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Abstract

In logic-based approaches to reasoning tasks such as Recog-
nizing Textual Entailment (RTE), it is important for a system
to have a large amount of knowledge data. However, there
is a tradeoff between adding more knowledge data for im-
proved RTE performance and maintaining an efficient RTE
system, as such a big database is problematic in terms of the
memory usage and computational complexity. In this work,
we show the processing time of a state-of-the-art logic-based
RTE system can be significantly reduced by replacing its
search-based axiom injection (abduction) mechanism by that
based on Knowledge Base Completion (KBC). We integrate
this mechanism in a Coq plugin that provides a proof automa-
tion tactic for natural language inference. Additionally, we
show empirically that adding new knowledge data contributes
to better RTE performance while not harming the processing
speed in this framework.

1 Introduction
RTE is a challenging NLP task where the objective is
to judge whether a hypothesis H logically follows from
premise(s) P . Advances in RTE have positive implications
in other areas such as information retrieval, question answer-
ing and reading comprehension. Various approaches have
been proposed to the RTE problem in the literature. Some
methods are based on deep neural networks (Rocktäschel
et al. 2016; Chen et al. 2018; Nie and Bansal 2017),
where a classifier is trained to predict using H and P
encoded in a high-dimensional space. Other methods are
purely symbolic (Bos et al. 2004; Mineshima et al. 2015;
Abzianidze 2015), where logical formulas that represent H
and P are constructed and used in a formal proof system.
In this paper, we adopt a strategy based on logic, encour-
aged by the high-performance that these systems achieve
in linguistically complex datasets (Mineshima et al. 2015;
Abzianidze 2015), which contain a variety of semantic phe-
nomena that are still challenging for the current neural mod-
els (Wang et al. 2018).

Contrary to the end-to-end machine learning approaches,
a logic-based system must explicitly maintain lexical knowl-
edge necessary for inference. A critical challenge here is to
deal with such knowledge in an efficient and scalable way. A
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promising approach in past work is on-demand axiom injec-
tion (abduction mechanism; Martı́nez-Gómez et al. 2017),
which allows one to construct knowledge between words in
P and H as lexical axioms, and feed them to a logic prover
when necessary. Combined with ccg2lambda (Mineshima et
al. 2015), a higher-order logic-based system, their method
demonstrates that injecting lexical knowledge from Word-
Net (Miller 1995) and VerbOcean (Chklovski and Pantel
2004) significantly improves the performance.

Although their method provides a basis for handling ex-
ternal knowledge with a logic-based RTE system, there still
remains a practical issue in terms of scalability and effi-
ciency. Their abduction mechanism generates relevant ax-
ioms on-the-fly for a present P and H pair, but this means
we have to maintain a large knowledge base inside the sys-
tem. This is costly in terms of memory, and it also leads
to slower search due to a huge search space during infer-
ence. WordNet already contains relations among more than
150,000 words, and in practice, we want to increase the
coverage of external knowledge more by adding different
kinds of database such as Freebase. To achieve such a scal-
able RTE system, we need a more efficient way to preserve
database knowledge.

In this paper, we present an approach to axiom injection,
which, by not holding databases explicitly, allows handling
of massive amount of knowledge without losing efficiency.
Our work is built on Knowledge Base Completion (KBC),
which recently has seen a remarkable advancement in the
machine learning community. Although KBC models and
logic-based approaches to RTE have been studied separately
so far, we show that they can be combined to improve the
overall performance of RTE systems. Specifically, we re-
place the search of necessary knowledge on the database
with a judgment of whether the triplet (s, r, o) is a fact or
not in an n-dimensional vector space that encodes entities s
and o and relation r. For each triplet, this computation is ef-
ficient and can be done in O(n) complexity. To this end we
construct a new dataset from WordNet for training a KBC
model that is suitable for RTE. We then show that this ap-
proach allows adding new knowledge from VerbOcean with-
out losing efficiency.

