"/>
<event id="30" logical="shutdown">
<system_poweroff/>
</event>

127

1831

1833

1835

1837

1839

1841

1843

1845

1847

1849

1851

1853

1863

1865

1867

1873

1875

1877

1879

1881

1883

1885

1887

1889

1891

1893

1895

1897

1899

1901

<event 1d="31" logical="reboot">
<system_reboot/>
</event>
</source>
</events>
</requires>
<provides>
<memory executable="false" logical="interrupt_stack" size="16#20004" type="subject_binary"
virtualAddress="16#0001_0000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="true" logical="text" size="16#b000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="vt_text" offset="none"/>
<hash value="16#15a0c09815f5f8627aae85£9347b7ef63adf85586d651b427326bfb46016d7764#"/>
</memory>
<memory executable="false" logical="rodata" size="16#3000#" type="subject_binary"
virtualAddress="16#0020_b000#" writable="false">
<file filename="vt_rodata" offset="none"/>
<hash value="16#4d2bd9%9113¢c31£f1d14351922d3e239ca6453bbcc495a79877£393fc336b6577e8#"/>
</memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_e000#" writable="true">
<file filename="vt_data" offset="none"/>
<hash value="16#03ba720e717d15d7b0£fe0e0267036398e09ddbfa3d66a38d1455cad48869e39c#"/>
</memory>
<memory executable="false" logical="bss" size="16#2000#" type="subject_binary" virtualAddress="
16#0020_£f000#" writable="true">
<fill pattern="16#00#"/>
</memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">
<fill pattern="16#00#"/>
</memory>
</provides>
</component>
</components>
<subjects>
<!t--
The ‘subjects' element holds a list of subjects.
—>
<subject name="vt">
<t--
A subject is an instance of a component, i.e. an active component in the
system policy that may be scheduled. Its specification references a
component and maps all requested logical resources to physical resources
provided by the system. Additional resources to the ones requested by
the component can be specified here. This enables specialization of the
base component specification.
——>
<vcpu>
<vmx>
<controls>
<proc>
<!-- VM-Exit on HLT instruction —-->
<HLTExiting>1</HLTExiting>
</proc>
</controls>
</vmx>
</vcpu>
<events>
<!--
The subject ‘events' element specifies all events originating from or
directed at this subject. The physical attribute is the name of a event
defined in the global events section.
——>
<source>
<!--
The event ‘source' element specifies events that are allowed to be
triggered by the associated subject.

The ‘vmx_exit' group is translated to a lookup table for handling VMX
exit traps as defined by Intel SDM Vol. 3D, "Appendix C VMX Basic Exit

Reasons". The ‘vmcall' group on the other hand is translated into a
lookup table to handle hypercalls.
—-—>

<group name="vmx_exit">

<default physical="system panic">
<I--
The ‘default' element entry can be used to specify an event which should
be added for all event ids that have not been explicitly specified.
-—>
<system_panic/>

</default>

<!-- Exit Reason 12: HLT -->

<event 1d="12" logical="sleep" physical="subject_sleep">
<subject_sleep/>

128

1903

1905

1907

1909

1911

1913

1915

1917

1919

1921

1923

1925

1927

1929

1931

1933

1935

1937

1939

1941

1943

1945

1947

1949

1951

1953

1959

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

</event>
</group>
</source>
</events>
<component ref="vt">
<=
The ‘component' reference element specifies which component this subject
instantiates. All logical resources required by the component must be
mapped to physical resources of the appropriate type. Validators make
sure that all requirements are satisfied and that no mapping has been
omitted.
—>
<map logical="NIC Linux" physical="virtual_console_1"/>
<map logical="Storage Linux" physical="virtual_console_2"/>
<map logical="input_events" physical="input_events"/>
<map logical="input_device_1" physical="virtual_input_1"/>
<map logical="input_device_ 2" physical="virtual_input_2"/>
<map logical="debuglog" physical="debuglog_subjectl"/>
<map logical="vga" physical="vga">
<map logical="buffer" physical="buffer"/>
<map logical="ports" physical="ports">
<l—=
The ‘map‘' element maps a physical resource provided by the system with a
resource requested by the referenced component.

