
Muen System Specification

Adrian-Ken Rueegsegger, Reto Buerki

v0.7.2, April 9, 2024

Copyright © 2024 codelabs GmbH
Copyright © 2024 secunet Security Networks AG

Further publications, reprints, duplications or recordings - no matter in which form, of the entire
document or parts of it - are only permissible with the prior consent of codelabs GmbH or secunet
Security Networks AG.

1

Contents

1 Introduction 5

2 System Policy 6
2.1 Policy Format . 6

3 System Integration 8

4 Tau0 Concept 11
4.1 Static Mode of Operation . 11
4.2 Dynamic . 11

5 Toolchain 13
5.1 Overview . 13
5.2 Plugin System . 16
5.3 Core Tools . 16
5.4 Plugins . 23
5.5 Additional Tools . 24

6 Policy Validation 28
6.1 Configuration . 28
6.2 Devices . 28
6.3 Device Domains . 29
6.4 Events . 29
6.5 Files . 30
6.6 Hardware . 30
6.7 Kernel . 31
6.8 Memory . 31
6.9 Model Specific Registers (MSR) . 33
6.10 Platform . 33
6.11 Scheduling . 33
6.12 Subjects . 34

7 Policy Structure 36
7.1 Policy Schema Documentation . 36

8 Appendix 105
8.1 Annotated Example Policy . 105

9 Bibliography 143

2

List of Figures

3.1 System Integration . 9

5.1 Build process . 27

3

Listings

5.1 τ0 Command Stream . 20
8.1 Demo System (VT-d) . 105

4

Chapter 1

Introduction

The Muen system policy is a description of a component-based system running on top of the
Muen Separation Kernel (SK). It defines what hardware resources are present, how many active
components (called subjects) the system is composed of, how they interact and which system
resources they are allowed to access. The contents a Muen system policy is composed of are
outlined in chapter 2.

A system integrator specifies and configures such a component-based system at integration
time in XML format. The Muen toolchain transforms the system description in multiple steps
to the final system description, resolving abstractions which exist to make life simpler and less
error-prone to the integrator. Additionally, the toolchain also creates various build artifacts which
are incorporated into the system image. Chapter 3 gives an overview of the system integration
process.

The Muen SK can be regarded as a policy enforcement engine, in the sense that it has no
knowledge about the actual content of the generated data structures and in consequence the policy.
For example, it knows nothing about the contents of subject page tables which define a subject’s
address space, nor does it know anything about its own page tables. In fact, these structures are
not even mapped into the kernel.

The most important and final step in the integration of a Muen system is the actual generation
of the data structures which guarantee subject isolation and the composition of the final system
image. This step is performed by a trusted system composer called (static) τ0 (Tau Zero). The
concept of τ0 is introduced in chapter 4.

Section 5 explains every tool and the system image composer in detail. It also presents the
usage of each tool. Section 6 then outlines all semantic checks performed on the system policy
primarily by the validation tool, but also by other tools in the toolchain.

Finally section 7 specifies the XML schema and structure of the source format of the Muen
system policy. Explanations and examples illustrate how to configure a component-based system
with the Muen SK.

5

Chapter 2

System Policy

The Muen policy specifies the following properties of a system:

• Configuration values

• Hardware resources

• Platform description

• Physical memory regions

• Device domains

• Events

• Communication channels

• Components

• Subjects

• Scheduling plans

The policy serves as a static description of a Muen system. Since all aspects of the system are
fixed at integration time the policy is very well suited for automated as well as manual validation
prior to system execution.

The details of each property above is outlined with examples in the XSD-schema of the format
source policy in section 7.

2.1 Policy Format
The system policy is specified in XML. There are currently three different main policy formats:

• Source Format

• Format A

• Format B

The motivation to have several policy formats is to provide abstractions and a compact way
for users to specify a system in format source while simultaneously facilitate traceability as well as
reduced complexity of tools operating on the policy formats A and B.

The implementation of such tools is simplified by the absence of higher-level abstractions in
the latter formats which would make the extraction of input data more involved.

Furthermore, the final format B must specify every aspect of the system explicitly, e.g. all
attributes have a concrete value assigned, something which would be very tedious and repetitive
and that burden should not be put on an integrator.

The following sections give more detail about each policy format.

6

+ Only the policy in format source intended for system integrators is specified in this
document. Other formats are processed by the toolchain and thus considered internal.
While it is possible to specify a system policy in format A or B, it is not recommended.

Additionally to these three main formats, there may be extended versions of these formats if
plugins are used. See section 5.2 for details about the plugin system.

2.1.1 Source Format
The user-specified policy is written in the so called source format. Constructs such as channels
provide abstractions to simplify the specification of component-based systems. Many XML ele-
ments and attributes are optional and are expanded during later steps of the policy compilation
process.

Kernel and τ0 subject (4.2) resources are not part of the source format since they are automat-
ically added as part of the policy expansion step.

The use of configuration values enables parametrization of the system policy.
The policy in source format is specified in detail in section 7, while appendix 8.1 provides an

annotated example policy illustrating the various policy elements.

2.1.2 Format A
Format A is a processed version of the source format where all inclusions of external files are
resolved and abstractions such as channels have been deconstructed into their constituent parts.
For example, a channel is expanded to a physical memory region and the corresponding writer and
reader subject mappings with the appropriate access rights. Optional associated events have been
automatically created and correctly linked with the designated subjects.

In this format all implicit elements, such as for example automatically generated page table
memory regions, are specified. The kernel and τ0 configuration is also declared as part of format
A.

The only optional attributes are addresses of physical memory regions.

2.1.3 Format B
Format B is equivalent to Format A except that all physical memory regions have a fixed location
(i.e. their physical address is set).

7

Chapter 3

System Integration

A Muen system defined via the system policy is transformed and integrated by various tools to
generate a bootable system image.

The directed graph 3.1 on page 9 illustrates the process.
At the top, the graph shows how configuration and build parameters are applied to the following

constituents of the system policy:

• Hardware description (static)
Contains manually specified devices by the integrator, e.g. common hardware like I/O ports
of a PC speaker. Such devices are not automatically collected by the hardware configuration
generator.

• Hardware description (generated)
Hardware description extracted from a running Linux system by the mugenhwcfg tool (sec-
tion 5.5.3).

• Platform description
Common names and abstractions to form a unifying view over different hardware configura-
tions. Additionally, platform-specific configuration values can be provided here.

• System description
Specification of an actual component-based system running on the Muen SK.

These combined inputs form the parameterized system policy in format source, which can be
used by components to extract system information. Such information might be for example the
log channel count of a debug server subject, or whether a specific debug facility has been enabled
by the system integrator.

The CSPECs mechanism outlined in the Muen Component Specification document [1] can be
used by components to generate source specifications (e.g. in SPARK/Ada) from the component
description. Furthermore, a component might expand its own component description with infor-
mation extracted from system information, or it might use the mucbinsplit tool (section 5.5.4)
to automatically fill in the memory regions provided by its binary after compilation. The expanded
component description is then merged with the system policy for further processing.

After all component descriptions have been merged into the system policy, it is expanded by the
expander tool (section 5.3.5). This step transforms the system policy from format source to format
A. Abstractions like directed channels are now resolved to basic shared memory mechanisms and
events, non-present optional attributes are added and set to default values.

The allocator tool (5.3.6) then loops over all physical memory regions which have no address
assigned and places them in memory by allocating a region and thus a physical start address from
the usable pool. The usable pool information is extracted from the allocatable memory block list
(7.1.17) in the system policy. This process transforms the policy to format B where all elements
must be present and attributes specified.

The policy is then checked for consistency and configuration errors by the validator tool (5.3.7).
If a misconfiguration is found, the user is informed and the build aborts. The extensive checks
performed by the validator tool are listed in section 6. If no error is found, the system policy is
then ready to be used for three subsequent steps:

8

C o m p o n e n t

Tau0

Build
P a r a m e t e r s

Apply
P a r a m e t e r s

Apply
P a r a m e t e r s

Apply
P a r a m e t e r s

C o m p o n e n t
Specif icat ion
G e n e r a t i o n

S y s t e m
Descr ip t ion

G e n e r a t e d
H a r d w a r e

Descr ip t ion

H a r d w a r e
Descr ip t ion

P l a t f o r m
desc r ip t i on

Kernel
S o u r c e

Build

C o m p o n e n t
Descr ip t ion

C o m p o n e n t
S o u r c e

Build

P a r a m e t e r i z e d
S y s t e m

Descr ip t ion

Policy (src)

P a r a m e t e r i z e d
H a r d w a r e

Descr ip t ion

P a r a m e t e r i z e d
P l a t f o r m

Descr ip t ion

S y s t e m
Informat ion

E x p a n d e d
C o m p o n e n t
Descr ip t ion

M e r g e

C o m p o n e n t
Bina ry

C r e a t e
I m a g e

Kernel
Bina ry

E x t r a c t

Policy (src)

E x p a n d

Policy (A)

Allocate

Policy (B)

Validate
Policy

Inva r i an t s

C o m m a n d S t r e a m

G e n e r a t e
S t r u c t u r e s

G e n e r a t e d
S t r u c t u r e s

Kernel
Specs (. ads)

C o m p o n e n t
Specs (. ads)

S u b j e c t
Art i facts

G e n e r a t e
C o m m a n d

S t r e a m

Gene ra t e Ke rne l
S p e c

G e n e r a t e S u b j e c t
Art i facts

Boo t
I m a g e

Figure 3.1: System Integration

9

• Generate kernel specifications (SPARK/Ada source files)

• Generate structures for subjects

• Create a command stream for τ0

The kernel source specifications contain tables and constants which represent the policy that
is compiled into the kernel as part of the kernel build process and enforced at runtime.

An example of generated subject structures are ACPI tables, which are mapped into a Linux
VM to announce the available hardware resources.

The command stream generator (5.3.9) generates instructions in XML format for the τ0 system
composer explained in the following section.

10

Chapter 4

Tau0 Concept

The XML command stream together with the other build artifacts like subject structures or the
kernel binary is provided as input to the trusted system composer τ0. Its task is to compose a
system image while making sure that certain invariants are not violated. The τ0 concept is a
mechanism to gradually increase the flexibility of a component based system while keeping a high
level of assurance regarding the correctness of isolation enforcement.

There are two modes of operation for τ0:

• static

• dynamic

In the static scenario, the task of τ0 is to construct a bootable system image by assembling the
input files and generating data structures such as page tables, all while checking that invariants
necessary for correct isolation are valid. An example for such an invariant is that no subject
memory mapping may reference a memory region containing paging structures.

For the dynamic case, the goal is to have a trusted τ0 subject with additional privileges to
interact with the Muen SK over a special τ0 interface. This will allow τ0 to change certain clearly
defined aspects of the system state at runtime. A potential use-case would be to set up a new
subject, assign resources like memory and devices to it and then instruct the kernel to schedule it.

Since it must be guaranteed that a dynamic system is as secure as the static one, τ0 must be
developed with the same care as the kernel itself, meaning it must be written in SPARK/Ada and
security properties which provide hard isolation must be formally proven. This process is currently
ongoing.

4.1 Static Mode of Operation
The static variant is the one which is currently implemented. τ0 runs at integration time and
assembles the system image by constructing the data structures guaranteeing isolation and merging
in the build artifacts of the other Muen tools, like untrusted ACPI data structures for Linux VMs.

Static τ0 fulfills its task by creating the system image in memory while processing the commands
from the command stream. See listing 5.1 on page 20 for an example command stream.

τ0 is written in SPARK/Ada and it applies memory typization to formally prove aspects of
the system. Command processing starts from a well-known good state and it is enforced that
each system state transition resulting from a new command input results in a good state again by
showing that invariants hold after the transition. If not, the command is rejected and the build
aborts.

See the project README or the webpage1 for more information about the current state of τ0.

4.2 Dynamic
While the system image is composed by the static variant of τ0, the goal is to run the same
code as τ0 subject at runtime. Note that this is not yet implemented but planned as a way

1https://muen.sk/tau0.html

11

forward to achieve more dynamic systems while having the same assurance about security and
safety properties.

The dynamic τ0 running as subject will reconstruct the system state defined at integration
time and continue to process commands starting from there. Depending on the system use case,
commands might be sent to dynamic τ0 by a special control subject.

The dynamic variant can be divided into multiple sub-variants, depending on how much dy-
namic system behavior is allowed. For example, the initial dynamic variant might only allow entity
construction, not destruction.

12

Chapter 5

Toolchain

5.1 Overview
While the previous section 3 presented an overview of the system integration process and section
4 introduced the τ0 concept, this section focuses on the detailed description of the tools forming
the Muen toolchain.

The tool-based processing of the Muen system policy can be divided into the following steps:

• Policy merging

• Components build

• Components specification merging

• Policy compilation

• Policy validation

• Structure generation

• Command stream generation for τ0

• Image generation by τ0

Following the Unix philosophy "A program should do only one thing and do it well" each of the
tools only performs a specific task. They work in conjunction to process a user-defined policy and
build a bootable system image. Figure 5.1 presents another illustration of the policy processing,
this time laying the focus on the tools. The following sections explain each processing step while
section 5.3 describes each tool separately.

5.1.1 Policy Merging
The Merger tool outlined in section 5.3.3 is responsible to merge XML files stored at different
locations on the file system into one system policy in format source.

The tool reads a system configuration in XML format to locate the following files:

• System policy

• Hardware specification

• Additional hardware specification

• Platform specification

To make the system description flexible and modular the following features are supported in
the input policy:

13

• The tool provides an implementation of the XML XInclude mechanism1. Using includes,
the policy writer is able to separate and organize the system policy as desired. Instead of
specifying the whole policy in one file, the subject specifications can be split into separate
files, or common parts shared by different system descriptions can be extracted.

• Expressions can be used to formulate (nested) terms using equality/inequality, numeric and
logical operators as well as concatenation of strings. Expressions can be used just like con-
figuration variables to provide parameters for other mechanisms.

• The use of conditionals enables selective activation of parts of the source policy depending
on the value of a given configuration variable. This allows flexible customization of a system
during policy compilation by setting the value of a configuration variable or formulating an
appropriate expression.

• Configuration variable substitution enables the policy writer to set the value of attributes to
those of referenced configuration variables or expressions. Attributes that start with a dollar
sign followed by a variable name are substituted by the value of the variable.

• The policy may define templates for XML code, including parameters that can be used within
expressions, conditionals and references within that template. Templates can be employed
to avoid code duplication and to encapsulate portions of code. Hence, templates can define
building blocks and help to provide a high-level view of a system.

• When two building blocks are connected via a channel or when a subject behaves like a
client of another subject, it is desirable to insert a communication channel into a subject
from “outside” of that subject. Such additions to an XML node are possible with amend
statements. On evaluation, the children of an amend-node are merged into the children of
the node specified by the given XPath.

After the merge step, the resulting policy is well formatted to minimize the difference in the
generated policies resulting from the subsequent tasks. This allows the user to easily review (diff)
and therefore verify the results of each policy compilation task.

5.1.2 Components Build
After hardware, platform and high-level system policy are merged into a single source policy file,
components may extract relevant information. For example an XSL transformation (XSLT) script
could extract the I/O port of a specific device and create a corresponding configuration value based
on it, which is then included in the component specification.

The mucfgcvresalloc tool described in 5.3.1 implements the blue Component VR Allocator
task shown in figure 5.1. It is primarily used to automatically allocate attributes of component
resources like virtualAddress for channels. Furthermore, similar to the policy merger, it supports
inclusions, conditionals, expressions and configuration value substitutions.

After the component specification has been processed, the mucgenspec tool described in
5.3.11 generates Ada/SPARK packages containing constants derived from the declared component
resources and config values. These constants can be used to reliably address specific or configurable
resources in the source code. With these constants the component source code is compiled into a
binary.

The mucbinsplit tool described in 5.5.4 can be used to extract ELF sections of the compo-
nent binary into separate files. It automatically extends the component specification by adding
a corresponding memory region with the appropriate access rights (e.g. executable, writable) for
text, rodata, data, bss and stack sections.

5.1.3 Components Specification Merging
The processed component specifications are merged into the system source policy by the Muen
component specification joiner tool described in section 5.3.4.

This step is optional as static component specifications which need no processing can also be
manually specified in the system policy directly.

1http://www.w3.org/TR/xinclude-11/

14

http://www.w3.org/TR/xinclude-11/

5.1.4 Policy Compilation
Policy compilation encompasses the tasks involved to transform the policy from source format to
format A and finally to format B, which is the fully expanded format with no implicit properties.

The Virtual Resource Allocator tool sets virtual resources that are left unassigned in the joined
policy. These resources include virtual addresses, event numbers and vectors of channels. Often,
the precise values of these resources do not matter to the integrator and make the policy harder
to read and write. Section 5.3.2 explains the Virtual Resource Allocator tool in detail.

The Expander tool takes care of completing the user-specified policy with additional informa-
tion and resolving abstractions only available in format source to their corresponding low-level
constructs.

For example, the concept of channels only exists in format source. Therefore a channel specified
in format source must be expanded to shared memory regions with optional associated events in
format A. Also, the Expander tool inserts specifications for the Muen kernel itself so the user is
lifted from that burden. Generally, the aim of the expansion task is to make the life of a policy
writer as easy as possible by expanding all information which can be derived automatically. Section
5.3.5 explains the Expander tool in detail.

The result of the expansion task is a policy in format A which is the input for the Allocator
tool. This tool is responsible to assign physical memory addresses to all memory regions which
are not already explicitly placed in memory. By querying the hardware section of the policy, the
tool is aware of the total amount of available RAM on a specific system and allocates regions
of it for memory elements with no explicit physical address. The Allocator tool also implements
optimization strategies to keep the resulting system image as small as possible. For example,
file-backed memory regions (e.g. a memory region storing a component executable) are preferably
placed in lower physical regions. See section 5.3.6 for a description of the Allocator tool.

After the allocation task is complete, the policy is stored in format B. This format states all
system properties explicitly and is used as input for the Validation step.

5.1.5 Policy Validation
Before structures required to pack the final system image are generated, the policy must be thor-
oughly validated to catch errors in the system specification. Such errors might range from over-
lapping memory, undefined resource references to incomplete scheduling plans etc. The Validator
task performs checks that assure the policy in format B is sound and free from higher-level errors
that are not covered by XML schemata restrictions.

It is important to always run the Validator as the system could otherwise exhibit unexpected
behavior. This is especially true if a policy writer decides to specify the system directly in format
B which is also possible but not advised. Section 5.3.7 explains the usage of the Validator tool,
while section 6 outlines all performed checks.

It should be noted that correct memory typization and all invariants enforced by τ0 when
constructing the system image cannot be bypassed, since the checks are inherent to the generation
of the bootable image file.

5.1.6 Structure Generation
The structure generation step encompasses various tools which extract information from a policy
in format B and generate files in different formats.

While some generated files are directly linked into the Muen kernel (i.e. Source Specifications,
see 5.3.11), most of them are subject-related. Depending on the subjects included in the actual
system policy, the following subject structures are generated:

• MSR store regions

• Sinfo regions

• Regions for Linux VMs

– ACPI tables
– Linux zero-page (ZP) regions

15

• Regions for MirageOS/Solo52 unikernels

– Solo5 boot info

As these structures do not affect isolation between subjects or subjects and the kernel, they
are not generated by τ0 but only included as binary data via XML command stream and build
artifacts.

The structure generator tools are explained in section 5.3.11.

5.1.7 Image Creation
The system image composer assembles the final system image. This task is performed by τ0 static
introduced in the previous section 4.1. The usage of it is specified in 5.3.10.

5.2 Plugin System
As is shown in figure 5.1, the build process includes two steps where plugins may be inserted if
needed. The intention of the plugin system is to simplify the introduction of small, less critical
modifications to the toolchain and keep those separate from the “core“-toolchain of Muen. A tool
is considered to be part of the core-toolchain if it is needed to build the bootable system image.
Additionally, Mucfgvalidate is considered part of the core-toolchain, too.

An example of a plugin is the documentation-plugin (see 5.4.2). It can help to build documen-
tation for a system and the user can easily adjust its functionality and the underlying XSD-schema
as needed. Similarly, a plugin can be used to extend the automatically generated headers of
components.

To hide the additional information in the policy from tools that may not be able to digest them,
muxmlfilter (see 5.4.1) is used to remove such parts of the policy before processing it. That
way, changes in the plugins have minimal impact on the core toolchain.

To enable the validation of extended policies, the plugin system includes tools that extend
policy format definitions. Hence, there may be extended versions of Source Format, Format A and
Format B, depending on plugin usage.

5.3 Core Tools
This section describes the tools which form the core of the Muen toolchain.

5.3.1 Component Virtual Resource Allocator
The tool mucfgcvresalloc processes a user provided component specification and outputs a
finished, schema compliant description of the component interface. Just like mucfgmerge it
supports inclusion of external files, conditionals, expressions and substitutions. Furthermore, it
can automatically allocate virtual resources as described below.

Name
mucfgcvresalloc

Input
Component configuration as XML, colon-separated list of include paths

Output
Component specification as XML in component format

The main processing steps are:

1. Merge XIncludes of main XML file, i.e., insert the referenced files at the given location;

2. Evaluate expressions, conditionals and substitutions;

3. Assign missing virtual addresses of channels and memory regions, as well as arrays of channels
and memory regions;

2https://github.com/Solo5/solo5

16

https://github.com/Solo5/solo5

4. Assign missing IRQs of channel reader events and arrays of channel readers;

5. Assign missing event IDs of channel writer events and arrays of channel writers;

Virtual addresses, IRQs and event IDs are considered to be virtual resources. Each of the
three virtual resources has its own domain. To request automatic allocation of the attribute
virtualAddress (or virtualAddressBase for arrays) omit the attribute. To request auto-
matic allocation of event ids of readers or writers the respective attribute must be set to auto.

To determine which addresses or ids to choose, mucfgcvresalloc looks at the addresses and
ids already present in the file. Dependencies of virtual resources through libraries or the system
policy can be resolved by manually assigning such resources.

5.3.2 Virtual Resource Allocator
The tool mucfgvresalloc processes the joined system policy and outputs a system policy in
format source. Its purpose is to automatically allocate virtual resources within subject descriptions.

Name
mucfgvresalloc

Input
Joined system policy as XML

Output
System policy where all virtual resources of subjects have been assigned

mucfgvresalloc can assign virtual addresses of channels and memory regions, IRQs of chan-
nel reader events, and IDs of channel writer events. These attributes are considered to be virtual
resources. Each of the three virtual resources has its own domain. To request automatic allocation
of the attribute virtualAddress omit the attribute. For the other two resources the respective
attribute must be set to auto.

To determine which value to choose for a virtual resource, mucfgvresalloc processes each
subject separately. For each subject, it gathers virtual resources already set in the component
that is referenced by the subject and resources set in the subject itself. Thereafter, missing virtual
resources are either set to the value fixed by the component (if possible) or chosen from the
remaining space in the respective domain.

Dependencies of virtual resources through libraries or devices can be resolved by manually
assigning such resources.

5.3.3 Policy Merger
The merger tool mucfgmerge combines user-provided system policy files into a single XML doc-
ument.

Name
mucfgmerge

Input
System configuration as XML, colon-separated list of include paths

Output
System policy in format source (merged)

This tool reads the system configuration and merges the specified system policy, hardware and
platform files into a single file. To ease the creation of many similar variants of a system the
provided system policy may use templates, expressions, conditionals and amend statements. The
main processing-steps are:

1. Merge XIncludes of system policy into the system policy, i.e., insert the referenced files at
the given location;

2. Merge hardware, additional hardware and platform specifications into the system policy. This
includes merging the platform configuration section into the global configuration section;

3. Instantiate the templates, using the provided values and variable names;

17

4. Evaluate expressions, resulting in new configuration variables;

5. Replace all references to configuration variables with their value;

6. Evaluate conditionals, i.e., decide which sub-trees of the XML-tree to discard;

7. Evaluate amend statements, i.e., move sub-trees within the XML-tree.
The result is in policy source format and re-formatted so changes to the policy by subsequent

build steps can be manually reviewed or visualized by diffing the files. In particular, the result
does not contain any templates, expressions, conditionals or amend statements. The tool has debug
modes that increase the verbosity of the output, in particular in case of errors.

5.3.4 Component Specification Joiner
The Muen component specification joiner adds component XML specifications to the component
section of a specified system policy and writes the result to a designated output file. Each given
component/library specification is loaded and validated against the component specification XML
schema. If it is correct the content is added to the components section of the system policy specified
as input file. If the given system policy does not yet contain a components section, it is created.
The result is written to the file specified by the -o parameter. In-place processing is supported by
passing in the same value for input and output file.

Name
mucfgcjoin

Input
System policy in format source, comma-separated list of component specs

Output
System policy in format source (joined)

5.3.5 Expander
The expander completes the user-provided system policy by creating or deriving additional con-
figuration elements.

Name
mucfgexpand

Input
System policy in format source

Output
System policy in format A (expanded)

The Expander performs the following actions:
• Pre-check the system policy to make sure it is sound

• Expand channels

• Expand device resources

• Expand device isolation domains

• Expand kernel sections

• Expand minimal τ0 subject

• Expand additional memory regions

• Expand hardware-/platform-related information

• Expand additional subject information

• Expand profile-specific information

• Expand scheduling information

• Post-check resulting policy

18

5.3.6 Allocator
The Allocator is responsible to assign a physical address to all global memory regions.

Name
mucfgalloc

Input
System policy in format A

Output
System policy in format B (allocated)

First, the Allocator initializes the physical memory view of the system based on the physical
memory blocks specified in the XML hardware section. It then reserves memory that is occupied
by pre-allocated memory elements (i.e. memory regions with a physical address or device memory).
Finally it places all remaining memory regions in physical memory. In order to reduce the size of
the final system image file-backed memory regions are placed at the start of memory.

5.3.7 Validator
The Validator performs additional checks that go beyond the basic restrictions imposed by the
XML schema validation. For example it checks that the hardware provides an IOMMU device and
that all references to subjects are resolvable. See 6 for a complete list of all executed checks. The
tool aborts with a non-zero exit status and an explanatory message to the user if checks fail.

Name
mucfgvalidate

Input
System policy in format B

Output
None, raises exception on error

5.3.8 Hasher
The mucfgmemhashes tool is used to add memory integrity hashes to a given policy.

Name
mucfgmemhashes

Input
System policy in format B, colon-separated list of input directories containing build artifacts

Output
System policy in format B with memory integrity hashes

The tool appends a hash to all memory regions with fill and file content. It must run after all
files have been generated by the structure generator tools.

The actual hash is generated using the SHA-256 algorithm and is intended to be used to verify
the integrity of memory regions during runtime.

Note that no hashes are generated for sinfo memory regions. Since the hash information is
exported via sinfo, and the sinfo region is itself part of the memory information of a subject, this
hash would be self-referential.

The tool also replaces all occurrences of hashRef elements. A hash reference element instructs
the tool to copy the hash element of the referenced memory region after message digest generation.

From an abstract point of view, the hashRef element is a way to link multiple memory regions
by declaring that the hash of the content is the same. The hash may serve as an indicator on how to
reconstruct the (initial) content of a memory region. This mechanism is used by e.g. the subject
loader (SL) during subject init and reset operation. The subject loader expansion step remaps
writable memory regions of the loadee (the subject under loader control) to SL and replaces the
original regions with new ones containing a hash reference to the associated physical memory
region. This way SL is able to determine the intended content of the target memory region by
looking up the region in its sinfo page using the hash value as key.

19

5.3.9 Tau0 Command Stream Generator
The mugentau0cmds tool creates an XML command stream for τ0 to let it compose the system
image specified by the system policy given as input.

The tool reads the policy in format B and translates it to a sequence of commands as shown
in the following listing:

1 <tau0>
<commands>

3 <addMemoryBlock address="16#0000#" size="157"/>
<addMemoryBlock address="16#0010_0000#" size="130816"/>

5 <addMemoryBlock address="16#2020_0000#" size="130564"/>
<addMemoryBlock address="16#4000_5000#" size="453932"/>

7 <addMemoryBlock address="16#bae9_f000#" size="256"/>
<addMemoryBlock address="16#baf9_f000#" size="96"/>

9 <addMemoryBlock address="16#0001_0000_0000#" size="3401216"/>
<addMemoryBlock address="16#ba3b_a000#" size="23"/>

11 <addMemoryBlock address="16#bb80_0000#" size="16896"/>
<addProcessor id="0" apicId="0"/>

13 <addProcessor id="1" apicId="2"/>
<addIoapic sid="16#f0f8#"/>

15 <createLegacyDevice device="0"/>
<addIOPortRangeDevice device="0" from="16#03c0#" to="16#03df#"/>

17 <addMemoryDevice device="0" caching="WC" address="16#000a_0000#" size="32"/>
<activateDevice device="0"/>

19 <createLegacyDevice device="1"/>
<addIOPortRangeDevice device="1" from="16#0060#" to="16#0060#"/>

21 <addIOPortRangeDevice device="1" from="16#0064#" to="16#0064#"/>
<addIRQDevice device="1" irq="1"/>

23 <addIRQDevice device="1" irq="12"/>
<activateDevice device="1"/>

25 <createLegacyDevice device="2"/>
<addIOPortRangeDevice device="2" from="16#0070#" to="16#0071#"/>

27 <activateDevice device="2"/>
<createLegacyDevice device="3"/>

29 <addIOPortRangeDevice device="3" from="16#0cf9#" to="16#0cf9#"/>
<addIOPortRangeDevice device="3" from="16#0404#" to="16#0404#"/>

31 <activateDevice device="3"/>
<createLegacyDevice device="4"/>

33 <addMemoryDevice device="4" caching="UC" address="16#fec0_0000#" size="1"/>
<activateDevice device="4"/>

Listing 5.1: τ0 Command Stream

As τ0 strictly enforces certain invariants, the system must be constructed in a way not to
violate these invariants. For example, before memory can be typed as being a VT-d root table,
this memory must be cleared. Otherwise the memory typing model of τ0 is violated.

The mugentau0cmds tool must take this into consideration when iterating over the resources
specified in the input system policy and generating commands which instruct τ0 to create the
specified system.

Name
mugentau0cmds

Input
System policy in format B

Output
XML command stream for τ0 static

5.3.10 Tau0 Static
The τ0 static component serves as an image composer during integration. The concept and moti-
vation of this approach is described in chapter 4.

Name
tau0_main

Input
XML command stream, colon-separated list of input directories containing build artifacts

Output
Muen system image

Output format
Command Stream Loader (CSL) image3, bootable by any compliant bootloader.

3https://www.codelabs.ch/download/bsbsc-spec.pdf

20

https://www.codelabs.ch/download/bsbsc-spec.pdf

If a command is received which violates a constraint enforced by τ0 static, the tool aborts
system image construction, displays an error message and returns with a non-zero exit status.

5.3.11 Structure Generators
These tools do not change the policy and use it read-only.

MSR Stores Generator

Generate MSR store for each subject with MSR access.

Name
mugenmsrstore

Input
System policy in format B

Output
MSR store files of subjects in binary format

Output format
Intel SDM Vol. 3C, "24.8.2 VM-Entry Controls for MSRs" and Intel SDM Vol. 3C, "24.7.2
VM-Exit Controls for MSRs".

