LinksPlatform’s Platform.Collections.Methods Class Library

11

© 0 N O Ut W N

-
o

11
12
13

14
15
16
17
18
19
20

21
22
23
24
25

26

27
28

29
30

31
32
33
34
35
36

37
38

39
40
41
42
43
44

45
46

47
48
49
50
51
52

53
54

55
56
57
58
59
60

./csharp/Platform.Collections.Methods/GenericCollectionMethodsBase.cs
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using Platform.Numbers;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods
{
/// <summary>
/// <para>Represents a base implementation of methods for a collection of elements of type
TElement .</para>
/// <para>llpercrasusgeT 6a30Byl peann3alul METOLOB KOJUIEKINH 3JeMeHTOB Tuna TElement.</para>
/// </summary>
/// <typeparam name="TElement"><para>Source type of conversion.</para><para>lcxomusii TuI
xoHBepcuu.</para></typeparam>
Eubllc abstract class GenericCollectionMethodsBase<TElement>
/// <summary>
/// <para>Returns a null constant of type <see cref="TElement" />.</para>
/// <para>BosBpamaeT HyneByL KOHCTaHTy Tuma <see cref="TElement" />.</para>
/// </summary>
/// <returns><para>A null constant of type <see cref="TElement" />.</para><para>Hymesymn
KOHCTaHTy Tuma <see cref="TElement" />.</para></returns>
[MethodImpl(MethodImplOptlons AggressiveInlining)]
protected virtual TElement GetZero() => default;

/// <summary>

/// <para>Determines whether the specified value is equal to zero type <see
cref="TElement" />.</para>

/// <para>OmpegesnseT paBHO IU HyJo yKa3aHHOe 3HadeHwe Tuna <see cref="TElement"

< />.</para>

/// </summary>

/// <returns><para></para>Is the specified value equal to zero type <see cref="TElement"

<, /><para>PaBHO &Iz HyJO yKa3aHHOe 3HadeHume Tuma <see cref="TElement"
/></para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

protected virtual bool EqualToZero(TElement value) => EqualityComparer.Equals(value,

< Zero);

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpercTaBiseT Luana3oH B yLobHOM mnsd 4YTeHus dopmare.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>CrporoBoe
IpeLCcTaBleHre IuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

protected virtual bool AreEqual(TElement first, TElement second) =>

< EqualityComparer.Equals(first, second);

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpefcTaBifeT OUaNas3oH B yLOOHOM IJd YTeHHA popMaTe.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>CTporoBoe
IpeACTaBieHWe OuanasoHa.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]

protected virtual bool GreaterThanZero(TElement value) => Comparer.Compare(value, Zero)

— >O;

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpefcTaBifeT OUANa30H B yLOOHOM IJd YTeHuA dpopMaTe.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>CrporoBoe
ImpencTaBieHre IuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

protected virtual bool GreaterThan(TElement first, TElement second) =>

— Comparer.Compare(first, second) > 0;

/// <summary>

/// <para>Presents the Range in readable format.</para>

/// <para>llpezcraBisgeT nuanasoH B yLobHOM mus uTeHus dopmare.</para>

/// </summary>

/// <returns><para>String representation of the Range.</para><para>Crporosoe
< IpeACTaBleHUe AuanasoHa.</para></returns>

61
62

63
64
65
66
67
68

69
70

71
72
73
74
75
76

7
78

79
80
81
82
83
84

85
86

87
88
89
90
91
92

93
94
95
96
97
98
99

101
102

103
104
105
106
107
108

109
110

111
112
113
114
115
116

117
118

119
120
121
122
123

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected virtual bool GreaterOrEqualThanZero(TElement value) => Comparer.Compare(value,

—

/17
/17
/17
/17
/17

Zero) >= 0;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBisfeT OUANa30H B yILOOHOM AJd YTeHHdA dpopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxrosoe
mpeACTaBieHWe OuanasoHa.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]
protected virtual bool GreaterOrEqualThan(TElement first, TElement second) =>

—

/17
/17
/17
/17
/17

Comparer.Compare(first, second) >= 0;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBifeT OUANA30H B YILOOHOM Ajd YTeHuA popmaTte.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CrTpoxrosoe
IpelCTaBleHUe AuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

protected virtual bool LessOrEqualThanZero(TElement value) => Comparer.Compare(value,

—

/17
/17
/17
/17
/17

Zero) <= 0;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBisfeT OUANa30H B yILOOHOM OJd YTeHHdA dpopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxrosoe
IpeACTaBieHWe OuanasoHa.</para></returns>

[MethodImpl(MethodImplOptlons AggressiveInlining)]
protected virtual bool LessOrEqualThan(TElement first, TElement second) =>

—

/17
/17
/17
/17
/17

Comparer.Compare(first, second) <= 0;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBideT AUANA30H B YILOOHOM Aid YTeHUA dpopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxrosoe
IpelCTaBleHUe AuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]

protected virtual bool LessThanZero(TElement value) => Comparer.Compare(value, Zero) < 0;

/17
/17
/17
/17
/17

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBisfeT AMANA30H B YILOOHOM Aid YTeHudA dpopmaTte.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxroBoe
IpelCTaBleHUe AuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]
protected virtual bool LessThan(TElement first, TElement second) =>

—

/17
/17
/17
/17
/17

Comparer.Compare(first, second) < O;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBisgeT OUANa30H B yILOOHOM OJd YTeHHA dpopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxrosoe
IpeACTaBieHWe OuanasoHa.</para></returns>

[MethodImpl(MethodImpletlons AggressiveInlining)]
protected virtual TElement Increment(TElement value) =>

—

/17
/17
/17
/17
/17

—

Arithmetic<TElement>.Increment (value) ;

<summary>

<para>Presents the Range in readable format.</para>

<para>llpefcTaBideT OVANA30H B YILOOHOM Aid YTeHuA dopMaTe.</para>
</summary>

<returns><para>String representation of the Range.</para><para>CTpoxroBoe
IpelCTaBleHUe AuanasoHa.</para></returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement Decrement(TElement value) =>

—

/17
/17
/17
/17

Arithmetic<TElement>.Decrement (value) ;

<summary>

<para>Presents the Range in readable format.</para>
<para>llpescTaBnseT muanas3oH B ymobHoM mns uTeHus dopmare.</para>
</summary>

124 /// <returns><para>String representation of the Range.</para><para>Crpoxosoe
< IpeIcTaBJleHWe JuamnasoHa.</para></returns>

125 [MethodImpl (MethodImplOptions.AggressiveInlining)]

126 protected virtual TElement Add(TElement first, TElement second) =>
« Arithmetic<TElement>.Add(first, second);

127

128 /// <summary>

129 /// <para>Presents the Range in readable format.</para>

130 /// <para>llpefcTaBifeT OUANa30H B yLOOHOM Iid YTeHUA dopMaTe.</para>

131 /// </summary>

132 /// <returns><para>String representation of the Range.</para><para>CtporoBoe

mpefcTaBieHne IuanasoHa.</para></returns>

133 [MethodImpl(MethodImplOptlons AggressiveInlining)]

134 protected virtual TElement Subtract(TElement first, TElement second) =>
— Arithmetic<TElement>.Subtract(first, second);

135

136 /// <summary>

137 /// <para>Returns minimum value of the range.</para>

138 /// <para>BosBpamaeT MUHHMAJLHOE 3HAYEHWe AuanasoHa.</para>

139 /// </summary>

140 protected readonly TElement Zero;

141

142 /// <summary>

143 /// <para>Returns minimum value of the range.</para>

144 /// <para>BoaBpamaeT MUHHMAJbHOE 3HAYEeHWe AuanasoHa.</para>

145 /// </summary>

146 protected readonly TElement One;

147

148 /// <summary>

149 /// <para>Returns minimum value of the range.</para>

150 /// <para>BosBpamaeT MUHUMAILHOE 3HaUYeHWe ZAuamnasoHa.</para>

151 /// </summary>

152 protected readonly TElement Two;

153

154 /// <summary>

155 /// <para>Returns minimum value of the range.</para>

156 /// <para>BosBpamaeT MUHHMAJILHOE 3HaUeHWe ZAuanasoHa.</para>

157 /// </summary>

158 protected readonly EqualityComparer<TElement> EqualityComparer;

159

160 /// <summary>

161 /// <para>Returns minimum value of the range.</para>

162 /// <para>BosBpamaeT MUHEMAaJIbHOE 3HAUeHHE AuanasoHa.</para>

163 /// </summary>

164 protected readonly Comparer<TElement> Comparer;

165

166 /// <summary>

167 /// <para>Presents the Range in readable format.</para>

168 /// <para>llpezcTaBisgeT LuanasoH B yLobHOM mus 4YTeHus dopmare.</para>

169 /// </summary>

170 /// <returns><para>String representation of the Range.</para><para>Crporosoe
< IpeACTaBleHUe IuanasoHa.</para></returns>

171 protected GenericCollectionMethodsBase()

172 {

173 EqualityComparer = EqualityComparer<TElement>.Default;

174 Comparer = Comparer<TElement>.Default;

175 Zero = GetZero(); //-V3068

176 One = Increment(Zero); //-V3068

177 Two = Increment(One); //-V3068

178 }

179 }

180 }

1.2 ./csharp/Platform.Collections.Methods/Lists/AbsoluteCircularDoublyLinkedListMethods.cs
#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Lists

{
/// <summary>
/// <para>
/// Represents the absolute circular doubly linked list methods.
/// </para>
/// <para></para>
/// </summary>
/// <seealso cref="AbsoluteDoublyLinkedListMethodsBase{TElement}"/>
public abstract class AbsoluteCircularDoublyLinkedListMethods<TElement>
— AbsoluteDoublyLinkedListMethodsBase<TElement>

© 00 N O O A W N -

o e
N o= O

=
w

/// <summary>

-
IS

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void AttachBefore(TElement baseElement, TElement newElement)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void AttachAfter (TElement baseElement, TElement newElement)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<para>

Attaches the before using the specified base element.
</para>

<para></para>

</summary>

<param name="baseElement">
<para>The base element.</para>
<para></para>

</param>

<param name="newElement">
<para>The new element.</para>
<para></para>

</param>

var baseElementPrevious = GetPrevious(baseElement) ;
SetPrevious(newElement, baseElementPrevious);
SetNext (newElement, baseElement) ;

if (AreEqual(baseElement, GetFirst()))

{

}

SetNext (baseElementPrevious, newElement) ;
SetPrevious(baseElement, newElement) ;
IncrementSize();

SetFirst (newElement) ;

<summary>

<para>

Attaches the after using the specified base element.
</para>

<para></para>

</summary>

<param name="baseElement">
<para>The base element.</para>
<para></para>

</param>

<param name="newElement">
<para>The new element.</para>
<para></para>

</param>

var baseElementNext = GetNext(baseElement) ;
SetPrevious (newElement, baseElement) ;
SetNext (newElement, baseElementNext);
%f (AreEqual (baseElement, GetLast()))

}

SetPrevious(baseElementNext, newElement) ;
SetNext (baseElement, newElement) ;
IncrementSize();

SetLast (newElement) ;

<summary>

<para>

Attaches the as first using the specified element.
</para>

<para></para>

</summary>

<param name="element'>

<para>The element.</para>

<para></para>

</param>

public void AttachAsFirst(TElement element)

{

var first = GetFirst();
if (EqualToZero(first))
{

SetFirst (element) ;

SetLast (element) ;
SetPrevious(element, element);
SetNext (element, element);
IncrementSize();

else

93 AttachBefore(first, element);

94 }

95 }

96

97 /// <summary>

98 /// <para>

99 /// Attaches the as last using the specified element.
100 /// </para>

101 /// <para></para>

102 /// </summary>

103 /// <param name="element'">

104 /// <para>The element.</para>

105 /// <para></para>

106 /// </param>

107 public void AttachAsLast(TElement element)
108 {

109 var last = GetLast();

110 if (EqualToZero(last))

111 {

112 AttachAsFirst(element) ;

113 }

114 else

115 {

116 AttachAfter(last, element);

117 }

118 }

119

120 /// <summary>

121 /// <para>

122 /// Detaches the element.

