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Proximal Minimization Algorithm with D-Functions 1'2 

Y. C E N S O R  3 A N D  S. A .  Z E N I O S  4 

Communicated by 0 .  L. Mangasarian 

Abstract. The original proximal minimization algorithm employs 
quadratic additive terms in the objectives of the subproblems. In this 
paper, we replace these quadratic additive terms by more general D- 
functions which resemble (but are not strictly) distance functions. We 
characterize the properties of such D-functions which, when used in 
the proximal minimization algorithm, preserve its overall convergence. 
The quadratic case as well as an entropy-oriented proximal minimization 
algorithm are obtained as special cases. 

Key Words. Proximal minimization algorithms, Bregman functions, 
D-functions, entropy optimization. 

1. Introduction 

The proximal  min imiza t ion  a lgor i thm is des igned to solve the optimiz-  
a t ion  p rob lem 

min  F(x), ( l a )  

s.t. x~X, ( l b )  
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where F:R"-->R is a given convex function and X_cR" is a nonempty 
closed convex subset of the n-dimensional Euclidean space R". The 
approach is based on converting (1) into a sequence of optimization prob- 
lems with strictly convex objective functions obtained by adding quadratic 
terms to F(x). 

The method is as follows. There is a (given or constructed) sequence 
{c(t)} of positive numbers for all t e No, No = {0, 1, 2, 3 , . . .  }, with 

lim inf c(t) = c > 0. (2) 
t-~OO 

A sequence {x(t)} is generated, starting from an arbitrary initial vector 
x(0) ~ R", by 

x( t+ 1) = arg min{F(x) + [1/2c(t)]llx- y(t)ll2}, 
x ~ X  

(3a) 

y(t+ 1) = x(t+ 1), (3b) 

where [[. [l is the standard Euclidean norm in R ". Equivalently, the algorithm 
is written as 

x( t + 1) = arg min{F(x) +[1/2c( t)]llx-x( t)ll2}. 
x ~ X  

(4) 

The origins of this algorithm go back to Minty (Ref. 1), Moreau (Ref. 
2), and Rockafellar (Refs. 3-4). In addition to considerable theoretical 
interest in the family of proximal point algorithms, of which it is a member, 
this algorithm is also an important computational tool. This is so because 
the dual problem of a strictly convex optimization problem is differentiable 
and can be solved by simple iterative procedures like dual coordinate ascent. 
For several important problem classes, these dual algorithms can be decom- 
posed for parallel computations; the results of this investigation are reported 
elsewhere in Nielsen and Zenios (Refs. 28-29). 

In this paper, we generalize the proximal minimization algorithm by 
replacing the quadratic term in (3a) by a function D :R" x R"->R and 
specifying the structure and properties of some such D-functions for which 
convergence of the algorithm can be preserved. 

These D-functions were introduced by Bregman (Ref. 5) and sub- 
sequently studied further in conjunction with primal-dual methods for 
linearly constrained convex programming by Censor and Lent (Ref. 6) and 
by De Pierro and Iusem (Ref. 7). The original proximal minimization 
algorithm (3) is obtained from our scheme by one special choice of a 
D-function. A different choice leads to a proximal minimization algorithm 
with entropy additive terms. In the ease of linear programming (F  and 
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x c X are all linear), the latter leads to pure entropy optimization problems 
for which several good special-purpose algorithms exist; see, e.g., Refs. 
8-10. Such an approach of replacing a linear programming problem by a 
sequence of entropy problems was heuristically suggested by Eriksson (Ref. 
11). He discusses also a specific strategy for choosing the parameters {c(t)} 
and a solution algorithm. However, no overall convergence analysis is given 
there. The practical question of whether any efficient useful algorithm result 
from this new look at things has been addressed by Nielsen and Zenios 
(Refs. 28-29), where encouraging computational results are reported. 

The fundamental proximal point algorithm for solving the problem 
0 ~ T ( z )  for an arbitrary maximal monotone operator T and its specialization 
for T = OF (the subdifferential of F)  make it clear why quadratic additive 
terms in (3a) are mandatory; see, e.g., Ref. 3. Therefore, we do not resort 
to the operator theory, but rather follow the more direct method of Ref. 
12. It is quite conceivable that the idea of incorporating D-functions could 
propagate in other directions within the theory of proximal point and related 
methods. 

