
LinksPlatform's Platform.Colle
tions.Methods Class Library

1.1 ./
sharp/Platform.Colle
tions.Methods/Generi
Colle
tionMethodsBase.
s

1 using System.Colle
tions.Generi
;

2 using System.Runtime.CompilerServi
es;

3 using Platform.Numbers;

4

5 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

6

7 namespa
e Platform.Colle
tions.Methods

8 {

9 /// <summary>

10 /// <para>Represents a base implementation of methods for a
olle
tion of elements of type

TElement.</para>→֒

11 /// <para>Ïðåäñòàâëÿåò áàçîâóþ ðåàëèçàöèþ ìåòîäîâ êîëëåêöèè ýëåìåíòîâ òèïà TElement.</para>

12 /// </summary>

13 /// <typeparam name="TElement"><para>Sour
e type of
onversion.</para><para>Èñõîäíûé òèï

êîíâåðñèè.</para></typeparam>→֒

14 publi
 abstra
t
lass Generi
Colle
tionMethodsBase<TElement>

15 {

16 /// <summary>

17 /// <para>Returns a null
onstant of type <see
ref="TElement" />.</para>

18 /// <para>Âîçâðàùàåò íóëåâóþ êîíñòàíòó òèïà <see
ref="TElement" />.</para>

19 /// </summary>

20 /// <returns><para>A null
onstant of type <see
ref="TElement" />.</para><para>Íóëåâóþ

êîíñòàíòó òèïà <see
ref="TElement" />.</para></returns>→֒

21 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

22 prote
ted virtual TElement GetZero() => default;

23

24 /// <summary>

25 /// <para>Determines whether the spe
ified value is equal to zero type <see

ref="TElement" />.</para>→֒

26 /// <para>Îïðåäåëÿåò ðàâíî ëè íóëþ óêàçàííîå çíà÷åíèå òèïà <see
ref="TElement"

/>.</para>→֒

27 /// </summary>

28 /// <returns><para></para>Is the spe
ified value equal to zero type <see
ref="TElement"

/><para>�àâíî ëè íóëþ óêàçàííîå çíà÷åíèå òèïà <see
ref="TElement"

/></para></returns>

→֒

→֒

29 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

30 prote
ted virtual bool EqualToZero(TElement value) => EqualityComparer.Equals(value,

Zero);→֒

31

32 /// <summary>

33 /// <para>Presents the Range in readable format.</para>

34 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

35 /// </summary>

36 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

37 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

38 prote
ted virtual bool AreEqual(TElement first, TElement se
ond) =>

EqualityComparer.Equals(first, se
ond);→֒

39

40 /// <summary>

41 /// <para>Presents the Range in readable format.</para>

42 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

43 /// </summary>

44 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

45 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

46 prote
ted virtual bool GreaterThanZero(TElement value) => Comparer.Compare(value, Zero)

> 0;→֒

47

48 /// <summary>

49 /// <para>Presents the Range in readable format.</para>

50 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

51 /// </summary>

52 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

53 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

54 prote
ted virtual bool GreaterThan(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) > 0;→֒

55

56 /// <summary>

57 /// <para>Presents the Range in readable format.</para>

58 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

59 /// </summary>

60 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

1

61 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

62 prote
ted virtual bool GreaterOrEqualThanZero(TElement value) => Comparer.Compare(value,

Zero) >= 0;→֒

63

64 /// <summary>

65 /// <para>Presents the Range in readable format.</para>

66 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

67 /// </summary>

68 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

69 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

70 prote
ted virtual bool GreaterOrEqualThan(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) >= 0;→֒

71

72 /// <summary>

73 /// <para>Presents the Range in readable format.</para>

74 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

75 /// </summary>

76 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

77 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

78 prote
ted virtual bool LessOrEqualThanZero(TElement value) => Comparer.Compare(value,

Zero) <= 0;→֒

79

80 /// <summary>

81 /// <para>Presents the Range in readable format.</para>

82 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

83 /// </summary>

84 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

85 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

86 prote
ted virtual bool LessOrEqualThan(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) <= 0;→֒

87

88 /// <summary>

89 /// <para>Presents the Range in readable format.</para>

90 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

91 /// </summary>

92 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

93 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

94 prote
ted virtual bool LessThanZero(TElement value) => Comparer.Compare(value, Zero) < 0;

95

96 /// <summary>

97 /// <para>Presents the Range in readable format.</para>

98 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

99 /// </summary>

100 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

101 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

102 prote
ted virtual bool LessThan(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) < 0;→֒

103

104 /// <summary>

105 /// <para>Presents the Range in readable format.</para>

106 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

107 /// </summary>

108 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

109 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

110 prote
ted virtual TElement In
rement(TElement value) =>

Arithmeti
<TElement>.In
rement(value);→֒

111

112 /// <summary>

113 /// <para>Presents the Range in readable format.</para>

114 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

115 /// </summary>

116 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

117 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

118 prote
ted virtual TElement De
rement(TElement value) =>

Arithmeti
<TElement>.De
rement(value);→֒

119

120 /// <summary>

121 /// <para>Presents the Range in readable format.</para>

122 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

123 /// </summary>

2

124 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

125 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

126 prote
ted virtual TElement Add(TElement first, TElement se
ond) =>

Arithmeti
<TElement>.Add(first, se
ond);→֒

127

128 /// <summary>

129 /// <para>Presents the Range in readable format.</para>

130 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

131 /// </summary>

132 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

133 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

134 prote
ted virtual TElement Subtra
t(TElement first, TElement se
ond) =>

Arithmeti
<TElement>.Subtra
t(first, se
ond);→֒

135

136 /// <summary>

137 /// <para>Returns minimum value of the range.</para>

138 /// <para>Âîçâðàùàåò ìèíèìàëüíîå çíà÷åíèå äèàïàçîíà.</para>

139 /// </summary>

140 prote
ted readonly TElement Zero;

141

142 /// <summary>

143 /// <para>Returns minimum value of the range.</para>

144 /// <para>Âîçâðàùàåò ìèíèìàëüíîå çíà÷åíèå äèàïàçîíà.</para>

145 /// </summary>

146 prote
ted readonly TElement One;

147

148 /// <summary>

149 /// <para>Returns minimum value of the range.</para>

150 /// <para>Âîçâðàùàåò ìèíèìàëüíîå çíà÷åíèå äèàïàçîíà.</para>

151 /// </summary>

152 prote
ted readonly TElement Two;

153

154 /// <summary>

155 /// <para>Returns minimum value of the range.</para>

156 /// <para>Âîçâðàùàåò ìèíèìàëüíîå çíà÷åíèå äèàïàçîíà.</para>

157 /// </summary>

158 prote
ted readonly EqualityComparer<TElement> EqualityComparer;

159

160 /// <summary>

161 /// <para>Returns minimum value of the range.</para>

162 /// <para>Âîçâðàùàåò ìèíèìàëüíîå çíà÷åíèå äèàïàçîíà.</para>

163 /// </summary>

164 prote
ted readonly Comparer<TElement> Comparer;

165

166 /// <summary>

167 /// <para>Presents the Range in readable format.</para>

168 /// <para>Ïðåäñòàâëÿåò äèàïàçîí â óäîáíîì äëÿ ÷òåíèÿ �îðìàòå.</para>

169 /// </summary>

170 /// <returns><para>String representation of the Range.</para><para>Ñòðîêîâîå

ïðåäñòàâëåíèå äèàïàçîíà.</para></returns>→֒

171 prote
ted Generi
Colle
tionMethodsBase()

172 {

173 EqualityComparer = EqualityComparer<TElement>.Default;

174 Comparer = Comparer<TElement>.Default;

175 Zero = GetZero(); //-V3068

176 One = In
rement(Zero); //-V3068

177 Two = In
rement(One); //-V3068

178 }

179 }

180 }

1.2 ./
sharp/Platform.Colle
tions.Methods/Lists/AbsoluteCir
ularDoublyLinkedListMethods.
s

1 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

2

3 namespa
e Platform.Colle
tions.Methods.Lists

4 {

5 /// <summary>

6 /// <para>

7 /// Represents the absolute
ir
ular doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

11 /// <seealso
ref="AbsoluteDoublyLinkedListMethodsBase{TElement}"/>

12 publi
 abstra
t
lass AbsoluteCir
ularDoublyLinkedListMethods<TElement> :

AbsoluteDoublyLinkedListMethodsBase<TElement>→֒

13 {

14 /// <summary>

3

15 /// <para>

16 /// Atta
hes the before using the spe
ified base element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="baseElement">

21 /// <para>The base element.</para>

22 /// <para></para>

23 /// </param>

24 /// <param name="newElement">

25 /// <para>The new element.</para>

26 /// <para></para>

27 /// </param>

28 publi
 void Atta
hBefore(TElement baseElement, TElement newElement)

29 {

30 var baseElementPrevious = GetPrevious(baseElement);

31 SetPrevious(newElement, baseElementPrevious);

32 SetNext(newElement, baseElement);

33 if (AreEqual(baseElement, GetFirst()))

34 {

35 SetFirst(newElement);

36 }

37 SetNext(baseElementPrevious, newElement);

38 SetPrevious(baseElement, newElement);

39 In
rementSize();

40 }

41

42 /// <summary>

43 /// <para>

44 /// Atta
hes the after using the spe
ified base element.

45 /// </para>

46 /// <para></para>

47 /// </summary>

48 /// <param name="baseElement">

49 /// <para>The base element.</para>

50 /// <para></para>

51 /// </param>

52 /// <param name="newElement">

53 /// <para>The new element.</para>

54 /// <para></para>

55 /// </param>

56 publi
 void Atta
hAfter(TElement baseElement, TElement newElement)

57 {

58 var baseElementNext = GetNext(baseElement);

59 SetPrevious(newElement, baseElement);

60 SetNext(newElement, baseElementNext);

61 if (AreEqual(baseElement, GetLast()))

62 {

63 SetLast(newElement);

64 }

65 SetPrevious(baseElementNext, newElement);

66 SetNext(baseElement, newElement);

67 In
rementSize();

68 }

69

70 /// <summary>

71 /// <para>

72 /// Atta
hes the as first using the spe
ified element.

73 /// </para>

74 /// <para></para>

75 /// </summary>

76 /// <param name="element">

77 /// <para>The element.</para>

78 /// <para></para>

79 /// </param>

80 publi
 void Atta
hAsFirst(TElement element)

81 {

82 var first = GetFirst();

83 if (EqualToZero(first))

84 {

85 SetFirst(element);

86 SetLast(element);

87 SetPrevious(element, element);

88 SetNext(element, element);

89 In
rementSize();

90 }

91 else

92 {

4

93 Atta
hBefore(first, element);

94 }

95 }

96

97 /// <summary>

98 /// <para>

99 /// Atta
hes the as last using the spe
ified element.

100 /// </para>

101 /// <para></para>

102 /// </summary>

103 /// <param name="element">

104 /// <para>The element.</para>

105 /// <para></para>

106 /// </param>

107 publi
 void Atta
hAsLast(TElement element)

108 {

109 var last = GetLast();

110 if (EqualToZero(last))

111 {

112 Atta
hAsFirst(element);

113 }

114 else

115 {

116 Atta
hAfter(last, element);

117 }

118 }

119

120 /// <summary>

121 /// <para>

122 /// Deta
hes the element.

123 /// </para>

124 /// <para></para>

125 /// </summary>

126 /// <param name="element">

127 /// <para>The element.</para>

128 /// <para></para>

129 /// </param>

130 publi
 void Deta
h(TElement element)

131 {

132 var elementPrevious = GetPrevious(element);

133 var elementNext = GetNext(element);

134 if (AreEqual(elementNext, element))

135 {

136 SetFirst(Zero);

137 SetLast(Zero);

138 }

139 else

140 {

141 SetNext(elementPrevious, elementNext);

142 SetPrevious(elementNext, elementPrevious);

143 if (AreEqual(element, GetFirst()))

144 {

145 SetFirst(elementNext);

146 }

147 if (AreEqual(element, GetLast()))

148 {

149 SetLast(elementPrevious);

150 }

151 }

152 SetPrevious(element, Zero);

153 SetNext(element, Zero);

154 De
rementSize();

155 }

156 }

157 }

1.3 ./
sharp/Platform.Colle
tions.Methods/Lists/AbsoluteDoublyLinkedListMethodsBase.
s

1 using System.Runtime.CompilerServi
es;

2

3 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

4

5 namespa
e Platform.Colle
tions.Methods.Lists

6 {

7 /// <summary>

8 /// <para>

9 /// Represents the absolute doubly linked list methods base.

10 /// </para>

11 /// <para></para>

5

12 /// </summary>

13 /// <seealso
ref="DoublyLinkedListMethodsBase{TElement}"/>

14 publi
 abstra
t
lass AbsoluteDoublyLinkedListMethodsBase<TElement> :

DoublyLinkedListMethodsBase<TElement>→֒

15 {

16 /// <summary>

17 /// <para>

18 /// Gets the first.

19 /// </para>

20 /// <para></para>

21 /// </summary>

22 /// <returns>

23 /// <para>The element</para>

24 /// <para></para>

25 /// </returns>

26 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

27 prote
ted abstra
t TElement GetFirst();

28

29 /// <summary>

30 /// <para>

31 /// Gets the last.

32 /// </para>

33 /// <para></para>

34 /// </summary>

35 /// <returns>

36 /// <para>The element</para>

37 /// <para></para>

38 /// </returns>

39 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

40 prote
ted abstra
t TElement GetLast();

41

42 /// <summary>

43 /// <para>

44 /// Gets the size.

45 /// </para>

46 /// <para></para>

47 /// </summary>

48 /// <returns>

49 /// <para>The element</para>

50 /// <para></para>

51 /// </returns>

52 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

53 prote
ted abstra
t TElement GetSize();

54

55 /// <summary>

56 /// <para>

57 /// Sets the first using the spe
ified element.

58 /// </para>

59 /// <para></para>

60 /// </summary>

61 /// <param name="element">

62 /// <para>The element.</para>

63 /// <para></para>

64 /// </param>

65 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

66 prote
ted abstra
t void SetFirst(TElement element);

67

68 /// <summary>

69 /// <para>

70 /// Sets the last using the spe
ified element.

71 /// </para>

72 /// <para></para>

73 /// </summary>

74 /// <param name="element">

75 /// <para>The element.</para>

76 /// <para></para>

77 /// </param>

78 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

79 prote
ted abstra
t void SetLast(TElement element);

80

81 /// <summary>

82 /// <para>

83 /// Sets the size using the spe
ified size.

84 /// </para>

85 /// <para></para>

86 /// </summary>

87 /// <param name="size">

88 /// <para>The size.</para>

6

89 /// <para></para>

90 /// </param>

91 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

92 prote
ted abstra
t void SetSize(TElement size);

93

94 /// <summary>

95 /// <para>

96 /// In
rements the size.

97 /// </para>

98 /// <para></para>

99 /// </summary>

100 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

101 prote
ted void In
rementSize() => SetSize(In
rement(GetSize()));

102

103 /// <summary>

104 /// <para>

105 /// De
rements the size.