Throughout this paper, we will focus on inferences that
require lexical knowledge such as synonym and antonym
and its interaction with the logical and linguistic structure



of a sentence, distinguishing them from common sense rea-
soning (e.g., John jumped into the lake entails John is wet)
and inferences based on world knowledge (e.g., Chris lives
in Hawaii entails Chris lives in USA). For evaluation, we
use the SICK (Sentences Involving Compositional Knowld-
edge) dataset (Marelli et al. 2014), which focuses on lexical
inferences combined with linguistic phenomena.1

Another advantage of our approach is that we can comple-
ment the missing lexical knowledge in existing knowledge
bases as latent knowledge. The previous method is limited in
that it can only extract relations that are directly connected
or reachable by devising some relation path (e.g. transitive
closure for hypernym relation); however, there are also lex-
ical relations that are not explicitly available and hence la-
tent in the networks. To carefully evaluate this aspect of our
method, we manually create a small new RTE dataset, where
each example requires complex lexical reasoning, and find
that our system is able to find and utilize such latent knowl-
edge that cannot be reached by the existing approach.

Our final system achieves a competitive RTE performance
with Martı́nez-Gómez et al.’s one, while keeping the pro-
cessing speed of the baseline method that does not use any
external resources. The last key technique for this efficiency
is a new abduction tactic, a plugin for a theorem prover
Coq (The Coq Development Team 2017). One bottleneck of
Martı́nez-Gómez et al.’s approach is that in their system Coq
must be rerun each time new axioms are added. To remedy
this overhead we develop abduction tactic that enables
searching knowledge bases and executing a KBC scoring
function during running Coq.

Our contributions are summarized as follow:2

• We propose to combine KBC with a logic-based RTE sys-
tem for efficient and scalable reasoning.

• We develop an efficient abduction plugin for Coq, which
we make publicly available.

• We show that our techniques achieve a competitive score
to the existing abduction technique while maintaining the
efficiency of the baseline with no knowledge bases.

• We construct a set of lexically challenging RTE problems
and conduct extensive experiments to evaluate the latent
knowledge our KBC model has learned. We demonstrate
many examples of those knowledge that are not available
for the previous method.

2 Related work
2.1 Logic-based RTE systems
Earlier work on logic-based approaches to RTE exploited
off-the-shelf first-order reasoning tools (theorem provers

1Large-scale datasets for training neural natural language
inference models such as SNLI (Bowman et al. 2015) and
MultiNLI (Williams, Nangia, and Bowman 2018) are not con-
strained to focus on lexical and linguistic aspects of inferences,
which can produce confounding factors in analysis, hence are not
suitable for our purposes.

2 All the programs and resources used in this work are
publicly available at: https://github.com/masashi-y/
abduction_kbc.

and model-builders) for the inference component (Bos and
Markert 2005). Such a logic-based system tends to have high
precision and low recall for RTE tasks, suffering from the
lack of an efficient method to integrate external knowledge
in the inference system.

Meanwhile, researchers in Natural Logic (van Benthem
2008) have observed that the iteration depth of logical op-
erators such as negations and quantifiers in natural lan-
guages is limited and, accordingly, have developed a vari-
ety of proof systems such as monotonicity calculus (Icard
and Moss 2014) adapted for natural languages that use small
parts of first-order logic.

The idea of natural logic has recently led to a renewed
interest in symbolic approaches to modeling natural lan-
guage inference in the context of NLP (MacCartney and
Manning 2008). In particular, theorem provers designed for
natural languages have been recently developed, where a
proof system such as analytic tableau (Abzianidze 2015)
and natural deduction (Mineshima et al. 2015) is used in
combination with wide-coverage parsers. These systems al-
low a controlled use of higher-order logic, following the tra-
dition of formal semantics (Montague 1974), and thereby
have achieved efficient reasoning for logically complex RTE
problems such as those in the FraCaS test suite (Cooper et
al. 1994). However, it has remained unclear how one can add
robust external knowledge to such logic-based RTE systems
without loss of efficiency of reasoning. The aim of this paper
is to address this issue.