This element allows recursion to map child resources as well (e.g.
device memory, I/O ports etc).
—-—>
</map>
</map>
<map logical="request_reset_slot_1" physical="request_reset_slot_1"/>
<map logical="shutdown" physical="system_poweroff"/>
<map logical="reboot" physical="system_reboot"/>
</component>
</subject>
<subject name="nic_sm">
<memory>
<memory executable="false" logical="status_linux" physical="status_linux_ 1" virtualAddress="
16#0200_00004" writable="false"/>
</memory>
<events>
<source>
<group name="vmx_exit">
<default physical="system_panic">
<system_panic/>
</default>
</group>
<group name="vmcall">
<event 1d="0" logical="serial irqg4" physical="serial irg4_linux_1">
<P-=
A source ‘event' entry specifies a source event node, i.e. it registers
a handler for the given event ‘id‘'. These IDs, depending on the event
group, are either hypercall numbers or VMX basic exit reasons. The valid
ID ranges of the respective groups are:

vmx_exit

0 .. 59
vmcall
0 .. 63

Additionally, the following IDs in ‘vmx_exit‘ group are reserved and may
not be used:

- Used by kernel: 1, 7, 41, 52, 55
- Reserved by Intel: 35, 38, 42

It is possible to assign event actions to event source entries.
Currently supported source event actions are ‘subject_sleep?,

‘subject_yield', ‘unmask_irqg', ‘system_reboot‘, ‘system_poweroff‘' and
‘system_panic', which all have the kernel itself as endpoint.

——>

</event>

<event id="1" logical="reset_linux" physical="reset_linux_1"/>
<event 1d="2" logical="load_linux" physical="load_linux_1"/>
</group>
</source>
<target>
<=
The event ‘target' element specifies events that the subject is an
endpoint of.
——>
<event logical="resume_after load" physical="start_ linux_1">
<l
The ‘event‘' element in the target section specifies one event endpoint
by referencing a physical event and assigning a logical name to it.

129

1989 —=>

</event>
1991 <event id="63" logical="reset" physical="reset_sm_1">
<reset/>
1993 </event>
</target>
1995 </events>
<monitor>
1997 <t--
The monitor abstraction enables subjects to request access to certain
1999 data of another subject specified by name. Possible child elements are:
2001 - State
2003 - Timed_Events
2005 - Interrupts
2007 - Loader
2009 See the Muen Component Specification document for details about these
subject monitor interfaces.
2011 ——>
<state logical="monitor_state" subject="nic_linux" virtualAddress="16#001le_0000#" writable="
true"/>
2013 <loader logical="reload" subject="nic_sm" virtualAddress="16#0000#">
<!--
2015 The ‘loader' mechanism effectively puts the loaded subject denoted by
the ‘subject' attribute under loader control, as it is not able to start
2017 without the help of the loader.
2019 In more detail, the ‘loader' monitor element instructs the expander tool
to map all memory regions of the referenced subject into the address
2021 space of the monitor subject, using the specified ‘virtualAddress‘' as

offset in the address space of the loader.
2023
If a memory region of the loaded subject is writable and file-backed,
2025 the region is replaced with an empty region and linked via the ‘hashRef‘
mechanism to the original region which is mapped into the loader.