The tool generates MSR stores for each subject. The MSR store is used to save/load MSR
values of registers not implicitly handled by hardware on subject exit/resumption.

MSR stores are used by hardware (VT-x) to enforce isolation of MSR (i.e. subjects that have
access to the same MSRs cannot transfer data via these registers).

ACPI Tables

Generate ACPI tables for all Linux subjects.

Name
mugenacpi

Input
System policy in format B

Output
ACPI tables of all Linux subjects

Output format
Advanced Configuration and Power Interface (ACPI) Specification4

ACPI tables are used to announce available hardware to VM subjects. A set of tables consists
of an RSDP, XSDT, FADT and DSDT table. See the ACPI specification for more information
about a specific table.

Linux Zero Pages

Generate Zero Pages for all Linux subjects.

Name
mugenzp

Input
System policy in format B

Output
Zero pages of all Linux subjects

Output format
Linux Boot Protocol5
Zero Page6

4http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf
5https://www.kernel.org/doc/Documentation/x86/boot.txt
6https://www.kernel.org/doc/Documentation/x86/zero-page.txt

21

http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf
https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.kernel.org/doc/Documentation/x86/zero-page.txt

The so-called Zero Page (ZP) exports information required by the boot protocol of the Linux
kernel on the x86 architecture. The kernel uses the provided information to retrieve settings about
its runtime environment:

• Type of bootloader

• Map of physical memory (e820 map)

• Address and size of initial ramdisk(s)

• Kernel command line parameters

Solo5 Boot Info

Generate Solo5 boot info structures for MirageOS unikernels7 running on the Solo5 platform.

Name
mugensolo5

Input
System policy in format B

Output
Solo5 boot info for all MirageOS subjects

Output format
struct hvt_boot_info8

The boot info structure exports information required by Solo5. The unikernel uses the provided
information to retrieve settings about its runtime environment:

• Memory size in bytes

• Address of end of unikernel

• CPU cycle counter frequency, Hz

• Address of command line (C string)

• Address of application manifest

Kernel Source Specifications

Generate source specifications used by kernel.

Name
mugenspec

Input
System policy in format B

Output
Source specifications in SPARK, C and GPR format

Gathers data from the system policy to generate various source files in SPARK, C and GNAT
project file (GPR) format. Created output includes constant values for memory addresses, device
resources, scheduling plans, etc. See the description of the Skp package hierarchy in the Muen
Kernel Specification document [2] for the exact information these packages provide.

7https://mirage.io
8https://github.com/Solo5/solo5/blob/master/include/solo5/hvt_abi.h

22

https://mirage.io
https://github.com/Solo5/solo5/blob/master/include/solo5/hvt_abi.h

Component Source Specifications

Process component description and generate source specifications from it.

Name
mucgenspec

Input
Component description in XML

Output
Component source specifications in SPARK

The component spec generation tool generates Ada/SPARK packages containing constants
of the declared logical component resources. The generated specifications can be used in the
component source code to access the declared resources.

Subject Info (sinfo)

Generate subject information data for each subject.

Name
mugensinfo

Input
System policy in format B

Output
Subject info data in binary format

Output format
As specified in [1] and common/musinfo/musinfo.ads

The Sinfo page is used to export subject information data extracted from the system policy to
subjects. Currently, information about available memory regions, communication channels, events,
vectors and assigned PCI devices is provided.

5.4 Plugins
This section lists tools which are either plugins for the toolchain or support the plugin system.

5.4.1 XML Filtering
The muxmlfilter tool can filter a given XML-file such that the output satisfies a given schema
definition.

Name
muxmlfilter

Input
XSD-Schema, XML-file

Output
Filtered XML-file where all nodes not allowed by the given schema have been deleted

The filter is intended for XML files that satisfy the target schema, except for some added
element-nodes that are not allowed by the schema. The possibility to filter out some elements is
needed to make toolchain-plugins possible (see 5.2).

The given schema can either be one of the built-in schemata (in which case it can be given
by name), or it can be specified by a file-path. While muxmlfilter is not specific to Muen
policies, the used schema needs to satisfy a number of technical restrictions. These are described
in tools/libmuxml/schema_plugins/README.md

23

5.4.2 Documentation Transfer
The doc_transfer script can extend a given policy B with documentation nodes.

Name
doc_transfer

Input
Policy B XML-file, joined policy XML-file

Output
Policy B with added documentation

The tool processes the given joined policy and extracts a list of target XPath-addresses paired
with an XML-node containing documentation. This list is then applied to the given policy B,
which effectively transfers documentation from the given joined policy to the given policy B. This
way, documentation information that was present in policy src can be reinserted in policy B. The
amended policy B can serve as a single source for documentation information.

5.5 Additional Tools
This section lists additional helper tools which simplify the process of generating and validating a
Muen system.

5.5.1 Kernel ELF Checker
The mucheckelf tool enforces that the format of a given Muen kernel ELF binary matches the
kernel memory layout specified in a system policy. Furthermore, the ELF kernel entry point is
compared to the expected value.

Size, VMA (Virtual Memory Address) and permissions of binary ELF sections are validated
against kernel memory regions defined in the policy. The following table lists the correspondence
of ELF section names to logical kernel memory region names.

ELF Section Memory Name
.text kernel_text
.data kernel_data
.rodata kernel_ro
.bss kernel_bss
.globaldata kernel_global_data

5.5.2 Stack Usage Checker
The mucheckstack tool statically calculates the worst-case stack usage of a native Ada/SPARK
component or the Muen kernel compiled with the -fcallgraph-info switch9.

The tool takes a GNAT project file and a stack limit in bytes as input. All control-flow
information (.ci) files found in the object directory of the main project and all of its dependencies are
parsed. Once the control-flow graph is constructed the maximum stack usage of each subprogram
is calculated and checked against the user-specified limit. The tool exits with a failure if a stack
usage exceeding the limit is detected.

Note that the tool is not applicable to arbitrary software projects as it does not handle dynam-
ic/unbounded stack usage and recursion. In the context of the Muen project these cases can not
occur since they are prohibited by the following restriction pragmas:

• No_Recursion

• No_Secondary_Stack

• No_Implicit_Dynamic_Code

Additionally, the -Wstack-usage compiler switch warns about potential unbounded stack
usage.

9https://www.adacore.com/uploads/technical-papers/Stack_Analysis.pdf

24

https://www.adacore.com/uploads/technical-papers/Stack_Analysis.pdf

5.5.3 Hardware Config Generator
The mugenhwcfg10 tool has been created to automate the process of gathering all necessary
hardware information. To collect data for a new target hardware all that is required is to run the
tool on a common Linux distribution11. See the project README for more information.

Name
mugenhwcfg

Input
None

Output
Hardware description in output.xml

The tool is implemented in a way to extract as much information from the system and generate
a hardware configuration even if problems are encountered. The aim is to assist the integrator as
much as possible in writing a hardware configuration for the target hardware.

Therefore, the tool only fails with a non-zero exit status and no output if essential required data
can not be extracted from the system. Other problems are reported in the potentially incomplete
output.xml file as XML comments, making the encountered problems on the actual machine
evident. The following snippet provides an example of such a warning comment in the header of
the generated output.xml file:

* WARNING *: Unable to resolve device class 0c80. Please update pci.ids
(-u) and try again

The comments should be rather self-explanatory. In this case, the problem is only a minor issue
since the tool was simply unable to resolve a device class number to a human-readable string.

The next example has more consequences:
* WARNING *: Skipping invalid IRQ resource for device 0000:00:1f.3: None

This has the effect that no IRQ resource is appended in the specification of the device exhibiting
this problem. While the device can still be assigned to a subject, it is missing the IRQ element
and as a result the IRQ resource itself. It can be assumed that this leads to problems with the
driver interacting with the device. For proper operation, it is the policy writer’s task to rectify the
hardware specification by determining the correct configuration manually.

5.5.4 Component Binary Splitter
The mucbinsplit tool splits component binaries into multiple files, one per ELF section.

Name
mucbinsplit

Input
Component description in XML, Component ELF binary

Output
Binary files corresponding to ELF sections, processed component description in XML

The component binary splitter tool processes component binaries and creates a separate file for
each ELF section. The component XML description is extended by adding a file-backed memory
region for each ELF section with the appropriate virtual mapping address, size and access rights.
The RIP value is set to the ELF entry point of the component binary.

The resulting processed component description is written to the given output location while
the binary section files are written to the specified output path.

10https://git.codelabs.ch/?p=muen/mugenhwcfg.git
11https://github.com/roburio/mugenhwcfg-live

25

https://git.codelabs.ch/?p=muen/mugenhwcfg.git
https://github.com/roburio/mugenhwcfg-live

5.5.5 Microcode Updates
The mucfgucode tool is used to enable Intel processor microcode updates (MCU) on Muen.

Name
mucfgucode

Input
System policy in format source, directory containing Intel microcode updates

Output
System policy in format source containing a file-backed microcode memory region. The Intel
microcode update blob is copied to the specified output directory

The microcode update tool processes a system policy in format source, extracts the signature
of the target processor from the CPUID leaf 1 eax register value and executes the iucode-tool12

for the specified directory containing Intel microcode updates. See the Intel SDM Vol. 3A, "9.11
Microcode Update Facilities" for more information on Intel MCU.

The tool adds a file-backed physical memory for a matching MCU of the given processor. Also,
the MCU is copied to the specified output directory with a .ucode suffix.

If a physical memory region for MCU already exists, it is removed before further processing.
The system policy is left unchanged if the tool does not find an applicable MCU for the target
processor.

12https://gitlab.com/iucode-tool/iucode-tool/-/wikis/home

26

Hardware de-
scription (.xml)

Platform de-
scription (.xml)

System descrip-
tion (.xml)

Policy Merger
(mucfgmerge)

Policy Source (.xml)
Sources for Com-

ponent Spec

Extract con-
tent and merge

(xslt)

Parametrized
Cspecs Source

Virtual Resource Allo-
cation for Component

(mucfgvresalloc)

XML Component
Specification (.xml)

XML Filter
(muxmlfilter)

Core XML
Cspecs (.xml)

Header generation
(mucgenspec)

Component
headers (.ads)

Toolchain plugins

Extended
Headers (.ads)

Component Source
(.adb, .ads)

Compiler

Component binary

Binary Splitting
(mucbinsplit)

Separated Sec-
tions of Binary

XML Cspec with Refs
to Binaries (.xml)

This is done for each component:

Join system and com-
ponent descriptions

(mucfgjoin)

Joined policy (.xml)

Virtual Re-
source Allocation
(mucfgvresalloc)

Policy with virtual
resources (.xml)

XML Filter
(muxmlfilter)

Core policy (.xml)

Logical expansion
(mucfgexpand)

Core Policy A (.xml)

Physical ad-
dress allocation
(mucfgalloc)

Core Policy B (.xml)Toolchain plugins

Extended Pol-
icy B (.xml)

Policy Validation
(mucfgvalidate)

Structure Generators
(mugenacpi, mu-
genmsrstore, ...)

Subject spe-
cific artifacts

Command Stream
Generator

(mugentau0cmds)

Tau0 com-
mand stream

Muen Kernel
Spec Generator
(mugenspec)

Specification for Muen
Kernel (.ads, .c, .gpr)Kernel Source

Compiler

Kernel Binary

Hash Generation
(mucfgmemhashes)

Core Policy B
with hashes

Extract Subject Infos
(mugensinfo)

Sinfo binary data

Tau0
(tau0 main)

Bootabe Sys-
tem Image

Figure 5.1: Build process

27

Chapter 6

Policy Validation

Prior to operate on the policy, any tool outlined in the toolchain section 5.3 checks all required
preconditions by running validator procedures. For example a tool accessing physical devices via
subject logical device references will execute a validator checking such references for validity.

Before the policy is used to generate system structures like sinfo regions, or the command
stream for τ0, the expanded policy in format B is validated by executing a comprehensive set of
checks. This is done by the mucfgvalidate tool outlined in section 5.3.7.

The following sections list the various checks executed by mucfgvalidate and the other Muen
build tools in the toolchain.

6.1 Configuration
The following checks are performed to guarantee correctness of configuration options in the system
policy.

• Validate config variable name uniqueness.

• Check that all booleans defined in config contain a valid value.

• Check that all integers defined in config contain a valid value.

• Check that all expression config variable references are valid.

• Check that all integers defined in expressions contain a valid value.

• Check that all booleans defined in expressions contain a valid value.

• Check that all conditional config variable references are valid.

6.2 Devices
The following checks are performed to guarantee that hardware devices are correctly configured in
the system policy.

• Validate that devices referenced by logical devices exist.

• Validate that device names (including device aliases/classes) are unique.

• Validate that all physical IRQs are unique.

• Validate that physical device IRQs referenced by logical IRQs exist.

• Validate that ISA IRQs fulfill their constraints.

• Validate that PCI LSI IRQs fulfill their constraints.

• Validate that PCI MSI IRQs fulfill their constraints.

• Validate that PCI MSI IRQs are consecutive.

28

• Validate that physical IRQ names are unique per device.

• Validate that all I/O start ports are smaller than end ports.

• Validate that physical I/O ports referenced by logical I/O ports exist.

• Validate that all physical I/O ports are unique.

• Validate that physical I/O port names are unique per device.

• Validate that device memory names are unique per device.

• Validate that device memory referenced by logical device memory exists.

• Validate that PCI device bus, device, function triplets are unique.

• Validate that logical device references of each subject do not refer to the same physical device.

• Validate that PCI device reference bus, device, function triplets are unique per subject.

• Validate that all device references specifying a bus, device, function triplet are references to
physical PCI devices.

• Validate that all device references to PCI multi-function devices belong to the same subject
and have the same logical device number.

• Validate that all device references not specifying a bus, device, function triplet are references
to physical legacy (non-PCI) devices.

• Validate that all logical PCI devices specify bus number zero.

• Validate that all IOMMU memory-mapped IO regions have a size of 4K.

6.3 Device Domains
The following checks are performed to guarantee that IOMMU device domains are correctly con-
figured in the system policy.

• Validate that domain device references are unique.

• Validate that no virtual memory regions of a domain overlap.

• Validate that domain memory referenced by subjects is mapped at the same virtual address.

• Validate memory type of physical memory referenced by domains.

• Validate that each device referenced by a device domain is a PCI device.

• Validate that each device domain has a physical PT memory region.

• Validate that each PCI bus has a physical VT-d context memory region.

6.4 Events
The following checks are performed to guarantee that events are correctly configured in the system
policy.

• Check that all physical event names are unique.

• Check that each global event has associated sources and one target.

• Check subject event references.

• Validate that there are no self-references in subject’s event notification entries.

• Validate that notification entries switch to a subject running on the same core and in the
same scheduling group.

29

• Validate that target subjects of IPI notification entries run on different logical CPUs.

• Validate that target event IDs as well as logical names are unique.

• Validate that source event IDs as well as logical names are unique per group.

• Check source event ID validity.

• Check that source event IDs of the VMX Exit group are all given or a default is specified.

• Check that self events provide a target action.

• Check that kernel-mode events have an action specified.

• Check that system-related actions are only used with kernel-mode events.

• Check that level-triggered IRQs have a corresponding unmask IRQ event.

6.5 Files
The following file-specific checks are performed.

• Check existence of files referenced in XML policy.

• Check if files fit into corresponding memory region.

6.6 Hardware
The following checks are performed on the hardware section of the policy.

• Validate that memory regions fit into available hardware memory.

• Validate that no memory blocks overlap.

• Validate that the size of memory blocks is a multiple of page size.

• Validate that PCI config space address and size are specified if PCI devices are present.

• Validate that the hardware provides enough physical CPU cores.

• Validate that the processor CPU sub-elements are correct.

• Validate that at least one I/O APIC device is present.

• Validate that all I/O APICs have a valid source ID capability.

• Validate that at least one and at most eight IOMMU devices are present.

• Validate that all IOMMUs have the AGAW capability set correctly and that multiple IOM-
MUs specify the same value.

• Validate that all IOMMUs have correct register offset capabilities.

• Check that the hardware contains a system board device providing the expected configura-
tion.

30

6.7 Kernel
The following kernel-specific checks are performed on the policy.

• Validate that all CPU-local data section virtual addresses are equal.

• Validate that all CPU-local BSS section virtual addresses are equal.

• Validate that all global data section virtual addresses are equal and that the expected number
of mappings exists.

• Validate that all stack virtual addresses are equal.

• Validate that all crash audit mappings exist and that their virtual addresses are equal.

• Validate that all (if any) microcode update virtual addresses are equal.

• Validate that every kernel has a stack and interrupt stack region mapped and both regions
are guarded by unmapped pages below and above.

• Validate that all IOMMU memory-mapped IO regions are consecutive.

• Validate that each active CPU has a memory section.

• Validate that no virtual memory regions of the kernel overlap.

• Validate that the system board is referenced in the kernel logical devices section and that it
provides a logical reset port.

• Validate that the debug console device and its resources matches the kernel diagnostics device
specified in the platform section.

6.8 Memory
The following checks are performed to verify that the memory is correctly configured in the system
policy.

• Validate that a VMXON region exists for every specified kernel.

• Validate size of VMXON regions.

• Validate that VMXON regions are in low-mem.

• Validate that all VMXON regions are consecutive.

• Validate that a VMCS region exists for each declared subject.

• Validate size of VMCS regions.

• Validate that physical memory region names are unique.

• Validate that physical memory referenced by logical memory exists.

• Validate that all physical memory addresses are page aligned.

• Validate that all virtual memory addresses are page aligned.

• Validate that all memory region sizes are multiples of page size.

• Validate kernel or subject entities encoded in physical memory names (e.g. linux|zp or
kernel_0|vmxon).

• Validate that no physical memory regions overlap.

• Validate that an uncached crash audit region is present.

• Validate that there is either zero or exactly one MCU region present.

31

• Validate that a kernel data region exists for every CPU.

• Validate that a kernel BSS region exists for every CPU.

• Validate that a kernel stack region exists for every CPU.

• Validate that a kernel interrupt stack region exists for every CPU.

• Validate that a kernel PT region exists for every CPU.

• Validate that kernel PT regions are in the first 4G.

• Validate that scheduling info regions are mapped by the kernel running subjects of that
scheduling partition. Also verify that the kernel mapping is at the expected virtual location.

• Validate that a subject state memory region with the expected size exists for every subject.

• Validate that a subject interrupts memory region with the expected size exists for every
subject.

• Validate that memory of type kernel is only mapped by kernel or Tau0.

• Validate that memory of type system is not mapped by any entity.

• Validate that memory of type ’device’ (e.g. device_rmrr) is only mapped by device domains.

• Validate that subject state memory regions are mapped by the kernel running that subject.
Also verify that the kernel mapping is at the expected virtual location.

• Validate that subject interrupts memory regions are mapped by the kernel running that
subject. Also verify that the kernel mapping is at the expected virtual location.

• Validate that subject MSR store memory regions are mapped by the kernel running that
subject. Also verify that the kernel mapping is at the expected virtual location.

• Validate that subject timed event memory regions are mapped by the kernel running that
subject. Also verify that the kernel mapping is at the expected virtual location.

• Validate that subject VMCS regions are mapped by the kernel running that subject. Also
verify that the kernel mapping is at the expected virtual location.

• Validate that subject FPU state regions are mapped by the kernel running that subject. Also
verify that the kernel mapping is at the expected virtual location.

• Validate that a subject FPU state memory region with the expected size exists for every
subject.

• Validate that a subject timed event memory region with the expected size exists for every
subject.

• Validate that a subject I/O Bitmap region with the expected size exists for every subject.

• Validate that a subject MSR Bitmap region with the expected size exists for every subject.

• Validate that a subject MSR store memory region exists for each subject that accesses MSR
registers not managed by VMCS.

• Validate that a subject pagetable memory region exists for each subject.

• Validate that a scheduling info memory region exists for each scheduling partition.

• Validate that subjects map the scheduling info region of their associated scheduling partition.

• Validate that subject state, timed event and pending interrupts memory regions are only
mapped writable by subjects in the same scheduling group or by siblings.

• Validate size of VT-d root table region.

• Validate size of VT-d context table region.

• Validate that a VT-d root table region exists if domains are present.

• Validate that a VT-d interrupt remapping table region exists.

32

6.9 Model Specific Registers (MSR)
The following checks are performed to verify Model Specific Register (MSR) specifications in the
system policy.

• Validate that all MSR start addresses are smaller than end addresses.

• Validate that subject MSRs are in the allowed list:

– IA32_SYSENTER_CS/ESP/EIP

– IA32_DEBUGCTL

– IA32_EFER/STAR/LSTAR/CSTAR/FMASK

– IA32_FS_BASE/GS_BASE/KERNEL_GS_BASE

– MSR_PLATFORM_INFO

– IA32_THERM_STATUS

– IA32_TEMPERATURE_TARGET

– IA32_PACKAGE_THERM_STATUS

– MSR_RAPL_POWER_UNIT

– MSR_PKG_POWER_LIMIT

– MSR_PKG_ENERGY_STATUS

– MSR_DRAM_ENERGY_STATUS

– MSR_PP1_ENERGY_STATUS

– MSR_CONFIG_TDP_CONTROL

– IA32_PM_ENABLE

– IA32_HWP_CAPABILITIES

– IA32_HWP_REQUEST

6.10 Platform
The following checks are performed to verify the correctness of the platform configuration in the
system policy.

• Validate that physical devices referenced by device aliases exist.

• Validate that physical device resources referenced by device aliases exist.

• Validate that physical devices referenced by device classes exist.

• Validate that subject devices that reference an alias only contain resources provided by the
device alias.

• Validate that the physical device and resources referenced by the kernel diagnostics device
exists.

• Validate that the kernel diagnostics device resources match the requirements of the specified
diagnostics type.

6.11 Scheduling
The following checks are performed to verify the correctness of the scheduling configuration in the
system policy.

• Validate that scheduling partition IDs are unique.

• Validate that scheduling group IDs are unique.

• Validate that each major frame specifies the same number of CPUs.

33

• Validate that scheduling partitions are scheduled in at least one minor frame and that all
minor frame references are on the same logical CPU.

• Validate subject references.

• Validate that subjects are scheduled on the correct logical CPU.

• Validate that subjects are part of exactly one scheduling group.

• Validate that all subjects of a scheduling group are runnable.

• Validate tick counts in major frame.

• Validate that barrier IDs do not exceed barrier count and are unique.

• Validate that barrier sizes do not exceed the number of logical CPUs.

• Validate that the barrier sizes and count of a major frame corresponds to the minor frame
synchronization points.

• Validate that minor frame barrier references are valid.

• Validate partition references in minor frames.

6.12 Subjects
The following checks are performed to verify the correctness of the subject configuration in the
system policy.

• Validate subject name uniqueness.

• Validate subject CPU ID.

• Validate uniqueness of global subject IDs.

• Validate per-CPU uniqueness of local subject IDs.

• Validate memory types of memory mappings (ie. allow access by subjects).

• Validate that no subject references an IOMMU device.

• Validate that all subjects are runnable, i.e. referenced in a scheduling group.

• Validate that subject scheduling group IDs match values as determined by the scheduling
plan and handover events.

• Validate that logical names of subject memory regions are unique.

• Validate that logical names of subject devices are unique.

• Validate that IRQ vector numbers of PCI device references with MSI enabled are consecutive.

• Validate that logical names of subject unmask IRQ events conform to the naming scheme
(unmask_irq_$IRQNR) and that the unmask number matches the physical IRQ.

• Validate that no virtual memory regions of a subject overlap.

• Validate that multiple initramfs regions are consecutive.

• Validate that no subject has write access to the crash audit region.

• Validate that subject device mmconf mappings are correct.

• Validate that the VMX controls conform to the checks specified in Intel SDM Vol. 3C, "26.2.1
Checks on VMX Controls".

• Validate that the Pin-Based VM-Execution controls meet the requirements for the execution
of Muen.

34

• Validate that the Processor-Based VM-Execution Controls meet the requirements for the
execution of Muen.

• Validate that the secondary Processor-Based VM-Execution Controls meet the requirements
for the execution of Muen.

• Validate that the VM-Exit Controls meet the requirements for the execution of Muen.

• Validate that the VM-Entry Controls meet the requirements for the execution of Muen.

• Validate that the VMX CR0 guest/host masks meet the requirements for the execution of
Muen.

• Validate that the VMX CR4 guest/host masks meet the requirements for the execution of
Muen.

• Validate that the VMX Exception bitmap meet the requirements for the execution of Muen.

35

Chapter 7

Policy Structure

7.1 Policy Schema Documentation
7.1.1 systemType
A Muen system policy specifies all hardware resources such as physical memory, devices, CPU
time, etc and how these resources are accessed by the separation kernel, the subjects and devices.

The system section is the top-level element in the Muen system policy. It contains various
sub-elements which specify all aspects of a concrete system.

This is the source format of the Muen system policy. It allows for abstractions, such as channels,
which are broken down into their constituent parts by the toolchain in format A and B accordingly.

See line 3 and following in listing 8.1 on page 105 for an annotated system policy example.

36

Structure

scheduling1. . .1
schedulingType

subjects1. . .1
subjectsType

components0. . .1
componentsType

channels0. . .1
channelsType

events1. . .1
eventsType

deviceDomains0. . .1
deviceDomainsType

memory1. . .1
memRegionsType

platform0. . .1
platformType

hardware1. . .1
hardwareType

config1. . .1
configType

7.1.2 configType
The purpose of a config section is to specify configuration values which parameterize a system or
a component. It allows to declare boolean, string and integer values. The following sections in the
system policy provide support for configuration values:

• System

• Platform

• Component

During the build process, configuration values provided by the platform are merged into
the global system configuration. Component configuration values allow the parameterization of
component-local functionality.

Besides component parameterization, configuration options can be used in if conditionals, as
shown in the following example.

1 <if variable="xhcidbg_enabled" value="true">
...

3 </if>

37

If the type of the referenced variable is ’string’ the comparison is case-sensitive. A second use
case is XML attribute value expansion as follows:

1 <channel name="debuglog" size="$logchannel_size"/>

The size attribute value is not specified directly, but parameterized via an integer configura-
tion option.

See line 17 in listing 8.1 for an example config section.

Structure

string0. . .*
stringConfigValueType

integer0. . .*
integerConfigValueType

boolean0. . .*
booleanConfigValueType

7.1.3 booleanConfigValueType
Configuration option for values in boolean format.

Attributes

Name Type Use

name nameType optional
Name of the configuration option.

value booleanType optional
Value of the configuration option.

7.1.4 nameType
Base: xs:string

The nameType is used to give (unique) names to elements.

Restrictions

minimal length = 1, maximal length = 63

7.1.5 booleanType
Base: xs:string

Boolean type.

Restrictions

values:

• true

• false

38

7.1.6 integerConfigValueType
Configuration option for values in integer format.

Attributes

Name Type Use

name nameType optional
Name of the configuration option.

value xs:integer optional
Value of the configuration option.

7.1.7 stringConfigValueType
Configuration option for values in string format.

Attributes

Name Type Use

name nameType optional
Name of the configuration option.

value xs:string optional
Value of the configuration option.

7.1.8 hardwareType
Systems running the Muen SK perform static resource allocation at integration time. This means
that all available hardware resources of a target machine must be defined in the system policy in
order for these resources to be allocated to subjects.

The hardware element is the top-level element of the hardware specification in the system
policy. Information provided by a hardware description includes the amount of available physical
memory blocks including reserved memory regions (RMRR), the number of physical CPU cores
and hardware device resources.

The Muen toolchain provides a handy tool to automate the cumbersome process of gathering
hardware resource data from a running Linux system: mugenhwcfg1.

See line 81 in listing 8.1 for an example hardware section.

Structure

devices0. . .1
devicesType

memory0. . .1
physicalMemoryType

processor0. . .1
processorType

7.1.9 processorType
The processor element specifies the number of CPU cores, the processor speed in kHz and the
Intel VMX preemption timer rate.

Since Intel CPUs can have arbitrary APIC identifiers, the APIC IDs of all physical CPUs are
enumerated here. The APIC ID is required for interrupt and IPI routing.

1https://git.codelabs.ch/?p=muen/mugenhwcfg.git

39

The processor element also lists register values for all CPUID leaves of the hardware target,
and some MSR values of interest.

See line 100 in listing 8.1 for an example processor element. The cpu elements must fulfill the
following constraints to be valid:

• A node exists for every physical core of the system

• The optional cpuId attribute of all elements must be consecutive

• If specified, a node with cpuId value 0 must exist

• A node with apicId value 0 must exist and, if specified, it must have a cpuId value within
the active CPU range, i.e. the BSP is part of the system scheduling plan

• All apicId attributes must have even numbers

Attributes

Name Type Use

cpuCores xs:positiveInteger required
Number of available CPU cores. Note that this value designates physical,
hardware cores, not Hyper-Threading (HT) threads. HT is disabled on Muen.

speed xs:positiveInteger required
Tick rate of CPU cores in kHz.

vmxTimerRate vmxTimerRateType required
The VMX-premption timer counts down at a rate proportional to that of the
timestamp counter (TSC). This value specifies this proportion, see Intel SDM Vol.
3C, "25.5.1 VMX-Preemption Timer" for more details.

Structure

msr0. . .*
msrValueType

cpuid0. . .*
cpuIDValueType

cpu1. . .*
cpuCoreType

7.1.10 cpuCoreType
Specification of one physical CPU core.

Attributes

Name Type Use

apicId xs:unsignedByte required
CPU local APIC ID, see Intel SDM Vol. 3A, "10.4.6 Local APIC ID".

cpuId xs:unsignedByte optional
Unique CPU ID.

40

7.1.11 cpuIDValueType
Register values for a CPUID leaf, see Intel SDM Vol. 2A, "3.2 Instructions (A-L)", CPUID.

Attributes

Name Type Use

leaf word32Type required
CPUID leaf.

subleaf byteType required
CPUID subleaf.

eax word32Type required
EAX register value of this leaf.

ebx word32Type required
EBX register value of this leaf.

ecx word32Type required
ECX register value of this leaf.

edx word32Type required
EDX register value of this leaf.

7.1.12 word32Type
Base: word64Type < xs:string

32-bit machine word.

Restrictions

value ≤ 13

7.1.13 byteType
Base: xs:string

Machine octet (8-bits).

Restrictions

Pattern = 16#[0-9a-fA-F]2#

7.1.14 msrValueType
Register value of an MSR of interest.

Attributes

Name Type Use

address word32Type required
MSR address.

name xs:string required
Name of MSR.

regval word64Type required
Register value.

41

7.1.15 word64Type
Base: xs:string

64-bit machine word.

Restrictions

Pattern = 16#[0-9a-fA-F]4(_([0-9a-fA-F]4))0,3#

7.1.16 vmxTimerRateType
Base: xs:nonNegativeInteger

VMX-preemption timer count down rate.

Restrictions

value ≤31

7.1.17 physicalMemoryType
The hardware memory element specifies the available physical memory blocks including reserved
memory regions (RMRR, see Intel VT-d Specification, "8.4 Reserved Memory Region Reporting
Structure").

Only memory blocks reported by the BIOS E820 map as non-reserved must be configured in
this section, e.g. usable or ACPI NVS, ACPI data.

See line 165 in listing 8.1 for an example memory element.