We use Coq, an interactive proof assistant based on the
Calculus of Inductive Constructions (CiC), in order to im-
plement an RTE system with our method of axiom inser-
tion. Although Coq is known as an interactive proof assis-
tant, it has a powerful proof automation facility where one
can introduce user-defined proof strategies called tactics.
The work closest to our approach in this respect is a system
based on Modern Type Theory (Chatzikyriakidis and Luo
2014), which uses Coq as an automated theorem prover for
natural language inferences. It was shown that the system
achieved high accuracy on the FraCaS test suite (Bernardy
and Chatzikyriakidis 2017). However, the system relies on a
hand-written grammar, suffering from scalability issues. Ad-
ditionally, this work did not evaluate the efficiency of theo-
rem proving for RTE, nor address the issue of how to extend
their RTE system with robust external knowledge.

Generally speaking, it seems fair to say that the issue
of efficiency of logic-based reasoning systems with a large
database has been underappreciated in the literature on RTE.
To fill this gap, we investigate how our logic-based approach
to RTE, combined with machine learning-based Knowledge
Base Completion, can contribute to robust and efficient nat-
ural language reasoning.

2.2 Knowledge Base Completion (KBC)

Several KBC models have been proposed in the litera-
ture (Bordes et al. 2013; Trouillon et al. 2016; Dettmers et
al. 2017). Among them we use ComplEx (Trouillon et al.
2016), which models triplet (s, r, o) for entities s, o ∈ E and
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Figure 1: A pipeline of ccg2lambda. It firstly applies CCG parser to premise (P ) and hypothesis (H) sentences (a), and then
convert them to logical formulas (b). It tries to prove if entailment (contradiction) can be established by applying Coq to the
theorem P → H (P → ¬H) (c). If the proving fails, it tries axiom injection (d).

relation r ∈ R in an n-dimensional complex vector space3:

ψr(s, o) = σ(Re(〈es, er, eo〉)), (1)

where es, er, eo ∈ Cn, 〈x,y, z〉 =
∑

i xiyizi, and σ is the
sigmoid function. Since Eq. 1 consists of one dot-product
among three vectors, its computational complexity is O(n).
The training is done by minimizing the logistic loss:

∑
((s,r,o),t)∈D

t logψr(s, o)+(1− t) log(1− ψr(s, o)), (2)

where D is the training data. We have t = 1 if the triplet is
a fact and t = 0 if not (negative example). While negative
examples are usually collected by negative sampling, 1-N
scoring has been proposed to accelerate training (Dettmers
et al. 2017). In 1-N scoring, unlike other KBC models that
take an entity pair and a relation as a triplet (s, r, o) and
score it (1-1 scoring), one takes one (s, r) pair and scores
it against all entities o ∈ E simultaneously. It is reported that
this brings over 300 times faster computation of the loss for
their convolution-based model. This method is applicable to
other models including ComplEx and scales to large knowl-
edge bases. We employ this technique in our experiments.

3 System overview
We build our system on ccg2lambda (Mineshima et al.
2015)4, an RTE system with higher-order logic. Figure 1
shows a pipeline of the system.

Note that although we use a particular RTE system to
test our hypotheses, other logic-based RTE systems can also

3C denotes the set of complex numbers. For x ∈ C, Re(x)
denotes its real part and x its complex conjugate.

4https://github.com/mynlp/ccg2lambda

benefit from our KBC-based method. In so far as a lexical re-
lation is modeled as a triplet, it could be adapted to their in-
ference modules; for instance, if r is a hypernym relation, a
triplet (s, r, o) is mapped to s v o, wherev is a containment
relation in Natural Logic (MacCartney and Manning 2008)
or a subtyping relation in Modern Type Theory (Chatzikyri-
akidis and Luo 2014), rather than to ∀x.(s(x)→ o(x)) as in
the standard logic we use in this paper.

3.1 CCG and semantic parsing
The system processes premise(s) (P ) and a hypothesis (H)
using Combinatory Categorial Grammar (CCG; Steed-
man 2000) parsers. CCG is a lexicalized grammar that pro-
vides syntactic structures transparent to semantic represen-
tations (Figure 1a). In CCG, each lexical item is assigned
a pair (C,M) of the syntactic category C and a meaning
representation M encoded as a λ-term; for instance, “man”
is assigned (N,λx.man(x)). The parses (called derivation
trees) are converted into logical formulas by composing λ-
terms assigned to each terminal word in accordance with
combinatory rules (Figure 1b).

