
LinksPlatform's Platform.Ranges Class Library

1.1 ./
sharp/Platform.Ranges/EnsureExtensions.
s

1 using System;

2 using System.Colle
tions.Generi
;

3 using System.Diagnosti
s;

4 using System.Runtime.CompilerServi
es;

5 using Platform.Ex
eptions;

6 using Platform.Ex
eptions.ExtensionRoots;

7

8 #pragma warning disable IDE0060 // Remove unused parameter

9

10 namespa
e Platform.Ranges

11 {

12 /// <summary>

13 /// <para>Provides a set of extension methods for <see
ref="EnsureAlwaysExtensionRoot"/>

and <see
ref="EnsureOnDebugExtensionRoot"/> obje
ts.</para>→֒

14 /// <para>Ïðåäîñòàâëÿåò íàáîð ìåòîäîâ ðàñøèðåíèÿ äëÿ îáúåêòîâ <see

ref="EnsureAlwaysExtensionRoot"/> è <see
ref="EnsureOnDebugExtensionRoot"/>.</para>→֒

15 /// </summary>

16 publi
 stati

lass EnsureExtensions

17 {

18 private
onst string DefaultMaximumShouldBeGreaterOrEqualToMinimumMessage = "Maximum

should be greater or equal to minimum.";→֒

19

20 #region Always

21

22 /// <summary>

23 /// <para>Ensures that the argument with the maximum value is greater than or equal to

the minimum value. This
he
k is performed regardless of the build

onfiguration.</para>

→֒

→֒

24 /// <para>�àðàíòèðóåò, ÷òî àðãóìåíò ñ ìàêñèìàëüíûì çíà÷åíèåì áîëüøå èëè ðàâåí

ìèíèìàëüíîìó çíà÷åíèþ. Ýòà ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè

ñáîðêè.</para>

→֒

→֒

25 /// </summary>

26 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

27 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

28 /// <param name="minimumArgument"><para>The argument with the minimum

value.</para><para>Àðãóìåíò ñ ìèíèìàëüíûì çíà÷åíèåì.</para></param>→֒

29 /// <param name="maximumArgument"><para>The argument with the maximum

value.</para><para>Àðãóìåíò
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

30 /// <param name="maximumArgumentName"><para>The name of argument with the maximum

value.</para><para>Èìÿ àðãóìåíòà
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

31 /// <param name="messageBuilder"><para>The thrown ex
eption's message building <see

ref="Fun
{String}"/>.</para><para>Ñîáèðàþùàÿ ñîîáùåíèå äëÿ âûáðàñûâàåìîãî

èñêëþ÷åíèÿ <see
ref="Fun
{String}"/>.</para></param>

→֒

→֒

32 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

33 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument

maximumArgument, string maximumArgumentName, Fun
<string> messageBuilder)

→֒

→֒

34 {

35 if (Comparer<TArgument>.Default.Compare(maximumArgument, minimumArgument) < 0)

36 {

37 throw new ArgumentEx
eption(messageBuilder(), maximumArgumentName);

38 }

39 }

40

41 /// <summary>

42 /// <para>Ensures that the argument with the maximum value is greater than or equal to

the minimum value. This
he
k is performed regardless of the build

onfiguration.</para>

→֒

→֒

43 /// <para>�àðàíòèðóåò, ÷òî àðãóìåíò ñ ìàêñèìàëüíûì çíà÷åíèåì áîëüøå èëè ðàâåí

ìèíèìàëüíîìó çíà÷åíèþ. Ýòà ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè

ñáîðêè.</para>

→֒

→֒

44 /// </summary>

45 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

46 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

47 /// <param name="minimumArgument"><para>The argument with the minimum

value.</para><para>Àðãóìåíò ñ ìèíèìàëüíûì çíà÷åíèåì.</para></param>→֒

48 /// <param name="maximumArgument"><para>The argument with the maximum

value.</para><para>Àðãóìåíò
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

49 /// <param name="maximumArgumentName"><para>The name of argument with the maximum

value.</para><para>Èìÿ àðãóìåíòà
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

1

50 /// <param name="message"><para>The message of the thrown

ex
eption.</para><para>Ñîîáùåíèå âûáðàñûâàåìîãî èñêëþ÷åíèÿ.</para></param>→֒

51 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

52 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument

maximumArgument, string maximumArgumentName, string message)

→֒

→֒

53 {

54 string messageBuilder() => message;

55 MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument, maximumArgument,

maximumArgumentName, messageBuilder);→֒

56 }

57

58 /// <summary>

59 /// <para>Ensures that the argument with the maximum value is greater than or equal to

the minimum value. This
he
k is performed regardless of the build

onfiguration.</para>

→֒

→֒

60 /// <para>�àðàíòèðóåò, ÷òî àðãóìåíò ñ ìàêñèìàëüíûì çíà÷åíèåì áîëüøå èëè ðàâåí

ìèíèìàëüíîìó çíà÷åíèþ. Ýòà ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè

ñáîðêè.</para>

→֒

→֒

61 /// </summary>

62 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

63 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

64 /// <param name="minimumArgument"><para>The argument with the minimum

value.</para><para>Àðãóìåíò ñ ìèíèìàëüíûì çíà÷åíèåì.</para></param>→֒

65 /// <param name="maximumArgument"><para>The argument with the maximum

value.</para><para>Àðãóìåíò
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

66 /// <param name="maximumArgumentName"><para>The name of argument with the maximum

value.</para><para>Èìÿ àðãóìåíòà
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

67 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

68 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument

maximumArgument, string maximumArgumentName) =>

MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument, maximumArgument,

nameof(maximumArgument), DefaultMaximumShouldBeGreaterOrEqualToMinimumMessage);