2027
The state of the loaded subject is then invalidated by clearing the
2029 ‘CR4.VMXE"' bit in the initial subject CR4 register value. If such a
subject is scheduled by the kernel, a VMX exit xVM-entry failure due to
2031 invalid guest statex (33) occurs. See Intel SDM Vol. 3C, "23.7 Enabling
and Entering VMX Operation" and Intel SDM Vol. 3C, "23.8 Restrictions on
2033 VMX Operation" for more details. This trap is linked to the loader via
normal VMX event handling. After handover, the loader initializes the
2035 memory regions replaced by the expander with the designated content.
2037 All information required to xloadx the loaded subject is provided to the
loader subject via its own sinfo API. Memory regions prefixed with
2039 ‘monitor_sinfo_' provide access to the sinfo regions of the loaded
subjects. Regions prefixed with ‘monitor_state_‘ specify memory regions
2041 containing the subject register state of the loaded subject.
2043 The difference between the ‘monitor_sinfo_‘ memory region address in the
loader and the address of the ‘sinfo' memory region in the target sinfo
2045 information denotes the ‘virtualAddress' offset attribute of the
‘loader® element in the policy. This information combined is enough to
2047 fully construct the initial state of the loaded subject, or to reset a
subject to its initial state on demand.
2049
The loader may also optionally check the hashes of the restored regions,
2051 as this information is provided via the sinfo mechanism as well.
——>
2053 </loader>
</monitor>
2055 <component ref="sm">
<map logical="time_info" physical="time_info"/>
2057 <map logical="debuglog" physical="debuglog_subject2"/>
<map logical="dm_pciconf_req" physical="nic_dm_request"/>
2059 <map logical="dm_pciconf_res" physical="nic_dm_response"/>
<map logical="resume_subject" physical="resume_linux_1"/>
2061 <map logical="handle_subject_trap" physical="trap_to_sm_1"/>
<map logical="status" physical="status_sm_1"/>
2063 <map logical="control" physical="control_ sm_1"/>
</component>
2065 </subject>
<subject name="storage_sm">
2067 <events>
<source>
2069 <group name="vmcall">
<event 1d="0" logical="serial_irg4" physical="serial irg4_linux_2"/>
2071 <event id="1" logical="reset_linux" physical="reset_linux_2"/>
</group>
2073 <group name="vmx_exit">

<default physical="system_panic">

130

2075

20

S

~

2079

2081

2089

2091

2093

2095

2097

2099

2101

2107

2109

2111

2141

2149

<system_panic/>
</default>
</group>
</source>
</events>
<monitor>
<state logical="monitor_state" subject="storage_linux" virtualAddress="16#001le_0000#" writable=
"true"/>
<loader logical="reload" subject="storage_sm" virtualAddress="16#0000#"/>
</monitor>
<component ref="sm">
<map logical="time_info" physical="time_ info"/>
<map logical="debuglog" physical="debuglog_subject3"/>
<map logical="dm_pciconf_req" physical="storage_dm_request"/>
<map logical="dm_pciconf_res" physical="storage_dm_response"/>
<map logical="resume_subject" physical="resume_linux_2"/>
<map logical="handle_subject_trap" physical="trap_to_sm 2"/>
<map logical="status" physical="status_sm_2"/>
<map logical="control" physical="control_sm 2"/>
</component>
</subject>
<subject name="time">
<vcpu>
<vmx>
<controls>
<proc>
<!-- VM-Exit on HLT instruction —-->
<HLTExiting>1</HLTExiting>
</proc>
</controls>
</vmx>
</vcpu>
<events>
<source>
<group name="vmx_exit">
<default physical="system panic">
<system_panic/>
</default>
<!-- Exit Reason 12: HLT -->
<event 1d="12" logical="sleep" physical="subject_sleep">
<subject_sleep/>
</event>
</group>
</source>
</events>
<component ref="time">
<map logical="time_exportl" physical="time_info"/>
<map logical="debuglog" physical="debuglog_subjectd"/>
<map logical="cmos_rtc" physical="cmos_rtc">
<map logical="ports" physical="ports"/>
</map>
<map logical="status" physical="status_time"/>
<map logical="control" physical="control_time"/>
</component>
</subject>
<subject name="nic_sl1">
<events>
<source>
<group name="vmx_exit">
<default physical="system panic">
<system_panic/>
</default>
</group>
</source>
</events>
<monitor>
<loader logical="monitor_loader_nic_linux" subject="nic_linux" virtualAddress="16#0001
_0000_0000#"/>
</monitor>
<component ref="sl">
<map logical="start" physical="start_linux_1"/>
<map logical="handle_reset" physical="load_linux_1"/>
<map logical="status" physical="status_linux_1"/>
<map logical="control" physical="control_linux_1"/>
</component>
</subject>
<subject name="ps2">
<vcpu>
<vmx>
<controls>
<proc>
<!-- VM-Exit on HLT instruction —-->
<HLTExiting>1</HLTExiting>
</proc>
</controls>
</vmx>
</vcpu>