For the assignment of λ-terms, we use a template-based
procedure, where closed-class words (logical or functional
expressions) are mapped to their specific meaning represen-
tations and other words to schematic meaning representa-
tions based on CCG categories. In this work, we adopt a
semantic template based on Neo-Davidsonian Event Seman-
tics (Parsons 1990), where a sentence is mapped to a formula
involving quantification over events and a verb is analyzed
as a 1-place predicate over events using auxiliary predicates
for semantic roles such as subj (see the formulas in Fig-
ure 1b). One of the main attractions of this approach is that
it facilitates the simple representation of lexical relations for
nouns and verbs, since both can be uniformly analyzed as
1-place predicates (see the axioms in Table 1).



3.2 Theorem proving
The system uses automated theorem proving in Coq (Fig-
ure 1c) to judge whether entailment (P → H) or contra-
diction (P → ¬H) holds between the premise and the hy-
pothesis. It implements a specialized prover for higher-order
features in natural language, which is combined with Coq’s
build-in efficient first-order inference mechanism. Coq has a
language called Ltac for user-defined automated tactics (De-
lahaye 2000). The additional axioms and tactics specialized
for natural language constructions are written in Ltac. We
run Coq in a fully automated way, by feeding to its inter-
active mode a set of predefined tactics combined with user-
defined proof-search tactics.

3.3 Axiom insertion (abduction)
Previous work (Martı́nez-Gómez et al. 2017) extends
ccg2lambda with an axiom injection mechanism using
databases such as WordNet (Miller 1995). When a proof of
T → H or T → ¬H fails, it searches these databases for
lexical relations that can be used to complete the theorem
at issue. It then restarts a proof search after declaring the
lexical relations as axioms (Figure 1d). This mechanism of
on-demand insertion of axioms is called abduction.

A problem here is that this abduction mechanism slows
down the overall processing speed. This is mainly due to the
following reasons: (1) searches for some sort of relations in-
cur multi-step inference over triplets (e.g. transitive closure
of hypernym relation); (2) the theorem proving must be done
all over again to run an external program that searches the
knowledge bases. In this work, to solve (1), we propose an
efficient O(n) abduction mechanism based on KBC (§4.1).
For (2), we develop abduction tactic, that enables adding
new lexical axioms without quitting a Coq process (§4.2).

4 Proposed method
Our abduction mechanism adds new axioms whenever the
prover stops due to the lack of lexical knowledge. Specif-
ically, the system collects pairs of predicates from a cur-
rent proof state and evaluates the pairs for every rela-
tion r ∈ R = {synonym, hypernym, antonym, hyponym,
derivationally–related}with ComplEx (Eq. 1). It then
declares as axioms logical formulas converted from the
triplets whose scores are above a predefined threshold θ. See
Table 1 for the conversion rules. We describe the construc-
tion of a training data for ComplEx in §4.1 and abduction
tactic that performs the axiom injection in §4.2.

4.1 Data creation
Although there already exist benchmark datasets for Word-
Net completion (e.g., WN18 (Bordes et al. 2013)), we con-
struct our own dataset. We find two problems on the exist-
ing datasets considering its application to RTE tasks. One is
a gap between the entities and relations appearing in those
benchmark datasets and those needed to solve RTE datasets.
For example the knowledge on disease names are not neces-
sary for the present dataset.

Another, more critical issue is that in WordNet many rela-
tions including hypernym and hyponym are defined among

synsets, i.e., sets of synonymous lemmas, and the existing
datasets also define a graph on them. This is problematic in
practice for ccg2lambda, which normalizes a word’s surface
form into its lemma when obtaining a logical formula. A
possible option to mitigate this discrepancy is to normalize
each word into synset by adding word-sense disambiguation
(WSD) step in ccg2lambda. Another option is to construct
a new dataset in which each relation is defined among lem-
mas. We choose the latter for two reasons: (1) existing WSD
systems do not perform well and cause error propagation;
and (2) a dataset defined among lemmas eases the data aug-
mentation using other resources. For example, VerbOcean
defines relations between lemmas so it is straightforward to
augment the training data with it, as we show later.

