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Proximal Minimization Algorithm with D-Functions'?
Y. CENSOR® AND S. A. ZENiOS®

Communicated by O. L. Mangasarian

Abstract. The original proximal minimization algorithm employs
quadratic additive terms in the objectives of the subproblems. In this
paper, we replace these quadratic additive terms by more general D-
functions which resemble (but are not strictly) distance functions. We
characterize the properties of such D-functions which, when used in
the proximal minimization algorithm, preserve its overall convergence.
The quadratic case as well as an entropy-oriented proximal minimization
algorithm are obtained as special cases.

Key Werds. Proximal minimization algorithms, Bregman functions,
D-functions, entropy optimization.

1. Imtroduction

The proximal minimization algorithm is designed fo solve the optimiz-
ation problem

min  F(x), (la)
st. xeX, (1b)
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where F:R"->R is a given convex function and X cR" is a nonempty
closed convex subset of the n-dimensional Euclidean space R”. The
approach is based on converting (1) into a sequence of optimization prob-
lems with strictly convex objective functions obtained by adding quadratic
terms to F(x).

The method is as follows. There is a (given or constructed) sequence
{c(1)} of positive numbers for all &Ny, N;=1{0,1,2,3,...}, with

liminf c(f)=¢>0. 2)

00

A sequence {x(1)} is generated, starting from an arbitrary initial vector
x(0)eR", by

x(t+1) =arg min{F(x)+[1/2¢(0)]|x - y()|*}, (3a)
xeX
y(t+1)=x(t+1), (3b)

where || - || is the standard Euclidean norm in R". Equivalently, the algorithm
is written as

x(t+1) =arg min{F(x)+[1/2¢()]]}x — x(6)|}. 4)

The origins of this algorithm go back to Minty (Ref. 1), Moreau (Ref.
2), and Rockafellar (Refs. 3-4). In addition to considerable theoretical
interest in the family of proximal point algorithms, of which it is a member,
this algorithm is also an important computational tool. This is so because
the dual problem of a strictly convex optimization problem is differentiable
and can be solved by simple iterative procedures like dual coordinate ascent.
For several important problem classes, these dual algorithms can be decom-
posed for parallel computations; the results of this investigation are reported
elsewhere in Nielsen and Zenios (Refs. 28-29).

In this paper, we generalize the proximal minimization algorithm by
replacing the quadratic term in (3a) by a function D:R"xXR" >R and
specifying the structure and properties of some such D-functions for which
convergence of the algorithm can be preserved.

These D-functions were introduced by Bregman (Ref. 5) and sub-
sequently studied further in conjunction with primal-dual methods for
linearly constrained convex programming by Censor and Lent (Ref. 6) and
by De Pierro and Iusem (Ref. 7). The original proximal minimization
algorithm (3) is obtained from our scheme by one special choice of a
D-function. A different choice leads to a proximal minimization algorithm
with entropy additive terms. In the case of linear programming (F and
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x € X are all linear), the latter leads to pure entropy optimization problems
for which several good special-purpose algorithms exist; see, e.g., Refs.
8-10. Such an approach of replacing a linear programming problem by a
sequence of entropy problems was heuristically suggested by Eriksson (Ref.
11). He discusses also a specific strategy for choosing the parameters {c(1)}
and a solution algorithm. However, no overall convergence analysis is given
there. The practical question of whether any efficient useful algorithm result
from this new look at things has been addressed by Nielsen and Zenios
(Refs. 28-29), where encouraging computational results are reported.

The fundamental proximal point algorithm for solving the problem
0e T(z) for an arbitrary maximal monotone operator T and its specialization
for T =9F (the subdifferential of F) make it clear why quadratic additive
terms in (3a) are mandatory; see, e.g., Ref. 3. Therefore, we do not resort
to the operator theory, but rather follow the more direct method of Ref.
12. It is quite conceivable that the idea of incorporating D-functions could
propagate in other directions within the theory of proximal point and related
methods.