131

2179

2181

2183

2185

2187

2189

2191

2193

2195

2197

2199

2201

2207

2209

2211

2213

N
N}
it
=t

2217

2219

2221

<events>
<source>
<group name="vmx_exit">
<default physical="system_panic">
<system_panic/>
</default>
<!-- Exit Reason 12: HLT -->
<event id="12" logical="sleep" physical="subject_sleep">
<subject_sleep/>
</event>
</group>
</source>
</events>
<component ref="ps2_drv">
<map logical="input_events" physical="input_events"/>
<map logical="debuglog" physical="debuglog_subject5"/>
<map logical="ps2" physical="ps2">
<map logical="kbd_irqg" physical="kbd_irg"/>
<map logical="mouse_irqg" physical="mouse_irqg"/>
<map logical="port_60" physical="port_60"/>
<map logical="port_64" physical="port_64"/>
</map>
</component>
</subject>
<subject name="example">
<events>
<source>
<group name="vmx_exit">
<default physical="system_panic">
<system_panic/>
</default>
</group>
</source>
</events>
<monitor>
<state logical="monitor_state" subject="storage_linux" virtualAddress="16#001e_0000#" writable=
"false"/>
<loader logical="reload" subject="example" virtualAddress="16#0000%"/>
</monitor>
<component ref="example">
<map logical="example_request" physical="example_request"/>
<map logical="example_response" physical="example_response"/>
<map logical="debuglog" physical="debuglog_example"/>
<map logical="sleep" physical="subject_sleep"/>
<map logical="yield" physical="subject_yield"/>
<map logical="timer" physical="example_self"/>
<map logical="inject_timer" physical="example_self"/>
<map logical="control" physical="control_example"/>
<map logical="status" physical="status_example"/>
<map logical="filled_region" physical="example_ filled_region"/>
</component>
</subject>
<subject name="controller">
<vcpu>
<vmx>
<controls>
<proc>
<!-- VM-Exit on PAUSE instruction —-->
<PAUSEExiting>1</PAUSEExiting>
</proc>
</controls>
</vmx>
</vcpu>
<events>
<source>
<group name="vmx_exit">
<default physical="system_panic">
<system_panic/>
</default>
<!-- Exit Reason 40: PAUSE —-—>
<event 1d="40" logical="yield" physical="subject_yield">
<subject_yield/>
</event>
</group>
</source>
</events>
<monitor>
<interrupts logical="pending_interrupts" subject="controller" virtualAddress="16#0030_0000#"
writable="true"/>
</monitor>
<component ref="controller">
<map logical="debuglog" physical="debuglog_controller"/>
<map logical="control_ 1" physical="control_time"/>
<map logical="control_ 2" physical="control_sm_1"/>
<map logical="control_ 3" physical="control_sm_2"/>
<map logical="control 4" physical="control_example"/>
<map logical="control_ 5" physical="control_ linux_1"/>

132

2245

2247

2249

2251

2269

2271

2273

2275

2277

2279

2281

2283

2285

2287

2297

2299

2301

2303

2305

2307

2309

2311

2313

2315

2317

2319

2321

2323

<map logical="status_1" physical="status_time"/>
<map logical="status_2" physical="status_sm_1"/>
<map logical="status_3" physical="status_sm_2"/>
<map logical="status_4" physical="status_example"/>
<map logical="status_5" physical="status_linux_1"/>
<map logical="reset_slot_1_sm" physical="reset_sm_1"/>
<map logical="reset_slot_1_linux" physical="reset_slot_1"/>
<map logical="request_reset_slot_1" physical="request_reset_slot_1"/>
</component>
</subject>
<subject name="nic_dm">
<devices>
<-=
List of device references. Used to grant a subject access to hardware
devices and their resources.
——>
<device logical="nic" physical="ethernet_controller_1">
<=
The ‘device' element allows a subject access to devices referenced via
the ‘physical‘' attribute.

