msolve — A library for solving multivariate polynomial systems

How to solve multivariate polynomial

systems with MSOLVE?

Contents
1 Introduction
2 Input file format

8

9

Computing the dimension

Solving over the reals (finitely many solutions)
Computing Grobner bases

Parametrizations of (finitely many) solutions
Saturation and colon ideals

More flags and options

Julia interface to MSOLVE

10 Maple interface to MSOLVE

11 Sage interface to MSOLVE

12 Credits

1 Introduction

13

14

15

16

16

16

MSOLVE is a C library for solving multivariate polynomial systems of equations. It relies on

computer algebra, a.k.a. symbolic computation, algorithms to compute algebraic representations

of the solution set from which many, if not all, informations can be extracted.



Solving polynomial systems with MSOLVE is global by contrast to local numerical routines.
The use of computer algebra methods allow also the user to bypass classical numerical issues
encountered by numerical methods for polynomial system solving such as those based on
numerical homotopy continuation or semi-definite programming.

MSOLVE relies mainly on Grobner bases algorithms (see below for a some basic definitions
and properties). It is highly optimized, uses AvX2 vectorization instructions and multi-threading.

It uses the GMP library (handling multi-precision integers) and the FLINT library (handling
arithmetics of univariate polynomials).

MSOLVE can be downloaded from

https://msolve.lip6.fr

where binaries (for x86 processors runing Linux operating systems) and source files are provided.
MSOLVE is designed for 64 bit architectures, with AVX2 instructions.
MsoLVE allows you to:

« isolate all real solutions to polynomial systems with rational coefficients and finitely
many complex solutions;

« compute Grobner bases of polynomial systems with coefficients which are either rational
numbers or in a prime field Z/pZ with p < 231;

« compute parametrizations of the solutions of polynomial systems with coefficients which
are either rational numbers or in a prime field Z/pZ with p < 23! (assuming that the
system has finitely many solutions with coordinates in an algebraic closure of the field
generated by the input coefficients).

MSOLVE is based on Grobner bases computations. When launching MSOLVE on an input
polynomial system (see the file format in section 2), a Grobner basis computation starts and
allows MSOLVE to determine if the number of solutions to the system is infinite or finite in an
algebraic closure of the base field (the complex numbers when the input coefficients are rational
numbers).

When the number of solutions is finite, one says that the system (or the ideal generated
by the input equations) has dimension zero at most. Else it has positive dimension. Section 3
shows how MsOLVE behaves when the input system has positive dimension or when there is
no solution at all in an algebraic closure of the base field (over the complex numbers when the
input coefficients are rational numbers).

When the system has dimension at most zero, MSOLVE can compute the real solutions or,
as said above, compute a Grobner basis (when the base field is a prime field) or compute a
parametrization of the solutions. Section 4 shows how to use MsoOLVE for solving polynomial
systems over the reals when they have dimension at most zero. Section 5 shows how to
use MSOLVE for computing Grobner bases over prime fields (with some restriction on the
bit size of the considered prime). Section 6 shows how to use MSOLVE for computing rational
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parametrizations of solutions to polynomial systems which have dimension at most zero. Finally,
section 8 summarizes some options which can be used rational parametrizations of solutions to
polynomial systems which have dimension at most zero. Finally, section 8 summarizes some
options which can be used.

The MsoLVE library is described in [1] with implementation details on the algorithms used
therein. All computations performed over the rational numbers (e.g. for computing real roots) are
based on multi-modular computations with a probabilistic stopping criterion. Unless explicitely
requested by the user (see the -1 flag in section 8), all computations of Grébner bases in prime
fields use deterministic algorithms. Change of order algorithms which are used are deterministic
when the input ideal is radical.

