LinksPlatform’s Platform.Ranges Class Library

1.1 ./csharp/Platform.Ranges/EnsureExtensions.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Diagnostics;

4 using System.Runtime.CompilerServices;

5 using Platform.Exceptions;

6 using Platform.Exceptions.ExtensionRoots;

7

s #pragma warning disable IDEO060 // Remove unused parameter

9

10 namespace Platform.Ranges

11 {

12 /// <summary>

13 /// <para>Provides a set of extension methods for <see cref="EnsureAlwaysExtensionRoot"/>
and <see cref="EnsureOnDebugExtensionRoot"/> objects.</para>

14 /// <para>llpemocTaBnser Habop METOLOB pacCHUpEHHs I 06bEKTOB <see
cref="EnsureAlwaysExtensionRoot"/> u <see cref="EnsureOnDebugExtensionRoot"/>.</para>

15 /// </summary>

16 public static class EnsureExtensions

17 {

18 private const string DefaultMaximumShouldBeGreaterOrEqualToMinimumMessage = "Maximum
— should be greater or equal to minimum.";

19

20 #region Always

21

22 /// <summary>

23 /// <para>Ensures that the argument with the maximum value is greater than or equal to

, the minimum value. This check is performed regardless of the build
configuration.</para>
24 /// <para>TapaHTupyeT, 4YTO apryMeHT C MaKCHMAaJbHHM 3HadYeHueM 6ojblle WX PaBeH
., MUHMMaJbHOMy 3HAUeHWO. JTa IPOBEPKa BHIIONHAETCH BHE3ABHCHUMOCTH OT KOHQUTypalluu
cbopku.</para>

25 /// </summary>
26 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHnra.</para></typeparam>
27 /// <param name="root"><para>The extension root to which this method is
— bound.</para><para>KopeHb-pacmmpeHus, XK KOTOpPOMy IpUBS3aH 3TOT MeTox.</para></param>
28 /// <param name="minimumArgument'"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHHUMAalbHHM 3HadeHHeM.</para></param>
29 /// <param name="maximumArgument'"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCHMalbHEHM 3HaueHmeM.</para></param>
30 /// <param name="maximumArgumentName'"><para>The name of argument with the maximum
— value.</para><para>/Msa apryMeHTa C MaKCHMAalbHHM 3HadeHHeM.</para></param>
31 /// <param name="messageBuilder"><para>The thrown exception's message building <see

. cref="Func{String}"/>.</para><para>Cobupanmas coobmeHrne s BHOPaCEHBAEMOLO
nckmouyerns <see cref="Func{String}"/>.</para></param>
32 [MethodImpl(MethodImplOptlons AggressiveInlining)]
33 public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this
-, EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument
< maximumArgument, string maximumArgumentName, Func<string> messageBuilder)

34 {

35 if (Comparer<TArgument>.Default.Compare (maximumArgument, minimumArgument) < 0)

36

37 throw new ArgumentException(messageBuilder(), maximumArgumentName) ;

38 }

39 }

40

" /// <summary>

42 /// <para>Ensures that the argument with the maximum value is greater than or equal to

«, the minimum value. This check is performed regardless of the build
< configuration.</para>
43 /// <para>TapaHTupyeT, YTO apLyMeHT C MaKCHMalbHHM 3HAYeHUEeM 6OJblle WIX paBeH
, MUHEMaJbHOMy 3HA4YeHHO. OTa IIPOBEPKa BHIIOIHAETCA BHE3AaBHCHMOCTH OT KOHQUIypaluu
cbopku.</para>

44 /// </summary>

45 /// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

46 /// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacmupeHnus, K KOTOPOMYy IIpMBS3aH 3TOT MeTof.</para></param>

a7 /// <param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHHUMalbHHM 3HadeHHeM.</para></param>

a8 /// <param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCHMalbHHM 3HadeHmeM.</para></param>

49 /// <param name="maximumArgumentName"><para>The name of argument with the maximum

— value.</para><para>llMs apryMeHTa C MaKCHUMAaJbHEM 3HaUYeHUeM.</para></param>
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/17

—

<param name="message'"><para>The message of the thrown
exception.</para><para>CoobumeHue BHOPaCHBAEMOTO WHCKILUeHWd.</para></param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

—
—

{

}

/17
/17

/1)
1
/77
/7/
/7/
/7/

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string maximumArgumentName, string message)

string messageBuilder() => message;
MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument, maximumArgument,
< maximumArgumentName, messageBuilder);

<summary>

<para>Egsures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed regardless of the build
configuration.</para>

<para>['apaHTHpyeT, 4YTO apryMeHT C MaKCHMaJbHHM 3Ha4YeHHeM Oojblle WIKX PaBeH
MUHUMAJIBHOMY 3HAQUEHWD. OTa IPOBEPKa BHIIOJHAETCH BHE3ABHCHMOCTH OT KOHQUIypaluU
cbopru.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-paclIpeHUs, K KOTOPOMYy IPUBS3aH 3TOT MeToZ.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCUMaJIbHHM 3HadeHUeM.</para></param>

<param name="maximumArgumentName"><para>The name of argument with the maximum
value.</para><para>lMg apryMeHTa C MakKCHUMAJbHEM 3HAYeHHeM.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

—

res

/17
/17

7/
7/
777
7/
7/

7/

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string maximumArgumentName) =>
MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument, maximumArgument,
nameof (maximumArgument) , DefaultMaximumShouldBeGreaterOrEqualToMinimumMessage) ;

<summary>

<para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed regardless of the build
configuration.</para>