106 /// </para>

107 /// <para></para>

108 /// </summary>

109 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

110 prote
ted void De
rementSize() => SetSize(De
rement(GetSize()));

111 }

112 }

1.4 ./
sharp/Platform.Colle
tions.Methods/Lists/AbsoluteOpenDoublyLinkedListMethods.
s

1 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

2

3 namespa
e Platform.Colle
tions.Methods.Lists

4 {

5 /// <summary>

6 /// <para>

7 /// Represents the absolute open doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

11 /// <seealso
ref="AbsoluteDoublyLinkedListMethodsBase{TElement}"/>

12 publi
 abstra
t
lass AbsoluteOpenDoublyLinkedListMethods<TElement> :

AbsoluteDoublyLinkedListMethodsBase<TElement>→֒

13 {

14 /// <summary>

15 /// <para>

16 /// Atta
hes the before using the spe
ified base element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="baseElement">

21 /// <para>The base element.</para>

22 /// <para></para>

23 /// </param>

24 /// <param name="newElement">

25 /// <para>The new element.</para>

26 /// <para></para>

27 /// </param>

28 publi
 void Atta
hBefore(TElement baseElement, TElement newElement)

29 {

30 var baseElementPrevious = GetPrevious(baseElement);

31 SetPrevious(newElement, baseElementPrevious);

32 SetNext(newElement, baseElement);

33 if (EqualToZero(baseElementPrevious))

34 {

35 SetFirst(newElement);

36 }

37 else

38 {

39 SetNext(baseElementPrevious, newElement);

40 }

41 SetPrevious(baseElement, newElement);

42 In
rementSize();

43 }

44

45 /// <summary>

46 /// <para>

47 /// Atta
hes the after using the spe
ified base element.

48 /// </para>

49 /// <para></para>

50 /// </summary>

51 /// <param name="baseElement">

7

52 /// <para>The base element.</para>

53 /// <para></para>

54 /// </param>

55 /// <param name="newElement">

56 /// <para>The new element.</para>

57 /// <para></para>

58 /// </param>

59 publi
 void Atta
hAfter(TElement baseElement, TElement newElement)

60 {

61 var baseElementNext = GetNext(baseElement);

62 SetPrevious(newElement, baseElement);

63 SetNext(newElement, baseElementNext);

64 if (EqualToZero(baseElementNext))

65 {

66 SetLast(newElement);

67 }

68 else

69 {

70 SetPrevious(baseElementNext, newElement);

71 }

72 SetNext(baseElement, newElement);

73 In
rementSize();

74 }

75

76 /// <summary>

77 /// <para>

78 /// Atta
hes the as first using the spe
ified element.

79 /// </para>

80 /// <para></para>

81 /// </summary>

82 /// <param name="element">

83 /// <para>The element.</para>

84 /// <para></para>

85 /// </param>

86 publi
 void Atta
hAsFirst(TElement element)

87 {

88 var first = GetFirst();

89 if (EqualToZero(first))

90 {

91 SetFirst(element);

92 SetLast(element);

93 SetPrevious(element, Zero);

94 SetNext(element, Zero);

95 In
rementSize();

96 }

97 else

98 {

99 Atta
hBefore(first, element);

100 }

101 }

102

103 /// <summary>

104 /// <para>

105 /// Atta
hes the as last using the spe
ified element.

106 /// </para>

107 /// <para></para>

108 /// </summary>

109 /// <param name="element">

110 /// <para>The element.</para>

111 /// <para></para>

112 /// </param>

113 publi
 void Atta
hAsLast(TElement element)

114 {

115 var last = GetLast();

116 if (EqualToZero(last))

117 {

118 Atta
hAsFirst(element);

119 }

120 else

121 {

122 Atta
hAfter(last, element);

123 }

124 }

125

126 /// <summary>

127 /// <para>

128 /// Deta
hes the element.

129 /// </para>

8

130 /// <para></para>

131 /// </summary>

132 /// <param name="element">

133 /// <para>The element.</para>

134 /// <para></para>

135 /// </param>

136 publi
 void Deta
h(TElement element)

137 {

138 var elementPrevious = GetPrevious(element);

139 var elementNext = GetNext(element);

140 if (EqualToZero(elementPrevious))

141 {

142 SetFirst(elementNext);

143 }

144 else

145 {

146 SetNext(elementPrevious, elementNext);

147 }

148 if (EqualToZero(elementNext))

149 {

150 SetLast(elementPrevious);

151 }

152 else

153 {

154 SetPrevious(elementNext, elementPrevious);

155 }

156 SetPrevious(element, Zero);

157 SetNext(element, Zero);

158 De
rementSize();

159 }

160 }

161 }

1.5 ./
sharp/Platform.Colle
tions.Methods/Lists/DoublyLinkedListMethodsBase.
s

1 using System.Runtime.CompilerServi
es;

2

3 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

4

5 namespa
e Platform.Colle
tions.Methods.Lists

6 {

7 /// <remarks>

8 /// Based on doubly linked

list implementation.→֒

9 /// </remarks>

10 publi
 abstra
t
lass DoublyLinkedListMethodsBase<TElement> :

Generi
Colle
tionMethodsBase<TElement>→֒

11 {

12 /// <summary>

13 /// <para>

14 /// Gets the previous using the spe
ified element.

15 /// </para>

16 /// <para></para>

17 /// </summary>

18 /// <param name="element">

19 /// <para>The element.</para>

20 /// <para></para>

21 /// </param>

22 /// <returns>

23 /// <para>The element</para>

24 /// <para></para>

25 /// </returns>

26 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

27 prote
ted abstra
t TElement GetPrevious(TElement element);

28

29 /// <summary>

30 /// <para>

31 /// Gets the next using the spe
ified element.

32 /// </para>

33 /// <para></para>

34 /// </summary>

35 /// <param name="element">

36 /// <para>The element.</para>

37 /// <para></para>

38 /// </param>

39 /// <returns>

40 /// <para>The element</para>

41 /// <para></para>

42 /// </returns>

9

43 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

44 prote
ted abstra
t TElement GetNext(TElement element);

45

46 /// <summary>

47 /// <para>

48 /// Sets the previous using the spe
ified element.

49 /// </para>

50 /// <para></para>

51 /// </summary>

52 /// <param name="element">

53 /// <para>The element.</para>

54 /// <para></para>

55 /// </param>

56 /// <param name="previous">

57 /// <para>The previous.</para>

58 /// <para></para>

59 /// </param>

60 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

61 prote
ted abstra
t void SetPrevious(TElement element, TElement previous);

62

63 /// <summary>

64 /// <para>

65 /// Sets the next using the spe
ified element.

66 /// </para>

67 /// <para></para>

68 /// </summary>

69 /// <param name="element">

70 /// <para>The element.</para>

71 /// <para></para>

72 /// </param>

73 /// <param name="next">

74 /// <para>The next.</para>

75 /// <para></para>

76 /// </param>

77 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

78 prote
ted abstra
t void SetNext(TElement element, TElement next);

79 }

80 }

1.6 ./
sharp/Platform.Colle
tions.Methods/Lists/RelativeCir
ularDoublyLinkedListMethods.
s

1 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

2

3 namespa
e Platform.Colle
tions.Methods.Lists

4 {

5 /// <summary>

6 /// <para>

7 /// Represents the relative
ir
ular doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

11 /// <seealso
ref="RelativeDoublyLinkedListMethodsBase{TElement}"/>

12 publi
 abstra
t
lass RelativeCir
ularDoublyLinkedListMethods<TElement> :

RelativeDoublyLinkedListMethodsBase<TElement>→֒

13 {

14 /// <summary>

15 /// <para>

16 /// Atta
hes the before using the spe
ified head element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="headElement">

21 /// <para>The head element.</para>

22 /// <para></para>

23 /// </param>

24 /// <param name="baseElement">

25 /// <para>The base element.</para>

26 /// <para></para>

27 /// </param>

28 /// <param name="newElement">

29 /// <para>The new element.</para>

30 /// <para></para>

31 /// </param>

32 publi
 void Atta
hBefore(TElement headElement, TElement baseElement, TElement newElement)

33 {

34 var baseElementPrevious = GetPrevious(baseElement);

35 SetPrevious(newElement, baseElementPrevious);

36 SetNext(newElement, baseElement);

37 if (AreEqual(baseElement, GetFirst(headElement)))

10

38 {

39 SetFirst(headElement, newElement);

40 }

41 SetNext(baseElementPrevious, newElement);

42 SetPrevious(baseElement, newElement);

43 In
rementSize(headElement);

44 }

45

46 /// <summary>

47 /// <para>

48 /// Atta
hes the after using the spe
ified head element.

49 /// </para>

50 /// <para></para>

51 /// </summary>

52 /// <param name="headElement">

53 /// <para>The head element.</para>

54 /// <para></para>

55 /// </param>

56 /// <param name="baseElement">

57 /// <para>The base element.</para>

58 /// <para></para>

59 /// </param>

60 /// <param name="newElement">

61 /// <para>The new element.</para>

62 /// <para></para>

63 /// </param>

64 publi
 void Atta
hAfter(TElement headElement, TElement baseElement, TElement newElement)

65 {

66 var baseElementNext = GetNext(baseElement);

67 SetPrevious(newElement, baseElement);

68 SetNext(newElement, baseElementNext);

69 if (AreEqual(baseElement, GetLast(headElement)))

70 {

71 SetLast(headElement, newElement);

72 }

73 SetPrevious(baseElementNext, newElement);

74 SetNext(baseElement, newElement);

75 In
rementSize(headElement);

76 }

77

78 /// <summary>

79 /// <para>

80 /// Atta
hes the as first using the spe
ified head element.

81 /// </para>

82 /// <para></para>

83 /// </summary>

84 /// <param name="headElement">

85 /// <para>The head element.</para>

86 /// <para></para>

87 /// </param>

88 /// <param name="element">

89 /// <para>The element.</para>

90 /// <para></para>

91 /// </param>

92 publi
 void Atta
hAsFirst(TElement headElement, TElement element)

93 {

94 var first = GetFirst(headElement);

95 if (EqualToZero(first))

96 {

97 SetFirst(headElement, element);

98 SetLast(headElement, element);

99 SetPrevious(element, element);

100 SetNext(element, element);

101 In
rementSize(headElement);

102 }

103 else

104 {

105 Atta
hBefore(headElement, first, element);

106 }

107 }

108

109 /// <summary>

110 /// <para>

111 /// Atta
hes the as last using the spe
ified head element.

112 /// </para>

113 /// <para></para>

114 /// </summary>

115 /// <param name="headElement">

11

116 /// <para>The head element.</para>

117 /// <para></para>

118 /// </param>

119 /// <param name="element">

120 /// <para>The element.</para>

121 /// <para></para>

122 /// </param>

123 publi
 void Atta
hAsLast(TElement headElement, TElement element)

124 {

125 var last = GetLast(headElement);

126 if (EqualToZero(last))

127 {

128 Atta
hAsFirst(headElement, element);

129 }

130 else

131 {

132 Atta
hAfter(headElement, last, element);

133 }

134 }

135

136 /// <summary>

137 /// <para>

138 /// Deta
hes the head element.

139 /// </para>

140 /// <para></para>

141 /// </summary>

142 /// <param name="headElement">

143 /// <para>The head element.</para>

144 /// <para></para>

145 /// </param>

146 /// <param name="element">

147 /// <para>The element.</para>

148 /// <para></para>

149 /// </param>

150 publi
 void Deta
h(TElement headElement, TElement element)

151 {

152 var elementPrevious = GetPrevious(element);

153 var elementNext = GetNext(element);

154 if (AreEqual(elementNext, element))

155 {

156 SetFirst(headElement, Zero);

157 SetLast(headElement, Zero);

158 }

159 else

160 {

161 SetNext(elementPrevious, elementNext);

162 SetPrevious(elementNext, elementPrevious);

163 if (AreEqual(element, GetFirst(headElement)))

164 {

165 SetFirst(headElement, elementNext);

166 }

167 if (AreEqual(element, GetLast(headElement)))

168 {

169 SetLast(headElement, elementPrevious);

170 }

171 }

172 SetPrevious(element, Zero);

173 SetNext(element, Zero);

174 De
rementSize(headElement);

175 }

176 }

177 }

1.7 ./
sharp/Platform.Colle
tions.Methods/Lists/RelativeDoublyLinkedListMethodsBase.
s

1 using System.Runtime.CompilerServi
es;

2

3 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

4

5 namespa
e Platform.Colle
tions.Methods.Lists

6 {

7 /// <summary>

8 /// <para>

9 /// Represents the relative doubly linked list methods base.

10 /// </para>

11 /// <para></para>

12 /// </summary>

13 /// <seealso
ref="DoublyLinkedListMethodsBase{TElement}"/>

14 publi
 abstra
t
lass RelativeDoublyLinkedListMethodsBase<TElement> :

DoublyLinkedListMethodsBase<TElement>→֒

12

15 {

16 /// <summary>

17 /// <para>

18 /// Gets the first using the spe
ified head element.

19 /// </para>

20 /// <para></para>

21 /// </summary>

22 /// <param name="headElement">

23 /// <para>The head element.</para>

24 /// <para></para>

25 /// </param>

26 /// <returns>

27 /// <para>The element</para>

28 /// <para></para>

29 /// </returns>

30 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

31 prote
ted abstra
t TElement GetFirst(TElement headElement);

32

33 /// <summary>

34 /// <para>

35 /// Gets the last using the spe
ified head element.

36 /// </para>

37 /// <para></para>

38 /// </summary>

39 /// <param name="headElement">

40 /// <para>The head element.</para>

41 /// <para></para>

42 /// </param>

43 /// <returns>

44 /// <para>The element</para>

45 /// <para></para>

46 /// </returns>

47 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

48 prote
ted abstra
t TElement GetLast(TElement headElement);

49

50 /// <summary>

51 /// <para>

52 /// Gets the size using the spe
ified head element.

53 /// </para>

54 /// <para></para>

55 /// </summary>

56 /// <param name="headElement">

57 /// <para>The head element.</para>

58 /// <para></para>

59 /// </param>

60 /// <returns>

61 /// <para>The element</para>

62 /// <para></para>

63 /// </returns>

64 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

65 prote
ted abstra
t TElement GetSize(TElement headElement);

66

67 /// <summary>

68 /// <para>

69 /// Sets the first using the spe
ified head element.

70 /// </para>

71 /// <para></para>

72 /// </summary>

73 /// <param name="headElement">

74 /// <para>The head element.</para>

75 /// <para></para>

76 /// </param>

77 /// <param name="element">

78 /// <para>The element.</para>

79 /// <para></para>

80 /// </param>

81 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

82 prote
ted abstra
t void SetFirst(TElement headElement, TElement element);

83

84 /// <summary>

85 /// <para>

86 /// Sets the last using the spe
ified head element.

87 /// </para>

88 /// <para></para>

89 /// </summary>

90 /// <param name="headElement">

91 /// <para>The head element.</para>

92 /// <para></para>

13

93 /// </param>

94 /// <param name="element">

95 /// <para>The element.</para>

96 /// <para></para>

97 /// </param>

98 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

99 prote
ted abstra
t void SetLast(TElement headElement, TElement element);

100

101 /// <summary>

102 /// <para>

103 /// Sets the size using the spe
ified head element.

104 /// </para>

105 /// <para></para>

106 /// </summary>

107 /// <param name="headElement">

108 /// <para>The head element.</para>

109 /// <para></para>

110 /// </param>

111 /// <param name="size">

112 /// <para>The size.</para>

113 /// <para></para>

114 /// </param>

115 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

116 prote
ted abstra
t void SetSize(TElement headElement, TElement size);

117

118 /// <summary>

119 /// <para>

120 /// In
rements the size using the spe
ified head element.

