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ABSTRACT

Patient-targeted treatment of non-small cell lung carcinoma (NSCLC) has been well documented according to
the histologic subtypes over the past decade. In parallel, recent development of quantitative image biomarkers
has recently been highlighted as important diagnostic tools to facilitate histological subtype classification. In this
study, we present a radiomics analysis that classifies the adenocarcinoma (ADC) and squamous cell carcinoma
(SqCC). We extract 52-dimensional, CT-based features (7 statistical features and 45 image texture features)
to represent each nodule. We evaluate our approach on a clinical dataset including 324 ADCs and 110 SqCCs
patients with CT image scans. Classification of these features is performed with four different machine-learning
classifiers including Support Vector Machines with Radial Basis Function kernel (RBF-SVM), Random forest
(RF), K-nearest neighbor (KNN), and RUSBoost algorithms. To improve the classifiers’ performance, optimal
feature subset is selected from the original feature set by using an iterative forward inclusion and backward
eliminating algorithm. Extensive experimental results demonstrate that radiomics features achieve encouraging
classification results on both complete feature set (AUC=0.89) and optimal feature subset (AUC=0.91).

Keywords: Non-Small Cell Lung Carcinoma, lung nodule, adenocarcinoma, squamous cell carcinoma, feature
analysis, computed tomography, classification, computed-aided diagnosis

1. INTRODUCTION

Lung cancer is the leading cause of cancer-related death worldwide, which is classified into two major subtypes,
namely, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC is a lethal disease
accounting for about 85% of all lung cancers with a dismal 5-year survival rate of 15.9% .! NSCLC can be sub-
divided into adenocarcinoma (ADC), squamous cell carcinoma (SqCC), and other types on the basis of where
the lung cancer cell starts from. Over all, ADC and SqCC account for 65% to 70% of all lung cancer patients.

NSCLC patients has been well documented over the past decade to suggest targeted treatment according to
the different histologic subtypes.?3 The histologic subtypes are discerned by histopathological examination which
is a gold standard in the nodule classification. However, the examination approach can be failed, if the tissue
sample is inadequate. Computed tomography (CT) has been a major imaging modality for early cancer detection
in NSCLC. A majority of image-based studies have been proposed to estimate nodule malignancy likelihood.*®
Meanwhile, a promising task is to infer the diagnostic value from CT images, such as the identification of
discriminative image features that are able to predict the histologic subtypes. The noninvasive CT image analysis
may have complementary roles to histopathologic prediction in lung cancer.

Previous studies have highlighted that the specific proteins and immunohistochemistry for their capability to
classify the ADC and SqCC. Ullmann et al. 5 show that protein profiles are feasible tools to classify the lung
carcinoma tissue microarrays including 75 ADCs and 67 SqCCs. Non-parametric tests, hierarchical clustering,
and principal component analysis are used to analyzed the immunohistochemical expression levels of 86 different
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proteins which were manually scored by pathologists. It shows that the two lung carcinoma subtypes can be
predicated with 96% accuracy. However, the immunohistochemistry is time consuming and expensive. In parallel,
some studies have shown that the quantitative features from medical images can provide a detailed quantification
of tumor characterization. Ha et al.” presented an approach to classify ADC and SqCC using a number of texture
feature parameters extracted from 18F-fluorodeoxyglucose positron emission tomography scans. More than 200
texture parameters are extracted and fifteen texture features had significant different values between ADC and
SqCC. However, the size of patient cohort is 30, which may impede the translational value of the detected image
biomarkers.

