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./csharp/Platform.Collections.Methods/GenericCollectionMethodsBase.cs
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using Platform.Numbers;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods
{
/// <summary>
/// <para>Represents a base implementation of methods for a collection of elements of type
TElement .</para>
/// <para>llpercrasusgeT 6a30Byl peann3alul METOLOB KOJUIEKINH 3JeMeHTOB Tuna TElement.</para>
/// </summary>
/// <typeparam name="TElement"><para>Source type of conversion.</para><para>lcxomusii TuI
xoHBepcuu.</para></typeparam>
Eubllc abstract class GenericCollectionMethodsBase<TElement>
/// <summary>
/// <para>Returns a null constant of type <see cref="TElement" />.</para>
/// <para>BosBpamaeT HyneByL KOHCTaHTy Tuma <see cref="TElement" />.</para>
/// </summary>
/// <returns><para>A null constant of type <see cref="TElement" />.</para><para>Hymesymn
KOHCTaHTy Tuma <see cref="TElement" />.</para></returns>
[MethodImpl(MethodImplOptlons AggressiveInlining)]
protected virtual TElement GetZero() => default;

/// <summary>

/// <para>Determines whether the specified value is equal to zero type <see
cref="TElement" />.</para>

/// <para>OmpegesnseT paBHO IU HyJo yKa3aHHOe 3HadeHwe Tuna <see cref="TElement"

< />.</para>

/// </summary>

/// <returns><para></para>Is the specified value equal to zero type <see cref="TElement"

<, /><para>PaBHO &Iz HyJO yKa3aHHOe 3HadeHume Tuma <see cref="TElement"
/></para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

protected virtual bool EqualToZero(TElement value) => EqualityComparer.Equals(value,

< Zero);

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpercTaBiseT Luana3oH B yLobHOM mnsd 4YTeHus dopmare.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>CrporoBoe
IpeLCcTaBleHre IuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

protected virtual bool AreEqual(TElement first, TElement second) =>

< EqualityComparer.Equals(first, second);

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpefcTaBifeT OUaNas3oH B yLOOHOM IJd YTeHHA popMaTe.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>CTporoBoe
IpeACTaBieHWe OuanasoHa.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

protected virtual bool GreaterThanZero(TElement value) => Comparer.Compare(value, Zero)

— >O;

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpefcTaBifeT OUANa30H B yLOOHOM IJd YTeHuA dpopMaTe.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>CrporoBoe
ImpencTaBieHre IuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

protected virtual bool GreaterThan(TElement first, TElement second) =>

— Comparer.Compare(first, second) > 0;

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpezcraBisgeT nuanasoH B yLobHOM mus uTeHus dopmare.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>Crporosoe
< IpeACTaBleHUe AuanasoHa.</para></returns>
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[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected virtual bool GreaterOrEqualThanZero(TElement value) => Comparer.Compare(value,

—

/17
/17
/17
/17
/17

Zero) >= 0;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBisfeT OUANa30H B yILOOHOM AJd YTeHHdA dpopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxrosoe
mpeACTaBieHWe OuanasoHa.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]
protected virtual bool GreaterOrEqualThan(TElement first, TElement second) =>

—

/17
/17
/17
/17
/17

Comparer.Compare(first, second) >= 0;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBifeT OUANA30H B YILOOHOM Ajd YTeHuA popmaTte.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CrTpoxrosoe
IpelCTaBleHUe AuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

protected virtual bool LessOrEqualThanZero(TElement value) => Comparer.Compare(value,

—

/17
/17
/17
/17
/17

Zero) <= 0;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBisfeT OUANa30H B yILOOHOM OJd YTeHHdA dpopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxrosoe
IpeACTaBieHWe OuanasoHa.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]
protected virtual bool LessOrEqualThan(TElement first, TElement second) =>

—

/17
/17
/17
/17
/17

Comparer.Compare(first, second) <= 0;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBideT AUANA30H B YILOOHOM Aid YTeHUA dpopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxrosoe
IpelCTaBleHUe AuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

protected virtual bool LessThanZero(TElement value) => Comparer.Compare(value, Zero) < 0;

/17
/17
/17
/17
/17

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBisfeT AMANA30H B YILOOHOM Aid YTeHudA dpopmaTte.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxroBoe
IpelCTaBleHUe AuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]
protected virtual bool LessThan(TElement first, TElement second) =>

—

/17
/17
/17
/17
/17

Comparer.Compare(first, second) < O;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBisgeT OUANa30H B yILOOHOM OJd YTeHHA dpopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxrosoe
IpeACTaBieHWe OuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]
protected virtual TElement Increment(TElement value) =>

—

/17
/17
/17
/17
/17

—

Arithmetic<TElement>.Increment (value) ;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBideT OVANA30H B YILOOHOM Aid YTeHuA dopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxroBoe
IpelCTaBleHUe AuanasoHa.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement Decrement(TElement value) =>

—

/17
/17
/17
/17

Arithmetic<TElement>.Decrement (value) ;

<summary>

<para>Presents the Range in readable format.</para>
<para>llpescTaBnseT muanas3oH B ymobHoM mns uTeHus dopmare.</para>
</summary>



124 /// <returns><para>String representation of the Range.</para><para>Crpoxosoe
< IpeIcTaBJleHWe JuamnasoHa.</para></returns>

125 [MethodImpl (MethodImplOptions.AggressiveInlining)]

126 protected virtual TElement Add(TElement first, TElement second) =>
« Arithmetic<TElement>.Add(first, second);

127

128 /// <summary>

129 /// <para>Presents the Range in readable format.</para>

130 /// <para>llpefcTaBifeT OUANa30H B yLOOHOM Iid YTeHUA dopMaTe.</para>

131 /// </summary>

132 /// <returns><para>String representation of the Range.</para><para>CtporoBoe

mpefcTaBieHne IuanasoHa.</para></returns>

133 [MethodImpl(MethodImplOptlons AggressiveInlining)]

134 protected virtual TElement Subtract(TElement first, TElement second) =>
— Arithmetic<TElement>.Subtract(first, second);

135

136 /// <summary>

137 /// <para>Returns minimum value of the range.</para>

138 /// <para>BosBpamaeT MUHHMAJLHOE 3HAYEHWe AuanasoHa.</para>

139 /// </summary>

140 protected readonly TElement Zero;

141

142 /// <summary>

143 /// <para>Returns minimum value of the range.</para>

144 /// <para>BoaBpamaeT MUHHMAJbHOE 3HAYEeHWe AuanasoHa.</para>

145 /// </summary>

146 protected readonly TElement One;

147

148 /// <summary>

149 /// <para>Returns minimum value of the range.</para>

150 /// <para>BosBpamaeT MUHUMAILHOE 3HaUYeHWe ZAuamnasoHa.</para>

151 /// </summary>

152 protected readonly TElement Two;

153

154 /// <summary>

155 /// <para>Returns minimum value of the range.</para>

156 /// <para>BosBpamaeT MUHHMAJILHOE 3HaUeHWe ZAuanasoHa.</para>

157 /// </summary>

158 protected readonly EqualityComparer<TElement> EqualityComparer;

159

160 /// <summary>

161 /// <para>Returns minimum value of the range.</para>

162 /// <para>BosBpamaeT MUHEMAaJIbHOE 3HAUeHHE AuanasoHa.</para>

163 /// </summary>

164 protected readonly Comparer<TElement> Comparer;

165

166 /// <summary>

167 /// <para>Presents the Range in readable format.</para>

168 /// <para>llpezcTaBisgeT LuanasoH B yLobHOM mus 4YTeHus dopmare.</para>

169 /// </summary>

170 /// <returns><para>String representation of the Range.</para><para>Crporosoe
< IpeACTaBleHUe IuanasoHa.</para></returns>

171 protected GenericCollectionMethodsBase()

172 {

173 EqualityComparer = EqualityComparer<TElement>.Default;

174 Comparer = Comparer<TElement>.Default;

175 Zero = GetZero(); //-V3068

176 One = Increment(Zero); //-V3068

177 Two = Increment(One); //-V3068

178 }

179 }

180 }

1.2 ./csharp/Platform.Collections.Methods/Lists/AbsoluteCircularDoublyLinkedListMethods.cs
#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Lists

{
/// <summary>
/// <para>
/// Represents the absolute circular doubly linked list methods.
/// </para>
/// <para></para>
/// </summary>
/// <seealso cref="AbsoluteDoublyLinkedListMethodsBase{TElement}"/>
public abstract class AbsoluteCircularDoublyLinkedListMethods<TElement>
— AbsoluteDoublyLinkedListMethodsBase<TElement>
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/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void AttachBefore(TElement baseElement, TElement newElement)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void AttachAfter (TElement baseElement, TElement newElement)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<para>

Attaches the before using the specified base element.
</para>

<para></para>

</summary>

<param name="baseElement">
<para>The base element.</para>
<para></para>

</param>

<param name="newElement">
<para>The new element.</para>
<para></para>

</param>

var baseElementPrevious = GetPrevious(baseElement) ;
SetPrevious(newElement, baseElementPrevious);
SetNext (newElement, baseElement) ;

if (AreEqual(baseElement, GetFirst()))

{

}

SetNext (baseElementPrevious, newElement) ;
SetPrevious(baseElement, newElement) ;
IncrementSize();

SetFirst (newElement) ;

<summary>

<para>

Attaches the after using the specified base element.
</para>

<para></para>

</summary>

<param name="baseElement">
<para>The base element.</para>
<para></para>

</param>

<param name="newElement">
<para>The new element.</para>
<para></para>

</param>

var baseElementNext = GetNext(baseElement) ;
SetPrevious (newElement, baseElement) ;
SetNext (newElement, baseElementNext);
%f (AreEqual (baseElement, GetLast()))

}

SetPrevious(baseElementNext, newElement) ;
SetNext (baseElement, newElement) ;
IncrementSize();

SetLast (newElement) ;

<summary>

<para>

Attaches the as first using the specified element.
</para>

<para></para>

</summary>

<param name="element'>

<para>The element.</para>

<para></para>

</param>

public void AttachAsFirst(TElement element)

{

var first = GetFirst();
if (EqualToZero(first))
{

SetFirst (element) ;

SetLast (element) ;
SetPrevious(element, element);
SetNext (element, element);
IncrementSize();

else



93 AttachBefore(first, element);

94 }

95 }

96

97 /// <summary>

98 /// <para>

99 /// Attaches the as last using the specified element.
100 /// </para>

101 /// <para></para>

102 /// </summary>

103 /// <param name="element'">

104 /// <para>The element.</para>

105 /// <para></para>

106 /// </param>

107 public void AttachAsLast(TElement element)
108 {

109 var last = GetLast();

110 if (EqualToZero(last))

111 {

112 AttachAsFirst(element) ;

113 }

114 else

115 {

116 AttachAfter(last, element);

117 }

118 }

119

120 /// <summary>

121 /// <para>

122 /// Detaches the element.

123 /// </para>

124 /// <para></para>

125 /// </summary>

126 /// <param name="element">

127 /// <para>The element.</para>

128 /// <para></para>

129 /// </param>

130 public void Detach(TElement element)

131 {

132 var elementPrevious = GetPrevious(element);
133 var elementNext = GetNext(element) ;
134 if (AreEqual(elementNext, element))
135

136 SetFirst(Zero) ;

137 SetLast (Zero) ;

138 }

139 else

140 {

141 SetNext (elementPrevious, elementNext);
142 SetPrevious(elementNext, elementPrevious);
143 if (AreEqual(element, GetFirst()))
144 {

145 SetFirst (elementNext) ;

146 }

147 if (AreEqual(element, GetLast()))
148

149 SetLast (elementPrevious) ;

150 }

151 }

152 SetPrevious(element, Zero);

153 SetNext(element, Zero);

154 DecrementSize();

155 }

156 }

157 F

1.3 ./csharp/Platform.Collections.Methods/Lists/AbsoluteDoublyLinkedListMethodsBase.cs
using System.Runtime.CompilerServices;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Lists
{
/// <summary>
/// <para>
/// Represents the absolute doubly linked list methods base.
/// </para>
/// <para></para>
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/// </summary>

/// <seealso cref="DoublyLinkedListMethodsBase{TElement}"/>
public abstract class AbsoluteDoublylLinkedListMethodsBase<TElement> :

—

DoublylLinkedListMethodsBase<TElement>

/// <summary>

/// <para>

/// Gets the first.