121 /// </para>

122 /// <para></para>

123 /// </summary>

124 /// <param name="headElement">

125 /// <para>The head element.</para>

126 /// <para></para>

127 /// </param>

128 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

129 prote
ted void In
rementSize(TElement headElement) => SetSize(headElement,

In
rement(GetSize(headElement)));→֒

130

131 /// <summary>

132 /// <para>

133 /// De
rements the size using the spe
ified head element.

134 /// </para>

135 /// <para></para>

136 /// </summary>

137 /// <param name="headElement">

138 /// <para>The head element.</para>

139 /// <para></para>

140 /// </param>

141 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

142 prote
ted void De
rementSize(TElement headElement) => SetSize(headElement,

De
rement(GetSize(headElement)));→֒

143 }

144 }

1.8 ./
sharp/Platform.Colle
tions.Methods/Lists/RelativeOpenDoublyLinkedListMethods.
s

1 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

2

3 namespa
e Platform.Colle
tions.Methods.Lists

4 {

5 /// <summary>

6 /// <para>

7 /// Represents the relative open doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

11 /// <seealso
ref="RelativeDoublyLinkedListMethodsBase{TElement}"/>

12 publi
 abstra
t
lass RelativeOpenDoublyLinkedListMethods<TElement> :

RelativeDoublyLinkedListMethodsBase<TElement>→֒

13 {

14 /// <summary>

15 /// <para>

16 /// Atta
hes the before using the spe
ified head element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="headElement">

21 /// <para>The head element.</para>

14

22 /// <para></para>

23 /// </param>

24 /// <param name="baseElement">

25 /// <para>The base element.</para>

26 /// <para></para>

27 /// </param>

28 /// <param name="newElement">

29 /// <para>The new element.</para>

30 /// <para></para>

31 /// </param>

32 publi
 void Atta
hBefore(TElement headElement, TElement baseElement, TElement newElement)

33 {

34 var baseElementPrevious = GetPrevious(baseElement);

35 SetPrevious(newElement, baseElementPrevious);

36 SetNext(newElement, baseElement);

37 if (EqualToZero(baseElementPrevious))

38 {

39 SetFirst(headElement, newElement);

40 }

41 else

42 {

43 SetNext(baseElementPrevious, newElement);

44 }

45 SetPrevious(baseElement, newElement);

46 In
rementSize(headElement);

47 }

48

49 /// <summary>

50 /// <para>

51 /// Atta
hes the after using the spe
ified head element.

52 /// </para>

53 /// <para></para>

54 /// </summary>

55 /// <param name="headElement">

56 /// <para>The head element.</para>

57 /// <para></para>

58 /// </param>

59 /// <param name="baseElement">

60 /// <para>The base element.</para>

61 /// <para></para>

62 /// </param>

63 /// <param name="newElement">

64 /// <para>The new element.</para>

65 /// <para></para>

66 /// </param>

67 publi
 void Atta
hAfter(TElement headElement, TElement baseElement, TElement newElement)

68 {

69 var baseElementNext = GetNext(baseElement);

70 SetPrevious(newElement, baseElement);

71 SetNext(newElement, baseElementNext);

72 if (EqualToZero(baseElementNext))

73 {

74 SetLast(headElement, newElement);

75 }

76 else

77 {

78 SetPrevious(baseElementNext, newElement);

79 }

80 SetNext(baseElement, newElement);

81 In
rementSize(headElement);

82 }

83

84 /// <summary>

85 /// <para>

86 /// Atta
hes the as first using the spe
ified head element.

87 /// </para>

88 /// <para></para>

89 /// </summary>

90 /// <param name="headElement">

91 /// <para>The head element.</para>

92 /// <para></para>

93 /// </param>

94 /// <param name="element">

95 /// <para>The element.</para>

96 /// <para></para>

97 /// </param>

98 publi
 void Atta
hAsFirst(TElement headElement, TElement element)

99 {

15

100 var first = GetFirst(headElement);

101 if (EqualToZero(first))

102 {

103 SetFirst(headElement, element);

104 SetLast(headElement, element);

105 SetPrevious(element, Zero);

106 SetNext(element, Zero);

107 In
rementSize(headElement);

108 }

109 else

110 {

111 Atta
hBefore(headElement, first, element);

112 }

113 }

114

115 /// <summary>

116 /// <para>

117 /// Atta
hes the as last using the spe
ified head element.

118 /// </para>

119 /// <para></para>

120 /// </summary>

121 /// <param name="headElement">

122 /// <para>The head element.</para>

123 /// <para></para>

124 /// </param>

125 /// <param name="element">

126 /// <para>The element.</para>

127 /// <para></para>

128 /// </param>

129 publi
 void Atta
hAsLast(TElement headElement, TElement element)

130 {

131 var last = GetLast(headElement);

132 if (EqualToZero(last))

133 {

134 Atta
hAsFirst(headElement, element);

135 }

136 else

137 {

138 Atta
hAfter(headElement, last, element);

139 }

140 }

141

142 /// <summary>

143 /// <para>

144 /// Deta
hes the head element.

145 /// </para>

146 /// <para></para>

147 /// </summary>

148 /// <param name="headElement">

149 /// <para>The head element.</para>

150 /// <para></para>

151 /// </param>

152 /// <param name="element">

153 /// <para>The element.</para>

154 /// <para></para>

155 /// </param>

156 publi
 void Deta
h(TElement headElement, TElement element)

157 {

158 var elementPrevious = GetPrevious(element);

159 var elementNext = GetNext(element);

160 if (EqualToZero(elementPrevious))

161 {

162 SetFirst(headElement, elementNext);

163 }

164 else

165 {

166 SetNext(elementPrevious, elementNext);

167 }

168 if (EqualToZero(elementNext))

169 {

170 SetLast(headElement, elementPrevious);

171 }

172 else

173 {

174 SetPrevious(elementNext, elementPrevious);

175 }

176 SetPrevious(element, Zero);

177 SetNext(element, Zero);

16

178 De
rementSize(headElement);

179 }

180 }

181 }

1.9 ./
sharp/Platform.Colle
tions.Methods/Trees/Re
ursionlessSizeBalan
edTreeMethods.
s

1 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

2

3 namespa
e Platform.Colle
tions.Methods.Trees

4 {

5 /// <summary>

6 /// <para>

7 /// Represents the re
ursionless size balan
ed tree methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

11 /// <seealso
ref="SizedBinaryTreeMethodsBase{TElement}"/>

12 publi
 abstra
t
lass Re
ursionlessSizeBalan
edTreeMethods<TElement> :

SizedBinaryTreeMethodsBase<TElement>→֒

13 {

14 /// <summary>

15 /// <para>

16 /// Atta
hes the
ore using the spe
ified root.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="root">

21 /// <para>The root.</para>

22 /// <para></para>

23 /// </param>

24 /// <param name="node">

25 /// <para>The node.</para>

26 /// <para></para>

27 /// </param>

28 prote
ted override void Atta
hCore(ref TElement root, TElement node)

29 {

30 while (true)

31 {

32 ref var left = ref GetLeftReferen
e(root);

33 var leftSize = GetSizeOrZero(left);

34 ref var right = ref GetRightReferen
e(root);

35 var rightSize = GetSizeOrZero(right);

36 if (FirstIsToTheLeftOfSe
ond(node, root)) // node.Key less than root.Key

37 {

38 if (EqualToZero(left))

39 {

40 In
rementSize(root);

41 SetSize(node, One);

42 left = node;

43 return;

44 }

45 if (FirstIsToTheLeftOfSe
ond(node, left)) // node.Key less than left.Key

46 {

47 if (GreaterThan(In
rement(leftSize), rightSize))

48 {

49 RightRotate(ref root);

50 }

51 else

52 {

53 In
rementSize(root);

54 root = ref left;

55 }

56 }

57 else // node.Key greater than left.Key

58 {

59 var leftRightSize = GetSizeOrZero(GetRight(left));

60 if (GreaterThan(In
rement(leftRightSize), rightSize))

61 {

62 if (EqualToZero(leftRightSize) && EqualToZero(rightSize))

63 {

64 SetLeft(node, left);

65 SetRight(node, root);

66 SetSize(node, Add(leftSize, Two)); // Two (2) - node the size of

root and a node itself→֒

67 SetLeft(root, Zero);

68 SetSize(root, One);

69 root = node;

70 return;

17

71 }

72 LeftRotate(ref left);

73 RightRotate(ref root);

74 }

75 else

76 {

77 In
rementSize(root);

78 root = ref left;

79 }

80 }

81 }

82 else // node.Key greater than root.Key

83 {

84 if (EqualToZero(right))

85 {

86 In
rementSize(root);

87 SetSize(node, One);

88 right = node;

89 return;

90 }

91 if (FirstIsToTheRightOfSe
ond(node, right)) // node.Key greater than

right.Key→֒

92 {

93 if (GreaterThan(In
rement(rightSize), leftSize))

94 {

95 LeftRotate(ref root);

96 }

97 else

98 {

99 In
rementSize(root);

100 root = ref right;

101 }

102 }

103 else // node.Key less than right.Key

104 {

105 var rightLeftSize = GetSizeOrZero(GetLeft(right));

106 if (GreaterThan(In
rement(rightLeftSize), leftSize))

107 {

108 if (EqualToZero(rightLeftSize) && EqualToZero(leftSize))

109 {

110 SetLeft(node, root);

111 SetRight(node, right);

112 SetSize(node, Add(rightSize, Two)); // Two (2) - node the size

of root and a node itself→֒

113 SetRight(root, Zero);

114 SetSize(root, One);

115 root = node;

116 return;

117 }

118 RightRotate(ref right);

119 LeftRotate(ref root);

120 }

121 else

122 {

123 In
rementSize(root);

124 root = ref right;

125 }

126 }

127 }

128 }

129 }

130

131 /// <summary>

132 /// <para>

133 /// Deta
hes the
ore using the spe
ified root.

134 /// </para>

135 /// <para></para>

136 /// </summary>

137 /// <param name="root">

138 /// <para>The root.</para>

139 /// <para></para>

140 /// </param>

141 /// <param name="node">

142 /// <para>The node.</para>

143 /// <para></para>

144 /// </param>

145 prote
ted override void Deta
hCore(ref TElement root, TElement node)

146 {

18

147 while (true)

148 {

149 ref var left = ref GetLeftReferen
e(root);

150 var leftSize = GetSizeOrZero(left);

151 ref var right = ref GetRightReferen
e(root);

152 var rightSize = GetSizeOrZero(right);

153 if (FirstIsToTheLeftOfSe
ond(node, root)) // node.Key less than root.Key

154 {

155 var de
rementedLeftSize = De
rement(leftSize);

156 if (GreaterThan(GetSizeOrZero(GetRightOrDefault(right)),

de
rementedLeftSize))→֒

157 {

158 LeftRotate(ref root);

159 }

160 else if (GreaterThan(GetSizeOrZero(GetLeftOrDefault(right)),

de
rementedLeftSize))→֒

161 {

162 RightRotate(ref right);

163 LeftRotate(ref root);

164 }

165 else

166 {

167 De
rementSize(root);

168 root = ref left;

169 }

170 }

171 else if (FirstIsToTheRightOfSe
ond(node, root)) // node.Key greater than root.Key

172 {

173 var de
rementedRightSize = De
rement(rightSize);

174 if (GreaterThan(GetSizeOrZero(GetLeftOrDefault(left)), de
rementedRightSize))

175 {

176 RightRotate(ref root);

177 }

178 else if (GreaterThan(GetSizeOrZero(GetRightOrDefault(left)),

de
rementedRightSize))→֒

179 {

180 LeftRotate(ref left);

181 RightRotate(ref root);

182 }

183 else

184 {

185 De
rementSize(root);

186 root = ref right;

187 }

188 }

189 else // key equals to root.Key

190 {

191 if (GreaterThanZero(leftSize) && GreaterThanZero(rightSize))

192 {

193 TElement repla
ement;

194 if (GreaterThan(leftSize, rightSize))

195 {

196 repla
ement = GetRightest(left);

197 Deta
hCore(ref left, repla
ement);

198 }

199 else

200 {

201 repla
ement = GetLeftest(right);

202 Deta
hCore(ref right, repla
ement);

203 }

204 SetLeft(repla
ement, left);

205 SetRight(repla
ement, right);

206 SetSize(repla
ement, Add(leftSize, rightSize));

207 root = repla
ement;

208 }

209 else if (GreaterThanZero(leftSize))

210 {

211 root = left;

212 }

213 else if (GreaterThanZero(rightSize))

214 {

215 root = right;

216 }

217 else

218 {

219 root = Zero;

220 }

221 ClearNode(node);

19

222 return;

223 }

224 }

225 }

226 }

227 }

1.10 ./
sharp/Platform.Colle
tions.Methods/Trees/SizeBalan
edTreeMethods.
s

1 using System;

2

3 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

4

5 namespa
e Platform.Colle
tions.Methods.Trees

6 {

7 /// <summary>

8 /// <para>

9 /// Represents the size balan
ed tree methods.

10 /// </para>

11 /// <para></para>

12 /// </summary>

13 /// <seealso
ref="SizedBinaryTreeMethodsBase{TElement}"/>

14 publi
 abstra
t
lass SizeBalan
edTreeMethods<TElement> :

SizedBinaryTreeMethodsBase<TElement>→֒

15 {

16 /// <summary>

17 /// <para>

18 /// Atta
hes the
ore using the spe
ified root.

19 /// </para>

20 /// <para></para>

21 /// </summary>

22 /// <param name="root">

23 /// <para>The root.</para>

24 /// <para></para>

25 /// </param>

26 /// <param name="node">

27 /// <para>The node.</para>

28 /// <para></para>

29 /// </param>

30 prote
ted override void Atta
hCore(ref TElement root, TElement node)

31 {

32 if (EqualToZero(root))

33 {

34 root = node;

35 In
rementSize(root);

36 }

37 else

38 {

39 In
rementSize(root);

40 if (FirstIsToTheLeftOfSe
ond(node, root))

41 {

42 Atta
hCore(ref GetLeftReferen
e(root), node);

43 LeftMaintain(ref root);

44 }

45 else

46 {

47 Atta
hCore(ref GetRightReferen
e(root), node);

48 RightMaintain(ref root);

49 }

50 }

51 }

52

53 /// <summary>

54 /// <para>

55 /// Deta
hes the
ore using the spe
ified root.

