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Abstract—Row Hammer is a serious security threat to modern
computing systems using DRAM as main memory. It causes
charge loss in DRAM cells adjacent to a frequently activated
aggressor row and eventually leads to data bit flips in those cells.
Even with countermeasures from hardware vendors for years,
many latest DDR4 DRAM-based systems are still vulnerable
to Row Hammer. Furthermore, technology scaling continues to
reduce the Row Hammer threshold, hence posing even greater
challenges than before. Although many architectural solutions
for Row Hammer have been proposed in both industry and
academia, they still incur substantial overhead in terms of chip
area, energy, and performance, fail to provide a sufficient level
of protection, or both. Thus, we propose Graphene, a low-cost
Row Hammer prevention technique based on a space-efficient
algorithm that identifies frequent elements from an incoming data
stream. Graphene is provably secure without false negatives and
with tightly bounded false positives. Furthermore, Graphene has
an order of magnitude smaller area overhead compared to a state-
of-the-art counter-based scheme. This makes Graphene a scalable
solution to Row Hammer attacks for the memory systems of today
and the future. Our evaluation shows that Graphene features
nearly zero performance and energy overhead when running
realistic workloads. Even for the most adversarial memory access
patterns, Graphene increases refresh energy only by 0.34%.

I. INTRODUCTION

DRAM has been widely used as the main memory in modern

computer systems. Over decades manufacturers have scaled

down the feature size of DRAM for cost scaling [8], [9], which

naturally poses a threat to its reliability in two aspects [35],

[42]. First, as the size of the cell capacitor decreases, the

noise margin of DRAM cells has tapered off. Second, with a

decrease in distance between neighboring cells, DRAM cells

have become more vulnerable to electromagnetic coupling and

unintended field effect.

As a result, modern DRAM technologies are exposed to

a new problem called Row Hammer [29], [42]. It causes

charge loss in cells of victim rows adjacent to an aggressor
row experiencing a large number of activations (ACTs) within

a refresh window (tREFW). This phenomenon leads to data

corruption if the number of accumulated ACTs reaches a certain

level, called Row Hammer threshold. This can be exploited

by malicious programs to crash a system or gain elevated

access to compromise the entire system on every type of

platforms including personal computers, mobile devices, and

cloud servers [12], [19], [20], [47], [47], [52]–[55].

Naturally, this problem has recently drawn a lot of at-

tention from the community, and many solutions have been

proposed [3], [7], [17], [22], [25], [27], [29], [30], [32], [49]–

[51], [54], [56]. Some of the proposals modify the software

stack for detecting and preventing Row Hammer attacks [3],

[7], [22], [30], [54]. However, these proposals often require

intrusive modifications to the system software stack and incur

significant overhead in terms of performance, preventing their

widespread adoption.

Alternatively, architectural solutions [27], [29], [32], [49]–

[51], [56] have also been proposed. Most proposals identify

potential victim rows and refresh them proactively before their

refresh window has lapsed. This class of techniques can further

be divided into two sub-classes: probabilistic [29], [51], [56],

and counter-based schemes [27], [32], [49], [50]. For example,

PARA [29] is perhaps the best known probabilistic scheme,

which refreshes adjacent rows with a small probability (e.g.,

0.001) at every ACT. However, its low hardware complexity

comes with a substantial cost of additional refreshes to ensure

a sufficient level of protection. Other recent probabilistic ap-

proaches [51], [56] are vulnerable to adversarial access patterns.

In contrast, counter-based protection schemes deterministi-
cally refresh the victim rows when the number of ACTs to

an aggressor row reaches a certain threshold by maintaining

a set of hardware counters. Thus, a potential victim row is

always refreshed before the number of accumulated ACTs hits

the Row Hammer threshold. This approach provides protection

guarantees at the expense of hardware structures for tracking

ACT counts. The primary challenge for these schemes is to con-

struct a tracking mechanism with both high precision and low

cost. However, state-of-the-art counter-based solutions still fall

short of successfully addressing this challenge [32], [49], [50].

Despite these numerous proposals, a recent report [16]

uncovers that even latest DDR4 DRAM-based systems are still

vulnerable to Row Hammer attacks. Furthermore, DDR4 cells

turn out to have a much lower Row Hammer threshold (50K)

than DDR3 cells (139K) [29] due to technology scaling. This

poses even greater challenges to prevent Row Hammer attacks
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for future DRAM devices. Thus, clarion calls have been issued

to the research community to come up with more scalable

solutions for strong Row Hammer protection.

In this paper, we propose Graphene1, a novel counter-based

Row Hammer prevention mechanism that provides guaranteed

protection at a low cost. The key innovation of Graphene is that

it leverages the Misra-Gries algorithm [41], a classic, space-

efficient solution to identify a set of frequently accessed ele-

ments from an incoming data stream. We apply this algorithm

to track precisely all DRAM rows that have been activated more

times than a certain threshold. Thus, Graphene is a solution that

provides protection guarantees with no false negative, while

requiring only a minor extension to the DRAM protocol. Com-

pared to the existing counter-based schemes, Graphene achieves

both area efficiency and low performance/energy overhead at

the same time. Specifically, Graphene has either a much smaller

performance/energy overhead at a competitive area cost [49],

[50], or an order of magnitude smaller area overhead at a

similar performance/energy cost [32]. This makes Graphene to

be a practical solution even for future DRAM systems which

are expected to be more susceptible to Row Hammer attacks

due to a reduced Row Hammer threshold and a higher chance

of disturbing even non-adjacent rows. In summary, Graphene

meets all of the following, often conflicting, design goals:

• Guaranteed protection - Graphene guarantees to refresh

victim rows before the number of accumulated ACTs on

their aggressor rows hits the Row Hammer threshold (no

false negatives).

• Low energy and performance overhead - With the currently

reported Row Hammer threshold (50K) [16], Graphene

does not generate any additional refresh for realistic work-

loads. Even for the most adversarial pattern, the number

of additional Row Hammer refreshes is very small.

• Low area overhead - Graphene has about 15× fewer table

bits than a state-of-the-art counter-based scheme [32].

• Scalability - Graphene scales gracefully to both a reduced

Row Hammer threshold and an increased coverage of non-

adjacent victim rows to provide effective Row Hammer

protection for the memory system of today and the future.

II. BACKGROUND AND MOTIVATION

A. DRAM Refresh

Standard Parameters. The electric charge in a DRAM cell

slowly leaks off due to various static leakage sources. As a

result, the data in the DRAM cell has limited retention time
.Thus, every cell’s charge must be recovered at least once within

a retention time, and this recovery mechanism is called refresh.

The memory controller (MC) makes DRAM restore its data

by issuing a refresh command periodically, and the rows to

refresh at each command are determined by the DRAM device

itself [5]. The DDR4 standard [23] specifies 7.8 μs of refresh

interval (tREFI), and at every tREFI, a refresh command time

1Graphene is an atomic-scale hexagonal lattice made of carbon atoms, which
is very thin yet extremely strong.

Term Definition Value
tREFI Refresh interval 7.8 μs
tRFC Refresh command time 350 ns
tRC ACT to ACT interval 45 ns

TABLE I
DEFINITION AND TYPICAL VALUES OF REFRESH PARAMETERS IN DDR4

JEDEC STANDARD [23]

(tRFC) is given to DRAM to refresh multiple rows. Table I

summarizes the parameter values used in this paper.