For PCI devices only a single virtual bus is provided (bus 0). The ‘pci‘
element may be used to place the device at a specific location (BDF). If
no other logical device resources of the device are specified, then the
expander tool will map all physical devices resources into the subject.
When logical device resources are explicitly specified, then only access
to those are actually granted. The physical attribute must be either a
reference to an existing physical device, device alias or device class.
Validators check that this is the case.
——>
<pci bus="16#00#" device="16#01#" function="0"/>
<memory executable="false" logical="mmconf" physical="mmconf" writable="true">
<t
The device ‘memory‘ element maps the device memory region referenced via
the ‘physical' attribute into the subject address space at address
‘virtualAddress'. The ‘executable‘, ‘writable' attributes define the
access permissions for the subject.
—-—>
</memory>
</device>
</devices>
<events>
<source>
<group name="vmx_exit">
<default physical="system_panic">
<system_panic/>
</default>
</group>
</source>
</events>
<component ref="dm">
<map logical="debuglog" physical="debuglog_subject6"/>
<map logical="request" physical="nic_dm_request"/>
<map logical="response" physical="nic_dm_response"/>
</component>
</subject>
<subject name="storage_dm">
<events>
<source>
<group name="vmx_exit">
<default physical="system_panic">
<system_panic/>
</default>
</group>
</source>
</events>
<component ref="dm">
<map logical="debuglog" physical="debuglog_subject7"/>
<map logical="request" physical="storage_dm_request"/>
<map logical="response" physical="storage_dm_response"/>
</component>
</subject>
<subject name="dbgserver">
<events>
<source>
<group name="vmx_exit">
<default physical="system_panic">
<system_panic/>
</default>
</group>
</source>
</events>
<component ref="dbgserver">
<map logical="log_channell" physical="debuglog_subjectl"/>
<map logical="log_channel2" physical="debuglog_subject2"/>
<map logical="log_channel3" physical="debuglog_subject3"/>
<map logical="log_channeld4" physical="debuglog_subjectd4"/>

133

2333

2335

2339

2341

2343

2347

2349

2361

2363

2365

2367

2369

2371

2373

2375

2377

2379

2381

2383

2385

2387

2389

2391

2393

2397

2399

2401

2403

2405

2407

2409

2411

2413

2415

<map logical="log_channel5" physical="debuglog_subject5"/>
<map logical="log_channel_example" physical="debuglog_example">
</map>
<map logical="log_channel_ 6" physical="debuglog_controller"/>
<map logical="log_channel7" physical="debuglog_subject6"/>
<map logical="log_channel8" physical="debuglog_subject7"/>
<map logical="crash_audit" physical="crash_audit"/>
<map logical="debugconsole" physical="serial device_1">
<map logical="port" physical="ioportl"/>
</map>
<map logical="reboot" physical="system_reboot"/>
<map logical="shutdown" physical="system_poweroff"/>
</component>
</subject>
<subject name="nic_linux">
<bootparams>console=hvc console=ttyS0 hostname=nic_linux</bootparams>
<memory>
<memory executable="false" logical="initramfs" physical="initramfs" virtualAddress="16#7000
_0000#" writable="false"/>
</memory>
<devices>
<device logical="eth0" physical="nic_1">
<pci bus="16#00#" device="16#01#" function="0"/>
</device>
<device logical="aditional_nics" physical="additional_nics"/>
</devices>
<events>
<source>
<group name="vmx_exit">
<default physical="trap_to_sm_1"/>
</group>
<group name="vmcall">
<event id="30" logical="reboot" physical="request_reset_slot_1"/>
<event id="31" logical="timer" physical="timer_linux_1"/>
</group>
</source>
<target>
<event logical="resume_after_trap" physical="resume_linux_1"/>
<event 1id="63" logical="reset" physical="reset_linux_1">
<reset/>
</event>
<event id="62" logical="reset_from vt" physical="reset_slot_1">
<reset/>
</event>
<event logical="serial irg4" physical="serial irg4 linux_1">
<inject_interrupt vector="52">
<!--
Instructs the SK to inject a guest interrupt with given vector on event
occurrence.
——>
</inject_interrupt>
</event>
<event logical="timer" physical="timer_linux_1">
<inject_interrupt vector="236"/>
</event>
</target>
</events>
<channels>
<l-=
The ‘channel' section of a subject declares references to communication
channels. The referenced channels become accessible to the requesting
subject either as reader or writer endpoint.
——>
<reader logical="virtual_ input" physical="virtual_input_1" vector="64" virtualAddress="16#0001
_0000_0000#">
<!--
A channel ‘reader‘' element references a global communication channel as
reader endpoint, i.e. the channel is mapped read-only into the subject
address space.
——>
</reader>
<writer event="16" logical="virtual_console" physical="virtual_console_1" virtualAddress="
16#0001_0000_1000#">
<!--
A channel ‘writer' element references a global communication channel as
writer endpoint, i.e. the channel is mapped with write permissions into
the subject address space.
——>
</writer>
<reader logical="testchannel_2" physical="testchannel 2" virtualAddress="16#0001_0001_1000#"/>
<writer logical="testchannel 1" physical="testchannel 1" virtualAddress="16#0001_0001_2000#"/>
<reader logical="testchannel_ 4" physical="testchannel 4" virtualAddress="16#0001_0001_3000#"/>
<writer logical="testchannel_ 3" physical="testchannel 3" virtualAddress="16#0001_0011_3000#"/>
</channels>
<component ref="linux">
<map logical="lowmem" physical="nic_linux|lowmem"/>
<map logical="ram" physical="nic_linux|ram"/>