2 Input file format

MSOLVE allows you to solve polynomial systems either with coefficients which are either rational

numbers or in a prime field Z/pZ with p < 231 If you aim at solving polynomial systems with

coeflicients which are floating point numbers, you can just replace these floating point numbers

with rational numbers. Further, we explain how the input files of MsoLVE should be.
Consider the following polynomial system of equations

x+2y+2z-1 = 0
x2+2y2+2z22-x = 0
2xy+2yz—y = 0
in Q[x,y, z].
In order to solve it with MSOLVE one simply produces a file with the following content
X,Y,2z
0

X+2*xy+2*7-1,
X"242%y"242%272 - X,

2KXKY+2kY*Z -y

Hence the structure of input files to MSOLVE is as follows:

1. the first line contains the variables of the input system, separated with a comma (no
comma at end of line);

2. the second line contains the characteristic of the field over which computations are
performed,;

3. the next lines contain polynomials, in expanded form, separated by a comma and with a
line break (no comma or line break for the last one).



In each given polynomial, MSOLVE expects a single occurrence of each monomial; if some
monomial appears several times (e.g. as in x+2xy+2xz-x), the behaviour of MSOLVE’s parser is
undefined.

When one wants to solve this system over 655% one just replaces 0 by 65521 in the second
line. Note that in the positive characteristic case the coefficients used should be smaller or equal

to 231 — 1.

X,Y,Z

65521

X+2xy+2*xz-1,

X" 242%y"242%272-X,

2XXKY+2XY*Z -y

3 Computing the dimension

To make things explicit on the behaviour of MsoLVE when the input system does not have
finitely many complex solutions, let us consider first the example below.

X, Y
0
x*xy-1,

X

Then, MSOLVE outputs

[-1]:

indicating that the dimension of the set of complex solutions is —1, hence it is empty:.
If now, one considers the following example.

X, Y, Z
0
X"2-y"2,
X-y

Then, MSOLVE outputs

[11 3: '11 []]:




The first integer 1 indicates that the complex solution is positive dimensional (note that the
actual dimension of the complex solution set is 2).

4 Solving over the reals (finitely many solutions)

The basic functionality MsoLVE allows you to perform is real root isolation for polynomial sys-
tems with rational coeflicients and with finitely many complex solutions. This latter requirement
is automatically tested by MSOLVE.

For instance, consider the following input to MSOLVE written in a file in.ms.

X,Y,Z
0

X+2*xy+2%z-1,
X"242xy"242%272- X,

2KXKY+2kY*Z -y

Then, typing the following command line

./msolve -f in.ms -0 out.ms

will display in the out.ms file the following content.

[e, (1,

[[[107291359935630315248585097660753910587 / 2°127, 26822839983907578812146274415188477647 / 2°125], [107291359935630315248585097660753910587 /
27128, 26822839983907578812146274415188477647 / 2°126], [-355532291286331190123863132844989723573 / 27131,
-1422129165145324760495452531379958894291 / 2~133]], [[1, 1], [e, 0], [0, @]], [[38543940173343311950004019810003894311 / 2"127,
77087880346686623900008039620007788667 / 27128], [9635985043335827987501004952500973579 / 27126, 4817992521667913993750502476250486791
/ 27°125], [93653303113782607831679264095876317083 / 27128, 372213212455130431326717056383505268333 / 2°130]],
[[7089215977519551322153637654828504405 / 2124, 113427455640312821154458202477256070491 / 2~128], [-1 / 27127, 1 / 271271,
[1814839290245005138471331239636097127765 / 2°132, 907419645122502569235665619818048563883 / 2"131]1]

This is a list whose first element is the integer 0 indicating that the input polynomial system
has finitely many complex solutions. The second element of this list is a list which provides the
coordinates of the real solutions as follows:

« the first element is an integer ¢ indicating how many lists are given further; in the above
example, the integer 1 tells that we have a single list (this will be the usual case);

« the next are ¢ lists Ly, . . ., L, which encode the solutions to the input system; each of them
containing boxes isolating a single real solution.

For instance, from the above output, we deduce that the box defined by

107291359935630315248585097660753910587 - x < 26822839983907578812146274415188477647
XX

5

107291359935630315248585097660753910587 - y < 26822839983907578812146274415188477647
Y 5
—355532291286331190123863132844989723573 -,  —1422129165145324760495452531379958894291
2131 S2S 2133



contains a single real solution to the input system.
Sometimes, it makes sense to increase the precision. To do that, we use the -p flag, followed
by an integer monitoring the used precision, as follows.