In this study, we focus on developing computational CT image features for predicting ADC and SqCC. In
particular, we introduce a radiomics framework utilizing the image feature analysis for the histopathologic predic-
tion. The presented method includes lung nodule segmentation, imaging feature extraction, feature selection and
nodule classification. More specifically, we use the Toboggan Based Growing Automatic Segmentation (TBGA)®
to segment the lung nodule from the chest CT scans. Then, fifty-two dimensional feature including statistical
features and texture features are extracted to characterize the lung nodule. Next, we use four different classifiers:
support vector machine with radial basis function kernel (RBF-SVM), random forest (RF), K-nearest neighbor
(KNN), RUSBoost classifier to build up the prediction model. Finally, we use the iterative forward inclusion
and backward eliminating algorithm to select the significant features and improve the prediction model’s ability.
The purpose of this study is to investigate the correlation between imaging heterogeneity and histopathologic
subtypes of lung cancer and to find the significant imaging features.

2. MATERIALS AND METHODS
2.1 Overview

The flowchart of the proposed framework is shown in Fig. 1. First, the lung nodules treated as volume of interests
are segmented from the chest CT image scans using an automatic segmentation method. Second, imaging features
are extracted from the lung nodules. Finally, feature selection and supervised classification method with 10-fold
cross validation are conducted to build up models for histopathologic prediction.

Chest CT scans

|
Nodule Segmentation: Toboggan Based Growing Automatic Segmentation
¥
Feature Extraction: Non-texture feature, texture feature
'
Feature Selection: Forward including and backward eliminating
]

Histopathologic prediction: Classification with 10-fold cross validation

!
ADC/SqCC

Figure 1. Flowchart of the proposed histopathologic prediction framework.

2.2 Patient cohort and volume of interest

The patient cohort consists of 434 patients including 324 ADC and 110 SqCC patients. Both non-enhanced
and contrast-enhanced chest CT images are acquired on Philips Brilliance 40 and Siemens Defintion AS. The
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Table 1. Specific texture feature parameters. Abbreviations of feature names: Short Run Emphasis (SRE), Long Run

Emphasis (LRE), Gray-Level Nonuniformity (GLN),Run-Length Nonuniformity (RLN), Run Percentage (RP), Low Gray-

Level Run Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE),Short Run Low Gray-Level Emphasis (SRLGE),

Short Run High Gray-Level Emphasis (SRHGE), Long Run Low Gray-Level Emphasis (LRLGE), Long Run High Gray-

Level Emphasis (LRHGE), Gray-Level Variance (GLV), Run-Length Variance (RLV), Small Zone Emphasis (SZE), Large

Zone Emphasis (LZE), Gray-Level Nonuniformity (GLN), Zone-Size Nonuniformity (ZSN), Zone Percentage (ZP), Gray-

Level Variance (GLV), Zone-Size Variance (ZSV), Low Gray-Level Zone Emphasis (LGZE), High Gray-Level Zone Em-

phasis (HGZE), Small Zone Low Gray-Level Emphasis (SZLGE), Small Zone High Gray-Level Emphasis (SZHGE), Large

Zone Low Gray-Level Emphasis (LZLGE), Large Zone High Gray-Level Emphasis (LZHGE).

Texture Type | Texture Subtype Texture Index

First Order Global feature (#5) Variance, Skewness, Kurtosis, Entropy, Uniformity
Contrast, Energy, Variance, Average, Correlation,

Second Order | GLCM texture feature (#9) Homogeneity, Entropy, Dissimilarity, IDM

SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE,

SRHGE, LRLGE, LRHGE, GLV,RLV

SZE, LZE, GLN, ZSN, ZP, GLV, SZV, LGZE, HGZE,

SZLGE, SZHGE, LZLGE, LZHGE

NGTDM texture feature (#5) | Coarseness, Contrast, Busyness, Complexity, Strength

GLRLM texture feature (#13)

High Order GLSZM texture feature (#13)

acquisition parameters of Philips Brilliance 40 are as follows: rotation time = 0.75s, detector collimation =
32*1.25mm, field of view (FOV) = 300 * 300mm, pixel matrix = 512 * 512, Filter sharp (C) for CT reconstruction,
while the Siemens Defination AS is with the following acquisition parameters: rotation time = 0.5s, detector
collimation = 64 * 0.625mm, FOV = 300 * 300mm, image matrix = 512 * 512, kernel B31f medium sharp+ for
CT reconstruction. The spacing of x ranges from 0.53 to 0.89mm, the spacing of y ranges from 0.53 to 0.89mm,
the spacing of z is a fixed value 0.7mm. To eliminate the effect of image resolution, all the nodule images from
both datasets are resampled and set the resolution to a fixed 0.8 mm per pixel along all three axes.

