LinksPlatform’s Platform.Ranges Class Library

1.1 ./csharp/Platform.Ranges/EnsureExtensions.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Diagnostics;

4 using System.Runtime.CompilerServices;

5 using Platform.Exceptions;

6 using Platform.Exceptions.ExtensionRoots;

7

s #pragma warning disable IDEO060 // Remove unused parameter

9

10 namespace Platform.Ranges

11 {

12 /// <summary>

13 /// <para>Provides a set of extension methods for <see cref="EnsureAlwaysExtensionRoot"/>
and <see cref="EnsureOnDebugExtensionRoot"/> objects.</para>

14 /// <para>llpemocTaBnser Habop METOLOB pacCHUpEHHs I 06bEKTOB <see
cref="EnsureAlwaysExtensionRoot"/> u <see cref="EnsureOnDebugExtensionRoot"/>.</para>

15 /// </summary>

16 public static class EnsureExtensions

17 {

18 private const string DefaultMaximumShouldBeGreaterOrEqualToMinimumMessage = "Maximum
— should be greater or equal to minimum.";

19

20 #region Always

21

22 /// <summary>

23 /// <para>Ensures that the argument with the maximum value is greater than or equal to

, the minimum value. This check is performed regardless of the build
configuration.</para>
24 /// <para>TapaHTupyeT, 4YTO apryMeHT C MaKCHMAaJbHHM 3HadYeHueM 6ojblle WX PaBeH
., MUHMMaJbHOMy 3HAUeHWO. JTa IPOBEPKa BHIIONHAETCH BHE3ABHCHUMOCTH OT KOHQUTypalluu
cbopku.</para>

25 /// </summary>
26 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHnra.</para></typeparam>
27 /// <param name="root"><para>The extension root to which this method is
— bound.</para><para>KopeHb-pacmmpeHus, XK KOTOpPOMy IpUBS3aH 3TOT MeTox.</para></param>
28 /// <param name="minimumArgument'"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHHUMAalbHHM 3HadeHHeM.</para></param>
29 /// <param name="maximumArgument'"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCHMalbHEHM 3HaueHmeM.</para></param>
30 /// <param name="maximumArgumentName'"><para>The name of argument with the maximum
— value.</para><para>/Msa apryMeHTa C MaKCHMAalbHHM 3HadeHHeM.</para></param>
31 /// <param name="messageBuilder"><para>The thrown exception's message building <see

. cref="Func{String}"/>.</para><para>Cobupanmas coobmeHrne s BHOPaCEHBAEMOLO
nckmouyerns <see cref="Func{String}"/>.</para></param>
32 [MethodImpl(MethodImplOptlons AggressiveInlining)]
33 public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this
-, EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument
< maximumArgument, string maximumArgumentName, Func<string> messageBuilder)

34 {

35 if (Comparer<TArgument>.Default.Compare (maximumArgument, minimumArgument) < 0)

36

37 throw new ArgumentException(messageBuilder(), maximumArgumentName) ;

38 }

39 }

40

" /// <summary>

42 /// <para>Ensures that the argument with the maximum value is greater than or equal to

«, the minimum value. This check is performed regardless of the build
< configuration.</para>
43 /// <para>TapaHTupyeT, YTO apLyMeHT C MaKCHMalbHHM 3HAYeHUEeM 6OJblle WIX paBeH
, MUHEMaJbHOMy 3HA4YeHHO. OTa IIPOBEPKa BHIIOIHAETCA BHE3AaBHCHMOCTH OT KOHQUIypaluu
cbopku.</para>

44 /// </summary>

45 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

46 /// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacmupeHnus, K KOTOPOMYy IIpMBS3aH 3TOT MeTof.</para></param>

a7 /// <param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHHUMalbHHM 3HadeHHeM.</para></param>

a8 /// <param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCHMalbHHM 3HadeHmeM.</para></param>

49 /// <param name="maximumArgumentName"><para>The name of argument with the maximum

— value.</para><para>llMs apryMeHTa C MaKCHUMAaJbHEM 3HaUYeHUeM.</para></param>

50

51

52

53
54
55

56
57
58
59

60

61

62

63

64

65

66

67
68

69
70
71

72

73

74

75

76

v

78
79

80

81

82

83

84
85

86

87

88

89

/17

—

<param name="message'"><para>The message of the thrown
exception.</para><para>CoobumeHue BHOPaCHBAEMOTO WHCKILUeHWd.</para></param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

—
—

{

}

/17
/17

/1)
1
/77
/7/
/7/
/7/

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string maximumArgumentName, string message)

string messageBuilder() => message;
MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument, maximumArgument,
< maximumArgumentName, messageBuilder);

<summary>

<para>Egsures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed regardless of the build
configuration.</para>

<para>['apaHTHpyeT, 4YTO apryMeHT C MaKCHMaJbHHM 3Ha4YeHHeM Oojblle WIKX PaBeH
MUHUMAJIBHOMY 3HAQUEHWD. OTa IPOBEPKa BHIIOJHAETCH BHE3ABHCHMOCTH OT KOHQUIypaluU
cbopru.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-paclIpeHUs, K KOTOPOMYy IPUBS3aH 3TOT MeToZ.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCUMaJIbHHM 3HadeHUeM.</para></param>

<param name="maximumArgumentName"><para>The name of argument with the maximum
value.</para><para>lMg apryMeHTa C MakKCHUMAJbHEM 3HAYeHHeM.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