123 /// </para>

124 /// <para></para>

125 /// </summary>

126 /// <param name="element">

127 /// <para>The element.</para>

128 /// <para></para>

129 /// </param>

130 public void Detach(TElement element)

131 {

132 var elementPrevious = GetPrevious(element);
133 var elementNext = GetNext(element) ;
134 if (AreEqual(elementNext, element))
135

136 SetFirst(Zero) ;

137 SetLast (Zero) ;

138 }

139 else

140 {

141 SetNext (elementPrevious, elementNext);
142 SetPrevious(elementNext, elementPrevious);
143 if (AreEqual(element, GetFirst()))
144 {

145 SetFirst (elementNext) ;

146 }

147 if (AreEqual(element, GetLast()))
148

149 SetLast (elementPrevious) ;

150 }

151 }

152 SetPrevious(element, Zero);

153 SetNext(element, Zero);

154 DecrementSize();

155 }

156 }

157 F

1.3 ./csharp/Platform.Collections.Methods/Lists/AbsoluteDoublyLinkedListMethodsBase.cs
using System.Runtime.CompilerServices;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Lists
{
/// <summary>
/// <para>
/// Represents the absolute doubly linked list methods base.
/// </para>
/// <para></para>

© o N O s W N

_
=]

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

/// </summary>

/// <seealso cref="DoublyLinkedListMethodsBase{TElement}"/>
public abstract class AbsoluteDoublylLinkedListMethodsBase<TElement> :

—

DoublylLinkedListMethodsBase<TElement>

/// <summary>

/// <para>

/// Gets the first.

/// </para>

/// <para></para>

/// </summary>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract TElement GetFirst();

/// <summary>

/// <para>

/// Gets the last.

/// </para>

/// <para></para>

/// </summary>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract TElement GetLast();

/// <summary>

/// <para>

/// Gets the size.

/// </para>

/// <para></para>

/// </summary>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract TElement GetSize();

/// <summary>

/// <para>

/// Sets the first using the specified element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetFirst(TElement element);

/// <summary>

/// <para>

/// Sets the last using the specified element.

/// </para>

/// <para></para>

/// </summary>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetLast(TElement element);

/// <summary>

/// <para>

/// Sets the size using the specified size.
/// </para>

/// <para></para>

/// </summary>

/// <param name="size">

/// <para>The size.</para>

89 /// <para></para>

90 /// </param>
91 [MethodImpl (MethodImplOptions.AggressiveInlining)]
92 protected abstract void SetSize(TElement size);
93
94 /// <summary>
95 /// <para>
96 /// Increments the size.
97 /// </para>
98 /// <para></para>
99 /// </summary>
100 [MethodImpl (MethodImplOptions.AggressiveInlining)]
101 protected void IncrementSize() => SetSize(Increment(GetSize()));
102
103 /// <summary>
104 /// <para>
105 /// Decrements the size.
106 /// </para>
107 /// <para></para>
108 /// </summary>
109 [MethodImpl (MethodImplOptions.AggressiveInlining)]
110 protected void DecrementSize() => SetSize(Decrement(GetSize()));
111
}
112}

1.4 ./csharp/Platform.Collections.Methods/Lists/AbsoluteOpenDoublyLinkedListMethods.cs

1 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

2

3 namespace Platform.Collections.Methods.Lists

4

5 /// <summary>

6 /// <para>

7 /// Represents the absolute open doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

11 /// <seealso cref="AbsoluteDoublyLinkedListMethodsBase{TElement}"/>

12 public abstract class AbsoluteOpenDoublylLinkedListMethods<TElement>
— AbsoluteDoublyLinkedListMethodsBase<TElement>

13 {

14 /// <summary>

15 /// <para>

16 /// Attaches the before using the specified base element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="baseElement">

21 /// <para>The base element.</para>

22 /// <para></para>

23 /// </param>

24 /// <param name="newElement">

25 /// <para>The new element.</para>

26 /// <para></para>

27 /// </param>

28 public void AttachBefore(TElement baseElement, TElement newElement)

29 {

30 var baseElementPrevious = GetPrevious(baseElement) ;

31 SetPrevious (newElement, baseElementPrevious);

32 SetNext (newElement, baseElement) ;

33 if (EqualToZero(baseElementPrevious))

34 {

35 SetFirst (newElement) ;

36 }

37 else

38 {

39 SetNext (baseElementPrevious, newElement) ;

40

41 SetPrevious(baseElement, newElement) ;

42 IncrementSize();

43 }

44

45 /// <summary>

46 /// <para>

a7 /// Attaches the after using the specified base element.

48 /// </para>

49 /// <para></para>

50 /// </summary>

51 /// <param name="baseElement">

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

/// <para>The base element.</para>
/// <para></para>
/// </param>
/// <param name="newElement'>
/// <para>The new element.</para>
/// <para></para>
/// </param>
public void AttachAfter(TElement baseElement, TElement newElement)
{
var baseElementNext = GetNext(baseElement);
SetPrevious (newElement, baseElement) ;
SetNext (newElement, baseElementNext) ;
if (EqualToZero(baseElementNext))
{

SetLast (newElement) ;
}
else
{
SetPrevious(baseElementNext, newElement) ;
}

SetNext (baseElement, newElement);
IncrementSize();

}

/// <summary>

/// <para>

/// Attaches the as first using the specified element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void AttachAsFirst(TElement element)

{
var first = GetFirst();
if (EqualToZero(first))
{
SetFirst (element) ;
SetLast (element) ;
SetPrevious(element, Zero);
SetNext (element, Zero);
IncrementSize();
}
else
{
AttachBefore(first, element);
}
}
/// <summary>
/// <para>

/// Attaches the as last using the specified element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void AttachAsLast(TElement element)

{
var last = GetLast();
if (EqualToZero(last))
{
AttachAsFirst(element) ;
}
else
{
AttachAfter(last, element);
}
}
/// <summary>
/// <para>

/// Detaches the element.
/// </para>

130 /// <para></para>

131 /// </summary>

132 /// <param name="element">

133 /// <para>The element.</para>

134 /// <para></para>

135 /// </param>

136 public void Detach(TElement element)

137 {

138 var elementPrevious = GetPrevious(element) ;
139 var elementNext = GetNext(element);
140 if (EqualToZero(elementPrevious))
141

142 SetFirst (elementNext) ;

143 }

144 else

145 {

146 SetNext (elementPrevious, elementNext);
147 }

148 if (EqualToZero(elementNext))

149

150 SetLast (elementPrevious) ;

151 }

152 else

153 {

154 SetPrevious(elementNext, elementPrevious);
155 }

156 SetPrevious(element, Zero);

157 SetNext (element, Zero);

158 DecrementSize() ;

159 }

160 }

161 F

1.5 ./csharp/Platform.Collections.Methods/Lists/DoublyLinkedListMethodsBase.cs

1 using System.Runtime.CompilerServices;

2

3 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

4

5 namespace Platform.Collections.Methods.Lists

6 1

7 /// <remarks>

8 /// Based on doubly linked
— 1list implementation.

9 /// </remarks>

10 public abstract class DoublylLinkedListMethodsBase<TElement>
—» GenericCollectionMethodsBase<TElement>

11
{

12 /// <summary>

13 /// <para>

14 /// Gets the previous using the specified element.

15 /// </para>

16 /// <para></para>

17 /// </summary>

18 /// <param name="element">

19 /// <para>The element.</para>

20 /// <para></para>

21 /// </param>

22 /// <returns>

23 /// <para>The element</para>

24 /// <para></para>

25 /// </returns>

26 [MethodImpl (MethodImplOptions.AggressiveInlining)]

27 protected abstract TElement GetPrevious(TElement element);

28

29 /// <summary>

30 /// <para>

31 /// Gets the next using the specified element.

32 /// </para>

33 /// <para></para>

34 /// </summary>

35 /// <param name="element">

36 /// <para>The element.</para>

37 /// <para></para>

38 /// </param>

39 /// <returns>

10 /// <para>The element</para>

a1 /// <para></para>

42 /// </returns>

43 [MethodImpl (MethodImplOptions.AggressiveInlining)]

44 protected abstract TElement GetNext(TElement element);
45

46 /// <summary>

a7 /// <para>

! /// Sets the previous using the specified element.
49 /// </para>

50 /// <para></para>

51 /// </summary>

52 /// <param name="element">

53 /// <para>The element.</para>

54 /// <para></para>

55 /// </param>

56 /// <param name="previous'">

57 /// <para>The previous.</para>

58 /// <para></para>

59 /// </param>

60 [MethodImpl (MethodImplOptions.AggressiveInlining)]
61 protected abstract void SetPrevious(TElement element, TElement previous);
62

63 /// <summary>

64 /// <para>

65 /// Sets the next using the specified element.

66 /// </para>

67 /// <para></para>

68 /// </summary>

69 /// <param name="element">

70 /// <para>The element.</para>

71 /// <para></para>

72 /// </param>

73 /// <param name="next'">

74 /// <para>The next.</para>

75 /// <para></para>

76 /// </param>

7 [MethodImpl (MethodImplOptions.AggressiveInlining)]
78 protected abstract void SetNext(TElement element, TElement next);
79 }

80 }

1.6 ./csharp/Platform.Collections.Methods/Lists/RelativeCircularDoublyLinkedListMethods.cs

1 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

2

3 %amespace Platform.Collections.Methods.Lists

4

5 /// <summary>

6 /// <para>

7 /// Represents the relative circular doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

1 /// <seealso cref="RelativeDoublyLinkedListMethodsBase{TElement}"/>

12 public abstract class RelativeCircularDoublyLinkedListMethods<TElement>
— RelativeDoublyLinkedListMethodsBase<TElement>

13 {

14 /// <summary>

15 /// <para>

16 /// Attaches the before using the specified head element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="headElement">

21 /// <para>The head element.</para>

22 /// <para></para>

23 /// </param>

24 /// <param name="baseElement">

25 /// <para>The base element.</para>

26 /// <para></para>

27 /// </param>

28 /// <param name="newElement">

29 /// <para>The new element.</para>

30 /// <para></para>

31 /// </param>

32 Eublic void AttachBefore(TElement headElement, TElement baseElement, TElement newElement)

33

34 var baseElementPrevious = GetPrevious(baseElement) ;

35 SetPrevious (newElement, baseElementPrevious);

36 SetNext (newElement, baseElement);

37 if (AreEqual(baseElement, GetFirst(headElement)))

{
}

SetNext (baseElementPrevious, newElement) ;
SetPrevious(baseElement, newElement) ;
IncrementSize (headElement) ;

SetFirst (headElement, newElement) ;

}

/// <summary>
/// <para>
/// Attaches the after using the specified head element.
/// </para>
/// <para></para>
/// </summary>
/// <param name="headElement">
/// <para>The head element.</para>
/// <para></para>
/// </param>
/// <param name="baseElement">
/// <para>The base element.</para>
/// <para></para>
/// </param>
/// <param name="newElement">
/// <para>The new element.</para>
/// <para></para>
/// </param>
public void AttachAfter(TElement headElement, TElement baseElement, TElement newElement)
{
var baseElementNext = GetNext(baseElement);
SetPrevious (newElement, baseElement) ;
SetNext (newElement, baseElementNext) ;
if (AreEqual(baseElement, GetLast(headElement)))
{

}

SetPrevious(baseElementNext, newElement) ;
SetNext (baseElement, newElement) ;
IncrementSize (headElement) ;

SetLast (headElement, newElement);

}

/// <summary>

/// <para>

/// Attaches the as first using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>

/// <para></para>

/// </param>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void AttachAsFirst(TElement headElement, TElement element)

{
var first = GetFirst(headElement);
if (EqualToZero(first))
{
SetFirst (headElement, element);
SetLast (headElement, element);
SetPrevious(element, element);
SetNext (element, element);
IncrementSize(headElement) ;
}
else
{
AttachBefore(headElement, first, element);
}
/// <summary>
/// <para>

/// Attaches the as last using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

1.7

© 00 9 O Oks W N

[
A& W N o= O

/// <para>The head element.</para>

/// <para></para>

/// </param>

/// <param name="element'">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void AttachAsLast(TElement headElement, TElement element)

{
var last = GetLast(headElement);
if (EqualToZero(last))
{
AttachAsFirst(headElement, element);
}
else
{
AttachAfter (headElement, last, element);
}
}
/// <summary>
/// <para>

/// Detaches the head element.

/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>
/// <para></para>

/// </param>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

public void Detach(TElement headElement, TElement element)

{

var elementPrevious = GetPrevious(element) ;

var elementNext = GetNext(element);

if (AreEqual(elementNext, element))
SetFirst (headElement, Zero);
SetLast (headElement, Zero);

else

{
SetNext (elementPrevious, elementNext);
SetPrevious(elementNext, elementPrevious);
if (AreEqual(element, GetFirst(headElement)))
{

SetFirst (headElement, elementNext);
if (AreEqual(element, GetLast(headElement)))
SetLast (headElement, elementPrevious);

}

}

SetPrevious(element, Zero);

SetNext (element, Zero);

DecrementSize (headElement) ;

}

}

./csharp/Platform.Collections.Methods/Lists/RelativeDoublyLinkedListMethodsBase.cs
using System.Runtime.CompilerServices;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Lists

/// <summary>

/// <para>

/// Represents the relative doubly linked list methods base.

