

Scaling PINNs to high-frequency and multiscale problems using domain decomposition

Ben Moseley

Postdoctoral fellow, ETH Zürich AI Center /
Computational Applied Mathematics Lab

In collaboration with:

Prof. Siddhartha Mishra, ETH Zürich AI Center / CAMLab

Prof. Victorita Dolean Maini, University of Strathclyde

Prof. Alexander Heinlein, Delft University of Technology

Prof. Tarje Nissen-Meyer, University of Oxford

Prof. Andrew Markham, University of Oxford

ETH Zürich Deep Learning in Scientific Computing Master's course 2023

Course Introduction
Deep Learning in Scientific Computing

ETH zürich

13 videos

ETH Zürich | Deep Learning in Scientific Computing 2023
CAMLab, ETH Zürich

ETH Zürich DLSC: Course Introduction • 1:12:53
ETH Zürich DLSC: Introduction to Deep Learning Part 1 • 1:37:23

[VIEW FULL PLAYLIST](#)

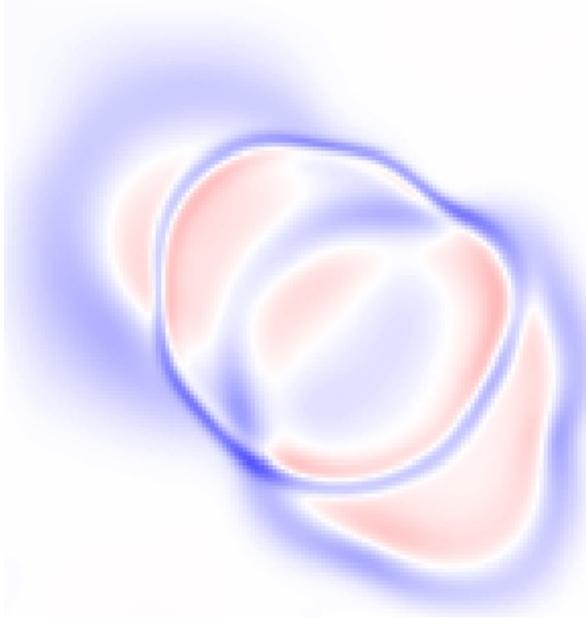
 YouTube

youtube.com/@CAMLabETHZurich

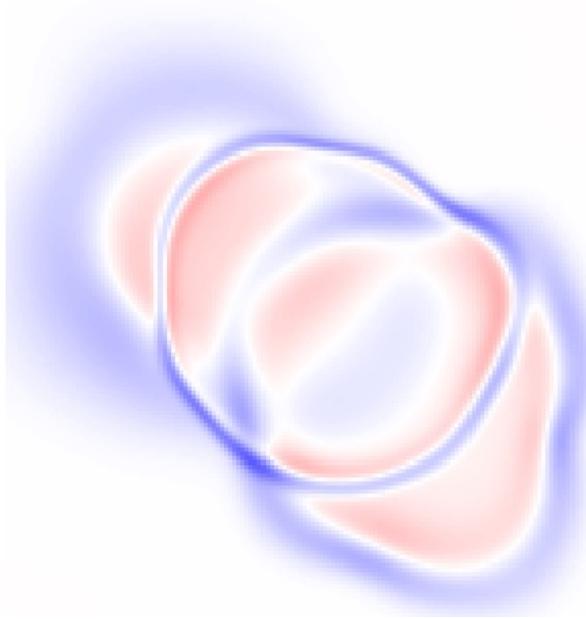
13 lectures, 20+ hours, 10k+ views

High frequency / multiscale simulation with PINNs

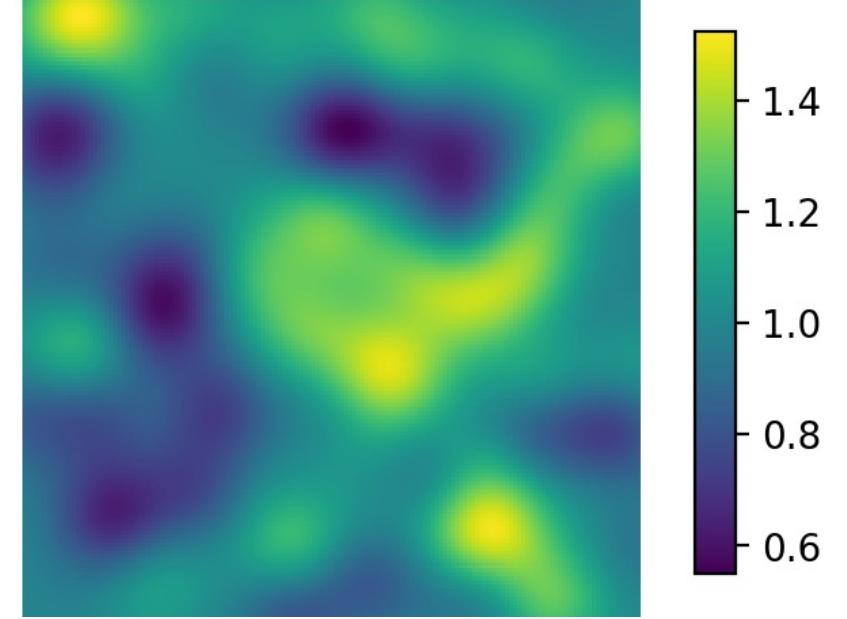
FBPINN solution



FD simulation



Velocity



Solving the 2+1D acoustic wave equation:

$$\nabla^2 u(x, t) - \frac{1}{c(x)^2} \frac{\partial^2 u(x, t)}{\partial t^2} = 0$$

Publications

Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations

Moseley, B., Markham, A., Nissen-Meyer, T., ACM (2023).

<https://arxiv.org/abs/2107.07871>

Multilevel domain decomposition-based architectures for physics-informed neural networks

Dolean, V., Heinlein, A., Mishra, S., Moseley, B. (2023) (under review).

<https://arxiv.org/abs/2306.05486>

Code: github.com/benmoseley/FBPINNs

Contents

- Why is it challenging to scale PINNs to high-frequency / multiscale problems?
- A potential solution: PINNs + domain decomposition
- Finite basis physics-informed neural networks (FBPINNs)
 - Improving scalability with multilevel modelling
 - Improving scalability with parallelisation / subdomain scheduling
- Future work

What is a physics-informed neural network (PINN)?

Problem: damped harmonic oscillator

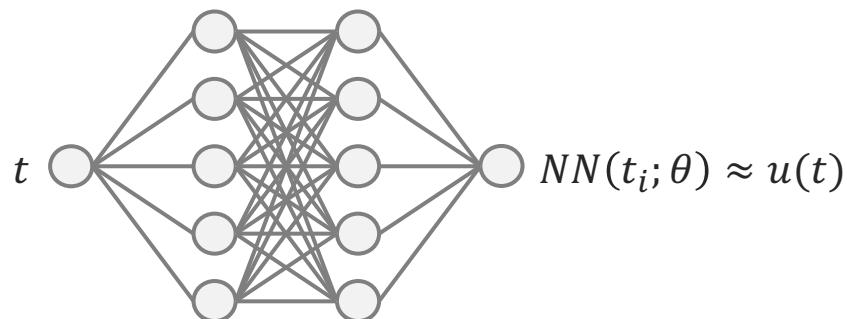
$$m \frac{d^2u}{dt^2} + \mu \frac{du}{dt} + ku = 0$$

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

What is a physics-informed neural network (PINN)?

Problem: damped harmonic oscillator

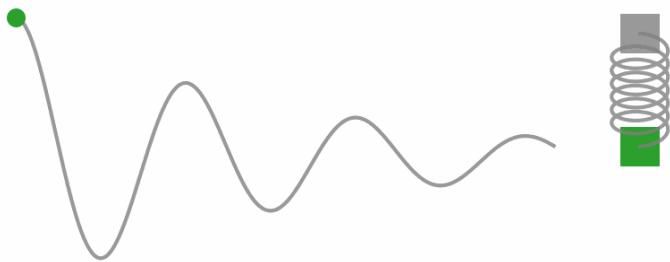
$$m \frac{d^2u}{dt^2} + \mu \frac{du}{dt} + ku = 0$$



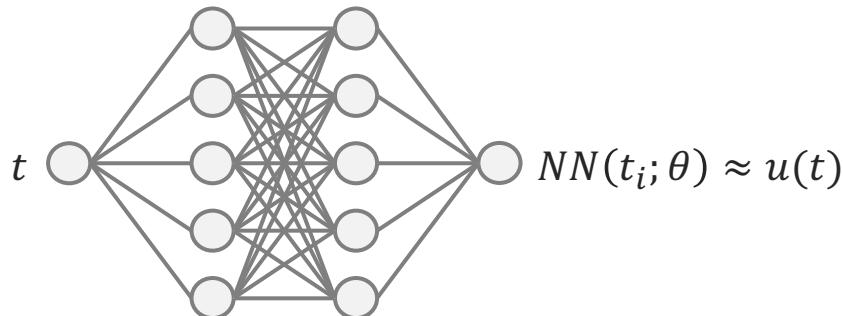
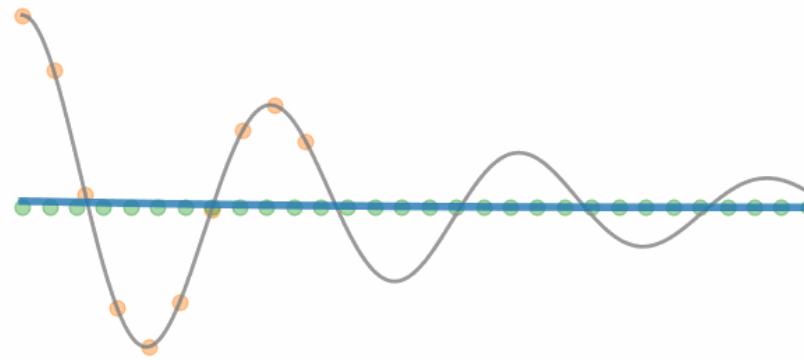
Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

What is a physics-informed neural network (PINN)?

Problem: damped harmonic oscillator



$$m \frac{d^2u}{dt^2} + \mu \frac{du}{dt} + ku = 0$$



Training step: 150

— Exact solution
— Neural network prediction
● Training data
● Physics loss training locations

$$L(\theta) = \frac{1}{N} \sum_i^N (NN(t_i; \theta) - u_i)^2$$

$$+ \frac{\lambda}{M} \sum_j^M \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] NN(t_j; \theta) \right)^2$$

Boundary loss

Physics loss

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

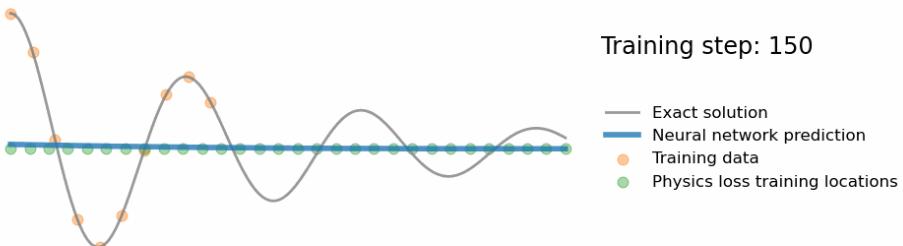
What is a physics-informed neural network (PINN)?