56 /// </para>

57 /// <para></para>

58 /// </summary>

59 /// <param name="root">

60 /// <para>The root.</para>

61 /// <para></para>

62 /// </param>

63 /// <param name="nodeToDeta
h">

64 /// <para>The node to deta
h.</para>

65 /// <para></para>

66 /// </param>

67 /// <ex
eption
ref="InvalidOperationEx
eption">

68 /// <para>Dupli
ate link found in the tree.</para>

69 /// <para></para>

20

70 /// </ex
eption>

71 prote
ted override void Deta
hCore(ref TElement root, TElement nodeToDeta
h)

72 {

73 ref var
urrentNode = ref root;

74 ref var parent = ref root;

75 var repla
ementNode = Zero;

76 while (!AreEqual(
urrentNode, nodeToDeta
h))

77 {

78 De
rementSize(
urrentNode);

79 if (FirstIsToTheLeftOfSe
ond(nodeToDeta
h,
urrentNode))

80 {

81 parent = ref
urrentNode;

82
urrentNode = ref GetLeftReferen
e(
urrentNode);

83 }

84 else if (FirstIsToTheRightOfSe
ond(nodeToDeta
h,
urrentNode))

85 {

86 parent = ref
urrentNode;

87
urrentNode = ref GetRightReferen
e(
urrentNode);

88 }

89 else

90 {

91 throw new InvalidOperationEx
eption("Dupli
ate link found in the tree.");

92 }

93 }

94 var nodeToDeta
hLeft = GetLeft(nodeToDeta
h);

95 var node = GetRight(nodeToDeta
h);

96 if (!EqualToZero(nodeToDeta
hLeft) && !EqualToZero(node))

97 {

98 var leftestNode = GetLeftest(node);

99 Deta
hCore(ref GetRightReferen
e(nodeToDeta
h), leftestNode);

100 SetLeft(leftestNode, nodeToDeta
hLeft);

101 node = GetRight(nodeToDeta
h);

102 if (!EqualToZero(node))

103 {

104 SetRight(leftestNode, node);

105 SetSize(leftestNode, In
rement(Add(GetSize(nodeToDeta
hLeft),

GetSize(node))));→֒

106 }

107 else

108 {

109 SetSize(leftestNode, In
rement(GetSize(nodeToDeta
hLeft)));

110 }

111 repla
ementNode = leftestNode;

112 }

113 else if (!EqualToZero(nodeToDeta
hLeft))

114 {

115 repla
ementNode = nodeToDeta
hLeft;

116 }

117 else if (!EqualToZero(node))

118 {

119 repla
ementNode = node;

120 }

121 if (AreEqual(root, nodeToDeta
h))

122 {

123 root = repla
ementNode;

124 }

125 else if (AreEqual(GetLeft(parent), nodeToDeta
h))

126 {

127 SetLeft(parent, repla
ementNode);

128 }

129 else if (AreEqual(GetRight(parent), nodeToDeta
h))

130 {

131 SetRight(parent, repla
ementNode);

132 }

133 ClearNode(nodeToDeta
h);

134 }

135 private void LeftMaintain(ref TElement root)

136 {

137 if (!EqualToZero(root))

138 {

139 var rootLeftNode = GetLeft(root);

140 if (!EqualToZero(rootLeftNode))

141 {

142 var rootRightNode = GetRight(root);

143 var rootRightNodeSize = GetSize(rootRightNode);

144 var rootLeftNodeLeftNode = GetLeft(rootLeftNode);

145 if (!EqualToZero(rootLeftNodeLeftNode) &&

146 (EqualToZero(rootRightNode) ||

GreaterThan(GetSize(rootLeftNodeLeftNode), rootRightNodeSize)))→֒

21

147 {

148 RightRotate(ref root);

149 }

150 else

151 {

152 var rootLeftNodeRightNode = GetRight(rootLeftNode);

153 if (!EqualToZero(rootLeftNodeRightNode) &&

154 (EqualToZero(rootRightNode) ||

GreaterThan(GetSize(rootLeftNodeRightNode), rootRightNodeSize)))→֒

155 {

156 LeftRotate(ref GetLeftReferen
e(root));

157 RightRotate(ref root);

158 }

159 else

160 {

161 return;

162 }

163 }

164 LeftMaintain(ref GetLeftReferen
e(root));

165 RightMaintain(ref GetRightReferen
e(root));

166 LeftMaintain(ref root);

167 RightMaintain(ref root);

168 }

169 }

170 }

171 private void RightMaintain(ref TElement root)

172 {

173 if (!EqualToZero(root))

174 {

175 var rootRightNode = GetRight(root);

176 if (!EqualToZero(rootRightNode))

177 {

178 var rootLeftNode = GetLeft(root);

179 var rootLeftNodeSize = GetSize(rootLeftNode);

180 var rootRightNodeRightNode = GetRight(rootRightNode);

181 if (!EqualToZero(rootRightNodeRightNode) &&

182 (EqualToZero(rootLeftNode) ||

GreaterThan(GetSize(rootRightNodeRightNode), rootLeftNodeSize)))→֒

183 {

184 LeftRotate(ref root);

185 }

186 else

187 {

188 var rootRightNodeLeftNode = GetLeft(rootRightNode);

189 if (!EqualToZero(rootRightNodeLeftNode) &&

190 (EqualToZero(rootLeftNode) ||

GreaterThan(GetSize(rootRightNodeLeftNode), rootLeftNodeSize)))→֒

191 {

192 RightRotate(ref GetRightReferen
e(root));

193 LeftRotate(ref root);

194 }

195 else

196 {

197 return;

198 }

199 }

200 LeftMaintain(ref GetLeftReferen
e(root));

201 RightMaintain(ref GetRightReferen
e(root));

202 LeftMaintain(ref root);

203 RightMaintain(ref root);

204 }

205 }

206 }

207 }

208 }

1.11 ./
sharp/Platform.Colle
tions.Methods/Trees/SizedAndThreadedAVLBalan
edTreeMethods.
s

1 using System;

2 using System.Runtime.CompilerServi
es;

3 using System.Text;

4 #if USEARRAYPOOL

5 using Platform.Colle
tions;

6 #endif

7 using Platform.Refle
tion;

8

9 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

10

11 namespa
e Platform.Colle
tions.Methods.Trees

12 {

22

13 /// <summary>

14 /// Combination of Size, Height (AVL), and threads.

15 /// </summary>

16 /// <remarks>

17 /// Based on: <a href="https://github.
om/programmatom/TreeLib/blob/master/TreeLib/TreeLib/G ⌋

enerated/AVLTreeList.
s">TreeLib.AVLTreeList.→֒

18 /// Whi
h itself based on: <a

href="https://github.
om/GNOME/glib/blob/master/glib/gtree.
">GNOME/glib/gtree.→֒

19 /// </remarks>

20 publi
 abstra
t
lass SizedAndThreadedAVLBalan
edTreeMethods<TElement> :

SizedBinaryTreeMethodsBase<TElement>→֒

21 {

22 private stati
 readonly int _maxPath = 11 * Numeri
Type<TElement>.BytesSize + 4;

23

24 /// <summary>

25 /// <para>

26 /// Gets the rightest using the spe
ified
urrent.

27 /// </para>

28 /// <para></para>

29 /// </summary>

30 /// <param name="
urrent">

31 /// <para>The
urrent.</para>

32 /// <para></para>

33 /// </param>

34 /// <returns>

35 /// <para>The
urrent.</para>

36 /// <para></para>

37 /// </returns>

38 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

39 prote
ted override TElement GetRightest(TElement
urrent)

40 {

41 var
urrentRight = GetRightOrDefault(
urrent);

42 while (!EqualToZero(
urrentRight))

43 {

44
urrent =
urrentRight;

45
urrentRight = GetRightOrDefault(
urrent);

46 }

47 return
urrent;

48 }

49

50 /// <summary>

51 /// <para>

52 /// Gets the leftest using the spe
ified
urrent.

53 /// </para>

54 /// <para></para>

55 /// </summary>

56 /// <param name="
urrent">

57 /// <para>The
urrent.</para>

58 /// <para></para>

59 /// </param>

60 /// <returns>

61 /// <para>The
urrent.</para>

62 /// <para></para>

63 /// </returns>

64 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

65 prote
ted override TElement GetLeftest(TElement
urrent)

66 {

67 var
urrentLeft = GetLeftOrDefault(
urrent);

68 while (!EqualToZero(
urrentLeft))

69 {

70
urrent =
urrentLeft;

71
urrentLeft = GetLeftOrDefault(
urrent);

72 }

73 return
urrent;

74 }

75

76 /// <summary>

77 /// <para>

78 /// Determines whether this instan
e
ontains.

79 /// </para>

80 /// <para></para>

81 /// </summary>

82 /// <param name="node">

83 /// <para>The node.</para>

84 /// <para></para>

85 /// </param>

86 /// <param name="root">

87 /// <para>The root.</para>

23

88 /// <para></para>

89 /// </param>

90 /// <returns>

91 /// <para>The bool</para>

92 /// <para></para>

93 /// </returns>

94 publi
 override bool Contains(TElement node, TElement root)

95 {

96 while (!EqualToZero(root))

97 {

98 if (FirstIsToTheLeftOfSe
ond(node, root)) // node.Key < root.Key

99 {

100 root = GetLeftOrDefault(root);

101 }

102 else if (FirstIsToTheRightOfSe
ond(node, root)) // node.Key > root.Key

103 {

104 root = GetRightOrDefault(root);

105 }

106 else // node.Key == root.Key

107 {

108 return true;

109 }

110 }

111 return false;

112 }

113

114 /// <summary>

115 /// <para>

116 /// Prints the node using the spe
ified node.

117 /// </para>

118 /// <para></para>

119 /// </summary>

120 /// <param name="node">

121 /// <para>The node.</para>

122 /// <para></para>

123 /// </param>

124 /// <param name="sb">

125 /// <para>The sb.</para>

126 /// <para></para>

127 /// </param>

128 /// <param name="level">

129 /// <para>The level.</para>

130 /// <para></para>

131 /// </param>

132 prote
ted override void PrintNode(TElement node, StringBuilder sb, int level)

133 {

134 base.PrintNode(node, sb, level);

135 sb.Append(' ');

136 sb.Append(GetLeftIsChild(node) ? 'l' : 'L');

137 sb.Append(GetRightIsChild(node) ? 'r' : 'R');

138 sb.Append(' ');

139 sb.Append(GetBalan
e(node));

140 }

141

142 /// <summary>

143 /// <para>

144 /// In
rements the balan
e using the spe
ified node.

145 /// </para>

146 /// <para></para>

147 /// </summary>

148 /// <param name="node">

149 /// <para>The node.</para>

150 /// <para></para>

151 /// </param>

152 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

153 prote
ted void In
rementBalan
e(TElement node) => SetBalan
e(node,

(sbyte)(GetBalan
e(node) + 1));→֒

154

155 /// <summary>

156 /// <para>

157 /// De
rements the balan
e using the spe
ified node.

158 /// </para>

159 /// <para></para>

160 /// </summary>

161 /// <param name="node">

162 /// <para>The node.</para>

163 /// <para></para>

164 /// </param>

24

165 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

166 prote
ted void De
rementBalan
e(TElement node) => SetBalan
e(node,

(sbyte)(GetBalan
e(node) - 1));→֒

167

168 /// <summary>

169 /// <para>

170 /// Gets the left or default using the spe
ified node.

171 /// </para>

172 /// <para></para>

173 /// </summary>

174 /// <param name="node">

175 /// <para>The node.</para>

176 /// <para></para>

177 /// </param>

178 /// <returns>

179 /// <para>The element</para>

180 /// <para></para>

181 /// </returns>

182 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

183 prote
ted override TElement GetLeftOrDefault(TElement node) => GetLeftIsChild(node) ?

GetLeft(node) : default;→֒

184

185 /// <summary>

186 /// <para>

187 /// Gets the right or default using the spe
ified node.

188 /// </para>

189 /// <para></para>

190 /// </summary>

191 /// <param name="node">

192 /// <para>The node.</para>

193 /// <para></para>

194 /// </param>

195 /// <returns>

196 /// <para>The element</para>

197 /// <para></para>

198 /// </returns>

199 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

200 prote
ted override TElement GetRightOrDefault(TElement node) => GetRightIsChild(node) ?

GetRight(node) : default;→֒

201

202 /// <summary>

203 /// <para>

204 /// Determines whether this instan
e get left is
hild.

205 /// </para>

206 /// <para></para>

207 /// </summary>

208 /// <param name="node">

209 /// <para>The node.</para>

210 /// <para></para>

211 /// </param>

212 /// <returns>

213 /// <para>The bool</para>

214 /// <para></para>

215 /// </returns>

216 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

217 prote
ted abstra
t bool GetLeftIsChild(TElement node);

218

219 /// <summary>

220 /// <para>

221 /// Sets the left is
hild using the spe
ified node.

222 /// </para>

223 /// <para></para>

224 /// </summary>

225 /// <param name="node">

226 /// <para>The node.</para>

227 /// <para></para>

228 /// </param>

229 /// <param name="value">

230 /// <para>The value.</para>

231 /// <para></para>

232 /// </param>

233 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

234 prote
ted abstra
t void SetLeftIsChild(TElement node, bool value);

235

236 /// <summary>

237 /// <para>

238 /// Determines whether this instan
e get right is
hild.

239 /// </para>

25

240 /// <para></para>

241 /// </summary>

242 /// <param name="node">

243 /// <para>The node.</para>

244 /// <para></para>

245 /// </param>

246 /// <returns>

247 /// <para>The bool</para>

248 /// <para></para>

249 /// </returns>

250 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

251 prote
ted abstra
t bool GetRightIsChild(TElement node);

252

253 /// <summary>

254 /// <para>

255 /// Sets the right is
hild using the spe
ified node.

256 /// </para>

257 /// <para></para>

258 /// </summary>

259 /// <param name="node">

260 /// <para>The node.</para>

261 /// <para></para>

262 /// </param>

263 /// <param name="value">

264 /// <para>The value.</para>

265 /// <para></para>

266 /// </param>

267 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

268 prote
ted abstra
t void SetRightIsChild(TElement node, bool value);

269

270 /// <summary>

271 /// <para>

272 /// Gets the balan
e using the spe
ified node.

273 /// </para>

274 /// <para></para>

275 /// </summary>

276 /// <param name="node">

277 /// <para>The node.</para>

278 /// <para></para>

279 /// </param>

280 /// <returns>

281 /// <para>The sbyte</para>

282 /// <para></para>

283 /// </returns>

284 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

285 prote
ted abstra
t sbyte GetBalan
e(TElement node);

286

287 /// <summary>

288 /// <para>

289 /// Sets the balan
e using the spe
ified node.

290 /// </para>

291 /// <para></para>

292 /// </summary>

293 /// <param name="node">

294 /// <para>The node.</para>

295 /// <para></para>

296 /// </param>

297 /// <param name="value">

298 /// <para>The value.</para>

299 /// <para></para>

300 /// </param>

301 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

302 prote
ted abstra
t void SetBalan
e(TElement node, sbyte value);

303

304 /// <summary>

305 /// <para>

306 /// Atta
hes the
ore using the spe
ified root.

307 /// </para>

308 /// <para></para>

309 /// </summary>

310 /// <param name="root">

311 /// <para>The root.</para>

312 /// <para></para>

313 /// </param>

314 /// <param name="node">

315 /// <para>The node.</para>

316 /// <para></para>

317 /// </param>

26

318 /// <ex
eption
ref="InvalidOperationEx
eption">

319 /// <para>Node with the same key already atta
hed to a tree.</para>

320 /// <para></para>

321 /// </ex
eption>

322 prote
ted override void Atta
hCore(ref TElement root, TElement node)

323 {

324 un
he
ked

325 {

326 // TODO: Che
k what is faster to use simple array or array from array pool

327 // TODO: Try to use sta
kallo
 as an optimization (requires
ode generation,

be
ause of generi
s)→֒

328 #if USEARRAYPOOL

329 var path = ArrayPool.Allo
ate<TElement>(MaxPath);

330 var pathPosition = 0;

331 path[pathPosition++℄ = default;

332 #else

333 var path = new TElement[_maxPath℄;

334 var pathPosition = 1;

335 #endif

336 var
urrentNode = root;

337 while (true)

338 {

339 if (FirstIsToTheLeftOfSe
ond(node,
urrentNode))

340 {

341 if (GetLeftIsChild(
urrentNode))

342 {

343 In
rementSize(
urrentNode);

344 path[pathPosition++℄ =
urrentNode;

345
urrentNode = GetLeft(
urrentNode);

346 }

347 else

348 {

349 // Threads

350 SetLeft(node, GetLeft(
urrentNode));

351 SetRight(node,
urrentNode);

352 SetLeft(
urrentNode, node);

353 SetLeftIsChild(
urrentNode, true);

354 De
rementBalan
e(
urrentNode);

355 SetSize(node, One);

356 FixSize(
urrentNode); // Should be in
remented already

357 break;

358 }

359 }

360 else if (FirstIsToTheRightOfSe
ond(node,
urrentNode))

361 {

362 if (GetRightIsChild(
urrentNode))

363 {

364 In
rementSize(
urrentNode);

365 path[pathPosition++℄ =
urrentNode;

366
urrentNode = GetRight(
urrentNode);

367 }

368 else

369 {

370 // Threads

371 SetRight(node, GetRight(
urrentNode));

372 SetLeft(node,
urrentNode);

373 SetRight(
urrentNode, node);

374 SetRightIsChild(
urrentNode, true);

375 In
rementBalan
e(
urrentNode);

376 SetSize(node, One);

377 FixSize(
urrentNode); // Should be in
remented already

378 break;

379 }

380 }

381 else

382 {

383 throw new InvalidOperationEx
eption("Node with the same key already

atta
hed to a tree.");→֒

384 }

385 }

386 // Restore balan
e. This is the goodness of a non-re
ursive

387 // implementation, when we are done with balan
ing we 'break'

388 // the loop and we are done.