We use different strategies to extract relations for each
relation r ∈ R from WordNet as follows.5

synonym Since synonym relation is not defined in Word-
Net, we find them from other relations. We regard two
synsets s1 and s2 as synonym if they are in also sees,
verb groups, or similar tos relation, or if they
share some lemma l ∈ s1 ∩ s2. Then, we take a Carte-
sian product of s1 and s2, that is, (l1, synonym, l2) for all
l1 ∈ s1 and l2 ∈ s2, and add them to the dataset.

hypernym and hyponym These relations are defined
among synsets in WordNet. As in synonym, for
hypernym we take a Cartesion product of s1 and s2,
when they are in hypernym relation. We also collect
the triplets obtained from its transitive closure, since
hypernym is a transitive relation.6 We process hyponym
relations in the same way.

antonym and derivationally-related Since antonym and
derivationally-related relations are defined among lem-
mas in WordNet, we simply collect them.

Since the constructed dataset contains many entities that
will not be used in the existing RTE datasets, we strip off
triplets (s, r, o) if s or o is not found in our predefined lemma
list, consisting of all lemmas of words appearing in the train-
ing part of SICK (Marelli et al. 2014) and SNLI (Bowman
et al. 2015), as well as the pre-trained GloVe word vectors.7
The resulting dataset contains 1,656,021 triplets and the
number of the entities is 41,577. We spare random 10,000
triplets for development and use the rest for training.

VerbOcean is a semi-automatically constructed reposi-
tory of semantic relations among verbs. Since it defines
a triplet among lemmas, we simply map the relations in
the dataset to R after filtering triplets using the lemma list
above. Concretely, in the experiments we use similar re-
lations, which consists of 17,694 triplets.

5For simplicity, we use the set theoretical notation: l ∈ s de-
notes lemma l is an element of synset s.

6e.g., (puppy, hypernym, animal) follows from
(puppy, hypernym, dog) and (dog, hypernym, animal).

7https://nlp.stanford.edu/projects/glove/.
We use the one with 6 billion tokens.



Relation r Generated Axiom Example
synonym, hypernym, ∀x.s(x)→ o(x) (make, synonym, build) ; ∀e.make(e)→ build(e)

derivationally-related
antonym ∀x.s(x)→ ¬o(x) (parent, r, child) ; ∀x.parent(x)→ ¬child(x)
hyponym ∀x.o(x)→ s(x) (talk, r, advise) ; ∀e.advise(e)→ talk(e)

Table 1: Triplet (s, r, o) and axioms generated in terms of r. The type of an argument is determined in the semantic parsing part
of ccg2lambda. While we use unary predicates (Neo-Davidsonian semantics), it can be generalized to any arity.

1 subgoal 

  (exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) -> 
  exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x) 

t < intro. 
  H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x) 
  ============================ 
  exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x) 

t < abduction. 
  H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x) 
  NLax1 : forall x : Event, hike x -> walk x 
  ============================ 
  exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

(man, walk) 
 (man, hike) 
 (hike, walk)

(hike, hypernym, walk)

Send them to Python server

Evaluate all the predicate  
pairs using ComplEx

Construct a list of predicate 
 pairs from context and goal

Filter them by score

Add them as axioms

Figure 2: Running example of abduction tactic in a Coq session proving “A man hikes”→ “A man walks”. When the tactic
is executed, it interacts with a ComplEx model on a different process and injects high scoring triplets as axioms.

4.2 Axiom injection with abduction tactic
As mentioned earlier, the abduction method in the previous
work needs to rerun Coq when adding new axioms. Now we
introduce our abduction tactic that enables adding new
axioms on the fly without quitting the program.

Figure 2 shows a running example of abduction tactic.
When executed, this tactic collects from the context (the set
of hypotheses) and the goal (the theorem to be proven) all
the pairs of predicates and sends them to a Python server
running on other process. The Python program evaluates the
pairs for all relations in R with ComplEx and then sends
back the triplets whose score is above a threshold θ. In Coq,
these are converted to logical formulas according to Table 1
and finally added to the context as axioms.