<para>['apaHTHpyeT, 4YTO apryMeHT C MaKCHMaJbHHM 3HadYeHHeM Oojblle WX pPaBeH
MUHEMaJbHOMY 3HA4UeHHO. OTa IIPOBEpKa BHIIONHAETCA BHE3ABHCHMOCTH OT KOHQUIypaluu
cbopku.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacCllpeHus, K KOTOPOMYy IpUBS3aH 3TOT MeToZn.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaxCuMalbHHM 3HadeHweM.</para></param>

[MethodImpl(MethodImpletlons AggressiveInlining)]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

—
—
—

/17
/17

/1)
1
/11
/17
/1)
/1)

EnsureAlwaysExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument) => MaximumArgumentIsGreaterOrEqualToMinimum(root, minimumArgument,
maximumArgument, nameof (maximumArgument)) ;

<summary>

<para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

<para>lapaHTupyeT, YTO 3HaYEHHE apryMeHTa HaXOJUTCA B YKa3aHHOM AualasoHe. IJTa
IIpoBepKa BHIIONHAETCS BHE3ABUCHUMOCTH OT KOHQUIypauuu c6opku.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHus, K KOTOPOMy NPHUBS3aH 3TOT MeTox.</para></param>
<param name="argumentValue"><para>The argument's value.</para><para>3HadeHue
apryMerTa.</para></param>

<param name="range'"><para>The range restriction.</para><para>0rpaHudeHue B BHZE
ouanasona.</para></param>

<param name="argumentName"><para>The argument's name.</para><para>lus
aprymMeHTa.</para></param>
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/// <param name="messageBuilder"><para>The thrown exception's message building <see

o, cref="Func{Stringl}"/>.</para><para>Cobupanmas coobmeHre s BHOPaCEHBAEMOTO

— ucknodeHns <see cref="Func{String}"/>.</para></param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

<, TArgument argumentValue, Range<TArgument> range, string argumentName, Func<string>
- messageBuilder)

{
if (!range.Contains(argumentValue))
throw new ArgumentOutOfRangeException(argumentName, argumentValue,
— messageBuilder());
}
}

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAYEHHE APTLyMEHTA HAXOAWUTCS B YKA3aHHOM [UAalla30He. JTa

< IpOBepKa BHIIONHAETCS BHE3aBUCUMOCTH OT KOHUTypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< aprymexTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHus, K KOTOPOMy NpHBS3aH 3TOT MeTox.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauenue
aprymenTa.</para></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuvesue B BuIe

< gmwmamasoHa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>/msa
aprymenTa.</para></param>

/// <param name="message'"><para>The message of the thrown
exception.</para><para>CoobmeHue BHO6pacCHBAEMOro HCKILYeHus.</para></param>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

— TArgument argumentValue, Range<TArgument> range, string argumentName, string message)

string messageBuilder() => message;
ArgumentInRange (root, argumentValue, range, argumentName, messageBuilder);

}

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAUeHHE ApPIyMEHTa HAXOOWTICH B YKA3aHHOM AMAlla30He. JTa

< IpoBepKa BHIONHIETCS BHE3aBUCHUMOCTH OT KOHUTypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound. </para><para>KopeHb-paclIpeHus, K KOTOPOMYy IPUBH3aH 3TOT MeToZ.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3HaueHue

< apryMeHTa.</para></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuvesue B Bune
ouamasona.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>/ma
apryMeHTa.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

< TArgument argumentValue, Range<TArgument> range, string argumentName)

string messageBuilder() => [§|"Argument value [{argumentValue}] is out of range
< {rangel}.";
ArgumentInRange (root, argumentValue, range, argumentName, messageBuilder);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, YTO 3HAaUeHHE ApIyMEeHTa HAXOOWTICH B YKA3aHHOM AMAlla30He. JTa

< TIIpOBepKa BHIIOJHAETCH BHE3ABUCHMOCTH OT KoHQurypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is

— bound.</para><para>KopeHb-pacClUpeHua, K KOTOPOMYy IPUBS3aH 3TOT MeToZn.</para></param>
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/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauerue
apryMeHTa.</para></param>

/// <param name="minimum"><para>The minimum possible argument's
value.</para><para>MuHEMalIbHO BO3MOXHOE 3HaUeHHEe apryMeHTa.</para></param>

/// <param name="maximum"><para>The maximum possible argument's
value.</para><para>MakcuMalbHO BO3MOXHOE 3HadUeHWe apryMeHTa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>lms
apryMeHTa.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

., TArgument argumentValue, TArgument minimum, TArgument maximum, string argumentName)

<, => ArgumentInRange(root, argumentValue, new Range<TArgument>(minimum, maximum),

< argumentName) ;

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, YTO 3HaUeHHE apryMeHTa HAXOOWTCHI B YKA3aHHOM AMAla30He. OJTa

< IpOBepKa BHIIOIHAETCS BHE3ABHUCHUMOCTH OT KOHUTypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

/// <param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacCllIpeHUs, K KOTOPOMYy IpUBS3aH 3TOT MeToZn.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauerue
aprymenTa.</para></param>

/// <param name="minimum"><para>The minimum possible argument's
value.</para><para>MuHUMaJIbHO BO3MOXHOE 3HAUEHUE aprymeHTa.</para></param>

/// <param name="maximum"><para>The maximum possible argument's
value.</para><para>MakcuManbHO BO3MOXHOE 3HadUeHWe apryMeHTa.</para></param>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