—

res

/17
/17

7/
7/
777
7/
7/

7/

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string maximumArgumentName) =>
MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument, maximumArgument,
nameof (maximumArgument) , DefaultMaximumShouldBeGreaterOrEqualToMinimumMessage) ;

<summary>

<para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed regardless of the build
configuration.</para>

<para>['apaHTHpyeT, 4YTO apryMeHT C MaKCHMaJbHHM 3HadYeHHeM Oojblle WX pPaBeH
MUHEMaJbHOMY 3HA4UeHHO. OTa IIPOBEpKa BHIIONHAETCA BHE3ABHCHMOCTH OT KOHQUIypaluu
cbopku.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacCllpeHus, K KOTOPOMYy IpUBS3aH 3TOT MeToZn.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaxCuMalbHHM 3HadeHweM.</para></param>

[MethodImpl(MethodImpletlons AggressiveInlining)]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

—
—
—

/17
/17

/1)
1
/11
/17
/1)
/1)

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument) => MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument,
maximumArgument, nameof (maximumArgument)) ;

<summary>

<para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

<para>lapaHTupyeT, YTO 3HaYEHHE apryMeHTa HaXOJUTCA B YKa3aHHOM AualasoHe. IJTa
IIpoBepKa BHIIONHAETCS BHE3ABUCHUMOCTH OT KOHQUIypauuu c6opku.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHus, K KOTOPOMy NPHUBS3aH 3TOT MeTox.</para></param>
<param name="argumentValue"><para>The argument's value.</para><para>3HadeHue
apryMerTa.</para></param>

<param name="range'"><para>The range restriction.</para><para>0rpaHudeHue B BHZE
ouanasona.</para></param>

<param name="argumentName"><para>The argument's name.</para><para>lus
aprymMeHTa.</para></param>

90

91
92

93
94
95
96

97
98
99
100
101

102

103
104

105

106

107

108

109

110
111

112

113

114

115

116

117

118

119

120
121

122

123

124

125

126
127

128
129

130

131

132

134

135

136
137

/// <param name="messageBuilder"><para>The thrown exception's message building <see

o, cref="Func{Stringl}"/>.</para><para>Cobupanmas coobmeHre s BHOPaCEHBAEMOTO

— ucknodeHns <see cref="Func{String}"/>.</para></param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

<, TArgument argumentValue, Range<TArgument> range, string argumentName, Func<string>
- messageBuilder)

{
if (!range.Contains(argumentValue))
throw new ArgumentOutOfRangeException(argumentName, argumentValue,
— messageBuilder());
}
}

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAYEHHE APTLyMEHTA HAXOAWUTCS B YKA3aHHOM [UAalla30He. JTa

< IpOBepKa BHIIONHAETCS BHE3aBUCUMOCTH OT KOHUTypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< aprymexTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHus, K KOTOPOMy NpHBS3aH 3TOT MeTox.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauenue
aprymenTa.</para></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuvesue B BuIe

< gmwmamasoHa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>/msa
aprymenTa.</para></param>

/// <param name="message'"><para>The message of the thrown
exception.</para><para>CoobmeHue BHO6pacCHBAEMOro HCKILYeHus.</para></param>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

— TArgument argumentValue, Range<TArgument> range, string argumentName, string message)

string messageBuilder() => message;
ArgumentInRange (root, argumentValue, range, argumentName, messageBuilder);

}

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAUeHHE ApPIyMEHTa HAXOOWTICH B YKA3aHHOM AMAlla30He. JTa

< IpoBepKa BHIONHIETCS BHE3aBUCHUMOCTH OT KOHUTypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound. </para><para>KopeHb-paclIpeHus, K KOTOPOMYy IPUBH3aH 3TOT MeToZ.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3HaueHue

< apryMeHTa.</para></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuvesue B Bune
ouamasona.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>/ma
apryMeHTa.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

< TArgument argumentValue, Range<TArgument> range, string argumentName)

string messageBuilder() => [§|"Argument value [{argumentValue}] is out of range
< {rangel}.";
ArgumentInRange (root, argumentValue, range, argumentName, messageBuilder);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, YTO 3HAaUeHHE ApIyMEeHTa HAXOOWTICH B YKA3aHHOM AMAlla30He. JTa

< TIIpOBepKa BHIIOJHAETCH BHE3ABUCHMOCTH OT KoHQurypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is

— bound.</para><para>KopeHb-pacClUpeHua, K KOTOPOMYy IPUBS3aH 3TOT MeToZn.</para></param>

139

140

141

142

143
144

145

146

147

148

149
150

151

152

153

154

155
156

157

158

160

161
162

163

164

165

166

168
169
170
171
172
173
174

175

176

178

179

181

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauerue
apryMeHTa.</para></param>

/// <param name="minimum"><para>The minimum possible argument's
value.</para><para>MuHEMalIbHO BO3MOXHOE 3HaUeHHEe apryMeHTa.</para></param>

/// <param name="maximum"><para>The maximum possible argument's
value.</para><para>MakcuMalbHO BO3MOXHOE 3HadUeHWe apryMeHTa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>lms
apryMeHTa.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

., TArgument argumentValue, TArgument minimum, TArgument maximum, string argumentName)

<, => ArgumentInRange(root, argumentValue, new Range<TArgument>(minimum, maximum),

< argumentName) ;

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, YTO 3HaUeHHE apryMeHTa HAXOOWTCHI B YKA3aHHOM AMAla30He. OJTa

< IpOBepKa BHIIOIHAETCS BHE3ABHUCHUMOCTH OT KOHUTypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

/// <param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacCllIpeHUs, K KOTOPOMYy IpUBS3aH 3TOT MeToZn.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauerue
aprymenTa.</para></param>