The idea of replacing quadratic penalty terms by nonguadratic ones
exists already with respect to other algorithms; see, e.g., Ref. 13, Chapter
5. Bertsekas (Ref. 14) kindly pointed out that the special entropy case of
our PMD algorithm (see Section 4 below) is the Fenchel dual to the primal
augmented Lagrangian minimization with exponential penalty. In a similar
vein, Teboulle (Ref. 15) has recently derived what he calls “entropic
proximal maps” and used them to construct generalized augmented
Lagrangian methods. Although his paper can be considered a close com-
panion to ours, his results do not include the PMD algorithm that we
propose here. See also Ref. 16. An important work on monotone operators
and the proximal point algorithm is Eckstein’s thesis (Ref. 17). Moreover,
in his recent paper (Ref. 18), Eckstein showed how to construct proximal
point algorithms with Bregman functions, thereby further extending the
scope of the connection between Bregman functions and proximal minimiz-
ation presented here.

Another recent related study is Eggermont’s (Ref. 19). Nonquadratic
additive terms are used there, but with only nonnegativity constraints. Of
particular interest is the connection revealed there between multiplicative
iterative algorithms and the well-known EM-algorithm for maximum likeli-
hood estimation in emission tomography; see Shepp and Vardi (Ref. 20)
and other references in Ref. 19. The algorithms of Ref. 19, however, are
not special instances of our proximal minimization algorithm with D-
functions. Finally, we mention the work of Tseng and Bertsekas (Ref. 21),
where they use the entropy proximal term in the proximal minimization
algorithm to study the exponential multiplier method.
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2. Proximal Minimization Algorithm with D-Functions

Let S be a nonempty open convex set in R” such that S< A, where S
is the closure of S and A is the domain of a function f: A<= R" » R. Assume
that f(x) is twice continuously differentiable at every x € S, and denote by
Vf(x) and V*f(x) its gradient and its Hessian matrix at x, respectively.
Furthermore, assume that f(x) is continuous and strictly convex on S.

The set S is called the zone of £, and f obeying the assumptions made
above will be referred to as an auxiliary function.

From f(x), construct the D-function D;(x,y), D;:Sx SR> >R, by

Dy (x, y) =f(x) =f(y) —(Vf(y), x =), (%)

where (-, -) denotes the usual inner product in R". Such D;-functions are
a specific realization of the more general D-functions defined in Ref. 5 and
will be clearly distinguishable from the latter by the subscript f. D;-functions
appear in Ref. 5, p. 206, and in Refs. 6, 22. They are instrumental in defining
Dy-projections onto convex sets and play a key role in the primal-dual
optimization algorithms in Refs. 5, 6, 22.

We will need the following additional properties to be postulated for
the auxiliary functions, their zones, and the D-functions constructed from
them. For any a € R, denote by

Li(a,y)={xe S| Dy(x,y)=<a}, (6a)
sz"(x’a)'_’{yESlDf(x,Y)Sa}, (6b)
the partial level sets of D/(x, y).

Assumption Al. For &very a€R, the partial level sets L{a,y) and
Li(x, @) are bounded for every y € S, for every x € S, respectively.

Assumption A2. If y* —— y*e §, then D,;(y*, y*) == 0.

Assumption A3. If Df(xk, ¥ ) =0, y* == Ve S and {x*} is
bounded, then x* = y*.

Assumption Ad. Dy(x, y) is jointly convex w.r.t. both x and y, i.e., as
a function on R*".