Structure

reservedMemory0. . .*
reservedMemRegionType

memoryBlock0. . .*
memoryBlockType

7.1.18 memoryBlockType
Base: memoryBlockBaseType

Consecutive block of memory provided by the hardware.

Attributes

Name Type Use

name nameType required
Name of memory block.

physicalAddress word64Type required
Start address of memory block.

size memorySizeType required
Size of memory block.

allocatable booleanType optional
Indication to a physical memory allocator that this block allows allocation
of physical memory regions. If this attribute is false, an allocator should
only place fixed memory regions in this range, i.e. memory regions with the
physicalAddress attribute set by the integrator.
Note that host physical memory below 1 MiB is considered special, the attribute
must be set to false. Only unmapped memory of type system is allowed in that
special memory block.

42

7.1.19 memorySizeType
Base: word64Type < xs:string

The memorySizeType is used to declare memory sizes.

Restrictions

no restriction

7.1.20 reservedMemRegionType
Base: memoryBlockBaseType

A reservedMemory element is a special memory block declaration. It specifies a reserved
memory region as outlined in the Intel VT-d Specification, "8.4 Reserved Memory Region Reporting
Structure" (RMRR).

Reserved memory regions are BIOS allocated memory ranges that may be DMA targets for
certain legacy device use-cases. Devices that require access to such a region refer to it by name.

See line 181 in listing 8.1 for an example RMRR element.

Attributes

Name Type Use

name nameType required
Name of memory block.

physicalAddress word64Type required
Start address of memory block.

size memorySizeType required
Size of memory block.

7.1.21 devicesType
The devices element enumerates all devices provided by the hardware platform. Different kinds
of devices, be it PCI(e) or legacy (non-PCI), can be declared in this section.

See line 194 in listing 8.1 for an example devices enumeration.

Attributes

Name Type Use

pciConfigAddress word64Type optional
Physical base address of the PCI configuration space region.

pciConfigSize word64Type optional
Size of the PCI configuration space region.

43

Structure

device0. . .*
deviceType

7.1.22 deviceType
Base: deviceBaseType

The device element specifies a physical device and its associated resources. There are three
main device resource types:

• IRQ

• I/O port range

• Memory

The presence of a PCI element indicates whether the device is a PCI or a legacy device.
Capabilities can be used to convey additional device-specific information. The base address of

the memory mapped PCI config space is defined by the pciConfigAddress attribute.
See line 200 in listing 8.1 for an example device declaration.

Attributes

Name Type Use

name nameType required
Unique device name.

Structure

reservedMemory0. . .*
namedRefType

capabilities0. . .1
capabilitiesType

ioPort0. . .*
ioPortType

memory0. . .*
deviceMemoryType

irq0. . .*
irqType

pci0. . .1
pciType

description0. . .1
deviceDescriptionType

44

7.1.23 namedRefType
The namedRefType is used to reference a named element in the policy.

Attributes

Name Type Use

ref nameType required
Name of referenced element.

7.1.24 deviceDescriptionType
Base: xs:string

Device description (free text).

Restrictions

no restriction

7.1.25 pciType
Base: pciAddressType

PCI(e) devices are specified using the pci element.
The element provides the following information:

• PCI device address (BDF)

• Identification

• IOMMU group information

The location of the PCI device in the PCI topology is specified by the Bus, Device, Function
triplet (BDF).

See line 334 in listing 8.1 for an example PCI element declaration.

Attributes

Name Type Use

bus byteType required
PCI Bus number.

device pciDeviceNumberType required
PCI Device number.

function pciFunctionNumberType required
PCI Function number.

45

Structure

iommuGroup0. . .1
iommuGroupType

identification1. . .1
deviceIdentificationType

7.1.26 deviceIdentificationType
The identification element specifies the PCI device class, device, revision and vendor ID.

For more information, consult the PCI Local Bus Specification, "Configuration Space Decod-
ing".

See line 349 in listing 8.1 for an example PCI identification.

Attributes

Name Type Use

classcode word16Type required
PCI device class.

vendorId word16Type required
PCI vendor ID.

deviceId word16Type required
PCI device ID.

revisionId byteType required
PCI device revision ID.

7.1.27 word16Type
Base: word64Type < xs:string

16-bit machine word.

Restrictions

length = 8

7.1.28 iommuGroupType
Devices in the same IOMMU group cannot be properly isolated from each other because they may
perform inter-device transactions directly, without going through the IOMMU.

Note that this information is currently not used by the toolchain. It is a hint to the system
integrator whether two devices can be properly isolated from each other or not.

See line 358 in listing 8.1 for an example IOMMU group declaration.

Attributes

Name Type Use

id xs:nonNegativeInteger required
IOMMU group number.

46

7.1.29 pciDeviceNumberType
Base: xs:string

PCI Device number.

Restrictions

Pattern = 16#[0|1][0-9a-fA-F]#

7.1.30 pciFunctionNumberType
Base: xs:nonNegativeInteger

PCI Function number.

Restrictions

value ≤7

7.1.31 irqType
The irq element specifies a device IRQ resource.

The specified IRQ number is one of:

• Legacy IRQ (ISA)
Range 0 .. 15.

• PCI INTx IRQ, line-signaled
Range 0 .. Max_LSI_IRQ, whereas Max_LSI_IRQ is defined by the hardware I/O APIC
configuration gsi_base + max_redirection_entry of I/O APIC with max(gsi_base).
gsi_base and max_redirection_entry are I/O APIC device capabilities.

msi sub-elements are present if the device supports MSI interrupts. The element count desig-
nates the number of supported MSI interrupts.

See line 237 in listing 8.1 for an example device IRQ declaration.

Attributes

Name Type Use

name nameType required
Name of device IRQ resource.

number irqNumberType required
Legacy or PCI line-based IRQ.

47

Structure

msi0. . .*
msiIrqType

7.1.32 msiIrqType
There are two different interrupt types which devices may trigger: legacy/PCI LSI IRQs and
Message Signaled Interrupts (MSI). The legacy/PCI LSI IRQ is specified by the number attribute
of the irq element. For MSIs, each msi element defines an MSI IRQ that may be assigned to
subjects. Each MSI may be individually routed.

See line 400 in listing 8.1 for example device MSI elements.

Attributes

Name Type Use

name nameType required
Name of MSI resource.

7.1.33 irqNumberType
Base: xs:nonNegativeInteger

IRQ number. High IRQs are reserved for kernel usage.

Restrictions

value ≤220

7.1.34 deviceMemoryType
Base: memoryBlockBaseType

A device memory element specifies a memory region which is used to interact with the associated
device.

For PCI devices, the specified region is programmed into one device BAR (Base Address Regis-
ter) by system firmware. See the PCI Local Bus Specification or the PCI Express Base Specification
for more details.

See line 218 in listing 8.1 for an example device memory declaration.

Attributes

Name Type Use

name nameType required
Name of memory block.

physicalAddress word64Type required
Start address of memory block.

size memorySizeType required
Size of memory block.

caching cachingType required
Device memory caching type.

48

7.1.35 cachingType
Base: xs:string

Memory caching type, see Intel SDM Vol. 3A, "11.3 Methods of Caching Available".

• Strong Uncacheable (UC)

• Write Combining (WC)

• Write Through (WT)

• Write Back (WB)

• Write Protected (WP)

Restrictions

Pattern = UC|WC|WT|WB|WP

7.1.36 ioPortType
The ioPort element specifies a device I/O port resource from start octet up to and including
end octet. A single byte-accessed port is designated by specifying the same start and end values.

See line 228 in listing 8.1 for an example device IRQ declaration.

Attributes

Name Type Use

name nameType required
Name of I/O port resource.

start word16Type required
Start port of this resource.

end word16Type required
End port of this resource.

7.1.37 capabilitiesType
List of device capabilities.

Structure

capability1. . .*
capabilityType

7.1.38 capabilityType
Base: xs:string

A device capability is used to assign additional information to a device. Such a capability
might be used by the Muen toolchain to perform certain actions on devices with a given capability
(e.g. ioapic). A system integrator may use this facility to define its own capabilities used by
custom tools.

A capability element can have an optional value.
See line 290 in listing 8.1 for example capabilities.

Attributes

49

Name Type Use

name xs:string required
Capability name (free text).

7.1.39 platformType
To enable a uniform view of the hardware resources across different physical machines from the
system integrators perspective, the platform description layer is interposed between the hardware
resource description and the rest of the system policy. This allows to build a Muen system for
different physical target machines using the same system policy.

See line 556 in listing 8.1 for an example platform section.

Structure

kernelDiagnostics1. . .1
kernelDiagType

mappings0. . .1
mappingsType

config0. . .1
configType

7.1.40 mappingsType
Platform device alias and class mappings section. Used to assign a stable name to a hardware
device or to group (multiple) devices under a given name.

See line 565 in listing 8.1 for an example platform mappings section.

Structure

classes0. . .1
devClassesType

aliases0. . .1
aliasesType

7.1.41 aliasesType
Aliases are a renaming mechanism for physical hardware devices and their resources. By using alias
names in the system policy references to concrete hardware resources can be avoided. Additionally,
aliases may be used to define a device which only contains a subset of the resources of the physical
device. This can be achieved by only renaming the resources that the device alias should export.

See line 571 in listing 8.1 for an example aliases section.
Aliases are resolved in the following system policy sections.

• /system/subjects/subject/component/map

• /system/subjects/subject/devices/device

• /system/deviceDomains/domain/devices/device

Structure

alias0. . .*
namePhysRefType

50

7.1.42 namePhysRefType
Named resource reference. Used for device aliases and device alias resource references.

Attributes

Name Type Use

name nameType required
Alias name.

physical nameType required
Reference to physical device or device resource.

Structure

resource0. . .*
namePhysRefType

7.1.43 devClassesType
The classes element specifies a list of device classes.

Structure

class0. . .*
devClassType

7.1.44 devClassType
Device classes enable the grouping of devices and allow referencing all devices by a single name.
This simplifies the process of assigning multiple devices to a subject.

Note: A device class may contain an arbitrary number of devices, including zero.
See line 603 in listing 8.1 for a device class example.

Attributes

Name Type Use

name nameType required
Device class name.

Structure

device0. . .*
physRefType

7.1.45 physRefType
Reference to physical device or physical device resource.

Attributes

Name Type Use

physical nameType required
Physical resource name (device or resource sub-element).

51

7.1.46 kernelDiagType
The debug build Muen SK can be instructed to output debugging information during runtime.
The platform diagnostics device specifies which device the kernel is to use for this purpose.

The presence of this device and the necessary resources are checked by the validator tool.
See line 623 in listing 8.1 for an example platform diagnostic device configuration.

Attributes

Name Type Use

type kernelDiagKindType required
Specifies the type of diagnostics device to use.

Structure

device0. . .1
kernelDiagDeviceType

7.1.47 kernelDiagDeviceType
Reference to physical device for uart and vga diagnostic device type.

If an UART device is referenced via type uart, an I/O port resource must be provided. If a
VGA device is referenced via type vga, a memory resource must be provided (both checked via
validator).

Attributes

Name Type Use

physical nameType required
Name of physical device to use for kernel diagnostics output.

Structure

ioPort0. . .*
physRefType

memory0. . .*
physRefType

7.1.48 kernelDiagKindType
Base: xs:string

Type of diagnostics device. While none disables kernel diagnostics output, uart specifies an
Universal Asynchronous Receiver-Transmitter serial device. hsuart is a High-Speed UART with
memory mapped I/O.

vga outputs the kernel diagnostics information to a VGA console, which is mainly useful for
initial bring-up of a new hardware platform with no UART device.

52

Restrictions

values:

• none

• uart

• hsuart

• vga

7.1.49 memRegionsType
This section declares all physical memory regions (RAM) and thus the physical memory layout of
the system. Regions declared in this section can be assigned to subjects and device domains.

Memory regions are defined by the following attributes:

• Name

• Caching type

• Size

• Physical address*

• Alignment*

• Memory type*

Attributes with an asterisk are optional. While alignment and memory type are set to a
default value if not specified, the physical address is filled in by the allocator tool, which allocates
all memory regions and finalizes the physical memory layout.

Additionally, the content of a region can be declared as backed by a file or filled with a pattern.
Note: The caching type is an attribute of the physical memory region by design to avoid

inconsistent typing, even though the Intel Page Attribute Table (PAT) mechanism allows to set it
for each memory mapping, see Intel SDM Vol. 3A, "11.12.4 Programming the PAT".

See line 637 in listing 8.1 for an example memory region section.

Structure

memory1. . .*
memoryType

7.1.50 memoryType
Base: physicalMemBaseType < memoryBaseType

The memoryType specifies a physical memory region by name, size and caching.
If no explicit physical address is specified for the region, the mucfgalloc tool will allocate a

free one in usable memory, honoring the optional alignment attribute.
If no explicit alignment attribute is specified, it is set to 16#1000# by the expander. If no

explicit type attribute is specified, it is set to subject by the expander.

Attributes

Name Type Use

size memorySizeType required
Size of region. Must be a multiple of page size (4K). Enforced by validator.

name nameType required
Name of region.

caching cachingType required
Caching type to use for memory region.

53

(continuation)
Name Type Use

type srcMemoryKindType optional
Optional subject memory type.

alignment alignmentType optional
Alignment the physical address of the memory region must honor (checked by the
validator tool).

physicalAddress word64Type optional
Physical address of memory region.

Structure

choice0. . .1

hashRef1. . .1
hashRefType

hash1. . .1
hash256Type

choice0. . .1

fill1. . .1
fillContentType

file1. . .1
fileContentType

7.1.51 srcMemoryKindType
Base: memoryKindType < xs:string

Memory types allowed in policy format source physical memory section. For information about
subject memory types, see 7.1.120.

Besides subject types, the following memory types are allowed:

• kernel_microcode
Memory region designating a CPU microcode update, e.g. added by the mucfgucode tool
(5.5.5).

Restrictions

values:

• kernel_microcode

• subject

• subject_info

• subject_state

• subject_binary

• subject_channel

• subject_crash_audit

• subject_initrd

• subject_bios

• subject_acpi_rsdp

• subject_acpi_xsdt

54

• subject_acpi_fadt

• subject_acpi_dsdt

• subject_zeropage

• subject_solo5_boot_info

• subject_device

• subject_timed_event

7.1.52 alignmentType
Base: word64Type < xs:string

Memory alignment constraint for memory region. Taken into account by the allocator tool and
checked by the validator.

Restrictions

values:

• 16#1000#

• 16#0020_0000#

• 16#4000_0000#

7.1.53 fileContentType
The file child element designates a file-backed memory region.

The filename attribute specifies the name of the file to use as content for the physical memory
region, the offset attribute is none by default but can be customized to include a partial file.

See line 714 in listing 8.1 for a file-backed memory region example. The following checks on
the file content are performed.

• If offset is none, the size of the file must be less than the memory region size.

• If offset is not none, the offset must be less than the file size. The file size is not checked
but the memory region size is used as upper bound.

Attributes

Name Type Use

filename xs:string required
Filename of file to (partially) include. Note that the actual file processed by
the toolchain also depends on the working directory passed as command line option
to the specific tool.

offset optionalOffsetType required
Read file offset in bytes.

55

7.1.54 optionalOffsetType
Optional file offset value in bytes.

Restrictions

Union of

• word64Type

• noneType

7.1.55 fillContentType
The fill element designates a memory region which is initialized with the given pattern.

See line 671 in listing 8.1 for a file-backed memory region example.

Attributes

Name Type Use

pattern byteType required
Fill pattern (hex).

7.1.56 hash256Type
The hash child element of a memory region designates a 256-bit hash over the memory content.

The Mucfgmemhashes tool in the Muen toolchain generates such a hash-sum for every content-
backed memory region in a given policy.

Attributes

Name Type Use

value optionalHashType required
256-Bits message digest over file-backed memory content.

7.1.57 optionalHashType
Allows the specification of a hash digest or none.

Restrictions

Union of

• hash256DigestType

• noneType

7.1.58 hashRefType
The optional hashRef child element of a physical memory region instructs the Mucfgmemhashes
tool to copy the hash element of the referenced memory region after message digest generation.

From an abstract point of view, the hashRef element is a way to link multiple memory regions
by declaring that the hash of the content is the same. This concept is e.g. used by the subject
loader mechanism to restore writable memory regions to their initial state.

Attributes

56

Name Type Use

memory nameType required
Name of referenced physical memory region.

7.1.59 deviceDomainsType
The physical memory accessible by PCI devices is specified by so called device domains. Such
domains define memory mappings of physical memory regions for one or multiple devices. Device
references select a subset of hardware devices provided by the hardware/platform. Devices may
be referenced by device name, alias or device class.

Device references can optionally set the mapReservedMemory attribute so RMRR regions
referenced by the device are also mapped into the device domain.

Device domains are isolated from each other by the use of Intel VT-d.
See line 734 in listing 8.1 for a device domain example.

Structure

domain0. . .255
deviceDomainType

7.1.60 deviceDomainType
A device domain allows referenced devices access to the specified memory regions. It also provides
handling for reserved memory region reporting (RMRR), see Intel VT-d Specification, "8.4 Reserved
Memory Region Reporting Structure".

Attributes

Name Type Use

name nameType required
Name of the device domain.

Structure

devices1. . .1
devsRefType

memory0. . .1
devdomMemoryRefsType

7.1.61 devdomMemoryRefsType
List of physical memory region references and optional map subject memory elements.

Structure

mapSubjectMemory0. . .*
mapSubjectMemoryType

memory0. . .*
memRefType

57

7.1.62 memRefType
A memory element maps a physical memory region into the address space of a device domain or
subject entity. The region will be accessible to the entity at the specified virtualAdress with
permissions defined by the executable and writable attributes.

See line 759 in listing 8.1 for an example of such a mapping.

Attributes

Name Type Use

virtualAddress word64Type required
Address in entity address space where the physical memory region is mapped.

physical nameType required
Name of referenced physical memory region.

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

7.1.63 mapSubjectMemoryType
This element instructs the expander to map memory regions of the specified subject into the device
domain. Only regions which are writable and of type Subject and Subject_Initrd are mapped.

Attributes

Name Type Use

subject nameType required
Name of the subject.

virtualAddressOffset word64Type optional
Optional offset value. If this attribute it specified, the given value will be
added to the virtualAddress value of a mapped memory region.

7.1.64 devsRefType
Device domain device references.

Structure

device0. . .*
devRefType

7.1.65 devRefType
Device domain device reference. Referenced devices gain access to memory regions of device
domain.

Attributes

Name Type Use

logical nameType required
Logical name in this context.

physical nameType required
Physical device or device alias to include in given device domain.

58

(continuation)
Name Type Use

mapReservedMemory booleanType optional
Whether to automatically map RMRR memory associated with device.

7.1.66 eventsType
Events are an activity caused by a subject (source) that impacts a second subject (target) or is
directed at the kernel. Events are declared globally and have a unique name to be unambiguous.
An event must have a single source and one target.

Subjects can use events to either deliver an interrupt, hand over execution to or reset the state
of a target subject. The first kind of event provides a basic notification mechanism and enables
the implementation of event-driven services. The second type facilitates suspension of execution
of the source subject and switching to the target. Such a construct is used to pass the thread of
execution on to a different subject, e.g. invocation of a debugger subject if an error occurs in the
source subject. The third kind is used to facilitate the restart of subjects.

An event can also have the same source and target, which is called self event. Such events are
useful to implement para-virtualized timers in VM subjects for example.

Kernel events are special in that they are targeted at the kernel. The currently supported
events are system reboot and shutdown.

For documentation about linking physical events to source and target subjects, see section
7.1.133.

See line 775 in listing 8.1 for an example events section.

Structure

event0. . .*
eventType

7.1.67 eventType
The eventType specifies an event by name and mode.

The following event modes are currently supported:

• asap
The asap event is an abstraction to state that the event should be delivered as soon as
possible, depending on the CPU of the target subject. If the target runs on another CPU
core, this mode is expanded to mode ipi, which is only available in policy formats A and B,
instructing the kernel to preempt the kernel running the target subject and inject the event
immediately. If the target subject runs on the same core as the source subject, the mode is
expanded to mode async.

• async
Async events trigger no preemption at the target subject. The event is marked as pending
in the target subject’s pending event table and inserted on the next VM exit/entry cycle of
the target subject.

• self
An event can also have the same source and target, which is called a self event. Such events
are useful to implement para-virtualized timers in VM subjects for example. A subject sends
itself a delayed event, using the timed event mechanism. Note that a self event must always
have a target action assigned, which is checked by the validator.

• switch
The switch mode facilitates suspension of execution of the source subject and switching to the
target. This can only happen between subjects running on the same core. Such a construct
is used to pass the thread of execution on to a different subject, e.g. invocation of a debugger
subject if an error occurs in the source subject. It is called handover or handover event.

59

• kernel
These kinds of events are directed at the kernel an thus only specify a source since the target
is the kernel. They are used to enable specific subjects to unmask level-triggered IRQs and
trigger a system reboot, poweroff or explicit panic (crash audit slot allocation and reboot).

See line 799 in listing 8.1 for an example global event declaration.

Attributes

Name Type Use

name nameType required
Name of the event.

mode eventModeType required
Mode of the event.

7.1.68 eventModeType
Base: xs:string

Event mode.
See 7.1.67 for details about the supported event modes.

Restrictions

values:
• asap

• async

• self

• switch

• kernel

7.1.69 channelsType
Inter-subject communication is specified by so called channels. These channels represent directed
information flows since they have a single writer and possibly multiple readers. Optionally a
channel can have an associated notification event (doorbell interrupt).

Channels are declared globally and have an unique name to be unambiguous.
Note that channels are a policy source format abstraction. The toolchain resolves this concept

into memory regions and events as well as the appropriate subject mappings.
For documentation about linking physical channels to subjects see section 7.1.141. For docu-

mentation about declaring requested channels in components see section 7.1.102. For information
how to map a physical channel with a logical component channel at subject level, see section
7.1.150.

See line 865 in listing 8.1 for an example channel section.

Structure

channel0. . .*
channelType

7.1.70 channelType
The channel element declares a physical channel.

Besides the name and size of the channel, the optional hasEvent attribute can be set
to declare that the given channel requests an associated event. The expander tool will then
automatically create a global event of the requested event type.

See line 879 in listing 8.1 for an example channel declaration.

60

Attributes

Name Type Use

name nameType required
Channel name.

size memorySizeType required
Size of the channel in bytes. Must be a multiple of page size (4K). Enforced by
validator.

hasEvent eventModeType optional
Associated event type (if any).

7.1.71 componentsType
The components element holds a list of components and component libraries.

Note that components are a policy source format abstraction. The toolchain resolves this
concept into subjects by adding the appropriate memory regions, events and devices.

See line 914 in listing 8.1 for an example components section.

Structure

component1. . .*
componentType

library0. . .*
libraryType

7.1.72 libraryType
A component library is a specialized component specification which is used to share common
resources required for library code to operate. Component libraries can be included by multiple
components in order to share functionality. An example is a logging service provided by a dedicated
component, whereas the logging client is provided as a library with a shared memory channel for
the actual log messages.

A component specification declares library dependencies to request the library resources from
the system through the inclusion of the library specification in the depends section. This way
components inherit the resources of libraries.

On the source code level, a library is included by mechanisms provided by the respective
programming language. Note that the component library code is not shared between components
but lives in the isolated execution environment of a subject instantiating the component (i.e.
statically linked libraries).

Libraries can request the same resources as ordinary components. A subject instantiating the
component must also map the resources requested by libraries the component depends on.

See line 923 in listing 8.1 for example library specifications.

Attributes

Name Type Use

name nameType required
Component/library name.

61

Structure

provides0. . .1
providedResourcesType

requires0. . .1
requiredResourcesType

depends0. . .1
libraryDepsType

config0. . .1
configType

7.1.73 libraryDepsType
Components and libraries are allowed to declare dependencies to other libraries. All resources
required by the included library are merged with the ones specified by the component or library.
Libraries can depend on other libraries.

A subject realizing this component must correctly map all component and library resource
requirements to physical resources in order to fulfill the expectations.

See line 1067 in listing 8.1 for an example dependency section.

Structure

library1. . .*
namedRefType

7.1.74 requiredResourcesType
Declaration of resources a component or library requires to operate.

Structure

events0. . .1
logicalEventsType

devices0. . .1
logicalDevicesType

channels0. . .1
logicalChannelsType

memory0. . .1
logicalMemoryType

vcpu0. . .1
vcpuType

62

7.1.75 vcpuType
The vcpu element controls the execution behavior of the virtual CPU (vCPU). A default vCPU
profile is selected by the component profile, but CPU execution settings can be customized both
at component and subject level.

See line 1024 in listing 8.1 for an example on how to customize a vCPU profile.

Structure

registers0. . .1
registersType

msrs0. . .1
msrsType

vmx0. . .1
vmxType

7.1.76 vmxType
Controls Intel VMX vCPU settings.

Structure

masks0. . .1
masksType

controls0. . .1
controlsType

7.1.77 controlsType
Configures the following Intel VMX settings:

• Pin-Based VM-Execution Controls

• Primary Processor-Based VM-Execution Controls

• Secondary Processor-Based VM-Execution Controls

• VM-Entry Controls

• VM-Exit Controls

63

Structure

exit0. . .1
vmExitCtrlType

entry0. . .1
vmEntryCtrlType

proc20. . .1
proc2CtrlType

proc0. . .1
procCtrlType

pin0. . .1
pinCtrlType

7.1.78 pinCtrlType
Configures Intel VMX pin-based VM-execution controls. These controls constitute a 32-bit vector
that governs the handling of asynchronous events (for example: interrupts) while running in VMX
non-root mode.

See Intel SDM Vol. 3C, "24.6.1 Pin-Based VM-Execution Controls" for more details and the
meaning of the different bit-fields.

+ Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

Structure

ProcessPostedInterrupts0. . .1
bitValueType

ActivateVMXTimer0. . .1
bitValueType

VirtualNMIs0. . .1
bitValueType

ExternalInterruptExiting0. . .1
bitValueType

7.1.79 bitValueType
Base: xs:nonNegativeInteger

The value of one bit, either 1 (True) 0 (False).

64

Restrictions

0 ≤ 1

7.1.80 procCtrlType
The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling
of synchronous events, mainly those caused by the execution of specific instructions. These are the
primary processor-based VM-execution controls and the secondary processor-based VM-execution
controls.

The proc element configures the primary processor-based VM-execution controls, see Intel
SDM Vol. 3C, "24.6.2 Processor-Based VM-Execution Controls" for more details and the meaning
of the different bit-fields.

+ Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

65

Structure

Activate2ndaryControls0. . .1
bitValueType

PAUSEExiting0. . .1
bitValueType

MONITORExiting0. . .1
bitValueType

UseMSRBitmaps0. . .1
bitValueType

MonitorTrapFlag0. . .1
bitValueType

UseIOBitmaps0. . .1
bitValueType

UnconditionalIOExiting0. . .1
bitValueType

MOVDRExiting0. . .1
bitValueType

NMIWindowExiting0. . .1
bitValueType

UseTPRShadow0. . .1
bitValueType

CR8StoreExiting0. . .1
bitValueType

CR8LoadExiting0. . .1
bitValueType

CR3StoreExiting0. . .1
bitValueType

CR3LoadExiting0. . .1
bitValueType

RDTSCExiting0. . .1
bitValueType

RDPMCExiting0. . .1
bitValueType

MWAITExiting0. . .1
bitValueType

INVLPGExiting0. . .1
bitValueType

HLTExiting0. . .1
bitValueType

UseTSCOffsetting0. . .1
bitValueType

InterruptWindowExiting0. . .1
bitValueType

66

7.1.81 proc2CtrlType
The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling
of synchronous events, mainly those caused by the execution of specific instructions. These are the
primary processor-based VM-execution controls and the secondary processor-based VM-execution
controls.

The proc2 element configures the secondary processor-based VM-execution controls, see Intel
SDM Vol. 3C, "24.6.2 Processor-Based VM-Execution Controls" for more details and the meaning
of the different bit-fields.

+ Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

67

Structure

EnableVMFunctions0. . .1
bitValueType

EnableINVPCID0. . .1
bitValueType

RDRANDExiting0. . .1
bitValueType

PAUSELoopExiting0. . .1
bitValueType

VirtualInterruptDelivery0. . .1
bitValueType

APICRegisterVirtualization0. . .1
bitValueType

UnrestrictedGuest0. . .1
bitValueType

WBINVDExiting0. . .1
bitValueType

EnableVPID0. . .1
bitValueType

Virtualizex2APICMode0. . .1
bitValueType

EnableRDTSCP0. . .1
bitValueType

DescriptorTableExiting0. . .1
bitValueType

EnableEPT0. . .1
bitValueType

VirtualAPICAccesses0. . .1
bitValueType

7.1.82 vmEntryCtrlType
Configures Intel VMX VM-entry controls. These controls constitute a 32-bit vector that governs
the basic operation of VM entries.

68

See Intel SDM Vol. 3C, "24.8.1 VM-Entry Controls" for more details and the meaning of the
different bit-fields.

+ Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

Structure

LoadIA32EFER0. . .1
bitValueType

LoadIA32PAT0. . .1
bitValueType

LoadIA32PERFGLOBALCTRL0. . .1
bitValueType

DeactiveDualMonitorTreatment0. . .1
bitValueType

EntryToSMM0. . .1
bitValueType

IA32eModeGuest0. . .1
bitValueType

LoadDebugControls0. . .1
bitValueType

7.1.83 vmExitCtrlType
Configures Intel VMX VM-exit controls. These controls constitute a 32-bit vector that governs
the basic operation of VM exits.

See Intel SDM Vol. 3C, "24.7.1 VM-Exit Controls" for more details and the meaning of the
different bit-fields.

+ Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator changing any of these values must
have a thorough understanding of both the runtime behavior of the Muen SK and the
Intel VT-x/VT-d architecture. The mucfgvalidate tool checks that requirements
for safe execution of Muen are met, i.e. invalid settings are detected and a meaningful
error message is presented.

69

Structure

SaveVMXTimerValue0. . .1
bitValueType

LoadIA32EFER0. . .1
bitValueType

SaveIA32EFER0. . .1
bitValueType

LoadIA32PAT0. . .1
bitValueType

SaveIA32PAT0. . .1
bitValueType

AckInterruptOnExit0. . .1
bitValueType

LoadIA32PERFGLOBALCTRL0. . .1
bitValueType

HostAddressspaceSize0. . .1
bitValueType

SaveDebugControls0. . .1
bitValueType

7.1.84 masksType
The masks element configures the Intel VMX CR0/CR4 guest/host masks and the guest/host
exception bitmap.

In general, bits set to 1 in a guest/host mask correspond to bits owned by the host, causing a
VM exit if the associated event occurs.

Reading from host owned bits in CR0/CR4 does not result in a VM exit but the value of the
CR0/CR4 read shadow is returned instead (see Intel SDM Vol. 3C, "24.6.6 Guest/Host Masks and
Read Shadows for CR0 and CR4").

Structure

cr40. . .1
cr4Type

cr00. . .1
cr0Type

exception0. . .1
exceptionType

70

7.1.85 exceptionType
Configures Intel VMX exception bitmap. The exception bitmap is a 32-bit field that contains one
bit for each exception. When an exception occurs, its vector is used to select a bit in this field. If
the bit is 1, the exception causes a VM exit. If the bit is 0, the exception is delivered normally
through the IDT, using the descriptor corresponding to the exceptions vector.