7~

./msolve -p 256 -f in.ms -o out.ms

We obtain in out.ms the following

fe, I1,

[[[36509357909062631536129668436573070012487487067100583303001175658946635606055 / 27255,
4563669738632828942016208554571633751560935883387572912875146957368329450757 / 2°252],
[36509357909062631536129668436573070012487487067100583303001175658946635606055 / 27256,
4563669738632828942016208554571633751560935883387572912875146957368329450757 / 272531,
[-60490684797868661441895377475208744393359927205523538345094237255746825568573 / 27258,
-483925478382949291535163019801669955146879417644188306760753898045974604548583 / 2°261]]1, [[1, 1], [0, @], [e, O]],
[[3278955798161077339921616998930436909728483733114914607048732943254033559905 / 27253,
26231646385288618719372935991443495277827869864919316856389863546032268479285 / 2°256],
[6557911596322154679843233997860873819456967466229829214097465886508067119813 / 27255,
13115823192644309359686467995721747638913934932459658428194931773016134239637 / 2°256],
[63328796466738957984825113025800917297614244935801930326677856915848592681411 / 27257,
126657592933477915969650226051601834595228489871603860653355713831697185362823 / 2°25811,
[[2412335192444087404657728854347664746943124680534178417488699666831523534165 / 27252,
38597363079105398474523661669562635951089994888546854679819194669304376546651 / 272561, [-1 / 27255, 1 / 2°255],
[617557809265686375592378586713002175217439918216749674877107114708870024746325 / 27260,
308778904632843187796189293356501087608719959108374837438553557354435012373163 / 2°259]]]

5 Computing Grobner bases

MSOLVE relies on Grobner bases algorithms which allow one to rewrite the input polynomial
system as an equivalent system which reveals properties of the solution set (dimension, degree)
and to compute “modulo” the input equations.

MSOLVE provides Grobner bases computations for the so-called greviex ordering (see e.g. [2])
when the coefficients either lie in the field of rational numbers or when they lie in the prime
field case. For instance, assume the file in.ms contains the following:

z1l, z2, z3

1073741827
T+21%22+5%22%23+23"2+21+5%23+10,
7%2372-27%217°2-15%22"2459%z3+3%z1,
8%2172+13*%21%23+10%23"2+22+z1

Now, typing the following command:

./msolve -g 2 -f in.ms -0 out.ms




where the -g flag indicates that one aims at computing a Grobner basis. The value 2 tells
MSOLVE to compute the Grobner basis for the greviex order with z; > z, > z3. The computed
Grobner basis is then printed in the file out.ms as follows.

7~

#Reduced Groebner basis data

He--

#field characteristic: 1073741827

#variable order: z1, z2, z3

#monomial order: graded reverse lexicographical

#length of basis: 6 elements sorted by increasing leading monomials

oo

[1%2272+832149913%2z1"1%23"1+876889156%2372+295279002+21°1+724775733%x22"1+143165573%23"1,
1xz1"1%22"1+613566759%22"1%2371+766958448+23"2+766958448+21°1+613566759%2371+153391691,
1%2172+134217730%2171%2371+268435458+2372+671088642+21°1+671088642%22"1,
1%2271%2372+722232944%23"3+180778379+21" 123" 1+1027531442+22"1x23"1+173735741+23"2+936498976+21"1+702034498+22~1+921316952+2371+59915395,
1%2171%2372+557357968+2373+911535897+21" 123" 1+419648179+22"1+x23"1+96648475+2372+698659259+21"1+282295066+22~1+885328953%2371+769127629,
1x2374+250491376+23"3+716275774%2171%2371+91652836+22"1%23"1+88303466*23"2+855797860+21"1+18642214%22~1+728901227+23"1+969918485] :

When one is interested only in the leading monomials of the Grébner basis (which is a way
smaller output), one simply uses the -g 1 flag as follows

./msolve -g 1 -f in.ms -0 out.ms

and we obtain:

#Leading ideal data

P

#field characteristic: 1073741827

#variable order: z1, z2, z3

#monomial order: graded reverse lexicographical
#length of basis: 6 elements sorted by increasing leading monomials
o

[z272,

z1"1%22°1,

7172,

z2°1%2372,

z171%2372,

z374]:

Note that from this list of monomials, one can deduce the Hilbert series of the ideal generated
by the input equations and then its dimension and its degree (see [2]).