134

2417

2419

2421

2429

2431

2433

2435

2437

2439

2441

2443

2445

2447

2449

2451

2455

2457

2459

2461

2463

2465

2467

2469

2471

2473

2475

2477

2479

2481

2483

2485

2487

2489

2491

2493

2495

2497

</component>
</subject>
<subject name="storage_linux">
<bootparams>console=hvc console=ttyS0 hostname=storage_linux</bootparams>
<memory>
<memory executable="false" logical="initramfs" physical="initramfs" virtualAddress="16#7000
_0000#" writable="false"/>
</memory>
<devices>
<device logical="xhci" physical="usb_controller_1"/>
</devices>
<events>
<source>
<group name="vmx_exit">
<default physical="trap_to_sm_2"/>
</group>
<group name="vmcall">
<event 1d="31" logical="timer" physical="timer_ linux_2"/>
</group>
</source>
<target>
<event logical="resume_after_trap" physical="resume_linux_2"/>
<event 1id="63" logical="reset" physical="reset_linux_2">
<reset/>
</event>
<event logical="serial irg4" physical="serial irg4_linux_2">
<inject_interrupt vector="52"/>
</event>
<event logical="timer" physical="timer_linux_2">
<inject_interrupt vector="236"/>
</event>
</target>
</events>
<channels>
<reader logical="virtual_input" physical="virtual_input_2" vector="64" virtualAddress="16#0001
_0000_0000#"/>
<writer event="16" logical="virtual console" physical="virtual_console_2" virtualAddress="
16#0001_0000_1000#"/>
<reader logical="example_response" physical="example_response" vector="65" virtualAddress="
16#0001_0001_10004"/>
<writer event="17" logical="example_request" physical="example_request" virtualAddress="16#0001
_0001_2000#"/>
<reader logical="testchannel 1" physical="testchannel 1" virtualAddress="16#0001_0001_3000#"/>
<writer logical="testchannel_ 2" physical="testchannel 2" virtualAddress="16#0001_0001_4000#"/>
<reader logical="testchannel 3" physical="testchannel 3" virtualAddress="16#0001_0001_5000#"/>
<writer logical="testchannel_ 4" physical="testchannel_ 4" virtualAddress="16#0001_0011_5000#"/>
</channels>
<component ref="linux">
<map logical="lowmem" physical="storage_linux|lowmem"/>
<map logical="ram" physical="storage_linux|ram"/>
</component>
</subject>
</subjects>
<scheduling tickRate="100000">
<l==
The Muen SK implements a fixed, cyclic scheduler. The ‘scheduling®
element is used to specify such a static plan by means of a major frame.
A major frame consist of an arbitrary number of minor frames. Minor
frames in turn specify a duration in number of ticks a scheduling
partition is scheduled.

Scheduling partitions defined in the ‘partitions‘ element consist of one
or more scheduling groups, which in turn specify one or more subjects to
be scheduled. xScheduling groups* are used to define groups of
cooperating subjects, which are allowed to hand over execution to a
subject in the same scheduling group. This is done via xhandoverx
events. Membership of a scheduling group must be specified explicitly in
the policy, validators enforce that these settings are correct by
calculating the chain of handover events.

While scheduling groups support the efficient cooperation of multiple
subjects, subjects which need to be spatially but not temporally
isolated from each other cannot profit from it. To efficiently support
this use-case, the scheduling partition concept is implemented.