See Intel SDM Vol. 3C, "24.6.3 Exception Bitmap" for more details on the exception bitmap
configuration.

71

Structure

SIMDFloatingPointException0. . .1
bitValueType

AlignmentCheck0. . .1
bitValueType

x87FPUFloatingPointError0. . .1
bitValueType

PageFault0. . .1
bitValueType

GeneralProtection0. . .1
bitValueType

StackSegmentFault0. . .1
bitValueType

SegmentNotPresent0. . .1
bitValueType

InvalidTSS0. . .1
bitValueType

CoprocessorSegmentOverrun0. . .1
bitValueType

DoubleFault0. . .1
bitValueType

DeviceNotAvailable0. . .1
bitValueType

InvalidOpcode0. . .1
bitValueType

BOUNDRangeExceeded0. . .1
bitValueType

Overflow0. . .1
bitValueType

Breakpoint0. . .1
bitValueType

Debug0. . .1
bitValueType

DivideError0. . .1
bitValueType

72

7.1.86 cr0Type
Allows to set initial values of the CR0 control register or bits in the CR0 guest/host ownership
mask.

Structure

Paging0. . .1
bitValueType

AlignmentMask0. . .1
bitValueType

WriteProtect0. . .1
bitValueType

TaskSwitched0. . .1
bitValueType

Emulation0. . .1
bitValueType

MonitorCoprocessor0. . .1
bitValueType

ProtectionEnable0. . .1
bitValueType

7.1.87 cr4Type
Allows to set initial values of the CR4 control register or bits in the CR4 guest/host ownership
mask.

73

Structure

ProtectionKeyEnable0. . .1
bitValueType

SMAPEnable0. . .1
bitValueType

SMEPEnable0. . .1
bitValueType

XSAVEEnable0. . .1
bitValueType

PCIDEnable0. . .1
bitValueType

FSGSBASEEnable0. . .1
bitValueType

SMXEnable0. . .1
bitValueType

UMInstructionPrevention0. . .1
bitValueType

OSSupportSIMDExceptions0. . .1
bitValueType

OSSupportFXSAVE0. . .1
bitValueType

PerfCounterEnable0. . .1
bitValueType

PageGlobalEnable0. . .1
bitValueType

PhysicalAddressExtension0. . .1
bitValueType

PageSizeExtensions0. . .1
bitValueType

DebuggingExtensions0. . .1
bitValueType

TimeStampDisable0. . .1
bitValueType

ProtectedVirtualInts0. . .1
bitValueType

Virtual80860. . .1
bitValueType

74

7.1.88 msrsType
List of model-specific registers (MSRs) a subject is allowed to access. The settings in this section
are translated to the MSR bitmaps of the associated subject (as described by Intel SDM Vol. 3C,
"24.6.9 MSR-Bitmap Address").

Structure

msr0. . .*
msrType

7.1.89 msrType
An msr element allows a subject direct access to the specified model-specific register (MSR).

+ Deviating from the settings provided by the component vCPU profile might result in
unexpected system behavior. A system integrator granting direct access to MSRs must
be aware of the potential side-effects.

Attributes

Name Type Use

start msrAddressType required
MSR start address.

end msrAddressType required
MSR end address.

mode msrModeType required
MSR access permissions.

7.1.90 msrAddressType
Base: xs:string

Start/end address value for MSRs in the low or high range:

• Low : 16#0000_0000# .. 16#0000_1fff#

• High : 16#C000_0000# .. 16#C000_1fff#

See also Intel SDM Vol. 3C, "24.6.9 MSR-Bitmap Address".

Restrictions

Pattern = 16#([cC0]000_)?[01]([0-9a-fA-F]3)#

7.1.91 msrModeType
Base: xs:string

MSR access rights.

Restrictions

values:

• r

• w

• rw

75

7.1.92 registersType
The registers element specifies the initial value of general-purpose (GPR), CR0/CR4, CR0/CR4
read shadow and segment registers.

Structure

segments0. . .1
segmentsType

cr4Shadow0. . .1
cr4ShadowType

cr40. . .1
cr4Type

cr0Shadow0. . .1
cr0ShadowType

cr00. . .1
cr0Type

gpr0. . .1
gprType

7.1.93 gprType
The gpr element specifies the initial values of subject general-purpose registers (GPRs).

76

Structure

r150. . .1
word64Type

r140. . .1
word64Type

r130. . .1
word64Type

r120. . .1
word64Type

r110. . .1
word64Type

r100. . .1
word64Type

r090. . .1
word64Type

r080. . .1
word64Type

rbp0. . .1
word64Type

rsi0. . .1
word64Type

rdi0. . .1
word64Type

rdx0. . .1
word64Type

rcx0. . .1
word64Type

rbx0. . .1
word64Type

rax0. . .1
word64Type

rsp0. . .1
word64Type

rip0. . .1
word64Type

77

7.1.94 cr0ShadowType
Allows to set initial values of the CR0 shadow control register.

See Intel SDM Vol. 3C, "24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4" for
more details on the CR0 shadow.

Structure

Paging0. . .1
bitValueType

CacheDisable0. . .1
bitValueType

NotWritethrough0. . .1
bitValueType

AlignmentMask0. . .1
bitValueType

WriteProtect0. . .1
bitValueType

NumericError0. . .1
bitValueType

ExtensionType0. . .1
bitValueType

TaskSwitched0. . .1
bitValueType

Emulation0. . .1
bitValueType

MonitorCoprocessor0. . .1
bitValueType

ProtectionEnable0. . .1
bitValueType

7.1.95 cr4ShadowType
Allows to set initial values of the CR4 shadow control register.

See Intel SDM Vol. 3C, "24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4" for
more details on the CR0 shadow.

78

Structure

ProtectionKeyEnable0. . .1
bitValueType

SMAPEnable0. . .1
bitValueType

SMEPEnable0. . .1
bitValueType

XSAVEEnable0. . .1
bitValueType

PCIDEnable0. . .1
bitValueType

FSGSBASEEnable0. . .1
bitValueType

SMXEnable0. . .1
bitValueType

VMXEnable0. . .1
bitValueType

UMInstructionPrevention0. . .1
bitValueType

OSSupportSIMDExceptions0. . .1
bitValueType

OSSupportFXSAVE0. . .1
bitValueType

PerfCounterEnable0. . .1
bitValueType

PageGlobalEnable0. . .1
bitValueType

MachineCheckEnable0. . .1
bitValueType

PhysicalAddressExtension0. . .1
bitValueType

PageSizeExtensions0. . .1
bitValueType

DebuggingExtensions0. . .1
bitValueType

TimeStampDisable0. . .1
bitValueType

ProtectedVirtualInts0. . .1
bitValueType

Virtual80860. . .1
bitValueType

79

7.1.96 segmentsType
The segments element specifies the initial values of subject segment registers.

Structure

ldtr0. . .1
segmentType

tr0. . .1
segmentType

ss0. . .1
segmentType

gs0. . .1
segmentType

fs0. . .1
segmentType

es0. . .1
segmentType

ds0. . .1
segmentType

cs0. . .1
segmentType

7.1.97 segmentType
Initial value of a segment register, including hidden part. See Intel SDM Vol. 3A, "3.4.3 Segment
Registers" for more details on segment registers.

Attributes

Name Type Use

selector word16Type required
Segment selector value.

base word64Type required
Segment base address.

limit word32Type required
Segment limit.

access word32Type required
Segment access information.

80

7.1.98 logicalMemoryType
In this section, components can specify expected memory mappings with given access rights and
region size.

See line 948 in listing 8.1 for an example specification.

Structure

choice0. . .*

array1. . .1
memoryArrayType

memory1. . .1
logicalMemType

7.1.99 logicalMemType
The memory element requests a memory region with the specified size and permissions from
the system. The region is expected to be placed at the address given via the virtualAddress
attribute.

See line 953 in listing 8.1 for an example specification.

Attributes

Name Type Use

size word64Type required
Size of memory in bytes. Must be a multiple of page size (4K).

virtualAddress word64Type required
Expected address of memory mapping.

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

7.1.100 memoryArrayType
The memory array abstraction simplifies the declaration of consecutive memory mappings with a
given base address, region size and executable and writable attributes. The child elements
declare the number of expected regions.

Attributes

Name Type Use

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

virtualAddressBase word64Type required
Expected address of memory mapping.

elementSize word64Type required
Size of one array element in bytes. Must be a multiple of page size (4K).

81

Structure

memory0. . .*
arrayEntryType

7.1.101 arrayEntryType
Array entries specify the number of array elements and assign a logical name to each element.

See line 1104 in listing 8.1 for an example array entry declaration.

Attributes

Name Type Use

logical nameType required
Logical name of array entry.

7.1.102 logicalChannelsType
Components and libraries use the channels sub-section of requires to specify expected com-
munication channels.

See line 969 in listing 8.1 for an example specification.

Structure

choice0. . .*

array1. . .1
channelArrayType

writer1. . .1
logicalChannelWriterType

reader1. . .1
logicalChannelReaderType

7.1.103 logicalChannelReaderType
The reader element requests a read-only channel of the specified size, address and optional
notification vector.

See line 986 in listing 8.1 for an example channel reader specification.

Attributes

Name Type Use

logical nameType required
Logical name of reader channel.

virtualAddress word64Type required
Expected address of channel memory mapping.

size word64Type required
Expected size of channel. Must be a multiple of page size (4K).

vector vectorType optional
Notification vector.

82

7.1.104 vectorType
Base: xs:nonNegativeInteger

Vector number.

Restrictions

value ≤255

7.1.105 logicalChannelWriterType
The writer element requests a channel with write permissions of the specified size, address and
optional notification event number. For valid event ID ranges, see vmcall group in 7.1.137.

See line 974 in listing 8.1 for an example channel writer specification.

Attributes

Name Type Use

logical nameType required
Logical name of writer channel.

virtualAddress word64Type required
Expected address of channel memory mapping.

size word64Type required
Expected size of channel. Must be a multiple of page size (4K).

event eventIdType optional
Notification event number.

7.1.106 eventIdType
Base: xs:nonNegativeInteger

Event number.

Restrictions

value ≤63

7.1.107 channelArrayType
The channel array abstraction simplifies the declaration of consecutive channel mappings with a
given base address, channel size and optional event/vector bases. The child elements declare the
number of expected channels and either the reader or writer role.

See line 1097 in listing 8.1 for an example specification.

Attributes

Name Type Use

logical nameType required
Logical channel array name.

eventBase xs:nonNegativeInteger optional
The eventBase attribute specifies the event number of the first element in
the array. This number is incremented for all further elements in the array
(eventBase + 1). For valid event ID ranges see vmcall group in 7.1.137.
Note that this attribute is only taken into consideration for a writer array.

vectorBase vectorType optional
The vectorBase attribute specifies the vector number of the first element in
the array. This number is incremented for all further elements in the array
(vectorBase + 1).
Note that this attribute is only taken into consideration for a reader array.

83

(continuation)
Name Type Use

virtualAddressBase word64Type required
Expected address of memory mapping.

elementSize word64Type required
Size of one array element in bytes. Must be a multiple of page size (4K).

Structure

choice1. . .1

writer0. . .*
arrayEntryType

reader0. . .*
arrayEntryType

7.1.108 logicalDevicesType
The devices sub-section of the requires section is used to specify expected devices with their
associated resources.

See line 1117 in listing 8.1 for an example specification.

Structure

device0. . .*
logicalDeviceType

7.1.109 logicalDeviceType
A device element specifies an expected logical device with its resources. Possible resources are
irq, memory and ioPort.

See line 1122 in listing 8.1 for an example specification.

Attributes

Name Type Use

logical nameType required
Logical device name.

Structure

ioPort0. . .*
logicalIoPortType

memory0. . .*
logicalMemType

irq0. . .*
logicalIrqType

7.1.110 logicalIrqType
An irq element of a logical device reference requests an IRQ with given number from the system
policy. The specified number will be injected when the device requires attention for the associated
logical function.

See line 1127 in listing 8.1 for an example IRQ reference.

84

Attributes

Name Type Use

logical nameType required
Logical name of IRQ resource.

vector vectorType required
Expected IRQ number.

Structure

msi0. . .*
logicalMsiIrqType

7.1.111 logicalMsiIrqType
The presence of msi child elements of an irq device resource specifies that the component expects
the device to be operated in MSI mode. The number of elements defines the expected MSI vector
number count to be provided by the referenced device.

Attributes

Name Type Use

logical nameType required
Name of MSI resource.

7.1.112 logicalIoPortType
The ioPort element requests a device I/O port resource with given range start .. end from
the system.

See line 1294 in listing 8.1 for an example I/O port reference.

Attributes

Name Type Use

logical nameType required
Logical I/O port name.

start word16Type required
I/O port start address.

end word16Type required
I/O port end address.

7.1.113 logicalEventsType
The events sub-section of the requires section is used to specify expected events with optional
event actions.

A component can specify both source as well as target events.
See line 1211 in listing 8.1 for an example specification.

Structure

target0. . .1
logicalEventTargetType

source0. . .1
logicalEventSourceType

85

7.1.114 logicalEventSourceType
Specifies expected source events.

Structure

event1. . .*
logicalSourceEventEntryType

7.1.115 logicalSourceEventEntryType
Base: baseLogicalEventType

An entry in the component’s source event list.

Attributes

Name Type Use

logical nameType required
Logical name of event.

id eventIdType required
ID of source event. For valid ID ranges see vmcall group in 7.1.137.

7.1.116 logicalEventTargetType
Specifies expected event targets.

Structure

event1. . .*
logicalTargetEventEntryType

7.1.117 logicalTargetEventEntryType
Base: baseLogicalEventType

An entry in the component’s target event list.

Attributes

Name Type Use

logical nameType required
Logical name of event.

id xs:nonNegativeInteger optional
ID of target event entry.

86

7.1.118 providedResourcesType
Components usually come in the form of an executable file. To this end, the provides section
specifies the memory regions of the component binary executable with their content.

From a security perspective, it is often desirable to provide the different binary section as
separate memory regions with the appropriate access rights, i.e. only the text section is executable,
rodata is not writable and so on.

Memory specified in this sections are expanded to mapped physical regions for each subject
that instantiates this component.

Note: the Mucbinsplit tool can be used to extract these section from an ELF binary into
separate files and automatically add the corresponding memory elements to the component speci-
fication.

See line 1140 in listing 8.1 for an example provides section.

Structure

memory1. . .*
providedMemType

7.1.119 providedMemType
Base: memoryBaseType

A memory element in the provides section declares memory region provided by the compo-
nent. Mostly used to provide (a part) of the component binary.

See line 1158 in listing 8.1 for an example specification.

Attributes

Name Type Use

size memorySizeType required
Size of region. Must be a multiple of page size (4K). Enforced by validator.

virtualAddress word64Type required
Virtual address in component address space.

type subjectMemoryKindType optional
Memory type (e.g. subject_binary).

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

87

Structure

choice0. . .1

hashRef1. . .1
hashRefType

hash1. . .1
hash256Type

choice0. . .1

fill1. . .1
fillContentType

file1. . .1
fileContentType

7.1.120 subjectMemoryKindType
Base: memoryKindType < xs:string

Subject memory type to categorize memory assigned to a subject. The validator tool checks
that a subject only maps memory regions of types outlined in this section (6.12).

Also used by build tools to lookup certain elements by type. For example, the mugenzp tool
looks for subject memory of type subject_zeropage to process all Linux zero-pages in the
policy.

The following memory types are currently supported:

• subject
Generic subject memory, used e.g. for RAM regions of VM subjects. The mugenzp tool used
for Linux VMs (5.3.11) exports such regions as E820_RAM in the ZP E820 memory map.

• subject_info
Subject info (sinfo) region provided to all subjects. The sinfo region is used to query infor-
mation about the execution environment. The file backing of this region is created by the
mugensinfo tool (5.3.11).

• subject_state
Subject execution state. Mapped into the SK kernel executing the given subject, kernels
running on other CPUs have no access. Accessible by subject monitors running on the
same CPU if specified in the policy. Validator enforces that each subject has an associ-
ated subject_state region and that it is mapped at the expected virtual address in the
executing kernel (6.12).

• subject_binary
Subject executable as a whole or separate subject executable regions (text, rodata, data,
bss, stack) with access rights (writable/executable). The mucbinsplit tool automatically
creates a component provides section with separate binary regions and associated backing
files from a component binary (5.5.4).

• subject_channel
Physical memory region used as shared channel between two subjects. The expander tool
transforms channels in system policy source format to memory regions with this type in
system policy format A/B, as described in section 7.1.69.

• subject_crash_audit
Memory region used by crash audit facility to store system crash information into slots, see
[2]. This information is preserved after a crash by performing a system warm start. Validators
enforce that

– Region is present and uncached, 6.8
– Region does not overlap with image, 6.8

88

– Kernel mappings are present and correct, 6.7
– No subject has write access to this region, 6.12

• subject_initrd
Physical memory of this type designates an initial ramdisk. This memory type is mostly used
by Linux VMs. If multiple initrd regions are mapped into a subject, they must be adjacent
(6.12).
The mugenzp tool (5.3.11) extracts the virtual address and size of a subject-mapped region
of this memory type and stores the values in the generated Linux zero-page (ZP) backing
file.

• subject_bios
Indicates to subjects that the memory region is reserved for BIOS/firmware and must not be
used as regular RAM.

• subject_acpi_*
Indicates to subjects that the memory region contains an ACPI table. See the ACPI spec-
ification for more information about RSDP, XSDT, FADT and DSDT ACPI tables. The
mugenzp tool (5.3.11) exports such regions as E820_ACPI in the ZP E820 memory map.

• subject_zeropage
Indicates to Linux subjects that the memory region contains a zero-page. See the Linux
kernel Zero Page documentation for more information.

• subject_solo5_boot_info
Indicates to a VM running Solo5/Mirage that the memory region contains a boot info struc-
ture. The file-backing of such a region may be created using the mugensolo5 tool (5.3.11).

• subject_device
Designates a memory region which is allowed to be added to a subject and a device domain.
The difference to the subject memory type is that the region is not exported as E820_RAM
but E820_RESERVED to Linux subjects. Therefore, such a region is useful to implement
custom drivers without interference from Linux DMA zone handling.

• subject_timed_event
Region designates a subject timed event page, as described in [1]. The expander tool creates
a physical memory region for each subject and maps it into the associated subject and the
SK kernel executing this subject.

Restrictions

values:

• subject

• subject_info

• subject_state

• subject_binary

• subject_channel

• subject_crash_audit

• subject_initrd

• subject_bios

• subject_acpi_rsdp

• subject_acpi_xsdt

• subject_acpi_fadt

89

• subject_acpi_dsdt

• subject_zeropage

• subject_solo5_boot_info

• subject_device

• subject_timed_event

7.1.121 componentType
Base: libraryType

A component is a piece of software which shall be executed by the SK. Components represent
the building blocks of a component-based system and can be regarded as templates for executable
entities instantiated by subjects.

The specification of a component declares the binary program by means of (file-backed mem-
ory) regions. It also specifies the component’s view of the expected execution environment. A
component may request the following resources from the system:

• Logical channels

• Logical memory regions

• Logical devices

• Logical events

Components are identified by name and specify a profile. The profile controls the settings of
the virtual CPU (vCPU).

See line 1044 in listing 8.1 for an example component.

Attributes

Name Type Use

name nameType required
Component/library name.

profile componentProfileType required
Component profile.

Structure

provides0. . .1
providedResourcesType

requires0. . .1
requiredResourcesType

depends0. . .1
libraryDepsType

config0. . .1
configType

90

7.1.122 componentProfileType
Base: xs:string

The component profile defines default vCPU settings and triggers profile specific actions in the
expander tool. The following actions are performed for the ’linux’ profile.

• Add Linux zero-page (ZP, generated by Mugenzp)

• Add ACPI table regions (generated by Mugenacpi)

• Append sinfo address to boot parameters (muen_sinfo)

• Add dummy legacy BIOS regions (start address 16000c_0000)

• Invalidate guest state of Linux SMP emulation sibling subjects

Restrictions

values:

• native

• vm

• linux

7.1.123 subjectsType
The subjects element holds a list of subjects.

See line 1854 in listing 8.1 for an example subjects section.

Structure

subject1. . .*
subjectType

7.1.124 subjectType
A subject is an instance of a component, i.e. an active component in the system policy that may
be scheduled. Its specification references a component and maps all requested logical resources
to physical resources provided by the system. Additional resources to the ones requested by the
component can be specified here. This enables specialization of the base component specification.

See line 1858 in listing 8.1 for an example subject declaration.

Attributes

Name Type Use

name nameType required
Unique subject name.

91

Structure

choice1. . .1

sibling1. . .1
namedRefType

component1. . .1
componentReferenceType

monitor0. . .1
monitorType

channels0. . .1
channelReferencesType

events1. . .1
subjectEventsType

devices0. . .1
devicesRefType

memory0. . .1
memoryRefsTypeOptVa

bootparams0. . .*
xs:string

vcpu0. . .1
vcpuType

7.1.125 memoryRefsTypeOptVa
List of physical memory region references where ’virtualAddress’ is optional.

Structure

memory0. . .*
memRefTypeOptVa

7.1.126 memRefTypeOptVa
A memory element maps a physical memory region into the address space of a device domain
or subject entity. The region will be accessible to the entity at the specified virtualAdress
with permissions defined by the executable and writable attributes. If virtualAddress
is omitted, it will be automatically generated by mucfgvresalloc.

Attributes

Name Type Use

virtualAddress word64Type optional
Address in entity address space where the physical memory region is mapped.

92

(continuation)
Name Type Use

physical nameType required
Name of referenced physical memory region.

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

7.1.127 devicesRefType
List of device references. Used to grant a subject access to hardware devices and their resources.

See line 2257 in listing 8.1 for example device references.

Structure

device0. . .*
deviceRefType

7.1.128 deviceRefType
The device element allows a subject access to devices referenced via the physical attribute.

For PCI devices only a single virtual bus is provided (bus 0). The pci element may be used to
place the device at a specific location (BDF). If no other logical device resources of the device are
specified, then the expander tool will map all physical devices resources into the subject. When
logical device resources are explicitly specified, then only access to those are actually granted. The
physical attribute must be either a reference to an existing physical device, device alias or device
class. Validators check that this is the case.

See line 2262 in listing 8.1 for an example reference.

Attributes

Name Type Use

logical nameType required
Logical device name.

physical nameType required
Name of physical device to reference.

Structure

ioPort0. . .*
physicalRefType

memory0. . .*
devMemRefType

irq0. . .*
irqRefType

pci0. . .1
pciAddressType

93

7.1.129 pciAddressType
PCI Bus, Device, Function triplet (BDF).

Attributes

Name Type Use

bus byteType required
PCI Bus number.

device pciDeviceNumberType required
PCI Device number.

function pciFunctionNumberType required
PCI Function number.

7.1.130 irqRefType
The device irq element assigns the referenced physical IRQ to the subject, i.e. if the device triggers
the referenced physical IRQ, the specified vector number will be injected into the subject by the
SK.

The presence of msi sub-elements enforces MSI mode (the default for MSI-capable devices and
automatic device resource expansion).

Attributes

Name Type Use

logical nameType required
Logical IRQ name.

physical nameType required
Name of physical device IRQ.

vector vectorType optional
Vector to inject into subject if device triggers IRQ. Will be allocated by the
expander if none is specified.

Structure

msi0. . .*
physicalRefType

7.1.131 physicalRefType
References a physical resource given by the physical attribute, and assigns a logical name to
it.

Attributes

Name Type Use

logical nameType required
Logical name for resource reference.

physical nameType required
Name of physical resource.

94

7.1.132 devMemRefType
The device memory element maps the device memory region referenced via the physical attribute
into the subject address space at address virtualAddress. The executable, writable
attributes define the access permissions for the subject.

See line 2277 in listing 8.1 for an example device memory reference.

Attributes

Name Type Use

virtualAddress word64Type optional
Address of mapping in subject address space. If none is specified, an identity
mapping is applied by the expander tool.

physical nameType required
Name of referenced physical memory region.

logical nameType required
Logical name of mapping.

writable booleanType required
Defines if the mapped memory is writable.

executable booleanType required
Defines if the memory region contents are executable by the processor.

7.1.133 subjectEventsType
The subject events element specifies all events originating from or directed at this subject. The
physical attribute is the name of a event defined in the global events section.

See line 1877 in listing 8.1 for an example subject events section.

Structure

target0. . .1
eventTargetType

source0. . .1
eventSourceType

7.1.134 eventSourceType
The event source element specifies events that are allowed to be triggered by the associated
subject.

Source events are divided into two groups: vmx_exit and vmcall. For event group vmx_exit
the id attribute specifies the trap number while in the vmcall group it designates the hypercall
number. For the valid range of IDs for each group see section 7.1.137.

The vmx_exit group is translated to a lookup table for handling VMX exit traps as defined
by Intel SDM Vol. 3D, "Appendix C VMX Basic Exit Reasons". The vmcall group on the other
hand is translated into a lookup table to handle hypercalls.

See line 1883 in listing 8.1 for an example event source section.

Structure

group1. . .*
eventGroupType

95

7.1.135 eventGroupType
Source event group element. Currently, two groups are supported: vmcall for hypercalls and
vmx_exit for all other supported traps.

Attributes

Name Type Use

name eventGroupNameType required
Name of event group.

Structure

event0. . .*
sourceEventEntryType

default0. . .1
defaultEventEntryType

7.1.136 defaultEventEntryType
Base: baseDefaultEventType

The default element entry can be used to specify an event which should be added for all
event ids that have not been explicitly specified.

See line 1894 in listing 8.1 for a default source event example.

Attributes

Name Type Use

physical nameType required
Global event reference.

7.1.137 sourceEventEntryType
Base: baseEventWithIDType < baseEventType

A source event entry specifies a source event node, i.e. it registers a handler for the given
event id. These IDs, depending on the event group, are either hypercall numbers or VMX basic
exit reasons. The valid ID ranges of the respective groups are:

vmx_exit 0 .. 59

vmcall 0 .. 63

Additionally, the following IDs in vmx_exit group are reserved and may not be used:

• Used by kernel: 1, 7, 41, 52, 55

• Reserved by Intel: 35, 38, 42

It is possible to assign event actions to event source entries. Currently supported source event
actions are subject_sleep, subject_yield, unmask_irq, system_reboot, system_poweroff
and system_panic, which all have the kernel itself as endpoint.

See line 1951 in listing 8.1 for a source event entry example.

96

(continuation)
Name Type Use

Attributes

Name Type Use

logical nameType required
Logical event name.

physical nameType required
Physical event name.

id eventIdType required
ID of event.

7.1.138 eventGroupNameType
Base: xs:string

Supported event groups.

Restrictions

values:

• vmx_exit

• vmcall

7.1.139 eventTargetType
The event target element specifies events that the subject is an endpoint of.

See line 1981 in listing 8.1 for an example event target section.

Structure

event1. . .*
targetEventEntryType

7.1.140 targetEventEntryType
Base: baseEventType

The event element in the target section specifies one event endpoint by referencing a physical
event and assigning a logical name to it.

See line 1986 in listing 8.1 for an example event endpoint.

Attributes

Name Type Use

logical nameType required
Logical event name.

physical nameType required
Physical event name.

id xs:nonNegativeInteger optional
Event ID.

97

7.1.141 channelReferencesType
The channel section of a subject declares references to communication channels. The referenced
channels become accessible to the requesting subject either as reader or writer endpoint.

See line 2389 in listing 8.1 for an example section.

Structure

choice0. . .*

writer1. . .1
channelWriterType

reader1. . .1
channelReaderType

7.1.142 channelReaderType
A channel reader element references a global communication channel as reader endpoint, i.e. the
channel is mapped read-only into the subject address space.

See line 2395 in listing 8.1 for an example reader declaration.

Attributes

Name Type Use

logical nameType required
Logical name of reader channel.

physical nameType required
Name of physical channel.

virtualAddress word64Type optional
Address of mapping in subject address space.

vector vectorOrAutoType optional
Associated vector. Must be set if a physical channel with hasEvent mode !=
switch is referenced (enforced by validator). The vector attribute is optional
in the case of mode switch.

7.1.143 vectorOrAutoType
Vector number or "auto" to request automatic assignment.

Restrictions

Union of

• vectorType

• constantAuto

7.1.144 channelWriterType
A channel writer element references a global communication channel as writer endpoint, i.e. the
channel is mapped with write permissions into the subject address space.

See line 2402 in listing 8.1 for an example writer declaration.

98

(continuation)
Name Type Use

Attributes

Name Type Use

logical nameType required
Logical name of writer channel.

physical nameType required
Name of physical channel.

virtualAddress word64Type optional
Address of mapping in subject address space.

event eventIdOrAutoType optional
Associated event number. Must be set if a physical channel with hasEvent
attribute is referenced.

7.1.145 eventIdOrAutoType
Event number or "auto" to request automatic assignment.

Restrictions

Union of

• eventIdType

• constantAuto

7.1.146 monitorType
The monitor abstraction enables subjects to request access to certain data of another subject
specified by name. Possible child elements are:

• State

• Timed_Events

• Interrupts

• Loader

See the Muen Component Specification document for details about these subject monitor in-
terfaces.

See line 1997 in listing 8.1 for an example monitor section.

Structure

loader0. . .1
loaderSubjectRefType

interrupts0. . .*
monitorSubjectRefType

timed_event0. . .*
monitorSubjectRefType

state0. . .*
monitorSubjectRefType

99

7.1.147 monitorSubjectRefType
Base: loaderSubjectRefType

Give subject monitor (SM) access to the referenced subject state.

Attributes

Name Type Use

subject nameType required
Name of monitored subject.

logical nameType required
Logical name of state mapping.

virtualAddress word64Type required
Address to map requested subject address space.

writable booleanType required
Whether or not the given state is mapped writable into the SM.

7.1.148 loaderSubjectRefType
The loader mechanism effectively puts the loaded subject denoted by the subject attribute
under loader control, as it is not able to start without the help of the loader.

In more detail, the loader monitor element instructs the expander tool to map all memory
regions of the referenced subject into the address space of the monitor subject, using the specified
virtualAddress as offset in the address space of the loader.

If a memory region of the loaded subject is writable and file-backed, the region is replaced with
an empty region and linked via the hashRef mechanism to the original region which is mapped
into the loader.

The state of the loaded subject is then invalidated by clearing the CR4.VMXE bit in the initial
subject CR4 register value. If such a subject is scheduled by the kernel, a VMX exit VM-entry
failure due to invalid guest state (33) occurs. See Intel SDM Vol. 3C, "23.7 Enabling and Entering
VMX Operation" and Intel SDM Vol. 3C, "23.8 Restrictions on VMX Operation" for more details.
This trap is linked to the loader via normal VMX event handling. After handover, the loader
initializes the memory regions replaced by the expander with the designated content.

All information required to load the loaded subject is provided to the loader subject via its own
sinfo API. Memory regions prefixed with monitor_sinfo_ provide access to the sinfo regions of
the loaded subjects. Regions prefixed with monitor_state_ specify memory regions containing
the subject register state of the loaded subject.