389 while (true)

390 {

391 var parent = path[--pathPosition℄;

392 var isLeftNode = !AreEqual(parent, default) && AreEqual(
urrentNode,

GetLeft(parent));→֒

27

393 var
urrentNodeBalan
e = GetBalan
e(
urrentNode);

394 if (
urrentNodeBalan
e < -1 ||
urrentNodeBalan
e > 1)

395 {

396
urrentNode = Balan
e(
urrentNode);

397 if (AreEqual(parent, default))

398 {

399 root =
urrentNode;

400 }

401 else if (isLeftNode)

402 {

403 SetLeft(parent,
urrentNode);

404 FixSize(parent);

405 }

406 else

407 {

408 SetRight(parent,
urrentNode);

409 FixSize(parent);

410 }

411 }

412
urrentNodeBalan
e = GetBalan
e(
urrentNode);

413 if (
urrentNodeBalan
e == 0 || AreEqual(parent, default))

414 {

415 break;

416 }

417 if (isLeftNode)

418 {

419 De
rementBalan
e(parent);

420 }

421 else

422 {

423 In
rementBalan
e(parent);

424 }

425
urrentNode = parent;

426 }

427 #if USEARRAYPOOL

428 ArrayPool.Free(path);

429 #endif

430 }

431 }

432 private TElement Balan
e(TElement node)

433 {

434 un
he
ked

435 {

436 var rootBalan
e = GetBalan
e(node);

437 if (rootBalan
e < -1)

438 {

439 var left = GetLeft(node);

440 if (GetBalan
e(left) > 0)

441 {

442 SetLeft(node, LeftRotateWithBalan
e(left));

443 FixSize(node);

444 }

445 node = RightRotateWithBalan
e(node);

446 }

447 else if (rootBalan
e > 1)

448 {

449 var right = GetRight(node);

450 if (GetBalan
e(right) < 0)

451 {

452 SetRight(node, RightRotateWithBalan
e(right));

453 FixSize(node);

454 }

455 node = LeftRotateWithBalan
e(node);

456 }

457 return node;

458 }

459 }

460

461 /// <summary>

462 /// <para>

463 /// Lefts the rotate with balan
e using the spe
ified node.

464 /// </para>

465 /// <para></para>

466 /// </summary>

467 /// <param name="node">

468 /// <para>The node.</para>

469 /// <para></para>

470 /// </param>

28

471 /// <returns>

472 /// <para>The element</para>

473 /// <para></para>

474 /// </returns>

475 prote
ted TElement LeftRotateWithBalan
e(TElement node)

476 {

477 un
he
ked

478 {

479 var right = GetRight(node);

480 if (GetLeftIsChild(right))

481 {

482 SetRight(node, GetLeft(right));

483 }

484 else

485 {

486 SetRightIsChild(node, false);

487 SetLeftIsChild(right, true);

488 }

489 SetLeft(right, node);

490 // Fix size

491 SetSize(right, GetSize(node));

492 FixSize(node);

493 // Fix balan
e

494 var rootBalan
e = GetBalan
e(node);

495 var rightBalan
e = GetBalan
e(right);

496 if (rightBalan
e <= 0)

497 {

498 if (rootBalan
e >= 1)

499 {

500 SetBalan
e(right, (sbyte)(rightBalan
e - 1));

501 }

502 else

503 {

504 SetBalan
e(right, (sbyte)(rootBalan
e + rightBalan
e - 2));

505 }

506 SetBalan
e(node, (sbyte)(rootBalan
e - 1));

507 }

508 else

509 {

510 if (rootBalan
e <= rightBalan
e)

511 {

512 SetBalan
e(right, (sbyte)(rootBalan
e - 2));

513 }

514 else

515 {

516 SetBalan
e(right, (sbyte)(rightBalan
e - 1));

517 }

518 SetBalan
e(node, (sbyte)(rootBalan
e - rightBalan
e - 1));

519 }

520 return right;

521 }

522 }

523

524 /// <summary>

525 /// <para>

526 /// Rights the rotate with balan
e using the spe
ified node.

527 /// </para>

528 /// <para></para>

529 /// </summary>

530 /// <param name="node">

531 /// <para>The node.</para>

532 /// <para></para>

533 /// </param>

534 /// <returns>

535 /// <para>The element</para>

536 /// <para></para>

537 /// </returns>

538 prote
ted TElement RightRotateWithBalan
e(TElement node)

539 {

540 un
he
ked

541 {

542 var left = GetLeft(node);

543 if (GetRightIsChild(left))

544 {

545 SetLeft(node, GetRight(left));

546 }

547 else

548 {

29

549 SetLeftIsChild(node, false);

550 SetRightIsChild(left, true);

551 }

552 SetRight(left, node);

553 // Fix size

554 SetSize(left, GetSize(node));

555 FixSize(node);

556 // Fix balan
e

557 var rootBalan
e = GetBalan
e(node);

558 var leftBalan
e = GetBalan
e(left);

559 if (leftBalan
e <= 0)

560 {

561 if (leftBalan
e > rootBalan
e)

562 {

563 SetBalan
e(left, (sbyte)(leftBalan
e + 1));

564 }

565 else

566 {

567 SetBalan
e(left, (sbyte)(rootBalan
e + 2));

568 }

569 SetBalan
e(node, (sbyte)(rootBalan
e - leftBalan
e + 1));

570 }

571 else

572 {

573 if (rootBalan
e <= -1)

574 {

575 SetBalan
e(left, (sbyte)(leftBalan
e + 1));

576 }

577 else

578 {

579 SetBalan
e(left, (sbyte)(rootBalan
e + leftBalan
e + 2));

580 }

581 SetBalan
e(node, (sbyte)(rootBalan
e + 1));

582 }

583 return left;

584 }

585 }

586

587 /// <summary>

588 /// <para>

589 /// Gets the next using the spe
ified node.

590 /// </para>

591 /// <para></para>

592 /// </summary>

593 /// <param name="node">

594 /// <para>The node.</para>

595 /// <para></para>

596 /// </param>

597 /// <returns>

598 /// <para>The
urrent.</para>

599 /// <para></para>

600 /// </returns>

601 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

602 prote
ted override TElement GetNext(TElement node)

603 {

604 var
urrent = GetRight(node);

605 if (GetRightIsChild(node))

606 {

607 return GetLeftest(
urrent);

608 }

609 return
urrent;

610 }

611

612 /// <summary>

613 /// <para>

614 /// Gets the previous using the spe
ified node.

615 /// </para>

616 /// <para></para>

617 /// </summary>

618 /// <param name="node">

619 /// <para>The node.</para>

620 /// <para></para>

621 /// </param>

622 /// <returns>

623 /// <para>The
urrent.</para>

624 /// <para></para>

625 /// </returns>

626 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

30

627 prote
ted override TElement GetPrevious(TElement node)

628 {

629 var
urrent = GetLeft(node);

630 if (GetLeftIsChild(node))

631 {

632 return GetRightest(
urrent);

633 }

634 return
urrent;

635 }

636

637 /// <summary>

638 /// <para>

639 /// Deta
hes the
ore using the spe
ified root.

640 /// </para>

641 /// <para></para>

642 /// </summary>

643 /// <param name="root">

644 /// <para>The root.</para>

645 /// <para></para>

646 /// </param>

647 /// <param name="node">

648 /// <para>The node.</para>

649 /// <para></para>

650 /// </param>

651 /// <ex
eption
ref="InvalidOperationEx
eption">

652 /// <para>Cannot find a node.</para>

653 /// <para></para>

654 /// </ex
eption>

655 /// <ex
eption
ref="InvalidOperationEx
eption">

656 /// <para>Cannot find a node.</para>

657 /// <para></para>

658 /// </ex
eption>

659 prote
ted override void Deta
hCore(ref TElement root, TElement node)

660 {

661 un
he
ked

662 {

663 #if USEARRAYPOOL

664 var path = ArrayPool.Allo
ate<TElement>(MaxPath);

665 var pathPosition = 0;

666 path[pathPosition++℄ = default;

667 #else

668 var path = new TElement[_maxPath℄;

669 var pathPosition = 1;

670 #endif

671 var
urrentNode = root;

672 while (true)

673 {

674 if (FirstIsToTheLeftOfSe
ond(node,
urrentNode))

675 {

676 if (!GetLeftIsChild(
urrentNode))

677 {

678 throw new InvalidOperationEx
eption("Cannot find a node.");

679 }

680 De
rementSize(
urrentNode);

681 path[pathPosition++℄ =
urrentNode;

682
urrentNode = GetLeft(
urrentNode);

683 }

684 else if (FirstIsToTheRightOfSe
ond(node,
urrentNode))

685 {

686 if (!GetRightIsChild(
urrentNode))

687 {

688 throw new InvalidOperationEx
eption("Cannot find a node.");

689 }

690 De
rementSize(
urrentNode);

691 path[pathPosition++℄ =
urrentNode;

692
urrentNode = GetRight(
urrentNode);

693 }

694 else

695 {

696 break;

697 }

698 }

699 var parent = path[--pathPosition℄;

700 var balan
eNode = parent;

701 var isLeftNode = !AreEqual(parent, default) && AreEqual(
urrentNode,

GetLeft(parent));→֒

702 if (!GetLeftIsChild(
urrentNode))

703 {

31

704 if (!GetRightIsChild(
urrentNode)) // node has no
hildren

705 {

706 if (AreEqual(parent, default))

707 {

708 root = Zero;

709 }

710 else if (isLeftNode)

711 {

712 SetLeftIsChild(parent, false);

713 SetLeft(parent, GetLeft(
urrentNode));

714 In
rementBalan
e(parent);

715 }

716 else

717 {

718 SetRightIsChild(parent, false);

719 SetRight(parent, GetRight(
urrentNode));

720 De
rementBalan
e(parent);

721 }

722 }

723 else // node has a right
hild

724 {

725 var su

essor = GetNext(
urrentNode);

726 SetLeft(su

essor, GetLeft(
urrentNode));

727 var right = GetRight(
urrentNode);

728 if (AreEqual(parent, default))

729 {

730 root = right;

731 }

732 else if (isLeftNode)

733 {

734 SetLeft(parent, right);

735 In
rementBalan
e(parent);

736 }

737 else

738 {

739 SetRight(parent, right);

740 De
rementBalan
e(parent);

741 }

742 }

743 }

744 else // node has a left
hild

745 {

746 if (!GetRightIsChild(
urrentNode))

747 {

748 var prede
essor = GetPrevious(
urrentNode);

749 SetRight(prede
essor, GetRight(
urrentNode));

750 var leftValue = GetLeft(
urrentNode);

751 if (AreEqual(parent, default))

752 {

753 root = leftValue;

754 }

755 else if (isLeftNode)

756 {

757 SetLeft(parent, leftValue);

758 In
rementBalan
e(parent);

759 }

760 else

761 {

762 SetRight(parent, leftValue);

763 De
rementBalan
e(parent);

764 }

765 }

766 else // node has a both
hildren (left and right)

767 {

768 var prede
essor = GetLeft(
urrentNode);

769 var su

essor = GetRight(
urrentNode);

770 var su

essorParent =
urrentNode;

771 int previousPathPosition = ++pathPosition;

772 // find the immediately next node (and its parent)

773 while (GetLeftIsChild(su

essor))

774 {

775 path[++pathPosition℄ = su

essorParent = su

essor;

776 su

essor = GetLeft(su

essor);

777 if (!AreEqual(su

essorParent,
urrentNode))

778 {

779 De
rementSize(su

essorParent);

780 }

781 }

32

782 path[previousPathPosition℄ = su

essor;

783 balan
eNode = path[pathPosition℄;

784 // remove 'su

essor' from the tree

785 if (!AreEqual(su

essorParent,
urrentNode))

786 {

787 if (!GetRightIsChild(su

essor))

788 {

789 SetLeftIsChild(su

essorParent, false);

790 }

791 else

792 {

793 SetLeft(su

essorParent, GetRight(su

essor));

794 }

795 In
rementBalan
e(su

essorParent);

796 SetRightIsChild(su

essor, true);

797 SetRight(su

essor, GetRight(
urrentNode));

798 }

799 else

800 {

801 De
rementBalan
e(
urrentNode);

802 }

803 // set the prede
essor's su

essor link to point to the right pla
e

804 while (GetRightIsChild(prede
essor))

805 {

806 prede
essor = GetRight(prede
essor);

807 }

808 SetRight(prede
essor, su

essor);

809 // prepare 'su

essor' to repla
e 'node'

810 var left = GetLeft(
urrentNode);

811 SetLeftIsChild(su

essor, true);

812 SetLeft(su

essor, left);

813 SetBalan
e(su

essor, GetBalan
e(
urrentNode));

814 FixSize(su

essor);

815 if (AreEqual(parent, default))

816 {

817 root = su

essor;

818 }

819 else if (isLeftNode)

820 {

821 SetLeft(parent, su

essor);

822 }

823 else

824 {

825 SetRight(parent, su

essor);

826 }

827 }

828 }

829 // restore balan
e

830 if (!AreEqual(balan
eNode, default))

831 {

832 while (true)

833 {

834 var balan
eParent = path[--pathPosition℄;

835 isLeftNode = !AreEqual(balan
eParent, default) && AreEqual(balan
eNode,

GetLeft(balan
eParent));→֒

836 var
urrentNodeBalan
e = GetBalan
e(balan
eNode);

837 if (
urrentNodeBalan
e < -1 ||
urrentNodeBalan
e > 1)

838 {

839 balan
eNode = Balan
e(balan
eNode);

840 if (AreEqual(balan
eParent, default))

841 {

842 root = balan
eNode;

843 }

844 else if (isLeftNode)

845 {

846 SetLeft(balan
eParent, balan
eNode);

847 }

848 else

849 {

850 SetRight(balan
eParent, balan
eNode);

851 }

852 }

853
urrentNodeBalan
e = GetBalan
e(balan
eNode);

854 if (
urrentNodeBalan
e != 0 || AreEqual(balan
eParent, default))

855 {

856 break;

857 }

858 if (isLeftNode)

33

859 {

860 In
rementBalan
e(balan
eParent);

861 }

862 else

863 {

864 De
rementBalan
e(balan
eParent);

865 }

866 balan
eNode = balan
eParent;

867 }

868 }

869 ClearNode(node);

870 #if USEARRAYPOOL

871 ArrayPool.Free(path);

872 #endif

873 }

874 }

875

876 /// <summary>

877 /// <para>

878 /// Clears the node using the spe
ified node.