→֒

→֒

→֒

→֒

69

70 /// <summary>

71 /// <para>Ensures that the argument with the maximum value is greater than or equal to

the minimum value. This
he
k is performed regardless of the build

onfiguration.</para>

→֒

→֒

72 /// <para>�àðàíòèðóåò, ÷òî àðãóìåíò ñ ìàêñèìàëüíûì çíà÷åíèåì áîëüøå èëè ðàâåí

ìèíèìàëüíîìó çíà÷åíèþ. Ýòà ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè

ñáîðêè.</para>

→֒

→֒

73 /// </summary>

74 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

75 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

76 /// <param name="minimumArgument"><para>The argument with the minimum

value.</para><para>Àðãóìåíò ñ ìèíèìàëüíûì çíà÷åíèåì.</para></param>→֒

77 /// <param name="maximumArgument"><para>The argument with the maximum

value.</para><para>Àðãóìåíò
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

78 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

79 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument

maximumArgument) => MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument,

maximumArgument, nameof(maximumArgument));

→֒

→֒

→֒

80

81 /// <summary>

82 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed regardless of the build
onfiguration.</para>→֒

83 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè ñáîðêè.</para>→֒

84 /// </summary>

85 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

86 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

87 /// <param name="argumentValue"><para>The argument's value.</para><para>Çíà÷åíèå

àðãóìåíòà.</para></param>→֒

88 /// <param name="range"><para>The range restri
tion.</para><para>Îãðàíè÷åíèå â âèäå

äèàïàçîíà.</para></param>→֒

89 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

2

90 /// <param name="messageBuilder"><para>The thrown ex
eption's message building <see

ref="Fun
{String}"/>.</para><para>Ñîáèðàþùàÿ ñîîáùåíèå äëÿ âûáðàñûâàåìîãî

èñêëþ÷åíèÿ <see
ref="Fun
{String}"/>.</para></param>

→֒

→֒

91 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

92 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

TArgument argumentValue, Range<TArgument> range, string argumentName, Fun
<string>

messageBuilder)

→֒

→֒

93 {

94 if (!range.Contains(argumentValue))

95 {

96 throw new ArgumentOutOfRangeEx
eption(argumentName, argumentValue,

messageBuilder());→֒

97 }

98 }

99

100 /// <summary>

101 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed regardless of the build
onfiguration.</para>→֒

102 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè ñáîðêè.</para>→֒

103 /// </summary>

104 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

105 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

106 /// <param name="argumentValue"><para>The argument's value.</para><para>Çíà÷åíèå

àðãóìåíòà.</para></param>→֒

107 /// <param name="range"><para>The range restri
tion.</para><para>Îãðàíè÷åíèå â âèäå

äèàïàçîíà.</para></param>→֒

108 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

109 /// <param name="message"><para>The message of the thrown

ex
eption.</para><para>Ñîîáùåíèå âûáðàñûâàåìîãî èñêëþ÷åíèÿ.</para></param>→֒

110 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

111 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

TArgument argumentValue, Range<TArgument> range, string argumentName, string message)→֒

112 {

113 string messageBuilder() => message;

114 ArgumentInRange(root, argumentValue, range, argumentName, messageBuilder);

115 }

116

117 /// <summary>

118 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed regardless of the build
onfiguration.</para>→֒

119 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè ñáîðêè.</para>→֒

120 /// </summary>

121 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

122 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

123 /// <param name="argumentValue"><para>The argument's value.</para><para>Çíà÷åíèå

àðãóìåíòà.</para></param>→֒

124 /// <param name="range"><para>The range restri
tion.</para><para>Îãðàíè÷åíèå â âèäå

äèàïàçîíà.</para></param>→֒

125 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

126 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

127 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

TArgument argumentValue, Range<TArgument> range, string argumentName)→֒

128 {

129 string messageBuilder() => $"Argument value [{argumentValue}℄ is out of range

{range}.";→֒

130 ArgumentInRange(root, argumentValue, range, argumentName, messageBuilder);

131 }

132

133 /// <summary>

134 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed regardless of the build
onfiguration.</para>→֒

135 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè ñáîðêè.</para>→֒

136 /// </summary>

137 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

138 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

3

139 /// <param name="argumentValue"><para>The argument's value.</para><para>Çíà÷åíèå

àðãóìåíòà.</para></param>→֒

140 /// <param name="minimum"><para>The minimum possible argument's

value.</para><para>Ìèíèìàëüíî âîçìîæíîå çíà÷åíèå àðãóìåíòà.</para></param>→֒

141 /// <param name="maximum"><para>The maximum possible argument's

value.</para><para>Ìàêñèìàëüíî âîçìîæíîå çíà÷åíèå àðãóìåíòà.</para></param>→֒

142 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

143 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

144 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

TArgument argumentValue, TArgument minimum, TArgument maximum, string argumentName)

=> ArgumentInRange(root, argumentValue, new Range<TArgument>(minimum, maximum),

argumentName);

→֒

→֒

→֒

145

146 /// <summary>

147 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed regardless of the build
onfiguration.</para>→֒

148 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè ñáîðêè.</para>→֒

149 /// </summary>

150 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

151 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

152 /// <param name="argumentValue"><para>The argument's value.</para><para>Çíà÷åíèå

àðãóìåíòà.</para></param>→֒

153 /// <param name="minimum"><para>The minimum possible argument's

value.</para><para>Ìèíèìàëüíî âîçìîæíîå çíà÷åíèå àðãóìåíòà.</para></param>→֒

154 /// <param name="maximum"><para>The maximum possible argument's

value.</para><para>Ìàêñèìàëüíî âîçìîæíîå çíà÷åíèå àðãóìåíòà.</para></param>→֒

155 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

156 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

TArgument argumentValue, TArgument minimum, TArgument maximum) =>

ArgumentInRange(root, argumentValue, new Range<TArgument>(minimum, maximum), null);

→֒

→֒

157

158 /// <summary>

159 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed regardless of the build
onfiguration.</para>→֒

160 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ âíåçàâèñèìîñòè îò êîí�èãóðàöèè ñáîðêè.</para>→֒

