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High frequency / multiscale simulation with PINNs

FBPINN solution FD simulation Velocity

\ \

Solving the 2+1D acoustic wave equation:

1 0%u(x,t)

2 _
Veu(x, t) oLz
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Publications

Finite basis physics-informed neural Multilevel domain decomposition-based
networks (FBPINNs): a scalable domain architectures for physics-informed neural
decomposition approach for solving networks

differential equations
Dolean, V., Heinlein, A., Mishra, S., Moseley, B.

Moseley, B., Markham, A., Nissen-Meyer, T., ACM (2023) (under review).

(2023).
https://arxiv.org/abs/2306.05486

https://arxiv.org/abs/2107.07871

Code: github.com/benmoseley/FBPINNs
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* Why is it challenging to scale PINNSs to high-frequency / multiscale problems?
A potential solution: PINNs + domain decomposition

* Finite basis physics-informed neural networks (FBPINNSs)
* Improving scalability with multilevel modelling

* Improving scalability with parallelisation / subdomain scheduling

 Future work
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What is a physics-informed neural network (PINN)?

Problem: damped harmonic
oscillator

mﬁ+ua+ku=0

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, JCP (2018)
mzurlch Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)



What is a physics-informed neural network (PINN)?

Problem: damped harmonic
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What is a physics-informed neural network (PINN)?

Problem: damped harmonic

oscillator
Training step: 150
- Exact solution
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Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, JCP (2018)
mzurlch Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)



What is a physics-informed neural network (PINN)?

ETHzurich

Advantages of PINNs

* Mesh-free

« Can jointly solve forward and inverse
problems

« Often performs well on “messy”
problems (where some observational
data is available)

* Mostly unsupervised

« Can perform well for high-dimensional
PDEs

Limitations of PINNs

« Computational cost often high

(especially for forward-only
problems)

« Can be hard to optimise
» Challenging to scale to high-

frequency, multi-scale problems

Training step: 150

——— Exact solution
=== Neural network prediction

\ A
VA

Training data
Physics loss training locations

10



What is a physics-informed neural network (PINN)?

Advantages of PINNs Limitations of PINNs

* Mesh-free « Computational cost often high

« Can jointly solve forward and inverse (especially for forward-only
problems :

« Often performs well on “messy”
problems (where some observational
data is available)

* Mostly unsupervised

« Can perform well for high-dimensional
PDEs

Can be hard to optimise
Challenging to scale to high-
frequency, multi-scale problems

Training step: 150

——— Exact solution
=== Neural network prediction
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Physics loss training locations
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Scaling PINNSs to high frequency / multiscale problems

Training step 10000

1.00 A —  Exact solution
0.75 1 s PINN
0.50 1

Wl \} UAU /\V/\ \A/ /\V/\V/\V/\V/\V/\V/\Vl

—0.50 1

—0.75 4

—1.00 -

0.0 0.2 0.4 0.6 0.8 1.0

Problem: PINNs struggle to solve high-
frequency / multiscale problems

% Damped harmonic
oscillator
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Spectral bias issue

i

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

(b) Iteration 1000

(a) Iteration 100

NNs prioritise learning lower frequency functions first

Under certain assumptions can be proved via neural tangent

kernel theory

Rahaman, N., et al, On the spectral bias of neural networks. 36th International

Conference on Machine Learning, ICML (2019)
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Scaling PINNSs to high frequency / multiscale problems

1.00 A
0.75 A
0.50 4
0.25 A
0.00 +
—0.25 4
—0.50 4
—0.75 4

—1.00 -

Training step 10000

- Exact solution
ws PINN

Uﬂ Uﬂv [\\/\VI\V[\V/\V/\V/\V/\V/\V/\\f

0.0 0.2 0.4 0.6 0.8 1.0

Problem: PINNs struggle to solve high-
frequency / multiscale problems

% Damped harmonic
oscillator
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As higher frequencies are added:

* More collocation points required
» Larger neural network required
« Spectral bias slows convergence

Leading to a significantly harder
PINN optimization problem

14



Scaling PINNSs to high frequency / multiscale problems

ETHzurich

The majority of PINN papers focus on solving problems with
limited frequency ranges / small domains

Goal: how can we scale PINNs to solve real-world problems?