Refresh Window. Each DRAM row has a regular refresh rou-

tine, and the constant time window between the two refreshes

of the same row is defined as tREFW. To not lose its data a

DRAM cell must have a longer retention time than tREFW.

This parameter was a part of the JEDEC standards in the past.

However, the cell retention time is dependent upon technology

and design, thus this parameter is removed from the standard;

today’s DRAM has a vendor-specific value of tREFW. In this

paper, we assume tREFW is 64 ms by default.

B. Row Hammer

Phenomenon. Row Hammer is a phenomenon that frequently

activating a certain DRAM row causes a bit flip in its nearby

rows. Rows being frequently activated are called aggressor
rows, and the nearby rows affected by those ACTs are victim
rows. The mechanism of Row Hammer is explained by Park

et al. [45]. They find that activating and then precharging

a particular wordline makes the electrons constituting the

underneath current channel flow into the nearby cells. This

results in recombination of their cell charges with the electrons

from the current channel, and by repeating this process, those

nearby cells may lose enough charges to cause bit flips. The

exact number of ACTs on aggressor rows that results in bit flips

of their victim rows varies across cells. Usually, the minimum
number of ACTs causing a bit flip for any row within the chip

is conservatively chosen to be the Row Hammer threshold.

Row Hammer Attacks to Non-adjacent Victim Rows. Most

studies on Row Hammer have so far confined the range of

victim rows only to rows immediately adjacent to an aggressor

row (i.e., row address of ±1 from the aggressor row). The

experimental study [28], [29], however, reports that Row

Hammer can also affect non-adjacent rows of the aggressor

rows (e.g., row address of ±2 and ±3 from the aggressor row).

Throughout this paper, we refer to Row Hammer attacks that

affect victims up to n rows from the aggressor row as non-
adjacent (±n) Row Hammer.
Security Threats. It is known that even a very simple user-level

program [18] can mount Row Hammer attacks. An attacker pro-

gram can flip data in a victim program by frequently activating

an aggressor row if its adjacent rows are allocated to the victim

program. For example, a recent work introduces a systematic

methodology to easily examine a system’s vulnerability to

Row Hammer [11]. Exploiting this phenomenon, malicious

software programs may crash the system, gain elevated access,

and eventually take over the whole system [20], [47], [53],

[55]. Modern computer systems are built on memory isolation
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between processes, and Row Hammer seriously undermines this

foundation. Such a Row Hammer-induced system breakdown

is shown to be feasible on various types of computer platforms

including personal computers [19], [52], servers [11], [12],

[47], and mobile phones [54].

Row Hammer to State-of-the-Art DRAM Devices. After the

public disclosure of Row Hammer attacks on DDR3 DRAM

devices [29], hardware vendors have proposed techniques to

protect the system from this vulnerability at different levels.

For example, BIOS/UEFI vendors have introduced a patch that

increases DRAM refresh rate [2], [33]. However, this method

does not provide protection guarantees and incurs high energy

and performance overhead even when there is no Row Hammer

attack. Protection mechanisms at the memory controller (MC)

exploiting Target Row Refresh (TRR) are also proposed [36],

but they have limited protection capabilities and/or product

coverage [16]. DRAM vendors have also implemented the

Row Hammer protection mechanism in their chips [13], [39].

However, a recent report [16] reveals that even the latest DDR4

DIMMs are still susceptible to Row Hammer under specific

memory access patterns. Furthermore, technology scaling con-

tinues to reduce the Row Hammer threshold from around 139K

for DDR3 to a few tens of thousands for DDR4 (e.g., 50K,

20K [28]). Thus, Row Hammer is still a serious problem in

today’s mainstream DRAM device and will become more so

in the future.

C. Limitations of Existing Solutions

Many architectural solutions have emerged to counter Row

Hammer attacks. These solutions can be divided into two major

categories: probabilistic and counter-based schemes.

Probabilistic Schemes. PARA [29] is a simple probabilistic

scheme that performs refreshes for the adjacent rows of every

activated row with a certain probability. PRoHIT [51] and

MRLoc [56] extend PARA by maintaining history tables to

track victim row candidates. PRoHIT manages two history

tables: hot, cold. MRLoc’s history table is a simple queue,

which tracks the access pattern by taking victim rows of an

incoming stream of ACTs.

These probabilistic schemes have an advantage in hardware

cost for their simplicity. However, they do not provide guaran-

teed protection and hence are prone to false negatives (failures

in detecting a real Row Hammer attack), which prevents its

widespread adoption [31]. It may be able to provide a higher

level of protection by increasing the probability of issuing

victim row refresh, but this comes with a performance and

energy cost. To provide a sufficient level of protection for

a large number of DIMMs, the probability for victim row

refresh should be increased substantially from the default

setting in the original paper [29]. Furthermore, PRoHIT and

MRLoc are vulnerable to specific patterns exploiting their table

management algorithms. These vulnerabilities may degrade the

security of these techniques to be comparable to (or worse

than) PARA with no table. We analyze the security of these

schemes in greater details in Section V-A.

Counter-based Schemes. Counter-based protection schemes

maintain an array of counters to identify the heavily activated

memory rows, which can potentially cause Row Hammer. Since

having a counter for every row is not a scalable solution, the

main challenge is to reduce the number of counters for tracking

ACTs. CRA [27] caches counters only for frequently activated

rows on chip and puts the rest in DRAM. Unfortunately, this

scheme performs poorly for an access pattern with little locality.

CBT [49], [50] reduces the number of counters by letting

a single counter to track ACTs for a set of rows. CBT starts

with one counter that tracks ACTs for all DRAM rows in a

bank together, and when its count reaches the pre-defined split

threshold, the counter is broken down into two child counters,

each covering a half of the rows covered by its parent counter.

CBT repeats this process until all the counters are consumed.

Different split thresholds are defined for each level of the tree.

Whenever there is a counter whose count reaches the last level

threshold which is derived from the Row Hammer threshold,

CBT refreshes all the victim rows of the rows managed by

the counter. Although space-efficient, CBT has a problem

of generating a burst of refreshes which can result in the

performance degradation. Moreover, CBT assumes that the

rows covered by the same counter are physically contiguous.

With this assumption, CBT refreshes N
2l
+2 rows (N is the total

number of rows in a bank and l is the level of the counter) when

any counter value reaches the last level threshold. However,

this assumption may not hold if the DRAM internally remaps

the addresses. CBT then would have to refresh N
2l
× 2 rows,

not N
2l

+ 2, to guarantee all victim rows associated with this

counter are protected.

Unlike CBT, TWiCe [32] counts the number of ACTs much

more precisely for DRAM rows and provides guaranteed

protection with a small number of false positives. It leverages

the fact that the maximum frequency of ACTs is bounded

within a refresh window (tREFW) by DRAM timing parameters

to reduce the total number of counters. However, TWiCe still

has a relatively large area overhead for the counter table. It

requires few tens of thousands of entries to protect the recent

DDR4 DRAM chips with 50K Row Hammer threshold.