Note that when the -g 1 flag is used in characteristic 0, the result is always probabilistic: the
leading monomials are deduced from two computations over a prime field, the first prime being
chosen randomly.

For instance, in the above example, one can deduce that the ideal has dimension 0 (finitely
many solutions with coordinates in an algebraic closure of W) since the basis of leading
monomials contain pure powers of all variables. The degree of the ideal is also 8 since there are
8 monomials in zy, 23, z3 which are not divisible by the above leading monomials.

MSOLVE also allows you to perform Grobner bases computations using one-block elimination
monomial order thanks to the -e flag. The following command



./msolve -e 1 -g 2 -f in.ms -o out.ms

on

t, w, X, Yy, 2z
1073741827

w™4,

Xx™4,
wxy”~3+1073741826*x*z"3,
t+xz+1073741826

will perform the Grobner basis computation eliminating the first variable. The output is

#Reduced Groebner basis data

He--

#field characteristic: 1073741827

#variable order: t, w, X, y, z

#monomial order: eliminating first variable, blocks: graded reverse lexicographical
#length of basis: 7 elements sorted by increasing leading monomials
oo

[1w"1%y"3+1073741826+x"1%2"3,

1%x74,

1+w"1#x"3,

1xw"2%X"2,

L1xw"3%x"1,

1xw™4,

1xt"1%271+1073741826] :

where we see that the first 6 polynomials are only in w, x, y, z, which corresponds to the
elimination of the variable . When the input coefficients lie in the field of rational numbers
(hence, characteristic 0), the returned Grébner basis is the one of the elimination ideal, i.e. they
have partial degree 0 in the variables to eliminate.

More generally, using -e k will eliminate the k first variables. Thus

./msolve -e 2 -g 2 -f in.ms -0 out.ms

will eliminate ¢ and w, yielding



#Reduced Groebner basis data

He--

#field characteristic: 1073741827

#variable order: t, w, x, y, z

#monomial order: eliminating first 2 variables, blocks: graded reverse lexicographical
#length of basis: 7 elements sorted by increasing leading monomials
Heo-

[1%x"4,

1+w 1*y~3+1073741826+x"1%z"3,

Lxw"1%x"3,

1%t"1x2"1+1073741826,

14w 2%x"2,

1+w"3+x"1,

1+w™4]:

#Reduced Groebner basis for input in characteristic 1073741827
#for variable order t, w, x, y, z

#w.r.t. grevlex monomial ordering

#consisting of 7 elements:

[1%x"4,

1+w 1*y~3+1073741826+x"1%2"3,

1w~ 1%x"3,

1xt"1%2"1+1073741826,

14w 2%x"2,

1w 3+x"1,

1+wh4]:

where we see that only the first polynomial is not in t and w.

6 Parametrizations of (finitely many) solutions

Assume that the input polynomials have coefficients in some field K with variables xy, . . ., x,. In
the case of polynomial systems of dimension 0, MSOLVE computes by default a zero-dimensional
parametrization of the solution set. The user can obtain such an encoding using the -P flag (see
below).

Let us recall what a rational parametrization is. This is a couple (., £) where { is a linear form
Axy+ -+ Apx, with A; € K (for 1 < i < n), &2 is a sequence of polynomials (w, w’, vy, ..., 0vy,)
in K[¢] where ¢t is a new variable such that:

ow,
ot

« when K is a prime field, w’ = 1 else w’ =
« deg(v;) < deg(w) for 1 <i < n;
e Mor+ -+ A, =tw mod w

and the solution set to the input polynomials coincides with the set:

{(_ 01(8) _vnw))

W@ W)

In algebraic words, the polynomials w’x; + v; belong to the radical of the ideal generated by the

w(9) = 0}.

input equations and the form Ayx; + - - + A,x, + .