Image credits:
Lawrence Berkeley
National Laboratory /
NOAA / NWS / Pacific
Tsunami Warning
Center 15




PINNs + domain decomposition

1.0

2 0.0

—0.5

-1.0

-1.5 -1.0 —0.5 0.0 0.5 1.0 L5
T

Jagtap, A., et al., Extended physics-informed neural networks
(XPINNS): A generalized space-time domain decomposition
based deep learning framework for nonlinear partial differential
equations. Communications in Computational Physics (2020)

ETHzurich

|dea:

Take a “divide-and-conquer” strategy to model more
complex problems:

1. Divide modelling domain into many smaller
subdomains

2. Use a separate neural network in each subdomain to
model the solution
Hypothesis:

The resulting (coupled) local optimization problems are
easier to solve than a single global problem
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XPINNSs

XPINNs solving 2D - o
Poisson’s equation ~05/

u (Exact)

u (Predicted)
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Jagtap, A., et al., Extended physics-informed neural networks
(XPINNS): A generalized space-time domain decomposition
based deep learning framework for nonlinear partial differential
equations. Communications in Computational Physics (2020)
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+ZNZ(NN(xk' 0;) — NN (xy; m)) Interface conditions
l

le Nelghbours(m)

17



Limitations of XPINN-like strategies

u (Exact)

XPINNs solving 2D - o
Poisson’s equation ~05/

Limitations:

* |ntroduces discontinuities in
solution at subdomain interfaces
* Requires extra loss terms

Jagtap, A., et al., Extended physics-informed neural networks
(XPINNS): A generalized space-time domain decomposition
based deep learning framework for nonlinear partial differential
equations. Communications in Computational Physics (2020)
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u (Predicted) Point-wise Error
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Finite basis PINNs (FBPINNSs)

/ Subdomain network: [ Window J\

s ~ e =~ | function
r1 —» | Subdomain Output
normalisation NN; — | unnormalisation | X w;

X
2 norm; unnorm
K; \_ J g J j

FBPINN solution:

|

V

\ 4

u(x;0) =C Z w;(x) - unnorm o NN; o norm;(x)

Summation over all
subdomain networks

1

B 1 model [ 4 overlapping models
w2 overlapping models

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable Idea: use overlapplng SUbdomamS and a

domain decomposition approach for solving differential equations, ArXiv (2021), g|oba||y defined solution ansatz
ACM (2023)
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FBPINNs in 1D

(a) FBPINN (individual network solutions)
1.0 -
S 0.0
o \X/ v
—1.0 1
-4 -2 2 4 6

X

) FBPINN subdomain definition and window functions

1_

Window |
function
0 -

Subdomain | m—— . . ]
definition /]
Overlapping 1y — - — —
models T T T T T T T
-6 -4 -2 0 2 4 6

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable
domain decomposition approach for solving differential equations, ArXiv (2021),
ACM (2023)
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1.0+

0.5 A

0.0 A

—0.5 A

—1.0 A

(b) FBPINN (full solution)

—— Exact solution
—— FBPINN

n
Z w;(x) - unnorm o NN; o norm;(x)
' Window Subdomain
function network

Individual subdomain
normalisation

|dea: use overlapping subdomains and a
globally defined solution ansatz
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FBPINNs in 1D

) FBPINN (individual network solutions) (b) FBPINN (full solution)

1.0 1 1.0 1 —— Exact solution
—— FBPINN
0.5 1 0.5 1
S 0.0 > 0.0
~0.5 1 \X/ v -0.51
—-1.01 —1.0 A
-4 -2

X X

) FBPINN subdomain definition and window functions

o Advantages:
]}Nimg.ow_
* By construction, FBPINN solution is continuous

% across subdomain interfaces

Subdomain | me— e— e—  Can be trained with same loss function as PINNs
Overlr?]%%igg 4 sl st m eeesssssl ———
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X

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable
domain decomposition approach for solving differential equations, ArXiv (2021),
ACM (2023)
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FBPINNs in 1D

(a) FBPINN (individual network solutions) (b) FBPINN (full solution)

1.01 1.01 —— Exact solution
—— FBPINN

0.5 7 0.5
S 0.0 S 0.0
_05 | \X/ v _05 |
-1.0 1 —1.0

-4 -2

X X

) FBPINN subdomain definition and window functions

1_

Advantages:
f\Nint;i.ow_
* By construction, FBPINN solution is continuous
0l

across subdomain interfaces

Subdomain | me— e— e—  Can be trained with same loss function as PINNs
Overlapr()jinlg 4 — - E— —
S Note:

« Communication is carried out when summing
Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable subdomains in t_helr overlap regions
domain decomposition approach for solving differential equations, ArXiv (2021), * FBPINNs can S|mply be thought of as a custom NN
ACM (2023) architecture for PINNs
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FBPINNs vs PINNSs

