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ABSTRACT

Quantitative imaging biomarkers identification has become
a powerful tool for predictive diagnosis given increasingly
available clinical imaging data. In parallel, molecular
profiles have been well documented in non-small cell lung
cancers (NSCLCs). However, there has been limited studies
on leveraging the two major sources for improving lung
cancer computer-aided diagnosis. In this paper, we
investigate the problem of predicting molecular profiles
with CT imaging arrays in NSCLC. In particular, we
formulate a discriminative convolutional neural network to
learn deep features for predicting epidermal growth factor
receptor (EGFR) mutation states that are associated with
cancer cell growth. We evaluated our approach on two
independent datasets including a discovery set with 595
patients (Datsetl) and a validation set with 89 patients
(Dataset2). Extensive experimental results demonstrated that
the learned CNN-based features are effective in predicting
EGFR mutation states (AUC=0.828, ACC=76.16%) on
Datasetl, and it further demonstrated generalized predictive
performance (AUC=0.668, ACC=67.55%) on Dataset2.

Index Terms— Non-Small Cell Lung Carcinoma,
Convolutional neural networks, Computed tomography,
Computed-aided diagnosis

1. INTRODUCTION

Non-small cell lung cancer (NSCLC) is a lethal disease
accounting for about 85% of all lung cancers with a dismal
S-year survival rate of 15.9% [1]. Molecular profiles of
NSCLC, like epidermal growth factor receptor (EGFR),
have been well documented over the past decade to suggest
targeted treatment [2]; Computed tomography (CT), on the
other hand, has been a major imaging modality for early
cancer detection in NSCLC [3]. A promising yet
challenging task is to infer the diagnostic value from CT
images, such as the identification of discriminative image
features that are able to predict molecular signatures. Since
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image traits would create a unique avenue to non-invasively
assess molecular events [4], it will offer an opportunity to
discern early indicators of targeted treatment. A majority of
image-based studies have proposed to estimate nodule
malignancy likelihood [5-6]. However, the association
between image signatures and molecular profiling
information, particularly, predicting gene-mutation types
(e.g., EGFR mutation) from computational image features,
has not been explicitly addressed.

In this paper, we focus on developing computational CT
image features for predicting EGFR presence (EGFR+) and
absence (EGFR-). In particular, we introduce a data-driven
framework utilizing a convolutional neural network (CNN)
for the EGFR mutation prediction. By the use of the deep
learning paradigm, we sought to leverage the predictive
power of image signatures in reflecting EGFR mutation
states. The proposed approach consists of a six-layer CNN
for learning deep image features and a Support Vector
Machine (SVM) classifier for prediction. Our goal is
towards developing an end-to-end framework that
automatically learns the gene mutation-sensitive information
from CT imaging, thus the presented work is largely
opposed to conventional image evaluation heavily relying
on radiologists' inputs. Such as in [7], image characteristics
including air bronchogram and small lesion size were found
to associate with EGFR mutation in 280 patients.
Additionally, standardized uptake value (SUV) has been
reported to surrogate EGFR mutation with 100 patients [8].
However, the lack of external validation with cross-sectional
imaging impedes the translational value of the detected
image biomarkers. We here present evaluation of the
learned CNN features for EGFR mutation states on two
independent sets.

More specifically, our contribution is three-fold: i) We
formulate a discriminative CNN framework that leads to
improved prediction performance of EGFR mutation states
in NSCLC; ii) Because external validation is a crucial step
in finding predictive biomarkers, we report results of the
CNN-based features on two independent datasets, including
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Fig. 1. Illustration of the proposed Convolutional Neural Network in conjunction with the Support Vector Machine. The input 2-D nodule
patches centering around nodule shapes were fed into the concatenated Conv1+MP1 layers with each convolutional layer contains 32
convolutional kernels. The outputs from the feature layer are the learned deep features, which are applied to the SVM classifier for
predicting EGFR mutation states. In notation, 32@30x30 indicates 32 feature maps with size 30 x 30.

Datasetl (discovery set, 595 patients) and Dataset2
(validation set, 89 patients), revealing outperformed
performance as opposed to traditional CT texture, gabor
filter features, and statistical features; iii) The proposed
data-driven CNN framework emphasizes computation on
nodule image patches centered around most relevant nodule
information, which is highly appealing when dealing with
growing volumes of imaging data. Thus, it holds promise to
accelerate the process by removing nodule boundary
delineation and hand-crafted feature engineering.