MSOLVE outputs univariate polynomials as an array [deg,L] where deg is the degree of the
polynomial under consideration and L is the array of its coefficients in the monomial basis
by increasing degree and c is a denominator to all coefficients. For instance, the polynomial
x? + 3x — 2 is encoded by



[2, -2, 3, 11]

We first explain MSOLVE’s output in the case where the input coeflicients are rational numbers
(the characteristic zero case). For an input in the file in.ms

z1l, z2

0
z17°2+z27°2-1,
z17°2-2272

the command

./msolve -P 2 -f in.ms

MSOLVE outputs is

(o, [e,

3,

4,

['z1, 'z2', 'A’'1,
[-119/576,69/576,5/5761,

[1,

[[4, (883600, 0, -18922, 0, 2511,
[3, [0, -37844, 0, 100]],

[

[[3, (223720, 0, -1190, 0]],
11,

[[3, (129720, 0, 690, 0]],
1]

11111

and has the following structure

[0, [0, nvars, deg, vars, form, [1,[lw, lwp, param]]]]:

where

« the first 0 indicates that the input system has finitely many complex solutions (dimension
at most 0);

« the second 0 is the characteristic;

« nvars is the number of variables used for the parametrization (it coincides with the
number of input variables if the form ¢ is chosen as one of the variables else it is one
more);

+ deg is the number of solutions, counted with multiplicities (in other words the degree of
the ideal generated by the input equations);

10



« vars is the list of variables following the ordering used for computing the parametrization
(hence, with maybe with one more variable than the ones given as input).

In our example, MSOLVE outputs:
[’Zl’, 1221’ IAI]
where A is a new variable.
« formis the list of coefficients for the linear form ¢ when it does not coincide with one of
the input variables (else it is an empty list);

In our example, this is a list of three rational numbers, say [-119/576,69/576,5/5761,
indicating that the linear form used to compute the rational parametrization is

-119/576%21+69/576%22+5/576*A

« the next 1 indicates that a single parametrization is returned next (the one encoded by
[lw, lwp, param]);

+ 1w is the encoding of the eliminating polynomial w;
« lwp is the encoding of the denominator used in the rational parametrization;

« paranm is the list of the output parametrizations, there are n — 1 where n is the number of
elements in vars ; they are encoded as follows [[deg, L], c] where c is an integer which
divides the polynomial encoded by [deg, LI.

The first one corresponds to the first variable in vars, the second parametrization cor-
responds to the second variable in vars and so on. Hence, the variable which is used to
parametrize the solution set is always the last one.

We illustrate now how the output looks like on input file in.ms

z1l, z2, z3

0

z17°2-22"2+23"2-4,
z1x722+2%72%23-3%23xz1-1,
z1+2%22+3%23-1

Using ./msolve -P 2 -f in.ms the output is

11



[e, fo,

3,

4,

['z1", 'z2", 'z3'],

[e, o, 11,

[1,

[[4, [-116, -210, 1484, -344, 53]],
[3, [-210, 2968, -1032, 212]],
[

[[3, [1894, 162, -1636, 192]],
1],

[[3, [-146, -620, -3118, 314]],
1]

11111

On this example, all variables are parametrized by the variable z3.
The polynomial w is =116 — 210z3 + 14842% - 344z§ + 53z§. The polynomials v; and v, are
respectively

01 = 1894 + 16223 — 163625 + 19225 and 0y = —146 — 62023 — 311825 + 314z;.

