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ABSTRACT 

 

Quantitative imaging biomarkers identification has become 

a powerful tool for predictive diagnosis given increasingly 

available clinical imaging data. In parallel, molecular 

profiles have been well documented in non-small cell lung 

cancers (NSCLCs). However, there has been limited studies 

on leveraging the two major sources for improving lung 

cancer computer-aided diagnosis. In this paper, we 

investigate the problem of predicting molecular profiles 

with CT imaging arrays in NSCLC. In particular, we 

formulate a discriminative convolutional neural network to 

learn deep features for predicting epidermal growth factor 

receptor (EGFR) mutation states that are associated with 

cancer cell growth. We evaluated our approach on two 

independent datasets including a discovery set with 595 

patients (Datset1) and a validation set with 89 patients 

(Dataset2). Extensive experimental results demonstrated that 

the learned CNN-based features are effective in predicting 

EGFR mutation states (AUC=0.828, ACC=76.16%) on 

Dataset1, and it further demonstrated generalized predictive 

performance (AUC=0.668, ACC=67.55%) on Dataset2. 

Index Terms— Non-Small Cell Lung Carcinoma, 

Convolutional neural networks, Computed tomography, 

Computed-aided diagnosis 

 

1. INTRODUCTION 

 

Non-small cell lung cancer (NSCLC) is a lethal disease 

accounting for about 85% of all lung cancers with a dismal 

5-year survival rate of 15.9% [1]. Molecular profiles of 

NSCLC, like epidermal growth factor receptor (EGFR), 

have been well documented over the past decade to suggest 

targeted treatment [2]; Computed tomography (CT), on the 

other hand, has been a major imaging modality for early 

cancer detection in NSCLC [3]. A promising yet 

challenging task is to infer the diagnostic value from CT 

images, such as the identification of discriminative image 

features that are able to predict molecular signatures. Since 

image traits would create a unique avenue to non-invasively 

assess molecular events [4], it will offer an opportunity to 

discern early indicators of targeted treatment. A majority of 

image-based studies have proposed to estimate nodule 

malignancy likelihood [5-6]. However, the association 

between image signatures and molecular profiling 

information, particularly, predicting gene-mutation types 

(e.g., EGFR mutation) from computational image features, 

has not been explicitly addressed. 

In this paper, we focus on developing computational CT 

image features for predicting EGFR presence (EGFR+) and 

absence (EGFR-). In particular, we introduce a data-driven 

framework utilizing a convolutional neural network (CNN) 

for the EGFR mutation prediction. By the use of the deep 

learning paradigm, we sought to leverage the predictive 

power of image signatures in reflecting EGFR mutation 

states. The proposed approach consists of a six-layer CNN 

for learning deep image features and a Support Vector 

Machine (SVM) classifier for prediction. Our goal is 

towards developing an end-to-end framework that 

automatically learns the gene mutation-sensitive information 

from CT imaging, thus the presented work is largely 

opposed to conventional image evaluation heavily relying 

on radiologists' inputs. Such as in [7], image characteristics 

including air bronchogram and small lesion size were found 

to associate with EGFR mutation in 280 patients. 

Additionally, standardized uptake value (SUV) has been 

reported to surrogate EGFR mutation with 100 patients [8]. 

However, the lack of external validation with cross-sectional 

imaging impedes the translational value of the detected 

image biomarkers. We here present evaluation of the 

learned CNN features for EGFR mutation states on two 

independent sets. 

More specifically, our contribution is three-fold: i) We 

formulate a discriminative CNN framework that leads to 

improved prediction performance of EGFR mutation states 

in NSCLC; ii) Because external validation is a crucial step 

in finding predictive biomarkers, we report results of the 

CNN-based features on two independent datasets, including 
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Fig. 1. Illustration of the proposed Convolutional Neural Network in conjunction with the Support Vector Machine. The input 2-D nodule 

patches centering around nodule shapes were fed into the concatenated Conv1+MP1 layers with each convolutional layer contains 32 

convolutional kernels. The outputs from the feature layer are the learned deep features, which are applied to the SVM classifier for 

predicting EGFR mutation states. In notation, 32@30×30 indicates 32 feature maps with size 30 × 30. 

 

Dataset1 (discovery set, 595 patients) and Dataset2 

(validation set, 89 patients), revealing outperformed 

performance as opposed to traditional CT texture, gabor 

filter features, and statistical features; iii) The proposed 

data-driven CNN framework emphasizes computation on 

nodule image patches centered around most relevant nodule 

information, which is highly appealing when dealing with 

growing volumes of imaging data. Thus, it holds promise to 

accelerate the process by removing nodule boundary 

delineation and hand-crafted feature engineering. 

 

2. LEARNING FEATURES FOR EGFR MUTATION 

PREDICTION 

 

We explore deep features by incorporating nodule CT 

patches into a convolutional neural network (CNN). An 

overview of our proposed approach is shown in Figure 1. 

