Explaining the Postgres Query Optimizer

BRUCE MOMJIAN

COEDB

The optimizer is the "brain" of the database, interpreting SQL queries and determining
the fastest method of execution. This talk uses the EXPLAIN command to show how the
optimizer interprets queries and determines optimal execution.

https://momjian.us/presentations
(= o]

Creative Commons Attribution License

Last updated: October 2025

1/62

Postgres Query Execution

User

Terminal

PostgreSQL

Database

Server

Queries —

~— Results

2/62

Postgres Query Execution

= ¥
Cmem] (ows)
Parse Statement
tility
Traffic Cop uey & Utility
Quiery eg.CREA Py
seLécr, nsaT Wii‘, DeLeTe, HerE
Generate Paths

Optimal Path

Generate Plan

Plan

Execute Plan

mEn Tl e

(Access Methods] [Nodes/Lists |

https://momjian.us/main/presentations/internals.html#internal_pics

3/62

https://momjian.us/main/presentations/internals.html#internal_pics

Postgres Query Execution

Parse Statement
) utility
Traffic Cop ’

Q
SELECT, INSERT, UP ATE DELETE, MERGE
ewrite Query
Generate Paths

Optimal Path

Generate Plan

Plan

Execute Plan

https://www.highgo.ca/2024/01/26/a-comprehensive-overview-of-postgresql-query-processing-stages/

e.g. CREATE TABLE, COPY

4/62

https://www.highgo.ca/2024/01/26/a-comprehensive-overview-of-postgresql-query-processing-stages/

The Optimizer Is the Brain

https://www.flickr.com/photos/dierkschaefer/

5/62

What Decisions Does the Optimizer Have to Make?

e Scan Method
¢ Join Method
¢ Join Order

These blog posts have great descriptions of optimizer internals:

® https://www.highgo.ca/2024/03/22/
understand-postgresqls-planner-simple-scan-paths-vs-plans/

® https://dev.to/ashenblade/postgresql-planner-development-and-debugging-47mc

6/62

https://www.highgo.ca/2024/03/22/understand-postgresqls-planner-simple-scan-paths-vs-plans/
https://www.highgo.ca/2024/03/22/understand-postgresqls-planner-simple-scan-paths-vs-plans/
https://dev.to/ashenblade/postgresql-planner-development-and-debugging-47mc

Which Scan Method?

e Sequential Scan
e Bitmap Index Scan

® Index Scan

7/62

A Simple Example Using pg class.relname

SELECT relname
FROM pg_class
ORDER BY 1
LIMIT 8;
relname

_pg_foreign_data wrappers
_pg_foreign_servers
_pg_foreign_table columns
_pg_foreign tables
_Ppg_user_mappings
administrable_role_authorizations
applicable _roles

attributes

8/62

Let’s Use Just the First Letter of pg class.relname

SELECT substring(relname, 1, 1)
FROM pg_class
ORDER BY 1
LIMIT 8;
substring

9/62

Create a Temporary Table with an Index

CREATE TEMPORARY TABLE sample (letter, junk) AS
SELECT substring(relname, 1, 1), repeat('x', 250)
FROM pg_class
ORDER BY random(); -- add rows in random order

CREATE INDEX i _sample on sample (letter);

All queries used in this presentation are available at https://momjian.us/main/writings/pgsql/
optimizer.sql.
10/62

https://momjian.us/main/writings/pgsql/optimizer.sql
https://momjian.us/main/writings/pgsql/optimizer.sql

Create an EXPLAIN Function

CREATE OR REPLACE FUNCTION Tookup Tetter(text) RETURNS SETOF text AS $$
BEGIN

RETURN QUERY EXECUTE '

EXPLAIN SELECT letter

FROM sample

WHERE Tetter = ''' || $1 || '''';
END
$$ LANGUAGE plpgsql;

11/62

What is the Distribution of the sample Table?

WITH Tetters (Tetter, count) AS (
SELECT Tletter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter, count, round(count * 100.0 / (SUM(count) OVER ()), 1) AS "&"
FROM letters
ORDER BY 2 DESC;

12/62

What is the Distribution of the sample Table?

9
%

Tetter | count |

N S SO

13/62

[s the Distribution Important?

EXPLAIN SELECT letter
FROM sample
WHERE Tetter = 'p';
QUERY PLAN
Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=32)
Recheck Cond: (Tetter = 'p'::text)
-> Bitmap Index Scan on i sample (cost=0.00..4.16 rows=2 width=0)
Index Cond: (letter = 'p'::text)

14/62

[s the Distribution Important?