Within a #scheduling partition*, all scheduling groups are scheduled
round robin with preemption and the opportunity to yield and/or sleep.
If a subject in a scheduling group sleeps or yields, the next scheduling
group in the scheduling partition is scheduled. More precisely: the
active subject of the next scheduling group is executed by the SK.

Note that prioritization is not implemented on purpose to avoid any
starvation issues["1]. The yield operation maps to the x86_64 ‘PAUSE"‘
instruction, while sleep corresponds to ‘HLT'. See the xMuen Component

Specification* document for more information on this topic.

Minor frames designate the scheduling partition that is to be executed

135

for the given amount of ticks. The scheduling partition attribute ‘name’
uniquely identifies a scheduling partition. On first activation, the
first scheduling group (in XML-order) is scheduled. Within the
scheduling group, the first subject (again in XML-order) is executed.
The active subject of a scheduling group may change over time, as the
cooperating subjects initiate handover events.

The tickRate attribute of the ‘scheduling‘' element has the unit Hertz
(Hz) and specifies the number of clock ticks per second. The ticks
attribute of minor frames is expressed in terms of this tick rate. As an
example: if we want to declare the minor frame duration in terms of
microseconds (10⁶) then a tick rate of 1000000 must be used.

The duration of a major frame must be the same on each CPU, meaning the
sum of all minor frame ticks for any given CPU must be identical.
However, different major frames can have arbitrary length.

The Tau0O subject designates to the kernel which major frame is the
currently active one. At the end of each major frame, the kernel
determines the active major frame and switches to that scheduling plan
for the duration of the major frame.

[*1]: Prioritization with starvation protection cannot be implemented
with low complexity
——>
<partitions>
<!l--
The ‘partitions' element is used to specify all scheduling partitions of
the system.
——>
<partition name="nic_linux">
<!--
The scheduling ‘partition‘ element is used to specify a collection of
scheduling groups consisting of subjects that require spatial but not
temporal isolation from each other. Within a scheduling partition, all
scheduling groups are scheduled round robin with preemption (i.e.
non-cooperatively) and the opportunity to yield and/or sleep.

A scheduling partition must contain at least one scheduling group.
——>
<group>
<!-=
The scheduling ‘group‘' element is used to specify a collection of
subjects that may cooperatively schedule each other via handover events.
Scheduling groups must contain at least one subject. As an example, a
Linux subject and its associated Subject Monitor (SM), Subject Loader
(SL) and Device Manager (DM) form a scheduling group.
—-—>
<subject name="nic_linux"/>
<subject name="nic_sm"/>
<subject name="nic_sl"/>
<subject name="nic_dm"/>
</group>
</partition>
<partition name="ps2_driver">
<group>
<subject name="ps2"/>
</group>
</partition>
<partition name="controller">
<group>
<subject name="controller"/>
</group>
</partition>
<partition name="idle_0">
<group>
<subject name="mugenschedcfg_auto_idle_0"/>
</group>
</partition>
<partition name="storage_linux">
<group>
<subject name="storage_linux"/>
<subject name="storage_sm"/>
<subject name="storage_dm"/>
</group>
<group>
<subject name="example"/>
</group>
</partition>
<partition name="debugserver">
<group>
<subject name="time"/>
</group>
<group>
<subject name="dbgserver"/>
</group>
</partition>

136

2599

2601

2603

2605

2607

2609

2611

2613

2615

2617

2619

2621

2623

2625

2627

2629

2631

2633

2637

2639

2641

2643

2647

2649

2665

2667

2669

2671

<partition name="vt">
<group>
<subject name="vt"/>
</group>
</partition>
<partition name="taulO">
<group>
<subject name="taulO"/>
</group>
</partition>
<partition name="idle_ 1">
<group>
<subject name="mugenschedcfg_auto_idle_1"/>
</group>
</partition>
</partitions>
<majorFrame>
<!t-=
A major frame consists of a sequence of minor frames for a given CPU.
When the end of a major frame is reached, all CPUs synchronize and the
scheduler starts over from the beginning using the first minor frame
again. This means that major frames are repeated in a cyclic fashion
until a different major frame is designated via the Tau0 interface.
——>
<cpu id="0">
<P—=
The ‘cpu' element is used to specify major frames for each CPU of the
system.
—-—>
<minorFrame partition="nic_linux" ticks="4">
<l-=
A minor frame specifies the number of scheduling ticks a partition is
allowed to run on the CPU specified by the parent ‘cpu‘ element.
——>
</minorFrame>
<minorFrame partition="ps2 driver" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="controller" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_ 0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>
<minorFrame partition="nic_linux" ticks="4"/>