161 /// </summary>

162 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

163 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

164 /// <param name="argumentValue"><para>The argument's value.</para><para>Çíà÷åíèå

àðãóìåíòà.</para></param>→֒

165 /// <param name="range"><para>The range restri
tion.</para><para>Îãðàíè÷åíèå â âèäå

äèàïàçîíà.</para></param>→֒

166 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

167 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

TArgument argumentValue, Range<TArgument> range) => ArgumentInRange(root,

argumentValue, range, null);

→֒

→֒

168

169 #endregion

170

171 #region OnDebug

172

173 /// <summary>

174 /// <para>Ensures that the argument with the maximum value is greater than or equal to

the minimum value. This
he
k is performed only for DEBUG build
onfiguration.</para>→֒

175 /// <para>�àðàíòèðóåò, ÷òî àðãóìåíò ñ ìàêñèìàëüíûì çíà÷åíèåì áîëüøå èëè ðàâåí

ìèíèìàëüíîìó çíà÷åíèþ. Ýòà ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè

DEBUG.</para>

→֒

→֒

176 /// </summary>

177 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

178 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

179 /// <param name="minimumArgument"><para>The argument with the minimum

value.</para><para>Àðãóìåíò ñ ìèíèìàëüíûì çíà÷åíèåì.</para></param>→֒

180 /// <param name="maximumArgument"><para>The argument with the maximum

value.</para><para>Àðãóìåíò
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

181 /// <param name="maximumArgumentName"><para>The name of argument with the maximum

value.</para><para>Èìÿ àðãóìåíòà
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

4

182 /// <param name="messageBuilder"><para>The thrown ex
eption's message building <see

ref="Fun
{String}"/>.</para><para>Ñîáèðàþùàÿ ñîîáùåíèå äëÿ âûáðàñûâàåìîãî

èñêëþ÷åíèÿ <see
ref="Fun
{String}"/>.</para></param>

→֒

→֒

183 [Conditional("DEBUG")℄

184 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument

maximumArgument, string maximumArgumentName, Fun
<string> messageBuilder) =>

Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,

maximumArgument, maximumArgumentName, messageBuilder);

→֒

→֒

→֒

→֒

185

186 /// <summary>

187 /// <para>Ensures that the argument with the maximum value is greater than or equal to

the minimum value. This
he
k is performed only for DEBUG build
onfiguration.</para>→֒

188 /// <para>�àðàíòèðóåò, ÷òî àðãóìåíò ñ ìàêñèìàëüíûì çíà÷åíèåì áîëüøå èëè ðàâåí

ìèíèìàëüíîìó çíà÷åíèþ. Ýòà ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè

DEBUG.</para>

→֒

→֒

189 /// </summary>

190 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

191 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

192 /// <param name="minimumArgument"><para>The argument with the minimum

value.</para><para>Àðãóìåíò ñ ìèíèìàëüíûì çíà÷åíèåì.</para></param>→֒

193 /// <param name="maximumArgument"><para>The argument with the maximum

value.</para><para>Àðãóìåíò
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

194 /// <param name="maximumArgumentName"><para>The name of argument with the maximum

value.</para><para>Èìÿ àðãóìåíòà
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

195 /// <param name="message"><para>The message of the thrown

ex
eption.</para><para>Ñîîáùåíèå âûáðàñûâàåìîãî èñêëþ÷åíèÿ.</para></param>→֒

196 [Conditional("DEBUG")℄

197 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument

maximumArgument, string maximumArgumentName, string message) =>

Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,

maximumArgument, maximumArgumentName, message);

→֒

→֒

→֒

→֒

198

199 /// <summary>

200 /// <para>Ensures that the argument with the maximum value is greater than or equal to

the minimum value. This
he
k is performed only for DEBUG build
onfiguration.</para>→֒

201 /// <para>�àðàíòèðóåò, ÷òî àðãóìåíò ñ ìàêñèìàëüíûì çíà÷åíèåì áîëüøå èëè ðàâåí

ìèíèìàëüíîìó çíà÷åíèþ. Ýòà ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè

DEBUG.</para>

→֒

→֒

202 /// </summary>

203 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

204 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

205 /// <param name="minimumArgument"><para>The argument with the minimum

value.</para><para>Àðãóìåíò ñ ìèíèìàëüíûì çíà÷åíèåì.</para></param>→֒

206 /// <param name="maximumArgument"><para>The argument with the maximum

value.</para><para>Àðãóìåíò
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

207 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

208 [Conditional("DEBUG")℄

209 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument

maximumArgument, string argumentName) =>

Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,

maximumArgument, argumentName);

→֒

→֒

→֒

→֒

210

211 /// <summary>

212 /// <para>Ensures that the argument with the maximum value is greater than or equal to

the minimum value. This
he
k is performed only for DEBUG build
onfiguration.</para>→֒

213 /// <para>�àðàíòèðóåò, ÷òî àðãóìåíò ñ ìàêñèìàëüíûì çíà÷åíèåì áîëüøå èëè ðàâåí

ìèíèìàëüíîìó çíà÷åíèþ. Ýòà ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè

DEBUG.</para>

→֒

→֒

214 /// </summary>

215 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

216 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

217 /// <param name="minimumArgument"><para>The argument with the minimum

value.</para><para>Àðãóìåíò ñ ìèíèìàëüíûì çíà÷åíèåì.</para></param>→֒

218 /// <param name="maximumArgument"><para>The argument with the maximum

value.</para><para>Àðãóìåíò
 ìàêñèìàëüíûì çíà÷åíèåì.</para></param>→֒

5

219 [Conditional("DEBUG")℄

220 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument

maximumArgument) =>

Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,

maximumArgument, null);

→֒

→֒

→֒

→֒

221

222 /// <summary>

223 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed only for DEBUG build
onfiguration.</para>→֒

224 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè DEBUG.</para>→֒

225 /// </summary>

226 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

227 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

228 /// <param name="argument"></param>

229 /// <param name="range"><para>The range restri
tion.</para><para>Îãðàíè÷åíèå â âèäå