/// </para>

/// <para></para>

/// </summary>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract TElement GetFirst();

/// <summary>

/// <para>

/// Gets the last.

/// </para>

/// <para></para>

/// </summary>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract TElement GetLast();

/// <summary>

/// <para>

/// Gets the size.

/// </para>

/// <para></para>

/// </summary>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract TElement GetSize();

/// <summary>

/// <para>

/// Sets the first using the specified element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetFirst(TElement element);

/// <summary>

/// <para>

/// Sets the last using the specified element.

/// </para>

/// <para></para>

/// </summary>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetLast(TElement element);

/// <summary>

/// <para>

/// Sets the size using the specified size.
/// </para>

/// <para></para>

/// </summary>

/// <param name="size">

/// <para>The size.</para>



89 /// <para></para>

90 /// </param>
91 [MethodImpl (MethodImplOptions.AggressiveInlining)]
92 protected abstract void SetSize(TElement size);
93
94 /// <summary>
95 /// <para>
96 /// Increments the size.
97 /// </para>
98 /// <para></para>
99 /// </summary>
100 [MethodImpl (MethodImplOptions.AggressiveInlining)]
101 protected void IncrementSize() => SetSize(Increment(GetSize()));
102
103 /// <summary>
104 /// <para>
105 /// Decrements the size.
106 /// </para>
107 /// <para></para>
108 /// </summary>
109 [MethodImpl (MethodImplOptions.AggressiveInlining)]
110 protected void DecrementSize() => SetSize(Decrement(GetSize()));
111
}
112}

1.4 ./csharp/Platform.Collections.Methods/Lists/AbsoluteOpenDoublyLinkedListMethods.cs

1 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

2

3 namespace Platform.Collections.Methods.Lists

4

5 /// <summary>

6 /// <para>

7 /// Represents the absolute open doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

11 /// <seealso cref="AbsoluteDoublyLinkedListMethodsBase{TElement}"/>

12 public abstract class AbsoluteOpenDoublylLinkedListMethods<TElement>
— AbsoluteDoublyLinkedListMethodsBase<TElement>

13 {

14 /// <summary>

15 /// <para>

16 /// Attaches the before using the specified base element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="baseElement">

21 /// <para>The base element.</para>

22 /// <para></para>

23 /// </param>

24 /// <param name="newElement">

25 /// <para>The new element.</para>

26 /// <para></para>

27 /// </param>

28 public void AttachBefore(TElement baseElement, TElement newElement)

29 {

30 var baseElementPrevious = GetPrevious(baseElement) ;

31 SetPrevious (newElement, baseElementPrevious);

32 SetNext (newElement, baseElement) ;

33 if (EqualToZero(baseElementPrevious))

34 {

35 SetFirst (newElement) ;

36 }

37 else

38 {

39 SetNext (baseElementPrevious, newElement) ;

40

41 SetPrevious(baseElement, newElement) ;

42 IncrementSize();

43 }

44

45 /// <summary>

46 /// <para>

a7 /// Attaches the after using the specified base element.

48 /// </para>

49 /// <para></para>

50 /// </summary>

51 /// <param name="baseElement">
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127
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/// <para>The base element.</para>
/// <para></para>
/// </param>
/// <param name="newElement'>
/// <para>The new element.</para>
/// <para></para>
/// </param>
public void AttachAfter(TElement baseElement, TElement newElement)
{
var baseElementNext = GetNext(baseElement);
SetPrevious (newElement, baseElement) ;
SetNext (newElement, baseElementNext) ;
if (EqualToZero(baseElementNext))
{

SetLast (newElement) ;
}
else
{
SetPrevious(baseElementNext, newElement) ;
}

SetNext (baseElement, newElement);
IncrementSize();

}

/// <summary>

/// <para>

/// Attaches the as first using the specified element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void AttachAsFirst(TElement element)

{
var first = GetFirst();
if (EqualToZero(first))
{
SetFirst (element) ;
SetLast (element) ;
SetPrevious(element, Zero);
SetNext (element, Zero);
IncrementSize();
}
else
{
AttachBefore(first, element);
}
}
/// <summary>
/// <para>

/// Attaches the as last using the specified element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void AttachAsLast(TElement element)

{
var last = GetLast();
if (EqualToZero(last))
{
AttachAsFirst(element) ;
}
else
{
AttachAfter(last, element);
}
}
/// <summary>
/// <para>

/// Detaches the element.
/// </para>



130 /// <para></para>

131 /// </summary>

132 /// <param name="element">

133 /// <para>The element.</para>

134 /// <para></para>

135 /// </param>

136 public void Detach(TElement element)

137 {

138 var elementPrevious = GetPrevious(element) ;
139 var elementNext = GetNext(element);
140 if (EqualToZero(elementPrevious))
141

142 SetFirst (elementNext) ;

143 }

144 else

145 {

146 SetNext (elementPrevious, elementNext);
147 }

148 if (EqualToZero(elementNext))

149

150 SetLast (elementPrevious) ;

151 }

152 else

153 {

154 SetPrevious(elementNext, elementPrevious);
155 }

156 SetPrevious(element, Zero);

157 SetNext (element, Zero);

158 DecrementSize() ;

159 }

160 }

161 F

1.5 ./csharp/Platform.Collections.Methods/Lists/DoublyLinkedListMethodsBase.cs

1 using System.Runtime.CompilerServices;

2

3 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

4

5 namespace Platform.Collections.Methods.Lists

6 1

7 /// <remarks>

8 /// Based on <a href="https://en.wikipedia.org/wiki/Doubly_linked_list">doubly linked
— 1list</a> implementation.

9 /// </remarks>

10 public abstract class DoublylLinkedListMethodsBase<TElement>
—» GenericCollectionMethodsBase<TElement>

11
{

12 /// <summary>

13 /// <para>

14 /// Gets the previous using the specified element.

15 /// </para>

16 /// <para></para>

17 /// </summary>

18 /// <param name="element">

19 /// <para>The element.</para>

20 /// <para></para>

21 /// </param>

22 /// <returns>

23 /// <para>The element</para>

24 /// <para></para>

25 /// </returns>

26 [MethodImpl (MethodImplOptions.AggressiveInlining)]

27 protected abstract TElement GetPrevious(TElement element);

28

29 /// <summary>

30 /// <para>

31 /// Gets the next using the specified element.

32 /// </para>

33 /// <para></para>

34 /// </summary>

35 /// <param name="element">

36 /// <para>The element.</para>

37 /// <para></para>

38 /// </param>

39 /// <returns>

10 /// <para>The element</para>

a1 /// <para></para>

42 /// </returns>



43 [MethodImpl (MethodImplOptions.AggressiveInlining)]

44 protected abstract TElement GetNext(TElement element);
45

46 /// <summary>

a7 /// <para>

! /// Sets the previous using the specified element.
49 /// </para>

50 /// <para></para>

51 /// </summary>

52 /// <param name="element">

53 /// <para>The element.</para>

54 /// <para></para>

55 /// </param>

56 /// <param name="previous'">

57 /// <para>The previous.</para>

58 /// <para></para>

59 /// </param>

60 [MethodImpl (MethodImplOptions.AggressiveInlining)]
61 protected abstract void SetPrevious(TElement element, TElement previous);
62

63 /// <summary>

64 /// <para>

65 /// Sets the next using the specified element.

66 /// </para>

67 /// <para></para>

68 /// </summary>

69 /// <param name="element">

70 /// <para>The element.</para>

71 /// <para></para>

72 /// </param>

73 /// <param name="next'">

74 /// <para>The next.</para>

75 /// <para></para>

76 /// </param>

7 [MethodImpl (MethodImplOptions.AggressiveInlining)]
78 protected abstract void SetNext(TElement element, TElement next);
79 }

80 }

1.6 ./csharp/Platform.Collections.Methods/Lists/RelativeCircularDoublyLinkedListMethods.cs

1 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

2

3 %amespace Platform.Collections.Methods.Lists

4

5 /// <summary>

6 /// <para>

7 /// Represents the relative circular doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

1 /// <seealso cref="RelativeDoublyLinkedListMethodsBase{TElement}"/>

12 public abstract class RelativeCircularDoublyLinkedListMethods<TElement>
— RelativeDoublyLinkedListMethodsBase<TElement>

13 {

14 /// <summary>

15 /// <para>

16 /// Attaches the before using the specified head element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="headElement">

21 /// <para>The head element.</para>

22 /// <para></para>

23 /// </param>

24 /// <param name="baseElement">

25 /// <para>The base element.</para>

26 /// <para></para>

27 /// </param>

28 /// <param name="newElement">

29 /// <para>The new element.</para>

30 /// <para></para>

31 /// </param>

32 Eublic void AttachBefore(TElement headElement, TElement baseElement, TElement newElement)

33

34 var baseElementPrevious = GetPrevious(baseElement) ;

35 SetPrevious (newElement, baseElementPrevious);

36 SetNext (newElement, baseElement);

37 if (AreEqual(baseElement, GetFirst(headElement)))



{
}

SetNext (baseElementPrevious, newElement) ;
SetPrevious(baseElement, newElement) ;
IncrementSize (headElement) ;

SetFirst (headElement, newElement) ;

}

/// <summary>
/// <para>
/// Attaches the after using the specified head element.
/// </para>
/// <para></para>
/// </summary>
/// <param name="headElement">
/// <para>The head element.</para>
/// <para></para>
/// </param>
/// <param name="baseElement">
/// <para>The base element.</para>
/// <para></para>
/// </param>
/// <param name="newElement">
/// <para>The new element.</para>
/// <para></para>
/// </param>
public void AttachAfter(TElement headElement, TElement baseElement, TElement newElement)
{
var baseElementNext = GetNext(baseElement);
SetPrevious (newElement, baseElement) ;
SetNext (newElement, baseElementNext) ;
if (AreEqual(baseElement, GetLast(headElement)))
{

}

SetPrevious(baseElementNext, newElement) ;
SetNext (baseElement, newElement) ;
IncrementSize (headElement) ;

SetLast (headElement, newElement);

}

/// <summary>

/// <para>

/// Attaches the as first using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>

/// <para></para>

/// </param>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void AttachAsFirst(TElement headElement, TElement element)

{
var first = GetFirst(headElement);
if (EqualToZero(first))
{
SetFirst (headElement, element);
SetLast (headElement, element);
SetPrevious(element, element);
SetNext (element, element);
IncrementSize(headElement) ;
}
else
{
AttachBefore(headElement, first, element);
}
/// <summary>
/// <para>

/// Attaches the as last using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">
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/// <para>The head element.</para>

/// <para></para>

/// </param>

/// <param name="element'">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void AttachAsLast(TElement headElement, TElement element)

{
var last = GetLast(headElement);
if (EqualToZero(last))
{
AttachAsFirst(headElement, element);
}
else
{
AttachAfter (headElement, last, element);
}
}
/// <summary>
/// <para>

/// Detaches the head element.

/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>
/// <para></para>

/// </param>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void Detach(TElement headElement, TElement element)

{

var elementPrevious = GetPrevious(element) ;

var elementNext = GetNext(element);

if (AreEqual(elementNext, element))
SetFirst (headElement, Zero);
SetLast (headElement, Zero);

else

{
SetNext (elementPrevious, elementNext);
SetPrevious(elementNext, elementPrevious);
if (AreEqual(element, GetFirst(headElement)))
{

SetFirst (headElement, elementNext);
if (AreEqual(element, GetLast(headElement)))
SetLast (headElement, elementPrevious);

}

}

SetPrevious(element, Zero);

SetNext (element, Zero);

DecrementSize (headElement) ;

}

}

./csharp/Platform.Collections.Methods/Lists/RelativeDoublyLinkedListMethodsBase.cs
using System.Runtime.CompilerServices;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Lists

/// <summary>

/// <para>

/// Represents the relative doubly linked list methods base.