/// </para>

/// <para></para>

/// </summary>

/// <seealso cref="DoublyLinkedListMethodsBase{TElement}"/>

public abstract class RelativeDoublyLinkedListMethodsBase<TElement>
— DoublyLinkedListMethodsBase<TElement>

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

/// <summary>
/// <para>

/// Gets the first using the specified head element.

/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>
/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract TElement GetFirst(TElement headElement) ;

/// <summary>
/// <para>
/// Gets the last using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract TElement GetLast(TElement headElement) ;

/// <summary>
/// <para>
/// Gets the size using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract TElement GetSize(TElement headElement);

/// <summary>
/// <para>

/// Sets the first using the specified head element.

/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>
/// <para></para>

/// </param>

/// <param name="element">

/// <para>The element.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract void SetFirst(TElement headElement, TElement element);

/// <summary>
/// <para>
/// Sets the last using the specified head element.
/// </para>

/// <para></para>

/// </summary>

/// <param name="headElement">

/// <para>The head element.</para>
/// <para></para>

93 /// </param>

04 /// <param name="element'">

95 /// <para>The element.</para>

96 /// <para></para>

97 /// </param>

08 [MethodImpl (MethodImplOptions.AggressiveInlining)]

99 protected abstract void SetLast(TElement headElement, TElement element) ;
100

101 /// <summary>

102 /// <para>

103 /// Sets the size using the specified head element.

104 /// </para>

105 /// <para></para>

106 /// </summary>

107 /// <param name="headElement">

108 /// <para>The head element.</para>

109 /// <para></para>

110 /// </param>

111 /// <param name="size">

112 /// <para>The size.</para>

113 /// <para></para>

114 /// </param>

115 [MethodImpl (MethodImplOptions.AggressiveInlining)]

116 protected abstract void SetSize(TElement headElement, TElement size);
117

118 /// <summary>

119 /// <para>

120 /// Increments the size using the specified head element.
121 /// </para>

122 /// <para></para>

123 /// </summary>

124 /// <param name="headElement">

125 /// <para>The head element.</para>

126 /// <para></para>

127 /// </param>

128 [MethodImpl (MethodImplOptions.AggressiveInlining)]

129 protected void IncrementSize(TElement headElement) => SetSize(headElement,

< Increment(GetSize(headElement)));

131 /// <summary>

132 /// <para>

133 /// Decrements the size using the specified head element.

134 /// </para>

135 /// <para></para>

136 /// </summary>

137 /// <param name="headElement">

138 /// <para>The head element.</para>

139 /// <para></para>

140 /// </param>

141 [MethodImpl (MethodImplOptions.AggressiveInlining)]

142 protected void DecrementSize(TElement headElement) => SetSize(headElement,
s Decrement (GetSize(headElement)));

143 }

144 }

1.8 ./csharp/Platform.Collections.Methods/Lists/RelativeOpenDoublyLinkedListMethods.cs

1 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

2

3 namespace Platform.Collections.Methods.Lists

A

5 /// <summary>

6 /// <para>

7 /// Represents the relative open doubly linked list methods.

8 /// </para>

9 /// <para></para>

10 /// </summary>

1 /// <seealso cref="RelativeDoublyLinkedListMethodsBase{TElement}"/>

12 public abstract class RelativeOpenDoublyLinkedListMethods<TElement>
— RelativeDoublyLinkedListMethodsBase<TElement>

13 {

14 /// <summary>

15 /// <para>

16 /// Attaches the before using the specified head element.

17 /// </para>

18 /// <para></para>

19 /// </summary>

20 /// <param name="headElement">

21 /// <para>The head element.</para>

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void AttachBefore(TElement headElement, TElement baseElement, TElement newElement)

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void AttachAfter(TElement headElement, TElement baseElement, TElement newElement)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<para></para>

</param>

<param name="baseElement">
<para>The base element.</para>
<para></para>

</param>

<param name="newElement">
<para>The new element.</para>
<para></para>

</param>

var baseElementPrevious = GetPrevious(baseElement) ;
SetPrevious(newElement, baseElementPrevious);
SetNext (newElement, baseElement) ;

if (EqualToZero(baseElementPrevious))

{
SetFirst (headElement, newElement) ;
}
else
{
SetNext (baseElementPrevious, newElement) ;
}

SetPrevious(baseElement, newElement) ;
IncrementSize (headElement) ;

<summary>

<para>

Attaches the after using the specified head element.
</para>

<para></para>

</summary>

<param name="headElement">
<para>The head element.</para>
<para></para>

</param>

<param name="baseElement">
<para>The base element.</para>
<para></para>

</param>

<param name="newElement">
<para>The new element.</para>
<para></para>

</param>

var baseElementNext = GetNext(baseElement);
SetPrevious (newElement, baseElement) ;
SetNext (newElement, baseElementNext) ;

if (EqualToZero(baseElementNext))

{
SetLast (headElement, newElement);
}
else
{
SetPrevious(baseElementNext, newElement) ;
}

SetNext (baseElement, newElement);
IncrementSize (headElement) ;

<summary>

<para>

Attaches the as first using the specified head element.
</para>

<para></para>

</summary>

<param name="headElement">
<para>The head element.</para>
<para></para>

</param>

<param name="element'>
<para>The element.</para>
<para></para>

</param>

public void AttachAsFirst(TElement headElement, TElement element)

{

100 var first = GetFirst(headElement) ;

101 if (EqualToZero(first))

102 {

103 SetFirst (headElement, element);

104 SetLast (headElement, element);

105 SetPrevious(element, Zero);

106 SetNext (element, Zero);

107 IncrementSize(headElement) ;

108 }

109 else

110 {

111 AttachBefore(headElement, first, element);
112 }

113 }

114

115 /// <summary>

116 /// <para>

117 /// Attaches the as last using the specified head element.
118 /// </para>

119 /// <para></para>

120 /// </summary>

121 /// <param name="headElement">

122 /// <para>The head element.</para>

123 /// <para></para>

124 /// </param>

125 /// <param name="element">

126 /// <para>The element.</para>

127 /// <para></para>

128 /// </param>

129 public void AttachAsLast(TElement headElement, TElement element)
130 {

131 var last = GetLast(headElement) ;

132 if (EqualToZero(last))

133 {

134 AttachAsFirst (headElement, element);
135 }

136 else

137 {

138 AttachAfter (headElement, last, element);
139 }

140 }

141

142 /// <summary>

143 /// <para>

144 /// Detaches the head element.

145 /// </para>

146 /// <para></para>

147 /// </summary>

148 /// <param name="headElement">

149 /// <para>The head element.</para>

150 /// <para></para>

151 /// </param>

152 /// <param name="element">

153 /// <para>The element.</para>

154 /// <para></para>

155 /// </param>

156 public void Detach(TElement headElement, TElement element)
157 {

158 var elementPrevious = GetPrevious(element);
159 var elementNext = GetNext(element) ;

160 if (EqualToZero(elementPrevious))

161

162 SetFirst (headElement, elementNext);

163 }

164 else

165 {

166 SetNext (elementPrevious, elementNext);
167

168 if (EqualToZero(elementNext))

169

170 SetLast (headElement, elementPrevious);
171 }

172 else

173 {

174 SetPrevious(elementNext, elementPrevious);
175 }

176 SetPrevious(element, Zero);

177 SetNext (element, Zero);

178
179
180
181

1.9

© 0w N O Us W N

= e
N o= O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70

DecrementSize (headElement) ;

./csharp/Platform.Collections.Methods/ Trees/RecursionlessSizeBalanced TreeMethods.cs
#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Trees

{

/17
/17
/17
/17
/17
/17
/17

—

{

<summary>

<para>

Represents the recursionless size balanced tree methods.

</para>

<para></para>

</summary>

<seealso cref="SizedBinaryTreeMethodsBase{TElement}"/>

public abstract class RecursionlessSizeBalancedTreeMethods<TElement> :
SizedBinaryTreeMethodsBase<TElement>

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<summary>

<para>

Attaches the core using the specified root.
</para>

<para></para>
</summary>

<param name="root">
<para>The root.</para>
<para></para>

</param>

<param name='"node'">
<para>The node.</para>
<para></para>

</param>

protected override void AttachCore(ref TElement root, TElement node)

while (true)
{
ref var left = ref GetLeftReference(root);
var leftSize = GetSizeOrZero(left);
ref var right = ref GetRightReference(root);
var rightSize = GetSizeOrZero(right);
%f (FirstIsToTheLeftOfSecond(node, root)) // node.Key less than root.Key

if (EqualToZero(left))
{

IncrementSize(root) ;
SetSize (node, One);

left = node;
return;
}
if (FirstIsToTheLeftOfSecond(node, left)) // node.Key less than left.Key
{
if (GreaterThan(Increment(leftSize), rightSize))
{
RightRotate(ref root);
else
{
IncrementSize(root) ;
root = ref left;
}
}

else // node.Key greater than left.Key

var leftRightSize = GetSizelrZero(GetRight(left));

if (GreaterThan(Increment(leftRightSize), rightSize))

{
if (EqualToZero(leftRightSize) && EqualToZero(rightSize))
{

SetLeft(node, left);
SetRight (node, root);

SetSize(node, Add(leftSize, Two)); // Two (2) - node the size of

— root and a node itself
SetLeft(root, Zero);
SetSize(root, One);

root = node;

return;

71 }

72 LeftRotate (ref left);

73 RightRotate(ref root);

74 }

75 else

76 {

77 IncrementSize(root);

78 root = ref left;

79 }

80 }

81 }

82 else // node.Key greater than root.Key

83

84 if (EqualToZero(right))

85 {

86 IncrementSize(root);

87 SetSize(node, 0One);

88 right = node;

89 return;

90 }

01 if (FirstIsToTheRightOfSecond(node, right)) // node.Key greater than
— right.Key

92 {

93 if (GreaterThan(Increment(rightSize), leftSize))

94 {

95 LeftRotate (ref root);

96 }

97 else

98 {

99 IncrementSize(root) ;

100 root = ref right;

101 }

102

103 else // node.Key less than right.Key

104 {

105 var rightLeftSize = GetSizeOrZero(GetLeft(right));

106 if (GreaterThan(Increment(rightLeftSize), leftSize))

107 {

108 if (EqualToZero(rightLeftSize) && EqualToZero(leftSize))

109 {

110 SetLeft (node, root);

111 SetRight (node, right);

112 SetSize(node, Add(rightSize, Two)); // Two (2) - node the size

— of root and a node itself

113 SetRight (root, Zero);

114 SetSize(root, One);

115 root = node;

116 return;

117 }

118 RightRotate(ref right);

119 LeftRotate(ref root);

120 }

121 else

122 {

123 IncrementSize(root) ;

124 root = ref right;

125 }

126 }

127 }

128 }

129 }

130

131 /// <summary>

132 /// <para>

133 /// Detaches the core using the specified root.

134 /// </para>

135 /// <para></para>

136 /// </summary>

137 /// <param name="root">

138 /// <para>The root.</para>

139 /// <para></para>

140 /// </param>

141 /// <param name="node">

142 /// <para>The node.</para>

143 /// <para></para>

144 /// </param>

145 protected override void DetachCore(ref TElement root, TElement node)

146 {

211

217

while (true)

{

ref var left
var leftSize

ref GetLeftReference(root);
GetSizelOrZero(left);

ref var right = ref GetRightReference(root);

var rightSize

GetSizeOrZero(right);

if (FirstIsToTheLeftOfSecond(node, root)) // node.Key less than root.Key
{

}

var decrementedLeftSize = Decrement(leftSize);
if (GreaterThan(GetSizeOrZero(GetRightOrDefault(right)),
— decrementedLeftSize))

LeftRotate(ref root);

}
else if (GreaterThan(GetSizeOrZero(GetLeftOrDefault(right)),

— decrementedLeftSize))

RightRotate(ref right);
LeftRotate(ref root);

}

else

{
DecrementSize(root);
root = ref left;

}

else if (FirstIsToTheRightOfSecond(node, root)) // node.Key greater than root.Key

{

var decrementedRightSize = Decrement(rightSize) ;
if (GreaterThan(GetSizeOrZero(GetLeftOrDefault(left)), decrementedRightSize))
{

RightRotate(ref root);

else if (GreaterThan(GetSizeOrZero(GetRightOrDefault(left)),
< decrementedRightSize))

{
LeftRotate(ref left);
RightRotate(ref root);
else
{
DecrementSize(root) ;
root = ref right;
}

else // key equals to root.Key

if (GreaterThanZero(leftSize) && GreaterThanZero(rightSize))
{

TElement replacement;
if (GreaterThan(leftSize, rightSize))

{
replacement = GetRightest(left);
DetachCore(ref left, replacement);
else
{
replacement = GetLeftest(right);
DetachCore(ref right, replacement);
}

SetLeft (replacement, left);

SetRight (replacement, right);
SetSize(replacement, Add(leftSize, rightSize));
root = replacement;

}
else if (GreaterThanZero(leftSize))
{
root = left;
}
else if (GreaterThanZero(rightSize))
{
root = right;
}
else
{
root = Zero;
}

ClearNode (node) ;

222 return;
223 T

224 }

225 }

226 }

227}

1.10 ./csharp/Platform.Collections.Methods/Trees/SizeBalanced TreeMethods.cs

1 using System;

2

3 #pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

4

5 namespace Platform.Collections.Methods.Trees

6 T

7 /// <summary>

8 /// <para>

9 /// Represents the size balanced tree methods.