äèàïàçîíà.</para></param>→֒

230 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

231 /// <param name="messageBuilder"><para>The thrown ex
eption's message building <see

ref="Fun
{String}"/>.</para><para>Ñîáèðàþùàÿ ñîîáùåíèå äëÿ âûáðàñûâàåìîãî

èñêëþ÷åíèÿ <see
ref="Fun
{String}"/>.</para></param>

→֒

→֒

232 [Conditional("DEBUG")℄

233 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

TArgument argument, Range<TArgument> range, string argumentName, Fun
<string>

messageBuilder) => Ensure.Always.ArgumentInRange(argument, range, argumentName,

messageBuilder);

→֒

→֒

→֒

234

235 /// <summary>

236 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed only for DEBUG build
onfiguration.</para>→֒

237 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè DEBUG.</para>→֒

238 /// </summary>

239 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

240 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

241 /// <param name="argument"></param>

242 /// <param name="range"><para>The range restri
tion.</para><para>Îãðàíè÷åíèå â âèäå

äèàïàçîíà.</para></param>→֒

243 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

244 /// <param name="message"><para>The message of the thrown

ex
eption.</para><para>Ñîîáùåíèå âûáðàñûâàåìîãî èñêëþ÷åíèÿ.</para></param>→֒

245 [Conditional("DEBUG")℄

246 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

TArgument argument, Range<TArgument> range, string argumentName, string message) =>

Ensure.Always.ArgumentInRange(argument, range, argumentName, message);

→֒

→֒

247

248 /// <summary>

249 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed only for DEBUG build
onfiguration.</para>→֒

250 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè DEBUG.</para>→֒

251 /// </summary>

252 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

253 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

254 /// <param name="argument"></param>

255 /// <param name="range"><para>The range restri
tion.</para><para>Îãðàíè÷åíèå â âèäå

äèàïàçîíà.</para></param>→֒

256 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

257 [Conditional("DEBUG")℄

258 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

TArgument argument, Range<TArgument> range, string argumentName) =>

Ensure.Always.ArgumentInRange(argument, range, argumentName);

→֒

→֒

259

260 /// <summary>

6

261 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed only for DEBUG build
onfiguration.</para>→֒

262 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè DEBUG.</para>→֒

263 /// </summary>

264 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

265 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

266 /// <param name="argumentValue"><para>The argument's value.</para><para>Çíà÷åíèå

àðãóìåíòà.</para></param>→֒

267 /// <param name="minimum"><para>The minimum possible argument's

value.</para><para>Ìèíèìàëüíî âîçìîæíîå çíà÷åíèå àðãóìåíòà.</para></param>→֒

268 /// <param name="maximum"><para>The maximum possible argument's

value.</para><para>Ìàêñèìàëüíî âîçìîæíîå çíà÷åíèå àðãóìåíòà.</para></param>→֒

269 [Conditional("DEBUG")℄

270 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

TArgument argumentValue, TArgument minimum, TArgument maximum) =>

Ensure.Always.ArgumentInRange(argumentValue, new Range<TArgument>(minimum, maximum),

null);

→֒

→֒

→֒

271

272 /// <summary>

273 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed only for DEBUG build
onfiguration.</para>→֒

274 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè DEBUG.</para>→֒

275 /// </summary>

276 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

277 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

278 /// <param name="argumentValue"><para>The argument's value.</para><para>Çíà÷åíèå

àðãóìåíòà.</para></param>→֒

279 /// <param name="minimum"><para>The minimum possible argument's

value.</para><para>Ìèíèìàëüíî âîçìîæíîå çíà÷åíèå àðãóìåíòà.</para></param>→֒

280 /// <param name="maximum"><para>The maximum possible argument's

value.</para><para>Ìàêñèìàëüíî âîçìîæíîå çíà÷åíèå àðãóìåíòà.</para></param>→֒

281 /// <param name="argumentName"><para>The argument's name.</para><para>Èìÿ

àðãóìåíòà.</para></param>→֒

282 [Conditional("DEBUG")℄

283 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

TArgument argumentValue, TArgument minimum, TArgument maximum, string argumentName)

=> Ensure.Always.ArgumentInRange(argumentValue, new Range<TArgument>(minimum,

maximum), argumentName);

→֒

→֒

→֒

284

285 /// <summary>

286 /// <para>Ensures that the argument value is in the spe
ified range. This
he
k is

performed only for DEBUG build
onfiguration.</para>→֒

287 /// <para>�àðàíòèðóåò, ÷òî çíà÷åíèå àðãóìåíòà íàõîäèòñÿ â óêàçàííîì äèàïàçîíå. Ýòà

ïðîâåðêà âûïîëíÿåòñÿ òîëüêî äëÿ êîí�èãóðàöèè ñáîðêè DEBUG.</para>→֒

288 /// </summary>

289 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Òèï

àðãóìåíòà.</para></typeparam>→֒

290 /// <param name="root"><para>The extension root to whi
h this method is

bound.</para><para>Êîðåíü-ðàñøèðåíèÿ, ê êîòîðîìó ïðèâÿçàí ýòîò ìåòîä.</para></param>→֒

291 /// <param name="argument"></param>

292 /// <param name="range"><para>The range restri
tion.</para><para>Îãðàíè÷åíèå â âèäå

äèàïàçîíà.</para></param>→֒

293 [Conditional("DEBUG")℄

294 publi
 stati
 void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

TArgument argument, Range<TArgument> range) =>

Ensure.Always.ArgumentInRange(argument, range, null);

→֒

→֒

295

296 #endregion

297 }

298 }

1.2 ./
sharp/Platform.Ranges/Range.
s

1 namespa
e Platform.Ranges

2 {

3 /// <summary>

4 /// <para>Contains stati
 fields with <see
ref="Range{T}"/>
onstants.</para>

5 /// <para>Ñîäåðæèò ñòàòè÷åñêèå ïîëÿ ñ êîíñòàíòàìè òèïà <see
ref="Range{T}"/>.</para>