. TArgument argumentValue, TArgument minimum, TArgument maximum) =>

< ArgumentInRange(root, argumentValue, new Range<TArgument>(minimum, maximum), null);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed regardless of the build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAYEHHE ApPTyMEHTA HAXOAWUTCS B YKA3AHHOM [UAla30HE. JTa

< IpOBepKa BHIONHAETCS BHE3aBUCHUMOCTH OT KOHUTypamuu c6opku.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< aprymexTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHus, K KOTOPOMy NPHBS3aH 3TOT MeTox.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauenue
apryMeHTa.</para></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuvesue B BuIe
owanasoHa.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static void ArgumentInRange<TArgument>(this EnsureAlwaysExtensionRoot root,

<, TArgument argumentValue, Range<TArgument> range) => ArgumentInRange (root,

< argumentValue, range, null);

#endregion
#region OnDebug

/// <summary>

/// <para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, YTO apryMeHT C MaKCHMalbHHM 3HAYeHUEeM 6OJblle WIX paBeH

, MUHEMaJbHOMy 3HA4UeHHO. OTa IIPOBEPKa BHIIONHAETCA TOJBKO IS KOHQUIypanund COOpKU
DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< apryMeHnTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacCllpeHus, K KOTOPOMYy IpUBS3aH 5TOT MeToZn.</para></param>

/// <param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

/// <param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCUMalbHHM 3HadeHueM.</para></param>

/// <param name="maximumArgumentName'"><para>The name of argument with the maximum

— value.</para><para>llMs apryMeHTa C MaKCHUMAaJbHEM 3HaUYeHUeM.</para></param>
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/17

—
—

<param name="messageBuilder"><para>The thrown exception's message building <see
cref="Func{String}"/>.</para><para>Cobupanmas coobuerre s BHOPACEHBAEMOLO
nckmouerns <see cref="Func{String}"/>.</para></param>

[Conditional ("DEBUG")]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

redd

/17
/17

/11
57?
/77
/77
/77
/77
/77

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string maximumArgumentName, Func<string> messageBuilder)
Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,
maximumArgument, maximumArgumentName, messageBuilder);

<summary>

<para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed only for DEBUG build configuration.</para>
<para>['apaHTHpyeT, 4YTO apryMeHT C MaKCHMaJbHHM 3HadYeHHeM Oojblle WNIX PaBeH
MUHEMaJbHOMY 3HA4eHHL. JTa IIPOBEPKAa BHIIONHAETCA TOJBKO IS KOHQUIypanund COOPKU
DEBUG.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-paclpeHHs, K KOTOPOMYy IpUBS3aH 3TOT MeToZn.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MaKCHUMaJlbHHM 3HadeHUueM.</para></param>

<param name="maximumArgumentName"><para>The name of argument with the maximum
value.</para><para>lMg apryMeHTa C MakKCHUMAaJbHEM 3HaUYeHUeM.</para></param>

<param name="message'"><para>The message of the thrown
exception.</para><para>CoobmeHne BHO6pacCHBAeMOIr'0 HCKIUeHUd.</para></param>

[Condltlonal("DEBUG")]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

rFeld

/17
/17

/77
"
/1)
/1)
/1)
/1)

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string maximumArgumentName, string message) =>
Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,
maximumArgument, maximumArgumentName, message);

<summary>

<para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed only for DEBUG build configuration.</para>
<para>['apaHTupyeT, 4YTO apryMeHT C MaKCHMaJIbHHM 3Ha4YeHumeM Oojblle MM pPaBeH
MUHEMaJbHOMY 3HA4YeHHO. OTa IIPOBEpPKa BHIIONHAETCA TOJBKO IS KOHQUIypanuud COOpKU
DEBUG.</para>

</summary>

<typeparam name="TArgument'"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacCllIpeHus, K KOTOPOMYy IpUBS3aH 3TOT MeToZn.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHUMAJbHHM 3HadeHUeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>AprymeHT C MakKCHUMalbHEM 3HadYeHueM.</para></param>

<param name="argumentName"><para>The argument's name.</para><para>lims
aprymenTa.</para></param>

[Condltlonal("DEBUG")]
public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this

reed

/17
/17

/17

I
/1)
/1)
/1)

EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument, string argumentName) =>
Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,
maximumArgument, argumentName) ;

<summary>

<para>Ensures that the argument with the maximum value is greater than or equal to
the minimum value. This check is performed only for DEBUG build configuration.</para>
<para>['apaHTupyeT, 4YTO apryMeHT C MAKCHMaJIbHHM 3HAUYeHHeM OOoJblle UM PaBEeH
MUHEMaJbHOMY 3HA4YeHHIO. OTa IIPOBEPKA BHIIONHAETCHA TOJBKO IJS KOHQUIypamuu cO6OpKu
DEBUG.</para>

</summary>

<typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

<param name="root"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHusi, K KOTOPOMy NPHUBH3aH 3TOT MeTOx.</para></param>
<param name="minimumArgument"><para>The argument with the minimum
value.</para><para>ApryMeHT C MUHHMAJBbHEM 3HadeHHeM.</para></param>

<param name="maximumArgument"><para>The argument with the maximum
value.</para><para>ApryMeHT C MakCHUMaJlbHHM 3HadeHueM.</para></param>
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[Conditional ("DEBUG")]

public static void MaximumArgumentIsGreaterOrEqualToMinimum<TArgument>(this
EnsureOnDebugExtensionRoot root, TArgument minimumArgument, TArgument
maximumArgument) =>
Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimumArgument,
maximumArgument, null);

Feld

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is

< performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HaUeHHE apryMeHTa HAXOOWTCHI B YKA3aHHOM AMANla3OHe. OTa