/// </para>

/// <para></para>

/// </summary>

/// <seealso cref="DoublyLinkedListMethodsBase{TElement}"/>

public abstract class RelativeDoublyLinkedListMethodsBase<TElement>
— DoublyLinkedListMethodsBase<TElement>
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
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64
65
66
67
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71
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74
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80
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82
83
84
85
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89
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/// <summary>
/// <para>

/// Gets the first using the specified head element.

/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>
/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract TElement GetFirst(TElement headElement) ;

/// <summary>
/// <para>
/// Gets the last using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract TElement GetLast(TElement headElement) ;

/// <summary>
/// <para>
/// Gets the size using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract TElement GetSize(TElement headElement);

/// <summary>
/// <para>

/// Sets the first using the specified head element.

/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>
/// <para></para>

/// </param>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract void SetFirst(TElement headElement, TElement element);

/// <summary>
/// <para>
/// Sets the last using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>
/// <para></para>



93 /// </param>

04 /// <param name="element'">

95 /// <para>The element.</para>

96 /// <para></para>

97 /// </param>

08 [MethodImpl (MethodImplOptions.AggressiveInlining)]

99 protected abstract void SetLast(TElement headElement, TElement element) ;
100

101 /// <summary>

102 /// <para>

103 /// Sets the size using the specified head element.

104 /// </para>

105 /// <para></para>

106 /// </summary>

107 /// <param name="headElement">

108 /// <para>The head element.</para>

109 /// <para></para>

110 /// </param>

111 /// <param name="size">

112 /// <para>The size.</para>

113 /// <para></para>

114 /// </param>

115 [MethodImpl (MethodImplOptions.AggressiveInlining)]

116 protected abstract void SetSize(TElement headElement, TElement size);
117

118 /// <summary>

119 /// <para>

120 /// Increments the size using the specified head element.
121 /// </para>

122 /// <para></para>

123 /// </summary>

124 /// <param name="headElement">

125 /// <para>The head element.</para>

126 /// <para></para>

127 /// </param>

128 [MethodImpl (MethodImplOptions.AggressiveInlining)]

129 protected void IncrementSize(TElement headElement) => SetSize(headElement,

< Increment(GetSize(headElement)));

131 /// <summary>

132 /// <para>

133 /// Decrements the size using the specified head element.

134 /// </para>

135 /// <para></para>

136 /// </summary>

137 /// <param name="headElement">

138 /// <para>The head element.</para>

139 /// <para></para>

140 /// </param>

141 [MethodImpl (MethodImplOptions.AggressiveInlining)]

142 protected void DecrementSize(TElement headElement) => SetSize(headElement,
s Decrement (GetSize(headElement)));

143 }

144 }

1.8 ./csharp/Platform.Collections.Methods/Lists/RelativeOpenDoublyLinkedListMethods.cs

1 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

2

3 namespace Platform.Collections.Methods.Lists

A

5 /// <summary>

6 /// <para>

7 /// Represents the relative open doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

1 /// <seealso cref="RelativeDoublyLinkedListMethodsBase{TElement}"/>

12 public abstract class RelativeOpenDoublyLinkedListMethods<TElement>
— RelativeDoublyLinkedListMethodsBase<TElement>

13 {

14 /// <summary>

15 /// <para>

16 /// Attaches the before using the specified head element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="headElement">

21 /// <para>The head element.</para>



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void AttachBefore(TElement headElement, TElement baseElement, TElement newElement)

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void AttachAfter(TElement headElement, TElement baseElement, TElement newElement)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<para></para>

</param>

<param name="baseElement">
<para>The base element.</para>
<para></para>

</param>

<param name="newElement">
<para>The new element.</para>
<para></para>

</param>

var baseElementPrevious = GetPrevious(baseElement) ;
SetPrevious(newElement, baseElementPrevious);
SetNext (newElement, baseElement) ;

if (EqualToZero(baseElementPrevious))

{
SetFirst (headElement, newElement) ;
}
else
{
SetNext (baseElementPrevious, newElement) ;
}

SetPrevious(baseElement, newElement) ;
IncrementSize (headElement) ;

<summary>

<para>

Attaches the after using the specified head element.
</para>

<para></para>

</summary>

<param name="headElement">
<para>The head element.</para>
<para></para>

</param>

<param name="baseElement">
<para>The base element.</para>
<para></para>

</param>

<param name="newElement">
<para>The new element.</para>
<para></para>

</param>

var baseElementNext = GetNext(baseElement);
SetPrevious (newElement, baseElement) ;
SetNext (newElement, baseElementNext) ;

if (EqualToZero(baseElementNext))

{
SetLast (headElement, newElement);
}
else
{
SetPrevious(baseElementNext, newElement) ;
}

SetNext (baseElement, newElement);
IncrementSize (headElement) ;

<summary>

<para>

Attaches the as first using the specified head element.
</para>

<para></para>

</summary>

<param name="headElement">
<para>The head element.</para>
<para></para>

</param>

<param name="element'>
<para>The element.</para>
<para></para>

</param>

public void AttachAsFirst(TElement headElement, TElement element)

{



100 var first = GetFirst(headElement) ;

101 if (EqualToZero(first))

102 {

103 SetFirst (headElement, element);

104 SetLast (headElement, element);

105 SetPrevious(element, Zero);

106 SetNext (element, Zero);

107 IncrementSize(headElement) ;

108 }

109 else

110 {

111 AttachBefore(headElement, first, element);
112 }

113 }

114

115 /// <summary>

116 /// <para>

117 /// Attaches the as last using the specified head element.
118 /// </para>

119 /// <para></para>

120 /// </summary>

121 /// <param name="headElement">

122 /// <para>The head element.</para>

123 /// <para></para>

124 /// </param>

125 /// <param name="element">

126 /// <para>The element.</para>

127 /// <para></para>

128 /// </param>

129 public void AttachAsLast(TElement headElement, TElement element)
130 {

131 var last = GetLast(headElement) ;

132 if (EqualToZero(last))

133 {

134 AttachAsFirst (headElement, element);
135 }

136 else

137 {

138 AttachAfter (headElement, last, element);
139 }

140 }

141

142 /// <summary>

143 /// <para>

144 /// Detaches the head element.

145 /// </para>

146 /// <para></para>

147 /// </summary>

148 /// <param name="headElement">

149 /// <para>The head element.</para>

150 /// <para></para>

151 /// </param>

152 /// <param name="element">

153 /// <para>The element.</para>

154 /// <para></para>

155 /// </param>

156 public void Detach(TElement headElement, TElement element)
157 {

158 var elementPrevious = GetPrevious(element);
159 var elementNext = GetNext(element) ;

160 if (EqualToZero(elementPrevious))

161

162 SetFirst (headElement, elementNext);

163 }

164 else

165 {

166 SetNext (elementPrevious, elementNext);
167

168 if (EqualToZero(elementNext))

169

170 SetLast (headElement, elementPrevious);
171 }

172 else

173 {

174 SetPrevious(elementNext, elementPrevious);
175 }

176 SetPrevious(element, Zero);

177 SetNext (element, Zero);
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179
180
181
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70

DecrementSize (headElement) ;

./csharp/Platform.Collections.Methods/ Trees/RecursionlessSizeBalanced TreeMethods.cs
#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Trees

{

/17
/17
/17
/17
/17
/17
/17

—

{

<summary>

<para>

Represents the recursionless size balanced tree methods.

</para>

<para></para>

</summary>

<seealso cref="SizedBinaryTreeMethodsBase{TElement}"/>

public abstract class RecursionlessSizeBalancedTreeMethods<TElement> :
SizedBinaryTreeMethodsBase<TElement>

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<summary>

<para>

Attaches the core using the specified root.
</para>

<para></para>
</summary>

<param name="root">
<para>The root.</para>
<para></para>

</param>

<param name='"node'">
<para>The node.</para>
<para></para>

</param>

protected override void AttachCore(ref TElement root, TElement node)

while (true)
{
ref var left = ref GetLeftReference(root);
var leftSize = GetSizeOrZero(left);
ref var right = ref GetRightReference(root);
var rightSize = GetSizeOrZero(right);
%f (FirstIsToTheLeftOfSecond(node, root)) // node.Key less than root.Key

if (EqualToZero(left))
{

IncrementSize(root) ;
SetSize (node, One);

left = node;
return;
}
if (FirstIsToTheLeftOfSecond(node, left)) // node.Key less than left.Key
{
if (GreaterThan(Increment(leftSize), rightSize))
{
RightRotate(ref root);
else
{
IncrementSize(root) ;
root = ref left;
}
}

else // node.Key greater than left.Key

var leftRightSize = GetSizelrZero(GetRight(left));

if (GreaterThan(Increment(leftRightSize), rightSize))

{
if (EqualToZero(leftRightSize) && EqualToZero(rightSize))
{

SetLeft(node, left);
SetRight (node, root);

SetSize(node, Add(leftSize, Two)); // Two (2) - node the size of

— root and a node itself
SetLeft(root, Zero);
SetSize(root, One);

root = node;

return;



71 }

72 LeftRotate (ref left);

73 RightRotate(ref root);

74 }

75 else

76 {

77 IncrementSize(root);

78 root = ref left;

79 }

80 }

81 }

82 else // node.Key greater than root.Key

83

84 if (EqualToZero(right))

85 {

86 IncrementSize(root);

87 SetSize(node, 0One);

88 right = node;

89 return;

90 }

01 if (FirstIsToTheRightOfSecond(node, right)) // node.Key greater than
— right.Key

92 {

93 if (GreaterThan(Increment(rightSize), leftSize))

94 {

95 LeftRotate (ref root);

96 }

97 else

98 {

99 IncrementSize(root) ;

100 root = ref right;

101 }

102

103 else // node.Key less than right.Key

104 {

105 var rightLeftSize = GetSizeOrZero(GetLeft(right));

106 if (GreaterThan(Increment(rightLeftSize), leftSize))

107 {

108 if (EqualToZero(rightLeftSize) && EqualToZero(leftSize))

109 {

110 SetLeft (node, root);

111 SetRight (node, right);

112 SetSize(node, Add(rightSize, Two)); // Two (2) - node the size

— of root and a node itself

113 SetRight (root, Zero);

114 SetSize(root, One);

115 root = node;

116 return;

117 }

118 RightRotate(ref right);

119 LeftRotate(ref root);

120 }

121 else

122 {

123 IncrementSize(root) ;

124 root = ref right;

125 }

126 }

127 }

128 }

129 }

130

131 /// <summary>

132 /// <para>

133 /// Detaches the core using the specified root.

134 /// </para>

135 /// <para></para>

136 /// </summary>

137 /// <param name="root">

138 /// <para>The root.</para>

139 /// <para></para>

140 /// </param>

141 /// <param name="node">

142 /// <para>The node.</para>

143 /// <para></para>

144 /// </param>

145 protected override void DetachCore(ref TElement root, TElement node)

146 {



211

217

while (true)

{

ref var left
var leftSize

ref GetLeftReference(root);
GetSizelOrZero(left);

ref var right = ref GetRightReference(root);

var rightSize

GetSizeOrZero(right);

if (FirstIsToTheLeftOfSecond(node, root)) // node.Key less than root.Key
{

}

var decrementedLeftSize = Decrement(leftSize);
if (GreaterThan(GetSizeOrZero(GetRightOrDefault(right)),
— decrementedLeftSize))

LeftRotate(ref root);

}
else if (GreaterThan(GetSizeOrZero(GetLeftOrDefault(right)),

— decrementedLeftSize))

RightRotate(ref right);
LeftRotate(ref root);

}

else

{
DecrementSize(root);
root = ref left;

}

else if (FirstIsToTheRightOfSecond(node, root)) // node.Key greater than root.Key

{

var decrementedRightSize = Decrement(rightSize) ;
if (GreaterThan(GetSizeOrZero(GetLeftOrDefault(left)), decrementedRightSize))
{

RightRotate(ref root);

else if (GreaterThan(GetSizeOrZero(GetRightOrDefault(left)),
< decrementedRightSize))

{
LeftRotate(ref left);
RightRotate(ref root);
else
{
DecrementSize(root) ;
root = ref right;
}

else // key equals to root.Key

if (GreaterThanZero(leftSize) && GreaterThanZero(rightSize))
{

TElement replacement;
if (GreaterThan(leftSize, rightSize))

{
replacement = GetRightest(left);
DetachCore(ref left, replacement);
else
{
replacement = GetLeftest(right);
DetachCore(ref right, replacement);
}

SetLeft (replacement, left);

SetRight (replacement, right);
SetSize(replacement, Add(leftSize, rightSize));
root = replacement;

}
else if (GreaterThanZero(leftSize))
{
root = left;
}
else if (GreaterThanZero(rightSize))
{
root = right;
}
else
{
root = Zero;
}

ClearNode (node) ;



222 return;
223 T

224 }

225 }

226 }

227}

1.10 ./csharp/Platform.Collections.Methods/Trees/SizeBalanced TreeMethods.cs

1 using System;

2

3 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

4

5 namespace Platform.Collections.Methods.Trees

6 T

7 /// <summary>

8 /// <para>

9 /// Represents the size balanced tree methods.