/// <param name="minimum"><para>The minimum possible argument's
value.</para><para>MuHUMaJIbHO BO3MOXHOE 3HAUEHUE aprymeHTa.</para></param>

/// <param name="maximum"><para>The maximum possible argument's
value.</para><para>MakcuManbHO BO3MOXHOE 3HadUeHWe apryMeHTa.</para></param>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

. TArgument argumentValue, TArgument minimum, TArgument maximum) =>

< ArgumentInRange(root, argumentValue, new Range<TArgument>(minimum, maximum), null);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAYEHHE ApPTyMEHTA HAXOAWUTCS B YKA3AHHOM [UAla30HE. JTa

< IpOBepKa BHIONHAETCS BHE3aBUCHUMOCTH OT KOHUTypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< aprymexTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHus, K KOTOPOMy NPHBS3aH 3TOT MeTox.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauenue
apryMeHTa.</para></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuvesue B BuIe
owanasoHa.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

<, TArgument argumentValue, Range<TArgument> range) => ArgumentInRange (root,

< argumentValue, range, null);

#endregion
#region OnDebug

/// <summary>

/// <para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, YTO apryMeHT C MaKCHMalbHHM 3HAYeHUEeM 6OJblle WIX paBeH

, MUHEMaJbHOMy 3HA4UeHHO. OTa IIPOBEPKa BHIIONHAETCA TOJBKO IS KOHQUIypanund COOpKU
DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< apryMeHnTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacCllpeHus, K KOTOPOMYy IpUBS3aH 5TOT MeToZn.</para></param>

/// <param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

/// <param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCUMalbHHM 3HadeHueM.</para></param>

/// <param name="maximumArgumentName'"><para>The name of argument with the maximum

— value.</para><para>llMs apryMeHTa C MaKCHUMAaJbHEM 3HaUYeHUeM.</para></param>

182

183
184

186
187

188

189

191

192

194

195

197

201

202

204

205

207

208
209

210
211
212

213

214
215

216

217

218

/17

—
—

<param name="messageBuilder"><para>The thrown exception's message building <see
cref="Func{String}"/>.</para><para>Cobupanmas coobuerre s BHOPACEHBAEMOLO
nckmouerns <see cref="Func{String}"/>.</para></param>

[Conditional ("DEBUG")]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

redd

/17
/17

/11
57?
/77
/77
/77
/77
/77

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string maximumArgumentName, Func<string> messageBuilder)
Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,
maximumArgument, maximumArgumentName, messageBuilder);

<summary>

<para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed only for DEBUG build configuration.</para>
<para>['apaHTHpyeT, 4YTO apryMeHT C MaKCHMaJbHHM 3HadYeHHeM Oojblle WNIX PaBeH
MUHEMaJbHOMY 3HA4eHHL. JTa IIPOBEPKAa BHIIONHAETCA TOJBKO IS KOHQUIypanund COOPKU
DEBUG.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-paclpeHHs, K KOTOPOMYy IpUBS3aH 3TOT MeToZn.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCHUMaJlbHHM 3HadeHUueM.</para></param>

<param name="maximumArgumentName"><para>The name of argument with the maximum
value.</para><para>lMg apryMeHTa C MakKCHUMAaJbHEM 3HaUYeHUeM.</para></param>

<param name="message'"><para>The message of the thrown
exception.</para><para>CoobmeHne BHO6pacCHBAeMOIr'0 HCKIUeHUd.</para></param>

[Condltlonal("DEBUG")]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

rFeld

/17
/17

/77
"
/1)
/1)
/1)
/1)

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string maximumArgumentName, string message) =>
Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,
maximumArgument, maximumArgumentName, message);

<summary>

<para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed only for DEBUG build configuration.</para>
<para>['apaHTupyeT, 4YTO apryMeHT C MaKCHMaJIbHHM 3Ha4YeHumeM Oojblle MM pPaBeH
MUHEMaJbHOMY 3HA4YeHHO. OTa IIPOBEpPKa BHIIONHAETCA TOJBKO IS KOHQUIypanuud COOpKU
DEBUG.</para>

</summary>

<typeparam name="TArgument'"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacCllIpeHus, K KOTOPOMYy IpUBS3aH 3TOT MeToZn.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>AprymeHT C MakKCHUMalbHEM 3HadYeHueM.</para></param>

<param name="argumentName"><para>The argument's name.</para><para>lims
aprymenTa.</para></param>

[Condltlonal("DEBUG")]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

reed

/17
/17

/17

I
/1)
/1)
/1)

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string argumentName) =>
Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,
maximumArgument, argumentName) ;

<summary>

<para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed only for DEBUG build configuration.</para>
<para>['apaHTupyeT, 4YTO apryMeHT C MAKCHMaJIbHHM 3HAUYeHHeM OOoJblle UM PaBEeH
MUHEMaJbHOMY 3HA4YeHHIO. OTa IIPOBEPKA BHIIONHAETCHA TOJBKO IJS KOHQUIypamuu cO6OpKu
DEBUG.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHusi, K KOTOPOMy NPHUBH3aH 3TOT MeTOx.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHHMAJBbHEM 3HadeHHeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MakCHUMaJlbHHM 3HadeHueM.</para></param>

219
220

221

222

223

224

225
226

227

228
229

230

231

232
233

234

236

237

238
239

240

241
242

243

244

245
246

247

248

249

250

251
252

253

254
255

257
258

259
260

[Conditional ("DEBUG")]

public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this
EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument) =>
Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,
maximumArgument, null);