Building upon a hierarchical structure, our convolutional 

neural network contains two convolutional layers, both of 

which are followed by a max-pooling layer, and a fully 

connected layer which represents the final output feature, 

and a softmax layer. By taking use of the alternated layers of 

convolution and max-pooling, extracted feature dimensions 

continue to decrease along the network hierarchy, resulting 

in highly compact deep features as outcomes in the feature 

layer. Next, the SVM classifier is used for the binary 

molecular class prediction (i.e., EGFR+, EGFR-). 

The proposed CNN architecture starts from a 

convolution layer (i.e., Conv1 layer), in which the input 2-D 

nodule patch is convolved by the convolution kernels to 

generate new feature maps as shown in Fig.1. A convolution 

operation is formulated as: ( )i i

i

y R x k b   , where y 

represents the new feature map. The xi and ki respectively 

indicate the ith slice of the input feature maps and that of the 

convolution kernels. b is the bias scalar of the convolution 

kernels. The   denotes the convolution operation. 

( ) max(0, )R u u  is the rectified linear unit function. 

Following the convolutional layer, a max-pooling layer 

(i.e., MP1 layer) is used to achieve the feature reduction by 

subsampling the feature maps. Given the pooling window 

size be s ×  s, the max-pooling operation is defined as: 

* , *
0 ,

( , ) max { }i s l j s m
l m s

f i j y  
 

 , where y is the output of the 

convolution layer and f is the new feature map. The (i,j) is 

the position of the feature node on the new feature map. 

After two cascade convolutional layers and max-

pooling layers, the final feature layer is followed by a 

softmax layer as 
0 1

exp( )
, 0,1.

exp( ) exp( )

j

j

y
p j

y y
 


 where 

iy Wv b   is the linear combination of the obtained deep 

feature v. W is the weight matrix and b is the bias term. 

The loss function is the softmax loss that calculates the 

loss between the prediction and the molecular labels: 

0, 1,( log (1 )log )i i i i

i

Loss q p q p    , where i is the ith 

nodule patch, p0,i, p1,i is the prediction probability calcualted 

by the softmax layer pj, and qi is the clinical label of EGFR 

mutation states. The CNN is learned by minimizing the loss 

function using the stochastic gradient descent. 

The feature layer is used to obtain the deep features 

from the input nodule patch. Next, the learned deep features 

are used to apply the SVM classifier for the EGFR mutation 

prediction. 

 

3. EXPERIMENTS AND DISCUSSION 

 

We first introduce two independent CT datasets of lung 

nodules with EGFR mutation profiles. We then present 

experimental results on our CNN features (i.e., termed as 

Deep30) in predicting EGFR mutation states on the two 

datasets separately, competing with hand-crafted features 

including Statistical features, Texture features, and Gabor 

filter features (termed as the STG feature set). 

Dataset1: it consists of 595 patients including 316 

EGFR- and 279 EGFR+ patients. Both non-enhanced and  
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Table 1. Prediction performance on Dataset1 (mean  std) and Dataset2, respectively. AUC, ACC, SEN, and SPE are the area under the 

ROC curve, accuracy, sensitivity and specificity, respectively. 

 Cross validation on Dataset1 Testing on Dataset2  

 AUC ACC(%) SEN(%) SPE(%) AUC ACC(%) SEN(%) SPE(%) 

STG30 0.726  0.006 68.55  0.80 68.49  1.22 68.61  1.06 0.494 58.55 25.93 72.76 

STG60 0.734  0.007 70.27  0.79 69.07  1.16 71.33  1.07 0.655 63.66 55.56 67.19 

STG100 0.721  0.007 69.22  0.87 68.50  1.36 69.84  1.14 0.636 55.85 76.65 46.80 

STG150 0.722  0.007 68.71  0.85 67.79  1.38 69.50  1.24 0.609 50.51 77.78 38.64 

Deep30 0.828  0.005 76.16  0.84 73.80  1.15 78.24  1.08 0.668 67.55 48.59 75.81 

 

contrast-enhanced chest CT images are acquired on Philips 

Brilliance 40 and Siemens Defintion AS. 

Dataset2: it consists of 89 patients with 59 EGFR- and 

30 EGFR+. Both non-enhanced and contrast-enhanced chest 

CT data are acquired by the two multi-detector row CT 

systems (GE Lightspeed Ultra 8, GE Healthcare). All the 

nodule images from both datasets are resampled and set the 

resolution to a fixed 0.8 mm/pixel along all three axes. 

When performing comparison with hand-crafted features, 

the Toboggan Based Growing Automatic (TBGA) 

segmentation [9] is used to first identify nodule boundaries. 

