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Abstract— Traditional swarm robots rely on specific com-
munication and planning strategies to coordinate particular
tasks. Human swarms exhibit distinctive characteristics due to
their capacity for language-based communication and active
reasoning. This paper presents an exploratory approach to
robotic swarm intelligence that leverages Large Language
Models (LLMs) to emulate human-like active problem-solving
behaviors. We introduce a decentralized multi-robot system
where each robot initially only has its local information and
does not know of the existence of the other robots. The
robots utilize LLMs for reasoning and natural language for
inter-robot communication, enabling them to discover peers,
share information, and coordinate actions dynamically. In a
series of experiments in zero-shot settings, we observed human-
like social behaviors, including mutual discovery, identification,
information exchange, collaboration, negotiation, and error
correction. While the technical approach is straightforward,
the main contribution lies in exploring the interactive societies
that LLM-driven robots form — a form of robot social dynamics
(or robotic social behavior analysis), examining how human-like
communication protocols and collaborative structures emerge
among robots through language-based interaction. In this
context, we use the term “robot social dynamics” to describe the
interaction patterns that arise within robot collectives, inspired
by, but distinct from traditional human anthropology.

Index Terms— Swarm Robotics, Swarm Intelligence, Large
Language Model, Artificial Intelligence, Robot Social Dynamics,
Al-Enabled Robotics, Multi-Robot Systems

I. INTRODUCTION

In nature, ants collaborate to transport food and follow
the trails of their predecessors [1]; fish schools collectively
evade predators [2]; birds form specific formations during
flight [3]; sheep exhibit synchronized movement patterns [4];
and wolves and hunting dogs demonstrate even more sophis-
ticated patterns of collective intelligence during hunting [5];
[6], [7]. Human spoken and written language allows humans
to collaborate on even more complex tasks that may not be
predefined [8], [9]. Due to their inherent complexity, such
tasks often exceed the capabilities of a single individual,
necessitating collective effort [10]. Humans actively identify
problems, analyze situations, organize groups, and collabo-
rate to achieve solutions.

Large Language Models (LLMs) offer an opportunity to
enhance swarm robotics by endowing robots with more
human-like social intelligence. We explore a decentralized
architecture (Fig. 1) in which each robot hosts its own LLM

LLM Provider
n /

Log and Record AN P

Simulation Playground

’
y
[
g.

Fig. 1.  System architecture overview showing robot interaction in the
virtual environment, the proxy middleware that manages communication
with LLM APIs, and the context management system. Each robot main-
tains an independent session that allows isolated reasoning and inter-robot
communication.

session, enabling isolated reasoning and inter-robot dialogue
through natural language. Compared to typical structured
symbolic or numeric protocols, which require predefined
message formats and explicit encoder/decoder logic, natural
language through LLM allows robots to flexibly introduce
new concepts and describe novel tasks without additional
programming. This flexibility is crucial for handling open-
ended collaborative scenarios. In fact, we experimentally
demonstrate that robots can spontaneously discover peers,
negotiate roles, correct errors, and complete collaborative
tasks without any pre-programmed relationships. The pri-
mary contribution of this work is the investigation of emer-
gent social dynamics in such LLM-driven swarms — a
form of “robot social dynamics”. In formation control and
cooperative object transportation experiments, we observed
spontaneous peer discovery, dynamic negotiation, error cor-
rection, and other interesting social interactions.

Our key contributions include (1) a fundamentally dif-
ferent paradigm for swarm robot control devoid of pre-
knowledge of peers and tasks, (2) experiments to analyze
emergent social behaviors, and (3) an analysis of task-
adaptive communication patterns and baseline assessment of
LLM capabilities in our application.