In Coq, as one can compose tactics into another tactic, it is
possible to construct a tactic that performs higher-order rea-
soning for natural language that additionally injects lexical
axioms when needed. Note that search-based axiom injec-
tion also can be performed with this tactic, by replacing the
KBC-based scoring function with the search on databases.

We should note that one can combine our abduction
tactic with other semantic theories (e.g. Chatzikyriakidis and
Luo 2014; Bernardy and Chatzikyriakidis 2017) and put
the system in application. Coq has been used mainly for
system verification and formalization of mathematics and
there has been no tactic that is solely aimed at natural lan-
guage reasoning. However, Coq provides an expressive for-
mal language that combines higher-order logic and richly-
typed functional programming language, and thus offers a
general platform for various natural language semantics. We
believe that with our work, it will be easier to develop an
NLP systems based on advanced linguistic theories. This ar-

chitecture also opens up new opportunities to integrate theo-
rem proving and sophisticated machine-learning techniques.
For example, we could implement in a tactic more complex
tasks such as premise selection with deep models (Alemi et
al. 2016).

5 Experiments
5.1 SICK dataset
We evaluate the proposed method on SICK dataset (Marelli
et al. 2014). The dataset contains 4,500 problems (a pair of
premise and hypothesis) for training, 500 for trial and 4,927
for testing, with a ratio of entailment / contradiction / un-
known problems of .29 / .15 / .56 in all splits. Note that
ccg2lambda itself is an unsupervised system and does not
use any training data. We use the train part for the lemma
list in data construction (§4.1) only and use the trial part to
determine a threshold θ and to evaluate the processing speed.

5.2 New LexSICK lexical inference dataset
While SICK dataset provides a good testbed for evaluat-
ing logical inference involving linguistic phenomena such as
negation and quantification, we found that the dataset is not
ideal for evaluating complex lexical inference, specifically
latent knowledge learned by a KBC model.

To evaluate the capability of our knowledge-empowered
logic-based method, we construct our own dataset, which
is small but challenging because of its combination of non-
trivial lexical gaps and linguistic phenomena. Table 2 shows
example problems, where lexical inferences are combined
with linguistic phenomena such as quantification (Example
b), verb coordination (Example c), and passive-active alter-
nation (Example b, c). The process of the dataset construc-



Id: (a) Label: CONTRADICTION
P: A white and tan dog is running through the tall and green grass
H: A white and tan dog is ambling through a field
Id: (b) Label: ENTAILMENT
P: Someone is dropping the meat into a pan
H: The meat is being thrown into a pan
Id: (c) Label: ENTAILMENT
P: The man is singing and playing the guitar
H: The guitar is being performed by a man
Id: (d) Label: CONTRADICTION
P: A man and a woman are walking together through the wood
H: A man and a woman are staying together
Id: (e) Label: ENTAILMENT
P: A man is emptying a container made of plastic completely
H: A man is clearing a container made of plastic completely

Table 2: LexSICK RTE problems require a mix of logical
reasoning and external lexical knowledge.

tion is as follow: a human expert picks a sentence (premise)
from SICK dataset, changes a word to its synonym/antonym
according to thesauruses,8 and then changes its sentence
structure as well to construct a hypothesis.

The dataset (we refer to it as LexSICK) contains 58
problems, 29 of which is labeled entailment, 29 contradic-
tion, and no unknown label. The whole dataset is publicly
available.2

5.3 Experimental settings
Settings for ComplEx Unless otherwise stated, we set the
dimension of embeddings n = 50 and train it on the triplets
obtained from WordNet (excluding VerbOcean triplets) in
§4.1 by minimizing the logistic loss (Eq. 2) using Adam
optimizer. We use 1-N scoring (§2.2), since our dataset is
fairly large compared to standard benchmark datasets. For
the other hyperparameters, we use the same setting as in
Trouillon et al. (2016), except for the batch size of 128.
In Table 3, we show Mean Reciprocal Rank (MRR) and
Hits@N (N = 1, 3, 10) of ComplEx model (and the state-
of-the-art ConvE (Dettmers et al. 2017) with the default
hyperparameters for comparison) on development part of
the dataset in §4.1.9 The ComplEx model scores 77.68 in
MRR, which is comparably lower than scores reported for
the widely used WN18 benchmark data (above 93). Notably,
ComplEx performs better than ConvE in terms of all metrics
in this experiment. We adopt ComplEx in this work, since it
achieves better results with much lower computational load.