Training step 10000 Training step 10000
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Problem: physics-informed neural networks FBPINN solution
struggle to model high-frequency / multiscale
problems

Number of subdomains: 20

Subdomain network size: 1 hidden layer, 16 hidden units
Damped harmonic
oscillator
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FBPINN hyperparameter sensitivities
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5000 10000 15000 20000
Training step

Normalised L1 test loss

Normalised L1 test loss

1071 3
1072 3
1073 3

1074 3

1075

FBPINN 2 subdomains
INN 4 subdomains

0 5000 10000 15000 20000
Training step

1071 3
1072 3
1073 3

104 3

107> -

=== PINN 3 layers 64 hidden units
FBPINN 1 layer 2 hidden units
FBPINN 1 layer 4 hidden units
=== FBPINN 1 layer 8 hidden units
=== FBPINN 1 layer 16 hidden units
\—FBPINN 1 layér 32 hidden units

Vi

0 5000 10000 15000 20000
Training step

Laplacian problem:

—Au

\H

f in Q = [0,1]2
0 on 0Q
32(x,(1 = x;) + 2%, (1 — x3))

24



FBPINN hyperparameter sensitivities

Exact solution

1.0
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Normalised L1 test loss

Normalised L1 test loss

10
102
10 ]
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1075

1071
102
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1074
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FBPINN 2 subdomains

INN 4 subdomains

e FBP| subdomains
== FBPINN 16 domains

™~

0 5000 10000 15000 20000
Training step

=== PINN 3 layers 64 hidden units
FBPINN 1 layer 2 hidden units
FBPINN 1 layer 4 hidden units
=== FBPINN 1 layer 8 hidden units
=== FBPINN 1 layer 16 hidden units
\—FBPINN 1 layér 32 hidden units

Vi

0 5000 10000 15000 20000
Training step

Accuracy increases with:

» Size of overlap between subdomains

« Size (expressivity) of subdomain
networks

But reduces with:

* Number of subdomains (!)

Laplacian problem:

—Au = f in Q = [0,1]?
u =0 on 00
f = 32(x1(1 —x) +x,(1 - xz))
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FBPINN hyperparameter sensitivities

Normalised L1 test loss

Exact solution

1.0
0.8 0-8
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Z1
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Normalised L1 test loss

Normalised L1 test loss
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FBPINN 2 subdomains

INN 4 subdomains

e FBP| subdomains
== FBPINN 16 domains

™~

10000 15000 20000
Training step

0 5000

=== PINN 3 layers 64 hidden units
FBPINN 1 layer 2 hidden units
FBPINN 1 layer 4 hidden units
=== FBPINN 1 layer 8 hidden units
=== FBPINN 1 layer 16 hidden units
\—FBPINN 1 layér 32 hidden units

Vi

10000 15000 20000
Training step

0 5000

Accuracy increases with:

» Size of overlap between subdomains

« Size (expressivity) of subdomain
networks

But reduces with:

* Number of subdomains (!)

This is analogous to single-level classical

Schwarz domain decomposition methods

Because communication is limited to
overlapping regions
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Multilevel FBPINNSs

Q
1 \|
I€ 7l
[Baa 1
level 1 | le) :
| e e e e e e m e e e e e e e e e e e e e e e e e e e e e e e e e e = e = |
F-------=-=----=-=-=---=--- 8 oiuiii el
level 2 | Q§2) : Qg) 1
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level 4 | QY I Qg4>l Qg;*)l Qf;*)l Qg*)l Qg4>l o l o® |
[ BN -—— -—— -—— -—— -—— N T 1
|dea:

Use multiple levels of domain decompositions
Hypothesis:

Improves global communication and helps
model multi-scale solutions

Dolean, V., et al, Multilevel domain decomposition-based architectures for physics-
informed neural networks, ArXiv (2023)
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Individual subdomain

solutions
1.0 1 — Level 1
- Level 2
0.8 1 —— Level 3
0.6
0.4 -
0.2 A
0.0 4
0.0 0.5 1.0
T

FBPINN solution

- Exact solution
- FBPINN solution

0.0

T

0.5
x

1.0
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Multilevel FBPINNSs
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|dea:

Use multiple levels of domain decompositions
Hypothesis:

Improves global communication and helps
model multi-scale solutions

Dolean, V., et al, Multilevel domain decomposition-based architectures for physics-
informed neural networks, ArXiv (2023)
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Individual subdomain FBPINN solution
solutions
1.0 1 — Level 1
- Level 2
0.8 1 — Level 3
0.6
0.4 4
0.2 —— Exact solution
0.0 - — FBPII\IIN solution l
0.0 0.5 1.0 0.0 0.5 1.0
x x

L Jj®
" - 0 0 0
i(x;0) =C |- w;(x) - unnorm o NN;” o norm; ~ (x)
L J J J
L J

Represent solution as a summation over all levels
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Multilevel FBPINNs vs FBPINNs

1.0
0.8
0.6

8
0.4

0.2

0.0
0.0

Exact solution
0.8
0.6
0.4
0.2
0™ 0.0

02 04 06 08 1.
a1

10°

1_.