< TIIpoBepKa BHIOJHSETCH TONbKO i KoHburypauum cbopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
aprymenTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacllpeHus, K KOTOPOMYy IpUBS3aH 5TOT MeToZn.</para></param>

/// <param name="argument'"></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuvesue B Bune
ouanasona.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>/ma
aprymMerTa.</para></param>

/// <param name="messageBuilder"><para>The thrown exception's message building <see

o, cref="Func{Stringl}"/>.</para><para>Cobupanmas coobmeHne s BHOPACEHBAEMOLO
nckimouerus <see cref="Func{Stringl}"/>.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

., TArgument argument, Range<TArgument> range, string argumentName, Func<string>

., messageBuilder) => Ensure.Always.ArgumentInRange(argument, range, argumentName,

— messageBuilder);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, YTO 3HaUeHHE apTyMeHTa HAXOOWTCH B YKA3aHHOM AMAlla3OHe. JTa

< TIIpOBEpKa BHIIOJHAETCH TONBKO A KoHburypauumm cbopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacllIpeHUs, K KOTOPOMYy IpUBH3aH 3TOT MeToZn.</para></param>

/// <param name="argument"></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuyesHue B BuIE
IuanasoHa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>lma

< apryMexTa.</para></param>

/// <param name="message"><para>The message of the thrown
exception.</para><para>CoobmeHne BHO6pacCHBaeMOro HCKIbUeHUd.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

., TArgument argument, Range<TArgument> range, string argumentName, string message) =>

— Ensure.Always.ArgumentInRange(argument, range, argumentName, message);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAaUeHHE apIyMeHTa HAXOOWTICH B YKA3aHHOM AMAlla30He. JTa

< IpoBepKa BHIONHAETCS TONBKO IJd KoHburypauuu c6bopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMeHTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound. </para><para>KopeHb-paclIpeHus, K KOTOPOMYy IPUBH3aH 3TOT MeToZ.</para></param>

/// <param name="argument"></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuueHue B BuIe
IuanasoHa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>lms
aprymenTa.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

-, TArgument argument, Range<TArgument> range, string argumentName) =>

< Ensure.Always.ArgumentInRange(argument, range, argumentName) ;

/// <summary>
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/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, 4YTO 3HAYEHHE ApryMEHTa HAXOAUTCH B YKa3aHHOM [Ualla3oHe. JTa

< TIpoBepKa BHIOJHSETCH TONbKO Ansd KoHburypauumm cbopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun
apryMesnTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacllipeHus, K KOTOPOMYy IpUBS3aH 5TOT MeTon.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauerue

< apryMexTa.</para></param>

/// <param name="minimum"><para>The minimum possible argument's
value.</para><para>MuHUMaJIbHO BO3MOXHOE 3HAUEHUE apryMeHTa.</para></param>

/// <param name="maximum"><para>The maximum possible argument's
value.</para><para>MakcuManbHO BO3MOXHOE 3HadUeHWe apryMeHTa.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

., TArgument argumentValue, TArgument minimum, TArgument maximum) =>

-, Ensure.Always.ArgumentInRange(argumentValue, new Range<TArgument>(minimum, maximum),

< null);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTupyeT, dYTO 3HAYEHHE APTLyMEHTA HAXOAWUTCS B YKA3aHHOM [UAla30He. JTa

< TIpoBepKa BHIOJHSETCH TONbKO i KoHburypaumum cbopxu DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< aprymexTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound.</para><para>KopeHb-pacuupeHus, K KOTOPOMy NpHBH3aH 3TOT MeTox.</para></param>

/// <param name="argumentValue"><para>The argument's value.</para><para>3Hauenue
aprymenTa.</para></param>

/// <param name="minimum"><para>The minimum possible argument's

< value.</para><para>MurnManbHO BO3MOXHOE 3Ha4YeHHe aprymenTta.</para></param>

/// <param name="maximum"><para>The maximum possible argument's
value.</para><para>MakcuManbHO BO3MOXHOE 3HAdYeHHe apryMexTa.</para></param>

/// <param name="argumentName"><para>The argument's name.</para><para>/msa
aprymenTa.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

., TArgument argumentValue, TArgument minimum, TArgument maximum, string argumentName)

., => Ensure.Always.ArgumentInRange (argumentValue, new Range<TArgument>(minimum,

< maximum), argumentName);

/// <summary>

/// <para>Ensures that the argument value is in the specified range. This check is
performed only for DEBUG build configuration.</para>

/// <para>TapaHTUpyeT, 4UTO 3HAYEHWEe ApTyMEHTA HAXOAWUTCS B YKa3aHHOM [Uala30He. JTa

< IpoBepKa BHIONHAETCS TONBKO IJf KoHpurypauuu c6bopru DEBUG.</para>

/// </summary>

/// <typeparam name="TArgument"><para>Type of argument.</para><para>Tun

< aprymexTa.</para></typeparam>

/// <param name="root'"><para>The extension root to which this method is
bound. </para><para>KopeHb-paclIpeHus, K KOTOPOMYy IPUBH3aH 3TOT MeToZ.</para></param>

/// <param name="argument"></param>

/// <param name="range"><para>The range restriction.</para><para>0rpanuyexHue B Bune
IuanasoHa.</para></param>

[Condltlonal("DEBUG")]

public static void ArgumentInRange<TArgument>(this EnsureOnDebugExtensionRoot root,

—, TArgument argument, Range<TArgument> range) =>

< Ensure.Always.ArgumentInRange(argument, range, null);