2. LEARNING FEATURES FOR EGFR MUTATION
PREDICTION

We explore deep features by incorporating nodule CT
patches into a convolutional neural network (CNN). An
overview of our proposed approach is shown in Figure 1.
Building upon a hierarchical structure, our convolutional
neural network contains two convolutional layers, both of
which are followed by a max-pooling layer, and a fully
connected layer which represents the final output feature,
and a softmax layer. By taking use of the alternated layers of
convolution and max-pooling, extracted feature dimensions
continue to decrease along the network hierarchy, resulting
in highly compact deep features as outcomes in the feature
layer. Next, the SVM classifier is used for the binary
molecular class prediction (i.e., EGFR+, EGFR-).

The proposed CNN architecture starts from a
convolution layer (i.e., Convl layer), in which the input 2-D
nodule patch is convolved by the convolution kernels to
generate new feature maps as shown in Fig.1. A convolution
operation is formulated as: y=R(} x ®%k +b) , where y

represents the new feature map. The x; and k; respectively
indicate the ith slice of the input feature maps and that of the
convolution kernels. b is the bias scalar of the convolution
kernels. The ® denotes the convolution operation.

R(u) =max(0,u) is the rectified linear unit function.
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Following the convolutional layer, a max-pooling layer
(i.e., MP1 layer) is used to achieve the feature reduction by
subsampling the feature maps. Given the pooling window
size be s X s, the max-pooling operation is defined as:
SG,j)= max {y.., ...} » where y is the output of the

0</,m<s

convolution layer and f is the new feature map. The (i,j) is
the position of the feature node on the new feature map.

After two cascade convolutional layers and max-
pooling layers, the final feature layer is followed by a
_ exp(y;) ;

exp(y,) +exp(y,)’

y,=Wv+b is the linear combination of the obtained deep

softmax layer as =0,1. where

P,

feature v. W is the weight matrix and b is the bias term.

The loss function is the softmax loss that calculates the
loss between the prediction and the molecular labels:
Loss = —Z(q,. log p,, +(1—g,)logp,;) , where i is the ith

nodule patch, po;, p1,; is the prediction probability calcualted
by the softmax layer p;, and ¢; is the clinical label of EGFR
mutation states. The CNN is learned by minimizing the loss
function using the stochastic gradient descent.

The feature layer is used to obtain the deep features
from the input nodule patch. Next, the learned deep features
are used to apply the SVM classifier for the EGFR mutation
prediction.

3. EXPERIMENTS AND DISCUSSION

We first introduce two independent CT datasets of lung
nodules with EGFR mutation profiles. We then present
experimental results on our CNN features (i.e., termed as
Deep30) in predicting EGFR mutation states on the two
datasets separately, competing with hand-crafted features
including Statistical features, Texture features, and Gabor
filter features (termed as the STG feature set).

Datasetl: it consists of 595 patients including 316
EGFR- and 279 EGFR+ patients. Both non-enhanced and



Table 1. Prediction performance on Dataset] (mean * std) and Dataset2, respectively. AUC, ACC, SEN, and SPE are the area under the

ROC curve, accuracy, sensitivity and specificity, respectively.

Cross validation on Datasetl Testing on Dataset2
AUC ACC(%) SEN(%) SPE(%) AUC ACC(%) | SEN(%) | SPE(%)
STG30 0.726 + 0.006 68.55+ 0.80 68.49+ 1.22 68.61+ 1.06 0.494 58.55 25.93 72.76
STG60 0.734 + 0.007 70.27+ 0.79 69.07+ 1.16 7133+ 1.07 0.655 63.66 55.56 67.19
STG100 0.721 £ 0.007 69.22+ 0.87 68.50+ 1.36 69.84+ 1.14 0.636 55.85 76.65 46.80
STG150 0.722 + 0.007 68.71+ 0.85 67.79+ 1.38 69.50+ 1.24 0.609 50.51 77.78 38.64
Deep30 0.828 + 0.005 76.16 + 0.84 73.80 + 1.15 78.24 + 1.08 0.668 67.55 48.59 75.81

contrast-enhanced chest CT images are acquired on Philips
Brilliance 40 and Siemens Defintion AS.

Dataset2: it consists of 89 patients with 59 EGFR- and
30 EGFR+. Both non-enhanced and contrast-enhanced chest
CT data are acquired by the two multi-detector row CT
systems (GE Lightspeed Ultra 8, GE Healthcare). All the
nodule images from both datasets are resampled and set the
resolution to a fixed 0.8 mm/pixel along all three axes.
When performing comparison with hand-crafted features,
the Toboggan Based Growing Automatic (TBGA)
segmentation [9] is used to first identify nodule boundaries.

