
Explaining the Postgres Query Optimizer

BRUCE MOMJIAN

The optimizer is the "brain" of the database, interpreting SQL queries and determining

the fastest method of execution. This talk uses the EXPLAIN command to show how the

optimizer interprets queries and determines optimal execution.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: October 2025

1 / 62

Postgres Query Execution

User

Terminal

Code
Database

Server

Application

Queries

Results

PostgreSQL

Libpq

2 / 62

Postgres Query Execution

utility

Plan

Optimal Path

Query

Postmaster

Postgres Postgres

Libpq

Main

Generate Plan

Traffic Cop

Generate Paths

Execute Plan

e.g. CREATE TABLE, COPY

Rewrite Query

Parse Statement

Utility
Command

Storage ManagersCatalogUtilities

Access Methods Nodes / Lists

SELECT, INSERT, UPDATE, DELETE, MERGE

https://momjian.us/main/presentations/internals.html#internal_pics

3 / 62

https://momjian.us/main/presentations/internals.html#internal_pics

Postgres Query Execution

utility

Plan

Optimal Path

Query

Generate Plan

Traffic Cop

Generate Paths

Execute Plan

e.g. CREATE TABLE, COPY

Rewrite Query

Parse Statement

Utility
Command

SELECT, INSERT, UPDATE, DELETE, MERGE

https://www.highgo.ca/2024/01/26/a-comprehensive-overview-of-postgresql-query-processing-stages/

4 / 62

https://www.highgo.ca/2024/01/26/a-comprehensive-overview-of-postgresql-query-processing-stages/

The Optimizer Is the Brain

https://www.flickr.com/photos/dierkschaefer/

5 / 62

What Decisions Does the Optimizer Have to Make?

• Scan Method

• Join Method

• Join Order

These blog posts have great descriptions of optimizer internals:

• https://www.highgo.ca/2024/03/22/
understand-postgresqls-planner-simple-scan-paths-vs-plans/

• https://dev.to/ashenblade/postgresql-planner-development-and-debugging-47mc

6 / 62

https://www.highgo.ca/2024/03/22/understand-postgresqls-planner-simple-scan-paths-vs-plans/
https://www.highgo.ca/2024/03/22/understand-postgresqls-planner-simple-scan-paths-vs-plans/
https://dev.to/ashenblade/postgresql-planner-development-and-debugging-47mc

Which Scan Method?

• Sequential Scan

• Bitmap Index Scan

• Index Scan

7 / 62

A Simple Example Using pg_class.relname

SELECT relname
FROM pg_class
ORDER BY 1
LIMIT 8;

relname

_pg_foreign_data_wrappers
_pg_foreign_servers
_pg_foreign_table_columns
_pg_foreign_tables
_pg_user_mappings
administrable_role_authorizations
applicable_roles
attributes

8 / 62

Let’s Use Just the First Letter of pg_class.relname

SELECT substring(relname, 1, 1)
FROM pg_class
ORDER BY 1
LIMIT 8;
substring

_
_
_
_
_
a
a
a

9 / 62

Create a Temporary Table with an Index

CREATE TEMPORARY TABLE sample (letter, junk) AS
SELECT substring(relname, 1, 1), repeat(’x’, 250)
FROM pg_class
ORDER BY random(); -- add rows in random order

CREATE INDEX i_sample on sample (letter);

All queries used in this presentation are available at https://momjian.us/main/writings/pgsql/
optimizer.sql.

10 / 62

https://momjian.us/main/writings/pgsql/optimizer.sql
https://momjian.us/main/writings/pgsql/optimizer.sql

Create an EXPLAIN Function

CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$
BEGIN
RETURN QUERY EXECUTE ’

EXPLAIN SELECT letter
FROM sample
WHERE letter = ’’’ || $1 || ’’’’;

END
$$ LANGUAGE plpgsql;

11 / 62

What is the Distribution of the sample Table?

WITH letters (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1

)
SELECT letter, count, round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%"
FROM letters
ORDER BY 2 DESC;

12 / 62

What is the Distribution of the sample Table?

letter | count | %
--------+-------+------
p | 342 | 83.4
c | 13 | 3.2
r | 12 | 2.9
f | 6 | 1.5
s | 6 | 1.5
t | 6 | 1.5
u | 5 | 1.2
_ | 5 | 1.2
d | 4 | 1.0
v | 4 | 1.0
a | 3 | 0.7
e | 2 | 0.5
k | 1 | 0.2
i | 1 | 0.2

13 / 62

Is the Distribution Important?

EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;

QUERY PLAN

Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=32)

Recheck Cond: (letter = ’p’::text)
-> Bitmap Index Scan on i_sample (cost=0.00..4.16 rows=2 width=0)

Index Cond: (letter = ’p’::text)

14 / 62

Is the Distribution Important?

EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;

QUERY PLAN

Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=32)

Recheck Cond: (letter = ’d’::text)
-> Bitmap Index Scan on i_sample (cost=0.00..4.16 rows=2 width=0)

Index Cond: (letter = ’d’::text)

15 / 62

Is the Distribution Important?

EXPLAIN SELECT letter
FROM sample
WHERE letter = ’i’;

QUERY PLAN

Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=32)

Recheck Cond: (letter = ’i’::text)
-> Bitmap Index Scan on i_sample (cost=0.00..4.16 rows=2 width=0)

Index Cond: (letter = ’i’::text)

16 / 62

Running ANALYZE Causes a Sequential Scan for a Common Value

ANALYZE sample;

EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;

QUERY PLAN

Seq Scan on sample (cost=0.00..21.12 rows=342 width=2)

Filter: (letter = ’p’::text)

Autovacuum cannot ANALYZE (or VACUUM) temporary tables because these tables are only visible
to the creating session.

17 / 62

Sequential Scan

T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D

8K

Heap

A

A

D

T
A
T
A

D
A
T
A

D
A

18 / 62

A Less Common Value Causes a Bitmap Index Scan

EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;

QUERY PLAN

Bitmap Heap Scan on sample (cost=4.18..14.23 rows=4 width=2)

Recheck Cond: (letter = ’d’::text)
-> Bitmap Index Scan on i_sample (cost=0.00..4.18 rows=4 width=0)

Index Cond: (letter = ’d’::text)

19 / 62

Bitmap Index Scan

=&

Combined

’A’ AND ’NS’

1

0

1

0

TableIndex 1

col1 = ’A’

Index 2

1

0

0

col2 = ’NS’

1 0

1

0

0

Index

20 / 62

An Even Rarer Value Causes an Index Scan

EXPLAIN SELECT letter
FROM sample
WHERE letter = ’i’;

QUERY PLAN
--
Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)

Index Cond: (letter = ’i’::text)

21 / 62

Index Scan

A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D

< >=Key

< >=Key

Index

Heap

< >=Key

A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T

22 / 62

Index-Only Scan

< >=Key

< >=Key

< >=Key

Index

23 / 62

Let’s Look at All Values and their Effects

WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1

)
SELECT letter AS l, count, lookup_letter(letter)
FROM letter
ORDER BY 2 DESC;
l | count | lookup_letter
---+-------+--
p | 342 | Seq Scan on sample (cost=0.00..21.12 rows=342 width=2)
p | 342 | Filter: (letter = ’p’::text)
c | 13 | Bitmap Heap Scan on sample (cost=4.25..20.69 rows=13 width=2)
c | 13 | Recheck Cond: (letter = ’c’::text)
c | 13 | -> Bitmap Index Scan on i_sample (cost=0.00..4.25 rows=13 width=0)
c | 13 | Index Cond: (letter = ’c’::text)
r | 12 | Bitmap Heap Scan on sample (cost=4.24..20.14 rows=12 width=2)
r | 12 | Recheck Cond: (letter = ’r’::text)
r | 12 | -> Bitmap Index Scan on i_sample (cost=0.00..4.24 rows=12 width=0)
r | 12 | Index Cond: (letter = ’r’::text)

…
24 / 62

OK, Just the First Lines

WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1

)
SELECT letter AS l, count,

(SELECT *
FROM lookup_letter(letter) AS l2
LIMIT 1) AS lookup_letter

FROM letter
ORDER BY 2 DESC;