With milder differentiability assumptions, auxiliary functions f which
obey Assumptions A1-A3 are called Bregman functions in Ref. 6. In
particular, all results of Section 2 and 3 of Ref. 6 hold. D,(x, y) is not a
distance function, but

Di(x,y)=0 and Dy(x,y)=0,iff x=y; 7

see Ref. 6, Lemma 2.1.
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Definition 2.1. Given Q< R” and y€ S, a point x*e 0 § for which
x* =arg min Dy(z, y) (8)

E{=197a%4
is a Ds-projection of y onto , denoted by P,y = x*. The existence and
uniqueness of Dy-projections onto closed convex sets are guaranteed by
Lemma 2.2 of Ref. 6.

If f(x)=(1/2)]x|* and A=S=S§=R", then Dy(x,y)=(1/2)|}x-y|*
and Dj,-projections are ordinary orthogonal projections.

The proximal minimization algorithm with Dy-functions, henceforth
abbreviated PMD, is as follows. Given are an auxiliary function f with
zone S, satisfying Assumptions A1-Ad, and a positive sequence {c(t)} for
which (2) holds.

Initialization. x(0)€ S is arbitrary.
Iterative Step. x(t+1)=argmin{F(x)+[1/c(#)]Ds(x, x(t))}. (9)

xeXnS
In order that this algorithm be well defined, we make the next
assumption.

Assumption A5. The PMD algorithm (9) generates a sequence {x(¢)}
such that x(2)e S, ¥t

This assumption is needed, because Dy is defined on §x S. It actually
tells us that, given F and X of (1), we are free to choose only such f and
S that Assumption A5 would hold. If X < S, then Assumption AS trivially
holds, which is true for the quadratic case f= (1/2)]|x|°, where S=R". We
show later that it holds also for the entropy case.

3. Convergence Analysis of the PMD Algorithm

The analysis given here follows the one given in Ref. 12, Chapter 3.4.3.
Proposition 3.1 secures the existence and uniqueness of the minimum of
{F(x)+(1/c)Ds(x, y)}. Propositions 3.2, 3.3, and 3.4 are not directly
necessary for the proof of convergence, but they extend to the D,-function
setting some closely related results from Ref. 12. One referee has correctly
observed that a few steps in the proofs of Propositions 3.2 and 3.3 can be
deduced from existing results. We prefer, however, to supply full proofs
which better demonstrate how D, -functions fit into the-analysis. Proposition
3.5 is a generalization of a classical lemma about projection operators which
is crucial for the final convergence result given in Proposition 3.6.

Denote by X* the solution set of problem (1),

X*={x*e X|F(x*)= F(x),Vxe X}. (16)
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Proposition 3.1. Let f be an auxiliary function with zone S, and
let Assumption Al hold. For every ye S and ¢>0, the minimum of
{F(x)+(1/c)Ds(x, y)} over X n § is attained at a unique point, denoted
by x/(y, ), provided that F(x) is bounded below over X.

Proof. For all ¢>0 and y € S, the level sets
{xe XnS|F(x)+(1/c)Di(x, y)<a}, acR, (11
are bounded. This is true because otherwise, for some ¢>0 and yeR",
there would exist an unbounded sequence {x*}< X n § for which
Dy(x*,y)=e(a—L), (12)

where L is the lower bound for F(x) over X. But this would contradict
Assumption Al; thus, the level sets (11) must be bounded.

This allows us to equivalently search for the minimum of F(x)+
(1/¢)Ds(x, y) over a compact subset of X N S instead of X N S. The Weier-
strass theorem (e.g., Ref. 12, Proposition A.8) then implies that the above-
mentioned minimum is attained. The strict convexity of Dy(x, y) with respect
to x for fixed y, which follows from (5), and the strict convexity of the
auxiliary function £, ensure the uniqueness. {