In this study, a robust and automatic 3D segmentation method named Toboggan Based Growing Automatic
Segmentation (TBGA) ¥ is used to segment the lung nodules.

2.3 Feature extraction

In order to characterize the nodules, we extract fifty-two 3D image features. The features used to characterize
the delineated tumor are described below.

2.3.1 Non-texture analysis

We extract the following seven feature parameters from the segmented lung nodules of each patients CT scans:
IntensityMax, IntensityMin, IntensityAve, IntensityStd, Volume, Solidity, and Eccentricity. IntensityMax, Inten-
sityMin, IntensityAve and IntensityStd are the maximum, minimum, average, and standard deviation intensity
value of the nodule, respectively. Volume stands for the nodule size. Solidity indicates the ratio of the number
of voxels in the nodule to the number of voxels in the 3D convex hull of the nodule. Eccentricity denotes the
ellipsoid which best fit the nodule.

2.3.2 Texture analysis

We extract forty-five texture feature parameters including the first order statistics, second order statistics and
higher order statistics. Five first order statistics parameters including: Variance, Skewness, Kurtosis, Entropy,
Uniformity are extracted to describe the intensity histogram distribution of the nodule region. Nine second order
statistics parameters can be calculated from the Gray Level Co-occurrence Matrix (GLCM) .? Other thirty-one
high order feature parameters are calculated from the Gray Level Size Zone Matrix (GLSZM),'? Gray Level Run
Length Matrix (GLRLM) ,'* and Neighborhood Gray Tone Difference Matrix (NGTDM) .*2 All of the GLCM,
GLSZM, GLRLM, and NGTDM based texture feature parameters are calculated using 3D analysis. The specific
texture features are listed in the Tab. 1.
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2.4 Feature Selection

In this study, we use the iterative forward including and backward elimination to find the optimal feature set
to characterize the difference between ADC and SqCC. Starting from an empty feature set, iterative forward
inclusion and backward elimination '® are employed to include and eliminate feature attribute in the current
feature set to increase the cost function. The cost function ACC is defined as below:

TP TN

1
cost =5+ (Gp TN T FP TN (1)

TP stands that adenocarcinoma patients correctly identified as adenocarcinoma, FP denotes that squamous cell
carcinoma patients incorrectly identified as adenocarcinoma, TN refers that squamous cell carcinoma patients
incorrectly identified as squamous cell carcinoma, and FN indicates that adenocarcinoma patients incorrectly
identified as squamous cell carcinoma.

2.5 Histopathologic prediction

The original image feature set which is used for histologic subtype classification consisted of 432 images (324
ADC and 110 SqCC) is described in Sec. 2.3. For the classification model development, we adopt four different
algorithms: support vector machine with radial basis function kernel (RBF-SVM) ,!* random forest (RF) ,'°
K-nearest neighbor (KNN) ;6 and RUSBoost algorithms .!7 In additional, we also build up the classification
model using the optimal feature set selected by the iterative forward inclusion and backward elimination. The
original image feature set and the optimal feature set are both trained with the four different classifiers with
the 10-fold cross validation. We report the area under the receiver operating characteristic (ROC) curve (AUC),
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and geometric
mean (GM) as metrics to assess the performance of the supervised classification from 100 times of 10-fold cross
validation. All the metrics are defined as below, and TP, TN, FP, and FN are described in Sec. 2.4,

Accuracy = TP+TN

YT TP{FN{FP{TN
Sensitivity = L
YT TP FN

. TN

Speci ficity = FPLTN @)

TP
PPV = TP+ FP

TN
NPV = ————
v TN +FN

GM = \/Sensitivity x Speci ficity.