Note that we can get both the parametrization and the real roots. For instance, using the
command ./msolve -P 1 -f in.ms, one obtains

e, fo,

3,

4,

['z1", 'z2", 'z3'],

[e, o, 11,

[1,

[[4, [-116, -210, 1484, -344, 53]1,

[3, [-210, 2968, -1032, 212]],

[

[[3, [1894, 162, -1636, 192]],

11,

[[3, [-146, -620, -3118, 314]],

1]

1111, 11,

[[[679375673646273705027530285330331715009 / 27128, 339687836823136852513765142665165857505 / 2~127], [-60535166785954698124918883091179878673
/ 27128, -3783447924122168632807430193198742417 / 2°124], [-1162789190151604508343028862486419979779 / 27132
-581394595075802254171514431243209989889 / 2°131]], [[-756665306660103909967296571629791504137 / 2°128,
-756665306660103909967296571629791504135 / 2°128], [88745898258177294078528671940999802399 / 27126,
177491796516354588157057343881999604799 / 2°127], [2063895933416661444279689618845660247455 / 27132,
4127791866833322888559379237691320494911 / 2°133]]1

We end this section with the same example as above but seeing the coefficients in Z/65521Z.

z1, z2, z3

65521

z172-2272+23"2-4,
z1x72+42%22%23-3%23%z1-1,
z1+2%22+3%23-1

The call ./msolve -P 2 -f in.ms then outputs

12



[0, [65521,

3,

4,

['z1", 'z2", 'z3'],

[e, o, 11,

[1,

[4,

[16069, 9886, 28, 2466, 111,

[o,

[111,

[

[3s,

[6276, 37054, 57744, 4959]]1],
[s,

[29622, 14235, 36649, 30281]]]
11111

7 Saturation and colon ideals

MSOLVE also proposes algorithms for computing Grébner bases of saturation and colon ideals.
Given m + 1 polynomials fi, ..., fm, ¢ over a field K with variables x, ..., x,,, the saturation
ideal (fi, ..., fm) : {¢)*° is the ideal of all polynomials h, such that there exists k € N such that
ho* € (fi,..., fm). The colon ideal (fi, ..., fn) : (@) is the ideal of all polynomials h, such that
ho € (fi,..., fm)-

A Grobner basis for the greviex order can be computed in the former case with an input file
containg fi, ..., fi, ¢ and called with the flag -S to use the FASAT algorithm. Note that this
option is at the moment restricted to 32 bit prime fields.

For instance, consider the following input to MSOLVE written in a file in.ms.

W, X, Y, Z

1073741827

w4,

x"4,
1073741826*x*z2"3+w*xy"3,

z

Then, typing the following command line

./msolve -S -g 2 -f in.ms -o out.ms

will display in the out.ms file the following content.

13



#Reduced Groebner basis data

He--

#field characteristic: 1073741827

#variable order: w, x, y, z

#monomial order: graded reverse lexicographical
#length of basis: 6 elements sorted by increasing leading monomials
Heo-

[1xw 1xy”~3+1073741826%x"1%z"3,

1xx"4,

Lxw"1%x"3,

1w 2%x"2,

1w 3%x"1,

1+xw™4]:

More flags and options

« The flag -h displays some documentation

+ The flag -v <int> controls the verbosity

Default value: 0

+ The flag -t <int> controls the number of threads used

Default value: 1

« The flag -p <int> controls the binary precision of the output of the univariate real root
solver (default value may be automatically increased by MsoLvE when needed).

Default value:128

+ The flag -g <int> tells MSOLVE to output the leading monomial of the ideal generated by
the input polynomials (when <int> is 1) or the minimal reduced Grobner basis (when
<int>is 2 and a prime characteristic is indicated).

Default value:0

« Theflag -P <int> tells MSOLVE to output the rational parametrization computed for solving
zero-dimensional polynomial systems (those with finitely many solutions in an algebraic
closure of the base field). When +-P 0 is set, such a parametrization is not returned,
when -P 1 is set, the parametrization is returned and, in the charactersitic zero case
(rational coefficients), real solutions are returned, when +-P 2 is set, only the rational
parametrization is returned.

Default value:0

+ The flag -c <int> tells MSOLVE how to handle genericity requirements: when <int> is
0 MSOLVE quits when these requirements are not satisfied, when <int> is 1 MSOLVE is
allowed to change the order of the variables if needed and quits if after these changes, the

14



genericity requirements are not satisfied, when <int> is 2 MSOLVE is allowed to introduce
a new variable and a linear form until the genericity requirements are satisfied.