137

2681

2683

2687

2689

2691

2693

2695

2697

2699

2701

2703

2709

2711

2729

2731

<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
</cpu>
<cpu id="1">
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame

partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>

partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="storage_linux" ticks="15"/>
partition="debugserver" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="vt" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="vt" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="vt" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="vt" ticks="1"/>
partition="storage_linux" ticks="2"/>
partition="tau0" ticks="1"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_ 1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="idle_1" ticks="1"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_ 1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="idle_ 1" ticks="1"/>
partition="storage_linux" ticks="2"/>
partition="idle_ 1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="idle_1" ticks="1"/>

138

2797

2799

2801

2807

2809

2817

2819

2837

2839

2841

2843

2845

<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
</cpu>
</majorFrame>
<majorFrame>
<cpu id="0">
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame

partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_ 1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="idle_1" ticks="1"/>
partition="storage_linux" ticks="2"/>
partition="storage_linux" ticks="15"/>
partition="debugserver" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="vt" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="vt" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="vt" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="vt" ticks="1"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_ 1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="idle_ 1" ticks="1"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="idle_1" ticks="1"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="debugserver" ticks="2"/>
partition="idle_1" ticks="1"/>
partition="storage_linux" ticks="2"/>
partition="idle_1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_ 1" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="idle_ 1" ticks="3"/>

partition="nic_linux" ticks="4"/>
partition="ps2_driver" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="controller" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>

139

2847

2849

2861

2863

2865

2867

2869

2879

2881

2883

2889

2891

2893

2895

2897

2899

2901

2903

2905

2907

2909

2911

2913

2915

2919

2921

2923

2931

<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
</cpu>

<cpu id="1">
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame

partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_ 0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>
partition="nic_linux" ticks="4"/>
partition="idle_0" ticks="1"/>

partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="vt" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_ 1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="2"/>

140

2937

2939

2941

2943

2945

2947

2949

2957

2959

2961

2963

2967

2969

2981

2983

2989

2991

2995

2997

2999

3001

3003

3009

3011

3015

3017

3019

<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
<minorFrame
</cpu>
</majorFrame>
</scheduling>
</system>

partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="1"/>
partition="idle_ 1" ticks="1"/>
partition="storage_linux" ticks="3"/>
partition="vt" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_ 1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_ 1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="1"/>
partition="idle_1" ticks="1"/>
partition="storage_linux" ticks="3"/>
partition="vt" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_ 1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="1"/>
partition="idle_ 1" ticks="1"/>
partition="storage_linux" ticks="3"/>
partition="vt" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_ 1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="1"/>
partition="idle_ 1" ticks="1"/>
partition="storage_linux" ticks="3"/>
partition="vt" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="storage_linux" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_ 1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="debugserver" ticks="1"/>
partition="idle_1" ticks="1"/>
partition="storage_linux" ticks="3"/>
partition="vt" ticks="2"/>
partition="storage_linux"
partition="storage_linux" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>
partition="storage_linux" ticks="3"/>
partition="idle_1" ticks="2"/>

ticks="3"/>

141

Listing 8.1: Demo System (VT-d)

142

Chapter 9
Bibliography

[1] Adrian-Ken Rueegsegger and Reto Buerki. Muen Component Specification.

[2] Adrian-Ken Rueegsegger and Reto Buerki. Muen Separation Kernel.

143

	Introduction
	System Policy
	Policy Format

	System Integration
	Tau0 Concept
	Static Mode of Operation
	Dynamic

	Toolchain
	Overview
	Plugin System
	Core Tools
	Plugins
	Additional Tools

	Policy Validation
	Configuration
	Devices
	Device Domains
	Events
	Files
	Hardware
	Kernel
	Memory
	Model Specific Registers (MSR)
	Platform
	Scheduling
	Subjects

	Policy Structure
	Policy Schema Documentation

	Appendix
	Annotated Example Policy

	Bibliography