#endregion

./csharp/Platform.Ranges/Range.cs

namespace Platform.Ranges

{

/17
/17
/17
/17

<summary>

<para>Contains static fields with <see cref="Range{T}"/> constants.</para>
<para>CoZepXuUT CTAaTUYEeCKMUEe IOJNA C KOHCTaHTaMu Tuna <see cref="Range{T}"/>.</para>
</summary>

public static class Range

{
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/// <summary>

/// <para>Gets the whole <see cref="sbyte"/> values range.</para>

/// <para>BosBpamaeT BecCh OUANa30H 3HadeHuil <see cref="sbyte"/>.</para>

/// </summary>

public static readonly Range<sbyte> SByte = new Range<sbyte>(sbyte.MinValue,
< sbyte.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="short"/> values range.</para>

/// <para>BoaBpamaeT BecCb nuanas3oH 3HadYeHuil <see cref="short"/>.</para>

/// </summary>

public static readonly Range<short> Int16 = new Range<short>(short.MinValue,
s short.MaxValue) ;

/// <summary>

/// <para>Gets the whole <see cref="int"/> values range.</para>

/// <para>BosBpamaeT BeCh numama3oH 3HadeHu# <see cref="int"/>.</para>

/// </summary>

public static readonly Range<int> Int32 = new Range<int>(int.MinValue, int.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="long"/> values range.</para>

/// <para>BosBpamaeT Bech OUANa30H 3HauYeHui# <see cref="long"/>.</para>
/// </summary>

public static readonly Range<long> Int64 = new Range<long>(long.MinValue, long.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="byte"/> values range.</para>

/// <para>BosBpamaeT BeCb nuamnas3oH 3HauYeHui <see cref="byte"/>.</para>

/// </summary>

public static readonly Range<byte> Byte = new Range<byte>(byte.MinValue, byte.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="ushort"/> values range.</para>

/// <para>BosBpamaeT Bech OUANa30H 3HauYeHui#r <see cref="ushort"/>.</para>

/// </summary>

public static readonly Range<ushort> UIntl6 = new Range<ushort>(ushort.MinValue,
s ushort.MaxValue) ;

/// <summary>

/// <para>Gets the whole <see cref="uint"/> values range.</para>

/// <para>BosBpamaeT Bech numama3oH 3HadeHu# <see cref="uint"/>.</para>
/// </summary>

public static readonly Range<uint> UInt32 = new Range<uint>(uint.MinValue,
< uint.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="ulong"/> values range.</para>

/// <para>BosBpamaeT BeCb Ouanal3oH 3Ha4YeHuil <see cref="ulong"/>.</para>

/// </summary>

public static readonly Range<ulong> UInt64 = new Range<ulong>(ulong.MinValue,
- ulong.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="float"/> values range.</para>

/// <para>BosBpamaeT BeCb nuamnas3oH 3HaYeHui <see cref="float"/>.</para>

/// </summary>

public static readonly Range<float> Single = new Range<float>(float.MinValue,
< float.MaxValue);

/// <summary>

/// <para>Gets the whole <see cref="double"/> values range.</para>

/// <para>BosBpamaeT Becb Ouamnas3oH 3HadeHui <see cref="double"/>.</para>

/// </summary>

public static readonly Range<double> Double = new Range<double>(double.MinValue,
< double.MaxValue) ;

/// <summary>

/// <para>Gets the whole <see cref="decimal"/> values range.</para>

/// <para>BosBpamaeT BecCh Ouala30H 3HaYeHui <see cref="decimal"/>.</para>

/// </summary>

public static readonly Range<decimal> Decimal = new Range<decimal>(decimal.MinValue,
< decimal.MaxValue);



1.3 ./csharp/Platform.Ranges/RangeExtensions.cs

1 using System.Runtime.CompilerServices;
2
3 namespace Platform.Ranges
4
{
5 /// <summary>
6 /// <para>Represents a set of extension methods for <see cref="Range{T}"/> structs.</para>
7 /// <para>llpezcTaBisgeT HabOp METOLOB pacCUUpeHWs Lis CTPYyKTyp <see cref="Range{T}"/>.</para>
8 /// </summary>
9 public static class RangeExtensions
10 {
1 /// <summary>
12 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
— cref="Range{T}.Maximum"/>.</para>
13 /// <para>BruucnseT pasHuny Mexzny <see cref="Range{T}.Minimum"/> u <see
— cref="Range{T}.Maximum"/>.</para>
14 /// </summary>
15 /// <param name="range"><para>The range of <see cref="ulong"/>.</para><para>/luanasox
< 3HadeHm# <see cref="ulong"/>.</para></param>
16 /// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see
o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>
17 [MethodImpl (MethodImplOptions.AggressiveInlining)]
18 public static ulong Difference(this Range<ulong> range) => range.Maximum - range.Minimum;
19
20 /// <summary>
21 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
— cref="Range{T}.Maximum"/>.</para>
22 /// <para>BruucnseT pasHuny Mexzny <see cref="Range{T}.Minimum"/> u <see
— cref="Range{T}.Maximum"/>.</para>
23 /// </summary>
24 /// <param name="range"><para>The range of <see cref="uint"/>.</para><para>[luanasox
< 3HadeHm# <see cref="uint"/>.</para></param>
25 /// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see
o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>
26 [MethodImpl (MethodImplOptions.AggressiveInlining)]
27 public static uint Difference(this Range<uint> range) => range.Maximum - range.Minimum;
28
29 /// <summary>
30 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
— cref="Range{T}.Maximum"/>.</para>
31 /// <para>BruucnseT pasHuny Mexzny <see cref="Range{T}.Minimum"/> u <see
— cref="Range{T}.Maximum"/>.</para>
32 /// </summary>
33 /// <param name="range"><para>The range of <see cref="ushort"/>.</para><para>Jluanasox
< 3HadeHm# <see cref="ushort"/>.</para></param>
34 /// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see
o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>
35 [MethodImpl (MethodImplOptions.AggressiveInlining)]
36 public static ushort Difference(this Range<ushort> range) => (ushort) (range.Maximum -
< range.Minimum);
37
38 /// <summary>
39 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
< cref="Range{T}.Maximum"/>.</para>
40 /// <para>BuumcnaeT pasuumny Mexny <see cref="Range{T}.Minimum"/> u <see
< cref="Range{T}.Maximum"/>.</para>
41 /// </summary>
42 /// <param name="range"><para>The range of <see cref="byte"/>.</para><para>[luanazox
— 3HadeHuil <see cref="byte"/>.</para></param>
43 /// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see
<, cref="Range{T}.Maximum"/>.</para><para>Pazuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>
44 [MethodImpl (MethodImplOptions.AggressiveInlining)]
15 public static byte Difference(this Range<byte> range) => (byte) (range.Maximum -
— range.Minimum) ;
46
a7 /// <summary>
18 /// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
— cref="Range{T}.Maximum"/>.</para>
19 /// <para>BuuucnseT pasHuly Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>
50 /// </summary>
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/// <param name="range"><para>The range of <see cref="long"/>.</para><para>[luanasox