Proposition 3.2. If Assumption A4 hclds, then the function ®.: SR,
defined by
®.(y)= ming{F (x)+(1/c)Ds(x, y)}, (13)

xeXn
is convex over S.
Proof. Let y', y°e S and a €[0, 1]. Denote x;=x(y', ¢), for i=1,2.
Using the convexity of F and Assumption A4, we have
a® (y)+(1-a)®.(?)
= a[F(x})+(1/ ) De(x}, y)1+ (1 - 0)[F(x) +(1/ ) D2, )]
= F(axj+(1—a)x)+(1/ ) Di(axi+ (1 - a)x}, ey’ +(1—a)y?)
= min {F(x)+(1/c)D(x, ay' +(1—a)y’)}

xeXnmS

=@ (ay'+(1-a)y?). O

Proposition 3.3. Let Assumptions Al and A4 hold. The function ®.(y)
is continuously differentiable on S and its gradient is given by
V. (y) =V () Iy —x(y )/ cl, (14)

where T denotes matrix transposition.
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Proof. Consider any ye S, deR", and a>>0 such that y+adeS.
Using the directional derivative ®,(y; d), we have

F(xf(y9 c))+(1/C)Df(xf(y’ C)ay+ad)
=@ (y+ad)=®.(y)+ad(y; d)
=F(x:(y, )+ {1/ ) D(x(y, €), y) + 2 ®@L{y; d), (15)

where the second inequality in (15) follows from the convexity of &,
{Proposition 3.2). Therefore, using (5), we get from (15)

(1/Lf)—fy+ad) HVf(y)-Vi(y+ad), x(y,¢c)-y)
+(Vf(y+ad), ad)]= a®(y; d). (16)
Since
.I,,i_’fé [f)~fy+ad)l/a+(1/a)Vf(y+ad), ad)] =0, (17)

lim [[Vf(y) - Vf(y+ad))/ a]=-Vf(y)d, (18)

a->0

we obtain from (16), by dividing by « and letting o =0,

(Vf(d, [y =%y, )/ c)=@uy; d), VdeR" (19)
Replacing d by ~d in (19), we get
—(V (), [y~ %3, )l )= y; —d) = -C(y; d), (20)

where the second inequality is a standard relation for directional derivatives
of convex functions; see, e.g., Ref. 12, p. 648.
The relations (19} and (20) imply that

y; )=V f(¥)d, [y - %, 0l/e),  VdeR, (21)

or equivalently that @, is differentiable and that its gradient is given by
(14). Since @, is convex (Proposition 3.2), its gradient is continuous; see,
e.g., Ref. 12, Proposition A.42. 4

The next proposition gives a relation between $¥, the minimum set of
®_.(y), the zone S of the auxiliary function f, and the solution set X™* For
a function f with zone § =R", we get, as a special case, that X* = §*, which
was given in Ref. 12, p. 234,

Define

S*={y*eS|®.(y*)=D.(y),Vye S} (22)

Proposition 3.4. Let V>f(z) be nonsingular for all z€ §*. Then,
X*n8§=8% (23)
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Proof. The function F(x)+(1/c)Ds(x, y) takes the value F(y) for
x =y because Dy(x, y)=0, iff x=y (Ref. 6, Lemma 2.1). It follows that
®.(y)=F(y), VyeXnS. (24)
If z*e X*, then (24) holds and we have
D (z*)= F(z*) = F(xp(y, ¢)) = F(x:(y, ¢)) +(1/ ) Di(x:(y, ©), y)
=0.(y), VyeS§, (25)

because always D;(x, y)=0. Thus, z* minimizes ®.(y) over S, i.e., z*e S*.
Conversely, if z* € $*, then we have, from (14),

VD (z*) =Vf(z*) T [2* — x/(z*, )] =0, (26)
which implies that z* = x,(z*, ¢) € X n S. Using again (24), we have

F(z¥)=d (z*)= D (y)= F(y), VyeXns, 27
and therefore z*¥e X N S. d

The following D;-function version of a classical lemma (Ref. 23, p. 76)
about projection operators plays an important role in the proof of conver-
gence.

Proposition 3.5. Let f be an auxiliary function with zone S, and let
Q<= R" be some given closed convex set. Denote by Py the Dy-projection
of any ye S onto (), and assume that Pye S. Let ze O S. Then, for any
y € S, the inequality

Dy(Py, y)= Ds(z,y)— Dy(z, Py) (28)
holds.