These findings demonstrate the feasibility of human-
inspired active swarm intelligence and represent a step
towards more adaptable, language-driven robotic systems
capable of emergent, cooperative problem-solving.
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II. RELATED WORK
A. Traditional Swarm Robotics Approaches

In the field of swarm robotics, traditional approaches,
including formation control [11], flocking algorithms [12],
consensus-based approaches [13], and bio-inspired swarm
algorithms [14], have shown effectiveness in predictable
environments. However, relying on predefined behavioral
patterns, these methods often lack adaptability and flexi-
bility when facing open-ended tasks [15], [16]. Zhou and
Tokekar examined multi-robot coordination in uncertain en-
vironments, focusing on algorithmic planning approaches for
adaptive decision-making, yet still within structured frame-
works [17]. Similarly, Gielis et al. provided a critical analy-
sis of communication mechanisms in multi-robot systems,
emphasizing the need for efficient information exchange
protocols while highlighting the limitations of conventional
methods [18]. Building on these challenges, Korsah et al.
developed a comprehensive taxonomy for multi-robot task
allocation that maps robotic challenges to established math-
ematical optimization models, offering systematic classifica-
tion but still within traditional paradigms [19]. In the classic
paradigms, [20] and [21] highly rely on human control,
while some automation algorithms appeared in the inter-
robot collaboration in [22] and [23], but are still unable to
self-drive to accomplish the tasks.

B. AI-Driven Agents

Our approach differs from recent LLM-based game agents.
While frameworks like ALYMPICS [24], LLM agent so-
cieties in Avalon [25], LARP for role-playing [26], and
other game agents across various genres [27] demonstrate
impressive strategic decision-making and social behaviors,
they operate within predefined rules and structured scenarios.
In contrast, our system creates an open-ended environment,
where robots organically develop collaboration strategies that
demonstrate deliberate communication and logical deduction
that more closely resemble human problem-solving without
predetermined frameworks. Thus, our system displays zero-
shot cooperation capabilities through deliberate communica-
tion and logical deduction that more closely resemble human
problem-solving.

C. LLM Applications in Robotics

Recent breakthroughs in LLMs have opened new possibil-
ities in robot control. LLM2Swarm pioneered the integration
of LLMs into robot swarms through two approaches: indirect
integration for controller synthesis and validation, and direct
integration, deploying local LLM instances on each robot for
collaboration and human-robot interaction [28]. While this
work demonstrated LLMs’ potential for reasoning, planning,
and collaboration, it primarily utilized LLMs as task planners
and controllers within predetermined collaboration patterns.
Li et al. systematically compared different LLM-based com-
munication frameworks (DMAS, CMAS, HMAS-1, HMAS-
2) in multi-robot systems, focusing on system scalability
and task success rates [29]. Lykov and Tsetserukou devel-
oped LLM-BRAIn, a transformer-based LLM fine-tuned to

TABLE I
COMPARISON WITH REPRESENTATIVE WORKS.

Feature Bio-inspired LLM-based Our
[12], [14] [28], [29] Approach
Robot Typically pre- | Often Spontaneous
Discovery defined predetermined
Language Minimal/ Task-specific Open-ended
Use Symbolic
Task Adapta- | Fixed Requires spe- | Generic
tion algorithms cific prompts prompts
Social Rule-based Structured Emergent
Dynamics
ote: Evaluations reflect trends in cited works and may not represent all
implementations.

generate adaptive robot behaviors via behavior trees (BTs),
trained on 8.5k GPT-3.5 demonstrations. LLM-BRAIn per-
forms comparably to human-created BTs [30]. Liu et al.
proposed a Human-Robot Collaboration (HRC) approach
using GPT-4 and YOLO-based perception to enhance LLM-
based robotics, enabling complex task execution through
human-guided learning and motion planning [31]. Wang et
al. addressed LLMs’ limitations in embodied robot tasks by
proposing a multimodal GPT-4V framework that integrates
language and visual inputs, enhancing robot performance and
advancing Human-Robot-Environment interaction [32].
Table I highlights key differences between our approach
and representative works. Bio-inspired methods [12], [14]
typically rely on predetermined relationships with limited
communication, while recent LLM-based approaches [28],
[29] introduce language capabilities but generally within
structured interaction frameworks. In contrast, our approach
enables spontaneous social interaction, where robots initially
have no knowledge of others’ existence and must actively
discover peers, establish communication, and self-organize.