Feld

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is

< performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HaUeHHE apryMeHTa HAXOOWTCHI B YKA3aHHOM AMANla3OHe. OTa

< TIIpoBepKa BHIOJHSETCH TONbKO i KoHburypauum cbopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacllpeHus, K KOTOPOMYy IpUBS3aH 5TOT MeToZn.</para></param>

/// <param name="argument'"></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuvesue B Bune
ouanasona.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>/ma
aprymMerTa.</para></param>

/// <param name="messageBuilder"><para>The thrown exception's message building <see

o, cref="Func{Stringl}"/>.</para><para>Cobupanmas coobmeHne s BHOPACEHBAEMOLO
nckimouerus <see cref="Func{Stringl}"/>.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

., TArgument argument, Range<TArgument> range, string argumentName, Func<string>

., messageBuilder) => Ensure.Always.ArgumentInRange(argument, range, argumentName,

— messageBuilder);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, YTO 3HaUeHHE apTyMeHTa HAXOOWTCH B YKA3aHHOM AMAlla3OHe. JTa

< TIIpOBEpKa BHIIOJHAETCH TONBKO A KoHburypauumm cbopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacllIpeHUs, K KOTOPOMYy IpUBH3aH 3TOT MeToZn.</para></param>

/// <param name="argument"></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuyesHue B BuIE
IuanasoHa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>lma

< apryMexTa.</para></param>

/// <param name="message"><para>The message of the thrown
exception.</para><para>CoobmeHne BHO6pacCHBaeMOro HCKIbUeHUd.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

., TArgument argument, Range<TArgument> range, string argumentName, string message) =>

— Ensure.Always.ArgumentInRange(argument, range, argumentName, message);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAaUeHHE apIyMeHTa HAXOOWTICH B YKA3aHHOM AMAlla30He. JTa

< IpoBepKa BHIONHAETCS TONBKO IJd KoHburypauuu c6bopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound. </para><para>KopeHb-paclIpeHus, K KOTOPOMYy IPUBH3aH 3TOT MeToZ.</para></param>

/// <param name="argument"></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuueHue B BuIe
IuanasoHa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>lms
aprymenTa.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

-, TArgument argument, Range<TArgument> range, string argumentName) =>

< Ensure.Always.ArgumentInRange(argument, range, argumentName) ;

/// <summary>

261

262

264

265

267

268

270

271

272

274

275
276

277

278

279

280

281

282
283

284
285
286

287

288
289

290

291
292

293
294

295
296
297
298

1.2

1
2
3
4
5
6
7
8

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAYEHHE ApryMEHTa HAXOAUTCH B YKa3aHHOM [Ualla3oHe. JTa

< TIpoBepKa BHIOJHSETCH TONbKO Ansd KoHburypauumm cbopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMesnTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacllipeHus, K KOTOPOMYy IpUBS3aH 5TOT MeTon.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauerue

< apryMexTa.</para></param>

/// <param name="minimum"><para>The minimum possible argument's
value.</para><para>MuHUMaJIbHO BO3MOXHOE 3HAUEHUE apryMeHTa.</para></param>

/// <param name="maximum"><para>The maximum possible argument's
value.</para><para>MakcuManbHO BO3MOXHOE 3HadUeHWe apryMeHTa.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

., TArgument argumentValue, TArgument minimum, TArgument maximum) =>

-, Ensure.Always.ArgumentInRange(argumentValue, new Range<TArgument>(minimum, maximum),

< null);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, dYTO 3HAYEHHE APTLyMEHTA HAXOAWUTCS B YKA3aHHOM [UAla30He. JTa

< TIpoBepKa BHIOJHSETCH TONbKO i KoHburypaumum cbopxu DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< aprymexTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHus, K KOTOPOMy NpHBH3aH 3TOT MeTox.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauenue
aprymenTa.</para></param>

/// <param name="minimum"><para>The minimum possible argument's

< value.</para><para>MurnManbHO BO3MOXHOE 3Ha4YeHHe aprymenTta.</para></param>

/// <param name="maximum"><para>The maximum possible argument's
value.</para><para>MakcuManbHO BO3MOXHOE 3HAdYeHHe apryMexTa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>/msa
aprymenTa.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

., TArgument argumentValue, TArgument minimum, TArgument maximum, string argumentName)

., => Ensure.Always.ArgumentInRange (argumentValue, new Range<TArgument>(minimum,

< maximum), argumentName);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTUpyeT, 4UTO 3HAYEHWEe ApTyMEHTA HAXOAWUTCS B YKa3aHHOM [Uala30He. JTa

< IpoBepKa BHIONHAETCS TONBKO IJf KoHpurypauuu c6bopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< aprymexTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound. </para><para>KopeHb-paclIpeHus, K KOTOPOMYy IPUBH3aH 3TOT MeToZ.</para></param>

/// <param name="argument"></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuyexHue B Bune
IuanasoHa.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

—, TArgument argument, Range<TArgument> range) =>

< Ensure.Always.ArgumentInRange(argument, range, null);

#endregion

./csharp/Platform.Ranges/Range.cs

namespace Platform.Ranges

{

/17
/17
/17
/17

<summary>

<para>Contains static fields with <see cref="Range{T}"/> constants.</para>
<para>CoZepXuUT CTAaTUYEeCKMUEe IOJNA C KOHCTaHTaMu Tuna <see cref="Range{T}"/>.</para>
</summary>

public static class Range

{

10
11
12
13

14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49

50
51
52
53
54
55

56
57
58
59
60
61

62
63
64
65
66
67

68
69
70
71
72
73

74
75

/// <summary>

/// <para>Gets the whole <see cref="sbyte"/> values range.</para>

/// <para>BosBpamaeT BecCh OUANa30H 3HadeHuil <see cref="sbyte"/>.</para>

/// </summary>

public static readonly Range<sbyte> SByte = new Range<sbyte>(sbyte.MinValue,
< sbyte.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="short"/> values range.</para>