25 / 62

Just the First EXPLAIN Lines

l | count | lookup_letter
---+-------+--
p | 342 | Seq Scan on sample (cost=0.00..21.12 rows=342 width=2)
c | 13 | Bitmap Heap Scan on sample (cost=4.25..20.69 rows=13 width=2)
r | 12 | Bitmap Heap Scan on sample (cost=4.24..20.14 rows=12 width=2)
f | 6 | Bitmap Heap Scan on sample (cost=4.19..17.25 rows=6 width=2)
t | 6 | Bitmap Heap Scan on sample (cost=4.19..17.25 rows=6 width=2)
s | 6 | Bitmap Heap Scan on sample (cost=4.19..17.25 rows=6 width=2)
u | 5 | Bitmap Heap Scan on sample (cost=4.19..15.86 rows=5 width=2)
_ | 5 | Bitmap Heap Scan on sample (cost=4.19..15.86 rows=5 width=2)
d | 4 | Bitmap Heap Scan on sample (cost=4.18..14.23 rows=4 width=2)
v | 4 | Bitmap Heap Scan on sample (cost=4.18..14.23 rows=4 width=2)
a | 3 | Bitmap Heap Scan on sample (cost=4.17..12.31 rows=3 width=2)
e | 2 | Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=2)
k | 1 | Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)
i | 1 | Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)

Results will vary based on the clustering of values in heap pages.

26 / 62

We Can Force an Index Scan

SET enable_seqscan = false;

SET enable_bitmapscan = false;

WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1

)
SELECT letter AS l, count,

(SELECT *
FROM lookup_letter(letter) AS l2
LIMIT 1) AS lookup_letter

FROM letter
ORDER BY 2 DESC;

27 / 62

Notice the High Cost for Common Values

l | count | lookup_letter
---+-------+---
p | 342 | Index Only Scan using i_sample on sample (cost=0.15..56.35 rows=342 width=2)
c | 13 | Index Only Scan using i_sample on sample (cost=0.15..27.69 rows=13 width=2)
r | 12 | Index Only Scan using i_sample on sample (cost=0.15..25.53 rows=12 width=2)
s | 6 | Index Only Scan using i_sample on sample (cost=0.15..18.98 rows=6 width=2)
f | 6 | Index Only Scan using i_sample on sample (cost=0.15..18.98 rows=6 width=2)
t | 6 | Index Only Scan using i_sample on sample (cost=0.15..18.98 rows=6 width=2)
u | 5 | Index Only Scan using i_sample on sample (cost=0.15..16.82 rows=5 width=2)
_ | 5 | Index Only Scan using i_sample on sample (cost=0.15..16.82 rows=5 width=2)
v | 4 | Index Only Scan using i_sample on sample (cost=0.15..14.66 rows=4 width=2)
d | 4 | Index Only Scan using i_sample on sample (cost=0.15..14.66 rows=4 width=2)
a | 3 | Index Only Scan using i_sample on sample (cost=0.15..12.49 rows=3 width=2)
e | 2 | Index Only Scan using i_sample on sample (cost=0.15..10.33 rows=2 width=2)
k | 1 | Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)
i | 1 | Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)

RESET ALL;

28 / 62

This Was the Optimizer’s Preference

l | count | lookup_letter
---+-------+--
p | 342 | Seq Scan on sample (cost=0.00..21.12 rows=342 width=2)
c | 13 | Bitmap Heap Scan on sample (cost=4.25..20.69 rows=13 width=2)
r | 12 | Bitmap Heap Scan on sample (cost=4.24..20.14 rows=12 width=2)
f | 6 | Bitmap Heap Scan on sample (cost=4.19..17.25 rows=6 width=2)
t | 6 | Bitmap Heap Scan on sample (cost=4.19..17.25 rows=6 width=2)
s | 6 | Bitmap Heap Scan on sample (cost=4.19..17.25 rows=6 width=2)
u | 5 | Bitmap Heap Scan on sample (cost=4.19..15.86 rows=5 width=2)
_ | 5 | Bitmap Heap Scan on sample (cost=4.19..15.86 rows=5 width=2)
d | 4 | Bitmap Heap Scan on sample (cost=4.18..14.23 rows=4 width=2)
v | 4 | Bitmap Heap Scan on sample (cost=4.18..14.23 rows=4 width=2)
a | 3 | Bitmap Heap Scan on sample (cost=4.17..12.31 rows=3 width=2)
e | 2 | Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=2)
k | 1 | Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)
i | 1 | Index Only Scan using i_sample on sample (cost=0.15..8.17 rows=1 width=2)

29 / 62

Which Join Method?