These counter-based schemes provide strong protection

against Row Hammer attacks with no false negatives but incur

a significant cost in terms of either energy and performance

(CBT) or area (TWiCe). Furthermore, technology scaling con-

tinues to increase this cost, which may have been acceptable for

old-generation DRAM devices like DDR3 with a sufficiently

high Row Hammer threshold (e.g., 139K [29]). As a result, it

is no longer practical for today’s and future DRAM devices

having much lower Row Hammer threshold values. Therefore,

we need a solution that provides strong protection guarantees

at a low cost.

III. GRAPHENE: A LIGHTWEIGHT ROW

HAMMER PROTECTION MECHANISM

This section presents Graphene, a strong yet lightweight Row

Hammer protection mechanism for modern DRAM systems.

Section III-A illustrates how Graphene utilizes the Misra-Gries
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algorithm [41] for tracking potential Row Hammer aggressors.

Section III-B discusses how Graphene achieves complete Row

Hammer protection by extending the Misra-Gries algorithm.

Then Section III-C presents a proof of protection guarantees

of the proposed mechanism. Finally, Section III-D explains

how Graphene can be extended to handle non-adjacent Row

Hammer.

A. Row Hammer Aggressor Tracking

Overview. Graphene detects a potential Row Hammer attack

by utilizing the Misra-Gries algorithm [41], which is one of the

classic solutions to the frequent elements problem. Frequent

elements problem is a task of identifying elements that make up

more than a certain fraction of a finite data stream. We observe

that detecting potential Row Hammer attacks is similar to the

frequent elements problem in that Row Hammer is an event

that occurs when more than a certain number of ACTs happen

on the nearby rows of a specific row within the refresh window.

Misra-Gries Algorithm. The Misra-Gries algorithm maintains

a finite-sized associative array data structure which has an item

ID as the key and the estimated count as the corresponding

value. We refer to this structure as counter table. Note that we

differentiate the estimated count in each entry of the counter

table from the actual count of the corresponding item ID. In

addition to the counter table, it also maintains a value named

spillover count, which is initialized with zero.

Item ID

Yes

Already
in the table?

(hit)

Yes

Any entry with the
same value as the
spillover count?

No

Increment the
estimated count

by one

Insert new item ID
in that entry

Increment the
spillover countNo

Fig. 1. Flowchart for the Misra-Gries Algorithm

Figure 1 illustrates the flow of the Misra-Gries algorithm.

Whenever an item enters the stream, it checks if the counter

table already has an entry associated with the same item ID. If

so, it simply increments the estimated count of the matching

entry by one. If it misses, it first checks whether there is an

entry whose value is equal to the spillover count. If it exists, this

entry’s key is replaced by the current item ID, and its estimated
count is incremented by one. Here, note that the estimated
count value is not reset to zero even if the replacement of the

key happens. If there is no entry whose value is equal to the

spillover count, the spillover count value is incremented by

one without table update.

Application to Aggressor Tracking. In the context of Row

Hammer, a stream contains a sequence of activated memory

row addresses. Then, the counter table entry’s key is the row

address, and the value is the estimated number of ACTs for

that particular row. Figure 2 exemplifies the case where we

apply the Misra-Gries algorithm to Graphene for potential Row

Hammer aggressor tracking. It shows the counter table having

three entries processing three incoming ACTs whose addresses

are 0x1010, 0x4040, and 0x5050. Initially, the table is occupied

with three entries for address 0x1010, 0x2020, and 0x3030,

and the spillover count is 2. In Step 1, row address 0x1010

is activated. Since it is already in the table, the estimated
count of the matching entry is incremented by one (i.e., 6). In

Step 2, row address 0x4040 is activated for which there is no

matching entry. As there is no entry whose estimated count
equals to the spillover count, the spillover count is incremented

by one (i.e., 3). Finally, in Step 3, row address 0x5050 is

activated, which again misses in the table. But this time, an

entry whose estimated count is equal to the spillover count (i.e.,

row address 0x3030) exists, so Graphene replaces its address

with the incoming row address 0x5050 and increments the

corresponding estimated count by one. Note that the estimated
count of the entry is 4 (not 1) as the old count is carried over

to the newly inserted address.

Tracking Guarantees. The Misra-Gries algorithm guarantees

that any item that occurs more than a W/(Nentry+1) fraction

in the stream appears in the counter table. Here, Nentry is the

number of entries in the counter table, and W is the number of

items in the stream. In a Row Hammer context, this guarantees

that all row addresses that have been activated more than

W/(Nentry + 1) times during the last W ACTs are in the

count table. In other words, in order to track items which were

activated more than T times during the last W ACTs, Nentry

needs to be sized to satisfy the following inequality:

Nentry >
W

T
− 1 (1)

B. Row Hammer Prevention

Section III-A presents the algorithm that can be used to

track rows that are activated more than T times over the last

W accesses. However, this itself does not directly lead to Row

Hammer prevention. In this section, we present how Graphene

identifies potential victim rows exploiting such property of the

algorithm and thwarts Row Hammer attacks without missing.

Graphene Row Hammer Prevention. Graphene Row Ham-

mer prevention scheme maintains a counter table with Nentry

and a spillover counter for each DRAM bank. Every time an

ACT happens for that particular bank, it updates the counter

table and spillover counter as in Figure 2. Here, we set Nentry

so as to guarantee any row that has been activated more than

T times is tracked by the counter table following Inequality 1.

At this point, when an estimated count for an entry whose

key is row X reaches specific threshold T or a multiple of

T (e.g., 2T, 3T, ...), we identify row X as a potentially fatal

aggressor row that can trigger Row Hammer attacks. In this

case, row X’s adjacent rows (X+1 and X-1) are refreshed. We

refer to these refreshes as victim row refreshes. By doing so,

Graphene prevents any row from being activated more than T
times without generating victim row refreshes in the meantime.

The proof for this property is shown in Section III-C. Finally,

for every reset window tREFW, the counter table as well as

its spillover count register are reset, and the same process

is repeated from the beginning. Our proposition is that this

scheme can provide guaranteed Row Hammer prevention if

we properly configure Nentry and T .
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Row Address Count

0x1010 5

0x2020 7

0x3030 3 0x1010

Row Address Count

0x1010 6

0x2020 7

0x3030 3 0x4040

Row Address Count

0x1010 6

0x2020 7

0x3030 3 0x5050

Row Address Count

0x1010 6

0x2020 7

0x5050 4

Spillover Count 2 Spillover Count 2 Spillover Count 3 Spillover Count 3

Fig. 2. Example operations of the aggressor tracking algorithm

time1
table reset

2
table resetnormal refresh of 

a victim row of row X

+ tREFW
normal refresh of

a victim row of row X

up to 2( -1) ACTs accumulated
without detection before normal refresh

-1 ACTs-1 ACTs

Fig. 3. Timing diagram of table reset and normal refresh of a victim of an
arbitrary row X . Note that at most 2(T − 1) ACTs can be accumulated for
row X during the period between two consecutive normal refreshes of its
victim row (tx, tx+tREFW).

Configuring T . Considering that Row Hammer happens when

the adjacent (aggressor) row of a victim row is activated for

more than TRH times, it is natural that T is a function of TRH .

However, naïvely setting T to Row Hammer threshold TRH is

not the right solution. In fact, T should be much smaller than

TRH for two reasons.

First, Graphene tracks an aggressor row, not a victim row.

In this case, two adjacent (aggressor) rows can concurrently

disturb a single victim row [29] from both sides in the worst

case, and thus we should presume that even only TRH/2
accesses on a single aggressor row may cause the bit-flip.