/// <para>BoaBpamaeT BecCb nuanas3oH 3HadYeHuil <see cref="short"/>.</para>

/// </summary>

public static readonly Range<short> Int16 = new Range<short>(short.MinValue,
s short.MaxValue) ;

/// <summary>

/// <para>Gets the whole <see cref="int"/> values range.</para>

/// <para>BosBpamaeT BeCh numama3oH 3HadeHu# <see cref="int"/>.</para>

/// </summary>

public static readonly Range<int> Int32 = new Range<int>(int.MinValue, int.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="long"/> values range.</para>

/// <para>BosBpamaeT Bech OUANa30H 3HauYeHui# <see cref="long"/>.</para>
/// </summary>

public static readonly Range<long> Int64 = new Range<long>(long.MinValue, long.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="byte"/> values range.</para>

/// <para>BosBpamaeT BeCb nuamnas3oH 3HauYeHui <see cref="byte"/>.</para>

/// </summary>

public static readonly Range<byte> Byte = new Range<byte>(byte.MinValue, byte.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="ushort"/> values range.</para>

/// <para>BosBpamaeT Bech OUANa30H 3HauYeHui#r <see cref="ushort"/>.</para>

/// </summary>

public static readonly Range<ushort> UIntl6 = new Range<ushort>(ushort.MinValue,
s ushort.MaxValue) ;

/// <summary>

/// <para>Gets the whole <see cref="uint"/> values range.</para>

/// <para>BosBpamaeT Bech numama3oH 3HadeHu# <see cref="uint"/>.</para>
/// </summary>

public static readonly Range<uint> UInt32 = new Range<uint>(uint.MinValue,
< uint.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="ulong"/> values range.</para>

/// <para>BosBpamaeT BeCb Ouanal3oH 3Ha4YeHuil <see cref="ulong"/>.</para>

/// </summary>

public static readonly Range<ulong> UInt64 = new Range<ulong>(ulong.MinValue,
- ulong.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="float"/> values range.</para>

/// <para>BosBpamaeT BeCb nuamnas3oH 3HaYeHui <see cref="float"/>.</para>

/// </summary>

public static readonly Range<float> Single = new Range<float>(float.MinValue,
< float.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="double"/> values range.</para>

/// <para>BosBpamaeT Becb Ouamnas3oH 3HadeHui <see cref="double"/>.</para>

/// </summary>

public static readonly Range<double> Double = new Range<double>(double.MinValue,
< double.MaxValue) ;

/// <summary>

/// <para>Gets the whole <see cref="decimal"/> values range.</para>

/// <para>BosBpamaeT BecCh Ouala30H 3HaYeHui <see cref="decimal"/>.</para>

/// </summary>

public static readonly Range<decimal> Decimal = new Range<decimal>(decimal.MinValue,
< decimal.MaxValue);

1.3 ./csharp/Platform.Ranges/RangeExtensions.cs

1 using System.Runtime.CompilerServices;
2
3 namespace Platform.Ranges
4
{
5 /// <summary>
6 /// <para>Represents a set of extension methods for <see cref="Range{T}"/> structs.</para>
7 /// <para>llpezcTaBisgeT HabOp METOLOB pacCUUpeHWs Lis CTPYyKTyp <see cref="Range{T}"/>.</para>
8 /// </summary>
9 public static class RangeExtensions
10 {
1 /// <summary>
12 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
— cref="Range{T}.Maximum"/>.</para>
13 /// <para>BruucnseT pasHuny Mexzny <see cref="Range{T}.Minimum"/> u <see
— cref="Range{T}.Maximum"/>.</para>
14 /// </summary>
15 /// <param name="range"><para>The range of <see cref="ulong"/>.</para><para>/luanasox
< 3HadeHm# <see cref="ulong"/>.</para></param>
16 /// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see
o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>
17 [MethodImpl (MethodImplOptions.AggressiveInlining)]
18 public static ulong Difference(this Range<ulong> range) => range.Maximum - range.Minimum;
19
20 /// <summary>
21 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
— cref="Range{T}.Maximum"/>.</para>
22 /// <para>BruucnseT pasHuny Mexzny <see cref="Range{T}.Minimum"/> u <see
— cref="Range{T}.Maximum"/>.</para>
23 /// </summary>
24 /// <param name="range"><para>The range of <see cref="uint"/>.</para><para>[luanasox
< 3HadeHm# <see cref="uint"/>.</para></param>
25 /// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see
o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>
26 [MethodImpl (MethodImplOptions.AggressiveInlining)]
27 public static uint Difference(this Range<uint> range) => range.Maximum - range.Minimum;
28
29 /// <summary>
30 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
— cref="Range{T}.Maximum"/>.</para>
31 /// <para>BruucnseT pasHuny Mexzny <see cref="Range{T}.Minimum"/> u <see
— cref="Range{T}.Maximum"/>.</para>
32 /// </summary>
33 /// <param name="range"><para>The range of <see cref="ushort"/>.</para><para>Jluanasox
< 3HadeHm# <see cref="ushort"/>.</para></param>
34 /// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see
o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>
35 [MethodImpl (MethodImplOptions.AggressiveInlining)]
36 public static ushort Difference(this Range<ushort> range) => (ushort) (range.Maximum -
< range.Minimum);
37
38 /// <summary>
39 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
< cref="Range{T}.Maximum"/>.</para>
40 /// <para>BuumcnaeT pasuumny Mexny <see cref="Range{T}.Minimum"/> u <see
< cref="Range{T}.Maximum"/>.</para>
41 /// </summary>
42 /// <param name="range"><para>The range of <see cref="byte"/>.</para><para>[luanazox
— 3HadeHuil <see cref="byte"/>.</para></param>
43 /// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see
<, cref="Range{T}.Maximum"/>.</para><para>Pazuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>
44 [MethodImpl (MethodImplOptions.AggressiveInlining)]
15 public static byte Difference(this Range<byte> range) => (byte) (range.Maximum -
— range.Minimum) ;
46
a7 /// <summary>
18 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
— cref="Range{T}.Maximum"/>.</para>
19 /// <para>BuuucnseT pasHuly Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>
50 /// </summary>