Proof. This is a specialization of Ref. 5, Lemma 1, for the case of
D,-functions; see Ref. 5, p. 206, Example 2. (]

Finally, we present the convergence proof of the PMD algorithm.

Proposition 3.6. Assume that X* n §# . Any sequence {x(¢)} gener-
ated by a PMD algorithm, where ¢(¢) >0 and lim, , ,, inf ¢(¢) = ¢ > 0, conver-
ges to an element of X*.

Proof. The proof consists of three steps. First, we prove that {x(z)}
is bounded; then, we show that all its accumulation points belong to X*;
and finally, we prove that there is a unique limit point.
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Step 1. We have
F(x(t+1))+[1/e()I1Dp(x(2+1), x(1))

=F(x)+[1/c(t)]D/(x, x(1)), VxeXn§, (29)
from which follows that, for all xe X n § with

F(x)=F(x(t+1)), (30)
it is true that

Dp(x(t+1), x(£)) = Dy(x, x(1)). 3L
Therefore, x(¢+1) is the unique D;-projection of x(¢) onto the convex set

Q={xe X|F(x)sF(x(t+1))}. (32)
Using Proposition 3.5 and the fact that X*< {}, we have

0= De(x(t+1), x(2)) = DAx*, x(1)) — Ds(x*, x(t +1)), (33)
for every x*e X*n S. Thus,

Dy(x*, x(t+1)) = Dy(x*, x(1)), Vx*eX*n§ Vi (34)

This last inequality amounts to saying that {x(t)} is D;-Féjer-monotone
with respect to the set X* §, and it implies that {x(¢)} is bounded because
it means that

x(t)e LX(x* a), Vi, (35)

with o = Dy(x*, x(0)), and Assumption Al applies.
Step 2. Let {x(f)}.cr, TSNy, be a subsequence converging to x¢
X nS. Recall that, by (7) and (34), the sequence {Dy(x*, x(#))},cn, is

nonnegative and nonincreasing; thus, lim Dy(x*, x()) exists for any x* e
X*n 8. In view of (33),

lim Dy(x(t+1), x(¢))=0, as t->00;
thus, also

lim D (x(1+1), (1)) =0, (36)

teT

which by Assumption A3 implies that {x(z+1)},. also converges to x™.
Mext, observe that (29) remains true with x = x(t); thus,

F(x(t+1))+[1/c()ID(x(t + 1), x(2)) = F(x(1)), ¥, (37
because

Dy(x(1), x(1)) =0.
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This implies
F(x(t))~F(x(t+1))
=[1/c()]1Ds(x(t+1), x(1)) =0, vt (38)

Therefore, {F(x())}en, is nonincreasing and {F(x(#))},c.r converges to
F(x™).
Let x*€ X*n S and a €(0,1), and set

x=ax*+(1—a)x(t+1)
in (29). From the convexity of F(x), we get

F(x(t+1))+[1/e()]1Dp(x(t+1), x(2))

= Flax*+ (1 —a)x(t+1))

+[1/c()]Ds(ax*+ (1 —a)x(t+1), x(1))

=aF(x*)+(1—-a)F(x(t+1))

+[1/¢()]1Ds(ax*+ (1 - a)x(t+1), x(1)), (39)
which, by (5), can be rewritten as

ac(t)[F(x(t+1))— F(x*)]

=f(x(t+1)—a(x*—x(t+1))) - f(x(t+1))

—a(Vf(x(1)), x*—x(1+1)). (40)
Dividing by « taking the limit as a 0", and denoting by f'(-; ) the
directional derivative, we get

c(O[F(x(t+1)) - F(x*)]

< f'(x(t+1); x*—x(t+1)) = (Vf(x(1)), x*—x(¢+1))