Advantages of PINNs

- **Mesh-free**
- Can jointly solve forward and inverse problems
- Often performs well on “**messy**” problems (where some observational data is available)
- Mostly **unsupervised**
- Can perform well for high-dimensional PDEs

Limitations of PINNs

- **Computational cost** often high (especially for forward-only problems)
- Can be hard to **optimise**
- Challenging to **scale** to high-frequency, multi-scale problems



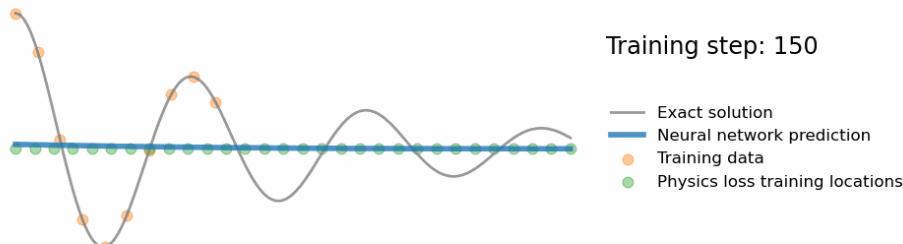
What is a physics-informed neural network (PINN)?

Advantages of PINNs

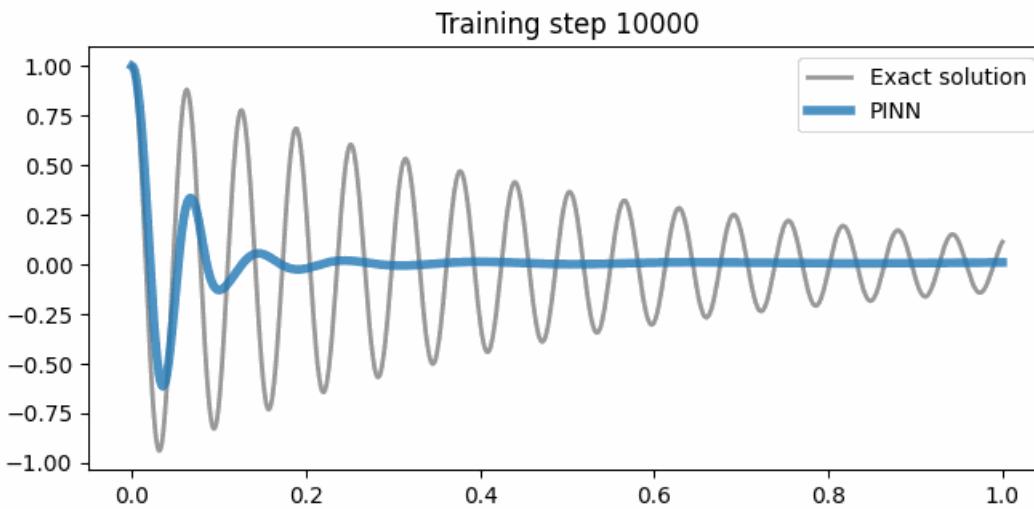
- **Mesh-free**
- Can jointly solve forward and inverse problems
- Often performs well on “**messy**” problems (where some observational data is available)
- Mostly **unsupervised**
- Can perform well for high-dimensional PDEs

Limitations of PINNs

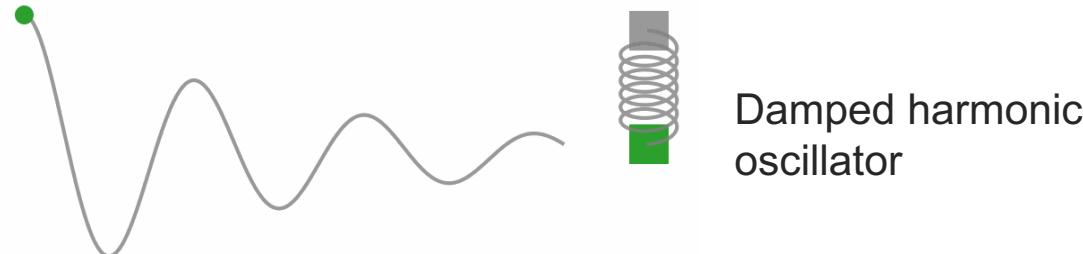
- **Computational cost** often high (especially for forward-only problems)
- Can be hard to **optimise**
- Challenging to **scale** to high-frequency, multi-scale problems



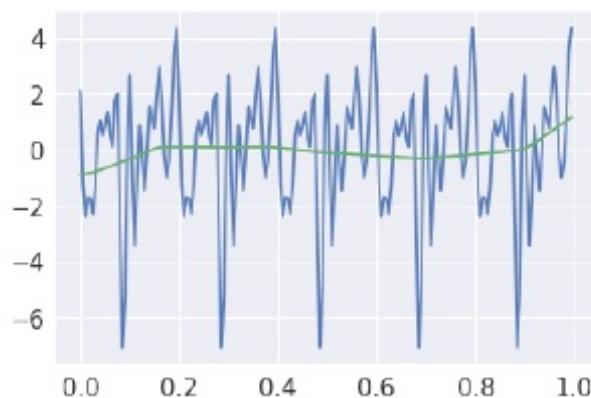
Scaling PINNs to high frequency / multiscale problems



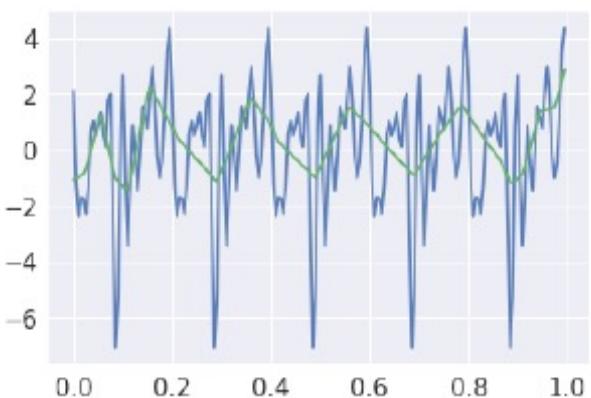
Problem: PINNs **struggle** to solve high-frequency / multiscale problems



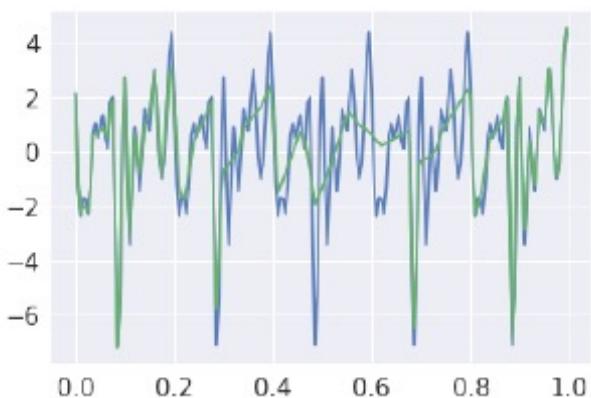
Spectral bias issue



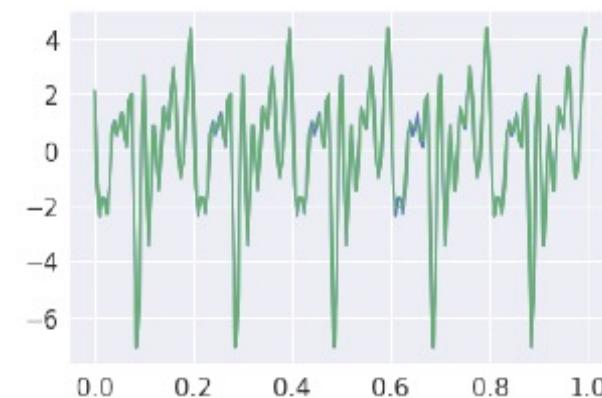
(a) Iteration 100



(b) Iteration 1000



(c) Iteration 10000

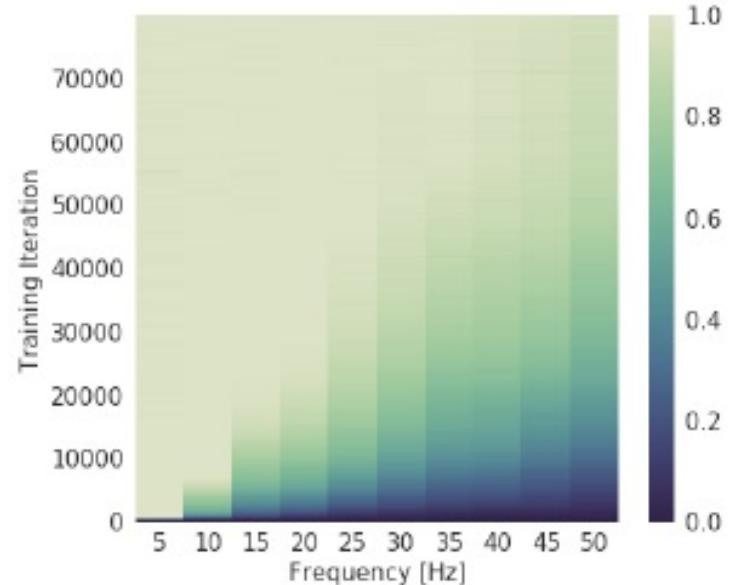


(d) Iteration 80000

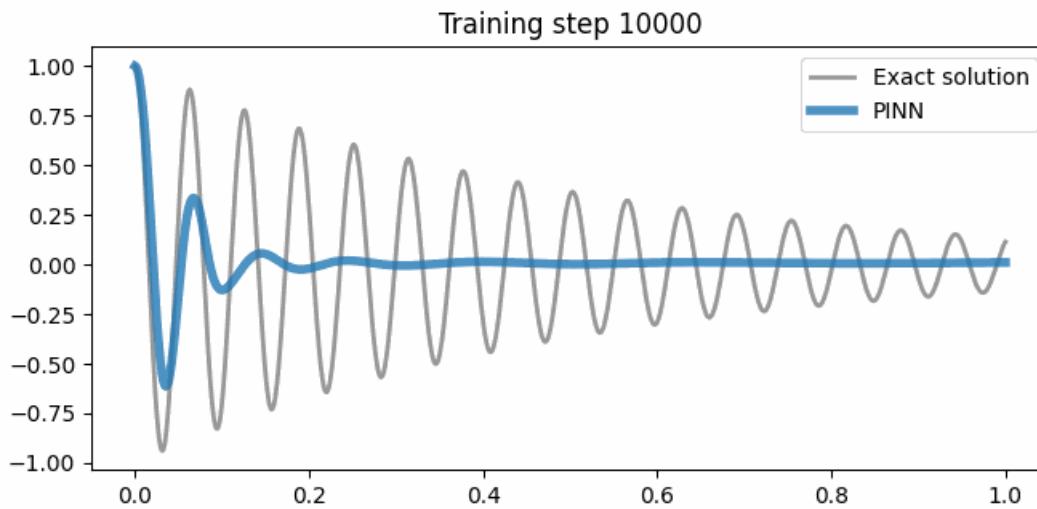
NNs prioritise learning **lower** frequency functions first

Under certain assumptions can be proved via neural tangent kernel theory

Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference on Machine Learning, ICML (2019)



Scaling PINNs to high frequency / multiscale problems

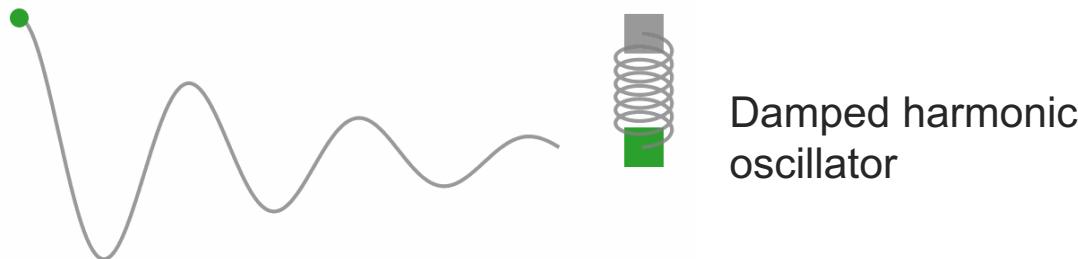


Problem: PINNs **struggle** to solve high-frequency / multiscale problems

As higher frequencies are added:

- More collocation points required
- Larger neural network required
- Spectral bias slows convergence

Leading to a significantly **harder** PINN optimization problem



Damped harmonic oscillator

Scaling PINNs to high frequency / multiscale problems

The majority of PINN papers focus on solving problems with **limited** frequency ranges / small domains

Goal: how can we **scale** PINNs to solve real-world problems?