879 /// </para>

880 /// <para></para>

881 /// </summary>

882 /// <param name="node">

883 /// <para>The node.</para>

884 /// <para></para>

885 /// </param>

886 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

887 prote
ted override void ClearNode(TElement node)

888 {

889 SetLeft(node, Zero);

890 SetRight(node, Zero);

891 SetSize(node, Zero);

892 SetLeftIsChild(node, false);

893 SetRightIsChild(node, false);

894 SetBalan
e(node, 0);

895 }

896 }

897 }

1.12 ./
sharp/Platform.Colle
tions.Methods/Trees/SizedBinaryTreeMethodsBase.
s

1 //#define ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

2

3 using System;

4 using System.Diagnosti
s;

5 using System.Runtime.CompilerServi
es;

6 using System.Text;

7 using Platform.Numbers;

8

9 #pragma warning disable CS1591 // Missing XML
omment for publi
ly visible type or member

10

11 namespa
e Platform.Colle
tions.Methods.Trees

12 {

13 /// <summary>

14 /// <para>

15 /// Represents the sized binary tree methods base.

16 /// </para>

17 /// <para></para>

18 /// </summary>

19 /// <seealso
ref="Generi
Colle
tionMethodsBase{TElement}"/>

20 publi
 abstra
t
lass SizedBinaryTreeMethodsBase<TElement> :

Generi
Colle
tionMethodsBase<TElement>→֒

21 {

22 /// <summary>

23 /// <para>

24 /// Gets the left referen
e using the spe
ified node.

25 /// </para>

26 /// <para></para>

27 /// </summary>

28 /// <param name="node">

29 /// <para>The node.</para>

30 /// <para></para>

31 /// </param>

32 /// <returns>

33 /// <para>The ref element</para>

34 /// <para></para>

35 /// </returns>

36 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

37 prote
ted abstra
t ref TElement GetLeftReferen
e(TElement node);

34

38

39 /// <summary>

40 /// <para>

41 /// Gets the right referen
e using the spe
ified node.

42 /// </para>

43 /// <para></para>

44 /// </summary>

45 /// <param name="node">

46 /// <para>The node.</para>

47 /// <para></para>

48 /// </param>

49 /// <returns>

50 /// <para>The ref element</para>

51 /// <para></para>

52 /// </returns>

53 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

54 prote
ted abstra
t ref TElement GetRightReferen
e(TElement node);

55

56 /// <summary>

57 /// <para>

58 /// Gets the left using the spe
ified node.

59 /// </para>

60 /// <para></para>

61 /// </summary>

62 /// <param name="node">

63 /// <para>The node.</para>

64 /// <para></para>

65 /// </param>

66 /// <returns>

67 /// <para>The element</para>

68 /// <para></para>

69 /// </returns>

70 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

71 prote
ted abstra
t TElement GetLeft(TElement node);

72

73 /// <summary>

74 /// <para>

75 /// Gets the right using the spe
ified node.

76 /// </para>

77 /// <para></para>

78 /// </summary>

79 /// <param name="node">

80 /// <para>The node.</para>

81 /// <para></para>

82 /// </param>

83 /// <returns>

84 /// <para>The element</para>

85 /// <para></para>

86 /// </returns>

87 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

88 prote
ted abstra
t TElement GetRight(TElement node);

89

90 /// <summary>

91 /// <para>

92 /// Gets the size using the spe
ified node.

93 /// </para>

94 /// <para></para>

95 /// </summary>

96 /// <param name="node">

97 /// <para>The node.</para>

98 /// <para></para>

99 /// </param>

100 /// <returns>

101 /// <para>The element</para>

102 /// <para></para>

103 /// </returns>

104 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

105 prote
ted abstra
t TElement GetSize(TElement node);

106

107 /// <summary>

108 /// <para>

109 /// Sets the left using the spe
ified node.

110 /// </para>

111 /// <para></para>

112 /// </summary>

113 /// <param name="node">

114 /// <para>The node.</para>

115 /// <para></para>

35

116 /// </param>

117 /// <param name="left">

118 /// <para>The left.</para>

119 /// <para></para>

120 /// </param>

121 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

122 prote
ted abstra
t void SetLeft(TElement node, TElement left);

123

124 /// <summary>

125 /// <para>

126 /// Sets the right using the spe
ified node.

127 /// </para>

128 /// <para></para>

129 /// </summary>

130 /// <param name="node">

131 /// <para>The node.</para>

132 /// <para></para>

133 /// </param>

134 /// <param name="right">

135 /// <para>The right.</para>

136 /// <para></para>

137 /// </param>

138 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

139 prote
ted abstra
t void SetRight(TElement node, TElement right);

140

141 /// <summary>

142 /// <para>

143 /// Sets the size using the spe
ified node.

144 /// </para>

145 /// <para></para>

146 /// </summary>

147 /// <param name="node">

148 /// <para>The node.</para>

149 /// <para></para>

150 /// </param>

151 /// <param name="size">

152 /// <para>The size.</para>

153 /// <para></para>

154 /// </param>

155 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

156 prote
ted abstra
t void SetSize(TElement node, TElement size);

157

158 /// <summary>

159 /// <para>

160 /// Determines whether this instan
e first is to the left of se
ond.

161 /// </para>

162 /// <para></para>

163 /// </summary>

164 /// <param name="first">

165 /// <para>The first.</para>

166 /// <para></para>

167 /// </param>

168 /// <param name="se
ond">

169 /// <para>The se
ond.</para>

170 /// <para></para>

171 /// </param>

172 /// <returns>

173 /// <para>The bool</para>

174 /// <para></para>

175 /// </returns>

176 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

177 prote
ted abstra
t bool FirstIsToTheLeftOfSe
ond(TElement first, TElement se
ond);

178

179 /// <summary>

180 /// <para>

181 /// Determines whether this instan
e first is to the right of se
ond.

182 /// </para>

183 /// <para></para>

184 /// </summary>

185 /// <param name="first">

186 /// <para>The first.</para>

187 /// <para></para>

188 /// </param>

189 /// <param name="se
ond">

190 /// <para>The se
ond.</para>

191 /// <para></para>

192 /// </param>

193 /// <returns>

36

194 /// <para>The bool</para>

195 /// <para></para>

196 /// </returns>

197 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

198 prote
ted abstra
t bool FirstIsToTheRightOfSe
ond(TElement first, TElement se
ond);

199

200 /// <summary>

201 /// <para>

202 /// Gets the left or default using the spe
ified node.

203 /// </para>

204 /// <para></para>

205 /// </summary>

206 /// <param name="node">

207 /// <para>The node.</para>

208 /// <para></para>

209 /// </param>

210 /// <returns>

211 /// <para>The element</para>

212 /// <para></para>

213 /// </returns>

214 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

215 prote
ted virtual TElement GetLeftOrDefault(TElement node) => AreEqual(node, default) ?

default : GetLeft(node);→֒

216

217 /// <summary>

218 /// <para>

219 /// Gets the right or default using the spe
ified node.

220 /// </para>

221 /// <para></para>

222 /// </summary>

223 /// <param name="node">

224 /// <para>The node.</para>

225 /// <para></para>

226 /// </param>

227 /// <returns>

228 /// <para>The element</para>

229 /// <para></para>

230 /// </returns>

231 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

232 prote
ted virtual TElement GetRightOrDefault(TElement node) => AreEqual(node, default) ?

default : GetRight(node);→֒

233

234 /// <summary>

235 /// <para>

236 /// In
rements the size using the spe
ified node.

237 /// </para>

238 /// <para></para>

239 /// </summary>

240 /// <param name="node">

241 /// <para>The node.</para>

242 /// <para></para>

243 /// </param>

244 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

245 prote
ted void In
rementSize(TElement node) => SetSize(node, In
rement(GetSize(node)));

246

247 /// <summary>

248 /// <para>

249 /// De
rements the size using the spe
ified node.

250 /// </para>

251 /// <para></para>

252 /// </summary>

253 /// <param name="node">

254 /// <para>The node.</para>

255 /// <para></para>

256 /// </param>

257 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

258 prote
ted void De
rementSize(TElement node) => SetSize(node, De
rement(GetSize(node)));

259

260 /// <summary>

261 /// <para>

262 /// Gets the left size using the spe
ified node.

263 /// </para>

264 /// <para></para>

265 /// </summary>

266 /// <param name="node">

267 /// <para>The node.</para>

268 /// <para></para>

269 /// </param>

37

270 /// <returns>

271 /// <para>The element</para>

272 /// <para></para>

273 /// </returns>

274 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

275 prote
ted TElement GetLeftSize(TElement node) => GetSizeOrZero(GetLeftOrDefault(node));

276

277 /// <summary>

278 /// <para>

279 /// Gets the right size using the spe
ified node.

280 /// </para>

281 /// <para></para>

282 /// </summary>

283 /// <param name="node">

284 /// <para>The node.</para>

285 /// <para></para>

286 /// </param>

287 /// <returns>

288 /// <para>The element</para>

289 /// <para></para>

290 /// </returns>

291 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

292 prote
ted TElement GetRightSize(TElement node) => GetSizeOrZero(GetRightOrDefault(node));

293

294 /// <summary>

295 /// <para>

296 /// Gets the size or zero using the spe
ified node.

297 /// </para>

298 /// <para></para>

299 /// </summary>

300 /// <param name="node">

301 /// <para>The node.</para>

302 /// <para></para>

303 /// </param>

304 /// <returns>

305 /// <para>The element</para>

306 /// <para></para>

307 /// </returns>

308 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

309 prote
ted TElement GetSizeOrZero(TElement node) => EqualToZero(node) ? Zero :

GetSize(node);→֒

310

311 /// <summary>

312 /// <para>

313 /// Fixes the size using the spe
ified node.

314 /// </para>

315 /// <para></para>

316 /// </summary>

317 /// <param name="node">

318 /// <para>The node.</para>

319 /// <para></para>

320 /// </param>

321 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

322 prote
ted void FixSize(TElement node) => SetSize(node, In
rement(Add(GetLeftSize(node),

GetRightSize(node))));→֒

323

324 /// <summary>

325 /// <para>

326 /// Lefts the rotate using the spe
ified root.

327 /// </para>

328 /// <para></para>

329 /// </summary>

330 /// <param name="root">

331 /// <para>The root.</para>

332 /// <para></para>

333 /// </param>

334 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

335 prote
ted void LeftRotate(ref TElement root) => root = LeftRotate(root);

336

337 /// <summary>

338 /// <para>

339 /// Lefts the rotate using the spe
ified root.

340 /// </para>

341 /// <para></para>

342 /// </summary>

343 /// <param name="root">

344 /// <para>The root.</para>

345 /// <para></para>

38

346 /// </param>

347 /// <returns>

348 /// <para>The right.</para>

349 /// <para></para>

350 /// </returns>

351 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

352 prote
ted TElement LeftRotate(TElement root)

353 {

354 var right = GetRight(root);

355 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

356 if (EqualToZero(right))

357 {

358 throw new InvalidOperationEx
eption("Right is null.");

359 }

360 #endif

361 SetRight(root, GetLeft(right));

362 SetLeft(right, root);

363 SetSize(right, GetSize(root));

364 FixSize(root);

365 return right;

366 }

367

368 /// <summary>

369 /// <para>

370 /// Rights the rotate using the spe
ified root.

371 /// </para>

372 /// <para></para>

373 /// </summary>

374 /// <param name="root">

375 /// <para>The root.</para>

376 /// <para></para>

377 /// </param>

378 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

379 prote
ted void RightRotate(ref TElement root) => root = RightRotate(root);

380

381 /// <summary>

382 /// <para>

383 /// Rights the rotate using the spe
ified root.

384 /// </para>

385 /// <para></para>

386 /// </summary>

387 /// <param name="root">

388 /// <para>The root.</para>

389 /// <para></para>

390 /// </param>

391 /// <returns>

392 /// <para>The left.</para>

393 /// <para></para>

394 /// </returns>

395 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

396 prote
ted TElement RightRotate(TElement root)

397 {

398 var left = GetLeft(root);

399 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

400 if (EqualToZero(left))

401 {

402 throw new InvalidOperationEx
eption("Left is null.");

403 }

404 #endif

405 SetLeft(root, GetRight(left));

406 SetRight(left, root);

407 SetSize(left, GetSize(root));

408 FixSize(root);

409 return left;

410 }

411

412 /// <summary>

413 /// <para>

414 /// Gets the rightest using the spe
ified
urrent.

415 /// </para>

416 /// <para></para>

417 /// </summary>

418 /// <param name="
urrent">

419 /// <para>The
urrent.</para>

420 /// <para></para>

421 /// </param>

422 /// <returns>

423 /// <para>The
urrent.</para>

39

424 /// <para></para>

425 /// </returns>

426 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

427 prote
ted virtual TElement GetRightest(TElement
urrent)

428 {

429 var
urrentRight = GetRight(
urrent);

430 while (!EqualToZero(
urrentRight))

431 {

432
urrent =
urrentRight;

433
urrentRight = GetRight(
urrent);

434 }

435 return
urrent;

436 }

437

438 /// <summary>

439 /// <para>

440 /// Gets the leftest using the spe
ified
urrent.

441 /// </para>

442 /// <para></para>

443 /// </summary>

444 /// <param name="
urrent">

445 /// <para>The
urrent.</para>

446 /// <para></para>

447 /// </param>

448 /// <returns>

449 /// <para>The
urrent.</para>

450 /// <para></para>

451 /// </returns>

452 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

453 prote
ted virtual TElement GetLeftest(TElement
urrent)

454 {

455 var
urrentLeft = GetLeft(
urrent);

456 while (!EqualToZero(
urrentLeft))

457 {

458
urrent =
urrentLeft;

459
urrentLeft = GetLeft(
urrent);

460 }

461 return
urrent;

462 }

463

464 /// <summary>

465 /// <para>

466 /// Gets the next using the spe
ified node.

467 /// </para>

468 /// <para></para>

469 /// </summary>

470 /// <param name="node">

471 /// <para>The node.</para>

472 /// <para></para>

473 /// </param>

474 /// <returns>

475 /// <para>The element</para>

476 /// <para></para>

477 /// </returns>

478 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

479 prote
ted virtual TElement GetNext(TElement node) => GetLeftest(GetRight(node));

480

481 /// <summary>

482 /// <para>

483 /// Gets the previous using the spe
ified node.

484 /// </para>

485 /// <para></para>

486 /// </summary>

487 /// <param name="node">

488 /// <para>The node.</para>

489 /// <para></para>

490 /// </param>

491 /// <returns>

492 /// <para>The element</para>

493 /// <para></para>

494 /// </returns>

495 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

496 prote
ted virtual TElement GetPrevious(TElement node) => GetRightest(GetLeft(node));

497

498 /// <summary>

499 /// <para>

500 /// Determines whether this instan
e
ontains.