Settings for ccg2lambda We decide the threshold θ =
0.4 for filtering triplets based on the accuracy on the
SICK trial set. As baselines, we replicate the system of
Martı́nez-Gómez et al. (2017) with the default settings of

8We avoided WordNet and used thesaurus.com (http:
//www.thesaurus.com/) and Merriam-Webster (http://
www.merriam-webster.com/).

9 We report the scores in filtered setting. That is, compute the
rank of o for gold (s, r, o) against all e ∈ E such that (s, r, e) is
not in either of training or development data.

Method MRR Hits
@1 @3 @10

ComplEx 77.68 71.07 81.76 90.08
ConvE 67.41 57.11 75.02 85.76

Table 3: The performance of KBC models trained and eval-
uated on WordNet triplets in §4.1. We report filtered scores9.

ccg2lambda10 except for the use of CCG parsers mentioned
below.

One bottleneck of ccg2lambda is errors in CCG parsing.
To mitigate the error propagation, it uses four CCG parsers
and aggregates the results: C&C (Clark and R. Curran 2007),
EasyCCG (Lewis and Steedman 2014), EasySRL (Lewis,
He, and Zettlemoyer 2015) and depccg (Yoshikawa, Noji,
and Matsumoto 2017). We regard two results as contradicted
with each other if one is entailment and the other is contra-
diction. In such cases the system outputs unknown; other-
wise, if at least one parser results in entailment or contradic-
tion, that is adopted as the system output.

We report accuracy / precision / recall / F1 on the test part
and processing speed (macro average of five runs) in the trial
set.11

5.4 Results on SICK set
Table 4 shows the experimental results on SICK. The first
row is a baseline result without any abduction mechanism,
followed by ones using WordNet and VerbOcean additively
with the search-based axiom injection. By introducing our
abduction tactic that is combined with the search-based
axiom injection (4th row), we have successfully reduced
the computation time (-2.35 sec. compared to 3rd row).
By replacing the search-based abduction with the ComplEx
model, the averaged time to process an RTE problem is
again significantly reduced (5th row). The time gets close
to the baseline without any database (only +0.24 sec.), with
much improvement in terms of RTE performance, achiev-
ing the exactly same accuracy with Martı́nez-Gómez et al.’s
WordNet-based abduction.

Finally, we re-train a ComplEx model with similar re-
lations from VerbOcean (final row). When combining the
datasets, we find that setting the dimension of embeddings
larger to n = 100 leads to better performance. This may
help the KBC model accommodate the relatively noisy na-
ture of VerbOcean triplets. The VerbOcean triplets have con-
tributed to the improved recall by providing more knowl-
edge not covered by WordNet, while it has resulted in drops
in the other metrics. Inspecting the details, it has actu-
ally solved more examples than when using only Word-
Net triplets; however, noisy relations in the data, such as
(black, similar, white), falsely lead to proving entail-
ment / contradiction for problems whose true label is un-

10We use a version of ccg2lambda committed to the master
branch on October 2, 2017.

11We preprocess each RTE problem and do not include in the re-
ported times those involved with CCG/semantic parsing. We set the
time limit of proving to 100 seconds. These experiments are con-
ducted on a machine with 18 core 2.30 GHz Intel Xeon CPU × 2.