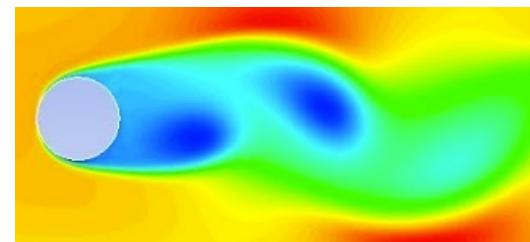
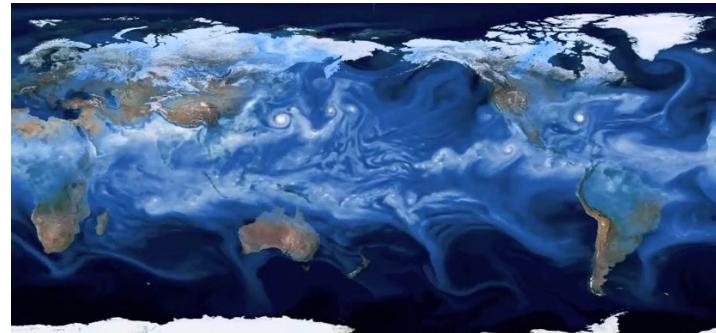
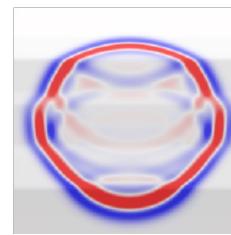
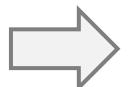
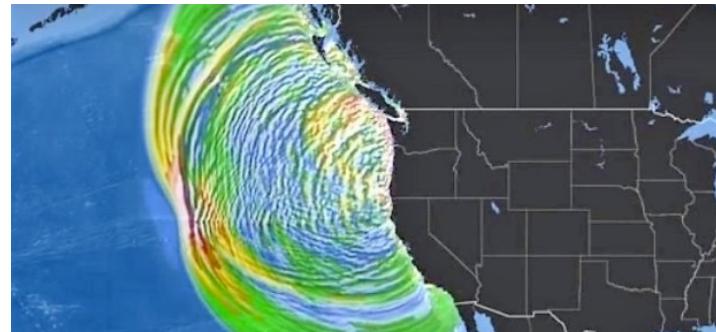


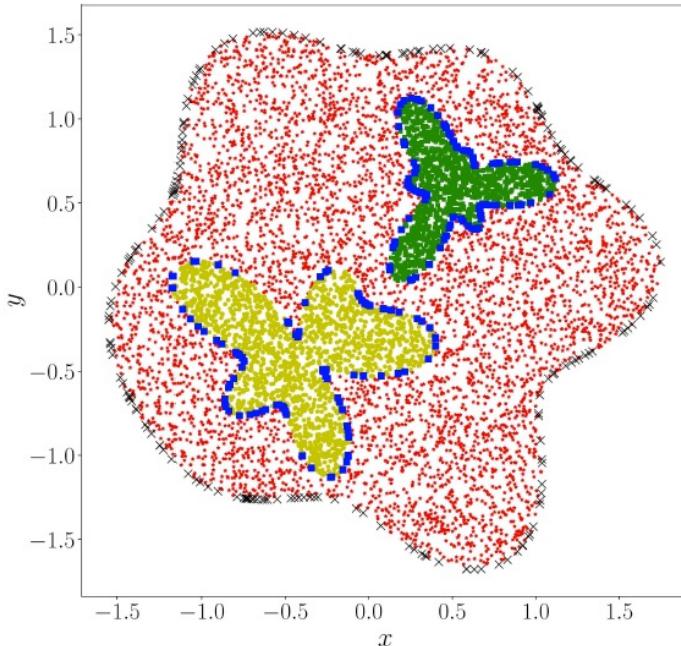
Image credits:
Lawrence Berkeley
National Laboratory /
NOAA / NWS / Pacific
Tsunami Warning
Center

PINNs + domain decomposition

Idea:

Take a “**divide-and-conquer**” strategy to model more complex problems:

1. Divide modelling domain into many smaller **subdomains**
2. Use a separate neural network in each subdomain to model the solution



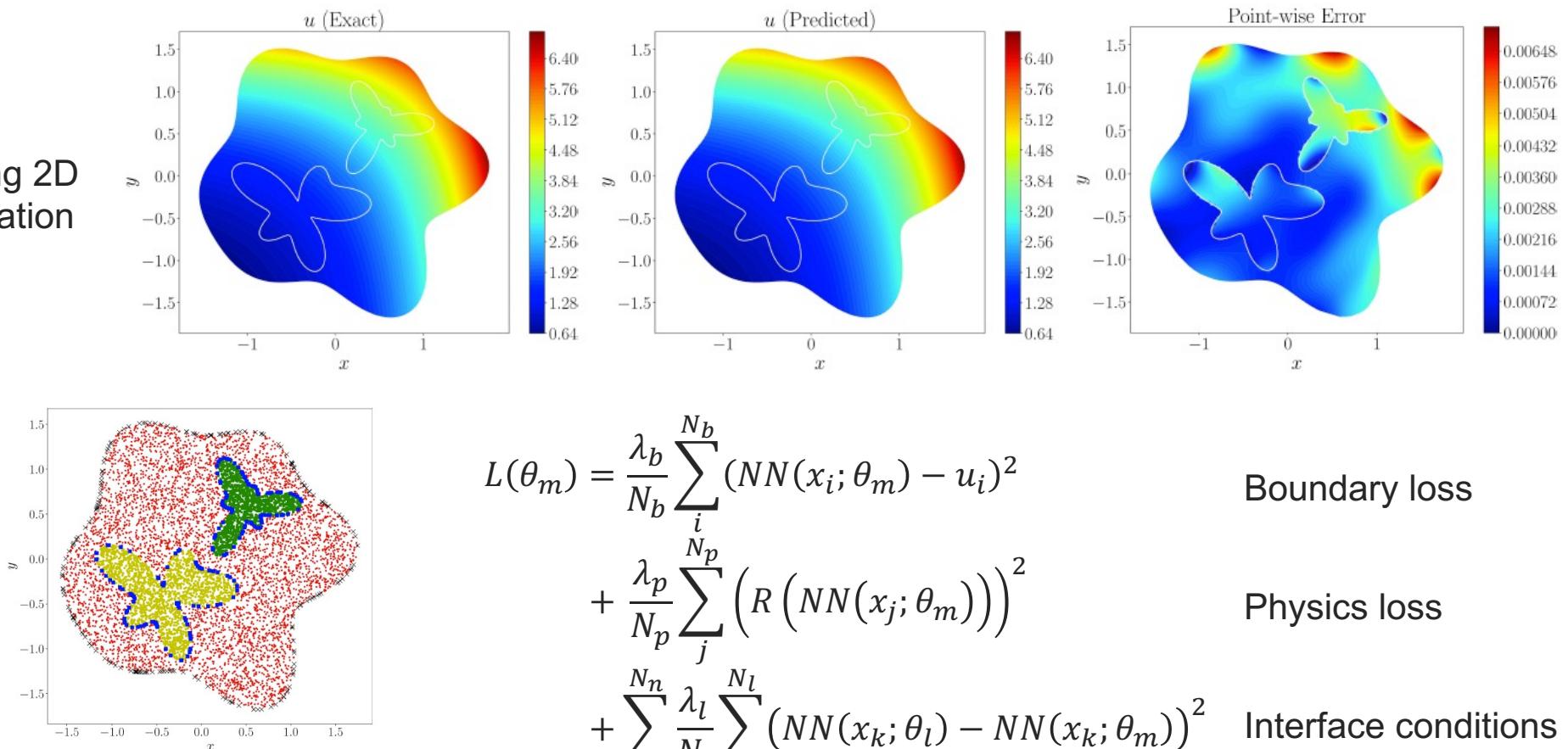
Hypothesis:

The resulting (coupled) local optimization problems are easier to solve than a single global problem

Jagtap, A., et al., Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in Computational Physics (2020)

XPINNs

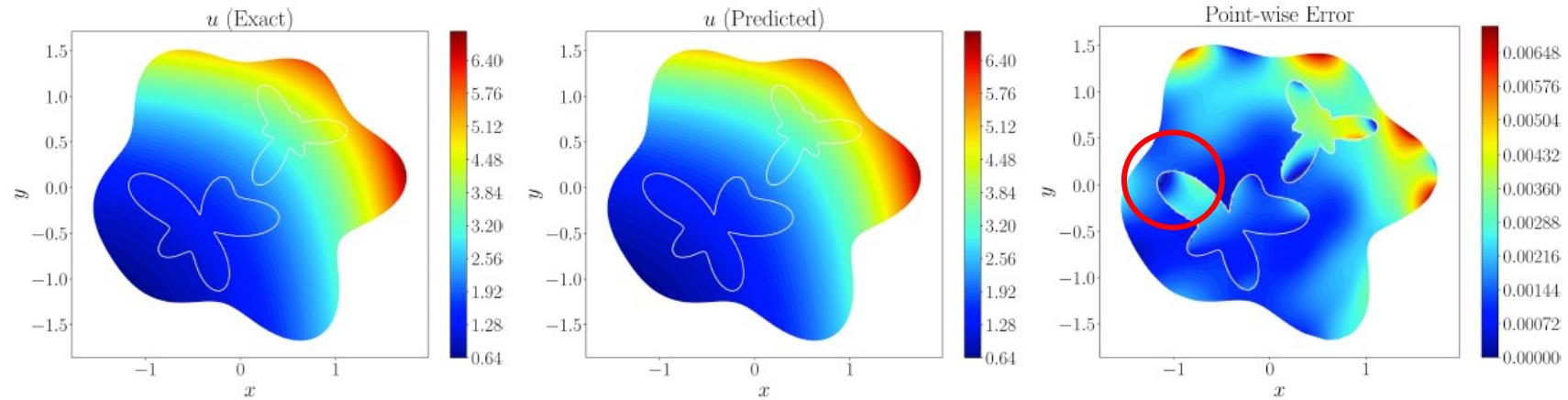
XPINNs solving 2D Poisson's equation



Jagtap, A., et al., Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in Computational Physics (2020)

Limitations of XPINN-like strategies

XPINNs solving 2D Poisson's equation



Limitations:

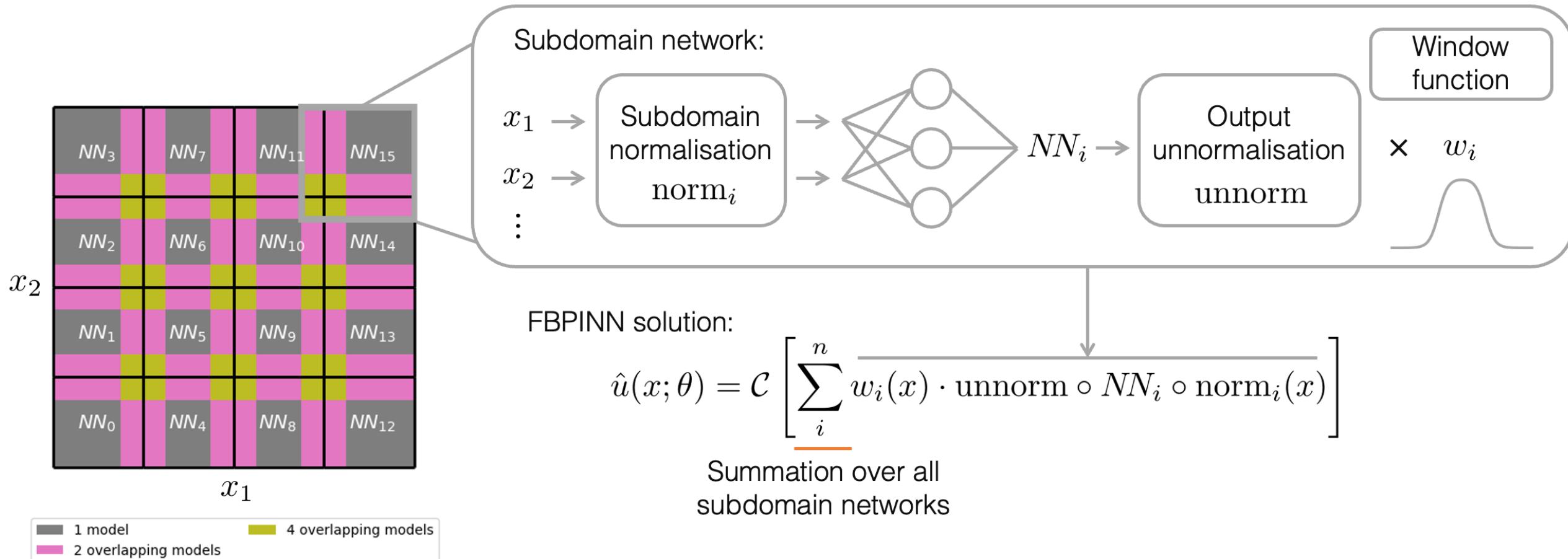
- Introduces discontinuities in solution at subdomain interfaces
- Requires extra loss terms

$$L(\theta_m) = \frac{\lambda_b}{N_b} \sum_i^{N_b} (NN(x_i; \theta_m) - u_i)^2 \quad \text{Boundary loss}$$
$$+ \frac{\lambda_p}{N_p} \sum_j^{N_p} \left(R \left(NN(x_j; \theta_m) \right) \right)^2 \quad \text{Physics loss}$$
$$+ \sum_l^{N_n} \frac{\lambda_l}{N_l} \sum_k^{N_l} (NN(x_k; \theta_l) - NN(x_k; \theta_m))^2 \quad \text{Interface conditions}$$

$l \in \text{Neighbours}(m)$

Jagtap, A., et al., Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in Computational Physics (2020)

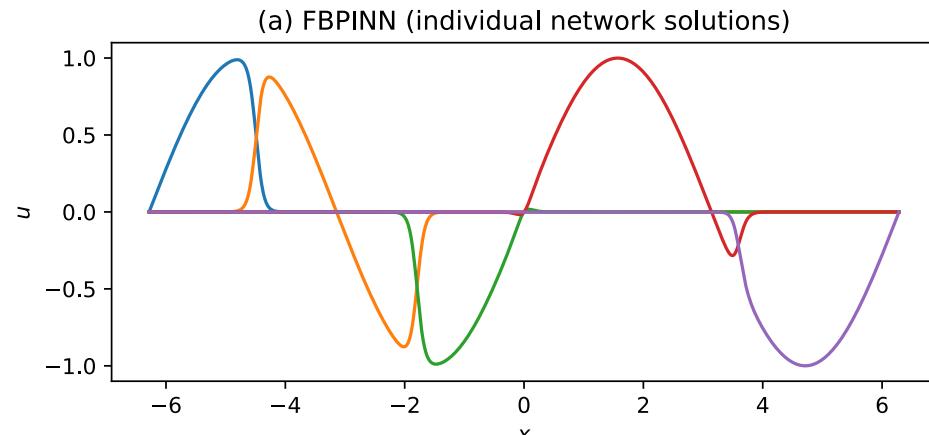
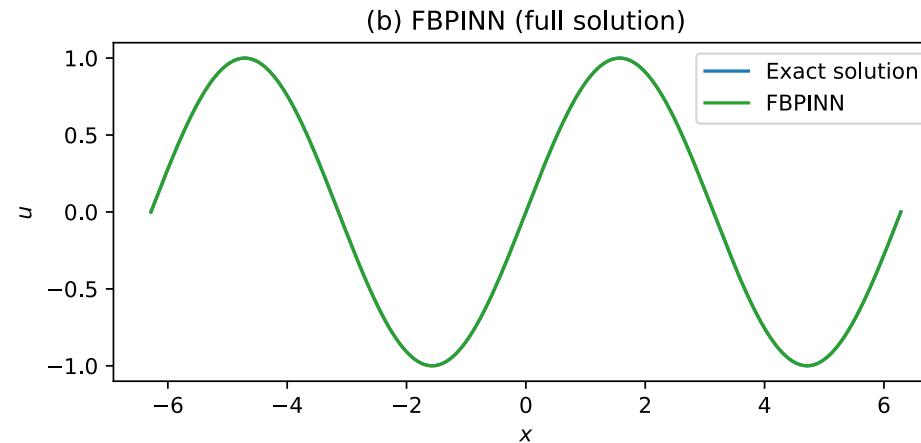
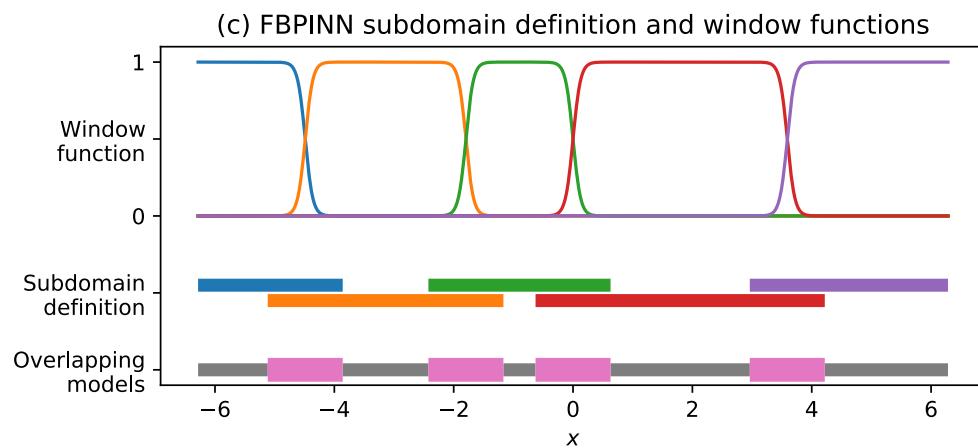
Finite basis PINNs (FBPINNs)



Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, ArXiv (2021), ACM (2023)

Idea: use **overlapping** subdomains and a **globally** defined solution ansatz

FBPINNs in 1D



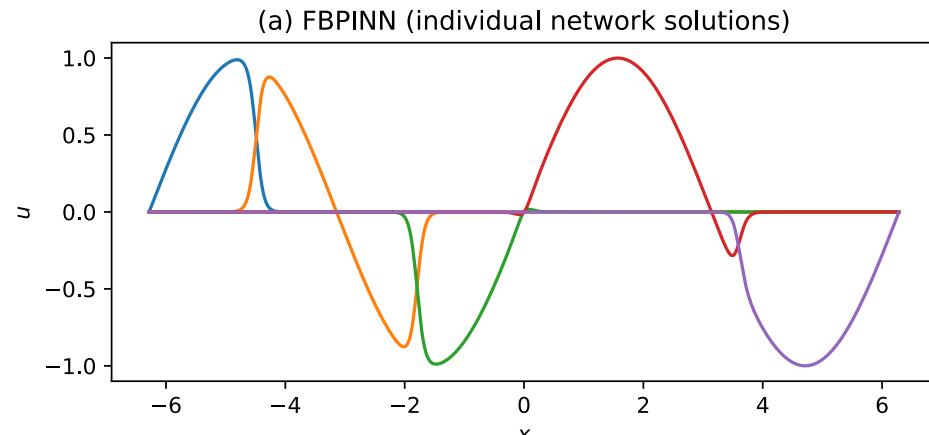
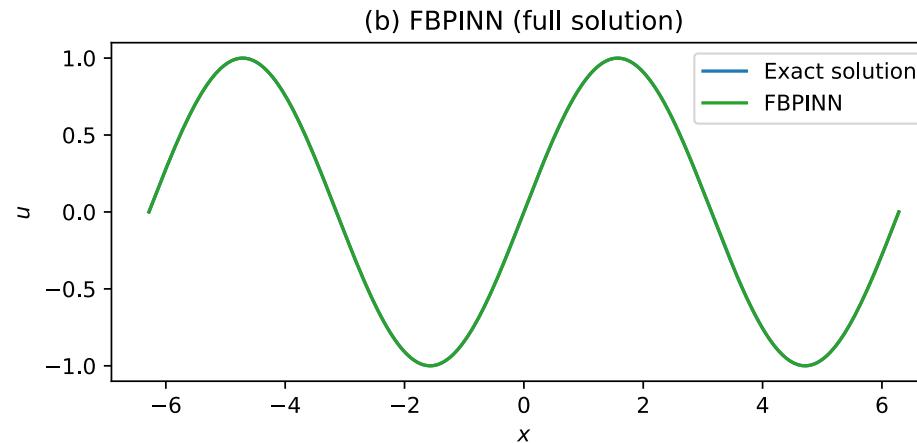
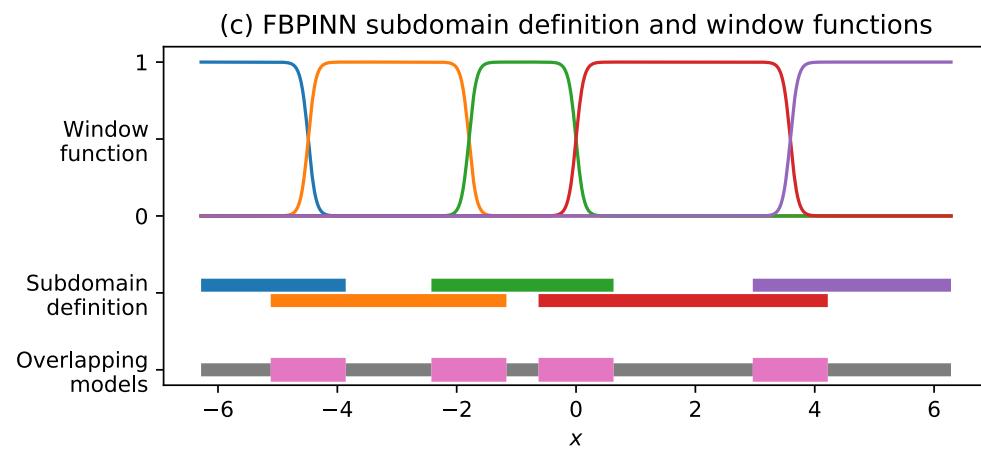
$$\hat{u}(x; \theta) = \mathcal{C} \left[\sum_i^n w_i(x) \cdot \text{unnorm} \circ NN_i \circ \text{norm}_i(x) \right]$$