The difference between the monitor_sinfo_ memory region address in the loader and the
address of the sinfo memory region in the target sinfo information denotes the virtualAddress
offset attribute of the loader element in the policy. This information combined is enough to fully
construct the initial state of the loaded subject, or to reset a subject to its initial state on demand.

The loader may also optionally check the hashes of the restored regions, as this information is
provided via the sinfo mechanism as well.

See line 2014 in listing 8.1 for an example loader element.

Attributes

Name Type Use

subject nameType required
Name of monitored subject.

logical nameType required
Logical name of state mapping.

virtualAddress word64Type required
Address to map requested subject address space.

100

7.1.149 componentReferenceType
The component reference element specifies which component this subject instantiates. All logical
resources required by the component must be mapped to physical resources of the appropriate type.
Validators make sure that all requirements are satisfied and that no mapping has been omitted.

See line 1908 in listing 8.1 for an example component reference.

Attributes

Name Type Use

ref nameType required
Name of referenced component.

Structure

map0. . .*
resourceMappingType

7.1.150 resourceMappingType
The map element maps a physical resource provided by the system with a resource requested by
the referenced component.

This element allows recursion to map child resources as well (e.g. device memory, I/O ports
etc).

See line 1924 in listing 8.1 for an example mapping.

Attributes

Name Type Use

logical nameType required
Name of logical resource requested by the component.

physical nameType required
Physical name of resource.

Structure

map0. . .*
resourceMappingType

7.1.151 schedulingType
The Muen SK implements a fixed, cyclic scheduler. The scheduling element is used to specify
such a static plan by means of a major frame. A major frame consist of an arbitrary number of
minor frames. Minor frames in turn specify a duration in number of ticks a scheduling partition is
scheduled.

Scheduling partitions defined in the partitions element consist of one or more scheduling
groups, which in turn specify one or more subjects to be scheduled. Scheduling groups are used to
define groups of cooperating subjects, which are allowed to hand over execution to a subject in the
same scheduling group. This is done via handover events. Membership of a scheduling group must
be specified explicitly in the policy, validators enforce that these settings are correct by calculating
the chain of handover events.

While scheduling groups support the efficient cooperation of multiple subjects, subjects which
need to be spatially but not temporally isolated from each other cannot profit from it. To efficiently
support this use-case, the scheduling partition concept is implemented.

101

Within a scheduling partition, all scheduling groups are scheduled round robin with preemption
and the opportunity to yield and/or sleep. If a subject in a scheduling group sleeps or yields, the
next scheduling group in the scheduling partition is scheduled. More precisely: the active subject
of the next scheduling group is executed by the SK.

Note that prioritization is not implemented on purpose to avoid any starvation issues2. The
yield operation maps to the x86_64 PAUSE instruction, while sleep corresponds to HLT. See the
Muen Component Specification document [1] for more information on this topic.

Minor frames designate the scheduling partition that is to be executed for the given amount of
ticks. The scheduling partition attribute name uniquely identifies a scheduling partition. On first
activation, the first scheduling group (in XML-order) is scheduled. Within the scheduling group,
the first subject (again in XML-order) is executed. The active subject of a scheduling group may
change over time, as the cooperating subjects initiate handover events.

The tickRate attribute of the scheduling element has the unit Hertz (Hz) and specifies the
number of clock ticks per second. The ticks attribute of minor frames is expressed in terms of this
tick rate. As an example: if we want to declare the minor frame duration in terms of microseconds
(10−6) then a tick rate of 1000000 must be used.

The duration of a major frame must be the same on each CPU, meaning the sum of all minor
frame ticks for any given CPU must be identical. However, different major frames can have
arbitrary length.

The Tau0 subject designates to the kernel which major frame is the currently active one. At
the end of each major frame, the kernel determines the active major frame and switches to that
scheduling plan for the duration of the major frame.

See line 2465 in listing 8.1 for an example scheduling plan.

Attributes

Name Type Use

tickRate xs:positiveInteger required
Scheduling clock ticks in Hz.

Structure

majorFrame1. . .*
majorFrameType

partitions1. . .1
schedulingPartitionsType

7.1.152 schedulingPartitionsType
The partitions element is used to specify all scheduling partitions of the system.

See line 2524 in listing 8.1 for an example partitions element.

Structure

partition1. . .*
schedulingPartitionType

7.1.153 schedulingPartitionType
Base: baseSchedulingPartitionType

The scheduling partition element is used to specify a collection of scheduling groups consist-
ing of subjects that require spatial but not temporal isolation from each other. Within a scheduling

2Prioritization with starvation protection cannot be implemented with low complexity

102

partition, all scheduling groups are scheduled round robin with preemption (i.e. non-cooperatively)
and the opportunity to yield and/or sleep.

A scheduling partition must contain at least one scheduling group.
See line 2529 in listing 8.1 for an example scheduling partition.

Attributes

Name Type Use

name nameType required
Name of the scheduling partition.

Structure

group1. . .64
schedulingGroupType

7.1.154 schedulingGroupType
Base: baseSchedulingGroupType

The scheduling group element is used to specify a collection of subjects that may cooperatively
schedule each other via handover events. Scheduling groups must contain at least one subject. As
an example, a Linux subject and its associated Subject Monitor (SM), Subject Loader (SL) and
Device Manager (DM) form a scheduling group.

See line 2539 in listing 8.1 for an example scheduling group.

Structure

subject1. . .*
namedType

7.1.155 namedType
The namedType is used for simple elements in the policy, that only specify a name.

Attributes

Name Type Use

name nameType required
Name of element.

7.1.156 majorFrameType
A major frame consists of a sequence of minor frames for a given CPU. When the end of a major
frame is reached, all CPUs synchronize and the scheduler starts over from the beginning using the
first minor frame again. This means that major frames are repeated in a cyclic fashion until a
different major frame is designated via the Tau0 interface.

See line 2602 in listing 8.1 for an example major frame.

Structure

cpu1. . .*
cpuType

103

7.1.157 cpuType
The cpu element is used to specify major frames for each CPU of the system.

See line 2610 in listing 8.1 for an example cpu element.

Attributes

Name Type Use

id xs:nonNegativeInteger required
ID of CPU.

Structure

minorFrame1. . .*
minorFrameType

7.1.158 minorFrameType
A minor frame specifies the number of scheduling ticks a partition is allowed to run on the CPU
specified by the parent cpu element.

See line 2615 in listing 8.1 for an example minor frame.

Attributes

Name Type Use

partition nameType required
Name of scheduled partition.

ticks xs:positiveInteger required
Number of scheduling ticks in minor frame.

104

Chapter 8

Appendix

8.1 Annotated Example Policy

1 <?xml version=’1.0’ encoding=’utf-8’?>
<system>

3 <!--
A Muen system policy specifies all hardware resources such as physical

5 memory, devices, CPU time, etc and how these resources are accessed by
the separation kernel, the subjects and devices.

7
The ‘system‘ section is the top-level element in the Muen system policy.

9 It contains various sub-elements which specify all aspects of a concrete
system.

11
This is the *source format* of the Muen system policy. It allows for

13 abstractions, such as channels, which are broken down into their
constituent parts by the toolchain in format A and B accordingly.

15 -->
<config>

17 <!--
The purpose of a config section is to specify configuration values which

19 parameterize a system or a component. It allows to declare boolean,
string and integer values. The following sections in the system policy

21 provide support for configuration values:

23 - System

25 - Platform

27 - Component

29 During the build process, configuration values provided by the platform
are merged into the global system configuration. Component configuration

31 values allow the parameterization of component-local functionality.

33 Besides component parameterization, configuration options can be used in
‘if‘ conditionals, as shown in the following example.

35
‘‘‘ xml

37 <if variable="xhcidbg_enabled" value="true">
...

39 </if>
‘‘‘

41
If the type of the referenced variable is string the comparison is

43 case-sensitive. A second use case is XML attribute value expansion as
follows:

45
‘‘‘ xml

47 <channel name="debuglog" size="$logchannel_size"/>
‘‘‘

49
The ‘size‘ attribute value is not specified directly, but parameterized

51 via an integer configuration option.
-->

53 <boolean name="pciconf_emulation_enabled" value="true"/>
<boolean name="pciconf_emulation_xhci_enabled" value="false"/>

55 <boolean name="xhcidbg_supported" value="false"/>
<boolean name="xhcidbg_enabled" value="true"/>

57 <boolean name="dbgserver_sink_serial" value="true"/>
<boolean name="ahci_supported" value="true"/>

59 <boolean name="serial_supported" value="true"/>
<boolean name="dbgserver_sink_xhcidbg" value="false"/>

61 <boolean name="linux_debug" value="false"/>

105

<boolean name="ahci_drv_enabled" value="false"/>
63 <boolean name="dbgserver_sink_shmem" value="false"/>

<boolean name="uefi_gop_rmrr_access" value="false"/>
65 <boolean name="hsuart_supported" value="false"/>

<boolean name="ahci_drv_active" value="false"/>
67 <boolean name="dbgserver_sink_pcspkr" value="false"/>

<boolean name="dbgserver_serial_enabled" value="true"/>
69 <string name="pciconf_emulation_xhci_devid" value="16#02#"/>

<string name="pciconf_emulation_nic_devid" value="16#01#"/>
71 <string name="logchannel_size" value="16#0002_0000#"/>

<string name="platform" value="platform/lenovo-t430s.xml"/>
73 <string name="hardware" value="hardware/lenovo-t430s.xml"/>

<string name="pciconf_emulation_xhci_physdev" value="usb_controller_1"/>
75 <string name="system" value="xml/demo_system_vtd.xml"/>

<string name="pciconf_emulation_nic_physdev" value="ethernet_controller_1"/>
77 <string name="igd_opregion_address" value="16#baf5_5000#"/>

<string name="additional_hardware" value="hardware/common_hardware.xml"/>
79 </config>

<hardware>
81 <!--

Systems running the Muen SK perform static resource allocation at
83 integration time. This means that all available hardware resources of a

target machine must be defined in the system policy in order for these
85 resources to be allocated to subjects.

87 The ‘hardware‘ element is the top-level element of the hardware
specification in the system policy. Information provided by a hardware

89 description includes the amount of available physical memory blocks
including reserved memory regions (RMRR), the number of physical CPU

91 cores and hardware device resources.

93 The Muen toolchain provides a handy tool to automate the cumbersome
process of gathering hardware resource data from a running Linux system:

95 ‘mugenhwcfg‘[^1].

97 [^1]: https://git.codelabs.ch/?p=muen/mugenhwcfg.git
-->

99 <processor cpuCores="2" speed="2893431" vmxTimerRate="5">
<!--

101 The ‘processor‘ element specifies the number of CPU cores, the processor
speed in kHz and the Intel VMX preemption timer rate.

103
Since Intel CPUs can have arbitrary APIC identifiers, the APIC IDs of

105 all physical CPUs are enumerated here. The APIC ID is required for
interrupt and IPI routing.

107
The ‘processor‘ element also lists register values for all CPUID leaves

109 of the hardware target, and some MSR values of interest.
-->

111 <cpu apicId="0"/>
<cpu apicId="2"/>

113 <cpuid eax="16#0000_000d#" ebx="16#756e_6547#" ecx="16#6c65_746e#" edx="16#4965_6e69#" leaf="
16#0000_0000#" subleaf="16#00#"/>
<cpuid eax="16#0003_06a9#" ebx="16#0010_0800#" ecx="16#7fba_e3ff#" edx="16#bfeb_fbff#" leaf="
16#0000_0001#" subleaf="16#00#"/>

115 <cpuid eax="16#7603_5a01#" ebx="16#00f0_b2ff#" ecx="16#0000_0000#" edx="16#00ca_0000#" leaf="
16#0000_0002#" subleaf="16#00#"/>
<cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#0000_0003#" subleaf="16#00#"/>

117 <cpuid eax="16#1c00_4121#" ebx="16#01c0_003f#" ecx="16#0000_003f#" edx="16#0000_0000#" leaf="
16#0000_0004#" subleaf="16#00#"/>
<cpuid eax="16#1c00_4122#" ebx="16#01c0_003f#" ecx="16#0000_003f#" edx="16#0000_0000#" leaf="
16#0000_0004#" subleaf="16#01#"/>

119 <cpuid eax="16#1c00_4143#" ebx="16#01c0_003f#" ecx="16#0000_01ff#" edx="16#0000_0000#" leaf="
16#0000_0004#" subleaf="16#02#"/>
<cpuid eax="16#1c03_c163#" ebx="16#03c0_003f#" ecx="16#0000_0fff#" edx="16#0000_0006#" leaf="
16#0000_0004#" subleaf="16#03#"/>

121 <cpuid eax="16#0000_0040#" ebx="16#0000_0040#" ecx="16#0000_0003#" edx="16#0002_1120#" leaf="
16#0000_0005#" subleaf="16#00#"/>
<cpuid eax="16#0000_0077#" ebx="16#0000_0002#" ecx="16#0000_0009#" edx="16#0000_0000#" leaf="
16#0000_0006#" subleaf="16#00#"/>

123 <cpuid eax="16#0000_0000#" ebx="16#0000_0281#" ecx="16#0000_0000#" edx="16#9c00_0400#" leaf="
16#0000_0007#" subleaf="16#00#"/>
<cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#0000_0008#" subleaf="16#00#"/>

125 <cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#0000_0009#" subleaf="16#00#"/>
<cpuid eax="16#0730_0403#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0603#" leaf="
16#0000_000a#" subleaf="16#00#"/>

127 <cpuid eax="16#0000_0001#" ebx="16#0000_0002#" ecx="16#0000_0100#" edx="16#0000_0000#" leaf="
16#0000_000b#" subleaf="16#00#"/>
<cpuid eax="16#0000_0004#" ebx="16#0000_0004#" ecx="16#0000_0201#" edx="16#0000_0000#" leaf="
16#0000_000b#" subleaf="16#01#"/>

129 <cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#0000_000c#" subleaf="16#00#"/>
<cpuid eax="16#0000_0007#" ebx="16#0000_0340#" ecx="16#0000_0340#" edx="16#0000_0000#" leaf="
16#0000_000d#" subleaf="16#00#"/>

106

131 <cpuid eax="16#0000_0001#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#0000_000d#" subleaf="16#01#"/>
<cpuid eax="16#0000_0100#" ebx="16#0000_0240#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#0000_000d#" subleaf="16#02#"/>

133 <cpuid eax="16#0000_0007#" ebx="16#0000_0340#" ecx="16#0000_0340#" edx="16#0000_0000#" leaf="
16#2000_0000#" subleaf="16#00#"/>
<cpuid eax="16#8000_0008#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#8000_0000#" subleaf="16#00#"/>

135 <cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0001#" edx="16#2810_0800#" leaf="
16#8000_0001#" subleaf="16#00#"/>
<cpuid eax="16#2020_2020#" ebx="16#4920_2020#" ecx="16#6c65_746e#" edx="16#2029_5228#" leaf="
16#8000_0002#" subleaf="16#00#"/>

137 <cpuid eax="16#6572_6f43#" ebx="16#294d_5428#" ecx="16#2d37_6920#" edx="16#3032_3533#" leaf="
16#8000_0003#" subleaf="16#00#"/>
<cpuid eax="16#5043_204d#" ebx="16#2040_2055#" ecx="16#3039_2e32#" edx="16#007a_4847#" leaf="
16#8000_0004#" subleaf="16#00#"/>

139 <cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#8000_0005#" subleaf="16#00#"/>
<cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0100_6040#" edx="16#0000_0000#" leaf="
16#8000_0006#" subleaf="16#00#"/>

141 <cpuid eax="16#0000_0000#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0100#" leaf="
16#8000_0007#" subleaf="16#00#"/>
<cpuid eax="16#0000_3024#" ebx="16#0000_0000#" ecx="16#0000_0000#" edx="16#0000_0000#" leaf="
16#8000_0008#" subleaf="16#00#"/>

143 <cpuid eax="16#0000_0007#" ebx="16#0000_0340#" ecx="16#0000_0340#" edx="16#0000_0000#" leaf="
16#8086_0000#" subleaf="16#00#"/>
<cpuid eax="16#0000_0007#" ebx="16#0000_0340#" ecx="16#0000_0340#" edx="16#0000_0000#" leaf="16#
c000_0000#" subleaf="16#00#"/>

145 <msr address="16#0000_003a#" name="IA32_FEATURE_CONTROL" regval="16#0000_0000_0000_0005#"/>
<msr address="16#0000_01a0#" name="IA32_MISC_ENABLE" regval="16#0000_0000_0085_0089#"/>

147 <msr address="16#0000_0480#" name="IA32_VMX_BASIC" regval="16#00da_0400_0000_0010#"/>
<msr address="16#0000_0481#" name="IA32_VMX_PINBASED_CTLS" regval="16#0000_007f_0000_0016#"/>

149 <msr address="16#0000_0482#" name="IA32_VMX_PROCBASED_CTLS" regval="16#fff9_fffe_0401_e172#"/>
<msr address="16#0000_0483#" name="IA32_VMX_EXIT_CTLS" regval="16#007f_ffff_0003_6dff#"/>

151 <msr address="16#0000_0484#" name="IA32_VMX_ENTRY_CTLS" regval="16#0000_ffff_0000_11ff#"/>
<msr address="16#0000_0485#" name="IA32_VMX_MISC" regval="16#0000_0000_1004_01e5#"/>

153 <msr address="16#0000_0486#" name="IA32_VMX_CR0_FIXED0" regval="16#0000_0000_8000_0021#"/>
<msr address="16#0000_0487#" name="IA32_VMX_CR0_FIXED1" regval="16#0000_0000_ffff_ffff#"/>

155 <msr address="16#0000_0488#" name="IA32_VMX_CR4_FIXED0" regval="16#0000_0000_0000_2000#"/>
<msr address="16#0000_0489#" name="IA32_VMX_CR4_FIXED1" regval="16#0000_0000_0017_67ff#"/>

157 <msr address="16#0000_048b#" name="IA32_VMX_PROCBASED_CTLS2" regval="16#0000_08ff_0000_0000#"/>
<msr address="16#0000_048c#" name="IA32_VMX_EPT_VPID_CAP" regval="16#0000_0f01_0611_4141#"/>

159 <msr address="16#0000_048d#" name="IA32_VMX_TRUE_PINBASED_CTLS" regval="16#0000_007f_0000_0016#"/
>
<msr address="16#0000_048e#" name="IA32_VMX_TRUE_PROCBASED_CTLS" regval="16#fff9_fffe_0400_6172#"
/>

161 <msr address="16#0000_048f#" name="IA32_VMX_TRUE_EXIT_CTLS" regval="16#007f_ffff_0003_6dfb#"/>
<msr address="16#0000_0490#" name="IA32_VMX_TRUE_ENTRY_CTLS" regval="16#0000_ffff_0000_11fb#"/>

163 </processor>
<memory>

165 <!--
The hardware ‘memory‘ element specifies the available physical memory

167 blocks including reserved memory regions (RMRR, see Intel VT-d
Specification, "8.4 Reserved Memory Region Reporting Structure").

169
Only memory blocks reported by the BIOS E820 map as non-*reserved* must

171 be configured in this section, e.g. *usable* or *ACPI NVS*, *ACPI data*.
-->

173 <memoryBlock allocatable="false" name="System RAM" physicalAddress="16#0000#" size="16#0009_d000#
"/>
<memoryBlock allocatable="true" name="System RAM" physicalAddress="16#0010_0000#" size="16#1
ff0_0000#"/>

175 <memoryBlock allocatable="true" name="System RAM" physicalAddress="16#2020_0000#" size="16#1
fe0_4000#"/>
<memoryBlock allocatable="true" name="System RAM" physicalAddress="16#4000_5000#" size="16#6
ed2_c000#"/>

177 <memoryBlock allocatable="false" name="ACPI Non-volatile Storage" physicalAddress="16#bae9_f000#"
size="16#0010_0000#"/>

<memoryBlock allocatable="false" name="ACPI Tables" physicalAddress="16#baf9_f000#" size="16#0006
_0000#"/>

179 <memoryBlock allocatable="true" name="System RAM" physicalAddress="16#0001_0000_0000#" size="
16#0003_3e60_0000#"/>
<reservedMemory name="rmrr1" physicalAddress="16#ba3b_a000#" size="16#0001_7000#">

181 <!--
A ‘reservedMemory‘ element is a special memory block declaration. It

183 specifies a reserved memory region as outlined in the Intel VT-d
Specification, "8.4 Reserved Memory Region Reporting Structure" (RMRR).

185
Reserved memory regions are BIOS allocated memory ranges that may be DMA

187 targets for certain legacy device use-cases. Devices that require access
to such a region refer to it by name.

189 -->
</reservedMemory>

191 <reservedMemory name="rmrr2" physicalAddress="16#bb80_0000#" size="16#0420_0000#"/>
</memory>

193 <devices pciConfigAddress="16#f800_0000#" pciConfigSize="16#0400_0000#">
<!--

107

195 The ‘devices‘ element enumerates all devices provided by the hardware
platform. Different kinds of devices, be it PCI(e) or legacy (non-PCI),

197 can be declared in this section.
-->

199 <device name="vga">
<!--

201 The ‘device‘ element specifies a physical device and its associated
resources. There are three main device resource types:

203
- IRQ

205
- I/O port range

207
- Memory

209
The presence of a PCI element indicates whether the device is a PCI or a

211 legacy device.

213 Capabilities can be used to convey additional device-specific
information. The base address of the memory mapped PCI config space is

215 defined by the ‘pciConfigAddress‘ attribute.
-->

217 <memory caching="WC" name="buffer" physicalAddress="16#000a_0000#" size="16#0002_0000#">
<!--

219 A device ‘memory‘ element specifies a memory region which is used to
interact with the associated device.

221
For PCI devices, the specified region is programmed into one device BAR

223 (Base Address Register) by system firmware. See the PCI Local Bus
Specification or the PCI Express Base Specification for more details.

225 -->
</memory>

227 <ioPort end="16#03df#" name="ports" start="16#03c0#">
<!--

229 The ‘ioPort‘ element specifies a device I/O port resource from ‘start‘
octet up to and including ‘end‘ octet. A single byte-accessed port is

231 designated by specifying the same ‘start‘ and ‘end‘ values.
-->

233 </ioPort>
</device>

235 <device name="ps2">
<irq name="kbd_irq" number="1">

237 <!--
The ‘irq‘ element specifies a device IRQ resource.

239
The specified IRQ number is one of:

241
- Legacy IRQ (ISA)ă

243 Range ‘0 .. 15‘.

245 - PCI INTx IRQ, line-signaledă
Range ‘0 .. Max_LSI_IRQ‘, whereas ‘Max_LSI_IRQ‘ is defined by the

247 hardware I/O APIC configuration ‘gsi_base‘ + ‘max_redirection_entry‘
of I/O APIC with ‘max(gsi_base)‘. ‘gsi_base‘ and

249 ‘max_redirection_entry‘ are I/O APIC device capabilities.

251 ‘msi‘ sub-elements are present if the device supports MSI interrupts.
The element count designates the number of supported MSI interrupts.

253 -->
</irq>

255 <irq name="mouse_irq" number="12"/>
<ioPort end="16#0060#" name="port_60" start="16#0060#"/>

257 <ioPort end="16#0064#" name="port_64" start="16#0064#"/>
</device>

259 <device name="cmos_rtc">
<ioPort end="16#0071#" name="ports" start="16#0070#"/>

261 </device>
<device name="pcspeaker">

263 <ioPort end="16#0061#" name="Port_61" start="16#0061#"/>
<ioPort end="16#0043#" name="Port_42_43" start="16#0042#"/>

265 </device>
<device name="system_board">

267 <!--
The system board must provide a reset and pm1a_cnt port as well as

269 the pm1a_cnt_slp_typ capability. The presence of this device and
the necessary resources are checked by the Mucfgvalidate tool. The

271 resources are used by the kernel for system reboot and poweroff.
-->

273 <ioPort end="16#0cf9#" name="reset" start="16#0cf9#"/>
<ioPort end="16#0404#" name="pm1a_cnt" start="16#0404#"/>

275 <capabilities>
<capability name="systemboard"/>

277 <capability name="pm1a_cnt_slp_typ">7168</capability>
</capabilities>

279 </device>
<device name="ioapic_1">

281 <!--

108

The I/O Advanced Programmable Interrupt Controller (I/O APIC) is
283 used by the kernel for interrupt routing of legacy IRQs. The

presence of this device and the necessary resources are checked by
285 the validator tool.

-->
287 <memory caching="UC" name="mem1" physicalAddress="16#fec0_0000#" size="16#1000#"/>

<capabilities>
289 <capability name="ioapic">

<!--
291 A device ‘capability‘ is used to assign additional information to a

device. Such a capability might be used by the Muen toolchain to perform
293 certain actions on devices with a given capability (e.g. ‘ioapic‘). A

system integrator may use this facility to define its own capabilities
295 used by custom tools.

297 A capability element can have an optional value.
-->

299 </capability>
<capability name="gsi_base">0</capability>

301 <capability name="max_redirection_entry">23</capability>
<capability name="source_id">16#f0f8#</capability>

303 </capabilities>
</device>

305 <device name="iommu_1">
<!--

307 This device specifies an Intel VT-d DMA and interrupt remapping
hardware. It is used by the Muen SK to implement device separation

309 by means of device domains, see below. The capabilities define
specific properties of the IOMMU, such as Guest Address Width,

311 Fault Register Offset etc. Refer to the Intel VT-d Specification,
"10.4 Register Descriptions".

313 -->
<memory caching="UC" name="mmio" physicalAddress="16#fed9_0000#" size="16#1000#"/>

315 <capabilities>
<capability name="iommu"/>

317 <capability name="agaw">39</capability>
<capability name="fr_offset">512</capability>

319 <capability name="iotlb_invalidate_offset">264</capability>
</capabilities>

321 </device>
<device name="iommu_2">

323 <memory caching="UC" name="mmio" physicalAddress="16#fed9_1000#" size="16#1000#"/>
<capabilities>

325 <capability name="iommu"/>
<capability name="agaw">39</capability>

327 <capability name="fr_offset">512</capability>
<capability name="iotlb_invalidate_offset">264</capability>

329 </capabilities>
</device>

331 <device name="host_bridge_1">
<description>Intel Corporation 3rd Gen Core processor DRAM Controller</description>

333 <pci bus="16#00#" device="16#00#" function="0">
<!--

335 PCI(e) devices are specified using the ‘pci‘ element.

337 The element provides the following information:

339 - PCI device address (BDF)

341 - Identification

343 - IOMMU group information

345 The location of the PCI device in the PCI topology is specified by the
Bus, Device, Function triplet (BDF).

347 -->
<identification classcode="16#0600#" deviceId="16#0154#" revisionId="16#09#" vendorId="16#8086#

">
349 <!--

The ‘identification‘ element specifies the PCI device class, device,
351 revision and vendor ID.

353 For more information, consult the PCI Local Bus Specification,
"Configuration Space Decoding".

355 -->
</identification>

357 <iommuGroup id="0">
<!--

359 Devices in the same IOMMU group cannot be properly isolated from each
other because they may perform inter-device transactions directly,

361 without going through the IOMMU.