EXPLAIN SELECT letter
FROM sample
WHERE Tetter = 'd';
QUERY PLAN
Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=32)
Recheck Cond: (letter = 'd'::text)
-> Bitmap Index Scan on i sample (cost=0.00..4.16 rows=2 width=0)
Index Cond: (letter = 'd'::text)

15/62

[s the Distribution Important?

EXPLAIN SELECT letter
FROM sample
WHERE Tetter = 'i';
QUERY PLAN
Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=32)
Recheck Cond: (letter = 'i'::text)
-> Bitmap Index Scan on i sample (cost=0.00..4.16 rows=2 width=0)
Index Cond: (letter = 'i'::text)

16/62

Running ANALYZE Causes a Sequential Scan for a Common Value

ANALYZE sample;

EXPLAIN SELECT letter
FROM sample
WHERE letter = 'p';

QUERY PLAN

Seq Scan on sample (cost=0.00..21.12 rows=342 width=2)
Filter: (letter = 'p'::text)

Autovacuum cannot ANALYZE (or VACUUM) temporary tables because these tables are only visible
to the creating session.

17/62

Sequential Scan

Heap

8K

18/62

A Less Common Value Causes a Bitmap Index Scan

EXPLAIN SELECT letter
FROM sample
WHERE Tetter = 'd';
QUERY PLAN
Bitmap Heap Scan on sample (cost=4.18..14.23 rows=4 width=2)
Recheck Cond: (letter = 'd'::text)
-> Bitmap Index Scan on i sample (cost=0.00..4.18 rows=4 width=0)
Index Cond: (letter = 'd'::text)

19/62

Bitmap Index Scan

Index 1 Index 2 Combined Table
coll ="A’col2 ="NS’ Index

_—¥|'A’ AND 'NS’

= o = o
0

o - - o
I

o o = o

20/62

An Even Rarer Value Causes an Index Scan

EXPLAIN SELECT letter
FROM sample
WHERE Tetter = 'i';
QUERY PLAN
Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)
Index Cond: (letter = 'i'::text)

21/62

Index Scan

22/62

Index-Only Scan

23/62

Let’s Look at All Values and their Effects

WITH letter (letter, count) AS (
SELECT Tetter, COUNT(*)
FROM sample
GROUP BY 1

)

SELECT Tletter AS 1, count, lookup letter(letter)
FROM Tetter

ORDER BY 2 DESC;

1 | count | Tookup Tetter

T o e e e e e
p | 342 | Seq Scan on sample (cost=0.00..21.12 rows=342 width=2)

p| 342 | Filter: (Tetter = 'p'::text)

c | 13 | Bitmap Heap Scan on sample (cost=4.25..20.69 rows=13 width=2)

c | 13 | Recheck Cond: (letter = 'c'::text)

c | 13 | -> Bitmap Index Scan on i_sample (cost=0.00..4.25 rows=13 width=0)
c | 13 | Index Cond: (letter = 'c'::text)

r| 12 | Bitmap Heap Scan on sample (cost=4.24..20.14 rows=12 width=2)

r| 12 | Recheck Cond: (letter = 'r'::text)

r| 12 | -> Bitmap Index Scan on i sample (cost=0.00..4.24 rows=12 width=0)
r| 12 | Index Cond: (letter = 'r'::text)

24/62

OK, Just the First Lines

WITH letter (letter, count) AS (
SELECT Tetter, COUNT(*)
FROM sample

GROUP BY 1

)

SELECT Tetter AS 1, count,
(SELECT *

FROM Tookup Tetter(letter) AS 12
LIMIT 1) AS Tookup letter

FROM letter

ORDER BY 2 DESC;

25/62

|

+

|

| Bitmap
| Bitmap
| Bitmap
| Bitmap
| Bitmap
| Bitmap
| Bitmap
| Bitmap
| Bitmap
| Bitmap
| Bitmap
|

|

Just the First EXPLAIN Lines

Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap

sample

Scan
Scan
Scan
Scan
Scan
Scan
Scan
Scan
Scan
Scan
Scan

on
on
on
on
on
on
on
on
on
on
on

(cost=0.
sample
sample
sample
sample
sample
sample
sample
sample
sample
sample
sample

Tookup_Tetter

Seq Scan on

00..21.12 rows=342 width=2)

(cost=4.25..20.69 rows=13 width=2)
(cost=4.24..20.14 rows=12 width=2)
(cost=4.19..17.25 rows=6 width=2)
(cost=4.19..17.25 rows=6 width=2)
(cost=4.19..17.25 rows=6 width=2)
(cost=4.19..15.86 rows=5 width=2)
(cost=4.19..15.86 rows=5 width=2)
(cost=4.18..14.23 rows=4 width=2)
(cost=4.18..14.23 rows=4 width=2)
(cost=4.17..12.31 rows=3 width=2)
(cost=4.16..10.07 rows=2 width=2)

Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)
Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)

Results will vary based on the clustering of values in heap pages.