Window function
 Subdomain network
 Individual subdomain normalisation

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, ArXiv (2021), ACM (2023)

Idea: use **overlapping** subdomains and a **globally** defined solution ansatz

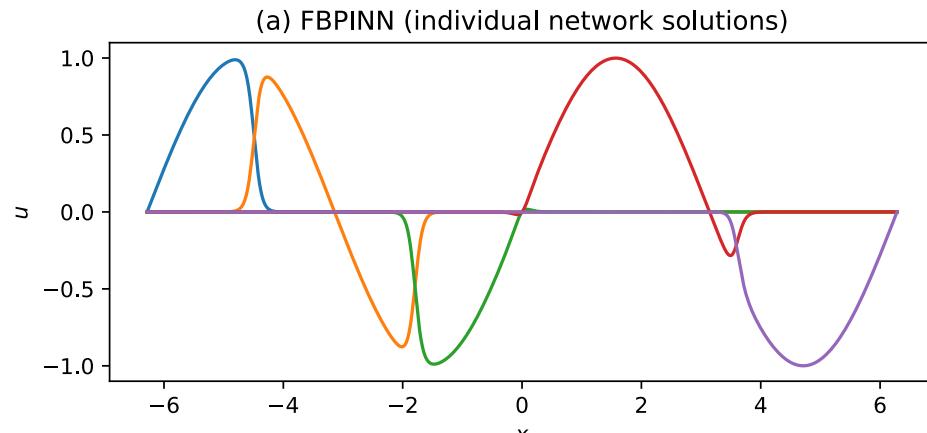
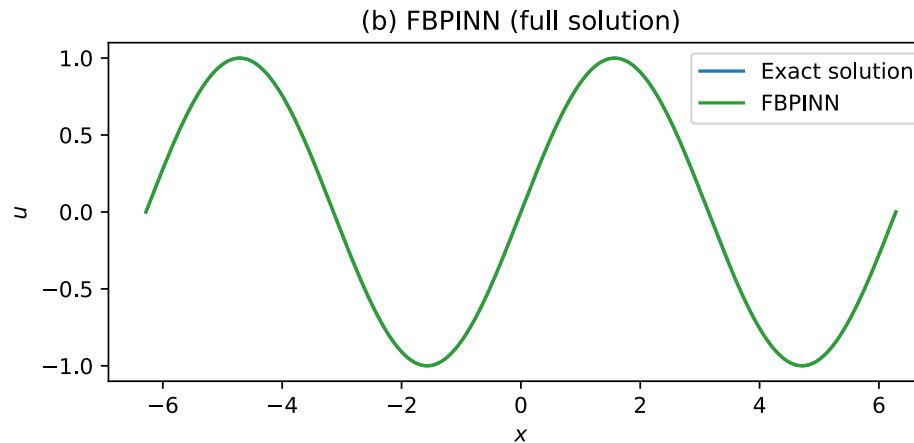
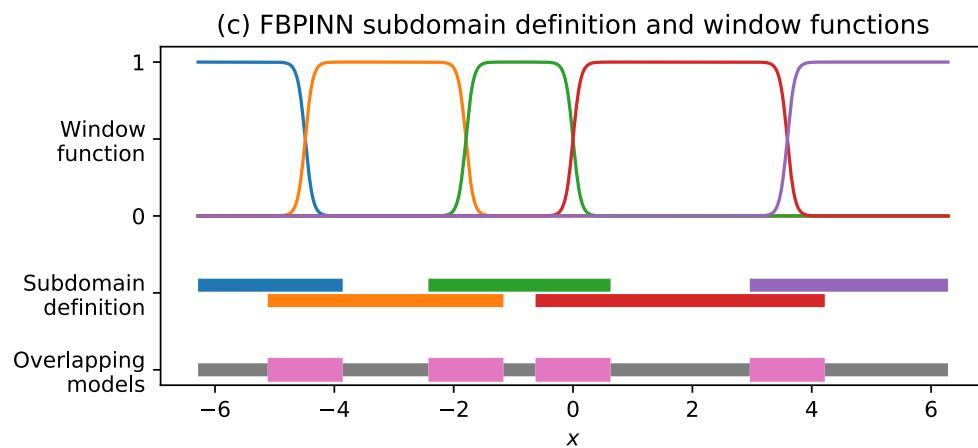
FBPINNs in 1D



Advantages:

- By construction, FBPINN solution is continuous across subdomain interfaces
- Can be trained with same loss function as PINNs

FBPINNs in 1D



Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, ArXiv (2021), ACM (2023)

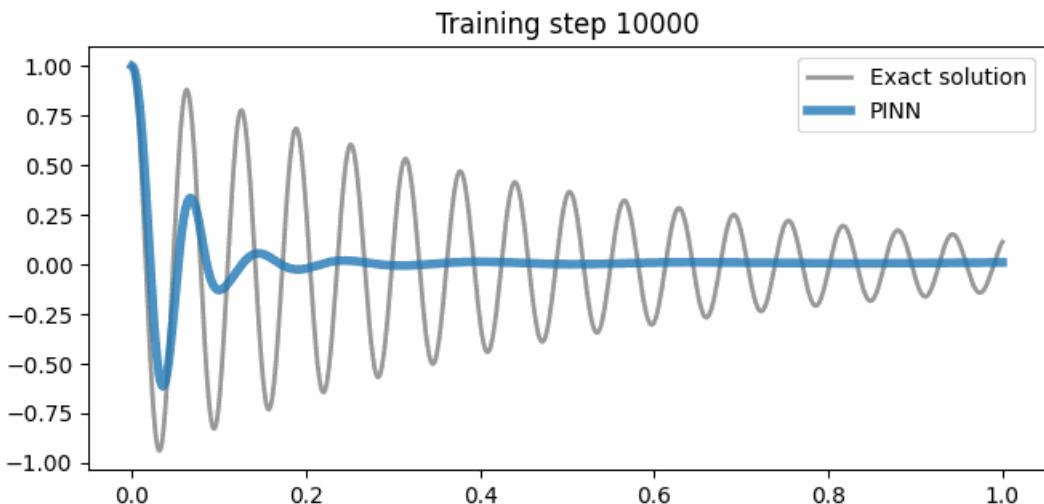
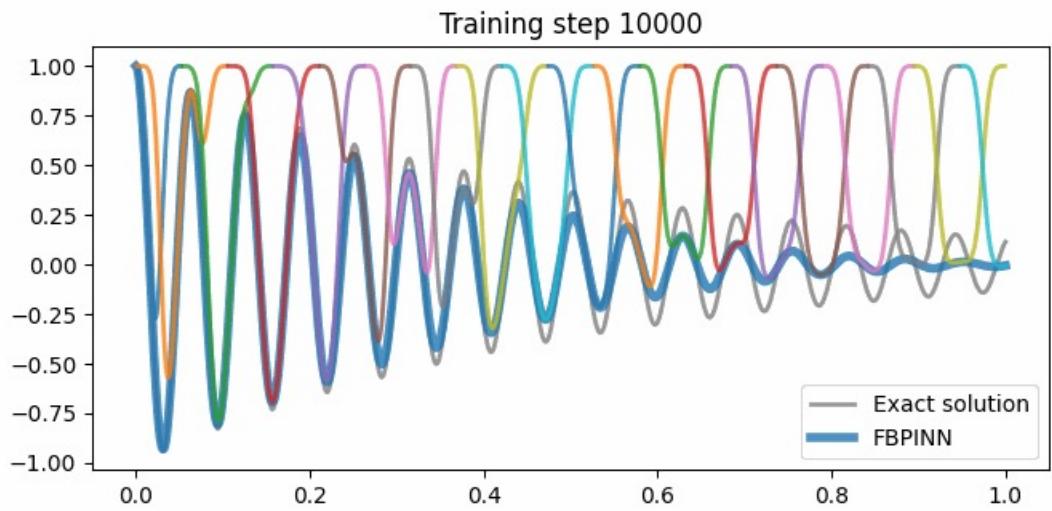
Advantages:

- By construction, FBPINN solution is continuous across subdomain interfaces
- Can be trained with same loss function as PINNs

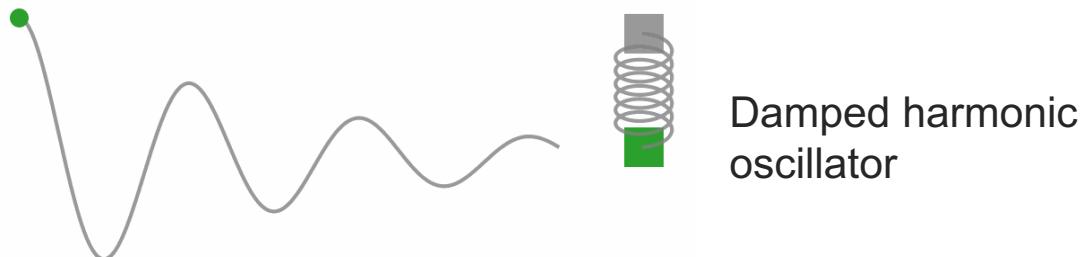
Note:

- Communication is carried out when summing subdomains in their overlap regions
- FBPINNs can simply be thought of as a custom NN architecture for PINNs