51

52

53
54
55
56
57

58

59
60

61

62

63

64

65

66

67

68
69

70

71

72

73

74

75

76

7
78

79

80

81

82

83

84

85

86
87

88

89

90

91

92

93

94

95
96

/// <param name="range"><para>The range of <see cref="long"/>.</para><para>[luanasox

< 3HadeHuit <see cref="long"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static long Difference(this Range<long> range) => range.Maximum - range.Minimum;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

— cref="Range{T}.Maximum"/>.</para>

/// <para>BuuucnseT pasHuly Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="int"/>.</para><para>/luanasox

< 3HadeHmit <see cref="int"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

«, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static int Difference(this Range<int> range) => range.Maximum - range.Minimum;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

— cref="Range{T}.Maximum"/>.</para>

/// <para>BuuucnseT pasuuly Mexny <see cref="Range{T}.Minimum"/> u <see

< cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="short"/>.</para><para>/luanasox
— 3HaueHm#t <see cref="short"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

-, cref="Range{T}.Maximum"/>.</para><para>Pazmuny Mexzny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static short Difference(this Range<short> range) => (short) (range.Maximum -
< range.Minimum) ;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

< cref="Range{T}.Maximum"/>.</para>

/// <para>BruucnseT pasHuny Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="sbyte'"/>.</para><para>/luanasox
< 3HadeHm# <see cref="sbyte"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static sbyte Difference(this Range<sbyte> range) => (sbyte) (range.Maximum -
— range.Minimum) ;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

— cref="Range{T}.Maximum"/>.</para>

/// <para>BuumcnseT pasuuny Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="double"/>.</para><para>[uanasox
< 3Havemu# <see cref="double"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

«, cref="Range{T}.Maximum"/>.</para><para>Pasmuny mexzny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static double Difference(this Range<double> range) => range.Maximum -

— range.Minimum;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

< cref="Range{T}.Maximum"/>.</para>

/// <para>Bruucnser pasHumy Mexzny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="float"/>.</para><para>/luanasox
< 3HadeHnm#t <see cref="float"/>.</para></param>

97

98
99
100
101
102

103

104
105

1.4

© 0 N O Utse W N =

e e =
w N = O

14

15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static float Difference(this Range<float> range) => range.Maximum - range.Minimum;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
cref="Range{T}.Maximum"/>.</para>

/// <para>BuuucnseT pasHuly Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="decimal"/>.</para><para>[luanazon
3HadeHuU# <see cref="decimal"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

<, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>

— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static decimal Difference(this Range<decimal> range) => range.Maximum -

— range.Minimum;

./csharp/Platform.Ranges/Range[T].cs
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using Platform.Exceptions;

namespace Platform.Ranges

{
/17
/17
/17
/17
/17
/17

7/

/77

<summary>

<para>Represents a range between minimum and maximum values.</para>

<para>llpescTaBnseT Iuala30H MEXAy MUHMMAJIbHHM K MAaKCHMAJIbHEM 3HadYeHUsMH.</para>
</summary>

<remarks>

<para>Based on <a href="http://stackoverflow.com/questions/5343006/is-there-a-c-sharp-ty
pe-for-representing-an-integer-range">the question at

StackOverflow.</para>

<para>0cHoBaHO Ha <a href="http://stackoverflow.com/questions/5343006/is-there-a-c-sharp
-type-for-representing-an-integer-range'">Bompoce B

StackOverflow.</para>

</remarks>

public struct Range<T> : IEquatable<Range<T>>

{

private static readonly Comparer<T> _comparer = Comparer<T>.Default;
private static readonly EqualityComparer<T> _equalityComparer =
— EqualityComparer<T>.Default;

/// <summary>

/// <para>Returns minimum value of the range.</para>

/// <para>BosBpamaeT MUHMMAaJIbHOE 3HAUeHHE AuanasoHa.</para>
/// </summary>

public readonly T Minimum;

/// <summary>

/// <para>Returns maximum value of the range.</para>

/// <para>BosBpamaeT MakCUMaJIbHOE 3HAUEHWE IuanasoHa.</para>
/// </summary>

public readonly T Maximum;

/// <summary>

/// <para>Initializes a new instance of the Range class.</para>

/// <para>UuimanusupyeT HOBHI 3K3eMIudp kKiacca Range.</para>

/// </summary>

/// <param name—"minimumAndMaximum"><para>Sing1e value for both Minimum and Maximum
fields.</para><para>0zgzo 3Haduerwe nng mose# Minimum m Maximum.</para></param>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public Range(T minimumAndMaximum)