10 /// </para>

1 /// <para></para>

12 /// </summary>

13 /// <seealso cref="SizedBinaryTreeMethodsBase{TElement}"/>

14 public abstract class SizeBalancedTreeMethods<TElement> :
— SizedBinaryTreeMethodsBase<TElement>

15 {

16 /// <summary>

17 /// <para>

18 /// Attaches the core using the specified root.

19 /// </para>

20 /// <para></para>

21 /// </summary>

22 /// <param name="root">

23 /// <para>The root.</para>

24 /// <para></para>

25 /// </param>

26 /// <param name="node">

27 /// <para>The node.</para>

28 /// <para></para>

29 /// </param>

30 protected override void AttachCore(ref TElement root, TElement node)

31 {

32 if (EqualToZero(root))

33 {

34 root = node;

35 IncrementSize(root) ;

36 }

37 else

38 {

39 IncrementSize(root) ;

40 if (FirstIsToTheLeft0fSecond(node, root))

4 {

42 AttachCore(ref GetLeftReference(root), node);

43 LeftMaintain(ref root);

44 }

45 else

46 {

47 AttachCore(ref GetRightReference(root), node);

a8 RightMaintain(ref root);

49 }

50 }

51 }

52

53 /// <summary>

54 /// <para>

55 /// Detaches the core using the specified root.

56 /// </para>

57 /// <para></para>

58 /// </summary>

59 /// <param name="root">

60 /// <para>The root.</para>

61 /// <para></para>

62 /// </param>

63 /// <param name="nodeToDetach">

64 /// <para>The node to detach.</para>

65 /// <para></para>

66 /// </param>

67 /// <exception cref="InvalidOperationException">

68 /// <para>Duplicate link found in the tree.</para>

69 /// <para></para>

70 /// </exception>

71 protected override void DetachCore(ref TElement root, TElement nodeToDetach)

72 {

73 ref var currentNode = ref root;

74 ref var parent = ref root;

75 var replacementNode = Zero;

76 while (!AreEqual(currentNode, nodeToDetach))

77 {

78 DecrementSize (currentNode) ;

79 if (FirstIsToTheLeft0fSecond(nodeToDetach, currentNode))

80 {

81 parent = ref currentNode;

82 currentNode = ref GetLeftReference(currentNode);

83 }

84 else if (FirstIsToTheRightOfSecond(nodeToDetach, currentNode))

85 {

86 parent = ref currentNode;

87 currentNode = ref GetRightReference(currentNode);

88 }

89 else

90 {

91 throw new InvalidOperationException("Duplicate link found in the tree.");

92 }

93 }

94 var nodeToDetachLeft = GetLeft(nodeToDetach);

95 var node = GetRight(nodeToDetach);

96 if (1EqualToZero(nodeToDetachLeft) && !EqualToZero(node))

97 {

98 var leftestNode = GetLeftest(node);

99 DetachCore(ref GetRightReference(nodeToDetach), leftestNode);

100 SetLeft (leftestNode, nodeToDetachlLeft);

101 node = GetRight(nodeToDetach) ;

102 if (!'EqualToZero(node))

103 {

104 SetRight (leftestNode, node);

105 SetSize(leftestNode, Increment (Add(GetSize(nodeToDetachLeft),
< GetSize(node))));

106 }

107 else

108 {

109 SetSize(leftestNode, Increment (GetSize (nodeToDetachLeft)));

110 }

111 replacementNode = leftestNode;

112 }

113 else if (!EqualToZero(nodeToDetachLeft))

114 {

115 replacementNode = nodeToDetachleft;

116

117 else if (!EqualToZero(node))

118 {

119 replacementNode = node;

120

121 if (AreEqual(root, nodeToDetach))

122

123 root = replacementNode;

124 }

125 else if (AreEqual(GetLeft(parent), nodeToDetach))

126 {

127 SetLeft (parent, replacementNode) ;

128 }

129 else if (AreEqual (GetRight(parent), nodeToDetach))

130 {

131 SetRight (parent, replacementNode);

132 }

133 ClearNode (nodeToDetach) ;

134 }

135 private void LeftMaintain(ref TElement root)

136 {

137 if (!EqualToZero(root))

138

139 var rootLeftNode = GetLeft(root);

140 if (1EqualToZero(rootLeftNode))

141 {

142 var rootRightNode = GetRight (root);

143 var rootRightNodeSize = GetSize(rootRightNode) ;

144 var rootLeftNodeLeftNode = GetLeft(rootLeftNode) ;

145 if (!EqualToZero(rootLeftNodeLeftNode) &&

146 (EqualToZero (rootRightNode) ||

< GreaterThan(GetSize(rootLeftNodeLeftNode), rootRightNodeSize)))

161

RightRotate(ref root);

else
{
var rootLeftNodeRightNode = GetRight (rootLeftNode) ;
if ('EqualToZero(rootLeftNodeRightNode) &&
(EqualToZero(rootRightNode) ||
< GreaterThan(GetSize(rootLeftNodeRightNode), rootRightNodeSize)))

{
LeftRotate(ref GetLeftReference(root));
RightRotate(ref root);

else

{
return;

}

}

LeftMaintain(ref GetLeftReference(root));
RightMaintain(ref GetRightReference(root));
LeftMaintain(ref root);

RightMaintain(ref root);

}
b
private void RightMaintain(ref TElement root)
{

if (1EqualToZero(root))

{

var rootRightNode = GetRight (root);
if (!EqualToZero(rootRightNode))
{

var rootLeftNode = GetLeft(root);
var rootLeftNodeSize = GetSize(rootLeftNode) ;
var rootRightNodeRightNode = GetRight (rootRightNode) ;
if (!'EqualToZero(rootRightNodeRightNode) &&
(EqualToZero(rootLeftNode) |
. < GreaterThan(GetSize(rootRightNodeRightNode), rootLeftNodeSize)))

}

else

{

LeftRotate(ref root);

var rootRightNodeLeftNode = GetLeft(rootRightNode);
if (!'EqualToZero(rootRightNodeLeftNode) &&
(EqualToZero(rootLeftNode) ||
— GreaterThan(GetSize(rootRightNodeLeftNode), rootLeftNodeSize)))

RightRotate(ref GetRightReference(root));
LeftRotate (ref root);
3

else

{

}
}
LeftMaintain(ref GetLeftReference(root));
RightMaintain(ref GetRightReference(root));

LeftMaintain(ref root);
RightMaintain(ref root);

return;

1.11 ./csharp/Platform.Collections.Methods/Trees/SizedAnd ThreadedAVLBalanced TreeMethods.cs

© 0 N O U e W N =

o
No= O

using System;

using System.Runtime.CompilerServices;
using System.Text;

#i1f USEARRAYPOOL

using Platform.Collections;

#endif

using Platform.Reflection;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Trees

{

13
14
15
16
17

18

19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

/17
/17
/17
/17
/17

7/
7/

public abstract class SizedAndThreadedAVLBalancedTreelMethods<TElement> :

—

{

<summary>
Combination of Size, Height (AVL), and threads.
</summary>
<remarks>

Based on: <a href="https://github.com/programmatom/TreeLib/blob/master/TreeLib/TreeLib/G

enerated/AVLTreelist.cs">TreelLib.AVLTreelist.
Which itself based on: GNOME/glib/gtree.

</remarks>

SizedBinaryTreeMethodsBase<TElement>

private static readonly int _maxPath = 11 * NumericType<TElement>.BytesSize + 4;

/// <summary>

/// <para>

/// Gets the rightest using the specified current.
/// </para>

/// <para></para>

/// </summary>

/// <param name="current">

/// <para>The current.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected override TElement GetRightest(TElement current)
{

var currentRight = GetRightOrDefault(current);
while (!EqualToZero(currentRight))

{
current = currentRight;
currentRight = GetRightOrDefault(current);
}
return current;
}
/// <summary>
/// <para>

/// Gets the leftest using the specified current.
/// </para>

/// <para></para>

/// </summary>

/// <param name="current">

/// <para>The current.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected override TElement GetLeftest(TElement current)

{
var currentLeft = GetLeftOrDefault(current);
while (!EqualToZero(currentLeft))
current = currentlLeft;
currentLeft = GetLeftOrDefault(current);
}
return current;
}
/// <summary>
/// <para>

/// Determines whether this instance contains.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="root">

/// <para>The root.</para>

88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104
105
106
107
108
109
110
111

/17
/17
/17
/17
/17
/17

<para></para>
</param>

<returns>

<para>The bool</para>
<para></para>
</returns>

public override bool Contains(TElement node, TElement root)

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

while (!EqualToZero(root))

{
if (FirstIsToTheLeft0fSecond(node, root)) // node.Key < root.Key
{

root = GetLeftOrDefault(root);
}
else if (FirstIsToTheRightOfSecond(node, root)) // node.Key > root.Key
{

root = GetRightOrDefault(root);

}
else // node.Key == root.Key
{
return true;
}

}

return false;

<summary>

<para>

Prints the node using the specified node.
</para>

<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<param name="sb">
<para>The sb.</para>
<para></para>

</param>

<param name="level">
<para>The level.</para>
<para></para>

</param>

protected override void PrintNode(TElement node, StringBuilder sb, int level)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

base.PrintNode(node, sb, level);

sb.Append(' ');

sb.Append (GetLeftIsChild(node) ? '1' : 'L');
sb.Append (GetRightIsChild(node) ? 'r' : 'R');
sb.Append (' ');

sb.Append (GetBalance (node)) ;

<summary>

<para>

Increments the balance using the specified node.
</para>

<para></para>

</summary>

<param name='"node'">

<para>The node.</para>

<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void IncrementBalance(TElement node) => SetBalance(node,

—

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

(sbyte) (GetBalance(node) + 1));

<summary>

<para>

Decrements the balance using the specified node.
</para>

<para></para>

</summary>

<param name='"node'">

<para>The node.</para>

<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void DecrementBalance(TElement node) => SetBalance(node,
— (sbyte) (GetBalance(node) - 1));

/// <summary>

/// <para>

/// Gets the left or default using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected override TElement GetLeftOrDefault(TElement node) => GetLeftIsChild(node) ?
< GetLeft(node) : default;

/// <summary>

/// <para>

/// Gets the right or default using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected override TElement GetRightOrDefault(TElement node) => GetRightIsChild(node) 7
< GetRight(node) : default;

/// <summary>

/// <para>

/// Determines whether this instance get left is child.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The bool</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract bool GetLeftIsChild(TElement node);

/// <summary>

/// <para>

/// Sets the left is child using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="value">

/// <para>The value.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetLeftIsChild(TElement node, bool value);

/// <summary>

/// <para>

/// Determines whether this instance get right is child.
/// </para>

240 /// <para></para>

241 /// </summary>

242 /// <param name="node'">

243 /// <para>The node.</para>

244 /// <para></para>

245 /// </param>

246 /// <returns>

247 /// <para>The bool</para>

248 /// <para></para>

249 /// </returns>

250 [MethodImpl (MethodImplOptions.AggressiveInlining)]
251 protected abstract bool GetRightIsChild(TElement node);
252

253 /// <summary>

254 /// <para>

255 /// Sets the right is child using the specified node.
256 /// </para>

257 /// <para></para>

258 /// </summary>

259 /// <param name="node">

260 /// <para>The node.</para>

261 /// <para></para>

262 /// </param>

263 /// <param name="value">

264 /// <para>The value.</para>

265 /// <para></para>

266 /// </param>

267 [MethodImpl (MethodImplOptions.AggressiveInlining)]
268 protected abstract void SetRightIsChild(TElement node, bool value);
269

270 /// <summary>

271 /// <para>

272 /// Gets the balance using the specified node.

273 /// </para>

274 /// <para></para>

275 /// </summary>

276 /// <param name="node">

277 /// <para>The node.</para>

278 /// <para></para>

279 /// </param>

280 /// <returns>

281 /// <para>The sbyte</para>

282 /// <para></para>

283 /// </returns>

284 [MethodImpl (MethodImplOptions.AggressiveInlining)]
285 protected abstract sbyte GetBalance(TElement node);
286

287 /// <summary>

288 /// <para>

289 /// Sets the balance using the specified node.