FBPINNs vs PINNs



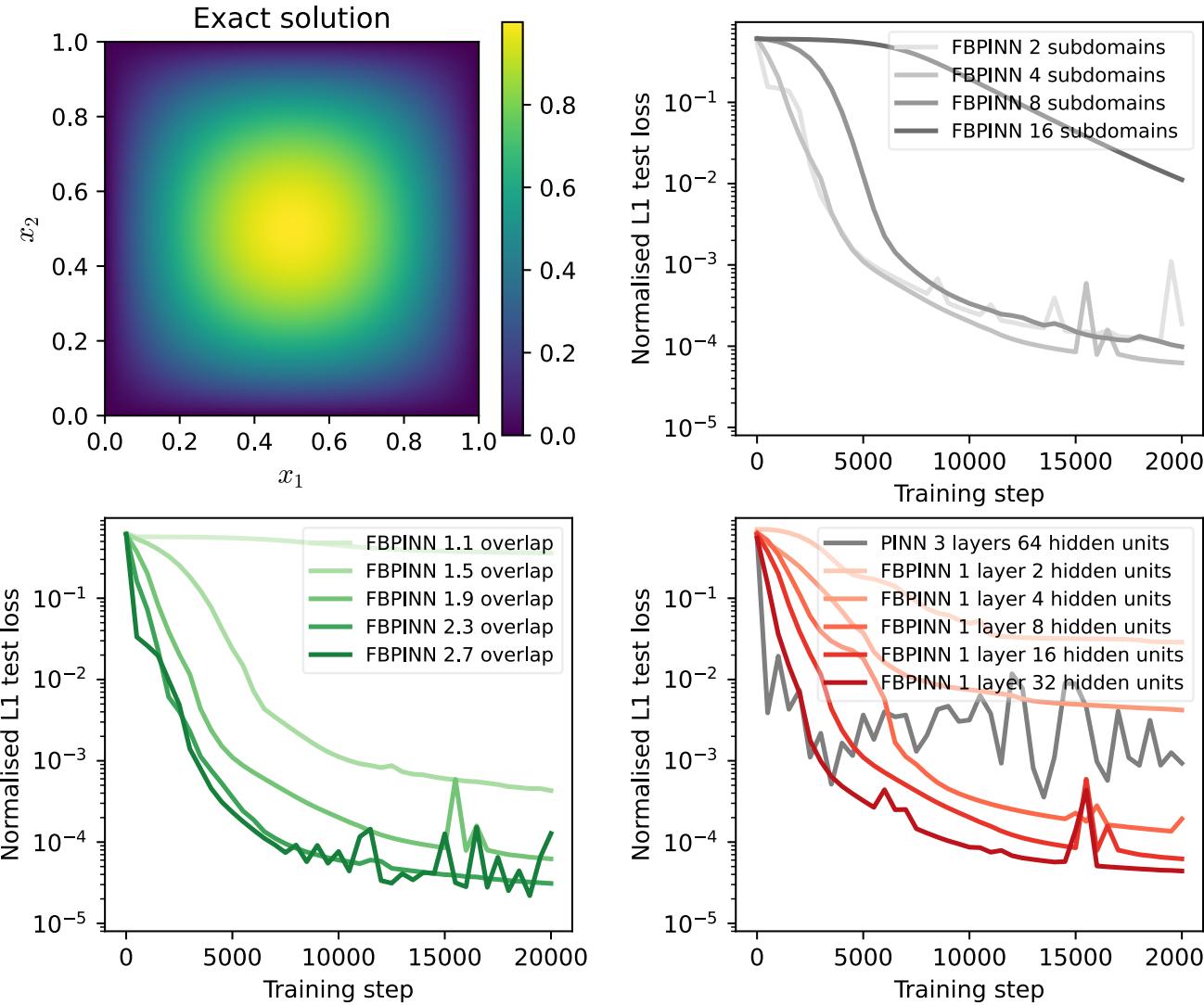
Problem: physics-informed neural networks
struggle to model high-frequency / multiscale
problems



FBPINN solution

Number of subdomains: 20
Subdomain network size: 1 hidden layer, 16 hidden units

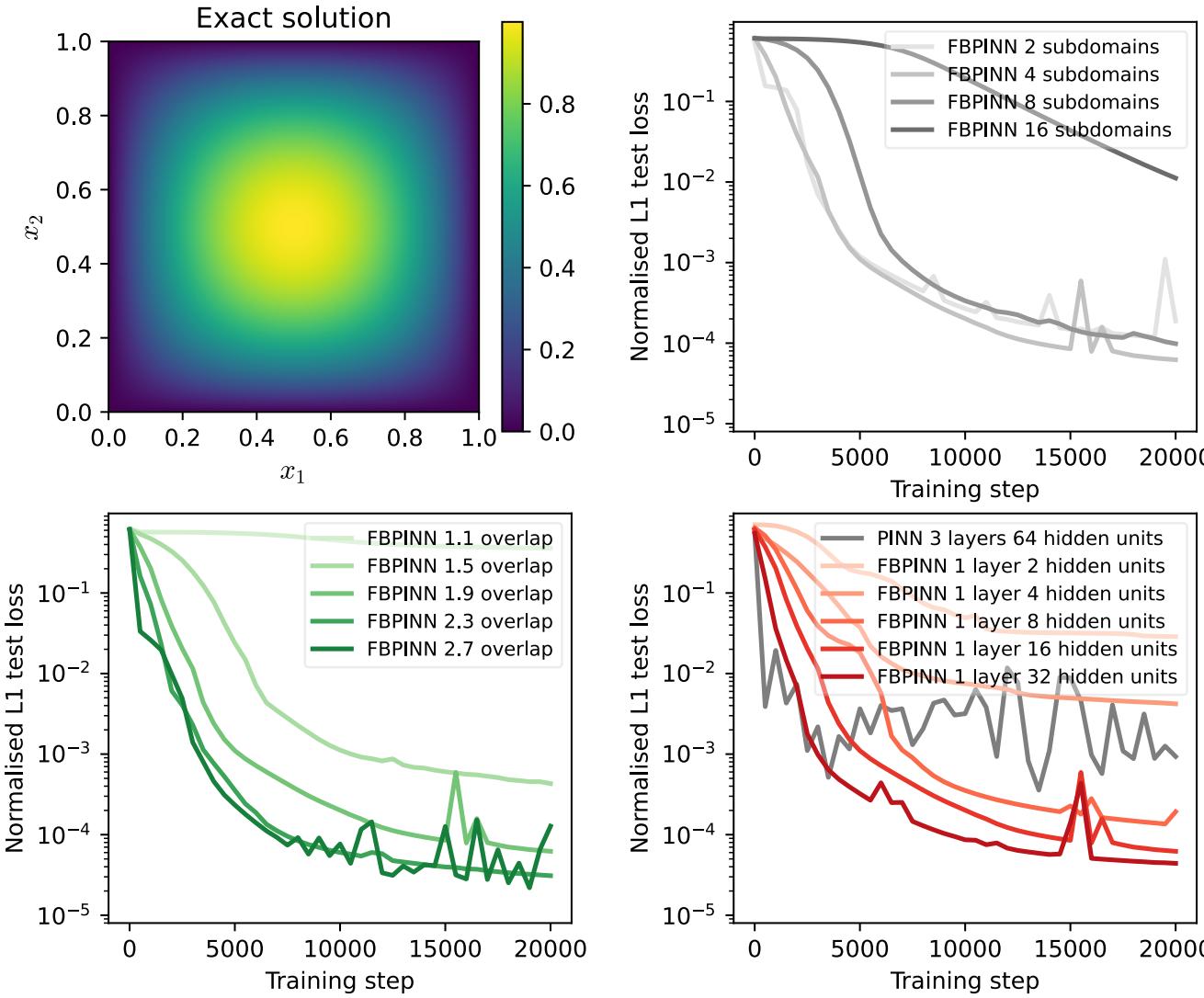
FBPINN hyperparameter sensitivities



Laplacian problem:

$$\begin{aligned} -\Delta u &= f \text{ in } \Omega = [0,1]^2 \\ u &= 0 \text{ on } \partial\Omega \\ f &= 32(x_1(1-x_1) + x_2(1-x_2)) \end{aligned}$$

FBPINN hyperparameter sensitivities



Accuracy increases with:

- Size of overlap between subdomains
- Size (expressivity) of subdomain networks

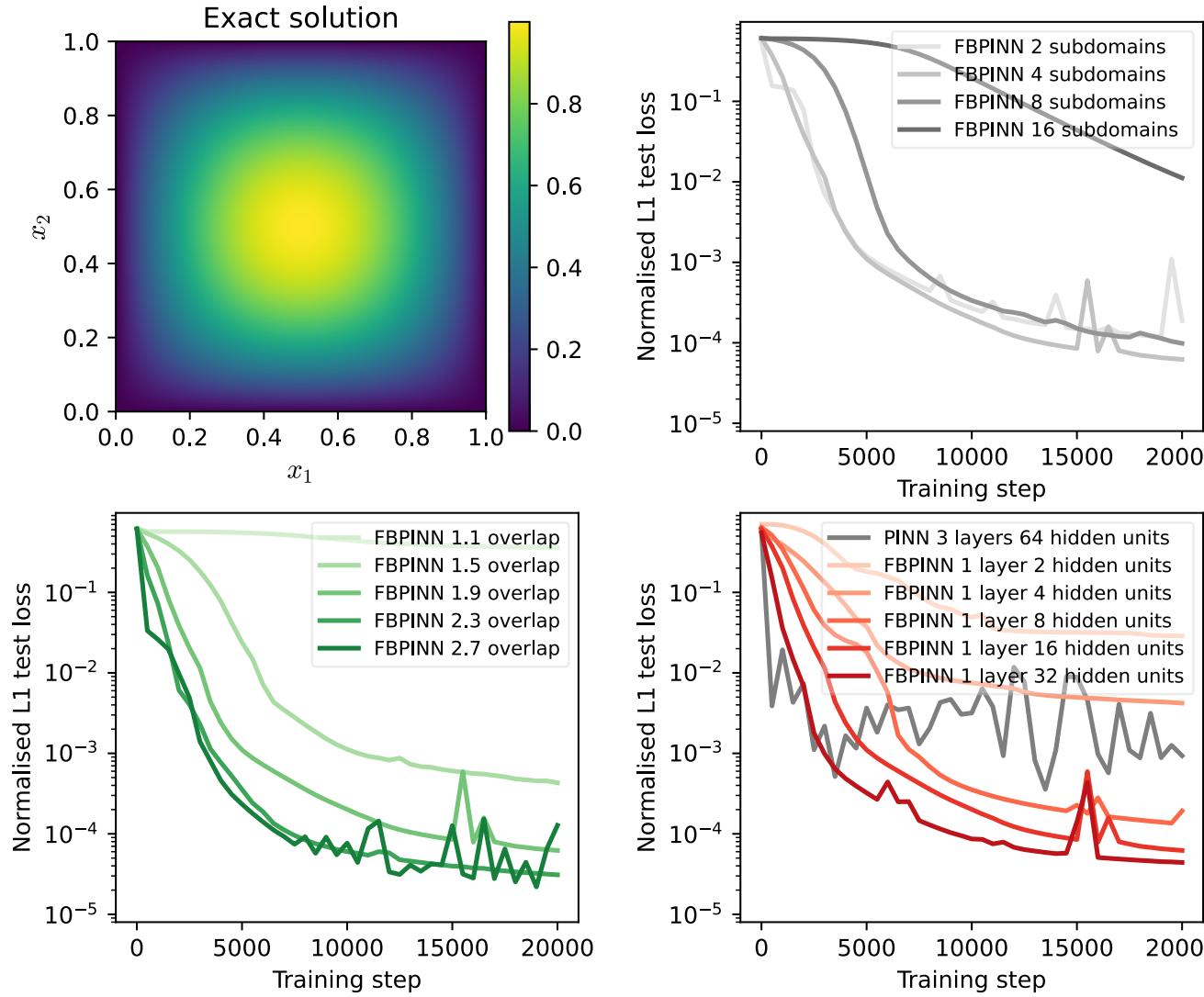
But reduces with:

- Number of subdomains (!)

Laplacian problem:

$$\begin{aligned}-\Delta u &= f \text{ in } \Omega = [0,1]^2 \\ u &= 0 \text{ on } \partial\Omega \\ f &= 32(x_1(1-x_1) + x_2(1-x_2))\end{aligned}$$

FBPINN hyperparameter sensitivities



Accuracy increases with:

- Size of overlap between subdomains
- Size (expressivity) of subdomain networks

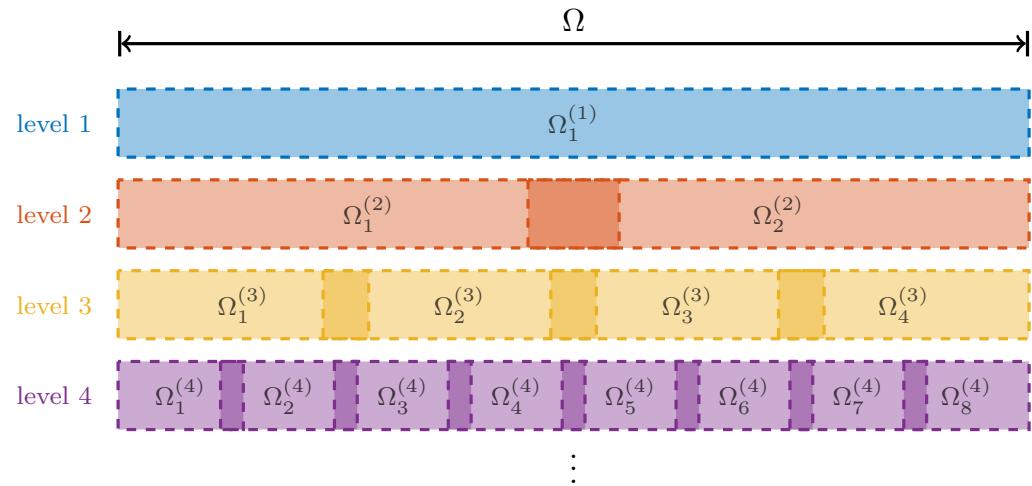
But reduces with:

- Number of subdomains (!)