III. PROBLEM FORMULATION
A. System Design and Implementation

Our system is implemented in a simple virtual envi-
ronment written in Python with OpenCV visualization. To
isolate and study the phenomena of language-based social
coordination, which is our primary research focus, we de-
liberately simplified physical properties, such as collision
detection. We developed a proxy middleware to unify the
management of all communications with various LLM APIs,
handle context management, and perform logging. This
proxy middleware does not change the distributed nature of
the agent decision-making system.

The proxy processes: (a) sending prompts or conversations
from robots to the LLM; (b) receiving generated responses
from the LLM and parsing into robot commands; and (c)
managing context for each robot session to record logs,
as shown in Fig. 1. Using this middleware rather than
integrating these functions into the robot simulator reduces
complexity and decouples the code, while making it conve-
nient to switch between different Al models.

When a robot connects to the proxy, the proxy creates an
independent session for that robot. Each robot in the virtual
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environment maintains its independent context, isolated from
other robots. All communication and context operations for
a robot occur within its corresponding session, and the proxy
records the context in real-time to files associated with that
session. Robots and humans can broadcast messages within
the virtual environment, which are received by other robots
and processed by their respective LLMs, enabling inter-robot
communication. The full set of system prompts and code is
made publicly available in our supplementary materials.

B. Robot Perception and Actuation Abilities

Each robot can, upon issuing a “sense” command (driven
by its LLM), obtain its absolute position and orientation
within the environment. Robots cannot directly move to
an arbitrary (x, y) position; instead, they must decompose
movement into atomic actions (forward, backward, turn),
with the distances and angles computed by the LLM. A
robot can only pick up an object if it is sufficiently close
(within a predefined tolerance). Upon attempting to pick up
an object, it will know if the action was successful and
can check whether it is currently holding an object. The
object color is solely for human visualization; internally, each
object is identified by a unique name (e.g., “red ball”, “blue
ball”). When sensing, robots receive information about the
distance to the environment boundary in eight directions.
Importantly, robots have no direct sensory perception of
other robots; all inter-robot awareness is mediated through
the shared natural language communication channel. The
simulator omits collision detection for simplicity.

C. Experimental Design

We demonstrate the spontaneous communication and col-
laboration capabilities of our system through eight tasks, as
shown in Fig. 2, which can be classified into two categories.
For Tasks 1-5, we focus on exploring formation control
and geometric reasoning, where robots must communicate,
exchange positional information, and reason about spatial
relationships to achieve structured formations, such as align-
ment, triangles, and circles. Tasks 6-8 focus on cooperative
object transportation, where robots must coordinate their
roles, negotiate task allocation, and execute assistive trans-
portation of objects. Specifically, Task 8 highlights sequential
task execution and coordination, where robots must relay
objects within a constrained movement range, demonstrating
adaptive teamwork and stepwise collaboration.

In our experimental setup, the human operator acts solely
as the task initiator by broadcasting the final task goal to
all robots at the beginning of each scenario. During the
experiments, humans do not participate in any robot-to-robot
interaction or provide further instructions—the subsequent
coordination and communication are conducted entirely by
the robots.

o Task 1 — Mutual Face-to-face Alignment: Two ran-
domly placed robots must face each other, requiring
them to discover each other’s presence, inquire about
positions, and reason about necessary rotations.

TABLE II
SUCCESS COUNTS (OUT OF 10 TRIALS) FOR LLMS ON EXPERIMENTAL
TASKS.

Model

GPT-4o
Gemini-2.0-Flash
DeepSeek-V3
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e Task 2 — Robots Alignment: Four robots randomly
placed at various random y coordinates must align at
the same y-value, demonstrating multi-agent discovery,
position information exchange, goal position negotia-
tion, and task completion verification.

e Task 3 - Equilateral Triangle Formation: Three
robots must form an equilateral triangle, testing geo-
metric reasoning capabilities.

o Task 4 — More Complex Triangle Formation: Four
robots must organize into a triangle formation, with
one robot necessarily positioned along an edge, testing
autonomous coordination when perfect symmetry is
impossible.

e Task 5 - Circle Formation: Six robots must form a
circle, a task with more robots than in other tasks.