System Method Dataset Accuracy Precision Recall F1 Speedsearch KBC tactic WN VO
Mineshima et al. (2015) 77.30 98.93 48,07 64.68 3.79

Martı́nez-Gómez et al. (2017) 3 3 83.55 97.20 63.63 76.90 9.15
3 3 3 83.68 96.88 64.15 77.16 9.42

Ours
3 3 3 3 83.64 97.15 64.01 77.16 7.07

3 3 3 83.55 96.28 64.38 77.14 4.03
3 3 3 3 83.45 95.75 64.47 77.04 3.84

Table 4: Results on SICK test set. The results of the baseline systems are above the dashed line. The Method columns represent
the use of search-based abduction, KBC-based abduction and abduction tactic, while the Dataset columns datasets used in
abduction: WordNet (WN) and VerbOcean (VO). Speed shows macro average of processing time (sec.) of an RTE problem.

Method #Correct
ResEncoder (Nie and Bansal 2017) 18 / 58

search-based abduction 20 / 58
KBC-based abduction 21 / 58

Table 5: Experimental results on LexSICK. Both search- and
KBC-based abductions use WordNet and VerbOcean.

known. The higher recall has contributed to the overall pro-
cessing speed, since it has led more problems to be proven
before the timeout (-0.25 sec.).

We conduct detailed error analysis on 500 SICK trial
problems. The RTE system combined with our KBC-based
abduction (trained only on WordNet) has correctly solved
one more problem than a Martı́nez-Gómez et al.’s baseline
system (which additionally uses VerbOcean), resulting in the
accuracy of 84.8%. In this subset, we found the following er-
ror cases: 71 cases related to lexical knowledge, 4 failures in
CCG parsing, and 1 timeout in theorem proving. This shows
that CCG parsing is quite reliable. Around five cases among
lexical ones are due to false positively asserted lexical ax-
ioms, while the most of the others are due to the lack of
knowledge. In the following, we exclusively focus on issues
related to lexical inference.

5.5 Evaluating latent knowledge
Table 5 shows experimental results on LexSICK dataset. For
comparison, we add a result of ResEncoder (Nie and Bansal
2017), one of the state-of-the-art neural network-based RTE
models. When trained on the training part of SICK, it scores
82.00% accuracy on the SICK test part, while performs
badly on LexSICK, indicating this dataset is more challeng-
ing. The accuracies of two logic-based methods are also not
high, suggesting the difficulty of this problem. The KBC-
based method shows the same tendency as in the results
in the previous section; it solves more examples than the
search-based method, along with false positive predictions.

We observe interesting examples that show the ef-
fectiveness of using latent lexical knowledge. One is
Example (d) in Table 2, for which a latent relation
(walk, antonym, stay) is predicted by the KBC model,
while it is not available for the search-based method.
Another case is Example (e) in Table 2, where our
method obtains the axiom ∀x.clear(x) → empty(x) by

scoring the triplet (empty, synonym, clear) as high as
(empty, hyponym, clear), leading to the correct predic-
tion. The search-based method derives only ∀x.empty(x)→
clear(x), which is not relevant in this case.

Similarly, by examining the results on SICK dataset, we
found more examples that the KBC-based method has suc-
cessfully solved by utilizing latent lexical knowledge. For
example, in SICK-6874 we have a premise A couple of
white dogs are running and jumping along a beach and a
hypothesis Two dogs are playing on the beach. The KBC
model successfully proves the inference by producing mul-
tiple axioms: ∀x.along(x) → on(x), ∀x.couple(x) →
two(x) and ∀x.run(x) → play(x). One characteristic of
the KBC-based method is that it can utilize lexical relations
between general words such as frequent verbs and prepo-
sitions. Though this may cause more false positive predic-
tions, our experiments showed that under the control of the
abduction method, it contributed to improving recall while
keeping high precision.

6 Conclusion and future direction
In this work, we have proposed an automatic axiom injection
mechanism for natural language reasoning based on Knowl-
edge Base Completion. In the experiments, we show that our
method has significantly improved the processing speed of
an RTE problem, while it also achieves the competitive ac-
curacy, by utilizing the obtained latent knowledge.

In future work, we are interested in extending this
framework to generate phrasal axioms (e.g., ∀x.have(x) ∧
fun(x) → enjoy(x)). Generating this sort of axioms ac-
curately is the key for logic-based systems to achieve high
performance. In order to do that, we will need a framework
to learn to compute compositionally a vector from those of
have and fun and to predict relations such as synonym be-
tween the vector and that of enjoy.
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