Second, we should account for the fact that we do not know

the exact time of the refresh for a particular row. Instead,

we only know that, at any point in time, a specific row has

been refreshed within the last tREFW interval (i.e., 64ms).

Considering that the reset window of our scheme is also set to

tREFW, this indicates that a particular row is last refreshed in

the current window or the last window. Here, one important

characteristic of Graphene Row Hammer prevention scheme

is that the maximum number of ACTs that one aggressor row

can experience without incurring a victim refresh is T -1 within

a single reset window (see Section III-C). Then, the maximum

number of ACTs on any adjacent row that a single victim row

can experience without being victim-refreshed over the two

reset windows is limited to 2(T -1). Figure 3 shows this case.

Combining the points that i) a single aggressor can cause

a bit-flip in its adjacent row with TRH/2 ACTs when being

concurrently hammered with the other aggressor, and ii) a

single victim row can experience up to 2(T -1) ACTs from its

adjacent row before it is refreshed again, choosing T satisfying

the following inequality is sufficient to guarantee Row Hammer

prevention. A recent study [16] reports that Row Hammer

threshold (TRH ) is around 50K on the latest DDR4 DRAM

devices. In other words, an aggressor row needs to receive 50K

ACTs without being refreshed to cause bit-flips in its victim

rows. In this case, T is 12.5k.

Term Definition Value
TRH Row Hammer threshold 50K
W Max number of ACTs in a reset window 1,360K∗
T Threshold for aggressor tracking 12.5K∗

Nentry Number of table entries 108∗

TABLE II
PARAMETERS FOR GRAPHENE WITH ONLY ±1 ROW HAMMER ASSUMED

(∗BASELINE NUMBERS TO BE FURTHER ADJUSTED FOR OPTIMIZED

IMPLEMENTATION IN SECTION IV)

2(T − 1) <
TRH

2
⇒ T <

TRH

4
+ 1 (2)

Configuring Nentry. Inequality 1 specifies the condition to

choose the correct Nentry. Since we already derived T , the

only issue is to find out W , which is the number of ACTs

within the window. Considering that our reset window is tREFW,

we can conservatively calculate the maximum number of ACTs

that fits within this reset window and set it to be W . Based

on the DRAM timing parameters in Table I, we obtain the

maximum number of ACTs within this window by computing

W = tREFW(1−tRFC/tREFI)/tRC = 1360K. Here, tREFW(1−
tRFC/tREFI) represents the time that a bank is available for

serving memory requests (i.e., not blocked for refresh) within

tREFW reset window, and tRC represents the minimum interval

between two ACT commands to the same bank. Now that W
is set, it is trivial to find that the minimum number of Nentry

that satisfies Inequality 1 is 108. Table II shows the parameters

for Graphene that we derived so far.

C. Proof of Protection Guarantees

As explained in Section III-B, Graphene issues victim row

refreshes whenever the estimated count of an entry reaches

a multiple of T . We now demonstrate that Graphene can

successfully thwart all possible Row Hammer attacks in this

way by proving the following theorem.

Theorem. The actual count of any row cannot increase by T
without triggering a victim row refresh.

Actual count refers to the actual number of ACTs for a row

within the reset window. To prove this theorem, we introduce

the following two lemmas.

Lemma 1. The estimated count of every entry in the counter
table is always equal to or greater than the actual count of
the corresponding DRAM row.

Lemma 2. Spillover count cannot exceed W
Nentry+1 .

Proof of Lemma 1. We employ a strong induction to prove

it. The base step (the lemma is true after the first ACT from
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the table reset) is trivial. The inductive step is to show, if the

lemma has been true at every moment in the past, it is true now.

The only case that can make it false is i) when an incoming

row X takes the slot of an entry whose count is equal to the

spillover count, and ii) its new estimated count is smaller than

the actual count of row X . However, this is impossible. Row X
had been in the table but was once replaced. At its last eviction,

its estimated count must have been equal to the spillover count

at that moment (old spillover count), and its actual count must

have been smaller or equal to it by the assumption of strong

induction. As spillover count monotonically increases over

time, the inserted entry’s new estimated count (spillover count

+ 1) is greater than the old spillover count. Therefore row X’s

current actual count, which is old spillover count + 1 at most,

cannot be greater than its new estimated count.
Proof of Lemma 2. The sum of spillover count and all the

estimated counts is equal to the number of ACTs accrued since

the last table reset. This is because either the spillover count

or a single estimated count increments by one at every ACT.

As the spillover count cannot be greater than any of estimated
counts, it has its maximum value when it and all the estimated
counts are the same. Thus, spillover count cannot be greater

than W
Nentry+1 .

Proof of Theorem. Suppose a moment when a row X’s actual
count turns from T − 1 to T . By Lemma 1, its estimated
count is equal to or greater than its actual count. If equal,

victim row refreshes for row X would be performed at this

moment. If greater, victim row refreshes would have been

already performed in the past when its estimated count turned

T .

Not many change even when row X’s actual count goes

as high as multiples of T . Assume that row X is activated

more than 2× T . The first pair of victim refreshes for row X
must have been performed when its estimated count touched

T . From that moment, row X would never be evicted from the

table as it is always greater than the spillover count (Lemma

2). Thus, when row X is activated exactly T times after its

first victim row refreshes, the second victim row refreshes for

row X occur. At that moment, its actual count is always equal

to or smaller than 2×T . This can be generalized to when row

X is activated n× T times.

D. Graphene for Non-adjacent Victim Rows

Thus far, we have focused on the scenario where a single

aggressor row can only affect two adjacent rows. However, as

discussed in Section II-B, it is also possible for an aggressor

row to affect other rows that are not directly adjacent to

it. Here, we introduce how Graphene can be extended to

protect non-adjacent rows from Row Hammer. We make simple

modifications on two parts of the Graphene’s operation: 1) the

number of victim rows to be refreshed at once when a potential

Row Hammer attack is detected, and 2) the value of T .

For the non-adjacent (±n) Row Hammer, which assumes

that an ACT to a particular row affects up to n rows away,

Graphene performs victim row refreshes up to ±n rows at

once an entry in the table hits a multiple of T . Moreover,

Section III-B configured T based on the assumption that a

single victim row can be disturbed by two (±1) adjacent rows.

However, for the non-adjacent Row Hammer, up to 2n rows

can concurrently disturb a single victim row, and thus T needs

to be smaller. For example, if we assume that all potential (non-

)adjacent aggressor rows incur the same amount of disturbance

on the victim row’s charge, Inequality 2 should use TRH/2n
as the right-hand-side term instead of TRH/2.

However, non-adjacent aggressors may not have the same

impact on the victim as its adjacent aggressors. For example,

prior works mention that geometric distance undermines the

impact of wordline crosstalk [28], [29], [45]. In such a case,

we can define coefficients μi in a way that makes μi · Tcharge

TRH

represents the degree of charge disturbance from aggressor rows,

which are i rows away from the victim row, whereas adjacent

aggressors make a charge disturbance of
Tcharge

TRH
. Tcharge is the

amount of the charge disturbance that needs to be accumulated

to materialize the bit flip. Note that μi is smaller than 1 for

all i and decreases with i. With this notation, Inequality 2 is

revised as follows.