26/62

We Can Force an Index Scan

SET enable_segscan = false;
SET enable_bitmapscan = false;
WITH Tetter (letter, count) AS (

SELECT Tetter, COUNT(*)
FROM sample

GROUP BY 1

)

SELECT Tetter AS 1, count,
(SELECT *

FROM Tookup Tetter(letter) AS 12
LIMIT 1) AS Tookup letter

FROM Tletter

ORDER BY 2 DESC;

27/62

1 | count
-———t

p | 342
c | 13
r| 12
s | 6
f 6
t | 6
u | 5
s
v 4
d | 4
a | 3
e | 2
k | 1
i 1
RESET ALL;

Notice the High Cost for Common Values

Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index

using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample
using i_sample

Tookup_Tletter

on
on
on
on
on
on
on
on
on
on
on
on
on
on

(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.
(cost=0.

..10.
..8.17 rows=1 width=2)
..8.17 rows=1 width=2)

33

rows=342 width=2)
rows=13 width=2)
rows=12 width=2)

rows=6
rows=6
rows=6
rows=5
rows=b5
rows=4
rows=4
rows=3
rows=2

width=2)
width=2)
width=2)
width=2)
width=2)
width=2)
width=2)
width=2)
width=2)

28/62

This Was the Optimizer’s Preference

Seq Scan on

Bitmap
Bitmap
Bitmap
Bitmap
Bitmap
Bitmap
Bitmap
Bitmap
Bitmap
Bitmap
Bitmap

Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap

sample

Scan
Scan
Scan
Scan
Scan
Scan
Scan
Scan
Scan
Scan
Scan

on
on
on
on
on
on
on
on
on
on
on

(cost=0.
sample
sample
sample
sample
sample
sample
sample
sample
sample
sample
sample

Tookup_Tetter

00..21.12 rows=342 width=2)

(cost=4.
(cost=4.
(cost=4.
(cost=4.
(cost=4.
(cost=4.
(cost=4.
(cost=4.
(cost=4.
(cost=4.
(cost=4.
Index Only Scan using i_sample on sample
Index Only Scan using i_sample on sample

25.
24.
19..
19..
19..
19..
19..
18..
18..
17..
16..

.20.
.20.
17.
17.
17.
15.
15.
14.
14.

12

69
14
25
25
25
86
86
23
23

.31
10.
(cost=0.15..8.17 rows=1 width=2)
(cost=0.15..8.17 rows=1 width=2)

07

rows=13 width=2)
rows=12 width=2)
rows=6 width=2)
rows=6 width=2)
rows=6 width=2)
rows=5 width=2)
rows=5 width=2)
rows=4 width=2)
rows=4 width=2)
rows=3 width=2)
rows=2 width=2)

29/62

Which Join Method?

e Nested Loop

¢ With Inner Sequential Scan
® With Inner Index Scan

e Hash Join
® Merge Join

30/62

What Is in pg_proc.oids

SELECT oid
FROM pg proc
ORDER BY 1
LIMIT 8;

oid

31/62

Create Temporary Tables from pg proc and pg class

CREATE TEMPORARY TABLE samplel (id, junk) AS
SELECT oid, repeat('x', 250)
FROM pg proc
ORDER BY random(); -- add rows in random order

CREATE TEMPORARY TABLE sample2 (id, junk) AS
SELECT oid, repeat('x', 250)
FROM pg class
ORDER BY random(); -- add rows in random order

These tables have no optimizer statistics and no indexes.