Minimum
Maximum

minimumAndMaximum;
minimumAndMaximum;

}

/// <summary>

/// <para>Initializes a new instance of the Range class.</para>
/// <para>UuimanusupyeT HOBHI 3K3eMIudp kKiacca Range.</para>
/// </summary>

49

50

51

52
53
54
55

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72

73

74
75

76
7
78
79
80
81

82

83
84

85
86
87
88
89
90

91

92

93

94

95
96

97

98
99

101

102

/// <param name="minimum"><para>The minimum value of the range.</para><para>MunuManbHOE
3HadYeHWe [ualnasoHa.</para></param>

/// <param name="maximum"><para>The maximum value of the range.</para><para>MaxcumanbHOe
3HadYeHWe [umalnasoHa.</para></param>

/// <exception cref="ArgumentException"><para>Thrown when the maximum is less than the

<, minimum.</para><para>BubpachHBaeTcs, KOTJa MakCUMyM MeHbIe
muHEMyMa . </para></exception>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public Range(T minimum, T maximum)

Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimum, maximum,
<, nameof (maximum)) ;

Minimum = minimum;

Maximum = maximum;

}

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpezcraBnsgeT nuanasoH B yLobHoM mns uTeHus dopmare.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>CTporoBoe
IpeLCTaBleHKue IuanasoHa.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public override string ToString() => [§"[{Minimum}..{Maximum}]";

/// <summary>

/// <para>Determines if the provided value is inside the range.</para>

/// <para>OmpegesnsieT, HAaXOOUTCS JU yKA3aHHOe 3HAYEHWE BHyTpU AuamnasoHa.</para>

/// </summary>

/// <param name="value"><para>The value to test.</para><para>3nadenue mis
mpoBepku.</para></param>

/// <returns><para>True if the value is inside Range, else false.</para><para>True, ecnu
3HAYeHWe HaXOAUTCH BHYTpU AuanasoHa, uHade false.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public bool Contains(T value) => _comparer.Compare(Minimum, value) <= 0 &&

— _comparer.Compare (Maximum, value) >= 0;

/// <summary>

/// <para>Determines if another range is inside the bounds of this range.</para>

/// <para>0mpefenseT, HaXOOUTCHA NN IOpyroil Iuamas3oH BHYTPU CpPaHUI 5TOTO IuamnasoHa.</para>

/// </summary>

/// <param name="range"><para>The child range to test.</para><para>[louepHuil IuanaszoH A

< mpoBepku.</para></param>

/// <returns><para>True if range is inside, else false.</para><para>True, eciu OuanazoH
HaxoOuTCHA BHyTpu, mHade false.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public bool Contains(Range<T> range) => Contains(range.Minimum) &&

< Contains(range.Maximum) ;

/// <summary>

/// <para>Determines whether the current range is equal to another range.</para>

/// <para>OmpegesnsieT, paBeH JIX TeKyWu# AMANa30H LPyroMy AuAmnasoHy.</para>

/// </summary>

/// <param name="other"><para>A range to compare with this range.</para><para>[luanazox
LI CpaBHEHHS C STUM [OUAlla30HOM.</para></param>

/// <returns><para>True if the current range is equal to the other range; otherwise,

., false.</para><para>True, eciu TeKymuil IUaNa30H paBeH IPYyroMy IUANa30HY; HHAUe
false.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public bool Equals(Range<T> other) => _equalityComparer.Equals(Minimum, other.Minimum)

— && _equalityComparer.Equals(Maximum, other.Maximum) ;

/// <summary>

/// <para>Creates a new <see cref="ValueTuple{T,T}"/> struct initialized with <see

. cref="Range{T}.Minimum"/> as <see cref="ValueTuple{T,T}.Iteml"/> and <see
cref="Range{T}.Maximum"/> as <see cref="ValueTuple{T,T}.Item2"/>.</para>

/// <para>CoazmaeT HOByWL CTpPyKTypy <see cref="ValueTuple{T,T}"/>, uHUIWaIuU3UPOBAHHYL C

., moMomblb <see cref="Range{T}.Minimum"/> xax <see cref="ValueTuple{T,T}.Iteml"/> u

< <see cref="Range{T}.Maximum"/> xax <see cref="ValueTuple{T,T}.Item2"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <typeparamref
name="T"/>.</para><para>[luanasor 3HadeHuii <typeparamref name="T"/>.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static implicit operator ValueTuple<T, T>(Range<T> range) => (range.Minimum,

— range.Maximum) ;

103
104

105

107
108
109

110
111
112
113
114
115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132

133

142

143

144
145
146
147

1.5

© 0w N0 s W N

-
o

11
12

/// <summary>

/// <para>Creates a new <see cref="Range{T}"/> struct initialized with <see

o, cref="ValueTuple{T,T}.Iteml"/> as <see cref="Range{T}.Minimum"/> and <see
cref="ValueTuple{T,T}.Item2"/> as <see cref="Range{T}.Maximum"/>.</para>

/// <para>CozzmaeT HOByWL CTPyKTypy <see cref="Range{T}"/>, mHUIManu3WpPOBaHHYWH C IIOMOLBI

, <see cref="ValueTuple{T,T}.Iteml"/> xax <see cref="Range{T}.Minimum"/> u <see

— cref="ValueTuple{T,T}.Item2"/> xax <see cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="tuple'"><para>The tuple.</para><para>KopTex.</para></param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static implicit operator Range<T>(ValueTuple<T, T> tuple) => new

<~ Range<T>(tuple.Iteml, tuple.Item?2);

/// <summary>

/// <para>Determines whether the current range is equal to another object.</para>

/// <para>0upefensgeT, paBeH Iu TEKymU# OUANa30H OPYyroMy o6beKTy.</para>

/// </summary>

/// <param name="obj"><para>An object to compare with this range.</para><para>06berT mns
CpaBHEHHWs C >TUM Iyama3oHoM.</para></param>

/// <returns><para>True if the current range is equal to the other object; otherwise,

., false.</para><para>True, ecnu TeKyuu#l AVana30H paBeH OPYyLoMy OOGLEKTYy; HHAUE
false.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public override bool Equals(object obj) => obj is Range<T> range 7 Equals(range) : false;

/// <summary>

/// Calculates the hash code for the current <see cref="Range{T}"/> instance.