290 /// </para>

291 /// <para></para>

292 /// </summary>

293 /// <param name="node">

294 /// <para>The node.</para>

295 /// <para></para>

296 /// </param>

297 /// <param name="value">

208 /// <para>The value.</para>

299 /// <para></para>

300 /// </param>

301 [MethodImpl (MethodImplOptions.AggressiveInlining)]
302 protected abstract void SetBalance(TElement node, sbyte value);
303

304 /// <summary>

305 /// <para>

306 /// Attaches the core using the specified root.
307 /// </para>

308 /// <para></para>

309 /// </summary>

310 /// <param name="root'">

311 /// <para>The root.</para>

312 /// <para></para>

313 /// </param>

314 /// <param name="node'">

315 /// <para>The node.</para>

316 /// <para></para>

317 /// </param>

318 /// <exception cref="InvalidOperationException">

319 /// <para>Node with the same key already attached to a tree.</para>

320 /// <para></para>

321 /// </exception>

322 protected override void AttachCore(ref TElement root, TElement node)

323 {

324 unchecked

325 {

326 // TODO: Check what is faster to use simple array or array from array pool
327 // TODO: Try to use stackalloc as an optimization (requires code generation,

< because of generics)
328 #if USEARRAYPOOL

329 var path = ArrayPool.Allocate<TElement>(MaxPath);

330 var pathPosition = 0;

331 path[pathPosition++] = default;

332 #else

333 var path = new TElement[_maxPath];

334 var pathPosition = 1;

335 #endif

336 var currentNode = root;

337 while (true)

338 {

339 if (FirstIsToTheLeft0fSecond(node, currentNode))

340 {

341 if (GetLeftIsChild(currentNode))

342 {

343 IncrementSize (currentNode) ;

344 path[pathPosition++] = currentNode;

345 currentNode = GetLeft(currentNode) ;

346 }

347 else

348 {

349 // Threads

350 SetLeft (node, GetLeft(currentNode));

351 SetRight (node, currentNode);

352 SetLeft (currentNode, node);

353 SetLeftIsChild(currentNode, true);

354 DecrementBalance (currentNode) ;

355 SetSize(node, 0One);

356 FixSize(currentNode); // Should be incremented already

357 break;

358 }

359 }

360 else if (FirstIsToTheRightOfSecond(node, currentNode))

361 {

362 if (GetRightIsChild(currentNode))

363 {

364 IncrementSize (currentNode) ;

365 path[pathPosition++] = currentNode;

366 currentNode = GetRight (currentNode) ;

367 }

368 else

369 {

370 // Threads

371 SetRight (node, GetRight(currentNode));

372 SetLeft (node, currentNode);

373 SetRight (currentNode, node);

374 SetRightIsChild(currentNode, true);

375 IncrementBalance (currentNode) ;

376 SetSize(node, 0One);

377 FixSize(currentNode); // Should be incremented already

378 break;

379 }

380 }

381 else

382 {

383 throw new InvalidOperationException("Node with the same key already
— attached to a tree.");

384 }

385 }

386 // Restore balance. This is the goodness of a non-recursive

387 // implementation, when we are done with balancing we 'break'

388 // the loop and we are done.

389 while (true)

390 {

391 var parent = path[--pathPosition];

392 var isLeftNode = !AreEqual(parent, default) && AreEqual(currentNode,

— GetLeft (parent));

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

var currentNodeBalance = GetBalance(currentNode) ;
if (currentNodeBalance < -1 || currentNodeBalance > 1)
{

currentNode = Balance(currentNode) ;

if (AreEqual(parent, default))

{

root = currentNode;

}
else if (isLeftNode)
{
SetLeft (parent, currentNode);
FixSize(parent) ;
}
else
{
SetRight (parent, currentNode);
FixSize(parent) ;
}
}
currentNodeBalance = GetBalance(currentNode) ;
if (currentNodeBalance == 0 || AreEqual(parent, default))
{
break;
}
if (isLeftNode)
{
DecrementBalance (parent) ;
}
else
{

IncrementBalance (parent) ;

currentNode = parent;

#if USEARRAYPOOL

#endif

}

ArrayPool.Free(path) ;
}

private TElement Balance(TElement node)

{

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

unchecked
{
var rootBalance = GetBalance(node);
if (rootBalance < -1)
{
var left = GetLeft(node);
if (GetBalance(left) > 0)
{
SetLeft (node, LeftRotateWithBalance(left));
FixSize(node) ;
}
node = RightRotateWithBalance(node);
}
else if (rootBalance > 1)
{
var right = GetRight (node) ;
if (GetBalance(right) < 0)
{

SetRight (node, RightRotateWithBalance(right));
FixSize(node) ;

}

node = LeftRotateWithBalance(node);

return node;

<summary>

<para>

Lefts the rotate with balance using the specified node.
</para>

<para></para>

</summary>

<param name="node">

<para>The node.</para>

<para></para>

</param>

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

protected TElement LeftRotateWithBalance(TElement node)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

{

unchecked

{

var

right = GetRight (node);

if (GetLeftIsChild(right))
{
SetRight (node, GetLeft(right));
else
{
SetRightIsChild(node, false);
SetLeftIsChild(right, true);
}
SetLeft(right, node);
// Fix size
SetSize(right, GetSize(node));
FixSize(node) ;
// Fix balance
var rootBalance = GetBalance(node);
var rightBalance = GetBalance(right);
if (rightBalance <= 0)
{
if (rootBalance >= 1)
{
SetBalance (right, (sbyte)(rightBalance - 1));
}
else
{
SetBalance(right, (sbyte)(rootBalance + rightBalance - 2));
}
SetBalance(node, (sbyte) (rootBalance - 1));
}
else
{
if (rootBalance <= rightBalance)
{
SetBalance(right, (sbyte) (rootBalance - 2));
}
else
{
SetBalance(right, (sbyte) (rightBalance - 1));
}
SetBalance(node, (sbyte) (rootBalance - rightBalance - 1));
}
return right;
}
<summary>
<para>
Rights the rotate with balance using the specified node.
</para>
<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>
<returns>

<para>The element</para>

<para></para>

</returns>

protected TElement RightRotateWithBalance(TElement node)

unchecked

{

var
if (
{

else

{

left = GetLeft(node);
GetRightIsChild(left))

SetLeft (node, GetRight(left));

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

SetLeftIsChild(node, false);
) SetRightIsChild(left, true);
SetRight (left, node);
// Fix size
SetSize(left, GetSize(node));
FixSize(node) ;
// Fix balance
var rootBalance = GetBalance(node);
var leftBalance = GetBalance(left);
}f (leftBalance <= 0)

if (leftBalance > rootBalance)

{
SetBalance(left, (sbyte)(leftBalance + 1));
}
else
{
SetBalance(left, (sbyte) (rootBalance + 2));
}
SetBalance(node, (sbyte)(rootBalance - leftBalance + 1));
}
else
{

if (rootBalance <= -1)
SetBalance(left, (sbyte)(leftBalance + 1));

else

{

}
SetBalance(node, (sbyte) (rootBalance + 1));

SetBalance(left, (sbyte)(rootBalance + leftBalance + 2));

return left;

¥

/// <summary>

/// <para>

/// Gets the next using the specified node.

/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected override TElement GetNext(TElement node)

{
var current = GetRight(node);
if (GetRightIsChild(node))
{
return GetLeftest(current);
}
return current;
}
/// <summary>
/// <para>

/// Gets the previous using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

627 protected override TElement GetPrevious(TElement node)

628 {

629 var current = GetLeft(node);

630 if (GetLeftIsChild(node))

631 {

632 return GetRightest(current);

633 }

634 return current;

635 }

636

637 /// <summary>

638 /// <para>

639 /// Detaches the core using the specified root.
640 /// </para>

641 /// <para></para>

642 /// </summary>

643 /// <param name="root'">

644 /// <para>The root.</para>

645 /// <para></para>

646 /// </param>

647 /// <param name="node">

648 /// <para>The node.</para>

649 /// <para></para>

650 /// </param>

651 /// <exception cref="InvalidOperationException">
652 /// <para>Cannot find a node.</para>

653 /// <para></para>

654 /// </exception>

655 /// <exception cref="InvalidOperationException">
656 /// <para>Cannot find a node.</para>

657 /// <para></para>

658 /// </exception>

659 protected override void DetachCore(ref TElement root, TElement node)
660 {

661 unchecked

662

{
o3 #if USEARRAYPOOL

664 var path = ArrayPool.Allocate<TElement>(MaxPath) ;

665 var pathPosition = O;

666 path[pathPosition++] = default;

667 Helse

668 var path = new TElement[_maxPath];

669 var pathPosition = 1;

670 #endif

671 var currentNode = root;

672 while (true)

673

674 if (FirstIsToTheLeftOfSecond(node, currentNode))

675 {

676 if ('GetLeftIsChild(currentNode))

677 {

678 throw new InvalidOperationException("Cannot find a node.");

679 }

680 DecrementSize(currentNode) ;

681 path[pathPosition++] = currentNode;

682 currentNode = GetLeft(currentNode) ;

683 }

684 else if (FirstIsToTheRightOfSecond(node, currentNode))

685 {

686 if ('GetRightIsChild(currentNode))

687 {

688 throw new InvalidOperationException("Cannot find a node.");

689 }

690 DecrementSize(currentNode) ;

691 path[pathPosition++] = currentNode;

692 currentNode = GetRight (currentNode) ;

693 }

694 else

695 {

696 break;

697 }

698 }

699 var parent = path[--pathPosition];

700 var balanceNode = parent;

701 var isLeftNode = !AreEqual(parent, default) && AreEqual(currentNode,
GetLeft (parent));

702 1f ('GetLeftIsChlld(currentNode))

703 {

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
e
778
779
780
781

if (!GetRightIsChild(currentNode)) // node has no
{

3

if (AreEqual(parent, default))
{

root = Zero;

}

else if (isLeftNode)

{
SetLeftIsChild(parent, false);
SetLeft(parent, GetLeft(currentNode));
IncrementBalance (parent) ;

}

else

{
SetRightIsChild(parent, false);
SetRight (parent, GetRight(currentNode));
DecrementBalance (parent) ;

}

else // node has a right child

{

}

var successor = GetNext(currentNode) ;
SetLeft (successor, GetLeft(currentNode));
var right = GetRight (currentNode) ;

if (AreEqual(parent, default))

{

root = right;

}
else if (isLeftNode)
{
SetLeft(parent, right);
IncrementBalance (parent) ;
else
{
SetRight (parent, right);
DecrementBalance (parent) ;
}

else // node has a left child
{

if (!GetRightIsChild(currentNode))
{

}

var predecessor = GetPrevious(currentNode) ;
SetRight (predecessor, GetRight (currentNode));
var leftValue = GetLeft(currentNode) ;

%f (AreEqual (parent, default))

root = leftValue;
else if (isLeftNode)
{

SetLeft(parent, leftValue);
IncrementBalance (parent) ;

}

else

{
SetRight (parent, leftValue);
DecrementBalance (parent) ;

}

else // node has a both children (left and right)
{

var predecessor = GetLeft(currentNode);
var successor = GetRight(currentNode) ;

var successorParent = currentNode;

int previousPathPosition = ++pathPosition;

children

// find the immediately next node (and its parent)

while (GetLeftIsChild(successor))

{
path[++pathPosition] = successorParent =
successor = GetLeft(successor);

successor,

if ('AreEqual(successorParent, currentNode))

{
}

DecrementSize(successorParent) ;

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

path[previousPathPosition] = successor;
balanceNode = path[pathPosition];

// remove 'successor' from the tree

if (!'AreEqual(successorParent, currentNode))

{
if (!GetRightIsChild(successor))
{
SetLeftIsChild (successorParent, false);
}
else
{
SetLeft(successorParent, GetRight(successor));
}
IncrementBalance (successorParent) ;
SetRightIsChild(successor, true);
SetRight (successor, GetRight (currentNode));
}
else
{
DecrementBalance (currentNode) ;
}

// set the predecessor's successor link to point to the right place
while (GetRightIsChild(predecessor))
{

predecessor = GetRight(predecessor);

SetRight (predecessor, successor);

// prepare 'successor' to replace 'node'

var left = GetLeft(currentNode) ;
SetLeftIsChild(successor, true);

SetLeft (successor, left);

SetBalance(successor, GetBalance(currentNode));
FixSize(successor) ;

if (AreEqual (parent, default))

{

}
else if (isLeftNode)
{

}

else

{

root = successor;

SetLeft(parent, successor);

SetRight (parent, successor);