32/62

Join the Two Tables with a Tight Restriction

EXPLAIN SELECT sample2.junk

FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
WHERE samplel.id = 33;

QUERY PLAN

Nested Loop (cost=0.00..364.14 rows=770 width=32)

-> Seq Scan on samplel (cost=0.00..313.09 rows=77 width=4)
Filter: (id = '33'::0id)
-> Materialize (cost=0.00..41.45 rows=10 width=36)

-> Seq Scan on sample2 (cost=0.00..41.40 rows=10 width=36)
Filter: (id = '33'::01d)

33/62

Nested Loop Join with Inner Sequential Scan

Outer Inner
aag aai
aay [o > aag
aar NN B aas

\ \\\
aai > \\ aar
AN
) aay
aaa

No Setup Required

Used For Small Tables

34/62

Pseudocode for Nested Loop Join with Inner Sequential Scan

for (i = 0; i < length(outer); i++)
for (j = 0; j < length(inner); j++)
if (outer[i] == inner[j])
output (outer[i], inner[j]);

35/62

Join the Two Tables with a Looser Restriction

EXPLAIN SELECT samplel.junk
FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
WHERE sample2.id > 33;
QUERY PLAN

Hash Join (cost=49.86..2189.32 rows=52017 width=32)

Hash Cond: (samplel.id = sample2.id)

-> Seq Scan on samplel (cost=0.00..274.67 rows=15367 width=36)

-> Hash (cost=41.40..41.40 rows=677 width=4)

-> Seq Scan on sample2 (cost=0.00..41.40 rows=677 width=4)
Filter: (id > '33'::0id)

36/62

Hash Join

Outer Inner
aay aak aas
aag
aak aam aay aar
aar
Hashed 280 ST

Must fit in Main Memory

https://stormatics.tech/blogs/understanding-hash-aggregates-and-hash-joins-in-postgresql

37/62

https://stormatics.tech/blogs/understanding-hash-aggregates-and-hash-joins-in-postgresql

Pseudocode for Hash Join

for (j = 0; j < length(inner); j++)
hash_key = hash(inner[j]);
append(hash_store[hash_key]l, inner[j]);
for (i = 0; i < length(outer); i++)
hash_key = hash(outer[i]);
for (j = 05 j < length(hash_store[hash key]); j++)
if (outer[i] == hash_store[hash key][j])
output (outer[i], inner[j]);

38/62

Join the Two Tables with No Restriction

EXPLAIN SELECT samplel.junk
FROM samplel JOIN sample2 ON (samplel.id = sample2.id);
QUERY PLAN
Merge Join (cost=1491.22..3843.32 rows=156129 width=32)
Merge Cond: (sample2.id = samplel.id)
-> Sort (cost=147.97..153.05 rows=2032 width=4)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..36.32 rows=2032 width=4)
-> Sort (cost=1343.26..1381.67 rows=15367 width=36)
Sort Key: samplel.id
-> Seq Scan on samplel (cost=0.00..274.67 rows=15367 width=36)

39/62

Sorted

Merge Join

Outer Inner
aaa > aaa
aab > aab
aac -2 aab
aad A aac

aae
aaf
aaf

Ideal for Large Tables

An Index Can Be Used to Eliminate the Sort

Sorted

40/62

Pseudocode for Merge Join

sort (outer);
sort(inner);

i=20;
J=0;
save j = 0;

while (i < length(outer))
if (outer[i] == inner[j])

output(outer[i], inner[j]);
if (outer[i] >= inner[j] && j < length(inner))

Jtts;
if (outer[i] > inner[j])
save j = J;
else
it++;
J = save j;

41/62

Order of Joined Relations Is Insignificant

EXPLAIN SELECT sample2.junk
FROM sample2 JOIN samplel ON (sample2.id = samplel.id);
QUERY PLAN
Merge Join (cost=1491.22..3843.32 rows=156129 width=32)
Merge Cond: (sample2.id = samplel.id)
-> Sort (cost=147.97..153.05 rows=2032 width=36)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..36.32 rows=2032 width=36)
-> Sort (cost=1343.26..1381.67 rows=15367 width=4)
Sort Key: samplel.id
-> Seq Scan on samplel (cost=0.00..274.67 rows=15367 width=4)

The most restrictive relation, e.g., sample2, is always on the outer side of merge joins. All
previous merge joins also had sample2 in outer position.