< 3HadeHuit <see cref="long"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static long Difference(this Range<long> range) => range.Maximum - range.Minimum;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

— cref="Range{T}.Maximum"/>.</para>

/// <para>BuuucnseT pasHuly Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="int"/>.</para><para>/luanasox

< 3HadeHmit <see cref="int"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

«, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static int Difference(this Range<int> range) => range.Maximum - range.Minimum;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

— cref="Range{T}.Maximum"/>.</para>

/// <para>BuuucnseT pasuuly Mexny <see cref="Range{T}.Minimum"/> u <see

< cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="short"/>.</para><para>/luanasox
— 3HaueHm#t <see cref="short"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

-, cref="Range{T}.Maximum"/>.</para><para>Pazmuny Mexzny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static short Difference(this Range<short> range) => (short) (range.Maximum -
< range.Minimum) ;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

< cref="Range{T}.Maximum"/>.</para>

/// <para>BruucnseT pasHuny Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="sbyte'"/>.</para><para>/luanasox
< 3HadeHm# <see cref="sbyte"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static sbyte Difference(this Range<sbyte> range) => (sbyte) (range.Maximum -
— range.Minimum) ;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

— cref="Range{T}.Maximum"/>.</para>

/// <para>BuumcnseT pasuuny Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="double"/>.</para><para>[uanasox
< 3Havemu# <see cref="double"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

«, cref="Range{T}.Maximum"/>.</para><para>Pasmuny mexzny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static double Difference(this Range<double> range) => range.Maximum -

— range.Minimum;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see

< cref="Range{T}.Maximum"/>.</para>

/// <para>Bruucnser pasHumy Mexzny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="float"/>.</para><para>/luanasox
< 3HadeHnm#t <see cref="float"/>.</para></param>
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/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

o, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>
— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static float Difference(this Range<float> range) => range.Maximum - range.Minimum;

/// <summary>

/// <para>Calculates difference between <see cref="Range{T}.Minimum"/> and <see
cref="Range{T}.Maximum"/>.</para>

/// <para>BuuucnseT pasHuly Mexny <see cref="Range{T}.Minimum"/> u <see

— cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <see cref="decimal"/>.</para><para>[luanazon
3HadeHuU# <see cref="decimal"/>.</para></param>

/// <returns><para>Difference between <see cref="Range{T}.Minimum"/> and <see

<, cref="Range{T}.Maximum"/>.</para><para>Pasuuny mexny <see cref="Range{T}.Minimum"/>

— u <see cref="Range{T}.Maximum"/>.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static decimal Difference(this Range<decimal> range) => range.Maximum -

— range.Minimum;

./csharp/Platform.Ranges/Range[T].cs
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using Platform.Exceptions;

namespace Platform.Ranges

{
/17
/17
/17
/17
/17
/17

7/

/77

<summary>

<para>Represents a range between minimum and maximum values.</para>

<para>llpescTaBnseT Iuala30H MEXAy MUHMMAJIbHHM K MAaKCHMAJIbHEM 3HadYeHUsMH.</para>
</summary>

<remarks>

<para>Based on <a href="http://stackoverflow.com/questions/5343006/is-there-a-c-sharp-ty
pe-for-representing-an-integer-range">the question at

StackOverflow</a>.</para>

<para>0cHoBaHO Ha <a href="http://stackoverflow.com/questions/5343006/is-there-a-c-sharp
-type-for-representing-an-integer-range'">Bompoce B

StackOverflow</a>.</para>

</remarks>

public struct Range<T> : IEquatable<Range<T>>

{

private static readonly Comparer<T> _comparer = Comparer<T>.Default;
private static readonly EqualityComparer<T> _equalityComparer =
— EqualityComparer<T>.Default;

/// <summary>

/// <para>Returns minimum value of the range.</para>

/// <para>BosBpamaeT MUHMMAaJIbHOE 3HAUeHHE AuanasoHa.</para>
/// </summary>

public readonly T Minimum;