• Nested Loop
• With Inner Sequential Scan
• With Inner Index Scan

• Hash Join

• Merge Join

30 / 62

What Is in pg_proc.oid?

SELECT oid
FROM pg_proc
ORDER BY 1
LIMIT 8;
oid

3
31
33
34
35
38
39
40

31 / 62

Create Temporary Tables from pg_proc and pg_class

CREATE TEMPORARY TABLE sample1 (id, junk) AS
SELECT oid, repeat(’x’, 250)
FROM pg_proc
ORDER BY random(); -- add rows in random order

CREATE TEMPORARY TABLE sample2 (id, junk) AS
SELECT oid, repeat(’x’, 250)
FROM pg_class
ORDER BY random(); -- add rows in random order

These tables have no optimizer statistics and no indexes.

32 / 62

Join the Two Tables with a Tight Restriction

EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;

QUERY PLAN
--
Nested Loop (cost=0.00..364.14 rows=770 width=32)

-> Seq Scan on sample1 (cost=0.00..313.09 rows=77 width=4)
Filter: (id = ’33’::oid)

-> Materialize (cost=0.00..41.45 rows=10 width=36)
-> Seq Scan on sample2 (cost=0.00..41.40 rows=10 width=36)

Filter: (id = ’33’::oid)

33 / 62

Nested Loop Join with Inner Sequential Scan

aag

aar

aay aag

aas

aar

aaa

aay

aai

aag

No Setup Required

aai

Used For Small Tables

Outer Inner

34 / 62

Pseudocode for Nested Loop Join with Inner Sequential Scan

for (i = 0; i < length(outer); i++)
for (j = 0; j < length(inner); j++)
if (outer[i] == inner[j])
output(outer[i], inner[j]);

35 / 62

Join the Two Tables with a Looser Restriction

EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.id > 33;

QUERY PLAN
--
Hash Join (cost=49.86..2189.32 rows=52017 width=32)

Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..274.67 rows=15367 width=36)
-> Hash (cost=41.40..41.40 rows=677 width=4)

-> Seq Scan on sample2 (cost=0.00..41.40 rows=677 width=4)
Filter: (id > ’33’::oid)

36 / 62

Hash Join

Hashed

Must fit in Main Memory

aak

aar

aak

aay aaraam

aao aaw

aay

aag

aas

Outer Inner

https://stormatics.tech/blogs/understanding-hash-aggregates-and-hash-joins-in-postgresql

37 / 62

https://stormatics.tech/blogs/understanding-hash-aggregates-and-hash-joins-in-postgresql

Pseudocode for Hash Join

for (j = 0; j < length(inner); j++)
hash_key = hash(inner[j]);
append(hash_store[hash_key], inner[j]);

for (i = 0; i < length(outer); i++)
hash_key = hash(outer[i]);
for (j = 0; j < length(hash_store[hash_key]); j++)
if (outer[i] == hash_store[hash_key][j])
output(outer[i], inner[j]);

38 / 62

Join the Two Tables with No Restriction

EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);

QUERY PLAN
--
Merge Join (cost=1491.22..3843.32 rows=156129 width=32)

Merge Cond: (sample2.id = sample1.id)
-> Sort (cost=147.97..153.05 rows=2032 width=4)

Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..36.32 rows=2032 width=4)

-> Sort (cost=1343.26..1381.67 rows=15367 width=36)
Sort Key: sample1.id
-> Seq Scan on sample1 (cost=0.00..274.67 rows=15367 width=36)

39 / 62

Merge Join

Sorted

Sorted

Ideal for Large Tables

An Index Can Be Used to Eliminate the Sort

aaa

aab

aac

aad

aaa

aab

aab

aaf

aaf

aac

aae

Outer Inner

40 / 62

Pseudocode for Merge Join

sort(outer);
sort(inner);
i = 0;
j = 0;
save_j = 0;
while (i < length(outer))
if (outer[i] == inner[j])
output(outer[i], inner[j]);

if (outer[i] >= inner[j] && j < length(inner))
j++;
if (outer[i] > inner[j])
save_j = j;

else
i++;
j = save_j;

41 / 62

Order of Joined Relations Is Insignificant

EXPLAIN SELECT sample2.junk
FROM sample2 JOIN sample1 ON (sample2.id = sample1.id);

QUERY PLAN

Merge Join (cost=1491.22..3843.32 rows=156129 width=32)

Merge Cond: (sample2.id = sample1.id)
-> Sort (cost=147.97..153.05 rows=2032 width=36)

Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..36.32 rows=2032 width=36)

-> Sort (cost=1343.26..1381.67 rows=15367 width=4)
Sort Key: sample1.id
-> Seq Scan on sample1 (cost=0.00..274.67 rows=15367 width=4)

The most restrictive relation, e.g., sample2, is always on the outer side of merge joins. All
previous merge joins also had sample2 in outer position.