10 /// </para>

1 /// <para></para>

12 /// </summary>

13 /// <seealso cref="SizedBinaryTreeMethodsBase{TElement}"/>

14 public abstract class SizeBalancedTreeMethods<TElement> :
— SizedBinaryTreeMethodsBase<TElement>

15 {

16 /// <summary>

17 /// <para>

18 /// Attaches the core using the specified root.

19 /// </para>

20 /// <para></para>

21 /// </summary>

22 /// <param name="root">

23 /// <para>The root.</para>

24 /// <para></para>

25 /// </param>

26 /// <param name="node">

27 /// <para>The node.</para>

28 /// <para></para>

29 /// </param>

30 protected override void AttachCore(ref TElement root, TElement node)

31 {

32 if (EqualToZero(root))

33 {

34 root = node;

35 IncrementSize(root) ;

36 }

37 else

38 {

39 IncrementSize(root) ;

40 if (FirstIsToTheLeft0fSecond(node, root))

4 {

42 AttachCore(ref GetLeftReference(root), node);

43 LeftMaintain(ref root);

44 }

45 else

46 {

47 AttachCore(ref GetRightReference(root), node);

a8 RightMaintain(ref root);

49 }

50 }

51 }

52

53 /// <summary>

54 /// <para>

55 /// Detaches the core using the specified root.

56 /// </para>

57 /// <para></para>

58 /// </summary>

59 /// <param name="root">

60 /// <para>The root.</para>

61 /// <para></para>

62 /// </param>

63 /// <param name="nodeToDetach">

64 /// <para>The node to detach.</para>

65 /// <para></para>

66 /// </param>

67 /// <exception cref="InvalidOperationException">

68 /// <para>Duplicate link found in the tree.</para>

69 /// <para></para>



70 /// </exception>

71 protected override void DetachCore(ref TElement root, TElement nodeToDetach)

72 {

73 ref var currentNode = ref root;

74 ref var parent = ref root;

75 var replacementNode = Zero;

76 while (!AreEqual(currentNode, nodeToDetach))

77 {

78 DecrementSize (currentNode) ;

79 if (FirstIsToTheLeft0fSecond(nodeToDetach, currentNode))

80 {

81 parent = ref currentNode;

82 currentNode = ref GetLeftReference(currentNode);

83 }

84 else if (FirstIsToTheRightOfSecond(nodeToDetach, currentNode))

85 {

86 parent = ref currentNode;

87 currentNode = ref GetRightReference(currentNode);

88 }

89 else

90 {

91 throw new InvalidOperationException("Duplicate link found in the tree.");

92 }

93 }

94 var nodeToDetachLeft = GetLeft(nodeToDetach);

95 var node = GetRight(nodeToDetach);

96 if (1EqualToZero(nodeToDetachLeft) && !EqualToZero(node))

97 {

98 var leftestNode = GetLeftest(node);

99 DetachCore(ref GetRightReference(nodeToDetach), leftestNode);

100 SetLeft (leftestNode, nodeToDetachlLeft);

101 node = GetRight(nodeToDetach) ;

102 if (!'EqualToZero(node))

103 {

104 SetRight (leftestNode, node);

105 SetSize(leftestNode, Increment (Add(GetSize(nodeToDetachLeft),
< GetSize(node))));

106 }

107 else

108 {

109 SetSize(leftestNode, Increment (GetSize (nodeToDetachLeft)));

110 }

111 replacementNode = leftestNode;

112 }

113 else if (!EqualToZero(nodeToDetachLeft))

114 {

115 replacementNode = nodeToDetachleft;

116

117 else if (!EqualToZero(node))

118 {

119 replacementNode = node;

120

121 if (AreEqual(root, nodeToDetach))

122

123 root = replacementNode;

124 }

125 else if (AreEqual(GetLeft(parent), nodeToDetach))

126 {

127 SetLeft (parent, replacementNode) ;

128 }

129 else if (AreEqual (GetRight(parent), nodeToDetach))

130 {

131 SetRight (parent, replacementNode);

132 }

133 ClearNode (nodeToDetach) ;

134 }

135 private void LeftMaintain(ref TElement root)

136 {

137 if (!EqualToZero(root))

138

139 var rootLeftNode = GetLeft(root);

140 if (1EqualToZero(rootLeftNode))

141 {

142 var rootRightNode = GetRight (root);

143 var rootRightNodeSize = GetSize(rootRightNode) ;

144 var rootLeftNodeLeftNode = GetLeft(rootLeftNode) ;

145 if (!EqualToZero(rootLeftNodeLeftNode) &&

146 (EqualToZero (rootRightNode) ||

< GreaterThan(GetSize(rootLeftNodeLeftNode), rootRightNodeSize)))
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RightRotate(ref root);

else
{
var rootLeftNodeRightNode = GetRight (rootLeftNode) ;
if ('EqualToZero(rootLeftNodeRightNode) &&
(EqualToZero(rootRightNode) ||
< GreaterThan(GetSize(rootLeftNodeRightNode), rootRightNodeSize)))

{
LeftRotate(ref GetLeftReference(root));
RightRotate(ref root);

else

{
return;

}

}

LeftMaintain(ref GetLeftReference(root));
RightMaintain(ref GetRightReference(root));
LeftMaintain(ref root);

RightMaintain(ref root);

}
b
private void RightMaintain(ref TElement root)
{

if (1EqualToZero(root))

{

var rootRightNode = GetRight (root);
if (!EqualToZero(rootRightNode))
{

var rootLeftNode = GetLeft(root);
var rootLeftNodeSize = GetSize(rootLeftNode) ;
var rootRightNodeRightNode = GetRight (rootRightNode) ;
if (!'EqualToZero(rootRightNodeRightNode) &&
(EqualToZero(rootLeftNode) |
. < GreaterThan(GetSize(rootRightNodeRightNode), rootLeftNodeSize)))

}

else

{

LeftRotate(ref root);

var rootRightNodeLeftNode = GetLeft(rootRightNode);
if (!'EqualToZero(rootRightNodeLeftNode) &&
(EqualToZero(rootLeftNode) ||
— GreaterThan(GetSize(rootRightNodeLeftNode), rootLeftNodeSize)))

RightRotate(ref GetRightReference(root));
LeftRotate (ref root);
3

else

{

}
}
LeftMaintain(ref GetLeftReference(root));
RightMaintain(ref GetRightReference(root));

LeftMaintain(ref root);
RightMaintain(ref root);

return;
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using System;

using System.Runtime.CompilerServices;
using System.Text;

#i1f USEARRAYPOOL

using Platform.Collections;

#endif

using Platform.Reflection;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Trees

{
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public abstract class SizedAndThreadedAVLBalancedTreelMethods<TElement> :

—

{

<summary>
Combination of Size, Height (AVL), and threads.
</summary>
<remarks>

Based on: <a href="https://github.com/programmatom/TreeLib/blob/master/TreeLib/TreeLib/G

enerated/AVLTreelist.cs">TreelLib.AVLTreelist</a>.
Which itself based on: <a

href="https://github.com/GNOME/glib/blob/master/glib/gtree.c">GNOME/glib/gtree</a>.

</remarks>

SizedBinaryTreeMethodsBase<TElement>

private static readonly int _maxPath = 11 * NumericType<TElement>.BytesSize + 4;

/// <summary>

/// <para>

/// Gets the rightest using the specified current.
/// </para>

/// <para></para>

/// </summary>

/// <param name="current">

/// <para>The current.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected override TElement GetRightest(TElement current)
{

var currentRight = GetRightOrDefault(current);
while (!EqualToZero(currentRight))

{
current = currentRight;
currentRight = GetRightOrDefault(current);
}
return current;
}
/// <summary>
/// <para>

/// Gets the leftest using the specified current.
/// </para>

/// <para></para>

/// </summary>

/// <param name="current">

/// <para>The current.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected override TElement GetLeftest(TElement current)

{
var currentLeft = GetLeftOrDefault(current);
while (!EqualToZero(currentLeft))
current = currentlLeft;
currentLeft = GetLeftOrDefault(current);
}
return current;
}
/// <summary>
/// <para>

/// Determines whether this instance contains.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="root">

/// <para>The root.</para>
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<para></para>
</param>

<returns>

<para>The bool</para>
<para></para>
</returns>

public override bool Contains(TElement node, TElement root)

}

/17
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while (!EqualToZero(root))

{
if (FirstIsToTheLeft0fSecond(node, root)) // node.Key < root.Key
{

root = GetLeftOrDefault(root);
}
else if (FirstIsToTheRightOfSecond(node, root)) // node.Key > root.Key
{

root = GetRightOrDefault(root);

}
else // node.Key == root.Key
{
return true;
}

}

return false;

<summary>

<para>

Prints the node using the specified node.
</para>

<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<param name="sb">
<para>The sb.</para>
<para></para>

</param>

<param name="level">
<para>The level.</para>
<para></para>

</param>

protected override void PrintNode(TElement node, StringBuilder sb, int level)

{

}

/17
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base.PrintNode(node, sb, level);

sb.Append(' ');

sb.Append (GetLeftIsChild(node) ? '1' : 'L');
sb.Append (GetRightIsChild(node) ? 'r' : 'R');
sb.Append (' ');

sb.Append (GetBalance (node) ) ;

<summary>

<para>

Increments the balance using the specified node.
</para>

<para></para>

</summary>

<param name='"node'">

<para>The node.</para>

<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void IncrementBalance(TElement node) => SetBalance(node,

—

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

(sbyte) (GetBalance(node) + 1));

<summary>

<para>

Decrements the balance using the specified node.
</para>

<para></para>

</summary>

<param name='"node'">

<para>The node.</para>

<para></para>

</param>



[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void DecrementBalance(TElement node) => SetBalance(node,
— (sbyte) (GetBalance(node) - 1));

/// <summary>

/// <para>

/// Gets the left or default using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected override TElement GetLeftOrDefault(TElement node) => GetLeftIsChild(node) ?
< GetLeft(node) : default;

/// <summary>

/// <para>

/// Gets the right or default using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected override TElement GetRightOrDefault(TElement node) => GetRightIsChild(node) 7
< GetRight(node) : default;

/// <summary>

/// <para>

/// Determines whether this instance get left is child.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The bool</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract bool GetLeftIsChild(TElement node);

/// <summary>

/// <para>

/// Sets the left is child using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="value">

/// <para>The value.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetLeftIsChild(TElement node, bool value);

/// <summary>

/// <para>

/// Determines whether this instance get right is child.
/// </para>



240 /// <para></para>

241 /// </summary>

242 /// <param name="node'">

243 /// <para>The node.</para>

244 /// <para></para>

245 /// </param>

246 /// <returns>

247 /// <para>The bool</para>

248 /// <para></para>

249 /// </returns>

250 [MethodImpl (MethodImplOptions.AggressiveInlining)]
251 protected abstract bool GetRightIsChild(TElement node);
252

253 /// <summary>

254 /// <para>

255 /// Sets the right is child using the specified node.
256 /// </para>

257 /// <para></para>

258 /// </summary>

259 /// <param name="node">

260 /// <para>The node.</para>

261 /// <para></para>

262 /// </param>

263 /// <param name="value">

264 /// <para>The value.</para>

265 /// <para></para>

266 /// </param>

267 [MethodImpl (MethodImplOptions.AggressiveInlining)]
268 protected abstract void SetRightIsChild(TElement node, bool value);
269

270 /// <summary>

271 /// <para>

272 /// Gets the balance using the specified node.