T <
TRH

4(1 + μ2 + ...+ μn)
+ 1

This modification makes Nentry to increase by a factor of

(1 + μ2 + ... + μn) and T to decrease by the same factor.

For example, if we assume that the amount of disturbed

charges from an aggressor row that is n rows away is inversely

proportional to the square of their distance (i.e., μi =
1
i2 ), this

factor is limited to 1.64 (
∑∞

1
1
k2 ≈ 1.64). This means that the

table size increase in this case is limited to 1.64×, which is

manageable. On the other hand, the number of victim refreshes

that needs to be performed when the table hits T increases by

n, the maximum distance that an ACT on an aggressor row

can affect to. Still, one thing to note is that the chance for

a counter value reaching T itself is negligible when running

realistic workloads (shown in Section V-B).

IV. ARCHITECTING GRAPHENE

A. Victim Row Refresh

Augmenting DRAM Interface. Graphene is deployed inside

a memory controller (MC) like several other proposals [27],

[29], [49], [50]. Unfortunately, the current DRAM protocol

lacks support for an MC to issue a refresh to a specific row at a

specific time. Thus, our deployment scenario requires a minor

extension to the existing DRAM interface. Specifically, we

assume that the MC can issue a Nearby Row Refresh (NRR)

command, which is similar to the Target Row Refresh (TRR)

command in DDR3. Whenever a DRAM device receives this

command, it refreshes the nearby rows that are potentially

affected by the specified (aggressor) row.

Victim Row Refresh Overhead. Whenever an entry in the

counter table’s estimated count becomes a multiple of T , a

NRR command on that particular row is issued by the MC.

Then, up to 2n rows are refreshed where n is the distance

of the farthest row that an ACT on a single row can affect

(Section III-D). During this victim row refreshes, the bank
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Fig. 4. Hardware Structure of Graphene

1 def process_activation(activated_addr):
2 /* Table Update */
3 if(i ← ROW_ADDR_CAM.SEARCH(activated_addr))
4 // Row Address HIT
5 incremented_cnt ← COUNT_CAM.READ(i) + 1
6 COUNT_CAM.WRITE(i, incremented_cnt)
7 else
8 // Row Address MISS
9 if(i ← COUNT_CAM.SEARCH(SPCNT))
10 // Entry Replace
11 incremented_cnt ← SPCNT + 1
12 ROW_ADDR_CAM.WRITE(i, activated_addr)
13 COUNT_CAM.WRITE(i, incremented_cnt)
14 else
15 // No Replacement
16 SPCNT++

Fig. 5. Pseudo-code for table and spillover count register update using CAM.

remains busy for victim refreshes, which incurs performance

and energy overhead. In practice, however, this is not a critical

problem as the event of a counter entry hitting T is extremely

rare unless the system is under a deliberate Row Hammer

attack. Detailed discussions of the performance and energy

overhead of Graphene are available in Section V-B.

B. Table Implementation

Table Management Using CAM. Figure 4 shows a structure

of Graphene with the table implemented by two CAM arrays:

one for row addresses (Address CAM) and the other for

counters (Count CAM). We use CAM as it simplifies the

design. The overhead of the CAM-based tables, together with

the surrounding logic, is evaluated in Section V.

Figure 5 presents a pseudo-code of the table and spillover

count register updates performed upon the arrival of every ACT.

A check for address hit and the existence of an entry whose

count value is equal to the spillover count can be performed

by a single CAM search. The critical path of a table update

is fired when an address miss occurs, and an entry with the

same value as the spillover count exists, so entry replacement

happens. Since address CAM and count CAM can be written

at the same time (Line 12 and 13 in Figure 5), the critical path

is composed of three sequential CAM operations (two searches

and one write).

Reducing Table Bit-width. The bit-width of each entry in

Address CAM is determined by the number of rows in a bank

(row_num). It requires �log2 row_num� bits per entry. For

example, a bank with 64K rows requires 16 bits per entry for

address. On the other hand, each estimated count of Count

CAM is required to count up to W , the maximum number of

ACTs in a reset window (1,360K). 21 bits are necessary per

entry of Count CAM by default. Fortunately, the introduction of

an overflow bit for each estimated count can reduce the required

bit-width from 21 bits to 14 bits as it grows up to T (not

W ). When the estimated count reaches T , the corresponding

overflow bit is set high, and the estimated count is reset to zero.

Then the overflow bit remains high until the end of the current

reset window and the estimated count is repeatedly reset to zero

every time it reaches T . This is possible due to the fact that

in Graphene’s table, the address of an entry whose estimated
count reaches T is never evicted until the end of the current

reset window. By tagging a counter entry with an overflow bit,

instead of counting up to W , we can effectively reduce the bit-

width without compromising the protection capabilities. Other

counters whose overflow bit is not set should still retain the

precise number of estimated count for identifying the minimum

entry. As a result, only 15 bits (14 bits + 1 overflow bit) are

sufficient for count, and we save 6 bits for each entry. This

saving becomes more pronounced as T decreases.

C. Adjustable Reset Window

In Section III-B, we assumed that the reset window is fixed

to tREFW. In fact, it is still possible to guarantee the Row

Hammer prevention even with a shorter reset window, as long

as T and Nentry are carefully configured. This section explores

the impact of changing the reset window size to tREFW/k.

Re-Configuring T . Recall that Section III-B configured T
using an inequality 2(T −1) < TRH/2. For this inequality, we

leveraged the fact that i) the last normal refresh happens on the

current or the last reset window, and ii) the maximum number

of ACTs on a single row without refresh is T − 1. If the reset

window is tREFW/k, the last normal refresh happens on the

current or one of the last k windows. As a result, Inequality 2

changes to the following.

(k + 1)(T − 1) <
TRH

2
⇒ T <

TRH

2(k + 1)
+ 1 (3)

Re-Configuring Nentry. In Section III-B, we computed the

maximum number of ACTs that can fit in a single reset window

of tREFW (W ) to be about 1360K. Now that the reset window

is reduced by a factor of k, the maximum number of ACTs

that fits in a single window is also scaled down by the same

factor. Plugging this modified W = 1360K/k into Inequality 1

and combining it with Inequality 3 (conservatively assuming

T = TRH

2(k+1) ) results in the following:

Nentry >
2× 1360K

TRH
· k + 1

k
− 1

7



0

20

40

60

80

100

120

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

1 2 3 4 5 6 7 8 9 10

# 
of

 ta
bl

e 
en

tri
es

R
el

at
iv

e 
# 

of
 a

dd
iti

on
al

 re
fre

sh
es

k (reset window = tREFW / k)

Additional Refreshes Table Size
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of normal refreshes over a refresh window (tREFW, 64 ms) and the number of
table entries with varying k for a single bank.

Here, increasing k results in a smaller number of table entries

(Nentry). However, as k increases, the term k+1
k converges to

1 and the amount of reduction in Nentry becomes smaller. On

the other hand, increasing k also decreases T , which can lead

to a potential increase in the number of additional refreshes

depending on the access pattern. Assuming the worst-case

access pattern, Figure 6 shows the change in the number of

additional refreshes as well as change in table size across

varying k. As shown in the figure, the table size quickly

saturates as the k increases, while the number of additional

refreshes keeps increasing. We conservatively choose k = 2
for evaluation. In this case, Nentry becomes 81. However, one

can also use larger k (e.g., 5) for greater area savings at the

expense of slightly more additional refreshes.