« Task 6 — Single-object Transport: Two robots and one
object are placed in the environment, with the task of
moving the object (which requires only one robot to
transport) to a target location. This tests task allocation
when only one robot needs to complete the task.

e Task 7 — Dual-object Transport: Similar to Task 6,
but with two objects instead of one, thus increasing the
number of possible robot-object pairings.

o Task 8 — Relay Transportation: Three robots with
restricted movement ranges must coordinate to transport
one object, which can be carried by one robot at a time,
to a target location. Because of robot range restrictions,
the robots must relay the object to one another.

D. LLM Setup

We mainly experimented with GPT-40-2024-11-20, which
provided the best results in our preliminary experiments, but
we also tested how other readily available LLMs perform to
evaluate generalization to other LLMs. The tests share the
same prompt, and the temperature is set to 0.7 [33]. For
standardized control command output, we employed GPT-
4o-mini solely as a formatting tool, using its JSON output
capabilities.

We ran 10 trials on GPT-40-2024-11-20, DeepSeek-V3,
and Gemini-2.0-Flash-001 for each experiment.We define
failure as when the robots fail to correctly complete the task
within a specified time window. Tasks 1-7 have a 10-minute
timeout, while Task 8 has a 15-minute timeout, given its
additional complexity. The success attempts were recorded
in Table II. The detailed logs, recordings, and data are in the
supplementary materials.
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Fig. 2. Tllustration of the eight experimental scenarios: Tasks 1-5 explore formation control and geometric reasoning (mutual alignment, robot alignment,

equilateral triangle, complex triangle, and circle formations), while Tasks 6-8 demonstrate cooperative object transportation (single object, dual object, and

relay transportation).

IV. OBSERVATION AND CHALLENGES

A. Results and Analysis

As shown in Table II, GPT-40 achieved the highest success
rates across all eight tasks, with a particularly strong perfor-
mance in Task 2 (Robot Alignment, 8/10) and Task 6 (Single
Object Transportation, 7/10). Gemini-2.0-Flash demonstrated
comparable results on simpler tasks but struggled with more
complex geometric reasoning in Tasks 4 and 5. DeepSeek-
V3 showed significantly lower success rates across all ex-
periments, even when given 5x time limits.

Beyond the three main LLMs, we conducted limited tests
with several other models. Grok-2 and Claude-3.7-Sonnet
successfully completed at least a few tasks, but API request
limitations prevented detailed testing across all experimental
scenarios. Claude-3.5-Sonnet exhibited severe hallucination
tendencies, frequently generating irrelevant messages, in-
venting non-existent information, or prematurely declaring
successful completion of tasks. GPT-40-mini demonstrated
extremely limited context retention, often forgetting critical
information after just 3-4 exchanges, and also frequently
generating repeated, meaningless text. These observations
indicate that effective multi-robot coordination through nat-

ural language using our approach may require substantial
reasoning capacity and context management capabilities that
appear to be available only in larger, more advanced LLMs.

Analysis of failure cases revealed several common pat-
terns. In unsuccessful trials, robots frequently misinterpreted
their objectives or made critical errors in mathematical calcu-
lations when determining formation coordinates. For exam-
ple, DeepSeek-V3 always misunderstood the requirement of
uniform distribution in Task 5, so that robots reach the circle
but are not spread evenly. All LLMs frequently calculate the
orientation wrong, which causes them not to head to the
target destination, but this type of error is recoverable. All
LLMs may also generate commands that do not follow the
rules stated in the system prompt, which causes silence (i.e.,
no communication exchange) between robots and consequent
inaction, leading to eventual failure. We may use some pre-
programmed strategies to reduce the error, but since our work
is mainly focusing on the concept itself, we choose not to
use those engineering methods to hide the issue.

Tasks requiring precise geometric reasoning with multiple
agents (Tasks 4, 5) or sequential coordination (Task 8) proved
the most challenging. The circle formation task (Task 5) was
particularly difficult, with only one successful completion
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using GPT-40. This suggests that as the number of robots
increases, the dimensional complexity of spatial reasoning
and communication grows non-linearly, exceeding the cur-
rent capabilities of most LLMs.

B. Communication Pattern Analysis

Analysis of communication patterns in successful task ex-
ecutions reveals distinct interaction strategies across different
task types.