=(Vf(x(t+ 1)) = Vf(x(1), x* = x(¢+1))

= Dy(x*, x(t)) — Dy(x*, x(t +1)) — Dp(x(¢t +1), x(1)). (41)
The optimality of x* and the fact that c(¢)=c>0, V¢, guarantee the
nonnegativity of the left-hand side of (41) for all #

From the existence of lim,.. Dy(x*, x(1)), for any x*e X *~ S we
obtain

Hm[D(x*, x(1)) — Dp(x*, x(t+1))] =0, (42)

t—>00
teT
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and the remaining term in the right-hand side of (41) also tends to zero by
{36). Thus,

0=lm[F(x(t+1))— F(x*)] = F(x°) — F(x*), (43)

and so x"e X*.

Step 3. Let
{x(}ier,—= x*€ X*n S, (44)
{x()}ier,——= x*™* e X*n S, (45)

for some T, =N, and T, < N,. Defining
H(x(2)) = Dp(x*, x(1)) — De(x™*, x(£)), (46)
it follows that the limit

lim H(x(t))=H (47)

t—>00

exists. Therefore, we have, by (7),

H =lim H(x(t)) = ~Dy(x**, x*) =0, (48)
e,
H =lim H(x(1)) = Ds(x*, x**) =0, (49)
e,
yielding
Dy (x*, x**) = Dy(x**, x*) =0, (50)
which implies that x* = x** O

4. Quadratic Case, Entropy Case, and Other Cases

Choosing the auxiliary function f(x) = (1/2)|x|* with A=S§=S=R"
gives Dy(x, y) =(1/2)]|x — y|* and immediately returns the PMD algorithm
to its original form with quadratic additive terms; see Refs. 3-4.



462 JOTA: VOL. 73, NO. 3, JUNE 1992

Define the x log x (Shannon) entropy functional ent x, which maps R’
into R by

entx=—_Z1 x; log(x;/ a;), (51)
j=
where a =(a;) eR" is a given positive vector, log is the natural logarithm,
and 0log 0 =0 by convention.

The function —ent x is a Bregman function, in the terminology of Ref.
6, with A=R? and zone S={xeR"|x>0}; see, e.g., Ref. 9, Lemma 5.
Furthermore, it can be verified that Assumptions A1-A5 hold, and thus the
analysis of the PMD algorithm presented here applies.

For f(x)=—ent x, we have

Dy(x, y)= 21 x;[log(x;/y;)—11+ ¥ »;, (52)
j= j=1
and the iterative step of the entropy-type PMD algorithm is obtained
from (9).
In the case where problem (1) is linear programming, F(x) = (b, x) for
some given b= (b;)eR", and x € X are linear constraints, (9) becomes

x(t+1)= argmm{z x;b;+[1/c(t)] Z x;[log(x;/ x;()) —1]

#1170 5, %0} (53)

This is essentially a linearly constrained pure entropy optimization
problem obtained by subsuming all linear terms into the entropy functional.
For such problems, several useful iterative algorithms exist (see Ref. 9),
which lend themselves efficiently to parallel computation; see, e.g., Refs.
24-25. The advantages, in practice, of an entropy or otherwise oriented
PMD algorithm over the original quadratic-additive-term proximal minimiz-
ation algorithm, if any, depend to a great extent on two factors. One is the
specific form of the original problem (1); the second is the availability of
efficient special-purpose algorithms for performing the step (9). Various
special-purpose algorithms exist (e.g., Refs. 26-27); others may be
developed.

Such practical questions may be settled in further experimental research
which is outside the scope of the present paper. See, e.g., Refs. 28-29 for
recent experimental work with the algorithms of this paper. There seems
to be also room for further study in the identification of additional specific
usable and useful auxiliary functions; see, e.g., the characterization of
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Bregman functions in Ref. 7 and the results in Ref. 22. See also Ref. 15,
Examples 3.1.
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