3. RESULTS AND DISCUSSION

To build up a robust histologic classification model, we report average results from 100 times 10-fold cross
validation on the patient cohort (324 ADCs and 110 SqCCs) with four different classifiers and two different
feature sets. We use the AUC and GM as the main rules to measure the performance of classification. AUC is a
generalized indicator of the classifier that is independent of the sample class distribution, and the GM maximizes
the accuracy on each of the two classes while keeping these accuracies balanced.'®

Tab. 2 shows the classification results with different classifiers with regards to two feature sets. In this
study, we find that the classification model by using the RUSBoost classifier best predict the adenocarcinoma
(ADC) and squamous cell carcinoma (SqCC). RUSBoost is the best performing classifier which handles the
dataset best among all the four different classifiers. Also, Tab. 2 shows the classification with the original
feature set and the optimal feature set selected from the original feature set using iterative forward inclusion and
backward elimination by using RUSBoost classifier. By using the optimal feature set with selected 20 features,
the performance achieves an average accuracy of 81.5%, sensitivity of 82.6%, specificity of 78.3%, geometric
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Figure 2. ROC curves of lung nodule histologic prediction using different types of classification algorithms based on
original feature set (a): the black line, blue line, green line, and red line respectively indicate the ROC prediction curve
by using RBF-SVM, RF, KNN, and RUSBoost. ROC curves of lung nodule histologic prediction using original feature
set and optimal feature set based on RUSBoost classifier (b): the red line and the yellow line indicate the ROC prediction
curves by using original feature set and the optimal feature set.

Table 2. Comparison of different classifiers for histologic prediction using different feature sets.

Classifiers | Feature Set | Accuracy | Sensitivity | Specificity | PPV NPV GM | AUC
RBF-SVM | Original 79.8% 97.6% 27.6% 79.9% | 79.5% | 0.52 | 0.82
RF Original 81.0% 91.5% 50.1% 84.4% | 66.7% | 0.68 | 0.88
KNN Original 77.2% 86.1% 51.1% 83.8% | 55.5% | 0.66 | 0.78
RUSBoost | Original 78.8% 80.2% 74.6% 90.3% | 56.1% | 0.77 | 0.89
RUSBoost | Optimal 81.5% 82.6% 78.3% 91.8% | 60.5% | 0.80 | 0.91

mean of 0.80, and AUC of 0.91. With the RUSboost classification model, the GM and AUC of the model using
optimal feature set outperform the original feature set by approximated 3.9% and 2.2%. We can see that the
classification model built up by the optimal feature set outperformed the original feature set. This indicates that
feature selection can be efficient to eliminate potential irrelevant features and improve prediction performance.
Feature selection leads to a selected optimal feature set with 20-dimensional features. More specifically, the
optimal feature set includes a statistical feature of IntensityMin and 19-dimensional texture features (3 first-
order texture features, 2 second-order texture features, and 14 high-order texture features). We also report ROC
curves in Fig. 2 to fully observe the classification outcomes.

4. CONCLUSION

In this paper, we investigate the association between CT imaging features and histologic subtypes for patients
suffering from NSCLC. The proposed radiomics analytic framework presents encouraging results in predicting the
adenocarcinoma and squamous cell carcinoma by extracting 52-dimensional radiomics feature. In particular, we
achieve the highest classification results with AUC of 0.91 by applying the RUSBoost classifier with 20 selected
radiomics features. This study based on radiomics analysis and histopathlogical characteristics supports the
potential of computational CT-based analysis as an non-invasive means to facilitate NSCLC diagnosis. The
proposed prediction model therefore holds promise to provide objective and reproducible diagnosis for non-small
cell lung carcinoma.
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