Default value:2

o The flag -d <int> tells MSOLVE how to handle further genericity requirements when the
staircase is not generic enough by computing some normal forms: <int> can go from 0
(no normal form computations are computed) to 4 (all the normal forms are computed).

Default value:2

9 Julia interface to MSOLVE

The Julia interface to MSOLVE is part of the official Julia package Oscar.jl. You can install the
package via the following commands inside a Julia session:

using Pkg
Pkg.add(“0Oscar”)

Once the package is loaded via using Oscar one can call the function msolve() which returns,
if any, the rational parametrization and the solutions of the given input system of multivariate
polynomials. The most common calling convention is as follows:

res = msolve(I).

where
+ Iis of type ideal.
The most common options for calling msolve() in Julia are:

+ info_level with values 0 (no information printing; default), 1 (slight information printing
on comptutational status) or 2 (full information printing also on intermediate steps),

+ la_option for the linear algebra variant to be chosen inside F4: 2 for exact linear algebra
and tracing multi modular computations (default) or 44 for probabilistic linear algebra
with independent modular computations;

» precision for the bit precision with which the solutions are computed from the rational
parametrization. Default is 64.

So using msolve () with probabilistic linear algebra, the most verbose information printout and
a precision of 80 one would call

res = msolve(I, la_option=44, info_level=2, precision=80).

You can get a full list of options for msolve() in Julia by typing inside Julia
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? msolve()

10 Maple interface to MSOLVE

The Maple interface to MSOLVE is a file interface which can be found on the MSOLVE interface
page or in the MSOLVE binary package. Having loaded the interface one can call the function
MSolveRealRoots () in the following way:

results = MSolveRealRoots(F, vars)

where F denotes a polynomial system in variables vars,

In order to compute Grébner bases, you can also the function MSolveGroebner.

You may consult the source code for optional arguments which allow you to better control
the output format, the names of used files, verbosity, etc.

11 Sage interface to MSOLVE

There is now an interface between SageMath and MSOLVE.

You can have a look at https://github.com/sagemath/sage/blob/develop/src/sage/rings/
polynomial/msolve.pyand https://github.com/sagemath/sage/blob/develop/src/sage/rings/
polynomial/multi_polynomial_ideal.py

Many thanks to the SageMath development team, in particular to Marc Mezzarobba who
initiated this interface.

12 Credits

The main developers of MSOLVE are Jérémy Berthomieu, Christian Eder and Mohab Safey El Din.
It relies on original implementations of Faugere’s F, algorithm [3] as well as Faugére and Mou’s
Sparse-FGLM algorithm [4]. We are grateful to Huu Phuoc Le and Jorge Garcia Fontan for a
preliminary version of the Maple interface as well as Rémi Prébet for a preliminary version of
the Sage interface.

If you use MSOLVE, you may cite:

@inproceedings{msolve,
TITLE = {{msolve: A Library for Solving Polynomial Systems}},
AUTHOR = {Berthomieu, J{\’e}r{\’e}my and Eder, Christian and {Safey El Din}, Mohab},
URL = {https://hal.sorbonne-universite.fr/hal-03191666},
BOOKTITLE = {{2021 International Symposium on Symbolic and Algebraic Computation}},
ADDRESS = {Saint Petersburg, Russia},
SERIES = {46th International Symposium on Symbolic and Algebraic Computation},
YEAR = {2021},
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https://msolve.lip6.fr/interfaces/index.html
https://msolve.lip6.fr/interfaces/index.html
https://www.sagemath.org/
https://github.com/sagemath/sage/blob/develop/src/sage/rings/polynomial/msolve.py
https://github.com/sagemath/sage/blob/develop/src/sage/rings/polynomial/msolve.py
https://github.com/sagemath/sage/blob/develop/src/sage/rings/polynomial/multi_polynomial_ideal.py
https://github.com/sagemath/sage/blob/develop/src/sage/rings/polynomial/multi_polynomial_ideal.py

MONTH = Jul,

DOI = {10.1145/3452143.3465545},

PDF = {https://hal.sorbonne-universite.fr/hal-03191666v2/file/main.pdf},
HAL_ID = {hal-03191666},

HAL_VERSION = {v2},
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