Tasks 1 to 8 required an average of 8, 11.75, 5.67, 8, 7.5,
11.5, 15.5, and 14.33 communications to complete.

We classified robot communications into eight categories:
Status Report (reporting current position, status, or progress),
Query (requesting information or confirmation), Plan An-
nouncement (declaring intentions or plans), Coordination
(organizing or directing other robots), Help Request (ex-
plicitly asking for assistance), Help Offer (providing help
or solutions), Acknowledgment (confirming information or
task completion), and Other (the initial human instruction or
communications not fitting previous categories). We utilized
GPT-4o0 to label each message in all the conversations. The
communication distribution is shown in Fig. 3. Although
our system prompts indicate that robots can collaborate, the
prompt does not indicate that they should use any dictated
communication structures or patterns. However, we do not
fully claim that all communication patterns are entirely
“emergent”; rather, the channel of interaction enables richer,
more adaptable exchanges compared to rigid structured pro-
tocols.

Status Reports dominated across all tasks (38-56% of
messages), with robots regularly sharing position and state
information. The highest proportion appeared in Task 2
(56%), where accurate alignment requirements apparently
led to frequent position updates. The formation tasks gen-
erally showed higher rates of Status Reports compared
to transportation tasks, reflecting the continuous positional
adjustments needed for geometric arrangements.

Task-specific communication patterns emerged clearly in
our data. Formation tasks (1-5) showed minimal Help Re-
quests (0%) but substantial Acknowledgments (up to 30% in
Task 5), indicating a coordination-focused approach where
consensus building was critical. In contrast, transportation
tasks (6-8) exhibited more Help Requests (6-9%) and re-
duced Acknowledgments (2-11%), perhaps reflecting a more
direct problem-solving approach when physical manipulation
was required.

Query messages showed task-dependent patterns, with the
highest proportions in Task 1 (30%) and Task 8 (23%).
This reflects the information-gathering requirements of these
specific scenarios — mutual discovery in Task 1 and complex
relay coordination in Task 8. The high proportion of Co-
ordination messages in Task 8 (26%) further demonstrates
how communication adapts to sequential dependency re-
quirements.

Examining the ratio between information sharing (Sta-
tus Reports + Queries) and coordination messages (Plan

Announcements + Coordination) reveals a task-dependent
evolution:

o Simple discovery (Task 1): 92.9% vs. 7.0%

o Intermediate formation (Tasks 2-4): ~66% vs. ~19%

o Complex formation (Task 5): 49.8% vs. 19.6%

o Transportation tasks (6-7): ~66% vs. ~17%

o Sequential transportation (Task 8): 55.8% vs. 28.3%

This progression shows how robots naturally shift from
information-heavy to coordination-heavy communication as
task complexity increases, particularly when sequential de-
pendencies are involved. Task 8 (relay transportation) ex-
hibited both high Coordination (26.1%) and Query (23.2%)
rates, directly reflecting the sequential dependencies required
in relay operations. These proportions significantly exceed
those in simpler tasks, demonstrating how communication
naturally adapts to coordination complexity.

Formation tasks (1-5) and transportation tasks (6-8) ex-
hibited substantially different communication distributions.
Most notably, Help Requests and Help Offers (combined
0% in the formation tasks) emerged as significant compo-
nents in transportation tasks (7-11%), reflecting the physical
interdependencies inherent in manipulation tasks. Task 1
showed the highest proportion of Queries (36.6% of mean-
ingful messages) and no Acknowledgments (0%), revealing
a discovery-focused communication strategy. In contrast,
Task 5 (circle formation) showed the highest proportion of
Acknowledgments (30.6%), reflecting the increased need for
confirmation in complex spatial arrangements.

C. Emergent Social Behaviors

In our experiments with LLM-driven robot swarms, we
observed several social behaviors that emerged naturally
through multi-agent interactions. While LLMs inherently
possess conversational abilities, these observed behaviors
manifest uniquely in multi-robot environments and cannot
exist in single-agent scenarios. The behaviors we describe
below emerge from the robots’ ability to reason about other
robots’ states, intentions, and needs. This capability funda-
mentally distinguishes our approach from both traditional
swarm robotics methods and single-agent LLM applications.