 

4.1. Implementation Details 

 

For Dataset1, we evaluate the proposed CNN model with a 

5-fold cross-validation. For each patient’s CT scan, a nodule 

patch is fed into the CNN model. The nodule patch is 

defined by cropping from the CT image based on the nodule 

centers marked by 2 radiologists. The size of the nodule 

patch is 30 30 pixels. The size of convolutional kernel in 

our CNN model is 3 3 32, and the kernel size of max-

pooling is 3  3 with the stride sets as 2. The number of 

feature layer and output layer are 30 and 2 respectively. In 

Dataset1, during each round of cross-validation, there are 

originally 475 nodules (222 EGFR+ nodules and 253 

EGFR- nodules) in the training set and 119 nodules (56 

EGFR+ nodules and 63 EGFR- nodules) in the testing set. 

To enlarge the training samples to train the CNN, we 

augment both EGFR+ nodules and EGFR- nodules by 

translating the nodule patches along two axes with  2 and 

 1 pixels. Thus, each patch is translated 8 times. Such 

setting helps capture a range of translation invariant features. 

Once the trained CNN network is built, the Deep30 feature 

set can be extracted from the well-trained CNN model. 

In regards to the competing approaches, we extract 

totally 592 dimensional features (i.e., STG feature set) for 

each segmented nodule image including: 7-dimensional 

statistical features capturing characteristics of nodule shape 

and volumes; 45-dimensional texture features including  

grey-level frequency, Gray-Level Co-occurence Matrix 

(GLCM), Gray-Level Size Zone Matrix (GLSZM), Gray-

Level Run-Length Matrix (GLRLM), and Neighborhood 

Gray-Tone Difference Matrix (NGTDM); and 540-

dimensional Gabor wavelet features with 4 scales and 8 

directions. Given the extracted 592-dimensional features, we 

use the MRMR feature selector to achieve the top30 

(STG30), top60 (STG60), top100 (STG100), and top150 

(STG150) feature sets. 

Next, the Deep30 and the defined 4 competing feature 

sets are trained with the SVM classifier with the 5-fold 

cross-validation on Dataset1. We report average accuracy 

(ACC), sensitivity (SEN), specificity (SPE) and the average 

area under the ROC curve (AUC) values of experiment 

results on Dataset1 from 200 times 5-fold cross-validation. 

In addition, we extend to report additional results on by 

directly using the well-trained model from Dataset1 and 

predict all data samples from Dataset2, where the ACC, 

SEN, SPE and AUC values are presented.  

 

4.2. EGFR Mutation Prediction 

 

Table 1 summarized the results of our approach (Deep30) 

and the four compared models (STG30, STG60, STG100, 

and STG150) on the two datasets. The proposed Deep30 

achieved promising performance on both datasets, all 

outperforming conventional hand-crafted features in a 

variety of feature parameters. The accuracy of our CNN 

feature based prediction outperforms the traditional hand-

crafted feature based classification by at least 5.89% and 

3.89% on Dataset1 and Dataset2, respectively. The 

superiority of the Deep30 suggests that the CNN structure is 

able to preserve class-specific information, while reducing 

noisy, irrelevant features in a form of feature reduction. 

When comparing our Deep30 and the STG30 where 

both feature sets are in the same feature dimension, the 

proposed Deep30 performed significantly higher results, 

revealing the power of feature reduction of our CNN model. 

It also confirmed that conventional STG sets were parameter 

sensitive, likely leading to inferior outcome especially when 

feature numbers are limited. Even increasing dimensions of 

STG feature sets did not reveal improved performance. The 

fact may be ascribed to that conventional feature extraction 

contains highly-correlated features with different feature 

extraction parameters, which simply do not contribute to the 

discriminative performance. We also reported ROC curves 

in Fig. 2 to observe the prediction outcomes. 

In regards to results on Dataset2, as introduced in the 

experimental details, it is a complete, external validation. 

The new data samples from Dataset 2 are fed into the CNN 

model which has been well trained on Dataset1. Despite the 

fact that different imaging parameters involved in the two 

Datasets, which can lead to varying performance, the results 
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Fig.2. ROC curves of EGFR mutation prediction using different types of feature sets based on Dataset1 (a) and Dataset2 (b). 

 

from both Table 1 and Fig. 2(b) revealed that the proposed 

approach has the potential to generalize well on the external 

datasets. Notably, it may not be surprising that the overall 

results dropped which could be ascribed to the testing on 

limited samples from Dataset2. Since our approach is in 

favor of data-driven scheme as already detailed in Dataset1 

with over 500 samples, with growing number of testing 

samples, we would expect to further boost prediction 

performance on EGFR mutation states. 

 

4. CONCLUSION 

 

In this paper, we investigate the association between CT 

imaging and molecular profiles for patients suffering from 

NSCLC. The proposed data-driven CNN framework 

presented encouraging results in predicting EGFR mutation 

states. Extensive experiments on two independent clinic 

datasets repeatedly revealed positive outcomes of our 

approach, outperforming conventional hand-crafted features. 

In the future, we will collect growing number of samples 

and continue to leverage the structure of fine-tuning CNNs 

that would allow improved performance on prediction. 
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