4.1. Implementation Details

For Datasetl, we evaluate the proposed CNN model with a
5-fold cross-validation. For each patient’s CT scan, a nodule
patch is fed into the CNN model. The nodule patch is
defined by cropping from the CT image based on the nodule
centers marked by 2 radiologists. The size of the nodule
patch is 30x 30 pixels. The size of convolutional kernel in
our CNN model is 3x3x 32, and the kernel size of max-
pooling is 3 x 3 with the stride sets as 2. The number of
feature layer and output layer are 30 and 2 respectively. In
Datasetl, during each round of cross-validation, there are
originally 475 nodules (222 EGFR+ nodules and 253
EGFR- nodules) in the training set and 119 nodules (56
EGFR+ nodules and 63 EGFR- nodules) in the testing set.
To enlarge the training samples to train the CNN, we
augment both EGFR+ nodules and EGFR- nodules by
translating the nodule patches along two axes with + 2 and
+ 1 pixels. Thus, each patch is translated 8 times. Such

setting helps capture a range of translation invariant features.

Once the trained CNN network is built, the Deep30 feature
set can be extracted from the well-trained CNN model.

In regards to the competing approaches, we extract
totally 592 dimensional features (i.e., STG feature set) for
each segmented nodule image including: 7-dimensional
statistical features capturing characteristics of nodule shape
and volumes; 45-dimensional texture features including
grey-level frequency, Gray-Level Co-occurence Matrix
(GLCM), Gray-Level Size Zone Matrix (GLSZM), Gray-
Level Run-Length Matrix (GLRLM), and Neighborhood
Gray-Tone Difference Matrix (NGTDM); and 540-
dimensional Gabor wavelet features with 4 scales and 8§
directions. Given the extracted 592-dimensional features, we
use the MRMR feature selector to achieve the top30
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(STG30), top60 (STG60), top100 (STG100), and topl150
(STG150) feature sets.

Next, the Deep30 and the defined 4 competing feature
sets are trained with the SVM classifier with the 5-fold
cross-validation on Datasetl. We report average accuracy
(ACC), sensitivity (SEN), specificity (SPE) and the average
area under the ROC curve (AUC) values of experiment
results on Datasetl from 200 times 5-fold cross-validation.
In addition, we extend to report additional results on by
directly using the well-trained model from Dataset] and
predict all data samples from Dataset2, where the ACC,
SEN, SPE and AUC values are presented.

4.2. EGFR Mutation Prediction

Table 1 summarized the results of our approach (Deep30)
and the four compared models (STG30, STG60, STG100,
and STG150) on the two datasets. The proposed Deep30
achieved promising performance on both datasets, all
outperforming conventional hand-crafted features in a
variety of feature parameters. The accuracy of our CNN
feature based prediction outperforms the traditional hand-
crafted feature based classification by at least 5.89% and
3.89% on Datasetl and Dataset2, respectively. The
superiority of the Deep30 suggests that the CNN structure is
able to preserve class-specific information, while reducing
noisy, irrelevant features in a form of feature reduction.

When comparing our Deep30 and the STG30 where
both feature sets are in the same feature dimension, the
proposed Deep30 performed significantly higher results,
revealing the power of feature reduction of our CNN model.
It also confirmed that conventional STG sets were parameter
sensitive, likely leading to inferior outcome especially when
feature numbers are limited. Even increasing dimensions of
STG feature sets did not reveal improved performance. The
fact may be ascribed to that conventional feature extraction
contains highly-correlated features with different feature
extraction parameters, which simply do not contribute to the
discriminative performance. We also reported ROC curves
in Fig. 2 to observe the prediction outcomes.

In regards to results on Dataset2, as introduced in the
experimental details, it is a complete, external validation.
The new data samples from Dataset 2 are fed into the CNN
model which has been well trained on Datasetl. Despite the
fact that different imaging parameters involved in the two
Datasets, which can lead to varying performance, the results
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Fig.2. ROC curves of EGFR mutation prediction using different types of feature sets based on Datasetl (a) and Dataset2 (b).

from both Table 1 and Fig. 2(b) revealed that the proposed
approach has the potential to generalize well on the external
datasets. Notably, it may not be surprising that the overall
results dropped which could be ascribed to the testing on
limited samples from Dataset2. Since our approach is in
favor of data-driven scheme as already detailed in Datasetl
with over 500 samples, with growing number of testing
samples, we would expect to further boost prediction
performance on EGFR mutation states.

4. CONCLUSION

In this paper, we investigate the association between CT
imaging and molecular profiles for patients suffering from
NSCLC. The proposed data-driven CNN framework
presented encouraging results in predicting EGFR mutation
states. Extensive experiments on two independent clinic
datasets repeatedly revealed positive outcomes of our
approach, outperforming conventional hand-crafted features.
In the future, we will collect growing number of samples
and continue to leverage the structure of fine-tuning CNN's
that would allow improved performance on prediction.
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