273 /// </para>

274 /// <para></para>

275 /// </summary>

276 /// <param name="node">

277 /// <para>The node.</para>

278 /// <para></para>

279 /// </param>

280 /// <returns>

281 /// <para>The sbyte</para>

282 /// <para></para>

283 /// </returns>

284 [MethodImpl (MethodImplOptions.AggressiveInlining)]
285 protected abstract sbyte GetBalance(TElement node);
286

287 /// <summary>

288 /// <para>

289 /// Sets the balance using the specified node.

290 /// </para>

291 /// <para></para>

292 /// </summary>

293 /// <param name="node">

294 /// <para>The node.</para>

295 /// <para></para>

296 /// </param>

297 /// <param name="value">

208 /// <para>The value.</para>

299 /// <para></para>

300 /// </param>

301 [MethodImpl (MethodImplOptions.AggressiveInlining)]
302 protected abstract void SetBalance(TElement node, sbyte value);
303

304 /// <summary>

305 /// <para>

306 /// Attaches the core using the specified root.
307 /// </para>

308 /// <para></para>

309 /// </summary>

310 /// <param name="root'">

311 /// <para>The root.</para>

312 /// <para></para>

313 /// </param>

314 /// <param name="node'">

315 /// <para>The node.</para>

316 /// <para></para>

317 /// </param>



318 /// <exception cref="InvalidOperationException">

319 /// <para>Node with the same key already attached to a tree.</para>

320 /// <para></para>

321 /// </exception>

322 protected override void AttachCore(ref TElement root, TElement node)

323 {

324 unchecked

325 {

326 // TODO: Check what is faster to use simple array or array from array pool
327 // TODO: Try to use stackalloc as an optimization (requires code generation,

< because of generics)
328 #if USEARRAYPOOL

329 var path = ArrayPool.Allocate<TElement>(MaxPath);

330 var pathPosition = 0;

331 path[pathPosition++] = default;

332 #else

333 var path = new TElement[_maxPath];

334 var pathPosition = 1;

335  #endif

336 var currentNode = root;

337 while (true)

338 {

339 if (FirstIsToTheLeft0fSecond(node, currentNode))

340 {

341 if (GetLeftIsChild(currentNode))

342 {

343 IncrementSize (currentNode) ;

344 path[pathPosition++] = currentNode;

345 currentNode = GetLeft(currentNode) ;

346 }

347 else

348 {

349 // Threads

350 SetLeft (node, GetLeft(currentNode));

351 SetRight (node, currentNode);

352 SetLeft (currentNode, node);

353 SetLeftIsChild(currentNode, true);

354 DecrementBalance (currentNode) ;

355 SetSize(node, 0One);

356 FixSize(currentNode); // Should be incremented already

357 break;

358 }

359 }

360 else if (FirstIsToTheRightOfSecond(node, currentNode))

361 {

362 if (GetRightIsChild(currentNode))

363 {

364 IncrementSize (currentNode) ;

365 path[pathPosition++] = currentNode;

366 currentNode = GetRight (currentNode) ;

367 }

368 else

369 {

370 // Threads

371 SetRight (node, GetRight(currentNode));

372 SetLeft (node, currentNode);

373 SetRight (currentNode, node);

374 SetRightIsChild(currentNode, true);

375 IncrementBalance (currentNode) ;

376 SetSize(node, 0One);

377 FixSize(currentNode); // Should be incremented already

378 break;

379 }

380 }

381 else

382 {

383 throw new InvalidOperationException("Node with the same key already
— attached to a tree.");

384 }

385 }

386 // Restore balance. This is the goodness of a non-recursive

387 // implementation, when we are done with balancing we 'break'

388 // the loop and we are done.

389 while (true)

390 {

391 var parent = path[--pathPosition];

392 var isLeftNode = !AreEqual(parent, default) && AreEqual(currentNode,

— GetLeft (parent));
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var currentNodeBalance = GetBalance(currentNode) ;
if (currentNodeBalance < -1 || currentNodeBalance > 1)
{

currentNode = Balance(currentNode) ;

if (AreEqual(parent, default))

{

root = currentNode;

}
else if (isLeftNode)
{
SetLeft (parent, currentNode);
FixSize(parent) ;
}
else
{
SetRight (parent, currentNode);
FixSize(parent) ;
}
}
currentNodeBalance = GetBalance(currentNode) ;
if (currentNodeBalance == 0 || AreEqual(parent, default))
{
break;
}
if (isLeftNode)
{
DecrementBalance (parent) ;
}
else
{

IncrementBalance (parent) ;

currentNode = parent;

#if USEARRAYPOOL

#endif

}

ArrayPool.Free(path) ;
}

private TElement Balance(TElement node)

{

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

unchecked
{
var rootBalance = GetBalance(node);
if (rootBalance < -1)
{
var left = GetLeft(node);
if (GetBalance(left) > 0)
{
SetLeft (node, LeftRotateWithBalance(left));
FixSize(node) ;
}
node = RightRotateWithBalance(node);
}
else if (rootBalance > 1)
{
var right = GetRight (node) ;
if (GetBalance(right) < 0)
{

SetRight (node, RightRotateWithBalance(right));
FixSize(node) ;

}

node = LeftRotateWithBalance(node);

return node;

<summary>

<para>

Lefts the rotate with balance using the specified node.
</para>

<para></para>

</summary>

<param name="node">

<para>The node.</para>

<para></para>

</param>
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/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

protected TElement LeftRotateWithBalance(TElement node)

{

}
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{

unchecked

{

var

right = GetRight (node);

if (GetLeftIsChild(right))
{
SetRight (node, GetLeft(right));
else
{
SetRightIsChild(node, false);
SetLeftIsChild(right, true);
}
SetLeft(right, node);
// Fix size
SetSize(right, GetSize(node));
FixSize(node) ;
// Fix balance
var rootBalance = GetBalance(node);
var rightBalance = GetBalance(right);
if (rightBalance <= 0)
{
if (rootBalance >= 1)
{
SetBalance (right, (sbyte)(rightBalance - 1));
}
else
{
SetBalance(right, (sbyte)(rootBalance + rightBalance - 2));
}
SetBalance(node, (sbyte) (rootBalance - 1));
}
else
{
if (rootBalance <= rightBalance)
{
SetBalance(right, (sbyte) (rootBalance - 2));
}
else
{
SetBalance(right, (sbyte) (rightBalance - 1));
}
SetBalance(node, (sbyte) (rootBalance - rightBalance - 1));
}
return right;
}
<summary>
<para>
Rights the rotate with balance using the specified node.
</para>
<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>
<returns>

<para>The element</para>

<para></para>

</returns>

protected TElement RightRotateWithBalance(TElement node)

unchecked

{

var
if (
{

else

{

left = GetLeft(node);
GetRightIsChild(left))

SetLeft (node, GetRight(left));
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SetLeftIsChild(node, false);
) SetRightIsChild(left, true);
SetRight (left, node);
// Fix size
SetSize(left, GetSize(node));
FixSize(node) ;
// Fix balance
var rootBalance = GetBalance(node);
var leftBalance = GetBalance(left);
}f (leftBalance <= 0)

if (leftBalance > rootBalance)

{
SetBalance(left, (sbyte)(leftBalance + 1));
}
else
{
SetBalance(left, (sbyte) (rootBalance + 2));
}
SetBalance(node, (sbyte)(rootBalance - leftBalance + 1));
}
else
{

if (rootBalance <= -1)
SetBalance(left, (sbyte)(leftBalance + 1));

else

{

}
SetBalance(node, (sbyte) (rootBalance + 1));

SetBalance(left, (sbyte)(rootBalance + leftBalance + 2));

return left;

¥

/// <summary>

/// <para>

/// Gets the next using the specified node.

/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected override TElement GetNext(TElement node)

{
var current = GetRight(node);
if (GetRightIsChild(node))
{
return GetLeftest(current);
}
return current;
}
/// <summary>
/// <para>

/// Gets the previous using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]



627 protected override TElement GetPrevious(TElement node)

628 {

629 var current = GetLeft(node);

630 if (GetLeftIsChild(node))

631 {

632 return GetRightest(current);

633 }

634 return current;

635 }

636

637 /// <summary>

638 /// <para>

639 /// Detaches the core using the specified root.
640 /// </para>

641 /// <para></para>

642 /// </summary>

643 /// <param name="root'">

644 /// <para>The root.</para>

645 /// <para></para>

646 /// </param>

647 /// <param name="node">

648 /// <para>The node.</para>

649 /// <para></para>

650 /// </param>

651 /// <exception cref="InvalidOperationException">
652 /// <para>Cannot find a node.</para>

653 /// <para></para>

654 /// </exception>

655 /// <exception cref="InvalidOperationException">
656 /// <para>Cannot find a node.</para>

657 /// <para></para>

658 /// </exception>

659 protected override void DetachCore(ref TElement root, TElement node)
660 {

661 unchecked

662

{
o3 #if USEARRAYPOOL

664 var path = ArrayPool.Allocate<TElement>(MaxPath) ;

665 var pathPosition = O;

666 path[pathPosition++] = default;

667 Helse

668 var path = new TElement[_maxPath];

669 var pathPosition = 1;

670 #endif

671 var currentNode = root;

672 while (true)

673

674 if (FirstIsToTheLeftOfSecond(node, currentNode))

675 {

676 if ('GetLeftIsChild(currentNode))

677 {

678 throw new InvalidOperationException("Cannot find a node.");

679 }

680 DecrementSize(currentNode) ;

681 path[pathPosition++] = currentNode;

682 currentNode = GetLeft(currentNode) ;

683 }

684 else if (FirstIsToTheRightOfSecond(node, currentNode))

685 {

686 if ('GetRightIsChild(currentNode))

687 {

688 throw new InvalidOperationException("Cannot find a node.");

689 }

690 DecrementSize(currentNode) ;

691 path[pathPosition++] = currentNode;

692 currentNode = GetRight (currentNode) ;

693 }

694 else

695 {

696 break;

697 }

698 }

699 var parent = path[--pathPosition];

700 var balanceNode = parent;

701 var isLeftNode = !AreEqual(parent, default) && AreEqual(currentNode,
GetLeft (parent));

702 1f ('GetLeftIsChlld(currentNode))

703 {
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if (!GetRightIsChild(currentNode)) // node has no
{

3

if (AreEqual(parent, default))
{

root = Zero;

}

else if (isLeftNode)

{
SetLeftIsChild(parent, false);
SetLeft(parent, GetLeft(currentNode));
IncrementBalance (parent) ;

}

else

{
SetRightIsChild(parent, false);
SetRight (parent, GetRight(currentNode));
DecrementBalance (parent) ;

}

else // node has a right child

{

}

var successor = GetNext(currentNode) ;
SetLeft (successor, GetLeft(currentNode));
var right = GetRight (currentNode) ;

if (AreEqual(parent, default))

{

root = right;

}
else if (isLeftNode)
{
SetLeft(parent, right);
IncrementBalance (parent) ;
else
{
SetRight (parent, right);
DecrementBalance (parent) ;
}

else // node has a left child
{

if (!GetRightIsChild(currentNode))
{

}

var predecessor = GetPrevious(currentNode) ;
SetRight (predecessor, GetRight (currentNode));
var leftValue = GetLeft(currentNode) ;

%f (AreEqual (parent, default))

root = leftValue;
else if (isLeftNode)
{

SetLeft(parent, leftValue);
IncrementBalance (parent) ;

}

else

{
SetRight (parent, leftValue);
DecrementBalance (parent) ;

}

else // node has a both children (left and right)
{

var predecessor = GetLeft(currentNode);
var successor = GetRight(currentNode) ;

var successorParent = currentNode;

int previousPathPosition = ++pathPosition;

children

// find the immediately next node (and its parent)

while (GetLeftIsChild(successor))