/// </summary>

/// <returns>The hash code for the current <see cref="Range{T}"/> instance.</returns>
[MethodImpl (MethodImplOptions.AggressiveInlining)]

public override int GetHashCode() => (Minimum, Maximum).GetHashCode() ;

/// <summary>

/// <para>Determines if the specified range is equal to the current range.</para>

/// <para>OmpegesnsieT, paBeH IX yKa3aHHHH IUANa30H TEeKylleMy Iuanas3oHy.</para>

/// </summary>

/// <param name="left"><para>The current range.</para><para>Texymuii
IuanasoH.</para></param>

/// <param name="right"><para>A range to compare with this range.</para><para>[luanazox
LI CpaBHEHHSA C STHUM [OUAIla30HOM.</para></param>

/// <returns><para>True if the current range is equal to the other range; otherwise,

., false.</para><para>True, eciu TeKymuil IUaNa30H paBeH IPYyroMy IUANa30HY; HHAUE
false.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public static bool operator ==(Range<T> left, Range<T> right) => left.Equals(right);

/// <summary>

/// <para>Determines if the specified range is not equal to the current range.</para>

/// <para>OnpegesseT, He paBeH IX yKa3aHHHH IUala30H TEKymeMy OuanasoHy.</para>

/// </summary>

/// <param name="left"><para>The current range.</para><para>Texymuii
IUanasoH.</para></param>

/// <param name="right"><para>A range to compare with this range.</para><para>[/luanazox

< g CpaBHEHUS C 3THUM JUANa30HOM.</para></param>

/// <returns><para>True if the current range is not equal to the other range; otherwise,

., false.</para><para>True, eciu TeKymuil IUaNa30H He paBeH APyroMy ANANA30HY; HHAYE
false.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static bool operator !=(Range<T> left, Range<T> right) => !(left == right);

./csharp/Platform.Ranges. Tests/EnsureExtensionsTests.cs
using System;
using Xunit;
using Platform.Exceptions;

namespace Platform.Ranges.Tests

public static class EnsureExtensionsTests

[Fact]

public static void MaximumArgumentIsGreaterOrEqualToMinimumExceptionTest() =>
. Assert.Throws<ArgumentException>(() =>

< Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(2, 1));

[Fact]

13 public static void ArgumentInRangeExceptionTest() =>
., Assert.Throws<ArgumentOutOfRangeException>(() => Ensure.Always.ArgumentInRange(5,
= (6, 7)));

14 }

15}

1.6 ./csharp/Platform.Ranges.Tests/RangeTests.cs

1 using System;

2 using Xunit;

3

4+ namespace Platform.Ranges.Tests

5 1

6 public static class RangeTests

7

8 [Fact]

9 public static void ConstructorsTest()

10 {

11 var rangel = new Range<int>(1, 3);

12 Assert.Equal(l, rangel.Minimum);

13 Assert.Equal(3, rangel.Maximum) ;

14 Assert.Throws<ArgumentException>(() => new Range<int>(2, 1));
15 var range2 = new Range<int>(5);

16 Assert.Equal(5, range2.Minimum);

17 Assert.Equal(5, range2.Maximum) ;

18 }

19

20 [Fact]

21 public static void ContainsTest ()

22 {

23 var range = new Range<int>(1, 3);

24 Assert.True(range.Contains(1));

25 Assert.True(range.Contains(2));

26 Assert.True(range.Contains(3));

27 Assert.True(range.Contains((2, 3)));
28 Assert.False(range.Contains((3, 4)));
29 }

30

31 [Fact]

32 public static void DifferenceTest()

33 {

34 var range = new Range<int>(1, 3);

35 Assert.Equal(2, range.Difference());
36 }

37

38 [Fact]

39 public static void ToStringTest ()

40 {

1 var range = new Range<int>(1, 3);

12 Assert.Equal("[1..3]", range.ToString());
43 }

44

45 [Fact]

16 public static void EqualityTest()

a7 {

a8 var rangel = new Range<int>(1, 3);

49 var rangelDuplicate = new Range<int>(1, 3);
50 var range2 = new Range<int>(2, 5);

51 Assert.True(rangel == rangelDuplicate);
52 Assert.Equal(rangel, rangelDuplicate);
53 Assert.True(rangel != range2);

54 Assert.NotEqual(rangel, range2);

55 }

56 }

o
N1
(-]

Index

./csharp/Platform.Ranges. Tests/EnsureExtensions Tests.cs, 13
./csharp/Platform.Ranges. Tests/RangeTests.cs, 14
./csharp/Platform.Ranges/EnsureExtensions.cs, 1
./csharp/Platform.Ranges/Range.cs, 7
./csharp/Platform.Ranges/RangeExtensions.cs, 8
./csharp/Platform.Ranges/Range[T].cs, 11