1) Collaborative Mathematical Optimization: In multiple
trials, robots autonomously performed mathematical reason-
ing to optimize group behavior. For example, in one trial
of Task 2, shown in Fig. 4(a), when tasked with aligning
to a common y-value, the robots shared their positions and
collectively chose a target y-position that was acceptable
to all, mimicking human group decision-making rather than
mathematically minimizing total movement distance.

2) Adaptive Resource-Constrained Coordination: When
faced with boundary constraints that prevented direct task
completion, robots spontaneously devised handoff strategies.
In Session 2964, shown in Fig. 4(b), a robot recognized its
inability to complete the task alone.

This coordination emerged without pre-programmed hand-
off protocols, demonstrating the robots’ ability to decompose
problems based on individual constraints, a capability not
typically seen in traditional swarm systems.
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Fig. 4. Showcase of emergent social behaviors, extract from a trial in Tasks 2, 8, 6, 4, and 7. (sessions 2779, 2964, 2908, 2839, and 2934).

3) Personalized Assistance Behaviors: We observed in-
stances where robots provided detailed guidance to help
others overcome difficulties. In Session 2908, shown in
Fig. 4(c), one robot encountered boundary constraints.

4) Teaching and Advising: This teaching-like behavior
demonstrates knowledge sharing and assistance not typically
observed in traditional swarm approaches.

5) Team Efficiency Meta-Reasoning: In several trials,
robots demonstrated meta-reasoning about optimal team
composition. Session 2839, shown in Fig. 4(d), provides an
example where a robot voluntarily removed itself.

This self-reflective optimization represents a social aware-
ness absent in traditional swarm approaches, which typically
utilize all available units regardless of optimal team size.

6) Predictive Conflict Management: Robots demonstrated
the ability to detect and resolve potential conflicts before
they occurred. In Session 2934, shown in Fig. 4(e), when
two robots targeted the same position, they were trying to
avoid the conflict.

This proactive conflict detection, based on awareness of

others’ declared intentions rather than physical collisions,
demonstrates predictive social coordination that extends be-
yond reactive collision avoidance typically employed in
traditional swarm robotics.

D. Critical Failure Modes

We selectively choose to analyze several significant failure
modes specific to our LLM-driven robot swarms; these
patterns reveal fundamental research challenges at the in-
tersection of language models and multi-robot systems.

1) Object State Tracking Inconsistency: LLM-driven
robots demonstrated difficulty maintaining consistent ob-
ject tracking after interactions. In Session 3276, shown in
Fig. 5(a), robots lost track of an object after dropping
it. Unlike traditional robotic systems with explicit object
state representations, LLM-driven systems rely on natural
language state updates, which are vulnerable to information
loss during extended interactions.

2) Communication Loop Entrapment: In several trials,
robots became trapped in circular communication patterns
without task progress. Session 3011, shown in Fig. 5(b),
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demonstrates this phenomenon This pattern persisted for
dozens of exchanges without progress. The social commu-
nication patterns generated by LLMs, while impressively
human-like, can lead to inefficient coordination compared
to more direct protocols used in traditional approaches.

3) Geometric Reasoning Failures: LLM-driven robots
frequently exhibited significant errors in spatial reasoning
and geometric calculations. In Session 3116, shown in
Fig. 5(c), multiple robots calculated incorrect positions for
an equilateral triangle. Despite multiple correction attempts,
the proposed coordinates remained mathematically invalid.
This reveals a fundamental limitation in LLMs’ ability to
perform consistent mathematical calculations, which is a
capability essential for successful swarm robotics operations.
These failure modes highlight important areas for improve-
ment in LLM-based swarm control. Future implementations
should focus on enhancing world-state modeling consistency,
developing structured communication protocols to prevent
circular patterns, and incorporating validation mechanisms
for mathematical calculations.