The idea of replacing quadratic penalty terms by nonquadratic ones 
exists already with respect to other algorithms; see, e.g., Ref. 13, Chapter 
5. Bertsekas (Ref. 14) kindly pointed out that the special entropy case of 
our PMD algorithm (see Section 4 below) is the Fenchet dual to the primal 
augmented Lagrangian minimization with exponential penalty. In a similar 
vein, TebouUe (Ref. 15) has recently derived what he calls "entropic 
proximal maps" and used them to construct generalized augmented 
Lagrangian methods. Although his paper can be considered a close com- 
panion to ours, his results do not include the PMD algorithm that we 
propose here. See also Ref. 16..An important work on monotone operators 
and the proximal point algorithm is Eckstein's thesis (Ref. 17). Moreover, 
in his recent paper (Ref. 18), Eckstein showed how to construct proximal 
point algorithms with Bregman functions, thereby further extending the 
scope of the connection between Bregman functions and proximal minimiz. 
ation presented here. 

Another recent related study is Eggermont's (Ref. 19). Nonquadratic 
additive terms are used there, but with only nonnegativity constraints. Of 
particular interest is the connection revealed there between multipticative 
iterative algorithms and the well-known EM-algorithm for maximum likeli- 
hood estimation in emission tomography; see Shepp and Vardi (Ref. 20) 
and other references in Ref. 19. The algorithms of Ref. 19, however, are 
not special instances of our proximal minimization algorithm with D- 
functions. Finally, we mention the work of Tseng and Bertsekas (Ref. 21), 
where they use the entropy proximal term in the proximal minimization 
algorithm to study the exponential multiplier method. 



454 JOTA: VOL. 73, NO. 3, JUNE 1992 

2. Proximal Minimization Algorithm with D-Functions 

Let S be a nonempty open convex set in R" such that S__q A, where 
is the closure of  S and A is the domain of  a function f :  A _q R" ~ R. Assume 
that f (x )  is twice continuously differentiable at every x ~ S, and denote by 
Vf(x)  and V2f(x) its gradient and its Hessian matrix at x, respectively. 
Furthermore, assume that f (x)  is continuous and strictly convex on S. 

The set S is called the zone o f f ,  and f obeying the assumptions made 
above will be referred to as an auxiliary function. 

From f (x) ,  construct the D-function D i (x, y),  Df:  S x S __ R 2" ~ R, by 

Df(x, y) = f ( x ) -  f (y  ) -  (Vf(y),  x - y ) ,  (5) 

where ( . ,  .) denotes the usual inner product  in R". Such Dy-functions are 
a specific realization of  the more general D-functions defined in Ref. 5 and 
will be clearly distinguishable from the latter by the subscript f. Df-functions 
appear  in Ref. 5, p. 206, and in Refs. 6, 22. They are instrumental in defining 
Ds-projections onto convex sets and play a key role in the primal-dual  
optimization algorithms in Refs. 5, 6, 22. 

We will need the following additional properties to be postulated for 
the auxiliary functions, their zones, and the Dy-functions constructed from 
them. For any ot ~ R, denote by 

Lit(a, y) = {x ~ '~l Df(x, y) -< a}, (6a) 

L2r(x, a) = {y ~ SI Df(x, y) -< a}, (6b) 

the partial level sets of Dr(x, y). 

Assumption A1. For [very a ~ R, the partial level sets L)(a, y) and 
L}(x, a) are bounded for every y ~ S, for every x ~ S, respectively. 

Assumption A2. If  yk ~ y .  ~ ~, then Dr(Y*, yk) ~ O. 

AssumptionA3. If  Df(x k , y k ) ~ O ,  y k ~ y . ~ ,  and {x k} is 
bounded,  then x k ~ y*. 

Assumption A4. Df(x, y) is jointly convex w.r.t, both x and y, i.e., as 
a function on R 2". 

With milder differentiability assumptions, auxiliary functions f which 
obey Assumptions A1-A3 are called Bregman functions in Ref. 6. In 
particular, all results of  Section 2 and 3 of  Ref. 6 hold. Dy(x, y) is not a 
distance function, but 

Dy(x, y) >- 0 and Di(x, y) = 0, iff x = y; (7) 

see Ref. 6, Lemma 2.1. 
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Definition 2.1. Given 1) ~ R n and y ~ S, a point x* ~ ~ c~ S for which 

x* = arg min Dy(z, y) (8) 
zcac~- 

is a Dy-projection of y onto f~, denoted by PaY = x*. The existence and 
uniqueness of Dy-projections onto dosed convex sets are guaranteed by 
Lemma 2.2 of Ref. 6. 

If f ( x )  = (1/2)[JxH 2 and A = S = g =  R n, then Dr(x, y) = (t/2)[ix -ytl  2 
and Dr-projections are ordinary orthogonal projections. 