363 Note that this information is currently not used by the toolchain. It is
a hint to the system integrator whether two devices can be properly

365 isolated from each other or not.
-->

367 </iommuGroup>

109

</pci>
369 <memory caching="UC" name="mmconf" physicalAddress="16#f800_0000#" size="16#1000#"/>

</device>
371 <device name="vga_compatible_controller_1">

<description>Intel Corporation 3rd Gen Core processor Graphics Controller</description>
373 <pci bus="16#00#" device="16#02#" function="0">

<identification classcode="16#0300#" deviceId="16#0166#" revisionId="16#09#" vendorId="16#8086#
"/>

375 <iommuGroup id="1"/>
</pci>

377 <irq name="irq1" number="16">
<msi name="msi1"/>

379 </irq>
<memory caching="UC" name="mem1" physicalAddress="16#d000_0000#" size="16#0040_0000#"/>

381 <memory caching="WC" name="mem2" physicalAddress="16#c000_0000#" size="16#1000_0000#"/>
<memory caching="WC" name="mem3" physicalAddress="16#000c_0000#" size="16#0002_0000#"/>

383 <memory caching="UC" name="mmconf" physicalAddress="16#f801_0000#" size="16#1000#"/>
<ioPort end="16#603f#" name="ioport1" start="16#6000#"/>

385 <reservedMemory ref="rmrr2">
<!--

387 This device specifies that it requires access to the reserved
memory range (RMRR) with the given name.

389 -->
</reservedMemory>

391 </device>
<device name="usb_controller_1">

393 <description>Intel Corporation 7 Series/C210 Series Chipset Family USB xHCI Host Controller</
description>
<pci bus="16#00#" device="16#14#" function="0">

395 <identification classcode="16#0c03#" deviceId="16#1e31#" revisionId="16#04#" vendorId="16#8086#
"/>
<iommuGroup id="2"/>

397 </pci>
<irq name="irq1" number="16">

399 <msi name="msi1">
<!--

401 There are two different interrupt types which devices may trigger:
legacy/PCI LSI IRQs and Message Signaled Interrupts (MSI). The

403 legacy/PCI LSI IRQ is specified by the number attribute of the ‘irq‘
element. For MSIs, each ‘msi‘ element defines an MSI IRQ that may be

405 assigned to subjects. Each MSI may be individually routed.
-->

407 </msi>
<msi name="msi2"/>

409 <msi name="msi3"/>
<msi name="msi4"/>

411 <msi name="msi5"/>
<msi name="msi6"/>

413 <msi name="msi7"/>
<msi name="msi8"/>

415 </irq>
<memory caching="UC" name="mem1" physicalAddress="16#d252_0000#" size="16#0001_0000#"/>

417 <memory caching="UC" name="mmconf" physicalAddress="16#f80a_0000#" size="16#1000#"/>
<reservedMemory ref="rmrr1"/>

419 </device>
<device name="communication_controller_1">

421 <description>Intel Corporation 7 Series/C216 Chipset Family MEI Controller #1</description>
<pci bus="16#00#" device="16#16#" function="0">

423 <identification classcode="16#0780#" deviceId="16#1e3a#" revisionId="16#04#" vendorId="16#8086#
"/>
<iommuGroup id="3"/>

425 </pci>
<irq name="irq1" number="16">

427 <msi name="msi1"/>
</irq>

429 <memory caching="UC" name="mem1" physicalAddress="16#d253_5000#" size="16#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#f80b_0000#" size="16#1000#"/>

431 </device>
<device name="serial_controller_1">

433 <description>Intel Corporation 7 Series/C210 Series Chipset Family KT Controller</description>
<pci bus="16#00#" device="16#16#" function="3">

435 <identification classcode="16#0700#" deviceId="16#1e3d#" revisionId="16#04#" vendorId="16#8086#
"/>
<iommuGroup id="3"/>

437 </pci>
<irq name="irq1" number="19">

439 <msi name="msi1"/>
</irq>

441 <memory caching="UC" name="mem1" physicalAddress="16#d253_c000#" size="16#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#f80b_3000#" size="16#1000#"/>

443 <ioPort end="16#60b7#" name="ioport1" start="16#60b0#"/>
</device>

445 <device name="ethernet_controller_1">
<description>Intel Corporation 82579LM Gigabit Network Connection (Lewisville)</description>

447 <pci bus="16#00#" device="16#19#" function="0">
<identification classcode="16#0200#" deviceId="16#1502#" revisionId="16#04#" vendorId="16#8086#

"/>

110

449 <iommuGroup id="4"/>
</pci>

451 <irq name="irq1" number="20">
<msi name="msi1"/>

453 </irq>
<memory caching="UC" name="mem1" physicalAddress="16#d250_0000#" size="16#0002_0000#"/>

455 <memory caching="UC" name="mem2" physicalAddress="16#d253_b000#" size="16#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#f80c_8000#" size="16#1000#"/>

457 <ioPort end="16#609f#" name="ioport1" start="16#6080#"/>
</device>

459 <device name="usb_controller_2">
<description>Intel Corporation 7 Series/C216 Chipset Family USB Enhanced Host Controller #2</
description>

461 <pci bus="16#00#" device="16#1a#" function="0">
<identification classcode="16#0c03#" deviceId="16#1e2d#" revisionId="16#04#" vendorId="16#8086#

"/>
463 <iommuGroup id="5"/>

</pci>
465 <irq name="irq1" number="16"/>

<memory caching="UC" name="mem1" physicalAddress="16#d253_a000#" size="16#1000#"/>
467 <memory caching="UC" name="mmconf" physicalAddress="16#f80d_0000#" size="16#1000#"/>

<reservedMemory ref="rmrr1"/>
469 </device>

<device name="audio_device_1">
471 <description>Intel Corporation 7 Series/C216 Chipset Family High Definition Audio Controller</

description>
<pci bus="16#00#" device="16#1b#" function="0">

473 <identification classcode="16#0403#" deviceId="16#1e20#" revisionId="16#04#" vendorId="16#8086#
"/>
<iommuGroup id="6"/>

475 </pci>
<irq name="irq1" number="22">

477 <msi name="msi1"/>
</irq>

479 <memory caching="UC" name="mem1" physicalAddress="16#d253_0000#" size="16#4000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#f80d_8000#" size="16#1000#"/>

481 </device>
<device name="usb_controller_3">

483 <description>Intel Corporation 7 Series/C216 Chipset Family USB Enhanced Host Controller #1</
description>
<pci bus="16#00#" device="16#1d#" function="0">

485 <identification classcode="16#0c03#" deviceId="16#1e26#" revisionId="16#04#" vendorId="16#8086#
"/>
<iommuGroup id="11"/>

487 </pci>
<irq name="irq1" number="23"/>

489 <memory caching="UC" name="mem1" physicalAddress="16#d253_9000#" size="16#1000#"/>
<memory caching="UC" name="mmconf" physicalAddress="16#f80e_8000#" size="16#1000#"/>

491 <reservedMemory ref="rmrr1"/>
</device>

493 <device name="isa_bridge_1">
<description>Intel Corporation QM77 Express Chipset LPC Controller</description>

495 <pci bus="16#00#" device="16#1f#" function="0">
<identification classcode="16#0601#" deviceId="16#1e55#" revisionId="16#04#" vendorId="16#8086#

"/>
497 <iommuGroup id="12"/>

</pci>
499 <memory caching="UC" name="mmconf" physicalAddress="16#f80f_8000#" size="16#1000#"/>

</device>
501 <device name="sata_controller_1">

<description>Intel Corporation 7 Series Chipset Family 6-port SATA Controller [AHCI mode]</
description>

503 <pci bus="16#00#" device="16#1f#" function="2">
<identification classcode="16#0106#" deviceId="16#1e03#" revisionId="16#04#" vendorId="16#8086#

"/>
505 <iommuGroup id="12"/>

</pci>
507 <irq name="irq1" number="19">

<msi name="msi1"/>
509 </irq>

<memory caching="UC" name="mem1" physicalAddress="16#d253_8000#" size="16#1000#"/>
511 <memory caching="UC" name="mmconf" physicalAddress="16#f80f_a000#" size="16#1000#"/>

<ioPort end="16#60af#" name="ioport1" start="16#60a8#"/>
513 <ioPort end="16#60bf#" name="ioport2" start="16#60bc#"/>

<ioPort end="16#60a7#" name="ioport3" start="16#60a0#"/>
515 <ioPort end="16#60bb#" name="ioport4" start="16#60b8#"/>

<ioPort end="16#607f#" name="ioport5" start="16#6060#"/>
517 </device>

<device name="smbus_1">
519 <description>Intel Corporation 7 Series/C216 Chipset Family SMBus Controller</description>

<pci bus="16#00#" device="16#1f#" function="3">
521 <identification classcode="16#0c05#" deviceId="16#1e22#" revisionId="16#04#" vendorId="16#8086#

"/>
<iommuGroup id="12"/>

523 </pci>
<irq name="irq1" number="18"/>

525 <memory caching="UC" name="mem1" physicalAddress="16#d253_4000#" size="16#1000#"/>

111

<memory caching="UC" name="mmconf" physicalAddress="16#f80f_b000#" size="16#1000#"/>
527 <ioPort end="16#efbf#" name="ioport1" start="16#efa0#"/>

</device>
529 <device name="network_controller_1">

<description>Intel Corporation Centrino Advanced-N 6205 [Taylor Peak]</description>
531 <pci bus="16#03#" device="16#00#" function="0">

<identification classcode="16#0280#" deviceId="16#0085#" revisionId="16#34#" vendorId="16#8086#
"/>

533 <iommuGroup id="13"/>
</pci>

535 <irq name="irq1" number="17">
<msi name="msi1"/>

537 </irq>
<memory caching="UC" name="mem1" physicalAddress="16#d1c0_0000#" size="16#2000#"/>

539 <memory caching="UC" name="mmconf" physicalAddress="16#f830_0000#" size="16#1000#"/>
</device>

541 <device name="system_peripheral_1">
<description>Ricoh Co Ltd PCIe SDXC/MMC Host Controller</description>

543 <pci bus="16#04#" device="16#00#" function="0">
<identification classcode="16#0880#" deviceId="16#e823#" revisionId="16#07#" vendorId="16#1180#

"/>
545 <iommuGroup id="14"/>

</pci>
547 <irq name="irq1" number="18">

<msi name="msi1"/>
549 </irq>

<memory caching="UC" name="mem1" physicalAddress="16#d140_0000#" size="16#1000#"/>
551 <memory caching="UC" name="mmconf" physicalAddress="16#f840_0000#" size="16#1000#"/>

</device>
553 </devices>

</hardware>
555 <platform>

<!--
557 To enable a uniform view of the hardware resources across different

physical machines from the system integrators perspective, the platform
559 description layer is interposed between the hardware resource

description and the rest of the system policy. This allows to build a
561 Muen system for different physical target machines using the same system

policy.
563 -->

<mappings>
565 <!--

Platform device alias and class mappings section. Used to assign a
567 stable name to a hardware device or to group (multiple) devices under a

given name.
569 -->

<aliases>
571 <!--

Aliases are a renaming mechanism for physical hardware devices and their
573 resources. By using alias names in the system policy references to

concrete hardware resources can be avoided. Additionally, aliases may be
575 used to define a device which only contains a subset of the resources of

the physical device. This can be achieved by only renaming the resources
577 that the device alias should export.

-->
579 <alias name="serial_device_1" physical="serial_controller_1">

<resource name="ioport1" physical="ioport1"/>
581 </alias>

<alias name="nic_1" physical="ethernet_controller_1">
583 <resource name="irq1" physical="irq1">

<resource name="msi1" physical="msi1"/>
585 </resource>

<resource name="mem1" physical="mem1"/>
587 <resource name="mem2" physical="mem2"/>

</alias>
589 <alias name="storage_controller" physical="sata_controller_1"/>

<alias name="ahci_controller" physical="sata_controller_1">
591 <resource name="irq1" physical="irq1">

<resource name="msi1" physical="msi1"/>
593 </resource>

<resource name="ahci_registers" physical="mem1"/>
595 <resource name="mmconf" physical="mmconf"/>

</alias>
597 </aliases>

<classes>
599 <!--

The ‘classes‘ element specifies a list of device classes.
601 -->

<class name="desktop_devices">
603 <!--

Device classes enable the grouping of devices and allow referencing all
605 devices by a single name. This simplifies the process of assigning

multiple devices to a subject.
607

Note: A device class may contain an arbitrary number of devices,
609 including zero.

-->

112

611 <device physical="audio_device_1"/>
<device physical="ethernet_controller_1"/>

613 <device physical="network_controller_1"/>
<device physical="sata_controller_1"/>

615 <device physical="system_peripheral_1"/>
</class>

617 <class name="additional_nics">
<device physical="network_controller_1"/>

619 </class>
</classes>

621 </mappings>
<kernelDiagnostics type="uart">

623 <!--
The debug build Muen SK can be instructed to output debugging

625 information during runtime. The platform diagnostics device specifies
which device the kernel is to use for this purpose.

627
The presence of this device and the necessary resources are checked by

629 the validator tool.
-->

631 <device physical="serial_controller_1">
<ioPort physical="ioport1"/>

633 </device>
</kernelDiagnostics>

635 </platform>
<memory>

637 <!--
This section declares all physical memory regions (RAM) and thus the

639 physical memory layout of the system. Regions declared in this section
can be assigned to subjects and device domains.

641
Memory regions are defined by the following attributes:

643
- Name

645
- Caching type

647
- Size

649
- Physical address*

651
- Alignment*

653
- Memory type*

655
Attributes with an asterisk are optional. While alignment and memory

657 type are set to a default value if not specified, the physical address
is filled in by the allocator tool, which allocates all memory regions

659 and finalizes the physical memory layout.

661 Additionally, the content of a region can be declared as backed by a
file or filled with a pattern.

663
Note: The caching type is an attribute of the physical memory region by

665 design to avoid inconsistent typing, even though the Intel Page
Attribute Table (PAT) mechanism allows to set it for each memory

667 mapping, see Intel SDM Vol. 3A, "11.12.4 Programming the PAT".
-->

669 <memory caching="WB" name="control_example" size="16#1000#">
<fill pattern="16#00#">

671 <!--
The ‘fill‘ element designates a memory region which is initialized with

673 the given pattern.
-->

675 </fill>
<hash value="none"/>

677 </memory>
<memory caching="WB" name="control_sm_1" size="16#1000#">

679 <fill pattern="16#00#"/>
<hash value="none"/>

681 </memory>
<memory caching="WB" name="control_sm_2" size="16#1000#">

683 <fill pattern="16#ff#"/>
<hash value="none"/>

685 </memory>
<memory caching="WB" name="control_time" size="16#1000#">

687 <fill pattern="16#ff#"/>
<hash value="none"/>

689 </memory>
<memory caching="WB" name="control_linux_1" size="16#1000#">

691 <fill pattern="16#ff#"/>
<hash value="none"/>

693 </memory>
<memory caching="WB" name="status_example" size="16#1000#">

695 <hash value="none"/>
</memory>

697 <memory caching="WB" name="status_sm_1" size="16#1000#">

113

<hash value="none"/>
699 </memory>

<memory caching="WB" name="status_sm_2" size="16#1000#">
701 <fill pattern="16#00#"/>

<hash value="none"/>
703 </memory>

<memory caching="WB" name="status_time" size="16#1000#">
705 <fill pattern="16#00#"/>

<hash value="none"/>
707 </memory>

<memory caching="WB" name="status_linux_1" size="16#1000#">
709 <fill pattern="16#00#"/>

<hash value="none"/>
711 </memory>

<memory caching="WB" name="initramfs" size="16#0113_0000#" type="subject_initrd">
713 <file filename="initramfs.cpio.gz" offset="none">

<!--
715 The ‘file‘ child element designates a file-backed memory region.

717 The ‘filename‘ attribute specifies the name of the file to use as
content for the physical memory region, the ‘offset‘ attribute is ‘none‘

719 by default but can be customized to include a partial file.
-->

721 </file>
</memory>

723 <memory caching="WB" name="nic_linux|ram" size="16#1000_0000#"/>
<memory caching="WB" name="nic_linux|lowmem" size="16#0008_0000#"/>

725 <memory caching="WB" name="storage_linux|ram" size="16#1000_0000#"/>
<memory caching="WB" name="storage_linux|lowmem" size="16#0008_0000#"/>

727 <memory caching="WB" name="example_filled_region" size="16#1000#">
<fill pattern="16#5a#"/>

729 </memory>
<memory caching="UC" name="crash_audit" physicalAddress="16#0001_00a1_1000#" size="16#1000#" type=
"subject_crash_audit">

731 </memory>
</memory>

733 <deviceDomains>
<!--

735 The physical memory accessible by PCI devices is specified by so called
device domains. Such domains define memory mappings of physical memory

737 regions for one or multiple devices. Device references select a subset
of hardware devices provided by the hardware/platform. Devices may be

739 referenced by device name, alias or device class.

741 Device references can optionally set the ‘mapReservedMemory‘ attribute
so RMRR regions referenced by the device are also mapped into the device

743 domain.

745 Device domains are isolated from each other by the use of Intel VT-d.
-->

747 <domain name="nic_domain">
<memory>

749 <mapSubjectMemory subject="nic_linux"/>
</memory>

751 <devices>
<device logical="first_nic" physical="ethernet_controller_1"/>

753 <device logical="additional_nics" physical="additional_nics"/>
</devices>

755 </domain>
<domain name="storage_domain">

757 <memory>
<memory executable="false" logical="dma1" physical="storage_linux|lowmem" virtualAddress="
16#0002_0000#" writable="true">

759 <!--
A ‘memory‘ element maps a physical memory region into the address space

761 of a device domain or subject entity. The region will be accessible to
the entity at the specified ‘virtualAdress‘ with permissions defined by

763 the ‘executable‘ and ‘writable‘ attributes.
-->

765 </memory>
<memory executable="false" logical="dma2" physical="storage_linux|ram" virtualAddress="16#0100
_0000#" writable="true"/>

767 </memory>
<devices>

769 <device logical="storage_controller" physical="storage_controller"/>
<device logical="xhci" physical="usb_controller_1"/>

771 </devices>
</domain>

773 </deviceDomains>
<events>

775 <!--
Events are an activity caused by a subject (source) that impacts a

777 second subject (target) or is directed at the kernel. Events are
declared globally and have a unique name to be unambiguous. An event

779 must have a single source and one target.

781 Subjects can use events to either deliver an interrupt, hand over

114

execution to or reset the state of a target subject. The first kind of
783 event provides a basic notification mechanism and enables the

implementation of event-driven services. The second type facilitates
785 suspension of execution of the source subject and switching to the

target. Such a construct is used to pass the thread of execution on to a
787 different subject, e.g. invocation of a debugger subject if an error

occurs in the source subject. The third kind is used to facilitate the
789 restart of subjects.

791 An event can also have the same source and target, which is called

self event. Such events are useful to implement para-virtualized
793 timers in VM subjects for example.

795 Kernel events are special in that they are targeted at the kernel. The
currently supported events are system reboot and shutdown.

797 -->
<event mode="switch" name="resume_linux_1">

799 <!--
The ‘eventType‘ specifies an event by name and mode.

801
The following event modes are currently supported:

803
- ‘asap‘ă

805 The asap event is an abstraction to state that the event should be
delivered as soon as possible, depending on the CPU of the target

807 subject. If the target runs on another CPU core, this mode is
expanded to mode *ipi*, which is only available in policy formats A

809 and B, instructing the kernel to preempt the kernel running the
target subject and inject the event immediately. If the target

811 subject runs on the same core as the source subject, the mode is
expanded to mode *async*.

813
- ‘async‘ă

815 Async events trigger no preemption at the target subject. The event
is marked as pending in the target subjects pending event table and

817 inserted on the next VM exit/entry cycle of the target subject.

819 - ‘self‘ă
An event can also have the same source and target, which is called a

821 self event. Such events are useful to implement para-virtualized
timers in VM subjects for example. A subject sends itself a delayed

823 event, using the timed event mechanism. Note that a self event must
always have a target action assigned, which is checked by the

825 validator.

827 - ‘switch‘ă
The switch mode facilitates suspension of execution of the source

829 subject and switching to the target. This can only happen between
subjects running on the same core. Such a construct is used to pass

831 the thread of execution on to a different subject, e.g. invocation
of a debugger subject if an error occurs in the source subject. It

833 is called *handover* or *handover event*.

835 - ‘kernel‘ă
These kinds of events are directed at the kernel an thus only

837 specify a source since the target is the kernel. They are used to
enable specific subjects to unmask level-triggered IRQs and trigger

839 a system reboot, poweroff or explicit panic (crash audit slot
allocation and reboot).

841 -->
</event>

843 <event mode="switch" name="resume_linux_2"/>
<event mode="switch" name="trap_to_sm_1"/>

845 <event mode="switch" name="trap_to_sm_2"/>
<event mode="switch" name="load_linux_1"/>

847 <event mode="switch" name="start_linux_1"/>
<event mode="switch" name="reset_linux_1"/>

849 <event mode="switch" name="reset_linux_2"/>
<event mode="async" name="reset_sm_1"/>

851 <event mode="async" name="reset_slot_1"/>
<event mode="async" name="request_reset_slot_1"/>

853 <event mode="async" name="serial_irq4_linux_1"/>
<event mode="async" name="serial_irq4_linux_2"/>

855 <event mode="self" name="timer_linux_1"/>
<event mode="self" name="timer_linux_2"/>

857 <event mode="kernel" name="subject_sleep"/>
<event mode="kernel" name="subject_yield"/>

859 <event mode="kernel" name="system_reboot"/>
<event mode="kernel" name="system_poweroff"/>

861 <event mode="kernel" name="system_panic"/>
<event mode="self" name="example_self"/>

863 </events>
<channels>

865 <!--
Inter-subject communication is specified by so called channels. These

867 channels represent directed information flows since they have a single
writer and possibly multiple readers. Optionally a channel can have an

115

869 associated notification event (doorbell interrupt).

871 Channels are declared globally and have an unique name to be
unambiguous.

873
Note that channels are a policy source format abstraction. The toolchain

875 resolves this concept into memory regions and events as well as the
appropriate subject mappings.

877 -->
<channel hasEvent="asap" name="input_events" size="16#1000#">

879 <!--
The ‘channel‘ element declares a physical channel.

881
Besides the ‘name‘ and ‘size‘ of the channel, the optional ‘hasEvent‘

883 attribute can be set to declare that the given channel requests an
associated event. The expander tool will then automatically create a

885 global event of the requested event type.
-->

887 </channel>
<channel hasEvent="asap" name="virtual_input_1" size="16#1000#"/>

889 <channel hasEvent="asap" name="virtual_input_2" size="16#1000#"/>
<channel hasEvent="asap" name="virtual_console_1" size="16#0001_0000#"/>

891 <channel hasEvent="asap" name="virtual_console_2" size="16#0001_0000#"/>
<channel name="time_info" size="16#1000#"/>

893 <channel name="debuglog_subject1" size="16#0002_0000#"/>
<channel name="debuglog_subject2" size="16#0002_0000#"/>

895 <channel name="debuglog_subject3" size="16#0002_0000#"/>
<channel name="debuglog_subject4" size="16#0002_0000#"/>

897 <channel name="debuglog_subject5" size="16#0002_0000#"/>
<channel name="debuglog_subject6" size="16#0002_0000#"/>

899 <channel name="debuglog_subject7" size="16#0002_0000#"/>
<channel hasEvent="switch" name="nic_dm_request" size="16#1000#"/>

901 <channel hasEvent="switch" name="nic_dm_response" size="16#1000#"/>
<channel hasEvent="switch" name="storage_dm_request" size="16#1000#"/>

903 <channel hasEvent="switch" name="storage_dm_response" size="16#1000#"/>
<channel name="debuglog_controller" size="16#0002_0000#"/>

905 <channel name="testchannel_1" size="16#1000#"/>
<channel name="testchannel_2" size="16#1000#"/>

907 <channel name="testchannel_3" size="16#0010_0000#"/>
<channel name="testchannel_4" size="16#0010_0000#"/>

909 <channel name="debuglog_example" size="16#0002_0000#"/>
<channel hasEvent="asap" name="example_request" size="16#1000#"/>

911 <channel hasEvent="asap" name="example_response" size="16#1000#"/>
</channels>

913 <components>
<!--

915 The ‘components‘ element holds a list of components and component
libraries.

917
Note that components are a policy source format abstraction. The

919 toolchain resolves this concept into subjects by adding the appropriate
memory regions, events and devices.

921 -->
<library name="libmucontrol">

923 <!--
A component library is a specialized component specification which is

925 used to share common resources required for library code to operate.
Component libraries can be included by multiple components in order to

927 share functionality. An example is a logging service provided by a
dedicated component, whereas the logging client is provided as a library

929 with a shared memory channel for the actual log messages.

931 A component specification declares library dependencies to request the
library resources from the system through the inclusion of the library

933 specification in the ‘depends‘ section. This way components inherit the
resources of libraries.

935
On the source code level, a library is included by mechanisms provided

937 by the respective programming language. Note that the component library
code is *not* shared between components but lives in the isolated

939 execution environment of a subject instantiating the component (i.e.
statically linked libraries).

941
Libraries can request the same resources as ordinary components. A

943 subject instantiating the component must also map the resources
requested by libraries the component depends on.

945 -->
<requires>

947 <memory>
<!--

949 In this section, components can specify expected memory mappings with
given access rights and region size.

951 -->
<memory executable="false" logical="control" size="16#1000#" virtualAddress="16#000f_ffff_3000#

" writable="false">
953 <!--

The ‘memory‘ element requests a memory region with the specified ‘size‘

116

955 and permissions from the system. The region is expected to be placed at
the address given via the ‘virtualAddress‘ attribute.

957 -->
</memory>

959 <memory executable="false" logical="status" size="16#1000#" virtualAddress="16#000f_ffff_2000#"
writable="true"/>
</memory>

961 </requires>
</library>

963 <library name="libmudebuglog">
<config>

965 <string name="logchannel_size" value="16#0002_0000#"/>
</config>

967 <requires>
<channels>

969 <!--
Components and libraries use the ‘channels‘ sub-section of ‘requires‘ to

971 specify expected communication channels.
-->

973 <writer logical="debuglog" size="16#0002_0000#" virtualAddress="16#000f_fff0_0000#">
<!--

975
-->

977 </writer>
</channels>

979 </requires>
</library>

981 <library name="libmudm">
<requires>

983 <channels>
<writer event="8" logical="dm_pciconf_req" size="16#1000#" virtualAddress="16#2000_0000#"/>

985 <reader logical="dm_pciconf_res" size="16#1000#" virtualAddress="16#2000_1000#">
<!--

987 The ‘reader‘ element requests a read-only channel of the specified size,
address and optional notification vector.

989 -->
</reader>

991 </channels>
</requires>

993 </library>
<library name="libmuinit">

995 <depends>
<library ref="libmucontrol"/>

997 </depends>
</library>

999 <library name="libmutime">
<requires>

1001 <channels>
<reader logical="time_info" size="16#1000#" virtualAddress="16#000f_ffd0_0000#"/>

1003 </channels>
</requires>

1005 </library>
<library name="libxhcidbg">

1007 <requires>
<memory>

1009 <memory executable="false" logical="xhci_dma" size="16#0004_1000#" virtualAddress="16#0100_0000
#" writable="true"/>
</memory>

1011 <devices>
<device logical="xhci">

1013 <memory executable="false" logical="xhci_registers" size="16#0001_0000#" virtualAddress="16#
e000_0000#" writable="true"/>
</device>

1015 </devices>
</requires>

1017 </library>
<library name="muinit">

1019 <depends>
<library ref="libmuinit"/>

1021 </depends>
<requires>

1023 <vcpu>
<!--

1025 The ‘vcpu‘ element controls the execution behavior of the virtual CPU
(vCPU). A default vCPU profile is selected by the component profile, but

1027 CPU execution settings can be customized both at component and subject
level.

1029 -->
<registers>

1031 <gpr>
<rip>16#0010_0000#</rip>

1033 </gpr>
</registers>

1035 </vcpu>
</requires>

1037 <provides>

117

<memory executable="true" logical="muinit" size="16#9000#" type="subject_binary" virtualAddress=
"16#0010_0000#" writable="false">

1039 <file filename="muinit" offset="none"/>
</memory>

1041 </provides>
</library>

1043 <component name="ahci_drv" profile="native">
<!--

1045 A component is a piece of software which shall be executed by the SK.
Components represent the building blocks of a component-based system and

1047 can be regarded as templates for executable entities instantiated by
subjects.

1049
The specification of a component declares the *binary program* by means

1051 of (file-backed memory) regions. It also specifies the components view
of the expected execution environment. A component may request the

1053 following resources from the system:

1055 - Logical channels

1057 - Logical memory regions

1059 - Logical devices

1061 - Logical events

1063 Components are identified by name and specify a profile. The profile
controls the settings of the virtual CPU (vCPU).

1065 -->
<depends>

1067 <!--
Components and libraries are allowed to declare dependencies to other

1069 libraries. All resources required by the included library are merged
with the ones specified by the component or library. Libraries can

1071 depend on other libraries.

1073 A subject realizing this component must correctly map all component and
library resource requirements to physical resources in order to fulfill

1075 the expectations.
-->

1077 <library ref="libmudebuglog"/>
</depends>

1079 <requires>
<vcpu>

1081 <registers>
<gpr>

1083 <rip>16#0020_0000#</rip>
</gpr>

1085 </registers>
</vcpu>

1087 <memory>
<!-- for 32 ports 16#c000# bytes are needed for descriptor tables + 16K for device init -->

1089 <memory executable="false" logical="dma_region" size="16#0001_0000#" virtualAddress="16#
a000_0000#" writable="true"/>
<array elementSize="16#0100_0000#" executable="false" logical="blockdev_shm" virtualAddressBase

="16#a100_0000#" writable="true">
1091 <memory logical="blockdev_shm1"/>

<memory logical="blockdev_shm2"/>
1093 </array>

</memory>
1095 <channels>

<array elementSize="16#0000_8000#" logical="blockdev_request" vectorBase="64"
virtualAddressBase="16#0001_0000_0000#">

1097 <!--
The channel array abstraction simplifies the declaration of consecutive

1099 channel mappings with a given base address, channel size and optional
event/vector bases. The child elements declare the number of expected

1101 channels and either the ‘reader‘ or ‘writer‘ role.
-->

1103 <reader logical="blockdev_request1">
<!--

1105 Array entries specify the number of array elements and assign a logical
name to each element.

1107 -->
</reader>

1109 <reader logical="blockdev_request2"/>
</array>

1111 <array elementSize="16#0000_4000#" eventBase="16" logical="blockdev_response"
virtualAddressBase="16#0001_0001_0000#">

<writer logical="blockdev_response1"/>
1113 <writer logical="blockdev_response2"/>

</array>
1115 </channels>

<devices>
1117 <!--

The ‘devices‘ sub-section of the ‘requires‘ section is used to specify
1119 expected devices with their associated resources.

118

-->
1121 <device logical="ahci_controller">

<!--
1123 A ‘device‘ element specifies an expected logical device with its

resources. Possible resources are ‘irq‘, ‘memory‘ and ‘ioPort‘.
1125 -->

<irq logical="irq" vector="48">
1127 <!--

An ‘irq‘ element of a logical device reference requests an IRQ with
1129 given number from the system policy. The specified number will be

injected when the device requires attention for the associated logical
1131 function.

-->
1133 </irq>

<memory executable="false" logical="ahci_registers" size="16#1000#" virtualAddress="16#
e000_0000#" writable="true"/>

1135 <memory executable="false" logical="mmconf" size="16#1000#" virtualAddress="16#f800_8000#"
writable="true"/>
</device>

1137 </devices>
</requires>

1139 <provides>
<!--

1141 Components usually come in the form of an executable file. To this end,
the ‘provides‘ section specifies the memory regions of the component

1143 binary executable with their content.

1145 From a security perspective, it is often desirable to provide the
different binary section as separate memory regions with the appropriate

1147 access rights, i.e. only the text section is executable, rodata is not
writable and so on.

1149
Memory specified in this sections are expanded to mapped physical

1151 regions for each subject that instantiates this component.

1153 Note: the Mucbinsplit tool can be used to extract these section from an
ELF binary into separate files and automatically add the corresponding

1155 memory elements to the component specification.
-->

1157 <memory executable="true" logical="text" size="16#9000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<!--

1159 A ‘memory‘ element in the ‘provides‘ section declares memory region
provided by the component. Mostly used to provide (a part) of the

1161 component binary.
-->

1163 <file filename="ahci_drv_text" offset="none"/>
<hash value="16#270e3253624032bafa782340acf26b056ca2e635ecfdaaa28bf6c74af3cfea60#"/>

1165 </memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary" virtualAddress
="16#0020_9000#" writable="false">

1167 <file filename="ahci_drv_rodata" offset="none"/>
<hash value="16#f7eba385de0bba39cc5d5e860fca26c765ed0fd05b8ba326639e5c699341251a#"/>

1169 </memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_a000#" writable="true">

1171 <file filename="ahci_drv_data" offset="none"/>
<hash value="16#1cb2148aef42e097dad59630d8940dce44f8b351f88fcfac9ded03d0a2a831b1#"/>

1173 </memory>
<memory executable="false" logical="bss" size="16#3000#" type="subject_binary" virtualAddress="
16#0020_b000#" writable="true">

1175 <fill pattern="16#00#"/>
</memory>

1177 <memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress=
"16#1000#" writable="true">
<fill pattern="16#00#"/>

1179 </memory>
</provides>

1181 </component>
<component name="controller" profile="native">

1183 <depends>
<library ref="libmudebuglog"/>

1185 </depends>
<requires>

1187 <vcpu>
<registers>

1189 <gpr>
<rip>16#0020_0000#</rip>

1191 </gpr>
</registers>

1193 </vcpu>
<memory>

1195 <array elementSize="16#1000#" executable="false" logical="control" virtualAddressBase="16#0001
_0000_0000#" writable="true">

<memory logical="control_1"/>
1197 <memory logical="control_2"/>

<memory logical="control_3"/>

119

1199 <memory logical="control_4"/>
<memory logical="control_5"/>

1201 </array>
<array elementSize="16#1000#" executable="false" logical="status" virtualAddressBase="16#0001

_0000_5000#" writable="false">
1203 <memory logical="status_1"/>

<memory logical="status_2"/>
1205 <memory logical="status_3"/>

<memory logical="status_4"/>
1207 <memory logical="status_5"/>

</array>
1209 </memory>

<events>
1211 <!--

The ‘events‘ sub-section of the ‘requires‘ section is used to specify
1213 expected events with optional event actions.