V. EVALUATION

This section evaluates Graphene by comparing it against the

prior art. Section V-A analyzes the protection capability of the

three probabilistic schemes. Section V-B evaluates the overhead

of Graphene in terms of area, energy, and performance, in

comparison to other counter-based schemes and PARA, a

representative probabilistic protection scheme. Section V-C

presents a scalability study with reduced TRH as the technology

scales. Finally, Section V-D discusses how Graphene’s overhead

changes if non-adjacent victim rows are also protected and

compares it with the other schemes.

A. Security Analysis

While counter-based schemes (CBT [49], [50], TWiCe [32],

and Graphene) provide guaranteed protection against Row

Hammer attacks, probabilistic schemes (PARA [29], PRoHIT

[51], and MRLoc [56]) do not provide such guarantees. For

this reason, it is difficult to make a fair comparison between

the probabilistic schemes and the counter-based schemes. In

this section, we carefully examine the worst-case security guar-

antees of existing schemes and derive their configurations that

can provide a near-complete protection on a single-processor

system with four memory channels, where each one has a

single-rank DDR4 DIMM. We assume that the system achieves

near-complete protection when the system has a less than 1%

chance of a successful Row Hammer attack under the most

adversarial access pattern over one year.

(a) {x− 4, x− 2, x− 2, x, x, x, x+2, x+2, x+4}∗
(b) {x1, x2, ..., x7, x8}∗

Fig. 7. Vulnerable access patterns for (a) PRoHIT (7 entries) and (b) MRLoc
(15 entries)

PARA [29]. PARA performs a victim row refresh with a certain,

pre-defined probability. Due to its characteristics, the worst-

case scenario is where a single address is repeatedly activated

for the whole refresh window (e.g., 64 ms). Assuming this

access pattern and a probability of p, the chance of an event

eN where a series of N ACTs has at least TRH serial accesses

without triggering a victim row refresh (i.e., a Row Hammer

attack is successful) is given as follows2.

P (eN ) = P (eN−1) + p(1− 1

2
p)TRH (1− P (eN−TRH−1))

With the equation above, it is possible to compute the chance

of a successful Row Hammer attack on a single bank protected

with PARA over a single refresh interval (e.g., 64 ms). Using

this number, it is also possible to compute the chance of a

successful Row Hammer attack on the system with 64 memory

banks (i.e., 4 memory ranks) within a year. Given a Row

Hammer threshold of 50K, p needs to be at least 0.00145 to

achieve the near-complete protection. We evaluate the overhead

of PARA-0.00145 in Section V-B.

PRoHIT [51] and MRLoc [56]. PRoHIT and MRLoc are

particularly vulnerable to specific adversarial patterns, and this

is a critical security concern. Figure 7(a) is an example pattern

that PRoHIT is particularly vulnerable to. In PRoHIT, the more

frequently accessed rows are more likely to be chosen for victim

row refreshes. With the provided pattern in Figure 7(a), row

x− 5 and x+ 5 are hammered repeatedly but less frequently

than the other victim rows (row x− 3, x− 1, x+ 1, x+ 3).

Thus, these two rows have a relatively lower chance of being

refreshed despite being frequently accessed. We simulated PRo-

HIT protection scheme with the provided adversarial pattern

and identified that PRoHIT fails to guarantee the near-complete
protection when it is configured to incur the same number of

extra refreshes with the PARA-0.00145. Specifically, under this

configuration, PRoHIT has the 0.25% chance of exhibiting the

bit-flip within tREFW. Such a high probability of bit-flip within

tREFW implies nearly 100% chance of protection failure within

a year. For MRLoc, a simple access pattern that repeatedly

accesses eight distinct, non-adjacent addresses in order (as

in Figure 7(b)) can simply nullify the impact of the MRLoc

history queue with 15 entries. In such a case, there are 16

potential victims and thus MRLoc with the 15-entries history

queue fails to efficiently track them. In this case, MRLoc has

the same protection capability as PARA assuming the same p

2It is trivial that P (eN ) = 0 when N < TRH . The first term in the
equation indicates a chance that the protection failure occurs within preceding
N−1 ACTs. The second term refers to a chance that the first protection failure
occurs exactly at N th ACT. It is only possible when the row is lastly refreshed
at (N − TRH )th ACT and has not been refreshed afterward. This happens
with the probability of 1

2
p(1− 1

2
p)TRH for each of the two victim rows. Plus,

victim rows must have survived without a successful Row Hammer attack by
the first N − TRH − 1 ACTs, thus 1− P (eN−TRH−1) is multiplied.
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Core Configurations (16 cores)
Core 3.6 GHz 4-way OOO cores

Private Cache 16KB L1 I/D cache, 128KB L2 cache
Shared Cache 16 MB L3 cache

Memory System Configurations
Module DDR4-2400

Configuration 4 channels; 1 rank per channel
Capacity 128GB

Bandwidth 76.8 GB/s
Scheduling PAR-BS [44]
Page-Policy Minimalist-open [26]
tRFC, tRC 350 ns, 45 ns

tRCD, tRP, tCL 13.3 ns

TABLE III
ARCHITECTURAL PARAMETERS FOR SIMULATION

is used. However, in other patterns, MRLoc incurs more Row

Hammer refreshes than PARA since it refreshes rows being

tracked by the history queue with higher probability than p.

Therefore, in what follows, we use PARA as a representative

probabilistic scheme for comparison.

B. Overhead Evaluation

Methodology. We model the area and energy overhead of

Graphene’s extra hardware by implementing RTL design and

synthesizing it using Synopsys Design Compiler with TSMC

40nm standard cell library. For performance evaluation of

Graphene and other schemes we perform cycle-level simulation

of a 16-core processor system using McSimA+ [1]. From this

simulation we report the number of victim row refreshes and

their impact on the system performance. We carefully model

all schemes in the memory controller to determine when a

victim row refresh should be applied on every ACT command.

When a victim row refresh is issued, its overhead (i.e., tRC
× the number of victim rows to refresh) is accounted for in

DRAM cycles in addition to tRP at the precharge of the bank

in question. For the performance metric, we use the weighted

speedup [14] and report the amount of speedup reduction due

to these additional victim row refreshes (lower is better). The

simulation parameters are summarized in Table III. Note that

Graphene does not affect the DRAM timing since its operation

latency is completely hidden within tRC.

Workloads. We use both multi-programmed and multi-threaded

workloads for evaluation. The choice of benchmarks mostly

follows TWiCe [32], a state-of-the-art counter-based scheme.

For multi-programmed workloads, we extract the most represen-

tative 100M instructions from each of the 29 SPEC CPU2006

benchmarks [21]. We then execute the nine most memory-

intensive applications (SPEC-high), each with 16 copies. SPEC-

high includes mcf, milc, leslie3d, soplex, GemsFDTD, libquan-

tum, lbm, sphinx3, and omnetpp. We also render two mixed

workloads, one composed with 16 applications among SPEC-

high (mix-high) and the other randomly comprised of 16 appli-

cations among all SPEC CPU2006 applications (mix-blend). In

addition to these multi-programmed workloads, we evaluate five

multi-threaded benchmarks (MICA [34], PageRank from GAP

benchmark suite [4], RADIX and FFT from SPLASH-2 [46],

Canneal from PARSEC [6]) as well. Finally, we also create and

run synthetic benchmarks (S1, S2, S3, S4) to mimic possible

adversarial attack patterns. S1 repeats arbitrarily selected N
rows (N = 10, 20), whereas S2 occasionally has random rows

in between the repeating rows. S3 is a straightforward Row

Hammer attack scenario where only one row is repeatedly

accessed, and S4 is a mixture of S3 and random row accesses.