/// <summary>

/// <para>Returns maximum value of the range.</para>

/// <para>BosBpamaeT MakCUMaJIbHOE 3HAUEHWE IuanasoHa.</para>
/// </summary>

public readonly T Maximum;

/// <summary>

/// <para>Initializes a new instance of the Range class.</para>

/// <para>UuimanusupyeT HOBHI 3K3eMIudp kKiacca Range.</para>

/// </summary>

/// <param name—"minimumAndMaximum"><para>Sing1e value for both Minimum and Maximum
fields.</para><para>0zgzo 3Haduerwe nng mose# Minimum m Maximum.</para></param>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public Range(T minimumAndMaximum)

Minimum
Maximum

minimumAndMaximum;
minimumAndMaximum;

}

/// <summary>

/// <para>Initializes a new instance of the Range class.</para>
/// <para>UuimanusupyeT HOBHI 3K3eMIudp kKiacca Range.</para>
/// </summary>
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/// <param name="minimum"><para>The minimum value of the range.</para><para>MunuManbHOE
3HadYeHWe [ualnasoHa.</para></param>

/// <param name="maximum"><para>The maximum value of the range.</para><para>MaxcumanbHOe
3HadYeHWe [umalnasoHa.</para></param>

/// <exception cref="ArgumentException"><para>Thrown when the maximum is less than the

<, minimum.</para><para>BubpachHBaeTcs, KOTJa MakCUMyM MeHbIe
muHEMyMa . </para></exception>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public Range(T minimum, T maximum)

Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(minimum, maximum,
<, nameof (maximum)) ;

Minimum = minimum;

Maximum = maximum;

}

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpezcraBnsgeT nuanasoH B yLobHoM mns uTeHus dopmare.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>CTporoBoe
IpeLCTaBleHKue IuanasoHa.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public override string ToString() => [§"[{Minimum}..{Maximum}]";

/// <summary>

/// <para>Determines if the provided value is inside the range.</para>

/// <para>OmpegesnsieT, HAaXOOUTCS JU yKA3aHHOe 3HAYEHWE BHyTpU AuamnasoHa.</para>

/// </summary>

/// <param name="value"><para>The value to test.</para><para>3nadenue mis
mpoBepku.</para></param>

/// <returns><para>True if the value is inside Range, else false.</para><para>True, ecnu
3HAYeHWe HaXOAUTCH BHYTpU AuanasoHa, uHade false.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public bool Contains(T value) => _comparer.Compare(Minimum, value) <= 0 &&

— _comparer.Compare (Maximum, value) >= 0;

/// <summary>

/// <para>Determines if another range is inside the bounds of this range.</para>

/// <para>0mpefenseT, HaXOOUTCHA NN IOpyroil Iuamas3oH BHYTPU CpPaHUI 5TOTO IuamnasoHa.</para>

/// </summary>

/// <param name="range"><para>The child range to test.</para><para>[louepHuil IuanaszoH A

< mpoBepku.</para></param>

/// <returns><para>True if range is inside, else false.</para><para>True, eciu OuanazoH
HaxoOuTCHA BHyTpu, mHade false.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public bool Contains(Range<T> range) => Contains(range.Minimum) &&

< Contains(range.Maximum) ;

/// <summary>

/// <para>Determines whether the current range is equal to another range.</para>

/// <para>OmpegesnsieT, paBeH JIX TeKyWu# AMANa30H LPyroMy AuAmnasoHy.</para>

/// </summary>

/// <param name="other"><para>A range to compare with this range.</para><para>[luanazox
LI CpaBHEHHS C STUM [OUAlla30HOM.</para></param>

/// <returns><para>True if the current range is equal to the other range; otherwise,

., false.</para><para>True, eciu TeKymuil IUaNa30H paBeH IPYyroMy IUANa30HY; HHAUe
false.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public bool Equals(Range<T> other) => _equalityComparer.Equals(Minimum, other.Minimum)

— && _equalityComparer.Equals(Maximum, other.Maximum) ;

/// <summary>

/// <para>Creates a new <see cref="ValueTuple{T,T}"/> struct initialized with <see

. cref="Range{T}.Minimum"/> as <see cref="ValueTuple{T,T}.Iteml"/> and <see
cref="Range{T}.Maximum"/> as <see cref="ValueTuple{T,T}.Item2"/>.</para>

/// <para>CoazmaeT HOByWL CTpPyKTypy <see cref="ValueTuple{T,T}"/>, uHUIWaIuU3UPOBAHHYL C

., moMomblb <see cref="Range{T}.Minimum"/> xax <see cref="ValueTuple{T,T}.Iteml"/> u

< <see cref="Range{T}.Maximum"/> xax <see cref="ValueTuple{T,T}.Item2"/>.</para>

/// </summary>

/// <param name="range"><para>The range of <typeparamref
name="T"/>.</para><para>[luanasor 3HadeHuii <typeparamref name="T"/>.</para></param>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static implicit operator ValueTuple<T, T>(Range<T> range) => (range.Minimum,

— range.Maximum) ;
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/// <summary>

/// <para>Creates a new <see cref="Range{T}"/> struct initialized with <see

o, cref="ValueTuple{T,T}.Iteml"/> as <see cref="Range{T}.Minimum"/> and <see
cref="ValueTuple{T,T}.Item2"/> as <see cref="Range{T}.Maximum"/>.</para>

/// <para>CozzmaeT HOByWL CTPyKTypy <see cref="Range{T}"/>, mHUIManu3WpPOBaHHYWH C IIOMOLBI