1215 A component can specify both source as well as target events.
-->

1217 <source>
<event id="10" logical="reset_slot_1_sm"/>

1219 <event id="11" logical="reset_slot_1_linux"/>
</source>

1221 <target>
<event logical="request_reset_slot_1">

1223 <inject_interrupt vector="32"/>
</event>

1225 </target>
</events>

1227 </requires>
<provides>

1229 <memory executable="true" logical="text" size="16#2000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">
<file filename="controller_text" offset="none"/>

1231 <hash value="16#5f81491568d860bd9b42f6c6d2b49733eabf65069ba18b79031d7bcb95ef0f49#"/>
</memory>

1233 <memory executable="false" logical="rodata" size="16#1000#" type="subject_binary" virtualAddress
="16#0020_2000#" writable="false">
<file filename="controller_rodata" offset="none"/>

1235 <hash value="16#df41e836ab51453074f093d2824347d90d272ec8abaf4197c5ddb7636fd83320#"/>
</memory>

1237 <memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_3000#" writable="true">
<file filename="controller_data" offset="none"/>

1239 <hash value="16#ad7facb2586fc6e966c004d7d1d16b024f5805ff7cb47c7a85dabd8b48892ca7#"/>
</memory>

1241 <memory executable="false" logical="bss" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_4000#" writable="true">
<fill pattern="16#00#"/>

1243 </memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress=
"16#1000#" writable="true">

1245 <fill pattern="16#00#"/>
</memory>

1247 </provides>
</component>

1249 <component name="dbgserver" profile="native">
<config>

1251 <!--
Components may declare their own configuration values in the config

1253 section. Just like global system config values, these can also be
used in ‘<if>‘ expressions and XML attribute value expansion.

1255 -->
<boolean name="sink_serial" value="true"/>

1257 <boolean name="sink_shmem" value="false"/>
<boolean name="hsuart_enabled" value="false"/>

1259 <boolean name="sink_xhcidbg" value="false"/>
<boolean name="default_channel_enabled_state" value="true"/>

1261 <boolean name="sink_pcspkr" value="false"/>
<string name="logchannel_size" value="16#0002_0000#"/>

1263 <string name="debugconsole_port_start" value="16#60b0#"/>
<string name="enabled_channels_override" value=""/>

1265 <string name="debugconsole_port_end" value="16#60b7#"/>
</config>

1267 <requires>
<vcpu>

1269 <registers>
<gpr>

1271 <rip>16#0020_0000#</rip>
</gpr>

1273 </registers>
</vcpu>

1275 <memory>
<memory executable="false" logical="crash_audit" size="16#1000#" virtualAddress="16#0001

_0000_0000#" writable="false"/>
1277 </memory>

<channels>

120

1279 <array elementSize="16#0002_0000#" logical="log_channels" virtualAddressBase="16#a000_0000#">
<reader logical="log_channel1"/>

1281 <reader logical="log_channel2"/>
<reader logical="log_channel3"/>

1283 <reader logical="log_channel4"/>
<reader logical="log_channel5"/>

1285 <reader logical="log_channel_example"/>
<reader logical="log_channel_6"/>

1287 <reader logical="log_channel7"/>
<reader logical="log_channel8"/>

1289 </array>
</channels>

1291 <devices>
<device logical="debugconsole">

1293 <ioPort end="16#60b7#" logical="port" start="16#60b0#">
<!--

1295 The ‘ioPort‘ element requests a device I/O port resource with given
range ‘start .. end‘ from the system.

1297 -->
</ioPort>

1299 </device>
</devices>

1301 <events>
<source>

1303 <event id="30" logical="shutdown">
<system_poweroff>

1305 <!--
An example of a source event action directed at the kernel. If this

1307 event is triggered by the associated subject, the system will power
off.

1309 -->
</system_poweroff>

1311 </event>
<event id="31" logical="reboot">

1313 <system_reboot/>
</event>

1315 </source>
</events>

1317 </requires>
<provides>

1319 <memory executable="true" logical="text" size="16#a000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">

<file filename="dbgserver_text" offset="none"/>
1321 <hash value="16#c8da027b04d470c6e960e4e4178007dec2717d5150206c5feeb5876239d1dce6#"/>

</memory>
1323 <memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"

virtualAddress="16#0020_a000#" writable="false">
<file filename="dbgserver_rodata" offset="none"/>

1325 <hash value="16#e02e60e1a1f04bf00c7cd5f6e95fd1ff443e55425f5b3e4e5f9bc3b19e7b0aff#"/>
</memory>

1327 <memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_b000#" writable="true">

<file filename="dbgserver_data" offset="none"/>
1329 <hash value="16#d43fbd74e74608f7b7a3279e6a4c24c710752ac5f074a490e5a47705698a1bc1#"/>

</memory>
1331 <memory executable="false" logical="bss" size="16#e000#" type="subject_binary" virtualAddress="

16#0020_c000#" writable="true">
<fill pattern="16#00#"/>

1333 </memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress

="16#1000#" writable="true">
1335 <fill pattern="16#00#"/>

</memory>
1337 </provides>

</component>
1339 <component name="dm" profile="native">

<depends>
1341 <library ref="libmudebuglog"/>

</depends>
1343 <requires>

<vcpu>
1345 <registers>

<gpr>
1347 <rip>16#0020_0000#</rip>

</gpr>
1349 </registers>

</vcpu>
1351 <channels>

<reader logical="request" size="16#1000#" virtualAddress="16#0001_0000_0000#"/>
1353 <writer event="16" logical="response" size="16#1000#" virtualAddress="16#0001_0000_1000#"/>

</channels>
1355 </requires>

<provides>
1357 <memory executable="true" logical="text" size="16#4000#" type="subject_binary" virtualAddress="

16#0020_0000#" writable="false">
<file filename="dm_text" offset="none"/>

1359 <hash value="16#dc81a95b073a39da9a537ed6c67267eeaff6e054540ee5aed42651fd0b6ea4cd#"/>

121

</memory>
1361 <memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"

virtualAddress="16#0020_4000#" writable="false">
<file filename="dm_rodata" offset="none"/>

1363 <hash value="16#9b0f0a96844d7684153e7b7ff87212861f47de003b5f73881f4f1150c27fe686#"/>
</memory>

1365 <memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_5000#" writable="true">

<file filename="dm_data" offset="none"/>
1367 <hash value="16#9348d0aec58fa2e80f74bf3a52440ec842aa7e6bf948bcd98d40d1c30dc218ec#"/>

</memory>
1369 <memory executable="false" logical="bss" size="16#1000#" type="subject_binary" virtualAddress="

16#0020_6000#" writable="true">
<fill pattern="16#00#"/>

1371 </memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress

="16#1000#" writable="true">
1373 <fill pattern="16#00#"/>

</memory>
1375 </provides>

</component>
1377 <component name="example" profile="native">

<config>
1379 <boolean name="ahci_drv_enabled" value="false"/>

<boolean name="print_serial" value="false"/>
1381 <boolean name="print_vcpu_speed" value="true"/>

<integer name="serial" value="123456789"/>
1383 <string name="greeter" value="Subject running"/>

</config>
1385 <depends>

<library ref="libmudebuglog"/>
1387 <library ref="muinit"/>

</depends>
1389 <requires>

<vcpu>
1391 <vmx>

<masks>
1393 <exception>

<Breakpoint>0</Breakpoint>
1395 </exception>

</masks>
1397 </vmx>

<registers>
1399 <gpr>

<rip>16#0020_0000#</rip>
1401 </gpr>

<cr4>
1403 <XSAVEEnable>1</XSAVEEnable>

</cr4>
1405 </registers>

</vcpu>
1407 <memory>

<memory executable="false" logical="filled_region" size="16#1000#" virtualAddress="16#0001
_0000_0000#" writable="true"/>

1409 </memory>
<channels>

1411 <reader logical="example_request" size="16#1000#" vector="64" virtualAddress="16#0001
_0000_1000#"/>

<writer event="16" logical="example_response" size="16#1000#" virtualAddress="16#0001
_0000_2000#"/>

1413 </channels>
<events>

1415 <source>
<event id="2" logical="yield">

1417 <subject_yield/>
</event>

1419 <event id="3" logical="timer"/>
<event id="4" logical="sleep">

1421 <subject_sleep/>
</event>

1423 </source>
<target>

1425 <event logical="inject_timer">
<inject_interrupt vector="37"/>

1427 </event>
</target>

1429 </events>
</requires>

1431 <provides>
<memory executable="false" logical="interrupt_stack" size="16#2000#" type="subject_binary"

virtualAddress="16#0001_0000#" writable="true">
1433 <fill pattern="16#00#"/>

</memory>
1435 <memory executable="true" logical="text" size="16#4000#" type="subject_binary" virtualAddress="

16#0020_0000#" writable="false">
<file filename="example_text" offset="none"/>

1437 <hash value="16#f09a98fdd53015ba2c2484b330b68bbad129d60054a6f610f26e9efe300fb379#"/>

122

</memory>
1439 <memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"

virtualAddress="16#0020_4000#" writable="false">
<file filename="example_rodata" offset="none"/>

1441 <hash value="16#c647749cba2a151be2a1c451441bfc4882e76f8a554c74ee497dfdcc55b70785#"/>
</memory>

1443 <memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_5000#" writable="true">

<file filename="example_data" offset="none"/>
1445 <hash value="16#3466ddf188d8d88cef240e0f02dedb3c09d5a21d6c27b3f3299b74dcd3e30393#"/>

</memory>
1447 <memory executable="false" logical="bss" size="16#3000#" type="subject_binary" virtualAddress="

16#0020_6000#" writable="true">
<fill pattern="16#00#"/>

1449 </memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress

="16#1000#" writable="true">
1451 <fill pattern="16#00#"/>

</memory>
1453 </provides>

</component>
1455 <component name="idle" profile="native">

<requires>
1457 <vcpu>

<registers>
1459 <gpr>

<rip>16#0020_0000#</rip>
1461 </gpr>

</registers>
1463 </vcpu>

</requires>
1465 <provides>

<memory executable="true" logical="text" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">

1467 <file filename="idle_text" offset="none"/>
<hash value="16#3f85e2e49adb66104e3292d306517c5581cd7c226ba60e66a4414269083f8e8d#"/>

1469 </memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"

virtualAddress="16#0020_1000#" writable="false">
1471 <file filename="idle_rodata" offset="none"/>

<hash value="16#db97c62b590d580647fe04fcc6c8a962697fa51f0a7ab475a16967e29cbb4cb9#"/>
1473 </memory>

<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">

1475 <fill pattern="16#00#"/>
</memory>

1477 </provides>
</component>

1479 <component name="isolation_tests_monitor" profile="native">
<requires>

1481 <vcpu>
<registers>

1483 <gpr>
<rip>16#0020_0000#</rip>

1485 </gpr>
</registers>

1487 </vcpu>
<memory>

1489 <memory executable="false" logical="result_state" size="16#1000#" virtualAddress="16#0100_0000
#" writable="true"/>
</memory>

1491 <events>
<source>

1493 <event id="1" logical="resume_tests"/>
</source>

1495 <target>
<event logical="trap_to_monitor"/>

1497 </target>
</events>

1499 </requires>
<provides>

1501 <memory executable="true" logical="text" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">

<file filename="isolation_tests_monitor_text" offset="none"/>
1503 <hash value="16#7feb0756df521a4a652c42169ef4d4f0c665aef9bb29c09f5f55969baf718fa7#"/>

</memory>
1505 <memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"

virtualAddress="16#0020_1000#" writable="false">
<file filename="isolation_tests_monitor_rodata" offset="none"/>

1507 <hash value="16#dd605fb441991ff03476a906d81d12420eeeb511a501874bdcda0a761a311657#"/>
</memory>

1509 <memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_2000#" writable="true">

<file filename="isolation_tests_monitor_data" offset="none"/>
1511 <hash value="16#ad7facb2586fc6e966c004d7d1d16b024f5805ff7cb47c7a85dabd8b48892ca7#"/>

</memory>

123

1513 <memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">

<fill pattern="16#00#"/>
1515 </memory>

</provides>
1517 </component>

<component name="isolation_tests" profile="native">
1519 <config>

<integer name="log_entry_max" value="128"/>
1521 <integer name="log_buffer_size" value="65535"/>

</config>
1523 <depends>

<library ref="libmudebuglog"/>
1525 </depends>

<requires>
1527 <vcpu>

<msrs>
1529 <msr end="16#0174#" mode="r" start="16#0174#"/>

</msrs>
1531 <registers>

<gpr>
1533 <rip>16#0020_0000#</rip>

</gpr>
1535 </registers>

</vcpu>
1537 <memory>

<memory executable="false" logical="read_only" size="16#1000#" virtualAddress="16#1000_0000#"
writable="false"/>

1539 <memory executable="false" logical="result_state" size="16#1000#" virtualAddress="16#0100_0000
#" writable="true"/>
</memory>

1541 <events>
<target>

1543 <event logical="resume_tests"/>
</target>

1545 </events>
</requires>

1547 <provides>
<memory executable="true" logical="text" size="16#7000#" type="subject_binary" virtualAddress="

16#0020_0000#" writable="false">
1549 <file filename="isolation_tests_text" offset="none"/>

<hash value="16#1de77853ba33575f9e137963ff8e14b6d6ae62aac3d5026ae3e5aa016cecf5f9#"/>
1551 </memory>

<memory executable="false" logical="rodata" size="16#3000#" type="subject_binary"
virtualAddress="16#0020_7000#" writable="false">

1553 <file filename="isolation_tests_rodata" offset="none"/>
<hash value="16#2c6e5333ad82bfdf14837182f790e8994c8cd3327a12944a3f885c0d0e558fa3#"/>

1555 </memory>
<memory executable="false" logical="data" size="16#b000#" type="subject_binary" virtualAddress=

"16#0020_a000#" writable="true">
1557 <file filename="isolation_tests_data" offset="none"/>

<hash value="16#731b8abc3033235953e353ac5e0d68f1611e9739edb0e1ef274a0403ce883bef#"/>
1559 </memory>

<memory executable="false" logical="bss" size="16#0001_1000#" type="subject_binary"
virtualAddress="16#0021_5000#" writable="true">

1561 <fill pattern="16#00#"/>
</memory>

1563 <memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">

<fill pattern="16#00#"/>
1565 </memory>

</provides>
1567 </component>

<component name="linux" profile="linux">
1569 <requires>

<memory>
1571 <memory executable="true" logical="lowmem" size="16#0008_0000#" virtualAddress="16#0002_0000#"

writable="true"/>
<memory executable="true" logical="ram" size="16#1000_0000#" virtualAddress="16#0100_0000#"

writable="true"/>
1573 </memory>

</requires>
1575 <provides>

<memory executable="true" logical="binary" size="16#0078_5000#" type="subject_binary"
virtualAddress="16#0040_0000#" writable="true">

1577 <file filename="bzImage" offset="none"/>
</memory>

1579 <memory executable="false" logical="modules_initramfs" size="16#0002_3000#" type="
subject_initrd" virtualAddress="16#7113_0000#" writable="false">

<file filename="modules_initramfs.cpio.gz" offset="none"/>
1581 </memory>

</provides>
1583 </component>

<component name="ps2_drv" profile="native">
1585 <depends>

<library ref="libmudebuglog"/>
1587 </depends>

124

<requires>
1589 <vcpu>

<registers>
1591 <gpr>

<rip>16#0020_0000#</rip>
1593 </gpr>

</registers>
1595 </vcpu>

<channels>
1597 <writer event="16" logical="input_events" size="16#1000#" virtualAddress="16#0001_0000_0000#"/

>
</channels>

1599 <devices>
<device logical="ps2">

1601 <irq logical="kbd_irq" vector="49"/>
<irq logical="mouse_irq" vector="60"/>

1603 <ioPort end="16#0060#" logical="port_60" start="16#0060#"/>
<ioPort end="16#0064#" logical="port_64" start="16#0064#"/>

1605 </device>
</devices>

1607 </requires>
<provides>

1609 <memory executable="false" logical="interrupt_stack" size="16#2000#" type="subject_binary"
virtualAddress="16#0001_0000#" writable="true">

<fill pattern="16#00#"/>
1611 </memory>

<memory executable="true" logical="text" size="16#4000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">

1613 <file filename="ps2_drv_text" offset="none"/>
<hash value="16#f7a71b8b5711d460baf3a73a7e41c66759627598737f2d9e2ffb740187a1f40b#"/>

1615 </memory>
<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"

virtualAddress="16#0020_4000#" writable="false">
1617 <file filename="ps2_drv_rodata" offset="none"/>

<hash value="16#690afe132af76f72b625a0399814f37c750ecd7c333d2a05f36a48535d23c94c#"/>
1619 </memory>

<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_5000#" writable="true">

1621 <file filename="ps2_drv_data" offset="none"/>
<hash value="16#3588778c9b095a6ec7a846d4bf2a083ed54e0c7076ded731568c6a8cbf751f4b#"/>

1623 </memory>
<memory executable="false" logical="bss" size="16#2000#" type="subject_binary" virtualAddress="

16#0020_6000#" writable="true">
1625 <fill pattern="16#00#"/>

</memory>
1627 <memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress

="16#1000#" writable="true">
<fill pattern="16#00#"/>

1629 </memory>
</provides>

1631 </component>
<component name="sl" profile="native">

1633 <depends>
<library ref="libmuinit"/>

1635 </depends>
<requires>

1637 <vcpu>
<registers>

1639 <gpr>
<rip>16#0020_0000#</rip>

1641 </gpr>
</registers>

1643 </vcpu>
<events>

1645 <source>
<event id="0" logical="start"/>

1647 </source>
<target>

1649 <event logical="handle_reset"/>
</target>

1651 </events>
</requires>

1653 <provides>
<memory executable="true" logical="text" size="16#3000#" type="subject_binary" virtualAddress="

16#0020_0000#" writable="false">
1655 <file filename="sl_text" offset="none"/>

<hash value="16#e58bf50d4bf40c93e3e55fcbe1a463faf0d7e878a45ca46e7dc9c232e7bda20d#"/>
1657 </memory>

<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_3000#" writable="false">

1659 <file filename="sl_rodata" offset="none"/>
<hash value="16#680bc1a5bea402fb9232ce73620ece595c32696b86c6b9c4f3eb159cbd270e31#"/>

1661 </memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=

"16#0020_4000#" writable="true">
1663 <file filename="sl_data" offset="none"/>

<hash value="none"/>

125

1665 </memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress

="16#1000#" writable="true">
1667 <fill pattern="16#00#"/>

</memory>
1669 </provides>

</component>
1671 <component name="sm" profile="native">

<config>
1673 <boolean name="debug_wrmsr" value="false"/>

<boolean name="pciconf_emulation_enabled" value="true"/>
1675 <boolean name="debug_rdtsc" value="false"/>

<boolean name="debug_rdmsr" value="false"/>
1677 <boolean name="debug_cpuid" value="false"/>

<boolean name="debug_cr" value="false"/>
1679 <boolean name="debug_ioport" value="false"/>

<boolean name="debug_ept" value="false"/>
1681 </config>

<depends>
1683 <library ref="libmutime"/>

<library ref="libmudebuglog"/>
1685 <library ref="libmudm"/>

<library ref="muinit"/>
1687 </depends>

<requires>
1689 <vcpu>

<registers>
1691 <gpr>

<rip>16#0020_0000#</rip>
1693 </gpr>

</registers>
1695 </vcpu>

<events>
1697 <source>

<event id="4" logical="resume_subject"/>
1699 </source>

<target>
1701 <event logical="handle_subject_trap"/>

</target>
1703 </events>

</requires>
1705 <provides>

<memory executable="false" logical="interrupt_stack" size="16#2000#" type="subject_binary"
virtualAddress="16#0001_0000#" writable="true">

1707 <fill pattern="16#00#"/>
</memory>

1709 <memory executable="true" logical="text" size="16#6000#" type="subject_binary" virtualAddress="
16#0020_0000#" writable="false">

<file filename="sm_text" offset="none"/>
1711 <hash value="16#ffb98715e613cb0e9bd2363225f6446c5c99cd1d16e4d4baa80ff06a66bcffd4#"/>

</memory>
1713 <memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"

virtualAddress="16#0020_6000#" writable="false">
<file filename="sm_rodata" offset="none"/>

1715 <hash value="16#270ed58f917c50ceadafa64243d327fa49e0ca5c369465c171738dec6ccb3d67#"/>
</memory>

1717 <memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=
"16#0020_7000#" writable="true">

<file filename="sm_data" offset="none"/>
1719 <hash value="16#1645d0c24ddf2415497e7fbfea90b2c0eed2d82fa7d3f305d2112d88f5d38cc3#"/>

</memory>
1721 <memory executable="false" logical="bss" size="16#2000#" type="subject_binary" virtualAddress="

16#0020_8000#" writable="true">
<fill pattern="16#00#"/>

1723 </memory>
<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress

="16#1000#" writable="true">
1725 <fill pattern="16#00#"/>

</memory>
1727 </provides>

</component>
1729 <component name="time" profile="native">

<depends>
1731 <library ref="libmudebuglog"/>

<library ref="libmucontrol"/>
1733 </depends>

<requires>
1735 <vcpu>

<vmx>
1737 <controls>

<proc>
1739 <RDTSCExiting>0<!--

This is an example of a component that customizes the vCPU
1741 settings. In this case, direct access to the Time-Stamp Counter

(TSC) is enabled. The settings made here are merged with the
1743 (default) values defined by the component profile during policy

expansion by the Mucfgexpand tool.

126

1745 --></RDTSCExiting>
</proc>

1747 </controls>
</vmx>

1749 <registers>
<gpr>

1751 <rip>16#0020_0000#</rip>
</gpr>

1753 </registers>
</vcpu>

1755 <channels>
<array elementSize="16#1000#" logical="export_channels" virtualAddressBase="16#0001_0000_0000#

">
1757 <writer logical="time_export1"/>

</array>
1759 </channels>

<devices>
1761 <device logical="cmos_rtc">

<ioPort end="16#0071#" logical="ports" start="16#0070#"/>
1763 </device>

</devices>
1765 </requires>

<provides>
1767 <memory executable="true" logical="text" size="16#2000#" type="subject_binary" virtualAddress="

16#0020_0000#" writable="false">
<file filename="time_text" offset="none"/>

1769 <hash value="16#d45b62b5f8afa0a838bac83e854996e9a4059f173aac4905265fcfb22fb2f1d0#"/>
</memory>

1771 <memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_2000#" writable="false">

<file filename="time_rodata" offset="none"/>
1773 <hash value="16#b0fd849e1cb2a24c297924bebe30b0d11e47258ded43364b726431e322a233b6#"/>

</memory>
1775 <memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=

"16#0020_3000#" writable="true">
<file filename="time_data" offset="none"/>

1777 <hash value="16#ad7facb2586fc6e966c004d7d1d16b024f5805ff7cb47c7a85dabd8b48892ca7#"/>
</memory>

1779 <memory executable="false" logical="bss" size="16#1000#" type="subject_binary" virtualAddress="
16#0020_4000#" writable="true">

<fill pattern="16#00#"/>
1781 </memory>

<memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">

1783 <fill pattern="16#00#"/>
</memory>

1785 </provides>
</component>

1787 <component name="vt" profile="native">
<depends>

1789 <library ref="libmudebuglog"/>
</depends>

1791 <requires>
<vcpu>

1793 <registers>
<gpr>

1795 <rip>16#0020_0000#</rip>
</gpr>

1797 </registers>
</vcpu>

1799 <channels>
<array elementSize="16#0001_0000#" logical="console" vectorBase="64" virtualAddressBase="

16#0001_0000_0000#">
1801 <reader logical="NIC Linux"/>

<reader logical="Storage Linux"/>
1803 </array>

<array elementSize="16#1000#" eventBase="16" logical="input_devices" virtualAddressBase="
16#0001_0002_0000#">

1805 <writer logical="input_device_1"/>
<writer logical="input_device_2"/>

1807 </array>
<reader logical="input_events" size="16#1000#" vector="66" virtualAddress="16#0001_0002_2000#"

/>
1809 </channels>

<devices>
1811 <device logical="vga">

<memory executable="false" logical="buffer" size="16#0002_0000#" virtualAddress="16#000a_0000
#" writable="true"/>

1813 <ioPort end="16#03df#" logical="ports" start="16#03c0#"/>
</device>

1815 </devices>
<events>

1817 <source>
<event id="1" logical="request_reset_slot_1"/>

1819 <event id="30" logical="shutdown">
<system_poweroff/>

1821 </event>

127

<event id="31" logical="reboot">
1823 <system_reboot/>

</event>
1825 </source>

</events>
1827 </requires>

<provides>
1829 <memory executable="false" logical="interrupt_stack" size="16#2000#" type="subject_binary"

virtualAddress="16#0001_0000#" writable="true">
<fill pattern="16#00#"/>

1831 </memory>
<memory executable="true" logical="text" size="16#b000#" type="subject_binary" virtualAddress="

16#0020_0000#" writable="false">
1833 <file filename="vt_text" offset="none"/>

<hash value="16#15a0c09815f5f8627aae85f9347b7ef63adf85586d651b427326bfb46016d776#"/>
1835 </memory>

<memory executable="false" logical="rodata" size="16#3000#" type="subject_binary"
virtualAddress="16#0020_b000#" writable="false">

1837 <file filename="vt_rodata" offset="none"/>
<hash value="16#4d2bd9113c31f1d14351922d3e239ca6453bbcc495a79877f393fc336b6577e8#"/>

1839 </memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary" virtualAddress=

"16#0020_e000#" writable="true">
1841 <file filename="vt_data" offset="none"/>

<hash value="16#03ba720e717d15d7b0fe0e0267036398e09ddbfa3d66a38d1455cad48869e39c#"/>
1843 </memory>

<memory executable="false" logical="bss" size="16#2000#" type="subject_binary" virtualAddress="
16#0020_f000#" writable="true">

1845 <fill pattern="16#00#"/>
</memory>

1847 <memory executable="false" logical="stack" size="16#2000#" type="subject_binary" virtualAddress
="16#1000#" writable="true">

<fill pattern="16#00#"/>
1849 </memory>

</provides>
1851 </component>

</components>
1853 <subjects>

<!--
1855 The ‘subjects‘ element holds a list of subjects.

-->
1857 <subject name="vt">

<!--
1859 A subject is an instance of a component, i.e. an active component in the

system policy that may be scheduled. Its specification references a
1861 component and maps all requested logical resources to physical resources

provided by the system. Additional resources to the ones requested by
1863 the component can be specified here. This enables specialization of the

base component specification.
1865 -->

<vcpu>
1867 <vmx>

<controls>
1869 <proc>

<!-- VM-Exit on HLT instruction -->
1871 <HLTExiting>1</HLTExiting>

</proc>
1873 </controls>

</vmx>
1875 </vcpu>

<events>
1877 <!--

The subject ‘events‘ element specifies all events originating from or
1879 directed at this subject. The physical attribute is the name of a event

defined in the global events section.
1881 -->

<source>
1883 <!--

The event ‘source‘ element specifies events that are allowed to be
1885 triggered by the associated subject.

1887 The ‘vmx_exit‘ group is translated to a lookup table for handling VMX
exit traps as defined by Intel SDM Vol. 3D, "Appendix C VMX Basic Exit

1889 Reasons". The ‘vmcall‘ group on the other hand is translated into a
lookup table to handle hypercalls.

1891 -->
<group name="vmx_exit">

1893 <default physical="system_panic">
<!--

1895 The ‘default‘ element entry can be used to specify an event which should
be added for all event ids that have not been explicitly specified.

1897 -->
<system_panic/>

1899 </default>
<!-- Exit Reason 12: HLT -->

1901 <event id="12" logical="sleep" physical="subject_sleep">
<subject_sleep/>

128

1903 </event>
</group>

1905 </source>
</events>

1907 <component ref="vt">
<!--

1909 The ‘component‘ reference element specifies which component this subject
instantiates. All logical resources required by the component must be

1911 mapped to physical resources of the appropriate type. Validators make
sure that all requirements are satisfied and that no mapping has been

1913 omitted.
-->

1915 <map logical="NIC Linux" physical="virtual_console_1"/>
<map logical="Storage Linux" physical="virtual_console_2"/>

1917 <map logical="input_events" physical="input_events"/>
<map logical="input_device_1" physical="virtual_input_1"/>

1919 <map logical="input_device_2" physical="virtual_input_2"/>
<map logical="debuglog" physical="debuglog_subject1"/>

1921 <map logical="vga" physical="vga">
<map logical="buffer" physical="buffer"/>

1923 <map logical="ports" physical="ports">
<!--

1925 The ‘map‘ element maps a physical resource provided by the system with a
resource requested by the referenced component.

1927
This element allows recursion to map child resources as well (e.g.

1929 device memory, I/O ports etc).
-->

1931 </map>
</map>

1933 <map logical="request_reset_slot_1" physical="request_reset_slot_1"/>
<map logical="shutdown" physical="system_poweroff"/>

1935 <map logical="reboot" physical="system_reboot"/>
</component>

1937 </subject>
<subject name="nic_sm">

1939 <memory>
<memory executable="false" logical="status_linux" physical="status_linux_1" virtualAddress="

16#0200_0000#" writable="false"/>
1941 </memory>

<events>
1943 <source>

<group name="vmx_exit">
1945 <default physical="system_panic">

<system_panic/>
1947 </default>

</group>
1949 <group name="vmcall">

<event id="0" logical="serial_irq4" physical="serial_irq4_linux_1">
1951 <!--

A source ‘event‘ entry specifies a source event node, i.e. it registers
1953 a handler for the given event ‘id‘. These IDs, depending on the event

group, are either hypercall numbers or VMX basic exit reasons. The valid
1955 ID ranges of the respective groups are:

1957 vmx_exit
0 .. 59

1959
vmcall

1961 0 .. 63

1963 Additionally, the following IDs in ‘vmx_exit‘ group are reserved and may
not be used:

1965
- Used by kernel: 1, 7, 41, 52, 55

1967
- Reserved by Intel: 35, 38, 42

1969
It is possible to assign event actions to event source entries.

1971 Currently supported source event actions are ‘subject_sleep‘,
‘subject_yield‘, ‘unmask_irq‘, ‘system_reboot‘, ‘system_poweroff‘ and

1973 ‘system_panic‘, which all have the kernel itself as endpoint.
-->

1975 </event>
<event id="1" logical="reset_linux" physical="reset_linux_1"/>

1977 <event id="2" logical="load_linux" physical="load_linux_1"/>
</group>

1979 </source>
<target>

1981 <!--
The event ‘target‘ element specifies events that the subject is an

1983 *endpoint* of.
-->

1985 <event logical="resume_after_load" physical="start_linux_1">
<!--

1987 The ‘event‘ element in the target section specifies one event endpoint
by referencing a physical event and assigning a logical name to it.

129

1989 -->
</event>

1991 <event id="63" logical="reset" physical="reset_sm_1">
<reset/>

1993 </event>
</target>

1995 </events>
<monitor>

1997 <!--
The monitor abstraction enables subjects to request access to certain

1999 data of another subject specified by name. Possible child elements are:

2001 - State

2003 - Timed_Events

2005 - Interrupts

2007 - Loader

2009 See the Muen Component Specification document for details about these
subject monitor interfaces.

2011 -->
<state logical="monitor_state" subject="nic_linux" virtualAddress="16#001e_0000#" writable="

true"/>
2013 <loader logical="reload" subject="nic_sm" virtualAddress="16#0000#">

<!--
2015 The ‘loader‘ mechanism effectively puts the loaded subject denoted by

the ‘subject‘ attribute under loader control, as it is not able to start
2017 without the help of the loader.

2019 In more detail, the ‘loader‘ monitor element instructs the expander tool
to map all memory regions of the referenced subject into the address

2021 space of the monitor subject, using the specified ‘virtualAddress‘ as
offset in the address space of the loader.

2023
If a memory region of the loaded subject is writable and file-backed,

2025 the region is replaced with an empty region and linked via the ‘hashRef‘
mechanism to the original region which is mapped into the loader.