42 / 62

Add Optimizer Statistics

ANALYZE sample1;

ANALYZE sample2;

43 / 62

This Was a Merge Join without Optimizer Statistics

EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);

QUERY PLAN
--
Hash Join (cost=25.38..195.17 rows=417 width=254)

Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..153.45 rows=3245 width=4)
-> Hash (cost=20.17..20.17 rows=417 width=258)

-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=258)

44 / 62

Outer Joins Can Affect Optimizer Join Usage

EXPLAIN SELECT sample1.junk
FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id);

QUERY PLAN
--
Hash Right Join (cost=25.38..195.17 rows=417 width=254)

Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..153.45 rows=3245 width=258)
-> Hash (cost=20.17..20.17 rows=417 width=4)

-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=4)

45 / 62

Cross Joins Are Nested Loop Joins without Join Restriction

EXPLAIN SELECT sample1.junk
FROM sample1 CROSS JOIN sample2;

QUERY PLAN
--
Nested Loop (cost=0.00..17089.22 rows=1353165 width=254)

-> Seq Scan on sample1 (cost=0.00..153.45 rows=3245 width=254)
-> Materialize (cost=0.00..22.26 rows=417 width=0)

-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=0)

46 / 62

Create Indexes

CREATE INDEX i_sample1 on sample1 (id);

CREATE INDEX i_sample2 on sample2 (id);

47 / 62

Nested Loop with Inner Index Scan Now Possible

EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;

QUERY PLAN
--
Nested Loop (cost=0.55..16.60 rows=1 width=254)

-> Index Only Scan using i_sample1 on sample1 (cost=0.28..8.30 rows=1 width=4)
Index Cond: (id = ’33’::oid)

-> Index Scan using i_sample2 on sample2 (cost=0.27..8.29 rows=1 width=258)
Index Cond: (id = ’33’::oid)

48 / 62

Nested Loop Join with Inner Index Scan

aag

aar

aai

aay aag

aas

aar

aaa

aay

aai

aag

No Setup Required

Index Lookup

Index Must Already Exist

Outer Inner

49 / 62

Pseudocode for Nested Loop Join with Inner Index Scan

for (i = 0; i < length(outer); i++)
index_entry = get_first_match(outer[j])
while (index_entry)
output(outer[i], inner[index_entry]);
index_entry = get_next_match(index_entry);

50 / 62

Query Restrictions Affect Join Usage

EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ˜ ’^aaa’;

QUERY PLAN
--
Nested Loop (cost=0.28..29.52 rows=1 width=254)

-> Seq Scan on sample2 (cost=0.00..21.21 rows=1 width=258)
Filter: (junk ˜ ’^aaa’::text)

-> Index Only Scan using i_sample1 on sample1 (cost=0.28..8.30 rows=1 width=4)
Index Cond: (id = sample2.id)

No junk rows begin with ’aaa’.

51 / 62

All ’junk’ Columns Begin with ’xxx’

EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ˜ ’^xxx’;

QUERY PLAN
--
Hash Join (cost=26.42..196.21 rows=417 width=254)

Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..153.45 rows=3245 width=4)
-> Hash (cost=21.21..21.21 rows=417 width=258)

-> Seq Scan on sample2 (cost=0.00..21.21 rows=417 width=258)
Filter: (junk ˜ ’^xxx’::text)

Hash join was chosen because many more rows are expected. The smaller table, e.g., sample2, is
always hashed.