}

// restore balance
if (!AreEqual(balanceNode, default))
{

while (true)
{

var balanceParent = path[--pathPosition];

isLeftNode = !AreEqual(balanceParent, default) && AreEqual(balanceNode,
< GetLeft(balanceParent));

var currentNodeBalance = GetBalance(balanceNode) ;

if (currentNodeBalance < -1 || currentNodeBalance > 1)

{

balanceNode = Balance(balanceNode);
if (AreEqual(balanceParent, default))
{

root = balancelNode;
else if (isLeftNode)
{
SetLeft (balanceParent, balanceNode) ;

else

{
SetRight (balanceParent, balanceNode);

}
currentNodeBalance = GetBalance(balanceNode) ;
if (currentNodeBalance != 0 || AreEqual(balanceParent, default))

break;

}
if (isLeftNode)

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

{
}

else

{

IncrementBalance (balanceParent) ;

DecrementBalance (balanceParent) ;

balanceNode = balanceParent;
}
}
ClearNode (node) ;

#if USEARRAYPOOL
ArrayPool.Free(path) ;

#endif
}
+
/// <summary>
/// <para>
/// Clears the node using the specified node.
/// </para>
/// <para></para>
/// </summary>
/// <param name="node">
/// <para>The node.</para>
/// <para></para>
/// </param>
[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected override void ClearNode(TElement node)
{
SetLeft (node, Zero);
SetRight (node, Zero);
SetSize(node, Zero);
SetLeftIsChild(node, false);
SetRightIsChild(node, false);
SetBalance(node, 0);
}
}
}

1.12 ./csharp/Platform.Collections.Methods/Trees/SizedBinary TreeMethodsBase.cs

© 00 N O O A W N

R T e T e
S © ®w N o Uk W N~ O

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

//#define ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

using System;

using System.Diagnostics;

using System.Runtime.CompilerServices;
using System.Text;

using Platform.Numbers;

#pragma warning disable CS1591 // Missing XML comment for publicly visible type or member

namespace Platform.Collections.Methods.Trees
{
/// <summary>
/// <para>
/// Represents the sized binary tree methods base.
/// </para>
/// <para></para>
/// </summary>
/// <seealso cref="GenericCollectionMethodsBase{TElement}"/>
public abstract class SizedBinaryTreelMethodsBase<TElement>
— GenericCollectionMethodsBase<TElement>
{
/// <summary>
/// <para>
/// Gets the left reference using the specified node.
/// </para>
/// <para></para>
/// </summary>
/// <param name="node">
/// <para>The node.</para>
/// <para></para>
/// </param>
/// <returns>
/// <para>The ref element</para>
/// <para></para>
/// </returns>
[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract ref TElement GetLeftReference(TElement node);

38
39 /// <summary>

40 /// <para>

n /// Gets the right reference using the specified node.
42 /// </para>

43 /// <para></para>

14 /// </summary>

45 /// <param name="node">

16 /// <para>The node.</para>

a7 /// <para></para>

48 /// </param>

49 /// <returns>

50 /// <para>The ref element</para>

51 /// <para></para>

52 /// </returns>

53 [MethodImpl (MethodImplOptions.AggressiveInlining)]
54 protected abstract ref TElement GetRightReference(TElement node);
55

56 /// <summary>

57 /// <para>

58 /// Gets the left using the specified node.

59 /// </para>

60 /// <para></para>

61 /// </summary>

62 /// <param name="node'">

63 /// <para>The node.</para>

64 /// <para></para>

65 /// </param>

66 /// <returns>

67 /// <para>The element</para>

68 /// <para></para>

69 /// </returns>

70 [MethodImpl (MethodImplOptions.AggressiveInlining)]
71 protected abstract TElement GetLeft(TElement node);
72

73 /// <summary>

74 /// <para>

75 /// Gets the right using the specified node.

76 /// </para>

77 /// <para></para>

78 /// </summary>

79 /// <param name="node">

80 /// <para>The node.</para>

81 /// <para></para>

82 /// </param>

83 /// <returns>

84 /// <para>The element</para>

85 /// <para></para>

86 /// </returns>

87 [MethodImpl (MethodImplOptions.AggressiveInlining)]
88 protected abstract TElement GetRight(TElement node);
89

90 /// <summary>

91 /// <para>

92 /// Gets the size using the specified node.

93 /// </para>

94 /// <para></para>

95 /// </summary>

96 /// <param name="node">

97 /// <para>The node.</para>

98 /// <para></para>

99 /// </param>

100 /// <returns>

101 /// <para>The element</para>

102 /// <para></para>

103 /// </returns>

104 [MethodImpl (MethodImplOptions.AggressiveInlining)]
105 protected abstract TElement GetSize(TElement node);
106

107 /// <summary>

108 /// <para>

109 /// Sets the left using the specified node.

110 /// </para>

111 /// <para></para>

112 /// </summary>

113 /// <param name="node">

114 /// <para>The node.</para>

115 /// <para></para>

/// </param>

/// <param name="left">

/// <para>The left.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract void SetLeft(TElement node, TElement left);

/// <summary>

/// <para>

/// Sets the right using the specified node.

/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="right">

/// <para>The right.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetRight(TElement node, TElement right);

/// <summary>

/// <para>

/// Sets the size using the specified node.

/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="size">

/// <para>The size.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected abstract void SetSize(TElement node, TElement size);

/// <summary>

/// <para>

/// Determines whether this instance first is to the left of second.
/// </para>

/// <para></para>

/// </summary>

/// <param name="first">

/// <para>The first.</para>

/// <para></para>

/// </param>

/// <param name="second">

/// <para>The second.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The bool</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract bool FirstIsToTheLeftOfSecond(TElement first, TElement second);

/// <summary>

/// <para>

/// Determines whether this instance first is to the right of second.
/// </para>

/// <para></para>

/// </summary>

/// <param name="first">

/// <para>The first.</para>
/// <para></para>

/// </param>

/// <param name="second">
/// <para>The second.</para>
/// <para></para>

/// </param>

/// <returns>

/// <para>The bool</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]

protected abstract bool FirstIsToTheRightOfSecond(TElement first, TElement second);

/// <summary>

/// <para>

/// Gets the left or default using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetLeftOrDefault(TElement node) => AreEqual(node, default) 7
< default : GetLeft(node);

/// <summary>

/// <para>

/// Gets the right or default using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetRightOrDefault(TElement node) => AreEqual(node, default) ?
— default : GetRight(node);

/// <summary>

/// <para>

/// Increments the size using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void IncrementSize(TElement node) => SetSize(node, Increment(GetSize(node)));

/// <summary>

/// <para>

/// Decrements the size using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void DecrementSize(TElement node) => SetSize(node, Decrement(GetSize(node)));

/// <summary>

/// <para>

/// Gets the left size using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/17
/17
/17
/17

<returns>

<para>The element</para>
<para></para>

</returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected TElement GetLeftSize(TElement node) => GetSizeOrZero(GetLeftOrDefault(node));

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
117

<summary>

<para>

Gets the right size using the specified node.
</para>

<para></para>

</summary>

<param name='"node">
<para>The node.</para>
<para></para>

</param>

<returns>

<para>The element</para>
<para></para>

</returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected TElement GetRightSize(TElement node) => GetSizeOrZero(GetRightOrDefault(node));

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<summary>

<para>

Gets the size or zero using the specified node.
</para>

<para></para>

</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<returns>

<para>The element</para>
<para></para>

</returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected TElement GetSizeOrZero(TElement node) => EqualToZero(node) 7 Zero :

—

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

GetSize(node);

<summary>

<para>

Fixes the size using the specified node.
</para>

<para></para>

</summary>

<param name='"node'">

<para>The node.</para>

<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void FixSize(TElement node) => SetSize(node, Increment(Add(GetLeftSize(node),

—

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

GetRightSize(node))));

<summary>

<para>

Lefts the rotate using the specified root.
</para>

<para></para>

</summary>

<param name="root">

<para>The root.</para>

<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected void LeftRotate(ref TElement root) => root = LeftRotate(root);

/17
/17
/17
/17
/17
/17
/17
/17
/17

<summary>

<para>

Lefts the rotate using the specified root.
</para>

<para></para>

</summary>

<param name="root">

<para>The root.</para>

<para></para>

346 /// </param>

347 /// <returns>

348 /// <para>The right.</para>

349 /// <para></para>

350 /// </returns>

351 [MethodImpl (MethodImplOptions.AggressiveInlining)]
352 protected TElement LeftRotate(TElement root)

353 {

354 var right = GetRight (root);

355 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

356 if (EqualToZero(right))

357 {

358 throw new InvalidOperationException("Right is null.");
359

360 #Hendif

361 SetRight (root, GetLeft(right));

362 SetLeft(right, root);

363 SetSize(right, GetSize(root));

364 FixSize(root);

365 return right;

366 }

367

368 /// <summary>

369 /// <para>

370 /// Rights the rotate using the specified root.
371 /// </para>

372 /// <para></para>

373 /// </summary>

374 /// <param name="root'">

375 /// <para>The root.</para>

376 /// <para></para>

377 /// </param>

378 [MethodImpl (MethodImplOptions.AggressiveInlining)]
379 protected void RightRotate(ref TElement root) => root = RightRotate(root);
380

381 /// <summary>

382 /// <para>

383 /// Rights the rotate using the specified root.
384 /// </para>

385 /// <para></para>

386 /// </summary>

387 /// <param name="root">

388 /// <para>The root.</para>

389 /// <para></para>

390 /// </param>

391 /// <returns>

392 /// <para>The left.</para>

393 /// <para></para>

394 /// </returns>

395 [MethodImpl (MethodImplOptions.AggressiveInlining)]
396 protected TElement RightRotate(TElement root)
397 {

398 var left = GetLeft(root);

399 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

400 if (EqualToZero(left))

401 {

402 throw new InvalidOperationException("Left is null.");
403 }

404 #endif

405 SetLeft(root, GetRight(left));

406 SetRight (left, root);

1407 SetSize(left, GetSize(root));

408 FixSize(root);

409 return left;

410 }

411

412 /// <summary>

413 /// <para>

14 /// Gets the rightest using the specified current.
415 /// </para>

416 /// <para></para>

417 /// </summary>

18 /// <param name="current">

419 /// <para>The current.</para>

420 /// <para></para>

421 /// </param>

422 /// <returns>

123 /// <para>The current.</para>

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetRightest(TElement current)

{
var currentRight = GetRight(current);
while (!EqualToZero(currentRight))
{
current = currentRight;
currentRight = GetRight(current);
}
return current;
}
/// <summary>
/// <para>

/// Gets the leftest using the specified current.
/// </para>

/// <para></para>

/// </summary>

/// <param name="current">

/// <para>The current.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The current.</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetLeftest(TElement current)
{

var currentLeft = GetLeft(current);
while (!EqualToZero(currentLeft))

{
current = currentlLeft;
currentLeft = GetLeft(current);
}
return current;
}
/// <summary>
/// <para>

/// Gets the next using the specified node.

/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetNext(TElement node) => GetLeftest(GetRight(node));

/// <summary>

/// <para>

/// Gets the previous using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <returns>

/// <para>The element</para>

/// <para></para>

/// </returns>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
protected virtual TElement GetPrevious(TElement node) => GetRightest(GetLeft(node));

/// <summary>

/// <para>

/// Determines whether this instance contains.
/// </para>

502 /// <para></para>

503 /// </summary>

504 /// <param name="node'">

505 /// <para>The node.</para>

506 /// <para></para>

507 /// </param>

508 /// <param name="root">

509 /// <para>The root.</para>

510 /// <para></para>

511 /// </param>

512 /// <returns>

513 /// <para>The bool</para>

514 /// <para></para>

515 /// </returns>

516 [MethodImpl (MethodImplOptions.AggressiveInlining)]
517 public virtual bool Contains(TElement node, TElement root)
518

519 while (!EqualToZero(root))

520 {

521 if (FirstIsToTheLeft0fSecond(node, root)) // node.Key < root.Key
522 {

523 root = GetLeft(root);

524 }

525 else if (FirstIsToTheRightOfSecond(node, root)) // node.Key > root.Key
526 {

527 root = GetRight (root);

528

529 else // node.Key == root.Key

530

531 return true;

532 }

533 }

534 return false;

535 }

536

537 /// <summary>

538 /// <para>

539 /// Clears the node using the specified node.
540 /// </para>

541 /// <para></para>

542 /// </summary>

543 /// <param name="node">

544 /// <para>The node.</para>

545 /// <para></para>

546 /// </param>

547 [MethodImpl (MethodImplOptions.AggressiveInlining)]
548 protected virtual void ClearNode(TElement node)
549

550 SetLeft (node, Zero);

551 SetRight (node, Zero);

552 SetSize(node, Zero);

553 }

554

555 /// <summary>

556 /// <para>

557 /// Attaches the root.