6 /// </summary>

7 publi
 stati

lass Range

8 {

7

9 /// <summary>

10 /// <para>Gets the whole <see
ref="sbyte"/> values range.</para>

11 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="sbyte"/>.</para>

12 /// </summary>

13 publi
 stati
 readonly Range<sbyte> SByte = new Range<sbyte>(sbyte.MinValue,

sbyte.MaxValue);→֒

14

15 /// <summary>

16 /// <para>Gets the whole <see
ref="short"/> values range.</para>

17 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="short"/>.</para>

18 /// </summary>

19 publi
 stati
 readonly Range<short> Int16 = new Range<short>(short.MinValue,

short.MaxValue);→֒

20

21 /// <summary>

22 /// <para>Gets the whole <see
ref="int"/> values range.</para>

23 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="int"/>.</para>

24 /// </summary>

25 publi
 stati
 readonly Range<int> Int32 = new Range<int>(int.MinValue, int.MaxValue);

26

27 /// <summary>

28 /// <para>Gets the whole <see
ref="long"/> values range.</para>

29 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="long"/>.</para>

30 /// </summary>

31 publi
 stati
 readonly Range<long> Int64 = new Range<long>(long.MinValue, long.MaxValue);

32

33 /// <summary>

34 /// <para>Gets the whole <see
ref="byte"/> values range.</para>

35 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="byte"/>.</para>

36 /// </summary>

37 publi
 stati
 readonly Range<byte> Byte = new Range<byte>(byte.MinValue, byte.MaxValue);

38

39 /// <summary>

40 /// <para>Gets the whole <see
ref="ushort"/> values range.</para>

41 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="ushort"/>.</para>

42 /// </summary>

43 publi
 stati
 readonly Range<ushort> UInt16 = new Range<ushort>(ushort.MinValue,

ushort.MaxValue);→֒

44

45 /// <summary>

46 /// <para>Gets the whole <see
ref="uint"/> values range.</para>

47 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="uint"/>.</para>

48 /// </summary>

49 publi
 stati
 readonly Range<uint> UInt32 = new Range<uint>(uint.MinValue,

uint.MaxValue);→֒

50

51 /// <summary>

52 /// <para>Gets the whole <see
ref="ulong"/> values range.</para>

53 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="ulong"/>.</para>

54 /// </summary>

55 publi
 stati
 readonly Range<ulong> UInt64 = new Range<ulong>(ulong.MinValue,

ulong.MaxValue);→֒

56

57 /// <summary>

58 /// <para>Gets the whole <see
ref="float"/> values range.</para>

59 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="float"/>.</para>

60 /// </summary>

61 publi
 stati
 readonly Range<float> Single = new Range<float>(float.MinValue,

float.MaxValue);→֒

62

63 /// <summary>

64 /// <para>Gets the whole <see
ref="double"/> values range.</para>

65 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="double"/>.</para>

66 /// </summary>

67 publi
 stati
 readonly Range<double> Double = new Range<double>(double.MinValue,

double.MaxValue);→֒

68

69 /// <summary>

70 /// <para>Gets the whole <see
ref="de
imal"/> values range.</para>

71 /// <para>Âîçâðàùàåò âåñü äèàïàçîí çíà÷åíèé <see
ref="de
imal"/>.</para>

72 /// </summary>

73 publi
 stati
 readonly Range<de
imal> De
imal = new Range<de
imal>(de
imal.MinValue,

de
imal.MaxValue);→֒

74 }

75 }

8

1.3 ./
sharp/Platform.Ranges/RangeExtensions.
s

1 using System.Runtime.CompilerServi
es;

2

3 namespa
e Platform.Ranges

4 {

5 /// <summary>

6 /// <para>Represents a set of extension methods for <see
ref="Range{T}"/> stru
ts.</para>

7 /// <para>Ïðåäñòàâëÿåò íàáîð ìåòîäîâ ðàñøèðåíèÿ äëÿ ñòðóêòóð <see
ref="Range{T}"/>.</para>

8 /// </summary>

9 publi
 stati

lass RangeExtensions

10 {

11 /// <summary>

12 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

13 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

14 /// </summary>

15 /// <param name="range"><para>The range of <see
ref="ulong"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="ulong"/>.</para></param>→֒

16 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

17 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

18 publi
 stati
 ulong Differen
e(this Range<ulong> range) => range.Maximum - range.Minimum;

19

20 /// <summary>

21 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

22 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

23 /// </summary>

24 /// <param name="range"><para>The range of <see
ref="uint"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="uint"/>.</para></param>→֒

25 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

26 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

27 publi
 stati
 uint Differen
e(this Range<uint> range) => range.Maximum - range.Minimum;

28

29 /// <summary>

30 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

31 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

32 /// </summary>

33 /// <param name="range"><para>The range of <see
ref="ushort"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="ushort"/>.</para></param>→֒

34 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

35 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

36 publi
 stati
 ushort Differen
e(this Range<ushort> range) => (ushort)(range.Maximum -

range.Minimum);→֒

37

38 /// <summary>

39 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

40 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

41 /// </summary>

42 /// <param name="range"><para>The range of <see
ref="byte"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="byte"/>.</para></param>→֒

43 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

44 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

45 publi
 stati
 byte Differen
e(this Range<byte> range) => (byte)(range.Maximum -

range.Minimum);→֒

46

47 /// <summary>

48 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

49 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

50 /// </summary>

9

51 /// <param name="range"><para>The range of <see
ref="long"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="long"/>.</para></param>→֒

52 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

53 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

54 publi
 stati
 long Differen
e(this Range<long> range) => range.Maximum - range.Minimum;

55

56 /// <summary>

57 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

58 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

59 /// </summary>

60 /// <param name="range"><para>The range of <see
ref="int"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="int"/>.</para></param>→֒

61 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

62 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

63 publi
 stati
 int Differen
e(this Range<int> range) => range.Maximum - range.Minimum;