This is analogous to single-level classical **Schwarz** domain decomposition methods

Because **communication** is limited to overlapping regions

Multilevel FBPINNs



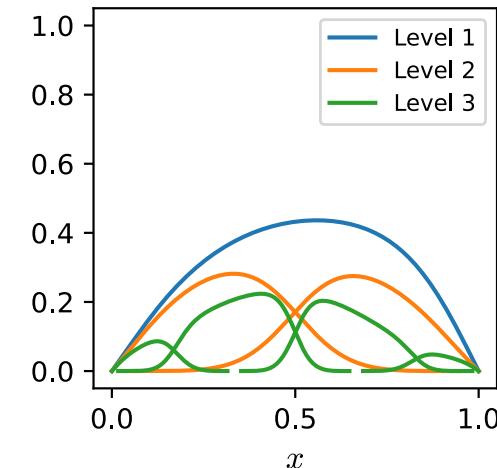
Idea:

Use **multiple levels** of domain decompositions

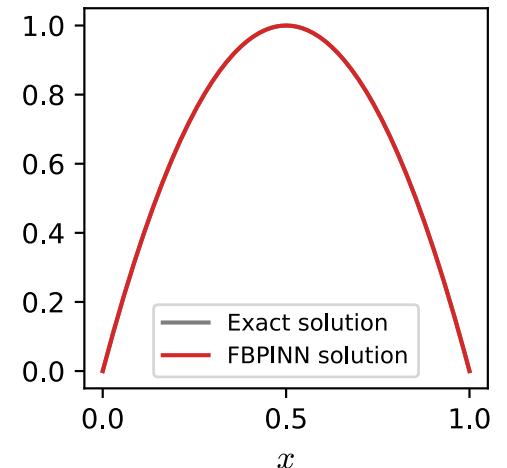
Hypothesis:

Improves global **communication** and helps
model **multi-scale** solutions

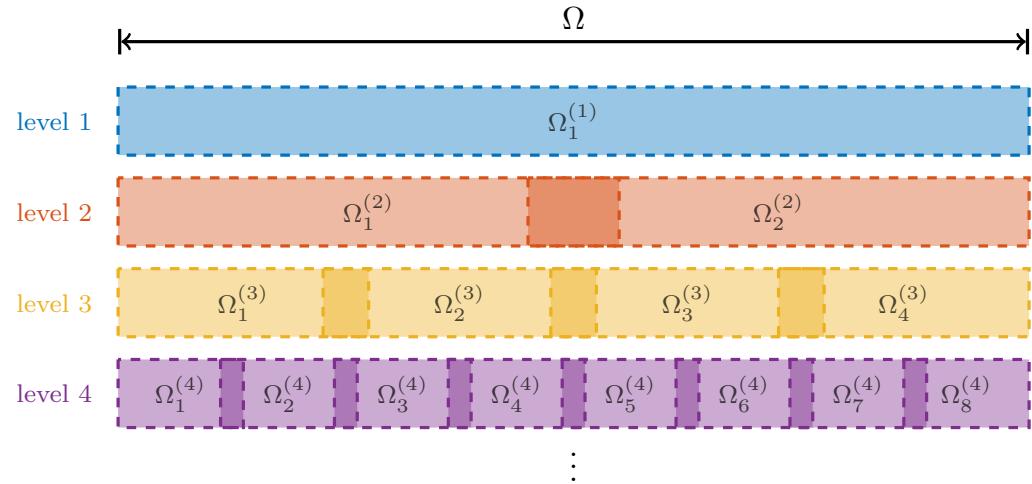
Individual subdomain
solutions



FBPINN solution



Multilevel FBPINNs



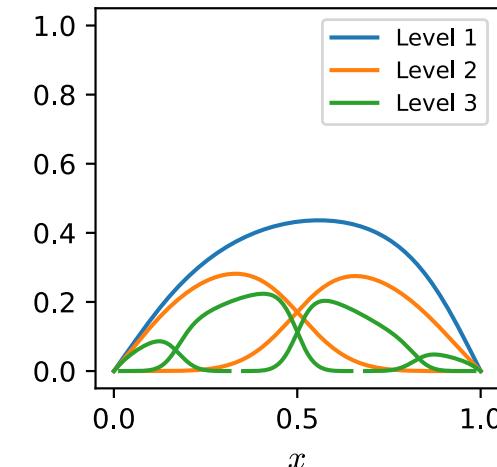
Idea:

Use **multiple levels** of domain decompositions

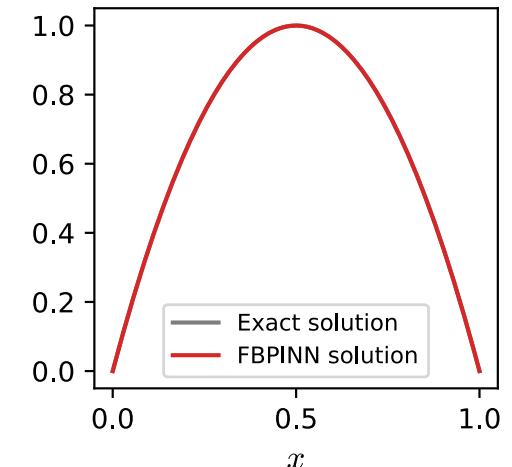
Hypothesis:

Improves global **communication** and helps model **multi-scale** solutions

Individual subdomain solutions



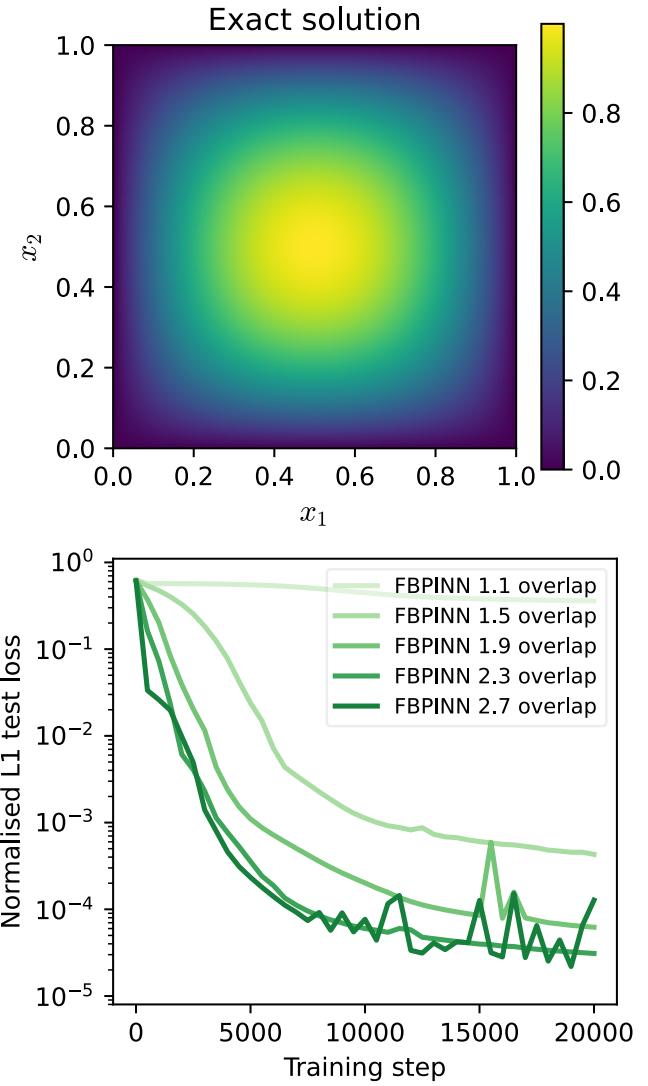
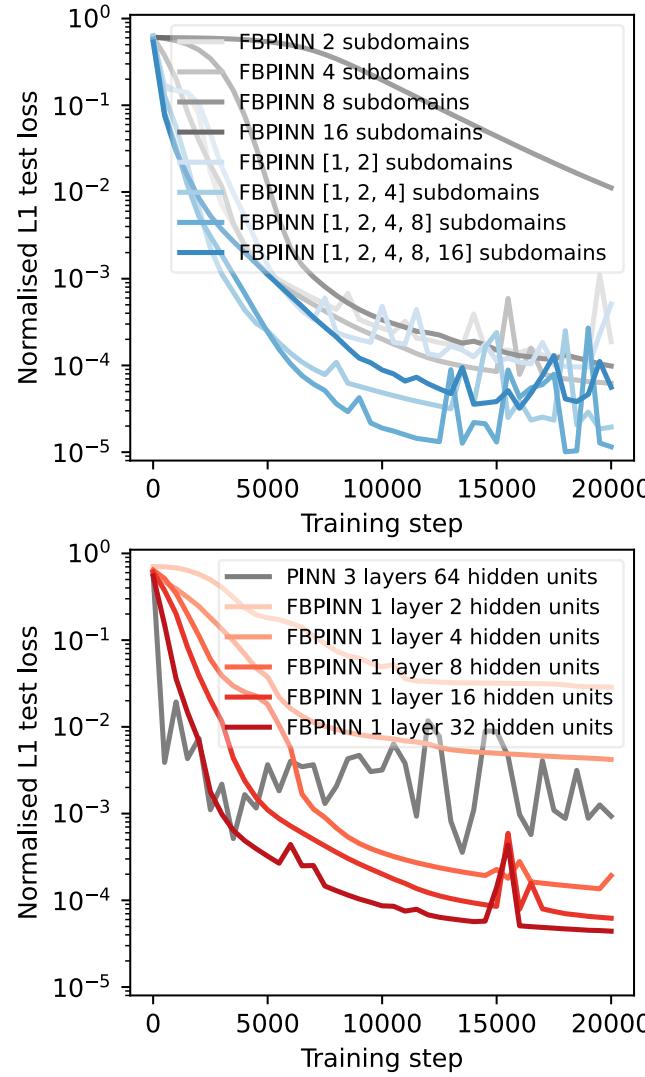
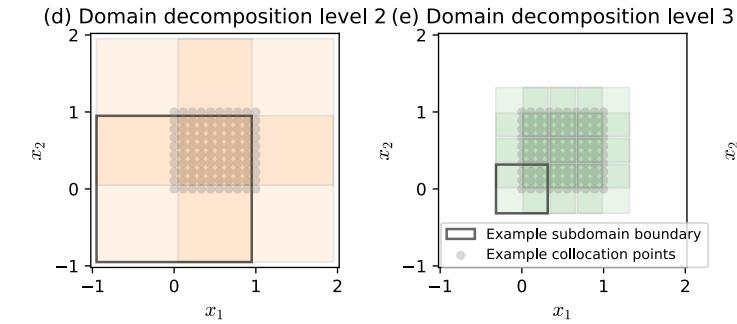
FBPINN solution



$$\hat{u}(x; \theta) = \mathcal{C} \left[\frac{1}{L} \sum_l \sum_j^{J^{(l)}} w_j^{(l)}(x) \cdot \text{unnorm} \circ NN_j^{(l)} \circ \text{norm}_j^{(l)}(x) \right]$$