42/62

Add Optimizer Statistics

ANALYZE samplel;

ANALYZE sample2;

43/62

This Was a Merge Join without Optimizer Statistics

EXPLAIN SELECT sample2.junk
FROM samplel JOIN sample2 ON (samplel.id = sample2.id);
QUERY PLAN

Hash Join (cost=25.38..195.17 rows=417 width=254)
Hash Cond: (samplel.id = sample2.id)

-> Seq Scan on samplel (cost=0.00..153.45 rows=3245 width=4)
-> Hash (cost=20.17..20.17 rows=417 width=258)

-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=258)

44/62

Outer Joins Can Affect Optimizer Join Usage

EXPLAIN SELECT samplel.junk
FROM samplel RIGHT OUTER JOIN sample2 ON (samplel.id = sample2.id);
QUERY PLAN
Hash Right Join (cost=25.38..195.17 rows=417 width=254)
Hash Cond: (samplel.id = sample2.id)
-> Seq Scan on samplel (cost=0.00..153.45 rows=3245 width=258)
-> Hash (cost=20.17..20.17 rows=417 width=4)
-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=4)

45/62

Cross Joins Are Nested Loop Joins without Join Restriction

EXPLAIN SELECT samplel.junk
FROM samplel CROSS JOIN sample2;
QUERY PLAN
Nested Loop (cost=0.00..17089.22 rows=1353165 width=254)
-> Seq Scan on samplel (cost=0.00..153.45 rows=3245 width=254)
-> Materialize (cost=0.00..22.26 rows=417 width=0)
-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=0)

46/62

Create Indexes

CREATE INDEX i_samplel on samplel (id);

CREATE INDEX i_sample2 on sample2 (id);

47/62

Nested Loop with Inner Index Scan Now Possible

EXPLAIN SELECT sample2.junk
FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
WHERE samplel.id = 33;
QUERY PLAN
Nested Loop (cost=0.55..16.60 rows=1 width=254)
-> Index Only Scan using i _samplel on samplel (cost=0.28..8.30 rows=1 width=4)
Index Cond: (id = '33'::0id)
-> Index Scan using i_sample2 on sample2 (cost=0.27..8.29 rows=1 width=258)
Index Cond: (id = '33'::0id)

48/62

Nested Loop Join with Inner Index Scan

Outer Inner
aag [aai
A - T~
aay |\ > aag

N\
A\
aar > _ aas
: AN
aai > \ N\ aar
\ 4|
aay
\
\
\ | aaa
Index Lookup y
aag

No Setup Required

Index Must Already Exist

Pseudocode for Nested Loop Join with Inner Index Scan

for (i = 0; i < length(outer); i++)
index_entry = get first match(outer[j])
while (index_entry)
output (outer[i], inner[index _entry]);
index_entry = get next match(index _entry);

50/62

Query Restrictions Affect Join Usage

EXPLAIN SELECT sample2.junk
FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
WHERE sample2.junk =~ '~aaa';
QUERY PLAN
Nested Loop (cost=0.28..29.52 rows=1 width=254)
-> Seq Scan on sample2 (cost=0.00..21.21 rows=1 width=258)
Filter: (junk ~ '"aaa'::text)
-> Index Only Scan using i_samplel on samplel (cost=0.28..8.30 rows=1 width=4)
Index Cond: (id = sample2.id)

No junk rows begin with ’aaa’.

51/62

All ’junk’ Columns Begin with *xxx’

EXPLAIN SELECT sample2.junk
FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
WHERE sample2.junk = '“xxx';

QUERY PLAN

Hash Join (cost=26.42..196.21 rows=417 width=254)
Hash Cond: (samplel.id = sample2.id)

-> Seq Scan on samplel (cost=0.00..153.45 rows=3245 width=4)
-> Hash (cost=21.21..21.21 rows=417 width=258)

-> Seq Scan on sample2 (cost=0.00..21.21 rows=417 width=258)
Filter: (junk =~ '“xxx'::text)

Hash join was chosen because many more rows are expected. The smaller table, e.g., sample2, is
always hashed.

52/62

Without LIMIT, Hash Is Used for this Unrestricted Join

EXPLAIN SELECT sample2.junk

FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
ORDER BY 1;

QUERY PLAN

Sort (cost=213.32..214.36 rows=417 width=254)
Sort Key: sample2.junk
-> Hash Join (cost=25.38..195.17 rows=417 width=254)
Hash Cond: (samplel.id = sample2.id)

-> Seq Scan on samplel (cost=0.00..153.45 rows=3245 width=4)
-> Hash (cost=20.17..20.17 rows=417 width=258)

-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=258)

53/62

LIMIT Can Affect Join Usage

EXPLAIN SELECT sample2.id, sample2.junk
FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
ORDER BY 1
LIMIT 1;
QUERY PLAN

Limit (cost=0.55..2.33 rows=1 width=258)
-> Nested Loop (cost=0.55..742.75 rows=417 width=258)
-> Index Scan using i _sample2 on sample2 (cost=0.27..86.52 rows=417 width
-> Index Only Scan using i_samplel on samplel (cost=0.28..1.56 rows=1 wid
Index Cond: (id = sample2.id)

Sort is unneeded since an index is being used on the outer side.