501 /// </para>

40

502 /// <para></para>

503 /// </summary>

504 /// <param name="node">

505 /// <para>The node.</para>

506 /// <para></para>

507 /// </param>

508 /// <param name="root">

509 /// <para>The root.</para>

510 /// <para></para>

511 /// </param>

512 /// <returns>

513 /// <para>The bool</para>

514 /// <para></para>

515 /// </returns>

516 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

517 publi
 virtual bool Contains(TElement node, TElement root)

518 {

519 while (!EqualToZero(root))

520 {

521 if (FirstIsToTheLeftOfSe
ond(node, root)) // node.Key < root.Key

522 {

523 root = GetLeft(root);

524 }

525 else if (FirstIsToTheRightOfSe
ond(node, root)) // node.Key > root.Key

526 {

527 root = GetRight(root);

528 }

529 else // node.Key == root.Key

530 {

531 return true;

532 }

533 }

534 return false;

535 }

536

537 /// <summary>

538 /// <para>

539 /// Clears the node using the spe
ified node.

540 /// </para>

541 /// <para></para>

542 /// </summary>

543 /// <param name="node">

544 /// <para>The node.</para>

545 /// <para></para>

546 /// </param>

547 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

548 prote
ted virtual void ClearNode(TElement node)

549 {

550 SetLeft(node, Zero);

551 SetRight(node, Zero);

552 SetSize(node, Zero);

553 }

554

555 /// <summary>

556 /// <para>

557 /// Atta
hes the root.

558 /// </para>

559 /// <para></para>

560 /// </summary>

561 /// <param name="root">

562 /// <para>The root.</para>

563 /// <para></para>

564 /// </param>

565 /// <param name="node">

566 /// <para>The node.</para>

567 /// <para></para>

568 /// </param>

569 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

570 publi
 void Atta
h(ref TElement root, TElement node)

571 {

572 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

573 ValidateSizes(root);

574 Debug.WriteLine("--BeforeAtta
h--");

575 Debug.WriteLine(PrintNodes(root));

576 Debug.WriteLine("----------------");

577 var sizeBefore = GetSize(root);

578 #endif

579 if (EqualToZero(root))

41

580 {

581 SetSize(node, One);

582 root = node;

583 return;

584 }

585 Atta
hCore(ref root, node);

586 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

587 Debug.WriteLine("--AfterAtta
h--");

588 Debug.WriteLine(PrintNodes(root));

589 Debug.WriteLine("----------------");

590 ValidateSizes(root);

591 var sizeAfter = GetSize(root);

592 if (!AreEqual(Arithmeti
.In
rement(sizeBefore), sizeAfter))

593 {

594 throw new InvalidOperationEx
eption("Tree was broken after atta
h.");

595 }

596 #endif

597 }

598

599 /// <summary>

600 /// <para>

601 /// Atta
hes the
ore using the spe
ified root.

602 /// </para>

603 /// <para></para>

604 /// </summary>

605 /// <param name="root">

606 /// <para>The root.</para>

607 /// <para></para>

608 /// </param>

609 /// <param name="node">

610 /// <para>The node.</para>

611 /// <para></para>

612 /// </param>

613 prote
ted abstra
t void Atta
hCore(ref TElement root, TElement node);

614

615 /// <summary>

616 /// <para>

617 /// Deta
hes the root.

618 /// </para>

619 /// <para></para>

620 /// </summary>

621 /// <param name="root">

622 /// <para>The root.</para>

623 /// <para></para>

624 /// </param>

625 /// <param name="node">

626 /// <para>The node.</para>

627 /// <para></para>

628 /// </param>

629 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

630 publi
 void Deta
h(ref TElement root, TElement node)

631 {

632 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

633 ValidateSizes(root);

634 Debug.WriteLine("--BeforeDeta
h--");

635 Debug.WriteLine(PrintNodes(root));

636 Debug.WriteLine("----------------");

637 var sizeBefore = GetSize(root);

638 if (EqualToZero(root))

639 {

640 throw new InvalidOperationEx
eption($"Ýëåìåíò ñ {node} íå ñîäåðæèòñÿ â

äåðåâå.");→֒

641 }

642 #endif

643 Deta
hCore(ref root, node);

644 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

645 Debug.WriteLine("--AfterDeta
h--");

646 Debug.WriteLine(PrintNodes(root));

647 Debug.WriteLine("----------------");

648 ValidateSizes(root);

649 var sizeAfter = GetSize(root);

650 if (!AreEqual(Arithmeti
.De
rement(sizeBefore), sizeAfter))

651 {

652 throw new InvalidOperationEx
eption("Tree was broken after deta
h.");

653 }

654 #endif

655 }

656

42

657 /// <summary>

658 /// <para>

659 /// Deta
hes the
ore using the spe
ified root.

660 /// </para>

661 /// <para></para>

662 /// </summary>

663 /// <param name="root">

664 /// <para>The root.</para>

665 /// <para></para>

666 /// </param>

667 /// <param name="node">

668 /// <para>The node.</para>

669 /// <para></para>

670 /// </param>

671 prote
ted abstra
t void Deta
hCore(ref TElement root, TElement node);

672

673 /// <summary>

674 /// <para>

675 /// Fixes the sizes using the spe
ified node.

676 /// </para>

677 /// <para></para>

678 /// </summary>

679 /// <param name="node">

680 /// <para>The node.</para>

681 /// <para></para>

682 /// </param>

683 publi
 void FixSizes(TElement node)

684 {

685 if (AreEqual(node, default))

686 {

687 return;

688 }

689 FixSizes(GetLeft(node));

690 FixSizes(GetRight(node));

691 FixSize(node);

692 }

693

694 /// <summary>

695 /// <para>

696 /// Validates the sizes using the spe
ified node.

697 /// </para>

698 /// <para></para>

699 /// </summary>

700 /// <param name="node">

701 /// <para>The node.</para>

702 /// <para></para>

703 /// </param>

704 /// <ex
eption
ref="InvalidOperationEx
eption">

705 /// <para>Size of {node} is not valid. Expe
ted size: {expe
tedSize}, a
tual size:

{size}.</para>→֒

706 /// <para></para>

707 /// </ex
eption>

708 publi
 void ValidateSizes(TElement node)

709 {

710 if (AreEqual(node, default))

711 {

712 return;

713 }

714 var size = GetSize(node);

715 var leftSize = GetLeftSize(node);

716 var rightSize = GetRightSize(node);

717 var expe
tedSize = Arithmeti
.In
rement(Arithmeti
.Add(leftSize, rightSize));

718 if (!AreEqual(size, expe
tedSize))

719 {

720 throw new InvalidOperationEx
eption($"Size of {node} is not valid. Expe
ted

size: {expe
tedSize}, a
tual size: {size}.");→֒

721 }

722 ValidateSizes(GetLeft(node));

723 ValidateSizes(GetRight(node));

724 }

725

726 /// <summary>

727 /// <para>

728 /// Validates the size using the spe
ified node.

729 /// </para>

730 /// <para></para>

731 /// </summary>

732 /// <param name="node">

43

733 /// <para>The node.</para>

734 /// <para></para>

735 /// </param>

736 /// <ex
eption
ref="InvalidOperationEx
eption">

737 /// <para>Size of {node} is not valid. Expe
ted size: {expe
tedSize}, a
tual size:

{size}.</para>→֒

738 /// <para></para>

739 /// </ex
eption>

740 publi
 void ValidateSize(TElement node)

741 {

742 var size = GetSize(node);

743 var leftSize = GetLeftSize(node);

744 var rightSize = GetRightSize(node);

745 var expe
tedSize = Arithmeti
.In
rement(Arithmeti
.Add(leftSize, rightSize));

746 if (!AreEqual(size, expe
tedSize))

747 {

748 throw new InvalidOperationEx
eption($"Size of {node} is not valid. Expe
ted

size: {expe
tedSize}, a
tual size: {size}.");→֒

749 }

750 }

751

752 /// <summary>

753 /// <para>

754 /// Prints the nodes using the spe
ified node.

755 /// </para>

756 /// <para></para>

757 /// </summary>

758 /// <param name="node">

759 /// <para>The node.</para>

760 /// <para></para>

761 /// </param>

762 /// <returns>

763 /// <para>The string</para>

764 /// <para></para>

765 /// </returns>

766 publi
 string PrintNodes(TElement node)

767 {

768 var sb = new StringBuilder();

769 PrintNodes(node, sb);

770 return sb.ToString();

771 }

772

773 /// <summary>

774 /// <para>

775 /// Prints the nodes using the spe
ified node.

776 /// </para>

777 /// <para></para>

778 /// </summary>

779 /// <param name="node">

780 /// <para>The node.</para>

781 /// <para></para>

782 /// </param>

783 /// <param name="sb">

784 /// <para>The sb.</para>

785 /// <para></para>

786 /// </param>

787 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

788 publi
 void PrintNodes(TElement node, StringBuilder sb) => PrintNodes(node, sb, 0);

789

790 /// <summary>

791 /// <para>

792 /// Prints the nodes using the spe
ified node.

793 /// </para>

794 /// <para></para>

795 /// </summary>

796 /// <param name="node">

797 /// <para>The node.</para>

798 /// <para></para>

799 /// </param>

800 /// <param name="sb">

801 /// <para>The sb.</para>

802 /// <para></para>

803 /// </param>

804 /// <param name="level">

805 /// <para>The level.</para>

806 /// <para></para>

807 /// </param>

808 publi
 void PrintNodes(TElement node, StringBuilder sb, int level)

44

809 {

810 if (AreEqual(node, default))

811 {

812 return;

813 }

814 PrintNodes(GetLeft(node), sb, level + 1);

815 PrintNode(node, sb, level);

816 sb.AppendLine();

817 PrintNodes(GetRight(node), sb, level + 1);

818 }

819

820 /// <summary>

821 /// <para>

822 /// Prints the node using the spe
ified node.

823 /// </para>

824 /// <para></para>

825 /// </summary>

826 /// <param name="node">

827 /// <para>The node.</para>

828 /// <para></para>

829 /// </param>

830 /// <returns>

831 /// <para>The string</para>

832 /// <para></para>

833 /// </returns>

834 publi
 string PrintNode(TElement node)

835 {

836 var sb = new StringBuilder();

837 PrintNode(node, sb);

838 return sb.ToString();

839 }

840

841 /// <summary>

842 /// <para>

843 /// Prints the node using the spe
ified node.

844 /// </para>

845 /// <para></para>

846 /// </summary>

847 /// <param name="node">

848 /// <para>The node.</para>

849 /// <para></para>

850 /// </param>

851 /// <param name="sb">

852 /// <para>The sb.</para>

853 /// <para></para>

854 /// </param>

855 [MethodImpl(MethodImplOptions.AggressiveInlining)℄

856 prote
ted void PrintNode(TElement node, StringBuilder sb) => PrintNode(node, sb, 0);

857

858 /// <summary>

859 /// <para>

860 /// Prints the node using the spe
ified node.

861 /// </para>

862 /// <para></para>

863 /// </summary>

864 /// <param name="node">

865 /// <para>The node.</para>

866 /// <para></para>

867 /// </param>

868 /// <param name="sb">

869 /// <para>The sb.</para>

870 /// <para></para>

871 /// </param>

872 /// <param name="level">

873 /// <para>The level.</para>

874 /// <para></para>

875 /// </param>

876 prote
ted virtual void PrintNode(TElement node, StringBuilder sb, int level)

877 {

878 sb.Append('\t', level);

879 sb.Append(node);

880 PrintNodeValue(node, sb);

881 sb.Append(' ');

882 sb.Append('s');

883 sb.Append(GetSize(node));

884 }

885

886 /// <summary>

45

887 /// <para>

888 /// Prints the node value using the spe
ified node.

889 /// </para>

890 /// <para></para>

891 /// </summary>

892 /// <param name="node">

893 /// <para>The node.</para>

894 /// <para></para>

895 /// </param>

896 /// <param name="sb">

897 /// <para>The sb.</para>

898 /// <para></para>

899 /// </param>

900 prote
ted abstra
t void PrintNodeValue(TElement node, StringBuilder sb);

901 }

902 }

1.13 ./
sharp/Platform.Colle
tions.Methods.Tests/Re
ursionlessSizeBalan
edTree.
s

1 using System;

2 using System.Colle
tions.Generi
;

3 using System.Text;

4 using Platform.Numbers;

5 using Platform.Colle
tions.Methods.Trees;

6 using Platform.Converters;

7

8 namespa
e Platform.Colle
tions.Methods.Tests

9 {

10 publi

lass Re
ursionlessSizeBalan
edTree<TElement> :

Re
ursionlessSizeBalan
edTreeMethods<TElement>→֒

11 {

12 private stru
t TreeElement

13 {

14 publi
 TElement Size;

15 publi
 TElement Left;

16 publi
 TElement Right;

17 }

18 private readonly TreeElement[℄ _elements;

19 private TElement _allo
ated;

20

21 publi
 TElement Root;

22

23 publi
 TElement Count => GetSizeOrZero(Root);

24

25 publi
 Re
ursionlessSizeBalan
edTree(int
apa
ity) => (_elements, _allo
ated) = (new

TreeElement[
apa
ity℄, One);→֒

26

27 publi
 TElement Allo
ate()

28 {

29 var newNode = _allo
ated;

30 if (IsEmpty(newNode))

31 {

32 _allo
ated = Arithmeti
.In
rement(_allo
ated);

33 return newNode;

34 }

35 else

36 {

37 throw new InvalidOperationEx
eption("Allo
ated tree element is not empty.");

38 }

39 }

40

41 publi
 void Free(TElement node)

42 {

43 while (!EqualityComparer.Equals(_allo
ated, One) && IsEmpty(node))

44 {

45 var lastNode = Arithmeti
.De
rement(_allo
ated);

46 if (EqualityComparer.Equals(lastNode, node))

47 {

48 _allo
ated = lastNode;

49 node = Arithmeti
.De
rement(node);

50 }

51 else

52 {

53 return;

54 }

55 }

56 }

57

58 publi
 bool IsEmpty(TElement node) =>

EqualityComparer<TreeElement>.Default.Equals(GetElement(node), default);→֒

59

46

60 prote
ted override bool FirstIsToTheLeftOfSe
ond(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) < 0;→֒

61

62 prote
ted override bool FirstIsToTheRightOfSe
ond(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) > 0;→֒

63

64 prote
ted override ref TElement GetLeftReferen
e(TElement node) => ref

GetElement(node).Left;→֒

65

66 prote
ted override TElement GetLeft(TElement node) => GetElement(node).Left;

67

68 prote
ted override ref TElement GetRightReferen
e(TElement node) => ref

GetElement(node).Right;→֒

69

70 prote
ted override TElement GetRight(TElement node) => GetElement(node).Right;

71

72 prote
ted override TElement GetSize(TElement node) => GetElement(node).Size;

73

74 prote
ted override void PrintNodeValue(TElement node, StringBuilder sb) =>

sb.Append(node);→֒

75

76 prote
ted override void SetLeft(TElement node, TElement left) => GetElement(node).Left =

left;→֒

77

78 prote
ted override void SetRight(TElement node, TElement right) =>

GetElement(node).Right = right;→֒

79

80 prote
ted override void SetSize(TElement node, TElement size) => GetElement(node).Size =

size;→֒

81 private ref TreeElement GetElement(TElement node) => ref

_elements[Un
he
kedConverter<TElement, long>.Default.Convert(node)℄;→֒

82 }

83 }

1.14 ./
sharp/Platform.Colle
tions.Methods.Tests/SizeBalan
edTree.
s

1 using System;

2 using System.Colle
tions.Generi
;

3 using System.Text;

4 using Platform.Numbers;

5 using Platform.Colle
tions.Methods.Trees;

6 using Platform.Converters;

7

8 namespa
e Platform.Colle
tions.Methods.Tests

9 {

10 publi

lass SizeBalan
edTree<TElement> : SizeBalan
edTreeMethods<TElement>

11 {

12 private stru
t TreeElement

13 {

14 publi
 TElement Size;