52 / 62

Without LIMIT, Hash Is Used for this Unrestricted Join

EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1;

QUERY PLAN
--
Sort (cost=213.32..214.36 rows=417 width=254)

Sort Key: sample2.junk
-> Hash Join (cost=25.38..195.17 rows=417 width=254)

Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..153.45 rows=3245 width=4)
-> Hash (cost=20.17..20.17 rows=417 width=258)

-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=258)

53 / 62

LIMIT Can Affect Join Usage

EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 1;

QUERY PLAN

Limit (cost=0.55..2.33 rows=1 width=258)

-> Nested Loop (cost=0.55..742.75 rows=417 width=258)
-> Index Scan using i_sample2 on sample2 (cost=0.27..86.52 rows=417 width=258)
-> Index Only Scan using i_sample1 on sample1 (cost=0.28..1.56 rows=1 width=4)

Index Cond: (id = sample2.id)

Sort is unneeded since an index is being used on the outer side.

54 / 62

LIMIT 10

EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 10;

QUERY PLAN

Limit (cost=0.55..18.35 rows=10 width=258)

-> Nested Loop (cost=0.55..742.75 rows=417 width=258)
-> Index Scan using i_sample2 on sample2 (cost=0.27..86.52 rows=417 width=258)
-> Index Only Scan using i_sample1 on sample1 (cost=0.28..1.56 rows=1 width=4)

Index Cond: (id = sample2.id)

55 / 62

LIMIT 100 Switches to Merge Join

EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 100;

QUERY PLAN

Limit (cost=11.00..170.51 rows=100 width=258)

-> Merge Join (cost=11.00..676.13 rows=417 width=258)
Merge Cond: (sample1.id = sample2.id)
-> Index Only Scan using i_sample1 on sample1 (cost=0.28..576.91 rows=3245
-> Index Scan using i_sample2 on sample2 (cost=0.27..86.52 rows=417 width=258)

Merge join is normally used for large joins, but the indexes eliminate the need for sorting

both sides band LIMIT reduces the number of index entries that need to be accessed.

56 / 62

LIMIT 1000 Switches Back to Hash Join

EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 1000;

QUERY PLAN
--
Limit (cost=213.32..214.36 rows=417 width=258)

-> Sort (cost=213.32..214.36 rows=417 width=258)
Sort Key: sample2.id
-> Hash Join (cost=25.38..195.17 rows=417 width=258)

Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..153.45 rows=3245 width=4)
-> Hash (cost=20.17..20.17 rows=417 width=258)

-> Seq Scan on sample2 (cost=0.00..20.17 rows=417 width=258)

For LIMIT 1000, index lookups are considered to be too expensive to partially execute

the join, so a hash join is fully executed, which is then sorted and the LIMIT applied.
57 / 62

VACUUM Causes Merge Join Again

-- updates the visibility map

VACUUM sample1, sample2;

EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 1000;

QUERY PLAN

Limit (cost=40.67..150.78 rows=420 width=258)

-> Merge Join (cost=40.67..150.78 rows=420 width=258)
Merge Cond: (sample1.id = sample2.id)
-> Index Only Scan using i_sample1 on sample1 (cost=0.28..97.75 rows=3298
-> Sort (cost=38.50..39.55 rows=420 width=258)

Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..20.20 rows=420 width=258)

VACUUM reduces the cost of index-only scans by making heap access less likely.
https://www.cybertec-postgresql.com/en/making-the-postgresql-visibility-map-visible/

58 / 62

https://www.cybertec-postgresql.com/en/making-the-postgresql-visibility-map-visible/

No LIMIT Was a Hash Join

EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1;

QUERY PLAN

Merge Join (cost=40.67..150.78 rows=420 width=258)

Merge Cond: (sample1.id = sample2.id)
-> Index Only Scan using i_sample1 on sample1 (cost=0.28..97.75 rows=3298 width=4)
-> Sort (cost=38.50..39.55 rows=420 width=258)

Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..20.20 rows=420 width=258)

59 / 62

Same Join, Different Plans

Query Modifier Plan

No LIMIT Hash join

LIMIT 1 Nested loop join with two index scans

LIMIT 10 “”

LIMIT 100 Merge join with two index scans

LIMIT 1000 Hash join

VACUUM, LIMIT 1000 Merge join with index-only scan and sort

No LIMIT “”

The last two are different from previous matching lines because of VACUUM.

60 / 62

Further Study

My later talk, Beyond Joins and Indexes, covers the many other operations performed by

the optimizer.

https://momjian.us/main/presentations/performance.html#beyond

61 / 62

https://momjian.us/main/presentations/performance.html#beyond
https://momjian.us/main/presentations/performance.html#beyond

Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/trevorklatko/

62 / 62