{
path[++pathPosition] = successorParent =
successor = GetLeft(successor);

successor,

if ('AreEqual(successorParent, currentNode))

{
}

DecrementSize(successorParent) ;
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path[previousPathPosition] = successor;
balanceNode = path[pathPosition];

// remove 'successor' from the tree

if (!'AreEqual(successorParent, currentNode))

{
if (!GetRightIsChild(successor))
{
SetLeftIsChild (successorParent, false);
}
else
{
SetLeft(successorParent, GetRight(successor));
}
IncrementBalance (successorParent) ;
SetRightIsChild(successor, true);
SetRight (successor, GetRight (currentNode));
}
else
{
DecrementBalance (currentNode) ;
}

// set the predecessor's successor link to point to the right place
while (GetRightIsChild(predecessor))
{

predecessor = GetRight(predecessor);

SetRight (predecessor, successor);

// prepare 'successor' to replace 'node'

var left = GetLeft(currentNode) ;
SetLeftIsChild(successor, true);

SetLeft (successor, left);

SetBalance(successor, GetBalance(currentNode));
FixSize(successor) ;

if (AreEqual (parent, default))

{

}
else if (isLeftNode)
{

}

else

{

root = successor;

SetLeft(parent, successor);

SetRight (parent, successor);

}

// restore balance
if (!AreEqual(balanceNode, default))
{

while (true)
{

var balanceParent = path[--pathPosition];

isLeftNode = !AreEqual(balanceParent, default) && AreEqual(balanceNode,
< GetLeft(balanceParent));

var currentNodeBalance = GetBalance(balanceNode) ;

if (currentNodeBalance < -1 || currentNodeBalance > 1)

{

balanceNode = Balance(balanceNode);
if (AreEqual(balanceParent, default))
{

root = balancelNode;
else if (isLeftNode)
{
SetLeft (balanceParent, balanceNode) ;

else

{
SetRight (balanceParent, balanceNode);

}
currentNodeBalance = GetBalance(balanceNode) ;
if (currentNodeBalance != 0 || AreEqual(balanceParent, default))

break;

}
if (isLeftNode)
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{
}

else

{

IncrementBalance (balanceParent) ;

DecrementBalance (balanceParent) ;

balanceNode = balanceParent;
}
}
ClearNode (node) ;

#if USEARRAYPOOL
ArrayPool.Free(path) ;

#endif
}
+
/// <summary>
/// <para>
/// Clears the node using the specified node.
/// </para>
/// <para></para>
/// </summary>
/// <param name="node">
/// <para>The node.</para>
/// <para></para>
/// </param>
[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected override void ClearNode(TElement node)
{
SetLeft (node, Zero);
SetRight (node, Zero);
SetSize(node, Zero);
SetLeftIsChild(node, false);
SetRightIsChild(node, false);
SetBalance(node, 0);
}
}
}
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//#define ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

using System;

using System.Diagnostics;

using System.Runtime.CompilerServices;
using System.Text;

using Platform.Numbers;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Trees
{
/// <summary>
/// <para>
/// Represents the sized binary tree methods base.
/// </para>
/// <para></para>
/// </summary>
/// <seealso cref="GenericCollectionMethodsBase{TElement}"/>
public abstract class SizedBinaryTreelMethodsBase<TElement>
— GenericCollectionMethodsBase<TElement>
{
/// <summary>
/// <para>
/// Gets the left reference using the specified node.
/// </para>
/// <para></para>
/// </summary>
/// <param name="node">
/// <para>The node.</para>
/// <para></para>
/// </param>
/// <returns>
/// <para>The ref element</para>
/// <para></para>
/// </returns>
[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract ref TElement GetLeftReference(TElement node);



38
39 /// <summary>

40 /// <para>

n /// Gets the right reference using the specified node.
42 /// </para>

43 /// <para></para>

14 /// </summary>

45 /// <param name="node">

16 /// <para>The node.</para>

a7 /// <para></para>

48 /// </param>

49 /// <returns>

50 /// <para>The ref element</para>

51 /// <para></para>

52 /// </returns>

53 [MethodImpl (MethodImplOptions.AggressiveInlining)]
54 protected abstract ref TElement GetRightReference(TElement node);
55

56 /// <summary>

57 /// <para>

58 /// Gets the left using the specified node.

59 /// </para>

60 /// <para></para>

61 /// </summary>

62 /// <param name="node'">

63 /// <para>The node.</para>

64 /// <para></para>

65 /// </param>

66 /// <returns>

67 /// <para>The element</para>

68 /// <para></para>

69 /// </returns>

70 [MethodImpl (MethodImplOptions.AggressiveInlining)]
71 protected abstract TElement GetLeft(TElement node);
72

73 /// <summary>

74 /// <para>

75 /// Gets the right using the specified node.

76 /// </para>

77 /// <para></para>

78 /// </summary>

79 /// <param name="node">

80 /// <para>The node.</para>

81 /// <para></para>

82 /// </param>

83 /// <returns>

84 /// <para>The element</para>

85 /// <para></para>

86 /// </returns>

87 [MethodImpl (MethodImplOptions.AggressiveInlining)]
88 protected abstract TElement GetRight(TElement node);
89

90 /// <summary>

91 /// <para>

92 /// Gets the size using the specified node.

93 /// </para>

94 /// <para></para>

95 /// </summary>

96 /// <param name="node">

97 /// <para>The node.</para>

98 /// <para></para>

99 /// </param>

100 /// <returns>

101 /// <para>The element</para>

102 /// <para></para>

103 /// </returns>

104 [MethodImpl (MethodImplOptions.AggressiveInlining)]
105 protected abstract TElement GetSize(TElement node);
106

107 /// <summary>

108 /// <para>

109 /// Sets the left using the specified node.

110 /// </para>

111 /// <para></para>

112 /// </summary>

113 /// <param name="node">

114 /// <para>The node.</para>

115 /// <para></para>



/// </param>

/// <param name="left">

/// <para>The left.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract void SetLeft(TElement node, TElement left);

/// <summary>

/// <para>

/// Sets the right using the specified node.

/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="right">

/// <para>The right.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetRight(TElement node, TElement right);

/// <summary>

/// <para>

/// Sets the size using the specified node.

/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="size">

/// <para>The size.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetSize(TElement node, TElement size);

/// <summary>

/// <para>

/// Determines whether this instance first is to the left of second.
/// </para>

/// <para></para>

/// </summary>

/// <param name="first">

/// <para>The first.</para>

/// <para></para>

/// </param>

/// <param name="second">

/// <para>The second.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The bool</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract bool FirstIsToTheLeftOfSecond(TElement first, TElement second);

/// <summary>

/// <para>

/// Determines whether this instance first is to the right of second.
/// </para>

/// <para></para>

/// </summary>

/// <param name="first">

/// <para>The first.</para>
/// <para></para>

/// </param>

/// <param name="second">
/// <para>The second.</para>
/// <para></para>

/// </param>

/// <returns>



/// <para>The bool</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract bool FirstIsToTheRightOfSecond(TElement first, TElement second);

/// <summary>

/// <para>

/// Gets the left or default using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetLeftOrDefault(TElement node) => AreEqual(node, default) 7
< default : GetLeft(node);

/// <summary>

/// <para>

/// Gets the right or default using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetRightOrDefault(TElement node) => AreEqual(node, default) ?
— default : GetRight(node);

/// <summary>

/// <para>

/// Increments the size using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void IncrementSize(TElement node) => SetSize(node, Increment(GetSize(node)));

/// <summary>

/// <para>

/// Decrements the size using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void DecrementSize(TElement node) => SetSize(node, Decrement(GetSize(node)));

/// <summary>

/// <para>

/// Gets the left size using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>
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<returns>

<para>The element</para>
<para></para>

</returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected TElement GetLeftSize(TElement node) => GetSizeOrZero(GetLeftOrDefault(node));

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
117

<summary>

<para>

Gets the right size using the specified node.
</para>

<para></para>

</summary>

<param name='"node">
<para>The node.</para>
<para></para>

</param>

<returns>

<para>The element</para>
<para></para>

</returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected TElement GetRightSize(TElement node) => GetSizeOrZero(GetRightOrDefault(node));

/17
/17
/17
/17
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<summary>

<para>

Gets the size or zero using the specified node.
</para>

<para></para>

</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<returns>

<para>The element</para>
<para></para>

</returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected TElement GetSizeOrZero(TElement node) => EqualToZero(node) 7 Zero :

—

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

GetSize(node);

<summary>

<para>

Fixes the size using the specified node.
</para>

<para></para>

</summary>

<param name='"node'">

<para>The node.</para>

<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void FixSize(TElement node) => SetSize(node, Increment(Add(GetLeftSize(node),

—

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

GetRightSize(node))));

<summary>

<para>

Lefts the rotate using the specified root.
</para>

<para></para>

</summary>

<param name="root">

<para>The root.</para>

<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void LeftRotate(ref TElement root) => root = LeftRotate(root);

/17
/17
/17
/17
/17
/17
/17
/17
/17

<summary>

<para>

Lefts the rotate using the specified root.
</para>

<para></para>

</summary>

<param name="root">

<para>The root.</para>

<para></para>



346 /// </param>

347 /// <returns>

348 /// <para>The right.</para>

349 /// <para></para>

350 /// </returns>

351 [MethodImpl (MethodImplOptions.AggressiveInlining)]
352 protected TElement LeftRotate(TElement root)

353 {

354 var right = GetRight (root);

355  #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

356 if (EqualToZero(right))

357 {

358 throw new InvalidOperationException("Right is null.");
359

360 #Hendif

361 SetRight (root, GetLeft(right));

362 SetLeft(right, root);

363 SetSize(right, GetSize(root));

364 FixSize(root);

365 return right;

366 }

367

368 /// <summary>

369 /// <para>

370 /// Rights the rotate using the specified root.
371 /// </para>

372 /// <para></para>

373 /// </summary>

374 /// <param name="root'">

375 /// <para>The root.</para>

376 /// <para></para>

377 /// </param>

378 [MethodImpl (MethodImplOptions.AggressiveInlining)]
379 protected void RightRotate(ref TElement root) => root = RightRotate(root);
380

381 /// <summary>

382 /// <para>

383 /// Rights the rotate using the specified root.
384 /// </para>

385 /// <para></para>

386 /// </summary>

387 /// <param name="root">

388 /// <para>The root.</para>

389 /// <para></para>

390 /// </param>

391 /// <returns>

392 /// <para>The left.</para>

393 /// <para></para>

394 /// </returns>

395 [MethodImpl (MethodImplOptions.AggressiveInlining)]
396 protected TElement RightRotate(TElement root)
397 {

398 var left = GetLeft(root);

399 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

400 if (EqualToZero(left))

401 {

402 throw new InvalidOperationException("Left is null.");
403 }

404 #endif

405 SetLeft(root, GetRight(left));

406 SetRight (left, root);

1407 SetSize(left, GetSize(root));

408 FixSize(root);

409 return left;

410 }

411

412 /// <summary>

413 /// <para>

14 /// Gets the rightest using the specified current.
415 /// </para>

416 /// <para></para>

417 /// </summary>

18 /// <param name="current">

419 /// <para>The current.</para>

420 /// <para></para>

421 /// </param>

422 /// <returns>

123 /// <para>The current.</para>
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/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetRightest(TElement current)

{
var currentRight = GetRight(current);
while (!EqualToZero(currentRight))
{
current = currentRight;
currentRight = GetRight(current);
}
return current;
}
/// <summary>
/// <para>

/// Gets the leftest using the specified current.
/// </para>

/// <para></para>

/// </summary>

/// <param name="current">

/// <para>The current.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetLeftest(TElement current)
{

var currentLeft = GetLeft(current);
while (!EqualToZero(currentLeft))

{
current = currentlLeft;
currentLeft = GetLeft(current);
}
return current;
}
/// <summary>
/// <para>

/// Gets the next using the specified node.