Represent solution as a summation over **all** levels

Multilevel FBPINNs vs FBPINNs



- Adding coarser levels significantly improves accuracy

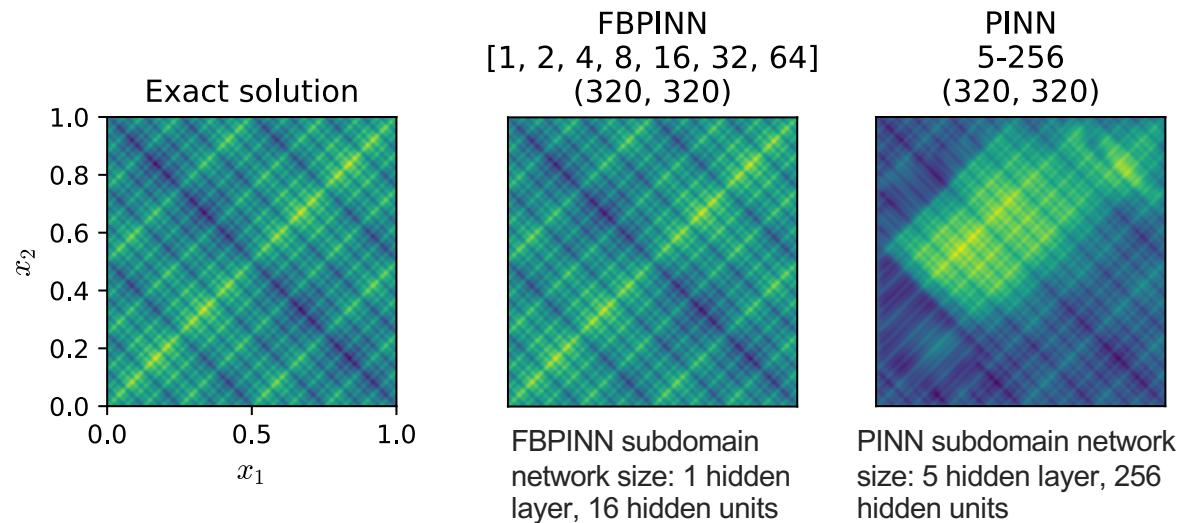
Laplacian problem:

$$\begin{aligned} -\Delta u &= f \quad \text{in } \Omega = [0,1]^2 \\ u &= 0 \quad \text{on } \partial\Omega \\ f &= 32(x_1(1-x_1) + x_2(1-x_2)) \end{aligned}$$

Parallel implementation of FBPINNs

FBPINNs are highly parallelizable:

- Each subdomain solution and its gradients can be computed in parallel
- Only points inside each subdomain are required to train each subdomain network
- Communication is only required when summing solutions in overlap regions
- FBPINNs typically require much smaller subdomain networks than PINNs



FBPINN training time: 10 mins

PINN training time: 2 hours

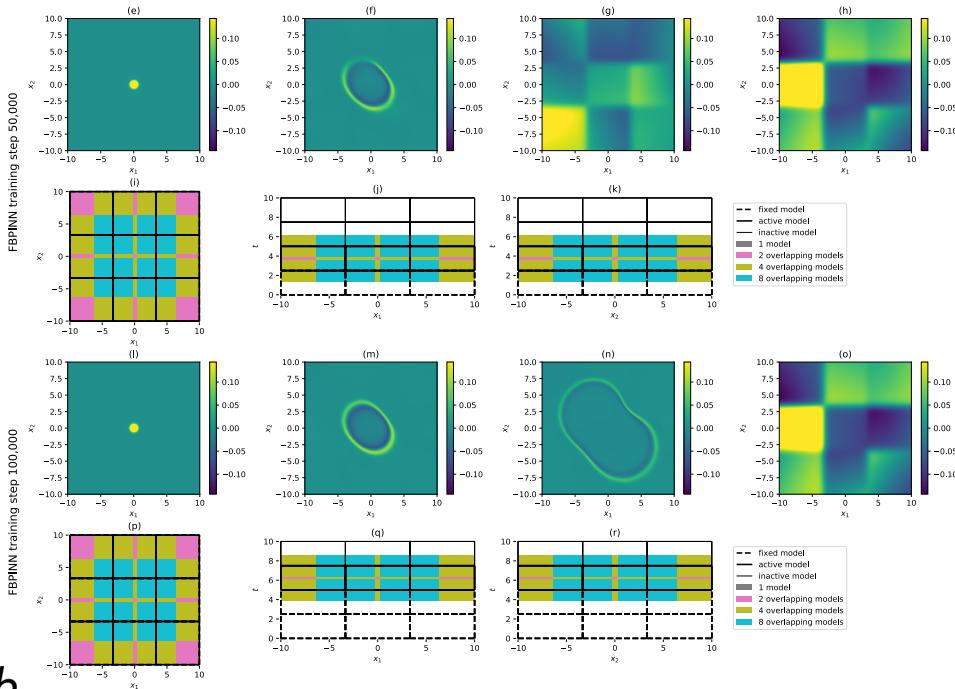
Problem: 2D multiscale Laplacian

With 7 frequencies spanning 2^1 to 2^7

Parallel implementation of FBPINNs

FBPINNs are highly parallelizable:

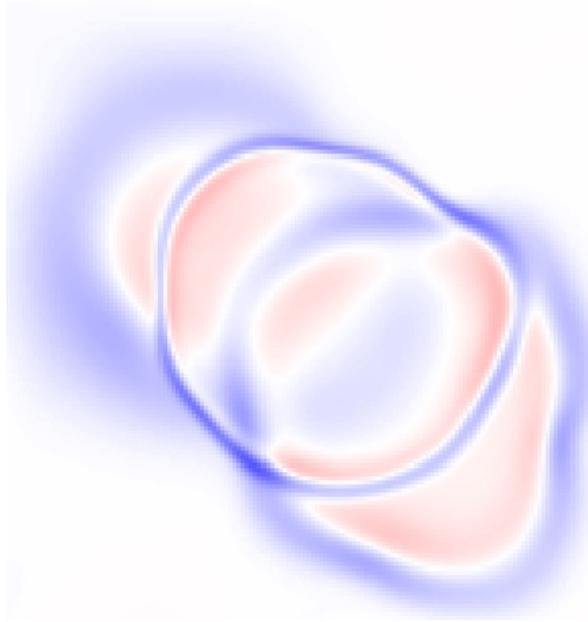
- Each subdomain solution and its gradients can be computed in parallel
- Only points inside each subdomain are required to train each subdomain network
- Communication is only required when summing solutions in overlap regions
- FBPINNs typically require much smaller subdomain networks than PINNs



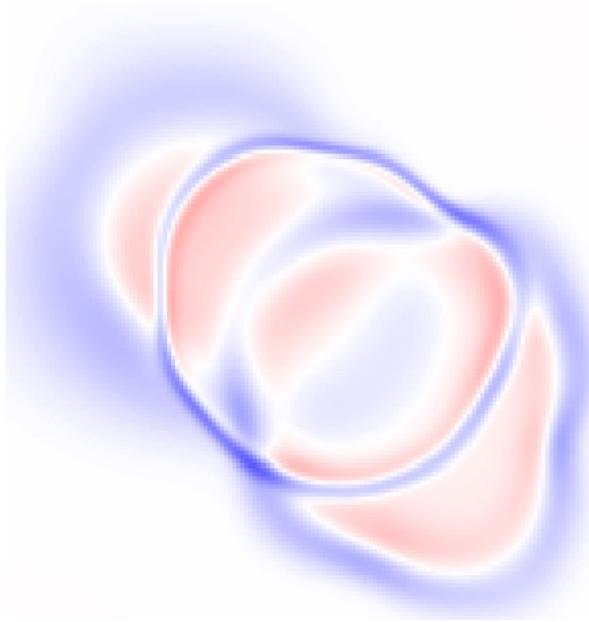
- Subdomain scheduling can be used to fix parameters of certain subdomain networks during training
- E.g. time-stepping scheduling for causal problems

High frequency / multiscale simulation with PINNs

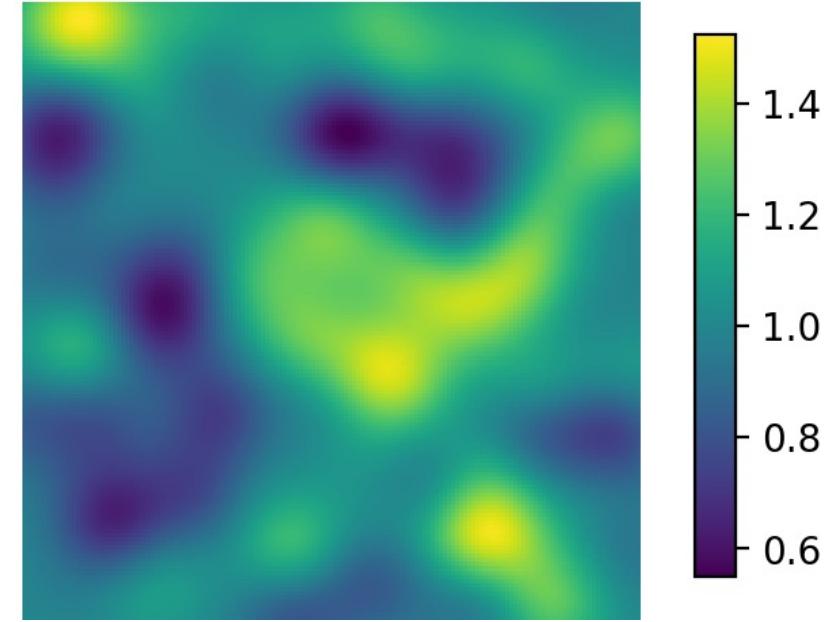
FBPINN solution



FD simulation



Velocity



Solving the 2+1D acoustic wave equation:

$$\nabla^2 u(x, t) - \frac{1}{c(x)^2} \frac{\partial^2 u(x, t)}{\partial t^2} = 0$$

Number of subdomains: $30 \times 30 \times 30 = 27,000$
Subdomain network size: 1 hidden layer, 8 hidden units
Total number of free parameters: 1.1 M
Number of collocation points: $150 \times 150 \times 150 = 3.4$ M
Optimiser: Time-stepping scheduling, Adam 0.001 lr
Training time: ~2 hr

Limitations / future work

Limitations:

- Training time of FBPINNs is still typically slower than FD/FEM simulation for many problems
- Performance for high-dimensional PDEs not studied yet
- Communication of complex boundary conditions can still be challenging

Limitations / future work

Limitations:

- Training time of FBPINNs is still typically slower than FD/FEM simulation for many problems
- Performance for high-dimensional PDEs not studied yet
- Communication of complex boundary conditions can still be challenging

Ongoing work:

- Learnable / adaptive domain decompositions
- More advanced scheduling / multilevel designs
- Updated open-source FBPINN library
 - V1.0 code available here: github.com/benmoseley/FBPINNs
 - V2.0 JAX code coming soon