, <see cref="ValueTuple{T,T}.Iteml"/> xax <see cref="Range{T}.Minimum"/> u <see

— cref="ValueTuple{T,T}.Item2"/> xax <see cref="Range{T}.Maximum"/>.</para>

/// </summary>

/// <param name="tuple'"><para>The tuple.</para><para>KopTex.</para></param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

public static implicit operator Range<T>(ValueTuple<T, T> tuple) => new

<~ Range<T>(tuple.Iteml, tuple.Item?2);

/// <summary>

/// <para>Determines whether the current range is equal to another object.</para>

/// <para>0upefensgeT, paBeH Iu TEKymU# OUANa30H OPYyroMy o6beKTy.</para>

/// </summary>

/// <param name="obj"><para>An object to compare with this range.</para><para>06berT mns
CpaBHEHHWs C >TUM Iyama3oHoM.</para></param>

/// <returns><para>True if the current range is equal to the other object; otherwise,

., false.</para><para>True, ecnu TeKyuu#l AVana30H paBeH OPYyLoMy OOGLEKTYy; HHAUE
false.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public override bool Equals(object obj) => obj is Range<T> range 7 Equals(range) : false;

/// <summary>

/// Calculates the hash code for the current <see cref="Range{T}"/> instance.

/// </summary>

/// <returns>The hash code for the current <see cref="Range{T}"/> instance.</returns>
[MethodImpl (MethodImplOptions.AggressiveInlining)]

public override int GetHashCode() => (Minimum, Maximum).GetHashCode() ;

/// <summary>

/// <para>Determines if the specified range is equal to the current range.</para>

/// <para>OmpegesnsieT, paBeH IX yKa3aHHHH IUANa30H TEeKylleMy Iuanas3oHy.</para>

/// </summary>

/// <param name="left"><para>The current range.</para><para>Texymuii
IuanasoH.</para></param>

/// <param name="right"><para>A range to compare with this range.</para><para>[luanazox
LI CpaBHEHHSA C STHUM [OUAIla30HOM.</para></param>

/// <returns><para>True if the current range is equal to the other range; otherwise,

., false.</para><para>True, eciu TeKymuil IUaNa30H paBeH IPYyroMy IUANa30HY; HHAUE
false.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

public static bool operator ==(Range<T> left, Range<T> right) => left.Equals(right);

/// <summary>

/// <para>Determines if the specified range is not equal to the current range.</para>

/// <para>OnpegesseT, He paBeH IX yKa3aHHHH IUala30H TEKymeMy OuanasoHy.</para>

/// </summary>

/// <param name="left"><para>The current range.</para><para>Texymuii
IUanasoH.</para></param>

/// <param name="right"><para>A range to compare with this range.</para><para>[/luanazox

< g CpaBHEHUS C 3THUM JUANa30HOM.</para></param>

/// <returns><para>True if the current range is not equal to the other range; otherwise,

., false.</para><para>True, eciu TeKymuil IUaNa30H He paBeH APyroMy ANANA30HY; HHAYE
false.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

public static bool operator !=(Range<T> left, Range<T> right) => !(left == right);

./csharp/Platform.Ranges. Tests/EnsureExtensionsTests.cs
using System;
using Xunit;
using Platform.Exceptions;

namespace Platform.Ranges.Tests

public static class EnsureExtensionsTests

[Fact]

public static void MaximumArgumentIsGreaterOrEqualToMinimumExceptionTest() =>
. Assert.Throws<ArgumentException>(() =>

< Ensure.Always.MaximumArgumentIsGreaterOrEqualToMinimum(2, 1));

[Fact]



13 public static void ArgumentInRangeExceptionTest() =>
., Assert.Throws<ArgumentOutOfRangeException>(() => Ensure.Always.ArgumentInRange(5,
= (6, 7)));

14 }

15}

1.6 ./csharp/Platform.Ranges.Tests/RangeTests.cs

1 using System;

2 using Xunit;

3

4+ namespace Platform.Ranges.Tests

5 1

6 public static class RangeTests

7

8 [Fact]

9 public static void ConstructorsTest()

10 {

11 var rangel = new Range<int>(1, 3);

12 Assert.Equal(l, rangel.Minimum);

13 Assert.Equal(3, rangel.Maximum) ;

14 Assert.Throws<ArgumentException>(() => new Range<int>(2, 1));
15 var range2 = new Range<int>(5);

16 Assert.Equal(5, range2.Minimum);

17 Assert.Equal(5, range2.Maximum) ;

18 }

19

20 [Fact]

21 public static void ContainsTest ()

22 {

23 var range = new Range<int>(1, 3);

24 Assert.True(range.Contains(1));

25 Assert.True(range.Contains(2));

26 Assert.True(range.Contains(3));

27 Assert.True(range.Contains((2, 3)));
28 Assert.False(range.Contains((3, 4)));
29 }

30

31 [Fact]

32 public static void DifferenceTest()

33 {

34 var range = new Range<int>(1, 3);

35 Assert.Equal(2, range.Difference());
36 }

37

38 [Fact]

39 public static void ToStringTest ()

40 {

1 var range = new Range<int>(1, 3);

12 Assert.Equal("[1..3]", range.ToString());
43 }

44

45 [Fact]

16 public static void EqualityTest()

a7 {

a8 var rangel = new Range<int>(1, 3);

49 var rangelDuplicate = new Range<int>(1, 3);
50 var range2 = new Range<int>(2, 5);

51 Assert.True(rangel == rangelDuplicate);
52 Assert.Equal(rangel, rangelDuplicate);
53 Assert.True(rangel != range2);

54 Assert.NotEqual(rangel, range2);

55 }

56 }
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