15 publi
 TElement Left;

16 publi
 TElement Right;

17 }

18 private readonly TreeElement[℄ _elements;

19 private TElement _allo
ated;

20

21 publi
 TElement Root;

22

23 publi
 TElement Count => GetSizeOrZero(Root);

24

25 publi
 SizeBalan
edTree(int
apa
ity) => (_elements, _allo
ated) = (new

TreeElement[
apa
ity℄, One);→֒

26

27 publi
 TElement Allo
ate()

28 {

29 var newNode = _allo
ated;

30 if (IsEmpty(newNode))

31 {

32 _allo
ated = Arithmeti
.In
rement(_allo
ated);

33 return newNode;

34 }

35 else

36 {

37 throw new InvalidOperationEx
eption("Allo
ated tree element is not empty.");

38 }

39 }

40

41 publi
 void Free(TElement node)

42 {

43 while (!EqualityComparer.Equals(_allo
ated, One) && IsEmpty(node))

44 {

47

45 var lastNode = Arithmeti
.De
rement(_allo
ated);

46 if (EqualityComparer.Equals(lastNode, node))

47 {

48 _allo
ated = lastNode;

49 node = Arithmeti
.De
rement(node);

50 }

51 else

52 {

53 return;

54 }

55 }

56 }

57

58 publi
 bool IsEmpty(TElement node) =>

EqualityComparer<TreeElement>.Default.Equals(GetElement(node), default);→֒

59

60 prote
ted override bool FirstIsToTheLeftOfSe
ond(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) < 0;→֒

61

62 prote
ted override bool FirstIsToTheRightOfSe
ond(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) > 0;→֒

63

64 prote
ted override ref TElement GetLeftReferen
e(TElement node) => ref

GetElement(node).Left;→֒

65

66 prote
ted override TElement GetLeft(TElement node) => GetElement(node).Left;

67

68 prote
ted override ref TElement GetRightReferen
e(TElement node) => ref

GetElement(node).Right;→֒

69

70 prote
ted override TElement GetRight(TElement node) => GetElement(node).Right;

71

72 prote
ted override TElement GetSize(TElement node) => GetElement(node).Size;

73

74 prote
ted override void PrintNodeValue(TElement node, StringBuilder sb) =>

sb.Append(node);→֒

75

76 prote
ted override void SetLeft(TElement node, TElement left) => GetElement(node).Left =

left;→֒

77

78 prote
ted override void SetRight(TElement node, TElement right) =>

GetElement(node).Right = right;→֒

79

80 prote
ted override void SetSize(TElement node, TElement size) => GetElement(node).Size =

size;→֒

81 private ref TreeElement GetElement(TElement node) => ref

_elements[Un
he
kedConverter<TElement, long>.Default.Convert(node)℄;→֒

82 }

83 }

1.15 ./
sharp/Platform.Colle
tions.Methods.Tests/SizedAndThreadedAVLBalan
edTree.
s

1 using System;

2 using System.Colle
tions.Generi
;

3 using System.Text;

4 using Platform.Numbers;

5 using Platform.Colle
tions.Methods.Trees;

6 using Platform.Converters;

7

8 namespa
e Platform.Colle
tions.Methods.Tests

9 {

10 publi

lass SizedAndThreadedAVLBalan
edTree<TElement> :

SizedAndThreadedAVLBalan
edTreeMethods<TElement>→֒

11 {

12 private stru
t TreeElement

13 {

14 publi
 TElement Size;

15 publi
 TElement Left;

16 publi
 TElement Right;

17 publi
 sbyte Balan
e;

18 publi
 bool LeftIsChild;

19 publi
 bool RightIsChild;

20 }

21 private readonly TreeElement[℄ _elements;

22 private TElement _allo
ated;

23

24 publi
 TElement Root;

25

26 publi
 TElement Count => GetSizeOrZero(Root);

27

48

28 publi
 SizedAndThreadedAVLBalan
edTree(int
apa
ity) => (_elements, _allo
ated) = (new

TreeElement[
apa
ity℄, One);→֒

29

30 publi
 TElement Allo
ate()

31 {

32 var newNode = _allo
ated;

33 if (IsEmpty(newNode))

34 {

35 _allo
ated = Arithmeti
.In
rement(_allo
ated);

36 return newNode;

37 }

38 else

39 {

40 throw new InvalidOperationEx
eption("Allo
ated tree element is not empty.");

41 }

42 }

43

44 publi
 void Free(TElement node)

45 {

46 while (!EqualityComparer.Equals(_allo
ated, One) && IsEmpty(node))

47 {

48 var lastNode = Arithmeti
.De
rement(_allo
ated);

49 if (EqualityComparer.Equals(lastNode, node))

50 {

51 _allo
ated = lastNode;

52 node = Arithmeti
.De
rement(node);

53 }

54 else

55 {

56 return;

57 }

58 }

59 }

60

61 publi
 bool IsEmpty(TElement node) =>

EqualityComparer<TreeElement>.Default.Equals(GetElement(node), default);→֒

62

63 prote
ted override bool FirstIsToTheLeftOfSe
ond(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) < 0;→֒

64

65 prote
ted override bool FirstIsToTheRightOfSe
ond(TElement first, TElement se
ond) =>

Comparer.Compare(first, se
ond) > 0;→֒

66

67 prote
ted override sbyte GetBalan
e(TElement node) => GetElement(node).Balan
e;

68

69 prote
ted override bool GetLeftIsChild(TElement node) => GetElement(node).LeftIsChild;

70

71 prote
ted override ref TElement GetLeftReferen
e(TElement node) => ref

GetElement(node).Left;→֒

72

73 prote
ted override TElement GetLeft(TElement node) => GetElement(node).Left;

74

75 prote
ted override bool GetRightIsChild(TElement node) => GetElement(node).RightIsChild;

76

77 prote
ted override ref TElement GetRightReferen
e(TElement node) => ref

GetElement(node).Right;→֒

78

79 prote
ted override TElement GetRight(TElement node) => GetElement(node).Right;

80

81 prote
ted override TElement GetSize(TElement node) => GetElement(node).Size;

82

83 prote
ted override void PrintNodeValue(TElement node, StringBuilder sb) =>

sb.Append(node);→֒

84

85 prote
ted override void SetBalan
e(TElement node, sbyte value) =>

GetElement(node).Balan
e = value;→֒

86

87 prote
ted override void SetLeft(TElement node, TElement left) => GetElement(node).Left =

left;→֒

88

89 prote
ted override void SetLeftIsChild(TElement node, bool value) =>

GetElement(node).LeftIsChild = value;→֒

90

91 prote
ted override void SetRight(TElement node, TElement right) =>

GetElement(node).Right = right;→֒

92

93 prote
ted override void SetRightIsChild(TElement node, bool value) =>

GetElement(node).RightIsChild = value;→֒

94

49

95 prote
ted override void SetSize(TElement node, TElement size) => GetElement(node).Size =

size;→֒

96 private ref TreeElement GetElement(TElement node) => ref

_elements[Un
he
kedConverter<TElement, long>.Default.Convert(node)℄;→֒

97 }

98 }

1.16 ./
sharp/Platform.Colle
tions.Methods.Tests/TestExtensions.
s

1 using System;

2 using System.Colle
tions.Generi
;

3 using Xunit;

4 using Platform.Colle
tions.Methods.Trees;

5 using Platform.Converters;

6

7 namespa
e Platform.Colle
tions.Methods.Tests

8 {

9 publi
 stati

lass TestExtensions

10 {

11 publi
 stati
 void TestMultipleCreationsAndDeletions<TElement>(this

SizedBinaryTreeMethodsBase<TElement> tree, Fun
<TElement> allo
ate, A
tion<TElement>

free, ref TElement root, Fun
<TElement> treeCount, int maximumOperationsPerCy
le)

→֒

→֒

12 {

13 for (var N = 1; N < maximumOperationsPerCy
le; N++)

14 {

15 var
urrentCount = 0;

16 for (var i = 0; i < N; i++)

17 {

18 var node = allo
ate();

19 tree.Atta
h(ref root, node);

20
urrentCount++;

21 Assert.Equal(
urrentCount, (int)Un
he
kedConverter<TElement,

int>.Default.Convert(treeCount()));→֒

22 }

23 for (var i = 1; i <= N; i++)

24 {

25 TElement node = Un
he
kedConverter<int, TElement>.Default.Convert(i);

26 if (tree.Contains(node, root))

27 {

28 tree.Deta
h(ref root, node);

29 free(node);

30
urrentCount--;

31 Assert.Equal(
urrentCount, (int)Un
he
kedConverter<TElement,

int>.Default.Convert(treeCount()));→֒

32 }

33 }

34 }

35 }

36

37 publi
 stati
 void TestMultipleRandomCreationsAndDeletions<TElement>(this

SizedBinaryTreeMethodsBase<TElement> tree, ref TElement root, Fun
<TElement>

treeCount, int maximumOperationsPerCy
le)

→֒

→֒

38 {

39 var random = new System.Random(0);

40 var added = new HashSet<TElement>();

41 var
urrentCount = 0;

42 for (var N = 1; N < maximumOperationsPerCy
le; N++)

43 {

44 for (var i = 0; i < N; i++)

45 {

46 var node = Un
he
kedConverter<int, TElement>.Default.Convert(random.Next(1,

N));→֒

47 if (added.Add(node))

48 {

49 tree.Atta
h(ref root, node);

50
urrentCount++;

51 Assert.Equal(
urrentCount, (int)Un
he
kedConverter<TElement,

int>.Default.Convert(treeCount()));→֒

52 }

53 }

54 for (var i = 1; i <= N; i++)

55 {

56 TElement node = Un
he
kedConverter<int,

TElement>.Default.Convert(random.Next(1, N));→֒

57 if (tree.Contains(node, root))

58 {

59 tree.Deta
h(ref root, node);

60
urrentCount--;

61 Assert.Equal(
urrentCount, (int)Un
he
kedConverter<TElement,

int>.Default.Convert(treeCount()));→֒

50

62 added.Remove(node);

63 }

64 }

65 }

66 }

67 }

68 }

1.17 ./
sharp/Platform.Colle
tions.Methods.Tests/TreesTests.
s

1 using Xunit;

2

3 namespa
e Platform.Colle
tions.Methods.Tests

4 {

5 publi
 stati

lass TreesTests

6 {

7 private
onst int _n = 500;

8

9 [Fa
t℄

10 publi
 stati
 void Re
ursionlessSizeBalan
edTreeMultipleAtta
hAndDeta
hTest()

11 {

12 var re
ursionlessSizeBalan
edTree = new Re
ursionlessSizeBalan
edTree<uint>(10000);

13 re
ursionlessSizeBalan
edTree.TestMultipleCreationsAndDeletions(re
ursionlessSizeBal ⌋

an
edTree.Allo
ate, re
ursionlessSizeBalan
edTree.Free, ref

re
ursionlessSizeBalan
edTree.Root, () => re
ursionlessSizeBalan
edTree.Count,

_n);

→֒

→֒

→֒

14 }

15

16 [Fa
t℄

17 publi
 stati
 void SizeBalan
edTreeMultipleAtta
hAndDeta
hTest()

18 {

19 var sizeBalan
edTree = new SizeBalan
edTree<uint>(10000);

20 sizeBalan
edTree.TestMultipleCreationsAndDeletions(sizeBalan
edTree.Allo
ate,

sizeBalan
edTree.Free, ref sizeBalan
edTree.Root, () => sizeBalan
edTree.Count,

_n);

→֒

→֒

21 }

22

23 [Fa
t℄

24 publi
 stati
 void SizedAndThreadedAVLBalan
edTreeMultipleAtta
hAndDeta
hTest()

25 {

26 var avlTree = new SizedAndThreadedAVLBalan
edTree<uint>(10000);

27 avlTree.TestMultipleCreationsAndDeletions(avlTree.Allo
ate, avlTree.Free, ref

avlTree.Root, () => avlTree.Count, _n);→֒

28 }

29

30 [Fa
t℄

31 publi
 stati
 void Re
ursionlessSizeBalan
edTreeMultipleRandomAtta
hAndDeta
hTest()

32 {

33 var re
ursionlessSizeBalan
edTree = new Re
ursionlessSizeBalan
edTree<uint>(10000);

34 re
ursionlessSizeBalan
edTree.TestMultipleRandomCreationsAndDeletions(ref

re
ursionlessSizeBalan
edTree.Root, () => re
ursionlessSizeBalan
edTree.Count,

_n);

→֒

→֒

35 }

36

37 [Fa
t℄

38 publi
 stati
 void SizeBalan
edTreeMultipleRandomAtta
hAndDeta
hTest()

39 {

40 var sizeBalan
edTree = new SizeBalan
edTree<uint>(10000);

41 sizeBalan
edTree.TestMultipleRandomCreationsAndDeletions(ref sizeBalan
edTree.Root,

() => sizeBalan
edTree.Count, _n);→֒

42 }

43

44 [Fa
t℄

45 publi
 stati
 void SizedAndThreadedAVLBalan
edTreeMultipleRandomAtta
hAndDeta
hTest()

46 {

47 var avlTree = new SizedAndThreadedAVLBalan
edTree<uint>(10000);

48 avlTree.TestMultipleRandomCreationsAndDeletions(ref avlTree.Root, () =>

avlTree.Count, _n);→֒

49 }

50 }

51 }

51

Index

./
sharp/Platform.Colle
tions.Methods.Tests/Re
ursionlessSizeBalan
edTree.
s, 46

./
sharp/Platform.Colle
tions.Methods.Tests/SizeBalan
edTree.
s, 47

./
sharp/Platform.Colle
tions.Methods.Tests/SizedAndThreadedAVLBalan
edTree.
s, 48

./
sharp/Platform.Colle
tions.Methods.Tests/TestExtensions.
s, 50

./
sharp/Platform.Colle
tions.Methods.Tests/TreesTests.
s, 51

./
sharp/Platform.Colle
tions.Methods/Generi
Colle
tionMethodsBase.
s, 1

./
sharp/Platform.Colle
tions.Methods/Lists/AbsoluteCir
ularDoublyLinkedListMethods.
s, 3

./
sharp/Platform.Colle
tions.Methods/Lists/AbsoluteDoublyLinkedListMethodsBase.
s, 5

./
sharp/Platform.Colle
tions.Methods/Lists/AbsoluteOpenDoublyLinkedListMethods.
s, 7

./
sharp/Platform.Colle
tions.Methods/Lists/DoublyLinkedListMethodsBase.
s, 9

./
sharp/Platform.Colle
tions.Methods/Lists/RelativeCir
ularDoublyLinkedListMethods.
s, 10

./
sharp/Platform.Colle
tions.Methods/Lists/RelativeDoublyLinkedListMethodsBase.
s, 12

./
sharp/Platform.Colle
tions.Methods/Lists/RelativeOpenDoublyLinkedListMethods.
s, 14

./
sharp/Platform.Colle
tions.Methods/Trees/Re
ursionlessSizeBalan
edTreeMethods.
s, 17

./
sharp/Platform.Colle
tions.Methods/Trees/SizeBalan
edTreeMethods.
s, 20

./
sharp/Platform.Colle
tions.Methods/Trees/SizedAndThreadedAVLBalan
edTreeMethods.
s, 22

./
sharp/Platform.Colle
tions.Methods/Trees/SizedBinaryTreeMethodsBase.
s, 34

52