64

65 /// <summary>

66 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

67 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

68 /// </summary>

69 /// <param name="range"><para>The range of <see
ref="short"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="short"/>.</para></param>→֒

70 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

71 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

72 publi
 stati
 short Differen
e(this Range<short> range) => (short)(range.Maximum -

range.Minimum);→֒

73

74 /// <summary>

75 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

76 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

77 /// </summary>

78 /// <param name="range"><para>The range of <see
ref="sbyte"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="sbyte"/>.</para></param>→֒

79 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

80 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

81 publi
 stati
 sbyte Differen
e(this Range<sbyte> range) => (sbyte)(range.Maximum -

range.Minimum);→֒

82

83 /// <summary>

84 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

85 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

86 /// </summary>

87 /// <param name="range"><para>The range of <see
ref="double"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="double"/>.</para></param>→֒

88 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

89 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

90 publi
 stati
 double Differen
e(this Range<double> range) => range.Maximum -

range.Minimum;→֒

91

92 /// <summary>

93 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

94 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

95 /// </summary>

96 /// <param name="range"><para>The range of <see
ref="float"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="float"/>.</para></param>→֒

10

97 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

98 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

99 publi
 stati
 float Differen
e(this Range<float> range) => range.Maximum - range.Minimum;

100

101 /// <summary>

102 /// <para>Cal
ulates differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para>→֒

103 /// <para>Âû÷èñëÿåò ðàçíèöó ìåæäó <see
ref="Range{T}.Minimum"/> è <see

ref="Range{T}.Maximum"/>.</para>→֒

104 /// </summary>

105 /// <param name="range"><para>The range of <see
ref="de
imal"/>.</para><para>Äèàïàçîí

çíà÷åíèé <see
ref="de
imal"/>.</para></param>→֒

106 /// <returns><para>Differen
e between <see
ref="Range{T}.Minimum"/> and <see

ref="Range{T}.Maximum"/>.</para><para>�àçíèöó ìåæäó <see
ref="Range{T}.Minimum"/>

è <see
ref="Range{T}.Maximum"/>.</para></returns>

→֒

→֒

107 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

108 publi
 stati
 de
imal Differen
e(this Range<de
imal> range) => range.Maximum -

range.Minimum;→֒

109 }

110 }

1.4 ./
sharp/Platform.Ranges/Range[T℄.
s

1 using System;

2 using System.Colle
tions.Generi
;

3 using System.Runtime.CompilerServi
es;

4 using Platform.Ex
eptions;

5

6 namespa
e Platform.Ranges

7 {

8 /// <summary>

9 /// <para>Represents a range between minimum and maximum values.</para>

10 /// <para>Ïðåäñòàâëÿåò äèàïàçîí ìåæäó ìèíèìàëüíûì è ìàêñèìàëüíûì çíà÷åíèÿìè.</para>

11 /// </summary>

12 /// <remarks>

13 /// <para>Based on <a href="http://sta
koverflow.
om/questions/5343006/is-there-a-
-sharp-ty ⌋

pe-for-representing-an-integer-range">the question at

Sta
kOverflow.</para>

→֒

→֒

14 /// <para>Îñíîâàíî íà <a href="http://sta
koverflow.
om/questions/5343006/is-there-a-
-sharp ⌋

-type-for-representing-an-integer-range">âîïðîñå â

Sta
kOverflow.</para>

→֒

→֒

15 /// </remarks>

16 publi
 stru
t Range<T> : IEquatable<Range<T>>

17 {

18 private stati
 readonly Comparer<T> _
omparer = Comparer<T>.Default;

19 private stati
 readonly EqualityComparer<T> _equalityComparer =

EqualityComparer<T>.Default;→֒

20

21 /// <summary>

22 /// <para>Returns minimum value of the range.</para>

23 /// <para>Âîçâðàùàåò ìèíèìàëüíîå çíà÷åíèå äèàïàçîíà.</para>

24 /// </summary>

25 publi
 readonly T Minimum;

26

27 /// <summary>

28 /// <para>Returns maximum value of the range.</para>

29 /// <para>Âîçâðàùàåò ìàêñèìàëüíîå çíà÷åíèå äèàïàçîíà.</para>

30 /// </summary>

31 publi
 readonly T Maximum;

32

33 /// <summary>

34 /// <para>Initializes a new instan
e of the Range
lass.</para>

35 /// <para>Èíèöèàëèçèðóåò íîâûé ýêçåìïëÿð êëàññà Range.</para>

36 /// </summary>

37 /// <param name="minimumAndMaximum"><para>Single value for both Minimum and Maximum

fields.</para><para>Îäíî çíà÷åíèå äëÿ ïîëåé Minimum è Maximum.</para></param>→֒

38 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

39 publi
 Range(T minimumAndMaximum)

40 {

41 Minimum = minimumAndMaximum;

42 Maximum = minimumAndMaximum;

43 }

44

45 /// <summary>

46 /// <para>Initializes a new instan
e of the Range
lass.</para>

47 /// <para>Èíèöèàëèçèðóåò íîâûé ýêçåìïëÿð êëàññà Range.</para>

48 /// </summary>

11

49 /// <param name="minimum"><para>The minimum value of the range.</para><para>Ìèíèìàëüíîå

çíà÷åíèå äèàïàçîíà.</para></param>→֒

50 /// <param name="maximum"><para>The maximum value of the range.</para><para>Ìàêñèìàëüíîå

çíà÷åíèå äèàïàçîíà.</para></param>→֒

51 /// <ex
eption
ref="ArgumentEx
eption"><para>Thrown when the maximum is less than the

minimum.</para><para>Âûáðàñûâàåòñÿ, êîãäà ìàêñèìóì ìåíüøå

ìèíèìóìà.</para></ex
eption>

→֒

→֒

52 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

53 publi
 Range(T minimum, T maximum)