558 /// </para>

559 /// <para></para>

560 /// </summary>

561 /// <param name="root'">

562 /// <para>The root.</para>

563 /// <para></para>

564 /// </param>

565 /// <param name="node">

566 /// <para>The node.</para>

567 /// <para></para>

568 /// </param>

569 [MethodImpl (MethodImplOptions.AggressiveInlining)]
570 public void Attach(ref TElement root, TElement node)
571 {

s72 #if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

573 ValidateSizes(root);

574 Debug.WriteLine("--BeforeAttach--");

575 Debug.WriteLine (PrintNodes (root)) ;

576 Debug.WriteLine("----------—-—-—- ")

577 var sizeBefore = GetSize(root);

s7s #endif
579 if (EqualToZero(root))

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

SetSize(node, One);
root = node;
return;

}

AttachCore(ref root, node);

#if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

#endif

¥

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

Debug.WriteLine("--AfterAttach--");
Debug.WriteLine(PrintNodes(root));
Debug.WriteLine("----------—-—-—- ")

ValidateSizes(root);

var sizeAfter = GetSize(root);

if (!AreEqual (Arithmetic.Increment (sizeBefore), sizeAfter))

throw new InvalidOperationException("Tree was broken after attach.");

<summary>

<para>

Attaches the core using the specified root.
</para>

<para></para>
</summary>

<param name="root">
<para>The root.</para>
<para></para>

</param>

<param name="node">
<para>The node.</para>
<para></para>

</param>

protected abstract void AttachCore(ref TElement root, TElement node);

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<summary>

<para>

Detaches the root.
</para>

<para></para>
</summary>

<param name="root">
<para>The root.</para>
<para></para>

</param>

<param name='"node">
<para>The node.</para>
<para></para>

</param>

[MethodImpl (MethodImplOptions.AggressiveInlining)]
public void Detach(ref TElement root, TElement node)

{
#if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

#endif

ValidateSizes (root) ;
Debug.WriteLine("--BeforeDetach--");
Debug.WriteLine(PrintNodes(root));
Debug.WriteLine("----------—-—-—- ")
var sizeBefore = GetSize(root);

%f (EqualToZero(root))

throw new InvalidOperationException([§|"SmemerT ¢ {node} He comepxuTcs B
< nepese.");

DetachCore(ref root, mnode);

#if ENABLE_TREE_AUTO_DEBUG_AND_VALIDATION

#endif

¥

Debug.WriteLine("--AfterDetach--");
Debug.WriteLine(PrintNodes(root));
Debug.WriteLine("----------—-—--- ")

ValidateSizes(root);

var sizeAfter = GetSize(root);

if (!AreEqual (Arithmetic.Decrement (sizeBefore), sizeAfter))

throw new InvalidOperationException("Tree was broken after detach.");

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

721
722
723
724
725
726
727
728
729
730
731
732

/// <summary>

/// <para>

/// Detaches the core using the specified root.
/// </para>

/// <para></para>

/// </summary>

/// <param name="root">

/// <para>The root.</para>

/// <para></para>

/// </param>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

protected abstract void DetachCore(ref TElement root, TElement node) ;

/// <summary>

/// <para>

/// Fixes the sizes using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

public void FixSizes(TElement node)

{
if (AreEqual(node, default))
{

return;

}
FixSizes(GetLeft (node)) ;
FixSizes(GetRight (node)) ;
FixSize(node) ;

}

/// <summary>

/// <para>

/// Validates the sizes using the specified node.
/// </para>
/// <para></para>
/// </summary>
/// <param name="node">
/// <para>The node.</para>
/// <para></para>
/// </param>
/// <exception cref="InvalidOperationException">
/// <para>Size of {node} is not valid. Expected size: {expectedSizel}, actual size:
— {size}.</para>
/// <para></para>
/// </exception>
public void ValidateSizes(TElement node)
{
if (AreEqual(node, default))
{

return;
}
var size = GetSize(node);
var leftSize = GetLeftSize(node);
var rightSize = GetRightSize (node) ;
var expectedSize = Arithmetic.Increment (Arithmetic.Add(leftSize, rightSize));
if (!AreEqual(size, expectedSize))

throw new InvalidOperationException([§"Size of {node} is not valid. Expected
— size: {expectedSize}, actual size: {size}.");

}

ValidateSizes(GetLeft(node));

ValidateSizes(GetRight (node));

/// <summary>

/// <para>

/// Validates the size using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

733
734
735
736
737

738
739
740
741
742
743
744
745
746
747
748

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

/17
/17
/17
/17
/17
/17
/17

<para>The node.</para>
<para></para>
</param>

<exception cref="InvalidOperationException">
<para>Size of {node} is not valid. Expected size: {expectedSize}, actual size:

{size}.</para>
<para></para>
</exception>

public void ValidateSize(TElement node)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

var size = GetSize(node);
var leftSize = GetLeftSize(node);
var rightSize = GetRightSize(node);

var expectedSize = Arithmetic.Increment(Arithmetic.Add(leftSize, rightSize));

if (!AreEqual(size, expectedSize))
{

throw new InvalidOperationException([§"Size of {node} is not valid. Expected
< size: {expectedSize}, actual size: {size}.");

<summary>

<para>

Prints the nodes using the specified node.
</para>

<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<returns>

<para>The string</para>
<para></para>
</returns>

public string PrintNodes(TElement node)

{

}

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

[MethodImpl (MethodImplOptions.AggressiveInlining)]
public void PrintNodes(TElement node, StringBuilder sb) => PrintNodes(node, sb, 0);

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

public void PrintNodes(TElement node, StringBuilder sb, int level)

var sb = new StringBuilder();
PrintNodes(node, sb);
return sb.ToString();

<summary>

<para>

Prints the nodes using the specified node.
</para>

<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<param name="sb">
<para>The sb.</para>
<para></para>

</param>

<summary>

<para>

Prints the nodes using the specified node.
</para>

<para></para>
</summary>

<param name="node">
<para>The node.</para>
<para></para>

</param>

<param name="sb">
<para>The sb.</para>
<para></para>

</param>

<param name="level">
<para>The level.</para>
<para></para>

</param>

809 {

810 if (AreEqual(node, default))

811 {

812 return;

813 }

814 PrintNodes (GetLeft(node), sb, level + 1);
815 PrintNode(node, sb, level);

816 sb.AppendLine () ;

817 PrintNodes(GetRight (node), sb, level + 1);
818 }

819

820 /// <summary>

821 /// <para>

822 /// Prints the node using the specified node.
823 /// </para>

824 /// <para></para>

825 /// </summary>

826 /// <param name="node">

827 /// <para>The node.</para>

828 /// <para></para>

829 /// </param>

830 /// <returns>

831 /// <para>The string</para>

832 /// <para></para>

833 /// </returns>

834 public string PrintNode(TElement node)

835 {

836 var sb = new StringBuilder();

837 PrintNode(node, sb);

838 return sb.ToString();

839 }

840

841 /// <summary>

842 /// <para>

843 /// Prints the node using the specified node.
844 /// </para>

845 /// <para></para>

846 /// </summary>

847 /// <param name="node">

848 /// <para>The node.</para>

849 /// <para></para>

850 /// </param>

851 /// <param name="sb">

852 /// <para>The sb.</para>

853 /// <para></para>

854 /// </param>

855 [MethodImpl (MethodImplOptions.AggressiveInlining)]
856 protected void PrintNode(TElement node, StringBuilder sb) => PrintNode(node, sb, 0);
857

858 /// <summary>

859 /// <para>

860 /// Prints the node using the specified node.
861 /// </para>

862 /// <para></para>

863 /// </summary>

864 /// <param name="node">

865 /// <para>The node.</para>

866 /// <para></para>

867 /// </param>

868 /// <param name="sb">

869 /// <para>The sb.</para>

870 /// <para></para>

871 /// </param>

872 /// <param name="level">

873 /// <para>The level.</para>

874 /// <para></para>

875 /// </param>

876 protected virtual void PrintNode(TElement node, StringBuilder sb, int level)
877 {

878 sb.Append ('\t', level);

879 sb.Append (node) ;

880 PrintNodeValue(node, sb);

881 sb.Append (' ');

882 sb.Append('s');

883 sb.Append (GetSize(node)) ;

884 }

885
886 /// <summary>

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

1.13

© 00N OO0 AW N

=
o

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

}

/// <para>

/// Prints the node value using the specified node.
/// </para>

/// <para></para>

/// </summary>

/// <param name="node">

/// <para>The node.</para>

/// <para></para>

/// </param>

/// <param name="sb">

/// <para>The sb.</para>

/// <para></para>

/// </param>

protected abstract void PrintNodeValue(TElement node, StringBuilder sb);

./csharp/Platform.Collections.Methods. Tests /RecursionlessSizeBalanced Tree.cs

using System;

using System.Collections.Generic;

using System.Text;

using Platform.Numbers;

using Platform.Collections.Methods.Trees;
using Platform.Converters;

namespace Platform.Collections.Methods.Tests

{

public class RecursionlessSizeBalancedTree<TElement>

—

{

RecursionlessSizeBalancedTreeMethods<TElement>

private struct TreeElement

1
public TElement Size;
public TElement Left;
public TElement Right;
+

private readonly TreeElement[] _elements;
private TElement _allocated;

public TElement Root;

public TElement Count => GetSizeOrZero(Root);

public RecursionlessSizeBalancedTree(int capacity) => (_elements, _allocated) = (new

< TreeElement [capacity], One);

public TElement Allocate()

{
var newNode = _allocated;
if (IsEmpty(newNode))
{
_allocated = Arithmetic.Increment(_allocated);
return newNode;
b
else
{
throw new InvalidOperationException("Allocated tree element is not empty.");
b
}

public void Free(TElement node)
while (!EqualityComparer.Equals(_allocated, One) && IsEmpty(node))
{

var lastNode = Arithmetic.Decrement(_allocated);
if (EqualityComparer.Equals(lastNode, node))
{

_allocated = lastNode;
node = Arithmetic.Decrement (node);

}

else

{
}

return;

}

public bool IsEmpty(TElement node) =>
< EqualityComparer<TreeElement>.Default.Equals(GetElement (node), default);

60 protected override bool FirstIsToTheLeftOfSecond(TElement first, TElement second) =>
— Comparer.Compare(first, second) < 0;

61

62 protected override bool FirstIsToTheRightOfSecond(TElement first, TElement second) =>
— Comparer.Compare(first, second) > 0;

63

64 protected override ref TElement GetLeftReference(TElement node) => ref
< GetElement (node) .Left;

65

66 protected override TElement GetLeft(TElement node) => GetElement(node).Left;
2; protected override ref TElement GetRightReference(TElement node) => ref

— GetElement(node) .Right;
2 protected override TElement GetRight(TElement node) => GetElement(node) .Right;
; protected override TElement GetSize(TElement node) => GetElement(node) .Size;
:i protected override void PrintNodeValue(TElement node, StringBuilder sb) =>

< sb.Append(node) ;
75

76 protected override void SetLeft(TElement node, TElement left) => GetElement (node).Left
— left;

77

78 protected override void SetRight (TElement node, TElement right) =>
< GetElement (node) .Right = right;

79

80 protected override void SetSize(TElement node, TElement size) => GetElement(node).Size
— size;

81 private ref TreeElement GetElement(TElement node) => ref
< _elements[UncheckedConverter<TElement, long>.Default.Convert(node)];

82 }

83 }

1.14 ./csharp/Platform.Collections.Methods. Tests/SizeBalanced Tree.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using Platform.Numbers;

5 using Platform.Collections.Methods.Trees;

6 using Platform.Converters;

7

s namespace Platform.Collections.Methods.Tests

o A

10 public class SizeBalancedTree<TElement> : SizeBalancedTreeMethods<TElement>

11 {

12 private struct TreeElement

13 {

14 public TElement Size;

15 public TElement Left;

16 public TElement Right;

17

18 private readonly TreeElement[] _elements;

19 private TElement _allocated;

20

21 public TElement Root;

22

23 public TElement Count => GetSizeOrZero(Root);

24

25 public SizeBalancedTree(int capacity) => (_elements, _allocated) = (new
< TreeElement [capacity], One);

26

27 public TElement Allocate()

28 {

29 var newNode = _allocated;

30 if (IsEmpty(newNode))

31 {

32 _allocated = Arithmetic.Increment(_allocated);

33 return newNode;

34 }

35 else

36 {

37 throw new InvalidOperationException("Allocated tree element is not empty.");

38 }

39 }

40

1 public void Free(TElement node)