/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetNext(TElement node) => GetLeftest(GetRight(node));

/// <summary>

/// <para>

/// Gets the previous using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetPrevious(TElement node) => GetRightest(GetLeft(node));

/// <summary>

/// <para>

/// Determines whether this instance contains.
/// </para>



502 /// <para></para>

503 /// </summary>

504 /// <param name="node'">

505 /// <para>The node.</para>

506 /// <para></para>

507 /// </param>

508 /// <param name="root">

509 /// <para>The root.</para>

510 /// <para></para>

511 /// </param>

512 /// <returns>

513 /// <para>The bool</para>

514 /// <para></para>

515 /// </returns>

516 [MethodImpl (MethodImplOptions.AggressiveInlining)]
517 public virtual bool Contains(TElement node, TElement root)
518

519 while (!EqualToZero(root))

520 {

521 if (FirstIsToTheLeft0fSecond(node, root)) // node.Key < root.Key
522 {

523 root = GetLeft(root);

524 }

525 else if (FirstIsToTheRightOfSecond(node, root)) // node.Key > root.Key
526 {

527 root = GetRight (root);

528

529 else // node.Key == root.Key

530

531 return true;

532 }

533 }

534 return false;

535 }

536

537 /// <summary>

538 /// <para>

539 /// Clears the node using the specified node.
540 /// </para>

541 /// <para></para>

542 /// </summary>

543 /// <param name="node">

544 /// <para>The node.</para>

545 /// <para></para>

546 /// </param>

547 [MethodImpl (MethodImplOptions.AggressiveInlining)]
548 protected virtual void ClearNode(TElement node)
549

550 SetLeft (node, Zero);

551 SetRight (node, Zero);

552 SetSize(node, Zero);

553 }

554

555 /// <summary>

556 /// <para>

557 /// Attaches the root.

558 /// </para>

559 /// <para></para>

560 /// </summary>

561 /// <param name="root'">

562 /// <para>The root.</para>

563 /// <para></para>

564 /// </param>

565 /// <param name="node">

566 /// <para>The node.</para>

567 /// <para></para>

568 /// </param>

569 [MethodImpl (MethodImplOptions.AggressiveInlining)]
570 public void Attach(ref TElement root, TElement node)
571 {

s72  #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

573 ValidateSizes(root);

574 Debug.WriteLine("--BeforeAttach--");

575 Debug.WriteLine (PrintNodes (root)) ;

576 Debug.WriteLine("----------—-—-—- ")

577 var sizeBefore = GetSize(root);

s7s  #endif
579 if (EqualToZero(root))
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SetSize(node, One);
root = node;
return;

}

AttachCore(ref root, node);

#if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

#endif

¥
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Debug.WriteLine("--AfterAttach--");
Debug.WriteLine(PrintNodes(root));
Debug.WriteLine("----------—-—-—- ")

ValidateSizes(root);

var sizeAfter = GetSize(root);

if (!AreEqual (Arithmetic.Increment (sizeBefore), sizeAfter))

throw new InvalidOperationException("Tree was broken after attach.");

<summary>

<para>

Attaches the core using the specified root.
</para>

<para></para>
</summary>

<param name="root">
<para>The root.</para>
<para></para>

</param>

<param name="node">
<para>The node.</para>
<para></para>

</param>

protected abstract void AttachCore(ref TElement root, TElement node);
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<summary>

<para>

Detaches the root.
</para>

<para></para>
</summary>

<param name="root">
<para>The root.</para>
<para></para>

</param>

<param name='"node">
<para>The node.</para>
<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
public void Detach(ref TElement root, TElement node)

{
#if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

#endif

ValidateSizes (root) ;
Debug.WriteLine("--BeforeDetach--");
Debug.WriteLine(PrintNodes(root));
Debug.WriteLine("----------—-—-—- ")
var sizeBefore = GetSize(root);

%f (EqualToZero(root))

throw new InvalidOperationException([§|"SmemerT ¢ {node} He comepxuTcs B
< nepese.");

DetachCore(ref root, mnode);

#if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

#endif

¥

Debug.WriteLine("--AfterDetach--");
Debug.WriteLine(PrintNodes(root));
Debug.WriteLine("----------—-—--- ")

ValidateSizes(root);

var sizeAfter = GetSize(root);

if (!AreEqual (Arithmetic.Decrement (sizeBefore), sizeAfter))

throw new InvalidOperationException("Tree was broken after detach.");
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/// <summary>

/// <para>

/// Detaches the core using the specified root.
/// </para>

/// <para></para>

/// </summary>

/// <param name="root">

/// <para>The root.</para>

/// <para></para>

/// </param>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

protected abstract void DetachCore(ref TElement root, TElement node) ;

/// <summary>

/// <para>

/// Fixes the sizes using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

public void FixSizes(TElement node)

{
if (AreEqual(node, default))
{

return;

}
FixSizes(GetLeft (node)) ;
FixSizes(GetRight (node)) ;
FixSize(node) ;

}

/// <summary>

/// <para>

/// Validates the sizes using the specified node.
/// </para>
/// <para></para>
/// </summary>
/// <param name="node">
/// <para>The node.</para>
/// <para></para>
/// </param>
/// <exception cref="InvalidOperationException">
/// <para>Size of {node} is not valid. Expected size: {expectedSizel}, actual size:
— {size}.</para>
/// <para></para>
/// </exception>
public void ValidateSizes(TElement node)
{
if (AreEqual(node, default))
{

return;
}
var size = GetSize(node);
var leftSize = GetLeftSize(node);
var rightSize = GetRightSize (node) ;
var expectedSize = Arithmetic.Increment (Arithmetic.Add(leftSize, rightSize));
if (!AreEqual(size, expectedSize))

throw new InvalidOperationException([§"Size of {node} is not valid. Expected
— size: {expectedSize}, actual size: {size}.");

}

ValidateSizes(GetLeft(node));

ValidateSizes(GetRight (node));

/// <summary>

/// <para>

/// Validates the size using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">
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<para>The node.</para>
<para></para>
</param>

<exception cref="InvalidOperationException">
<para>Size of {node} is not valid. Expected size: {expectedSize}, actual size:

{size}.</para>
<para></para>
</exception>

public void ValidateSize(TElement node)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
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/17
/17
/17
/17
/17

var size = GetSize(node);
var leftSize = GetLeftSize(node);
var rightSize = GetRightSize(node);

var expectedSize = Arithmetic.Increment(Arithmetic.Add(leftSize, rightSize));

if (!AreEqual(size, expectedSize))
{

throw new InvalidOperationException([§"Size of {node} is not valid. Expected
< size: {expectedSize}, actual size: {size}.");

<summary>

<para>

Prints the nodes using the specified node.
</para>

<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<returns>

<para>The string</para>
<para></para>
</returns>

public string PrintNodes(TElement node)

{

}
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[MethodImpl (MethodImplOptions.AggressiveInlining)]
public void PrintNodes(TElement node, StringBuilder sb) => PrintNodes(node, sb, 0);
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public void PrintNodes(TElement node, StringBuilder sb, int level)

var sb = new StringBuilder();
PrintNodes(node, sb);
return sb.ToString();

<summary>

<para>

Prints the nodes using the specified node.
</para>

<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<param name="sb">
<para>The sb.</para>
<para></para>

</param>

<summary>

<para>

Prints the nodes using the specified node.
</para>

<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<param name="sb">
<para>The sb.</para>
<para></para>

</param>

<param name="level">
<para>The level.</para>
<para></para>

</param>



809 {

810 if (AreEqual(node, default))

811 {

812 return;

813 }

814 PrintNodes (GetLeft(node), sb, level + 1);
815 PrintNode(node, sb, level);

816 sb.AppendLine () ;

817 PrintNodes(GetRight (node), sb, level + 1);
818 }

819

820 /// <summary>

821 /// <para>

822 /// Prints the node using the specified node.
823 /// </para>

824 /// <para></para>

825 /// </summary>

826 /// <param name="node">

827 /// <para>The node.</para>

828 /// <para></para>

829 /// </param>

830 /// <returns>

831 /// <para>The string</para>

832 /// <para></para>

833 /// </returns>

834 public string PrintNode(TElement node)

835 {

836 var sb = new StringBuilder();

837 PrintNode(node, sb);

838 return sb.ToString();

839 }

840

841 /// <summary>

842 /// <para>

843 /// Prints the node using the specified node.
844 /// </para>

845 /// <para></para>

846 /// </summary>

847 /// <param name="node">

848 /// <para>The node.</para>

849 /// <para></para>

850 /// </param>

851 /// <param name="sb">

852 /// <para>The sb.</para>

853 /// <para></para>

854 /// </param>

855 [MethodImpl (MethodImplOptions.AggressiveInlining)]
856 protected void PrintNode(TElement node, StringBuilder sb) => PrintNode(node, sb, 0);
857

858 /// <summary>

859 /// <para>

860 /// Prints the node using the specified node.
861 /// </para>

862 /// <para></para>

863 /// </summary>

864 /// <param name="node">

865 /// <para>The node.</para>

866 /// <para></para>

867 /// </param>

868 /// <param name="sb">

869 /// <para>The sb.</para>

870 /// <para></para>

871 /// </param>

872 /// <param name="level">

873 /// <para>The level.</para>

874 /// <para></para>

875 /// </param>

876 protected virtual void PrintNode(TElement node, StringBuilder sb, int level)
877 {

878 sb.Append ('\t', level);

879 sb.Append (node) ;

880 PrintNodeValue(node, sb);

881 sb.Append (' ');

882 sb.Append('s');

883 sb.Append (GetSize(node)) ;

884 }

885
886 /// <summary>
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}

/// <para>

/// Prints the node value using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="sb">

/// <para>The sb.</para>

/// <para></para>

/// </param>

protected abstract void PrintNodeValue(TElement node, StringBuilder sb);

./csharp/Platform.Collections.Methods. Tests /RecursionlessSizeBalanced Tree.cs

using System;

using System.Collections.Generic;

using System.Text;

using Platform.Numbers;

using Platform.Collections.Methods.Trees;
using Platform.Converters;

namespace Platform.Collections.Methods.Tests

{

public class RecursionlessSizeBalancedTree<TElement>

—

{

RecursionlessSizeBalancedTreeMethods<TElement>

private struct TreeElement

1
public TElement Size;
public TElement Left;
public TElement Right;
+

private readonly TreeElement[] _elements;
private TElement _allocated;

public TElement Root;

public TElement Count => GetSizeOrZero(Root);

public RecursionlessSizeBalancedTree(int capacity) => (_elements, _allocated) = (new

< TreeElement [capacity], One);

public TElement Allocate()

{
var newNode = _allocated;
if (IsEmpty(newNode))
{
_allocated = Arithmetic.Increment(_allocated);
return newNode;
b
else
{
throw new InvalidOperationException("Allocated tree element is not empty.");
b
}

public void Free(TElement node)
while (!EqualityComparer.Equals(_allocated, One) && IsEmpty(node))
{

var lastNode = Arithmetic.Decrement(_allocated);
if (EqualityComparer.Equals(lastNode, node))
{

_allocated = lastNode;
node = Arithmetic.Decrement (node);

}

else

{
}

return;

}

public bool IsEmpty(TElement node) =>
< EqualityComparer<TreeElement>.Default.Equals(GetElement (node), default);



60 protected override bool FirstIsToTheLeftOfSecond(TElement first, TElement second) =>
— Comparer.Compare(first, second) < 0;

61

62 protected override bool FirstIsToTheRightOfSecond(TElement first, TElement second) =>
— Comparer.Compare(first, second) > 0;

63

64 protected override ref TElement GetLeftReference(TElement node) => ref
< GetElement (node) .Left;

65

66 protected override TElement GetLeft(TElement node) => GetElement(node).Left;
2; protected override ref TElement GetRightReference(TElement node) => ref

— GetElement(node) .Right;
2 protected override TElement GetRight(TElement node) => GetElement(node) .Right;
; protected override TElement GetSize(TElement node) => GetElement(node) .Size;
:i protected override void PrintNodeValue(TElement node, StringBuilder sb) =>

< sb.Append(node) ;
75

76 protected override void SetLeft(TElement node, TElement left) => GetElement (node).Left
— left;

77

78 protected override void SetRight (TElement node, TElement right) =>
< GetElement (node) .Right = right;