The proximal minimization algorithm with Dy-functions, henceforth 
abbreviated PMD, is as follows. Given are an auxiliary function f with 
zone S, satisfying Assumptions A1-A4, and a positive sequence {c(t)} for 
which (2) holds. 

Initialization. x( O ) ~ S is arbitrary. 

Iterative Step. x ( t + l )  =argmin{F(x)+[1 /c ( t ) ]Df (x ,x ( t ) ) } .  (9) 
x e X c ~ S  

In order that this algorithm be well defined, we make the next 
assumption. 

Assumption A5. The PMD algorithm (9) generates a sequence {x(t)} 
such that x( t ) ~ S, V t. 

This assumption is needed, because Dy is defined on ;~ x S. It actually 
tells us that, given F and X of (1), we are free to choose only such f and 
S that Assumption A5 would hold. If X c S, then Assumption A5 trivSally 
holds, which is true for the quadratic case f =  (1/2)[JxJl 2, where S = R n. We 
show later that it holds also for the entropy case. 

3. Convergence Analysis of the PMD Algorithm 

The analysis given here follows the one given in Ref. 12, Chapter 3.4.3. 
Proposition 3.1 secures the existence and uniqueness of the minimum of 
{F(x)+(1 /c )Dy(x ,y )} .  Propositions 3.2, 3.3, and 3.4 are not directly 
necessary for the proof of convergence, but they extend to the Dy-function 
setting some closely related results from Ref. 12. One referee has correctly 
observed that a few steps in the proofs of Propositions 3.2 and 3.3 can be 
deduced from existing results. We prefer, however, to supply full proofs 
which better demonstrate how Dy-functions fit into theanalysis. Proposition 
3.5 is a generalization of a classical lemma about projection operators which 
is crucial for the final convergence result given in Proposition 3.6. 

Denote by X* the solution set of problem (1), 

X* = {x* ~ X IF(x*) <-- F(x), Vx ~ X}. (10) 
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Proposition 3.1. Let f be an auxiliary function with zone S, and 
let Assumption A1 hold. For every y ~ S and c >  0, the minimum of 
{F(x)+(1/c)Df(x, y)} over Xc~ S is attained at a unique point, denoted 
by xf(y, c)~ provided that F(x) is bounded below over X. 

Proof. For all c > 0 and y ~ S, the level sets 

{xsXc~glF(x)+(1/c)Dy(x,y)<--a}, aeR ,  (11) 

are bounded. This is true because otherwise, for some c >  0 and y e R ~, 
there would exist an unbounded sequence {x k} c_ X c7 S for which 

Dy(x k, y) < c( a - L), (12) 

where L is the lower bound for F(x) over X. But this would contradict 
Assumption A1; thus, the level sets (11) must be bounded. 

This allows us to equivalently search for the minimum of F(x)+ 
(1/c)Dy(x, y) over a compact subset of  X n S instead of X c7 S. The Weier- 
strass theorem (e.g., Ref. 12, Proposition A.8) then implies that the above- 
mentioned minimum is attained. The strict convexity of  Df(x, y) with respect 
to x for fixed y, which follows from (5), and the strict convexity of  the 
auxiliary function f, ensure the uniqueness. [] 

Proposition 3.2. I f  Assumption A4 holds, then the function ~c : S-> •, 
defined by 

~c(y)  = min { F ( x )  + (1/c)Dy(x, y)}, (13) 
x ~ X n S  

is convex over S. 

Proof. Let yt,  y2~ S and a ~ [0, 1]. Denote xy -  xs(y, c), for i = 1, 2. 
Using the convexity of F and Assumption A4, we have 

a ~ c ( y  1) + (1 - a)~Pc(y 2) 

= a[F(x))+ (1/c)Df(x),  y ' ) ]  + (1 - a ) [F (x} )+  (1/c)Df(x}, y2)] 

>>- F(ax)+ (1 - a)x~) + (1/c)Df(ax)+ (1 - a)x~, ay'+ (1 - a)y2) 

-> min {F(x)+(1/c)Df(x, ay' +(1-a)y2)} 
x ~ X c ~ g  

= ~P~(ay' + (1 - a)y:). [] 

Proposition 3.3. Let Assumptions A1 and A4 hold. The function qbc(y) 
is continuously differentiable on S and its gradient is given by 

V~c(y) = V2f(y) T[[y - xf(y, c) ]/ c], (14) 

where T denotes matrix transposition. 
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Proof. Consider any y ~ S, d ~ R ~, and a > 0 such that y + ad e S. 
Using the directional derivative qb'c(y; d), we have 

F(xf(y, c)) + (1/c)Dy(xf(y, c), y + ad) 

>_ d~ ~(y + ad) >- dpc(y) + c ~ ' ( y ;  d) 