54 {

55 Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimum, maximum,

nameof(maximum));→֒

56 Minimum = minimum;

57 Maximum = maximum;

58 }

59

60 /// <summary>

61 /// <para>Presents the Range in readable format.</para>

62 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

63 /// </summary>

64 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

65 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

66 publi
 override string ToString() => $"[{Minimum}..{Maximum}℄";

67

68 /// <summary>

69 /// <para>Determines if the provided value is inside the range.</para>

70 /// <para>Îïðåäåëÿåò, íàõîäèòñÿ ëè óêàçàííîå çíà÷åíèå âíóòðè äèàïàçîíà.</para>

71 /// </summary>

72 /// <param name="value"><para>The value to test.</para><para>Çíà÷åíèå äëÿ

ïðîâåðêè.</para></param>→֒

73 /// <returns><para>True if the value is inside Range, else false.</para><para>True, åñëè

çíà÷åíèå íàõîäèòñÿ âíóòðè äèàïàçîíà, èíà÷å false.</para></returns>→֒

74 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

75 publi
 bool Contains(T value) => _
omparer.Compare(Minimum, value) <= 0 &&

_
omparer.Compare(Maximum, value) >= 0;→֒

76

77 /// <summary>

78 /// <para>Determines if another range is inside the bounds of this range.</para>

79 /// <para>Îïðåäåëÿåò, íàõîäèòñÿ ëè äðóãîé äèàïàçîí âíóòðè ãðàíèö ýòîãî äèàïàçîíà.</para>

80 /// </summary>

81 /// <param name="range"><para>The
hild range to test.</para><para>Äî÷åðíèé äèàïàçîí äëÿ

ïðîâåðêè.</para></param>→֒

82 /// <returns><para>True if range is inside, else false.</para><para>True, åñëè äèàïàçîí

íàõîäèòñÿ âíóòðè, èíà÷å false.</para></returns>→֒

83 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

84 publi
 bool Contains(Range<T> range) => Contains(range.Minimum) &&

Contains(range.Maximum);→֒

85

86 /// <summary>

87 /// <para>Determines whether the
urrent range is equal to another range.</para>

88 /// <para>Îïðåäåëÿåò, ðàâåí ëè òåêóùèé äèàïàçîí äðóãîìó äèàïàçîíó.</para>

89 /// </summary>

90 /// <param name="other"><para>A range to
ompare with this range.</para><para>Äèàïàçîí

äëÿ ñðàâíåíèÿ ñ ýòèì äèàïàçîíîì.</para></param>→֒

91 /// <returns><para>True if the
urrent range is equal to the other range; otherwise,

false.</para><para>True, åñëè òåêóùèé äèàïàçîí ðàâåí äðóãîìó äèàïàçîíó; èíà÷å

false.</para></returns>

→֒

→֒

92 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

93 publi
 bool Equals(Range<T> other) => _equalityComparer.Equals(Minimum, other.Minimum)

&& _equalityComparer.Equals(Maximum, other.Maximum);→֒

94

95 /// <summary>

96 /// <para>Creates a new <see
ref="ValueTuple{T,T}"/> stru
t initialized with <see

ref="Range{T}.Minimum"/> as <see
ref="ValueTuple{T,T}.Item1"/> and <see

ref="Range{T}.Maximum"/> as <see
ref="ValueTuple{T,T}.Item2"/>.</para>

→֒

→֒

97 /// <para>Ñîçäàåò íîâóþ ñòðóêòóðó <see
ref="ValueTuple{T,T}"/>, èíèöèàëèçèðîâàííóþ ñ

ïîìîùüþ <see
ref="Range{T}.Minimum"/> êàê <see
ref="ValueTuple{T,T}.Item1"/> è

<see
ref="Range{T}.Maximum"/> êàê <see
ref="ValueTuple{T,T}.Item2"/>.</para>

→֒

→֒

98 /// </summary>

99 /// <param name="range"><para>The range of <typeparamref

name="T"/>.</para><para>Äèàïàçîí çíà÷åíèé <typeparamref name="T"/>.</para></param>→֒

100 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

101 publi
 stati
 impli
it operator ValueTuple<T, T>(Range<T> range) => (range.Minimum,

range.Maximum);→֒

102

12

103 /// <summary>

104 /// <para>Creates a new <see
ref="Range{T}"/> stru
t initialized with <see

ref="ValueTuple{T,T}.Item1"/> as <see
ref="Range{T}.Minimum"/> and <see

ref="ValueTuple{T,T}.Item2"/> as <see
ref="Range{T}.Maximum"/>.</para>

→֒

→֒

105 /// <para>Ñîçäàåò íîâóþ ñòðóêòóðó <see
ref="Range{T}"/>, èíèöèàëèçèðîâàííóþ ñ ïîìîùüþ

<see
ref="ValueTuple{T,T}.Item1"/> êàê <see
ref="Range{T}.Minimum"/> è <see

ref="ValueTuple{T,T}.Item2"/> êàê <see
ref="Range{T}.Maximum"/>.</para>

→֒

→֒

106 /// </summary>

107 /// <param name="tuple"><para>The tuple.</para><para>Êîðòåæ.</para></param>

108 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

109 publi
 stati
 impli
it operator Range<T>(ValueTuple<T, T> tuple) => new

Range<T>(tuple.Item1, tuple.Item2);→֒

110

111 /// <summary>

112 /// <para>Determines whether the
urrent range is equal to another obje
t.</para>

113 /// <para>Îïðåäåëÿåò, ðàâåí ëè òåêóùèé äèàïàçîí äðóãîìó îáúåêòó.</para>

114 /// </summary>

115 /// <param name="obj"><para>An obje
t to
ompare with this range.</para><para>Îáúåêò äëÿ

ñðàâíåíèÿ ñ ýòèì äèàïàçîíîì.</para></param>→֒

116 /// <returns><para>True if the
urrent range is equal to the other obje
t; otherwise,

false.</para><para>True, åñëè òåêóùèé äèàïàçîí ðàâåí äðóãîìó îáúåêòó; èíà÷å

false.</para></returns>

→֒

→֒

117 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

118 publi
 override bool Equals(obje
t obj) => obj is Range<T> range ? Equals(range) : false;

119

120 /// <summary>

121 /// Cal
ulates the hash
ode for the
urrent <see
ref="Range{T}"/> instan
e.