79

80 protected override void SetSize(TElement node, TElement size) => GetElement(node).Size
— size;

81 private ref TreeElement GetElement(TElement node) => ref
< _elements[UncheckedConverter<TElement, long>.Default.Convert(node)];

82 }

83 }

1.14 ./csharp/Platform.Collections.Methods. Tests/SizeBalanced Tree.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using Platform.Numbers;

5 using Platform.Collections.Methods.Trees;

6 using Platform.Converters;

7

s namespace Platform.Collections.Methods.Tests

o A

10 public class SizeBalancedTree<TElement> : SizeBalancedTreeMethods<TElement>

11 {

12 private struct TreeElement

13 {

14 public TElement Size;

15 public TElement Left;

16 public TElement Right;

17

18 private readonly TreeElement[] _elements;

19 private TElement _allocated;

20

21 public TElement Root;

22

23 public TElement Count => GetSizeOrZero(Root);

24

25 public SizeBalancedTree(int capacity) => (_elements, _allocated) = (new
< TreeElement [capacity], One);

26

27 public TElement Allocate()

28 {

29 var newNode = _allocated;

30 if (IsEmpty(newNode))

31 {

32 _allocated = Arithmetic.Increment(_allocated);

33 return newNode;

34 }

35 else

36 {

37 throw new InvalidOperationException("Allocated tree element is not empty.");

38 }

39 }

40

1 public void Free(TElement node)

42 {

43 while (!EqualityComparer.Equals(_allocated, One) && IsEmpty(node))
{

44



45 var lastNode = Arithmetic.Decrement(_allocated);

16 if (EqualityComparer.Equals(lastNode, node))
47 {

48 _allocated = lastNode;

49 node = Arithmetic.Decrement(node);
50 }

51 else

52 {

53 return;

54 }

55 }

56 }

57

58 public bool IsEmpty(TElement node) =>

< EqualityComparer<TreeElement>.Default.Equals(GetElement (node), default);

59

60 protected override bool FirstIsToTheLeftOfSecond(TElement first, TElement second) =>
— Comparer.Compare(first, second) < 0;

61

62 protected override bool FirstIsToTheRightOfSecond(TElement first, TElement second) =>
— Comparer.Compare(first, second) > 0;

63

64 protected override ref TElement GetLeftReference(TElement node) => ref
<+ GetElement (node) .Left;

65

66 protected override TElement GetLeft(TElement node) => GetElement(node) .Left;

67

68 protected override ref TElement GetRightReference(TElement node) => ref
< GetElement (node) .Right;

69

70 protected override TElement GetRight(TElement node) => GetElement(node) .Right;

71

72 protected override TElement GetSize(TElement node) => GetElement(node).Size;

73

74 protected override void PrintNodeValue(TElement node, StringBuilder sb) =>
< sb.Append (node) ;

75

76 protected override void SetLeft(TElement node, TElement left) => GetElement(node) .Left
- left;

7

78 protected override void SetRight(TElement node, TElement right) =>
— GetElement(node) .Right = right;

79

80 protected override void SetSize(TElement node, TElement size) => GetElement(node) .Size
— size;

81 private ref TreeElement GetElement(TElement node) => ref
< _elements[UncheckedConverter<TElement, long>.Default.Convert(node)];

82 }

83 }

1.15 ./csharp/Platform.Collections.Methods.Tests/SizedAndThreadedAVLBalancedTree.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using Platform.Numbers;

5 using Platform.Collections.Methods.Trees;

6 using Platform.Converters;

7

s namespace Platform.Collections.Methods.Tests

o A

10 public class SizedAndThreadedAVLBalancedTree<TElement>
— SizedAndThreadedAVLBalancedTreeMethods<TElement>

11 {

12 private struct TreeElement

13

14 public TElement Size;

15 public TElement Left;

16 public TElement Right;

17 public sbyte Balance;

18 public bool LeftIsChild;

19 public bool RightIsChild;

20 +

21 private readonly TreeElement[] _elements;

22 private TElement _allocated;

23

24 public TElement Root;

25
26 public TElement Count => GetSizeOrZero(Root);
27
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64
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68
69
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72
73
74
75
76
77

78
79
80
81
82
83

84
85

86
87

88
89

90
91

92
93

94

public SizedAndThreadedAVLBalancedTree(int capacity) => (_elements, _allocated) = (new
< TreeElement[capacity], One);

public TElement Allocate()

{
var newNode = _allocated;
if (IsEmpty(newNode))
{
_allocated = Arithmetic.Increment(_allocated);
return newNode;
else
{
throw new InvalidOperationException("Allocated tree element is not empty.");
}
}
public void Free(TElement node)
{
while (!EqualityComparer.Equals(_allocated, One) && IsEmpty(node))
{
var lastNode = Arithmetic.Decrement(_allocated);
if (EqualityComparer.Equals(lastNode, node))
{
_allocated = lastNode;
node = Arithmetic.Decrement (node);
}
else
{
return;
}
}

public bool IsEmpty(TElement node) =>
— EqualityComparer<TreeElement>.Default.Equals(GetElement (node), default);

protected override bool FirstIsToTheLeftOfSecond(TElement first, TElement second) =>
< Comparer.Compare(first, second) < 0;

protected override bool FirstIsToTheRightOfSecond(TElement first, TElement second) =>
< Comparer.Compare(first, second) > O;

protected override sbyte GetBalance(TElement node) => GetElement(node).Balance;
protected override bool GetLeftIsChild(TElement node) => GetElement(node).LeftIsChild;

protected override ref TElement GetLeftReference(TElement node) => ref
< GetElement(node) .Left;

protected override TElement GetLeft(TElement node) => GetElement(node).Left;

protected override bool GetRightIsChild(TElement node) => GetElement(node) .RightIsChild;

protected override ref TElement GetRightReference(TElement node) => ref
— GetElement (node) .Right;

protected override TElement GetRight(TElement node) => GetElement(node) .Right;
protected override TElement GetSize(TElement node) => GetElement (node).Size;

protected override void PrintNodeValue(TElement node, StringBuilder sb) =>
< sb.Append(node) ;

protected override void SetBalance(TElement node, sbyte value) =>
s GetElement(node) .Balance = value;

protected override void SetLeft(TElement node, TElement left) => GetElement(node) .Left
— left;

protected override void SetLeftIsChild(TElement node, bool value) =>
< GetElement(node) .LeftIsChild = value;

protected override void SetRight (TElement node, TElement right) =>
< GetElement (node) .Right = right;

protected override void SetRightIsChild(TElement node, bool value) =>
— GetElement(node) .RightIsChild = value;



95

96

97
98

protected override void SetSize(TElement node, TElement size) => GetElement(node).Size =
— size;

private ref TreeElement GetElement(TElement node) => ref

< _elements [UncheckedConverter<TElement, long>.Default.Convert(node)];

}

1.16 ./csharp/Platform.Collections.Methods. Tests/TestExtensions.cs
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using System;

using System.Collections.Generic;

using Xunit;

using Platform.Collections.Methods.Trees;
using Platform.Converters;

namespace Platform.Collections.Methods.Tests

{

public static class TestExtensions

{
public static void TestMultipleCreationsAndDeletions<TElement>(this
<, SizedBinaryTreeMethodsBase<TElement> tree, Func<TElement> allocate, Action<TElement>
— free, ref TElement root, Func<TElement> treeCount, int maximumOperationsPerCycle)

{
for (var N = 1; N < maximumOperationsPerCycle; N++)
{
var currentCount = O;
for (var i = 0; i < N; i++)
{
var node = allocate();
tree.Attach(ref root, node);
currentCount++;
Assert.Equal (currentCount, (int)UncheckedConverter<TElement,
< int>.Default.Convert (treeCount()));
}
for (var i = 1; i <= N; i++)
{
TElement node = UncheckedConverter<int, TElement>.Default.Convert(i);
if (tree.Contains(node, root))
{
tree.Detach(ref root, node);
free(node);
currentCount--;
Assert.Equal (currentCount, (int)UncheckedConverter<TElement,
< int>.Default.Convert (treeCount()));
}
}
}
}

public static void TestMultipleRandomCreationsAndDeletions<TElement>(this
-, SizedBinaryTreeMethodsBase<TElement> tree, ref TElement root, Func<TElement>
— treeCount, int maximumOperationsPerCycle)
{
var random = new System.Random(O) ;
var added = new HashSet<TElement>();
var currentCount = 0;
for (var N = 1; N < maximumOperationsPerCycle; N++)
{

for (var i = 0; i < N; i++)

var node = UncheckedConverter<int, TElement>.Default.Convert(random.Next(1,

o N);
if (added.Add(node))
{

tree.Attach(ref root, node);
currentCount++;
Assert.Equal (currentCount, (int)UncheckedConverter<TElement,

< int>.Default.Convert (treeCount()));

}
}
for (var i = 1; i <= N; i++)
{

TElement node = UncheckedConverter<int,
<+ TElement>.Default.Convert (random.Next(1, N));
if (tree.Contains(node, root))
{
tree.Detach(ref root, node);
currentCount--;
Assert.Equal (currentCount, (int)UncheckedConverter<TElement,
< int>.Default.Convert (treeCount()));



62 added.Remove (node) ;
63 }

64 }

65 }

66 }

67 }

68 }

1.17 ./csharp/Platform.Collections.Methods.Tests/ TreesTests.cs

1 using Xunit;

2

3 namespace Platform.Collections.Methods.Tests

+ {

5 public static class TreesTests

6

7 private const int _n = 500;

8

0 [Fact]

10 public static void RecursionlessSizeBalancedTreeMultipleAttachAndDetachTest ()

11 {

12 var recursionlessSizeBalancedTree = new RecursionlessSizeBalancedTree<uint>(10000);

13 recursionlessSizeBalancedTree.TestMultipleCreationsAndDeletions(recursionlessSizeBal
— ancedTree.Allocate, recursionlessSizeBalancedTree.Free, ref
- regursionlessSizeBalancedTree.Root, () => recursionlessSizeBalancedTree.Count,
— _);

14 }

15

16 [Fact]

17 public static void SizeBalancedTreeMultipleAttachAndDetachTest ()

18 {

19 var sizeBalancedTree = new SizeBalancedTree<uint>(10000);

20 sizeBalancedTree.TestMultipleCreationsAndDeletions(sizeBalancedTree.Allocate,
. si§eBa1ancedTree.Free, ref sizeBalancedTree.Root, () => sizeBalancedTree.Count,
— _n),;

21 }

22

23 [Fact]

24 public static void SizedAndThreadedAVLBalancedTreeMultipleAttachAndDetachTest()

25 {

26 var avlTree = new SizedAndThreadedAVLBalancedTree<uint>(10000) ;

27 avlTree.TestMultipleCreationsAndDeletions(avlTree.Allocate, avlTree.Free, ref
< avlTree.Root, () => avlTree.Count, _n);

28 +

29

30 [Fact]

31 public static void RecursionlessSizeBalancedTreeMultipleRandomAttachAndDetachTest ()

32 {

33 var recursionlessSizeBalancedTree = new RecursionlessSizeBalancedTree<uint>(10000) ;

34 recursionlessSizeBalancedTree.TestMultipleRandomCreationsAndDeletions (ref
s recursionlessSizeBalancedTree.Root, () => recursionlessSizeBalancedTree.Count,
— _n);

35 }

36

37 [Fact]

38 public static void SizeBalancedTreeMultipleRandomAttachAndDetachTest ()

39 {

40 var sizeBalancedTree = new SizeBalancedTree<uint>(10000) ;

41 sizeBalancedTree.TestMultipleRandomCreationsAndDeletions (ref sizeBalancedTree.Root,
< () => sizeBalancedTree.Count, _n);

42

43

44 [Fact]

45 public static void SizedAndThreadedAVLBalancedTreeMultipleRandomAttachAndDetachTest ()

46 {

47 var avlTree = new SizedAndThreadedAVLBalancedTree<uint>(10000) ;

a8 avlTree.TestMultipleRandomCreationsAndDeletions(ref avlTree.Root, () =>
< avlTree.Count, _n);

19 +

50 }

51 X
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