2027
The state of the loaded subject is then invalidated by clearing the

2029 ‘CR4.VMXE‘ bit in the initial subject CR4 register value. If such a
subject is scheduled by the kernel, a VMX exit *VM-entry failure due to

2031 invalid guest state* (33) occurs. See Intel SDM Vol. 3C, "23.7 Enabling
and Entering VMX Operation" and Intel SDM Vol. 3C, "23.8 Restrictions on

2033 VMX Operation" for more details. This trap is linked to the loader via
normal VMX event handling. After handover, the loader initializes the

2035 memory regions replaced by the expander with the designated content.

2037 All information required to *load* the loaded subject is provided to the
loader subject via its own sinfo API. Memory regions prefixed with

2039 ‘monitor_sinfo_‘ provide access to the sinfo regions of the loaded
subjects. Regions prefixed with ‘monitor_state_‘ specify memory regions

2041 containing the subject register state of the loaded subject.

2043 The difference between the ‘monitor_sinfo_‘ memory region address in the
loader and the address of the ‘sinfo‘ memory region in the target sinfo

2045 information denotes the ‘virtualAddress‘ offset attribute of the
‘loader‘ element in the policy. This information combined is enough to

2047 fully construct the initial state of the loaded subject, or to reset a
subject to its initial state on demand.

2049
The loader may also optionally check the hashes of the restored regions,

2051 as this information is provided via the sinfo mechanism as well.
-->

2053 </loader>
</monitor>

2055 <component ref="sm">
<map logical="time_info" physical="time_info"/>

2057 <map logical="debuglog" physical="debuglog_subject2"/>
<map logical="dm_pciconf_req" physical="nic_dm_request"/>

2059 <map logical="dm_pciconf_res" physical="nic_dm_response"/>
<map logical="resume_subject" physical="resume_linux_1"/>

2061 <map logical="handle_subject_trap" physical="trap_to_sm_1"/>
<map logical="status" physical="status_sm_1"/>

2063 <map logical="control" physical="control_sm_1"/>
</component>

2065 </subject>
<subject name="storage_sm">

2067 <events>
<source>

2069 <group name="vmcall">
<event id="0" logical="serial_irq4" physical="serial_irq4_linux_2"/>

2071 <event id="1" logical="reset_linux" physical="reset_linux_2"/>
</group>

2073 <group name="vmx_exit">
<default physical="system_panic">

130

2075 <system_panic/>
</default>

2077 </group>
</source>

2079 </events>
<monitor>

2081 <state logical="monitor_state" subject="storage_linux" virtualAddress="16#001e_0000#" writable=
"true"/>
<loader logical="reload" subject="storage_sm" virtualAddress="16#0000#"/>

2083 </monitor>
<component ref="sm">

2085 <map logical="time_info" physical="time_info"/>
<map logical="debuglog" physical="debuglog_subject3"/>

2087 <map logical="dm_pciconf_req" physical="storage_dm_request"/>
<map logical="dm_pciconf_res" physical="storage_dm_response"/>

2089 <map logical="resume_subject" physical="resume_linux_2"/>
<map logical="handle_subject_trap" physical="trap_to_sm_2"/>

2091 <map logical="status" physical="status_sm_2"/>
<map logical="control" physical="control_sm_2"/>

2093 </component>
</subject>

2095 <subject name="time">
<vcpu>

2097 <vmx>
<controls>

2099 <proc>
<!-- VM-Exit on HLT instruction -->

2101 <HLTExiting>1</HLTExiting>
</proc>

2103 </controls>
</vmx>

2105 </vcpu>
<events>

2107 <source>
<group name="vmx_exit">

2109 <default physical="system_panic">
<system_panic/>

2111 </default>
<!-- Exit Reason 12: HLT -->

2113 <event id="12" logical="sleep" physical="subject_sleep">
<subject_sleep/>

2115 </event>
</group>

2117 </source>
</events>

2119 <component ref="time">
<map logical="time_export1" physical="time_info"/>

2121 <map logical="debuglog" physical="debuglog_subject4"/>
<map logical="cmos_rtc" physical="cmos_rtc">

2123 <map logical="ports" physical="ports"/>
</map>

2125 <map logical="status" physical="status_time"/>
<map logical="control" physical="control_time"/>

2127 </component>
</subject>

2129 <subject name="nic_sl">
<events>

2131 <source>
<group name="vmx_exit">

2133 <default physical="system_panic">
<system_panic/>

2135 </default>
</group>

2137 </source>
</events>

2139 <monitor>
<loader logical="monitor_loader_nic_linux" subject="nic_linux" virtualAddress="16#0001

_0000_0000#"/>
2141 </monitor>

<component ref="sl">
2143 <map logical="start" physical="start_linux_1"/>

<map logical="handle_reset" physical="load_linux_1"/>
2145 <map logical="status" physical="status_linux_1"/>

<map logical="control" physical="control_linux_1"/>
2147 </component>

</subject>
2149 <subject name="ps2">

<vcpu>
2151 <vmx>

<controls>
2153 <proc>

<!-- VM-Exit on HLT instruction -->
2155 <HLTExiting>1</HLTExiting>

</proc>
2157 </controls>

</vmx>
2159 </vcpu>

131

<events>
2161 <source>

<group name="vmx_exit">
2163 <default physical="system_panic">

<system_panic/>
2165 </default>

<!-- Exit Reason 12: HLT -->
2167 <event id="12" logical="sleep" physical="subject_sleep">

<subject_sleep/>
2169 </event>

</group>
2171 </source>

</events>
2173 <component ref="ps2_drv">

<map logical="input_events" physical="input_events"/>
2175 <map logical="debuglog" physical="debuglog_subject5"/>

<map logical="ps2" physical="ps2">
2177 <map logical="kbd_irq" physical="kbd_irq"/>

<map logical="mouse_irq" physical="mouse_irq"/>
2179 <map logical="port_60" physical="port_60"/>

<map logical="port_64" physical="port_64"/>
2181 </map>

</component>
2183 </subject>

<subject name="example">
2185 <events>

<source>
2187 <group name="vmx_exit">

<default physical="system_panic">
2189 <system_panic/>

</default>
2191 </group>

</source>
2193 </events>

<monitor>
2195 <state logical="monitor_state" subject="storage_linux" virtualAddress="16#001e_0000#" writable=

"false"/>
<loader logical="reload" subject="example" virtualAddress="16#0000#"/>

2197 </monitor>
<component ref="example">

2199 <map logical="example_request" physical="example_request"/>
<map logical="example_response" physical="example_response"/>

2201 <map logical="debuglog" physical="debuglog_example"/>
<map logical="sleep" physical="subject_sleep"/>

2203 <map logical="yield" physical="subject_yield"/>
<map logical="timer" physical="example_self"/>

2205 <map logical="inject_timer" physical="example_self"/>
<map logical="control" physical="control_example"/>

2207 <map logical="status" physical="status_example"/>
<map logical="filled_region" physical="example_filled_region"/>

2209 </component>
</subject>

2211 <subject name="controller">
<vcpu>

2213 <vmx>
<controls>

2215 <proc>
<!-- VM-Exit on PAUSE instruction -->

2217 <PAUSEExiting>1</PAUSEExiting>
</proc>

2219 </controls>
</vmx>

2221 </vcpu>
<events>

2223 <source>
<group name="vmx_exit">

2225 <default physical="system_panic">
<system_panic/>

2227 </default>
<!-- Exit Reason 40: PAUSE -->

2229 <event id="40" logical="yield" physical="subject_yield">
<subject_yield/>

2231 </event>
</group>

2233 </source>
</events>

2235 <monitor>
<interrupts logical="pending_interrupts" subject="controller" virtualAddress="16#0030_0000#"

writable="true"/>
2237 </monitor>

<component ref="controller">
2239 <map logical="debuglog" physical="debuglog_controller"/>

<map logical="control_1" physical="control_time"/>
2241 <map logical="control_2" physical="control_sm_1"/>

<map logical="control_3" physical="control_sm_2"/>
2243 <map logical="control_4" physical="control_example"/>

<map logical="control_5" physical="control_linux_1"/>

132

2245 <map logical="status_1" physical="status_time"/>
<map logical="status_2" physical="status_sm_1"/>

2247 <map logical="status_3" physical="status_sm_2"/>
<map logical="status_4" physical="status_example"/>

2249 <map logical="status_5" physical="status_linux_1"/>
<map logical="reset_slot_1_sm" physical="reset_sm_1"/>

2251 <map logical="reset_slot_1_linux" physical="reset_slot_1"/>
<map logical="request_reset_slot_1" physical="request_reset_slot_1"/>

2253 </component>
</subject>

2255 <subject name="nic_dm">
<devices>

2257 <!--
List of device references. Used to grant a subject access to hardware

2259 devices and their resources.
-->

2261 <device logical="nic" physical="ethernet_controller_1">
<!--

2263 The ‘device‘ element allows a subject access to devices referenced via
the ‘physical‘ attribute.

2265
For PCI devices only a single virtual bus is provided (bus 0). The ‘pci‘

2267 element may be used to place the device at a specific location (BDF). If
no other logical device resources of the device are specified, then the

2269 expander tool will map all physical devices resources into the subject.
When logical device resources are explicitly specified, then only access

2271 to those are actually granted. The physical attribute must be either a
reference to an existing physical device, device alias or device class.

2273 Validators check that this is the case.
-->

2275 <pci bus="16#00#" device="16#01#" function="0"/>
<memory executable="false" logical="mmconf" physical="mmconf" writable="true">

2277 <!--
The device ‘memory‘ element maps the device memory region referenced via

2279 the ‘physical‘ attribute into the subject address space at address
‘virtualAddress‘. The ‘executable‘, ‘writable‘ attributes define the

2281 access permissions for the subject.
-->

2283 </memory>
</device>

2285 </devices>
<events>

2287 <source>
<group name="vmx_exit">

2289 <default physical="system_panic">
<system_panic/>

2291 </default>
</group>

2293 </source>
</events>

2295 <component ref="dm">
<map logical="debuglog" physical="debuglog_subject6"/>

2297 <map logical="request" physical="nic_dm_request"/>
<map logical="response" physical="nic_dm_response"/>

2299 </component>
</subject>

2301 <subject name="storage_dm">
<events>

2303 <source>
<group name="vmx_exit">

2305 <default physical="system_panic">
<system_panic/>

2307 </default>
</group>

2309 </source>
</events>

2311 <component ref="dm">
<map logical="debuglog" physical="debuglog_subject7"/>

2313 <map logical="request" physical="storage_dm_request"/>
<map logical="response" physical="storage_dm_response"/>

2315 </component>
</subject>

2317 <subject name="dbgserver">
<events>

2319 <source>
<group name="vmx_exit">

2321 <default physical="system_panic">
<system_panic/>

2323 </default>
</group>

2325 </source>
</events>

2327 <component ref="dbgserver">
<map logical="log_channel1" physical="debuglog_subject1"/>

2329 <map logical="log_channel2" physical="debuglog_subject2"/>
<map logical="log_channel3" physical="debuglog_subject3"/>

2331 <map logical="log_channel4" physical="debuglog_subject4"/>

133

<map logical="log_channel5" physical="debuglog_subject5"/>
2333 <map logical="log_channel_example" physical="debuglog_example">

</map>
2335 <map logical="log_channel_6" physical="debuglog_controller"/>

<map logical="log_channel7" physical="debuglog_subject6"/>
2337 <map logical="log_channel8" physical="debuglog_subject7"/>

<map logical="crash_audit" physical="crash_audit"/>
2339 <map logical="debugconsole" physical="serial_device_1">

<map logical="port" physical="ioport1"/>
2341 </map>

<map logical="reboot" physical="system_reboot"/>
2343 <map logical="shutdown" physical="system_poweroff"/>

</component>
2345 </subject>

<subject name="nic_linux">
2347 <bootparams>console=hvc console=ttyS0 hostname=nic_linux</bootparams>

<memory>
2349 <memory executable="false" logical="initramfs" physical="initramfs" virtualAddress="16#7000

_0000#" writable="false"/>
</memory>

2351 <devices>
<device logical="eth0" physical="nic_1">

2353 <pci bus="16#00#" device="16#01#" function="0"/>
</device>

2355 <device logical="aditional_nics" physical="additional_nics"/>
</devices>

2357 <events>
<source>

2359 <group name="vmx_exit">
<default physical="trap_to_sm_1"/>

2361 </group>
<group name="vmcall">

2363 <event id="30" logical="reboot" physical="request_reset_slot_1"/>
<event id="31" logical="timer" physical="timer_linux_1"/>

2365 </group>
</source>

2367 <target>
<event logical="resume_after_trap" physical="resume_linux_1"/>

2369 <event id="63" logical="reset" physical="reset_linux_1">
<reset/>

2371 </event>
<event id="62" logical="reset_from_vt" physical="reset_slot_1">

2373 <reset/>
</event>

2375 <event logical="serial_irq4" physical="serial_irq4_linux_1">
<inject_interrupt vector="52">

2377 <!--
Instructs the SK to inject a guest interrupt with given vector on event

2379 occurrence.
-->

2381 </inject_interrupt>
</event>

2383 <event logical="timer" physical="timer_linux_1">
<inject_interrupt vector="236"/>

2385 </event>
</target>

2387 </events>
<channels>

2389 <!--
The ‘channel‘ section of a subject declares references to communication

2391 channels. The referenced channels become accessible to the requesting
subject either as reader or writer endpoint.

2393 -->
<reader logical="virtual_input" physical="virtual_input_1" vector="64" virtualAddress="16#0001

_0000_0000#">
2395 <!--

A channel ‘reader‘ element references a global communication channel as
2397 reader endpoint, i.e. the channel is mapped read-only into the subject

address space.
2399 -->

</reader>
2401 <writer event="16" logical="virtual_console" physical="virtual_console_1" virtualAddress="

16#0001_0000_1000#">
<!--

2403 A channel ‘writer‘ element references a global communication channel as
writer endpoint, i.e. the channel is mapped with write permissions into

2405 the subject address space.
-->

2407 </writer>
<reader logical="testchannel_2" physical="testchannel_2" virtualAddress="16#0001_0001_1000#"/>

2409 <writer logical="testchannel_1" physical="testchannel_1" virtualAddress="16#0001_0001_2000#"/>
<reader logical="testchannel_4" physical="testchannel_4" virtualAddress="16#0001_0001_3000#"/>

2411 <writer logical="testchannel_3" physical="testchannel_3" virtualAddress="16#0001_0011_3000#"/>
</channels>

2413 <component ref="linux">
<map logical="lowmem" physical="nic_linux|lowmem"/>

2415 <map logical="ram" physical="nic_linux|ram"/>

134

</component>
2417 </subject>

<subject name="storage_linux">
2419 <bootparams>console=hvc console=ttyS0 hostname=storage_linux</bootparams>

<memory>
2421 <memory executable="false" logical="initramfs" physical="initramfs" virtualAddress="16#7000

_0000#" writable="false"/>
</memory>

2423 <devices>
<device logical="xhci" physical="usb_controller_1"/>

2425 </devices>
<events>

2427 <source>
<group name="vmx_exit">

2429 <default physical="trap_to_sm_2"/>
</group>

2431 <group name="vmcall">
<event id="31" logical="timer" physical="timer_linux_2"/>

2433 </group>
</source>

2435 <target>
<event logical="resume_after_trap" physical="resume_linux_2"/>

2437 <event id="63" logical="reset" physical="reset_linux_2">
<reset/>

2439 </event>
<event logical="serial_irq4" physical="serial_irq4_linux_2">

2441 <inject_interrupt vector="52"/>
</event>

2443 <event logical="timer" physical="timer_linux_2">
<inject_interrupt vector="236"/>

2445 </event>
</target>

2447 </events>
<channels>

2449 <reader logical="virtual_input" physical="virtual_input_2" vector="64" virtualAddress="16#0001
_0000_0000#"/>
<writer event="16" logical="virtual_console" physical="virtual_console_2" virtualAddress="

16#0001_0000_1000#"/>
2451 <reader logical="example_response" physical="example_response" vector="65" virtualAddress="

16#0001_0001_1000#"/>
<writer event="17" logical="example_request" physical="example_request" virtualAddress="16#0001

_0001_2000#"/>
2453 <reader logical="testchannel_1" physical="testchannel_1" virtualAddress="16#0001_0001_3000#"/>

<writer logical="testchannel_2" physical="testchannel_2" virtualAddress="16#0001_0001_4000#"/>
2455 <reader logical="testchannel_3" physical="testchannel_3" virtualAddress="16#0001_0001_5000#"/>

<writer logical="testchannel_4" physical="testchannel_4" virtualAddress="16#0001_0011_5000#"/>
2457 </channels>

<component ref="linux">
2459 <map logical="lowmem" physical="storage_linux|lowmem"/>

<map logical="ram" physical="storage_linux|ram"/>
2461 </component>

</subject>
2463 </subjects>

<scheduling tickRate="100000">
2465 <!--

The Muen SK implements a fixed, cyclic scheduler. The ‘scheduling‘
2467 element is used to specify such a static plan by means of a major frame.

A major frame consist of an arbitrary number of minor frames. Minor
2469 frames in turn specify a duration in number of ticks a scheduling

partition is scheduled.
2471

Scheduling partitions defined in the ‘partitions‘ element consist of one
2473 or more scheduling groups, which in turn specify one or more subjects to

be scheduled. *Scheduling groups* are used to define groups of
2475 cooperating subjects, which are allowed to hand over execution to a

subject in the same scheduling group. This is done via *handover*
2477 events. Membership of a scheduling group must be specified explicitly in

the policy, validators enforce that these settings are correct by
2479 calculating the chain of handover events.

2481 While scheduling groups support the efficient cooperation of multiple
subjects, subjects which need to be spatially but not temporally

2483 isolated from each other cannot profit from it. To efficiently support
this use-case, the scheduling partition concept is implemented.

2485
Within a *scheduling partition*, all scheduling groups are scheduled

2487 round robin with preemption and the opportunity to yield and/or sleep.
If a subject in a scheduling group sleeps or yields, the next scheduling

2489 group in the scheduling partition is scheduled. More precisely: the
active subject of the next scheduling group is executed by the SK.

2491
Note that prioritization is not implemented on purpose to avoid any

2493 starvation issues[^1]. The yield operation maps to the x86_64 ‘PAUSE‘
instruction, while sleep corresponds to ‘HLT‘. See the *Muen Component

2495 Specification* document for more information on this topic.

2497 Minor frames designate the scheduling partition that is to be executed

135

for the given amount of ticks. The scheduling partition attribute ‘name‘
2499 uniquely identifies a scheduling partition. On first activation, the

first scheduling group (in XML-order) is scheduled. Within the
2501 scheduling group, the first subject (again in XML-order) is executed.

The active subject of a scheduling group may change over time, as the
2503 cooperating subjects initiate handover events.

2505 The tickRate attribute of the ‘scheduling‘ element has the unit Hertz
(Hz) and specifies the number of clock ticks per second. The ticks

2507 attribute of minor frames is expressed in terms of this tick rate. As an
example: if we want to declare the minor frame duration in terms of

2509 microseconds (10⁶) then a tick rate of 1000000 must be used.

2511 The duration of a major frame must be the same on each CPU, meaning the
sum of all minor frame ticks for any given CPU must be identical.

2513 However, different major frames can have arbitrary length.

2515 The Tau0 subject designates to the kernel which major frame is the
currently active one. At the end of each major frame, the kernel

2517 determines the active major frame and switches to that scheduling plan
for the duration of the major frame.

2519
[^1]: Prioritization with starvation protection cannot be implemented

2521 with low complexity
-->

2523 <partitions>
<!--

2525 The ‘partitions‘ element is used to specify all scheduling partitions of
the system.

2527 -->
<partition name="nic_linux">

2529 <!--
The scheduling ‘partition‘ element is used to specify a collection of

2531 scheduling groups consisting of subjects that require spatial but not
temporal isolation from each other. Within a scheduling partition, all

2533 scheduling groups are scheduled round robin with preemption (i.e.
non-cooperatively) and the opportunity to yield and/or sleep.

2535
A scheduling partition must contain at least one scheduling group.

2537 -->
<group>

2539 <!--
The scheduling ‘group‘ element is used to specify a collection of

2541 subjects that may cooperatively schedule each other via handover events.
Scheduling groups must contain at least one subject. As an example, a

2543 Linux subject and its associated Subject Monitor (SM), Subject Loader
(SL) and Device Manager (DM) form a scheduling group.

2545 -->
<subject name="nic_linux"/>

2547 <subject name="nic_sm"/>
<subject name="nic_sl"/>

2549 <subject name="nic_dm"/>
</group>

2551 </partition>
<partition name="ps2_driver">

2553 <group>
<subject name="ps2"/>

2555 </group>
</partition>

2557 <partition name="controller">
<group>

2559 <subject name="controller"/>
</group>

2561 </partition>
<partition name="idle_0">

2563 <group>
<subject name="mugenschedcfg_auto_idle_0"/>

2565 </group>
</partition>

2567 <partition name="storage_linux">
<group>

2569 <subject name="storage_linux"/>
<subject name="storage_sm"/>

2571 <subject name="storage_dm"/>
</group>

2573 <group>
<subject name="example"/>

2575 </group>
</partition>

2577 <partition name="debugserver">
<group>

2579 <subject name="time"/>
</group>

2581 <group>
<subject name="dbgserver"/>

2583 </group>
</partition>

136

2585 <partition name="vt">
<group>

2587 <subject name="vt"/>
</group>

2589 </partition>
<partition name="tau0">

2591 <group>
<subject name="tau0"/>

2593 </group>
</partition>

2595 <partition name="idle_1">
<group>

2597 <subject name="mugenschedcfg_auto_idle_1"/>
</group>

2599 </partition>
</partitions>

2601 <majorFrame>
<!--

2603 A major frame consists of a sequence of minor frames for a given CPU.
When the end of a major frame is reached, all CPUs synchronize and the

2605 scheduler starts over from the beginning using the first minor frame
again. This means that major frames are repeated in a cyclic fashion

2607 until a different major frame is designated via the Tau0 interface.
-->

2609 <cpu id="0">
<!--

2611 The ‘cpu‘ element is used to specify major frames for each CPU of the
system.

2613 -->
<minorFrame partition="nic_linux" ticks="4">

2615 <!--
A minor frame specifies the number of scheduling ticks a partition is

2617 allowed to run on the CPU specified by the parent ‘cpu‘ element.
-->

2619 </minorFrame>
<minorFrame partition="ps2_driver" ticks="1"/>

2621 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="controller" ticks="1"/>

2623 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2625 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2627 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2629 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2631 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2633 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2635 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2637 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2639 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2641 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2643 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2645 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2647 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2649 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2651 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2653 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2655 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2657 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2659 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2661 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2663 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2665 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2667 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2669 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2671 <minorFrame partition="nic_linux" ticks="4"/>

137

<minorFrame partition="idle_0" ticks="1"/>
2673 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2675 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2677 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2679 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2681 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2683 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2685 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2687 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2689 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2691 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2693 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2695 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2697 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2699 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2701 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2703 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2705 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2707 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2709 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2711 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2713 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2715 </cpu>

<cpu id="1">
2717 <minorFrame partition="storage_linux" ticks="2"/>

<minorFrame partition="debugserver" ticks="3"/>
2719 <minorFrame partition="storage_linux" ticks="2"/>

<minorFrame partition="storage_linux" ticks="15"/>
2721 <minorFrame partition="debugserver" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2723 <minorFrame partition="vt" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2725 <minorFrame partition="vt" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2727 <minorFrame partition="vt" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2729 <minorFrame partition="debugserver" ticks="2"/>

<minorFrame partition="vt" ticks="1"/>
2731 <minorFrame partition="storage_linux" ticks="2"/>

<minorFrame partition="tau0" ticks="1"/>
2733 <minorFrame partition="idle_1" ticks="2"/>

<minorFrame partition="storage_linux" ticks="2"/>
2735 <minorFrame partition="idle_1" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2737 <minorFrame partition="idle_1" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2739 <minorFrame partition="debugserver" ticks="2"/>

<minorFrame partition="idle_1" ticks="1"/>
2741 <minorFrame partition="storage_linux" ticks="2"/>

<minorFrame partition="idle_1" ticks="3"/>
2743 <minorFrame partition="storage_linux" ticks="2"/>

<minorFrame partition="idle_1" ticks="3"/>
2745 <minorFrame partition="storage_linux" ticks="2"/>

<minorFrame partition="idle_1" ticks="3"/>
2747 <minorFrame partition="storage_linux" ticks="2"/>

<minorFrame partition="debugserver" ticks="2"/>
2749 <minorFrame partition="idle_1" ticks="1"/>

<minorFrame partition="storage_linux" ticks="2"/>
2751 <minorFrame partition="idle_1" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2753 <minorFrame partition="idle_1" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2755 <minorFrame partition="idle_1" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2757 <minorFrame partition="debugserver" ticks="2"/>

<minorFrame partition="idle_1" ticks="1"/>

138

2759 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2761 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2763 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2765 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="debugserver" ticks="2"/>

2767 <minorFrame partition="idle_1" ticks="1"/>
<minorFrame partition="storage_linux" ticks="2"/>

2769 <minorFrame partition="storage_linux" ticks="15"/>
<minorFrame partition="debugserver" ticks="3"/>

2771 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="vt" ticks="3"/>

2773 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="vt" ticks="3"/>

2775 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="vt" ticks="3"/>

2777 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="debugserver" ticks="2"/>

2779 <minorFrame partition="vt" ticks="1"/>
<minorFrame partition="storage_linux" ticks="2"/>

2781 <minorFrame partition="idle_1" ticks="3"/>
<minorFrame partition="storage_linux" ticks="2"/>

2783 <minorFrame partition="idle_1" ticks="3"/>
<minorFrame partition="storage_linux" ticks="2"/>

2785 <minorFrame partition="idle_1" ticks="3"/>
<minorFrame partition="storage_linux" ticks="2"/>

2787 <minorFrame partition="debugserver" ticks="2"/>
<minorFrame partition="idle_1" ticks="1"/>

2789 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2791 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2793 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2795 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="debugserver" ticks="2"/>

2797 <minorFrame partition="idle_1" ticks="1"/>
<minorFrame partition="storage_linux" ticks="2"/>

2799 <minorFrame partition="idle_1" ticks="3"/>
<minorFrame partition="storage_linux" ticks="2"/>

2801 <minorFrame partition="idle_1" ticks="3"/>
<minorFrame partition="storage_linux" ticks="2"/>

2803 <minorFrame partition="idle_1" ticks="3"/>
<minorFrame partition="storage_linux" ticks="2"/>

2805 <minorFrame partition="debugserver" ticks="2"/>
<minorFrame partition="idle_1" ticks="1"/>

2807 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2809 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2811 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="idle_1" ticks="3"/>

2813 </cpu>
</majorFrame>

2815 <majorFrame>
<cpu id="0">

2817 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="ps2_driver" ticks="1"/>

2819 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="controller" ticks="1"/>

2821 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2823 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2825 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2827 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2829 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2831 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2833 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2835 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2837 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2839 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2841 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2843 <minorFrame partition="nic_linux" ticks="4"/>
<minorFrame partition="idle_0" ticks="1"/>

2845 <minorFrame partition="nic_linux" ticks="4"/>

139

<minorFrame partition="idle_0" ticks="1"/>
2847 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2849 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2851 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2853 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2855 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2857 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2859 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2861 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2863 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2865 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2867 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2869 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2871 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2873 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2875 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2877 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2879 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2881 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2883 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2885 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2887 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2889 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2891 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2893 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2895 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2897 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2899 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2901 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2903 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2905 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2907 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2909 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2911 <minorFrame partition="nic_linux" ticks="4"/>

<minorFrame partition="idle_0" ticks="1"/>
2913 </cpu>

<cpu id="1">
2915 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="debugserver" ticks="2"/>
2917 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="debugserver" ticks="2"/>
2919 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="vt" ticks="2"/>
2921 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="storage_linux" ticks="2"/>
2923 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="idle_1" ticks="2"/>
2925 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="idle_1" ticks="2"/>
2927 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="idle_1" ticks="2"/>
2929 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="idle_1" ticks="2"/>
2931 <minorFrame partition="storage_linux" ticks="3"/>

<minorFrame partition="debugserver" ticks="2"/>

140

2933 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="debugserver" ticks="1"/>

2935 <minorFrame partition="idle_1" ticks="1"/>
<minorFrame partition="storage_linux" ticks="3"/>

2937 <minorFrame partition="vt" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2939 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2941 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2943 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2945 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2947 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2949 <minorFrame partition="debugserver" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2951 <minorFrame partition="debugserver" ticks="1"/>
<minorFrame partition="idle_1" ticks="1"/>

2953 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="vt" ticks="2"/>

2955 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="storage_linux" ticks="2"/>

2957 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="idle_1" ticks="2"/>

2959 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="idle_1" ticks="2"/>

2961 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="idle_1" ticks="2"/>

2963 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="idle_1" ticks="2"/>

2965 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="debugserver" ticks="2"/>

2967 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="debugserver" ticks="1"/>

2969 <minorFrame partition="idle_1" ticks="1"/>
<minorFrame partition="storage_linux" ticks="3"/>

2971 <minorFrame partition="vt" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2973 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2975 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2977 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2979 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2981 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2983 <minorFrame partition="debugserver" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

2985 <minorFrame partition="debugserver" ticks="1"/>
<minorFrame partition="idle_1" ticks="1"/>

2987 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="vt" ticks="2"/>

2989 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="storage_linux" ticks="2"/>

2991 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="idle_1" ticks="2"/>

2993 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="idle_1" ticks="2"/>

2995 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="idle_1" ticks="2"/>

2997 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="idle_1" ticks="2"/>

2999 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="debugserver" ticks="2"/>

3001 <minorFrame partition="storage_linux" ticks="3"/>
<minorFrame partition="debugserver" ticks="1"/>

3003 <minorFrame partition="idle_1" ticks="1"/>
<minorFrame partition="storage_linux" ticks="3"/>

3005 <minorFrame partition="vt" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

3007 <minorFrame partition="storage_linux" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

3009 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

3011 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

3013 <minorFrame partition="idle_1" ticks="2"/>
<minorFrame partition="storage_linux" ticks="3"/>

3015 <minorFrame partition="idle_1" ticks="2"/>
</cpu>

3017 </majorFrame>
</scheduling>

3019 </system>

141

Listing 8.1: Demo System (VT-d)

142

Chapter 9

Bibliography

[1] Adrian-Ken Rueegsegger and Reto Buerki. Muen Component Specification.

[2] Adrian-Ken Rueegsegger and Reto Buerki. Muen Separation Kernel.

143

	Introduction
	System Policy
	Policy Format

	System Integration
	Tau0 Concept
	Static Mode of Operation
	Dynamic

	Toolchain
	Overview
	Plugin System
	Core Tools
	Plugins
	Additional Tools

	Policy Validation
	Configuration
	Devices
	Device Domains
	Events
	Files
	Hardware
	Kernel
	Memory
	Model Specific Registers (MSR)
	Platform
	Scheduling
	Subjects

	Policy Structure
	Policy Schema Documentation

	Appendix
	Annotated Example Policy

	Bibliography