42 {

43 while (!EqualityComparer.Equals(_allocated, One) && IsEmpty(node))
{

44

45 var lastNode = Arithmetic.Decrement(_allocated);

16 if (EqualityComparer.Equals(lastNode, node))
47 {

48 _allocated = lastNode;

49 node = Arithmetic.Decrement(node);
50 }

51 else

52 {

53 return;

54 }

55 }

56 }

57

58 public bool IsEmpty(TElement node) =>

< EqualityComparer<TreeElement>.Default.Equals(GetElement (node), default);

59

60 protected override bool FirstIsToTheLeftOfSecond(TElement first, TElement second) =>
— Comparer.Compare(first, second) < 0;

61

62 protected override bool FirstIsToTheRightOfSecond(TElement first, TElement second) =>
— Comparer.Compare(first, second) > 0;

63

64 protected override ref TElement GetLeftReference(TElement node) => ref
<+ GetElement (node) .Left;

65

66 protected override TElement GetLeft(TElement node) => GetElement(node) .Left;

67

68 protected override ref TElement GetRightReference(TElement node) => ref
< GetElement (node) .Right;

69

70 protected override TElement GetRight(TElement node) => GetElement(node) .Right;

71

72 protected override TElement GetSize(TElement node) => GetElement(node).Size;

73

74 protected override void PrintNodeValue(TElement node, StringBuilder sb) =>
< sb.Append (node) ;

75

76 protected override void SetLeft(TElement node, TElement left) => GetElement(node) .Left
- left;

7

78 protected override void SetRight(TElement node, TElement right) =>
— GetElement(node) .Right = right;

79

80 protected override void SetSize(TElement node, TElement size) => GetElement(node) .Size
— size;

81 private ref TreeElement GetElement(TElement node) => ref
< _elements[UncheckedConverter<TElement, long>.Default.Convert(node)];

82 }

83 }

1.15 ./csharp/Platform.Collections.Methods.Tests/SizedAndThreadedAVLBalancedTree.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using Platform.Numbers;

5 using Platform.Collections.Methods.Trees;

6 using Platform.Converters;

7

s namespace Platform.Collections.Methods.Tests

o A

10 public class SizedAndThreadedAVLBalancedTree<TElement>
— SizedAndThreadedAVLBalancedTreeMethods<TElement>

11 {

12 private struct TreeElement

13

14 public TElement Size;

15 public TElement Left;

16 public TElement Right;

17 public sbyte Balance;

18 public bool LeftIsChild;

19 public bool RightIsChild;

20 +

21 private readonly TreeElement[] _elements;

22 private TElement _allocated;

23

24 public TElement Root;

25
26 public TElement Count => GetSizeOrZero(Root);
27

28

29
30

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63

64

66
67
68
69
70
71

72
73
74
75
76
77

78
79
80
81
82
83

84
85

86
87

88
89

90
91

92
93

94

public SizedAndThreadedAVLBalancedTree(int capacity) => (_elements, _allocated) = (new
< TreeElement[capacity], One);

public TElement Allocate()

{
var newNode = _allocated;
if (IsEmpty(newNode))
{
_allocated = Arithmetic.Increment(_allocated);
return newNode;
else
{
throw new InvalidOperationException("Allocated tree element is not empty.");
}
}
public void Free(TElement node)
{
while (!EqualityComparer.Equals(_allocated, One) && IsEmpty(node))
{
var lastNode = Arithmetic.Decrement(_allocated);
if (EqualityComparer.Equals(lastNode, node))
{
_allocated = lastNode;
node = Arithmetic.Decrement (node);
}
else
{
return;
}
}

public bool IsEmpty(TElement node) =>
— EqualityComparer<TreeElement>.Default.Equals(GetElement (node), default);

protected override bool FirstIsToTheLeftOfSecond(TElement first, TElement second) =>
< Comparer.Compare(first, second) < 0;

protected override bool FirstIsToTheRightOfSecond(TElement first, TElement second) =>
< Comparer.Compare(first, second) > O;

protected override sbyte GetBalance(TElement node) => GetElement(node).Balance;
protected override bool GetLeftIsChild(TElement node) => GetElement(node).LeftIsChild;

protected override ref TElement GetLeftReference(TElement node) => ref
< GetElement(node) .Left;

protected override TElement GetLeft(TElement node) => GetElement(node).Left;

protected override bool GetRightIsChild(TElement node) => GetElement(node) .RightIsChild;

protected override ref TElement GetRightReference(TElement node) => ref
— GetElement (node) .Right;

protected override TElement GetRight(TElement node) => GetElement(node) .Right;
protected override TElement GetSize(TElement node) => GetElement (node).Size;

protected override void PrintNodeValue(TElement node, StringBuilder sb) =>
< sb.Append(node) ;

protected override void SetBalance(TElement node, sbyte value) =>
s GetElement(node) .Balance = value;

protected override void SetLeft(TElement node, TElement left) => GetElement(node) .Left
— left;

protected override void SetLeftIsChild(TElement node, bool value) =>
< GetElement(node) .LeftIsChild = value;

protected override void SetRight (TElement node, TElement right) =>
< GetElement (node) .Right = right;

protected override void SetRightIsChild(TElement node, bool value) =>
— GetElement(node) .RightIsChild = value;

95

96

97
98

protected override void SetSize(TElement node, TElement size) => GetElement(node).Size =
— size;

private ref TreeElement GetElement(TElement node) => ref

< _elements [UncheckedConverter<TElement, long>.Default.Convert(node)];

}

1.16 ./csharp/Platform.Collections.Methods. Tests/TestExtensions.cs

© 00 N O URs W N

=
=]

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37

38
39
40
41
42
43
44
45
46

47
48
49
50
51

52
53
54
55
56

57
58
59
60
61

using System;

using System.Collections.Generic;

using Xunit;

using Platform.Collections.Methods.Trees;
using Platform.Converters;

namespace Platform.Collections.Methods.Tests

{

public static class TestExtensions

{
public static void TestMultipleCreationsAndDeletions<TElement>(this
<, SizedBinaryTreeMethodsBase<TElement> tree, Func<TElement> allocate, Action<TElement>
— free, ref TElement root, Func<TElement> treeCount, int maximumOperationsPerCycle)

{
for (var N = 1; N < maximumOperationsPerCycle; N++)
{
var currentCount = O;
for (var i = 0; i < N; i++)
{
var node = allocate();
tree.Attach(ref root, node);
currentCount++;
Assert.Equal (currentCount, (int)UncheckedConverter<TElement,
< int>.Default.Convert (treeCount()));
}
for (var i = 1; i <= N; i++)
{
TElement node = UncheckedConverter<int, TElement>.Default.Convert(i);
if (tree.Contains(node, root))
{
tree.Detach(ref root, node);
free(node);
currentCount--;
Assert.Equal (currentCount, (int)UncheckedConverter<TElement,
< int>.Default.Convert (treeCount()));
}
}
}
}

public static void TestMultipleRandomCreationsAndDeletions<TElement>(this
-, SizedBinaryTreeMethodsBase<TElement> tree, ref TElement root, Func<TElement>
— treeCount, int maximumOperationsPerCycle)
{
var random = new System.Random(O) ;
var added = new HashSet<TElement>();
var currentCount = 0;
for (var N = 1; N < maximumOperationsPerCycle; N++)
{

for (var i = 0; i < N; i++)

var node = UncheckedConverter<int, TElement>.Default.Convert(random.Next(1,

o N);
if (added.Add(node))
{

tree.Attach(ref root, node);
currentCount++;
Assert.Equal (currentCount, (int)UncheckedConverter<TElement,

< int>.Default.Convert (treeCount()));

}
}
for (var i = 1; i <= N; i++)
{

TElement node = UncheckedConverter<int,
<+ TElement>.Default.Convert (random.Next(1, N));
if (tree.Contains(node, root))
{
tree.Detach(ref root, node);
currentCount--;
Assert.Equal (currentCount, (int)UncheckedConverter<TElement,
< int>.Default.Convert (treeCount()));

62 added.Remove (node) ;
63 }

64 }

65 }

66 }

67 }

68 }

1.17 ./csharp/Platform.Collections.Methods.Tests/ TreesTests.cs

1 using Xunit;

2

3 namespace Platform.Collections.Methods.Tests

+ {

5 public static class TreesTests

6

7 private const int _n = 500;

8

0 [Fact]

10 public static void RecursionlessSizeBalancedTreeMultipleAttachAndDetachTest ()

11 {

12 var recursionlessSizeBalancedTree = new RecursionlessSizeBalancedTree<uint>(10000);

13 recursionlessSizeBalancedTree.TestMultipleCreationsAndDeletions(recursionlessSizeBal
— ancedTree.Allocate, recursionlessSizeBalancedTree.Free, ref
- regursionlessSizeBalancedTree.Root, () => recursionlessSizeBalancedTree.Count,
— _);

14 }

15

16 [Fact]

17 public static void SizeBalancedTreeMultipleAttachAndDetachTest ()

18 {

19 var sizeBalancedTree = new SizeBalancedTree<uint>(10000);

20 sizeBalancedTree.TestMultipleCreationsAndDeletions(sizeBalancedTree.Allocate,
. si§eBa1ancedTree.Free, ref sizeBalancedTree.Root, () => sizeBalancedTree.Count,
— _n),;

21 }

22

23 [Fact]

24 public static void SizedAndThreadedAVLBalancedTreeMultipleAttachAndDetachTest()

25 {

26 var avlTree = new SizedAndThreadedAVLBalancedTree<uint>(10000) ;

27 avlTree.TestMultipleCreationsAndDeletions(avlTree.Allocate, avlTree.Free, ref
< avlTree.Root, () => avlTree.Count, _n);

28 +

29

30 [Fact]

31 public static void RecursionlessSizeBalancedTreeMultipleRandomAttachAndDetachTest ()

32 {

33 var recursionlessSizeBalancedTree = new RecursionlessSizeBalancedTree<uint>(10000) ;

34 recursionlessSizeBalancedTree.TestMultipleRandomCreationsAndDeletions (ref
s recursionlessSizeBalancedTree.Root, () => recursionlessSizeBalancedTree.Count,
— _n);

35 }

36

37 [Fact]

38 public static void SizeBalancedTreeMultipleRandomAttachAndDetachTest ()

39 {

40 var sizeBalancedTree = new SizeBalancedTree<uint>(10000) ;

41 sizeBalancedTree.TestMultipleRandomCreationsAndDeletions (ref sizeBalancedTree.Root,
< () => sizeBalancedTree.Count, _n);

42

43

44 [Fact]

45 public static void SizedAndThreadedAVLBalancedTreeMultipleRandomAttachAndDetachTest ()

46 {

47 var avlTree = new SizedAndThreadedAVLBalancedTree<uint>(10000) ;

a8 avlTree.TestMultipleRandomCreationsAndDeletions(ref avlTree.Root, () =>
< avlTree.Count, _n);

19 +

50 }

51 X

Index

./csharp/Platform.Collections.Methods. Tests/RecursionlessSizeBalanced Tree.cs, 46
./csharp/Platform.Collections.Methods. Tests /SizeBalanced Tree.cs, 47
./csharp/Platform.Collections.Methods. Tests/SizedAnd ThreadedAVLBalanced Tree.cs, 48
./csharp/Platform.Collections.Methods. Tests/ TestExtensions.cs, 50
./csharp/Platform.Collections.Methods. Tests / Trees Tests.cs, 51
./csharp/Platform.Collections.Methods/GenericCollectionMethodsBase.cs, 1
./csharp/Platform.Collections.Methods/Lists/AbsoluteCircularDoublyLinkedListMethods.cs, 3
./csharp/Platform.Collections.Methods/Lists/AbsoluteDoublyLinkedListMethodsBase.cs, 5
./csharp/Platform.Collections.Methods/Lists/AbsoluteOpenDoublyLinkedListMethods.cs, 7
./csharp/Platform.Collections.Methods/Lists/DoublyLinkedListMethodsBase.cs, 9
./csharp/Platform.Collections.Methods/Lists/RelativeCircularDoublyLinkedListMethods.cs, 10
./csharp/Platform.Collections.Methods/Lists/RelativeDoublyLinkedListMethodsBase.cs, 12
./csharp/Platform.Collections.Methods/Lists/RelativeOpenDoublyLinkedListMethods.cs, 14
./csharp/Platform.Collections.Methods/ Trees/RecursionlessSizeBalanced TreeMethods.cs, 17
./csharp/Platform.Collections.Methods/ Trees/SizeBalanced TreeMethods.cs, 20
./csharp/Platform.Collections.Methods/ Trees/SizedAnd Threaded AVL Balanced TreeMethods.cs, 22
./csharp/Platform.Collections.Methods/ Trees/SizedBinary TreeMethodsBase.cs, 34