122 /// </summary>

123 /// <returns>The hash
ode for the
urrent <see
ref="Range{T}"/> instan
e.</returns>

124 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

125 publi
 override int GetHashCode() => (Minimum, Maximum).GetHashCode();

126

127 /// <summary>

128 /// <para>Determines if the spe
ified range is equal to the
urrent range.</para>

129 /// <para>Îïðåäåëÿåò, ðàâåí ëè óêàçàííûé äèàïàçîí òåêóùåìó äèàïàçîíó.</para>

130 /// </summary>

131 /// <param name="left"><para>The
urrent range.</para><para>Òåêóùèé

äèàïàçîí.</para></param>→֒

132 /// <param name="right"><para>A range to
ompare with this range.</para><para>Äèàïàçîí

äëÿ ñðàâíåíèÿ ñ ýòèì äèàïàçîíîì.</para></param>→֒

133 /// <returns><para>True if the
urrent range is equal to the other range; otherwise,

false.</para><para>True, åñëè òåêóùèé äèàïàçîí ðàâåí äðóãîìó äèàïàçîíó; èíà÷å

false.</para></returns>

→֒

→֒

134 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

135 publi
 stati
 bool operator ==(Range<T> left, Range<T> right) => left.Equals(right);

136

137 /// <summary>

138 /// <para>Determines if the spe
ified range is not equal to the
urrent range.</para>

139 /// <para>Îïðåäåëÿåò, íå ðàâåí ëè óêàçàííûé äèàïàçîí òåêóùåìó äèàïàçîíó.</para>

140 /// </summary>

141 /// <param name="left"><para>The
urrent range.</para><para>Òåêóùèé

äèàïàçîí.</para></param>→֒

142 /// <param name="right"><para>A range to
ompare with this range.</para><para>Äèàïàçîí

äëÿ ñðàâíåíèÿ ñ ýòèì äèàïàçîíîì.</para></param>→֒

143 /// <returns><para>True if the
urrent range is not equal to the other range; otherwise,

false.</para><para>True, åñëè òåêóùèé äèàïàçîí íå ðàâåí äðóãîìó äèàïàçîíó; èíà÷å

false.</para></returns>

→֒

→֒

144 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

145 publi
 stati
 bool operator !=(Range<T> left, Range<T> right) => !(left == right);

146 }

147 }

1.5 ./
sharp/Platform.Ranges.Tests/EnsureExtensionsTests.
s

1 using System;

2 using Xunit;

3 using Platform.Ex
eptions;

4

5 namespa
e Platform.Ranges.Tests

6 {

7 publi
 stati

lass EnsureExtensionsTests

8 {

9 [Fa
t℄

10 publi
 stati
 void MaximumArgumentIsGreaterOrEqualToMinimumEx
eptionTest() =>

Assert.Throws<ArgumentEx
eption>(() =>

Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(2, 1));

→֒

→֒

11

12 [Fa
t℄

13

13 publi
 stati
 void ArgumentInRangeEx
eptionTest() =>

Assert.Throws<ArgumentOutOfRangeEx
eption>(() => Ensure.Always.ArgumentInRange(5,

(6, 7)));

→֒

→֒

14 }

15 }

1.6 ./
sharp/Platform.Ranges.Tests/RangeTests.
s

1 using System;

2 using Xunit;

3

4 namespa
e Platform.Ranges.Tests

5 {

6 publi
 stati

lass RangeTests

7 {

8 [Fa
t℄

9 publi
 stati
 void Constru
torsTest()

10 {

11 var range1 = new Range<int>(1, 3);

12 Assert.Equal(1, range1.Minimum);

13 Assert.Equal(3, range1.Maximum);

14 Assert.Throws<ArgumentEx
eption>(() => new Range<int>(2, 1));

15 var range2 = new Range<int>(5);

16 Assert.Equal(5, range2.Minimum);

17 Assert.Equal(5, range2.Maximum);

18 }

19

20 [Fa
t℄

21 publi
 stati
 void ContainsTest()

22 {

23 var range = new Range<int>(1, 3);

24 Assert.True(range.Contains(1));

25 Assert.True(range.Contains(2));

26 Assert.True(range.Contains(3));

27 Assert.True(range.Contains((2, 3)));

28 Assert.False(range.Contains((3, 4)));

29 }

30

31 [Fa
t℄

32 publi
 stati
 void Differen
eTest()

33 {

34 var range = new Range<int>(1, 3);

35 Assert.Equal(2, range.Differen
e());

36 }

37

38 [Fa
t℄

39 publi
 stati
 void ToStringTest()

40 {

41 var range = new Range<int>(1, 3);

42 Assert.Equal("[1..3℄", range.ToString());

43 }

44

45 [Fa
t℄

46 publi
 stati
 void EqualityTest()

47 {

48 var range1 = new Range<int>(1, 3);

49 var range1Dupli
ate = new Range<int>(1, 3);

50 var range2 = new Range<int>(2, 5);

51 Assert.True(range1 == range1Dupli
ate);

52 Assert.Equal(range1, range1Dupli
ate);

53 Assert.True(range1 != range2);

54 Assert.NotEqual(range1, range2);

55 }

56 }

57 }

14

Index

./
sharp/Platform.Ranges.Tests/EnsureExtensionsTests.
s, 13

./
sharp/Platform.Ranges.Tests/RangeTests.
s, 14

./
sharp/Platform.Ranges/EnsureExtensions.
s, 1

./
sharp/Platform.Ranges/Range.
s, 7

./
sharp/Platform.Ranges/RangeExtensions.
s, 8

./
sharp/Platform.Ranges/Range[T℄.
s, 11

15