Compared Designs. Graphene’s overhead is compared with the

three prior works: PARA [29], CBT [49], [50], and TWiCe [32].

PARA is configured as discussed in Section V-A. CBT can be

configured in many ways by adjusting its number of counters.

Using a large number of counters reduces the number of false

positives while utilizing a small number of counters reduces

its area overhead. Here, we evaluate CBT-128 (CBT with 128

counters) as its table size is comparable to that of Graphene

(discussed in Section V-B1). The table configuration of TWiCe

is determined by the Row Hammer threshold like Graphene.

Table size
(bits/bank) Memory type

CBT-128 (10 levels) 3,824 SRAM

TWiCe 20,484 + 15,932 CAM + SRAM

Graphene 2,511 CAM

TABLE IV
COMPARING SIZE AND MEMORY TYPE OF TABLES OF ROW HAMMER

MITIGATION TECHNIQUES

Graphene DRAM
Dynamic Energy per ACT ACT + PRE

3.69× 10−3 nJ 11.49 nJ [40]
Static Energy (tREFW) REFs/bank (tREFW)

4.03× 103 nJ 1.08× 106 nJ [40]

TABLE V
GRAPHENE ENERGY CONSUMPTION

1) Graphene Hardware Module:
Area Cost. The total number of entries for Graphene’s man-

agement table per each bank is 81. Each entry contains row

address and estimated count. Representing 64K row addresses

requires 16 bits, and 14 bits are needed to count up to T (8,333).

Altogether with an overflow bit, each entry is comprised of

31 bits. Overall, 2,511 bits are required to build a table for

each DRAM bank. According to our synthesis results using

TSMC 40nm technology, Graphene needs 0.1456 mm2/rank

(16 banks). Note that our estimate is conservative as the

overhead can be further reduced by using a more advanced

process technology and a state-of-the-art CAM design [24].

The space efficiency of Graphene stands out clearly when

compared with other counter-based techniques as in Table IV.

CBT-128 has 3,824 bits per bank. CBT is designed with SRAM

which is usually more area-efficient than CAM on which

our implementation is based. However, the area gap between

SRAM and CAM is not that significant enough to far surpass

the difference in the bit count. For example, a state-of-the-art

CAM design [24] reports only 7% additional area overhead
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Fig. 8. The increase of refresh energy on (a) normal workloads as well as (b)
adversarial attack patterns and (c) the end-to-end performance loss by victim
row refreshes. Graphene and TWiCe do not generate any victim row refresh
on all the normal workloads so are excluded from (a) and (c).

over SRAM of the same size. Meanwhile, TWiCe needs a

large CAM array of 20,484 bits along with a SRAM array of

15,932 bits per bank. The area overhead of TWiCe is an order

of magnitude higher than that of Graphene.

Energy Cost Characterization. According to our synthesis

results, the extra hardware structure of Graphene consumes a

negligible amount of energy compared to background DRAM

operations. The energy consumption of Graphene and DRAM

are compared in Table V. Both dynamic energy required to

update the table for every ACT is 3.69×10−3nJ , 0.032% of the

energy consumed for a single pair of ACT and PRE. Also, the

static energy of our tables is 2.11× 103 nJ for tREFW, 0.373%

of energy spent for normal refreshes over the same period.

2) Victim Row Refresh Overhead:
Energy Overhead. Figure 8(a) and (b) show the increase of

refresh energy, which is proportional to the number of victim

row refreshes, respectively for normal workloads and adversar-

ial attack patterns. Normal workloads (multi-programmed and

multi-threaded) do not contain access patterns that may cause

Row Hammer, so all the victim row refreshes for these are

false positives. Like TWiCe, Graphene yields zero victim row

refreshes for these workloads, thus does not incur additional

energy overhead. PARA and CBT-128 increase refresh energy

by up to 0.64% and 7.6%, respectively. For adversarial attack

patterns, Graphene generates more victim row refreshes than

TWiCe, but still remains negligible. The increase of refresh en-

ergy is 0.34% at most. Meanwhile, PARA consumes 2.1% more

refresh energy constantly (even when there is no Row Hammer

attack). CBT-128 makes a burst of victim row refreshes, which

results in a substantial increase in refresh energy. Like TWiCe,

Graphene induces a much smaller number of false positives

under adversarial patterns, thus has a very limited impact on

energy consumption. Note that the Graphene’s table size is

much smaller than TWiCe while incurring a similar degree of

energy overhead.

Performance Overhead. The victim row refreshes may also

cause performance overhead as each of them blocks the bank

access for tRC. Graphene, as with TWiCe, does not incur any

victim row refresh under normal workloads, which implies that

they may not generate any performance degradation unless

deliberate Row Hammer attacks are taking place. By contrast,

PARA and CBT-128 cause performance degradation as high

as 0.52% and 5.1% as shown in Figure 8(c).

C. Scalability Analysis

The Row Hammer threshold has sharply decreased from

DDR3 chips to DDR4 chips [16], [28]. This trend is highly

likely to continue considering that both the amount of cell

charge and the distance between adjacent cells rapidly decrease

with technology scaling. In fact, a very recent experimental

study reports few DDR4 and LPDDR4 chips having the Row

Hammer threshold of around 20K [28]. Thus, we conduct

a comparative study on the scalability of the Row Hammer

protection schemes by analyzing the overhead of each Row

Hammer protection scheme for the cases where the Row

Hammer threshold is reduced by a factor of 2, 4, 8, 16, and 32

(50K, 25K, 12.5K, 6.25K, 3.125K, and 1.56K). To provide the

same level of near-complete protection, the refresh probability

(p) of PARA is configured to the new Row Hammer thresholds:

0.00295 (25K), 0.00602 (12.5K), 0.01224 (6.25K), 0.02485

(3.125K), 0.05034 (1.56K). For CBT, we double the number

of counters and increase its levels by one every time the Row

Hammer threshold is halved; in other words, we used CBT-

256 (11 levels), CBT-512 (12 levels), CBT-1024 (13 levels),

CBT-2048 (14 levels), and CBT-4096 (15 levels). The table

structures of Graphene and TWiCe are adjusted accordingly to

each of the reduced Row Hammer thresholds.

Area Overhead. Figure 9(a) shows the required table size (in

bits) per rank (16 banks) of each counter-based scheme across

different Row Hammer thresholds. Note that TWiCe keeps both

SRAM and CAM arrays, whereas CBT and Graphene need

either SRAM or CAM structure. The table size of all three

counter-based schemes scales up linearly as the Row Hammer

threshold gets reduced. However, since TWiCe already has a

very high area overhead even for the 50K Row Hammer, its

area overhead quickly becomes impractical as the Row Hammer

threshold decreases. For example, it requires a 1.19MB table

(i.e., 0.79MB CAM and 0.40MB SRAM) per rank when the

Row Hammer threshold is 1.56K. For a processor with four

memory channels, each connected to a single-rank DIMM, the

total memory space for the table structure amounts to 4.76MB

(i.e., 3.16MB CAM and 1.60MB SRAM) just for Row Hammer

protection. In the same setting, CBT requires 1.12MB SRAM,

and Graphene requires 0.53MB CAM, which is an order of

magnitude smaller than TWiCe. One thing to note is that the
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Fig. 9. (a) Table size per rank (16 banks), Average refresh energy overhead on (b) normal workloads and (c) adversarial patterns, and (d) Average performance
overhead on normal workloads across varying Row Hammer thresholds.

technology scaling makes the same die area to house a larger

on-chip memory. Therefore, the actual area consumption of

Graphene may not increase as much as the number of bits

required for the table.