54/62

LiMIT 10

EXPLAIN SELECT sample2.id, sample2.junk

FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
ORDER BY 1

LIMIT 10;

QUERY PLAN

Limit (cost=0.55..18.35 rows=10 width=258)
-> Nested Loop (cost=0.55..742.75 rows=417 width=258)
-> Index Scan using i _sample2 on sample2 (cost=0.27..86.52 rows=417 width
-> Index Only Scan using i_samplel on samplel (cost=0.28..1.56 rows=1 wid
Index Cond: (id = sample2.id)

55/62

LIMIT 100 Switches to Merge Join

EXPLAIN SELECT sample2.id, sample2.junk

FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
ORDER BY 1

LIMIT 100;

QUERY PLAN

Limit (cost=11.00..170.51 rows=100 width=258)
-> Merge Join (cost=11.00..676.13 rows=417 width=258)
Merge Cond: (samplel.id = sample2.id)
-> Index Only Scan using i_samplel on samplel (cost=0.28..576.91 rows=324
-> Index Scan using i _sample2 on sample2 (cost=0.27..86.52 rows=417 width

Merge join is normally used for large joins, but the indexes eliminate the need for sorting
both sides band LIMIT reduces the number of index entries that need to be accessed.

56/62

LiMIT 1000 Switches Back to Hash Join

EXPLAIN SELECT sample2.id, sample2.junk

FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
ORDER BY 1

LIMIT 1000;
QUERY PLAN

Limit (cost=213.32..214.36 rows=417 width=258)
-> Sort (cost=213.32..214.36 rows=417 width=258)
Sort Key: sample2.id

-> Hash Join (cost=25.38..195.17 rows=417 width=258)
Hash Cond: (samplel.id = sample2.id)

-> Seq Scan on samplel (cost=0.00..153.45 rows=3245 width=4)
-> Hash (cost=20.17..20.17 rows=417 width=258)

-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=258)

For LIMIT 1000, index lookups are considered to be too expensive to partially execute
the join, so a hash join is fully executed, which is then sorted and the LIMIT applied.

57/62

VACUUM Causes Merge Join Again

-- updates the visibility map
VACUUM samplel, sample2;

EXPLAIN SELECT sample2.id, sample2.junk

FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
ORDER BY 1

LIMIT 1000,

QUERY PLAN

Limit (cost=40.67..150.78 rows=420 width=258)
-> Merge Join (cost=40.67..150.78 rows=420 width=258)
Merge Cond: (samplel.id = sample2.id)
-> Index Only Scan using i_samplel on samplel (cost=0.28..97.75 rows=3298
-> Sort (cost=38.50..39.55 rows=420 width=258)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..20.20 rows=420 width=258)

VACUUM reduces the cost of index-only scans by making heap access less likely. s/

https://www.cybertec-postgresql.com/en/making-the-postgresql-visibility-map-visible/

No LIMIT Was a Hash Join

EXPLAIN SELECT sample2.id, sample2.junk
FROM samplel JOIN sample2 ON (samplel.id = sample2.id)
ORDER BY 1;
QUERY PLAN
Merge Join (cost=40.67..150.78 rows=420 width=258)
Merge Cond: (samplel.id = sample2.id)
-> Index Only Scan using i_samplel on samplel (cost=0.28..97.75 rows=3298 width
-> Sort (cost=38.50..39.55 rows=420 width=258)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..20.20 rows=420 width=258)

59/62

Same Join, Different Plans

Query Modifier Plan
No LIMIT Hash join
LiMIT 1 Nested loop join with two index scans
LiMIT 10
LimIT 100 Merge join with two index scans
LiMIT 1000 Hash join
VACUUM, LIMIT 1000 Merge join with index-only scan and sort
No LIMIT

The last two are different from previous matching lines because of VACUUM.

60/62

Further Study

My later talk, Beyond Joins and Indexes, covers the many other operations performed by
the optimizer.

https://momjian.us/main/presentations/performance.html#beyond

61/62

https://momjian.us/main/presentations/performance.html#beyond
https://momjian.us/main/presentations/performance.html#beyond

Conclusion

]

i https://momjian. MS/presentatiOﬂS https://www.flickr.com/photos/trevorklatko/
[=]:5%:

62/62