= = =

o o o
& o !
1 1

=

9
IS
I

Normalised L1 test loss

107 -

FBPINN 1.1 overlap
FBPINN 1.5 overlap
FBPINN 1.9 overlap
== FBPINN 2.3 overlap
== FBPINN 2.7 overlap

0

ETHzurich

5000 10000 15000 20000
Training step

Normalised L1 test loss

Normalised L1 test loss

1003
10-2;
107

104 E

1075

2 subdomains
omains
FBPINN 8 subdomains
FBPINN 16 subdomain
FBPINN [1, 2] subdomains
FBPINN [1, 2, 4] subdomains

FBPINN [1, 2, 4, 8] subdomains

EBPINN [1, 2, 4, 8, 16] subdomains

5000 10000 15000 20000

Training step

10° 3
10
102
1073 -

104 E

107 -
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(d) Domain decomposition level 2 (e) Domain decomposition level 3
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[ Example subdomain boundary
Example collocation points
0 0

-1 T T -1+ |
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Zy L1

Adding coarser levels significantly
improves accuracy

Laplacian problem:

—Au
u

f

f in Q = [0,1]2
0 on 0Q
32(x,(1 = x;) + 2%, (1 — x3))
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Parallel implementation of FBPINNs

FBPINNSs are highly parallelizable:

Each subdomain solution and its gradients can be computed in parallel
Only points inside each subdomain are required to train each subdomain network
Communication is only required when summing solutions in overlap regions

FBPINNSs typically require much smaller subdomain networks than PINNs

FBPINN PINN
[1, 2, 4,8, 16, 32, 64] 5-256
Lo Exact solution (320, 320) (320, 320)
0.8 FBPINN training time: 10 mins
0.6 4% PINN training time: 2 hours
H 0.4
0.2 Problem: 2D multiscale Laplacian
0.0 2 ' With 7 frequencies spanning 2! to 27
0.0 0.5 1.0 FBPINN subdomain PINN subdomain network

ETHzurich

T

network size: 1 hidden size: 5 hidden layer, 256
layer, 16 hidden units hidden units
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Parallel implementation of FBPINNs

ning step 50,000

FBPINN trail

ning step 100,000

FBPINN trai

ETHzirich =~

FBPINNSs are highly parallelizable:

Each subdomain solution and its gradients can be computed in parallel
Only points inside each subdomain are required to train each subdomain network
Communication is only required when summing solutions in overlap regions

FBPINNSs typically require much smaller subdomain networks than PINNs

« Subdomain scheduling can be used to fix parameters
of certain subdomain networks during training

(o)

ﬁi « E.g. time-stepping scheduling for causal problems
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High frequency / multiscale simulation with PINNs

FBPINN solution FD simulation Velocity

N\ N

Solving the 2+1D acoustic wave equation: Number of subdomains: 30 x 30 x 30 = 27,000
Subdomain network size: 1 hidden layer, 8 hidden units
1 0%u(x,t) Total number of free parameters: 1.1 M
Viu(x,t) — > = Number of collocation points: 150 x 150 x 150 = 3.4 M
c(x) Jt Optimiser: Time-stepping scheduling, Adam 0.001 Ir

ETH:z(rich Training time: ~2 hr



Limitations / future work

Limitations:
 Training time of FBPINNSs is still typically slower than FD/FEM simulation for many problems

« Performance for high-dimensional PDEs not studied yet
« Communication of complex boundary conditions can still be challenging

ETHzurich
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Limitations / future work

Limitations:

 Training time of FBPINNSs is still typically slower than FD/FEM simulation for many problems
« Performance for high-dimensional PDEs not studied yet

« Communication of complex boundary conditions can still be challenging

Ongoing work:
« Learnable / adaptive domain decompositions
« More advanced scheduling / multilevel designs

» Updated open-source FBPINN library
* V1.0 code available here: github.com/benmoseley/FBPINNs
* V2.0 JAX code coming soon

ETHzurich
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