Energy Overhead. Figure 9(b) and (c) show that all schemes’

refresh energy overheads increase as Row Hammer threshold

decreases. PARA’s energy overhead linearly increases as the

Row Hammer threshold decreases. Similarly, the energy over-

heads of both Graphene and TWiCe also scale linearly with the

decreasing Row Hammer thresholds on the adversarial attack

patterns (see Figure 9(c)). However, they exhibit a sub-linear

energy increase for normal workloads since the number of

refreshes of these two schemes are highly dependent on the

access pattern. Finally, CBT shows a sub-linear increase in

refresh energy overhead across all workloads. This is because

we double the number of CBT counters as Row Hammer

threshold is halved. A positive side effect of the increased

number of counters is that a single counter manages a smaller

number of rows. This side effect effectively reduces the number

of additional refreshes happening when each counter hits its

threshold. Overall, the figure indicates that both Graphene and

TWiCe will maintain the low refresh energy overhead on normal

workloads even at the extremely low Row Hammer threshold.

By contrast, PARA’s refresh energy overhead becomes more

substantial, and CBT’s refresh energy overhead remains notable

regardless of the Row Hammer thresholds. The similar is

observed in the adversarial attack pattern cases.

Performance Overhead. Figure 9(d) shows the performance

overhead of all four schemes. Since this is highly correlated

with the number of victim row refreshes, which is directly

proportional to the refresh energy overhead, the graph is not

very different from Figure 9(b) except for the case of CBT. The

performance overhead of CBT decreases as the Row Hammer

threshold decreases. Specifically, this is because the number

of counters for CBT scheme increases as the Row Hammer

threshold decreases. As stated in the above paragraph, the

increased number of counters leads to the reduced number of

rows per counter, which corresponds to the number of rows

refreshed at once. Such a reduction makes CBT generate victim

refreshes in a less bursty manner, and eventually lessens its

impact on end-to-end performance.

Summary. We believe both PARA and Graphene are viable

solutions for future DRAM devices having a lower Row

Hammer threshold. However, it is worth noting that Graphene

provides the completely guaranteed protection at the expense

of an extra table size, whose actual area cost may not increase

much as the technology scales.

D. Impact of Non-adjacent Row Hammer

Non-adjacent Row Hammer has not received much attention

in the existing proposals. In fact, only a small fraction of rows

are reported to be susceptible to non-adjacent Row Hammer

in DDR3 systems [29]. However, in the DRAM devices of

today and the future, the importance of protecting non-adjacent

victim rows from Row Hammer attacks will continue to grow.

Counter-based Schemes. CBT [49], [50] and TWiCe [32] do

not address non-adjacent (±n) Row Hammer in their works.

However, we can extend both to protect non-adjacent victim

rows in a way similar to Graphene in Section III-D. Graphene

and TWiCe need to increase the table size by the factor (1+μ2+
...+ μn), and the number of additional refreshes increases by

n, where n is the distance of the farthest row that an aggressor

row can incur a bit-flip (and hence needs to be protected).

However, such an increase in the number of additional refreshes

is not significant as both schemes incur a very small number

of extra refreshes. On the other hand, in the case of CBT, the

increase in additional refreshes makes it impractical, especially

considering that the area overhead of Graphene is comparable

to that of CBT while incurring much fewer extra refreshes.

PARA [29]. PARA can be extended to support non-adjacent

(±n) Row Hammer by utilizing n refresh probabilities

(p1, p2, ..., pn), where px refers to the chance of issuing re-

fresh for rows that are x rows away from an activated row.

Assuming that each parameter to make PARA provides near-
complete protection defined in Section V-A, the number of

additional refreshes of PARA increases roughly by a factor of

(1 + μ2 + ...+ μn) as well. PARA handles non-adjacent Row

Hammer by bearing more energy and performance cost. We

can reiterate the same takeaway about the trade-offs between

Graphene and PARA as discussed at the end of Section V-C.

VI. RELATED WORK

Row Hammer Attacks on Real Systems. It has been shown

that Row Hammer can be exploited to mount various real-

system attacks. In 2015 Google Project Zero [48] demonstrated

that user-level program in a typical PC environment could be the

source of a security breach when combined with Row Hammer

vulnerability. Since then, attacks on mobile devices [53], [54]
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and servers [12], [20], [47] have succeeded in breaking the

authentication process and damaging the entire system. As such,

Row Hammer has emerged as a real threat to system security as

it undermines the fundamental principle of memory isolation.

Alternative Solutions to Row Hammer. There are more

options to alleviate or prevent the Row Hammer phenomenon.

After public disclosure of the Row Hammer phenomenon [29],

major system manufacturers provided security patches to in-

crease the refresh rate in the memory controller (e.g., [2], [15],

[33]). This solution can be a temporary fix for existing systems

but has a limitation that the refresh rate cannot be raised high

enough to eliminate all threats due to a significant increase in

energy consumption [5].

Meanwhile, software-based countermeasures are also pro-

posed. These include monitoring victim rows through hardware

performance counters [3], managing page table and memory

allocation [7], [54], analyzing codes to identify Row Hammer

risks before execution [22] and separating integrity-check level

of odd and even rows [30]. Unfortunately, none of them have

been popularized as they involve considerable modifications

to system software and may incur significant performance

overhead [43].

Frequent Elements Problem and Solutions. The frequent

elements problem has been well investigated in the research

community over decades. In adddition to the Misra-Gries

algorithm [41], Lossy counting [37], Count-Min sketch [10]

and Space Saving [38] are popular ones being used in vari-

ous setups. These algorithms demonstrate different trade-offs

between accuracy, coverage and required space. Graphene is

based on Misra-Gries [41] to track potential aggressors as it is

area-efficient and hardware implementation-friendly.

VII. CONCLUSION

We propose Graphene, a low-cost Row Hammer protec-

tion scheme that provides guaranteed protection. Graphene

keeps track of heavily activated rows with a small number of

counters and conducts additional refreshes to potential victim

rows before Row Hammer attacks materialize. We prove the

protection guarantees of Graphene (i.e., no false negatives).

Our evaluation demonstrates that Graphene’s area overhead

is an order of magnitude smaller than TWiCe [32], a state-

of-the-art counter-based scheme. Furthermore, its energy and

performance overhead is nearly zero unless deliberate Row

Hammer attacks are happening. Even for the adversarial attack

patterns, the increase in refresh energy of Graphene is bounded

by about 0.34%. Due to its small area overhead and the tightly

bounded number of victim row refreshes, Graphene is a scalable

solution for Row Hammer protection, which works well for a

reduced Row Hammer threshold and an increased coverage of

non-adjacent victim rows in the future.
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