E. Response Time and Performance Analysis

Beyond task execution failures, a significant challenge in
our experiments involved LLM API reliability. In a multi-
robot environment, API requests that are excessively delayed
or fail cannot simply be retried, as the interaction context
evolves continuously. Despite implementing delay mecha-
nisms and timeout parameters to mitigate these issues, they
remained a notable concern throughout our experiments. We
observed that certain task failures stemmed not from inherent
LLM reasoning limitations but from API instability.

Identifying and isolating these API-related failures in
batch experiments is challenging. We chose not to manually
filter such failures from our results, as doing so would poten-
tially introduce bias and reduce result fidelity. As our primary
objective was to establish a proof of concept, successfully
executed tasks sufficiently demonstrated the viability of our
approach, with failure cases and success rates providing
supplementary insights.

DeepSeek-V3 exhibited particularly pronounced latency
and API instability during our experiments, with response
times ranging from 5 seconds to several minutes, occasion-
ally returning empty responses. As previously noted, we

implemented extended timeout parameters for DeepSeek-V3,
but this intervention produced no measurable improvement
in performance outcomes. Task failures resulting from com-
munication silence typically occurred well before timeout
thresholds were reached.

Although we provided a detailed communication pattern
analysis, we do not report a detailed analysis of LLM
response latency metrics, as they depend on a number of
factors beyond our experimental control, including Internet
connection speed and service queue, and they do not af-
fect the fundamental contribution of this work: the novel
paradigm of LL.M-enabled swarm robots spontaneously dis-
covering peers, self-organizing, and coordinating task execu-
tion through language-based interaction.

FE. Discussion and Limitations

Despite interesting results, our approach presents some
limitations that suggest future work. First, LLMs exhibit fun-
damental weaknesses in consistent mathematical reasoning,
particularly evident in geometric formation tasks, where cal-
culation errors frequently lead to task failures. The computa-
tional demands and API response latency issues also present
practical challenges for real-time robotic applications.

We find there is a large potential to optimize for task
completion. We expect a few-shot strategy and fine-tuning to
be our next approach, combined with engineering solutions
to mitigate unreliable API calls.

Our current simulation environment made several sim-
plifying assumptions, particularly in omitting collision de-
tection, sensor limitations, and physical constraints. While
useful for initial proof of concept, these simplifications do
not fully represent real-world robotic challenges. Future work
must address physical implementation concerns, including
sensor noise, limited perception, unreliable communication
channels, and physical interaction constraints. We intend to
build real robots and experiment in the real world. It would
be even more interesting if we made different heterogeneous
robots that have different functionalities. We can further
investigate how different functional robots collaborate spon-
taneously.

V. CONCLUSION

Our research expands the conceptual boundaries of swarm
robotics by integrating human-like social intelligence capa-
bilities through LLMs. While traditional swarm approaches
excel at specific tasks through pre-programmed behavioral
patterns, they lack generalized problem-solving abilities. Our
decentralized approach, where each robot maintains indepen-
dent reasoning without central control, preserves core swarm
principles while adding dimensions of adaptability through
natural language reasoning. The demonstrated ability of
robots to discover peers, establish communication, and self-
organize for diverse tasks without task-specific programming
represents a qualitative advance in swarm flexibility and
autonomy.

The most significant finding from our experiments is
the emergence of sophisticated social behaviors that re-
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semble human collaborative patterns. These include col-
laborative mathematical optimization, where robots collec-
tively reasoned about optimal positioning; adaptive resource-
constrained coordination, where robots devised handoff
strategies based on individual limitations; personalized assis-
tance behaviors, including teaching-like guidance to peers;
team efficiency meta-reasoning with voluntary role adjust-
ments; and predictive conflict management through intention-
based coordination.

Our communication pattern analysis revealed task-specific
adaptations in robot dialogue, with proportions of status
reports, queries, and coordination messages naturally shifting
based on task requirements. As task complexity increased,
particularly in scenarios with sequential dependencies, robots
naturally evolved more coordination-heavy communication
strategies. The stark differences between communication
patterns in formation tasks versus transportation tasks further
demonstrate how LLM-driven robots can adapt their interac-
tion styles to task demands without explicit programming
towards generalized swarm robotics.

SUPPLEMENTARY MATERIALS

All data are open-sourced on GitHub: https://
github.com/cccat6/LLM-Swarm.
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