= F(xy(y, c)) + (1/c)Df(xy(y, c), y) + a(9'~(y; d), (15) 

where the second inequality in (15) follows from the convexity of q~c 
(Proposition 3.2). Therefore, using (5), we get from (15) 

(1/c)[f(y) - f ( y  + o~d) + (Vf(y) - V f ( y  + c~d ), xy(y, c) - y) 

+ (Vf(y + ad), ad)] >- o~'~(y; d). (16) 

Since 

l i m [ [ f ( y ) - f ( y + a d ) ] / a + ( 1 / a ) ( V f ( y + a d ) , a d ) ] = O ,  (17) 
ot-~O 

tim [ [ V f ( y ) - V f ( y + a d ) ] / a ]  =-V2f(y)d ,  (18) 
ot--r 0 

we obtain from (16), by dividing by t~ and letting a ~0,  

(V2f(y)d, [y -x f (y ,  c)]/c) >- ~'c(Y; d), Vd ~ R". (19) 

Replacing d by - d  in (19), we get 

-(V2f(y)d, [y-xy();  c)]/c)>-~'~(y; -d)->-qb'~(y; d), (20) 

where the second inequality is a standard relation for directional derivatives 
of convex functions; see, e.g., Ref. 12, p. 648. 

The relations (19) and (20) imply that 

• '(y; d)=(VZf (y )d , [y -x f (y ,  c)]/c), Vd~R",  (21) 

or equivalently that q5 is ditterentiable and that its gradient is given by 
(14). Since ~c is convex (Proposition 3.2), its gradient is continuous; see, 
e.g., Ref. 12, Proposition A.42. 

The next proposition gives a relation between S*, the minimum set of 
@c(Y), the zone S of the auxiliary function f, and the solution set X*. For 
a function f with zone S = R", we get, as a special case, that X* = S*, which 
was given in Ref. 12, p. 234. 

Define 

S* = {y* ~ S I qbc(y*) <__ qb(y), Vy ~ St. (22) 

Proposition 3.4. Let V2f(z) be nonsingular for all z ¢ S*. Then, 

X* c~ S = S*. (23) 
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Proof. The function F(x)+(1/c)Dy(x ,y)  takes the value F(y) for 
x = y  because Dr(x, y)=0,  itt x = y  (Ref. 6, Lemma 2.1). It follows that 

~c(Y) <- F(y), Vy ~ X n S. (24) 

I f  z* ~ X*,  then (24) holds and we have 

• c(z*) <-- F(z*) <- F(xf(y, c)) <- F(xf(y, c)) + (1/c)Df(xf(y, c), y) 

= qbc(y), Vy ~ S, (25) 

because always Df(x, y) >- O. Thus, z* minimizes qb(y)  over $, i.e., z* ~ S*. 
Conversely, if z* ~ S*, then we have, from (14), 

cVdPc(z*) = V2f(z*)T[z *-x f (z* ,  C)] = O, (26) 

which implies that z * =  xy(z*, c)c X c~ S. Using again (24), we have 

F(z*) = d~c(z*) <-- ebb(y) <-- F(y), Vy e X n S, (27) 

and therefore z* ~ X n S. [] 

The following Df-function version of  a classical lemma (Ref. 23, p. 76) 
about projection operators plays an important role in the proof  of conver- 
gence. 

Proposition 3.5. Let f be an auxiliary function with zone S, and let 
f / ~  R" be some given closed convex set. Denote by Py the Dr-projection 
of  any y c S onto ~ ,  and assume that Py ~ S. Let z ~ f~ n S. Then, for any 
y s S, the inequality 

Df( ey, y) < Of(z, y) - Df(z, Py) (28) 

holds. 

Proof. This is a specialization of  Ref. 5, Lemma 1, for the case of  
Dr-functions; see Ref. 5, p. 206, Example 2. [] 

Finally, we present the convergence proof  of  the PMD algorithm. 

Proposition 3.6. Assume that X*  n S ~  O. Any sequence {x(t)} gener- 
ated by a PMD algorithm, where c(t) > 0 and lim,~oo inf c(t) = c > 0, conver- 
ges to an element of  X*. 

Proof. The proof  consists of  three steps. First, we prove that {x(t)} 
is bounded;  then, we show that all its accumulation points belong to X*; 
and finally, we prove that there is a unique limit point. 
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Step 1. We have 

F(x(t+ 1)) +[1/c(t)]Dy(x(t+ 1), x(t)) 

<--F(x)+[1/c(t)]Df(x,x(t)), V x ~ X n L  (29) 

from which follows that, for all x ~ X n S with 

F(x) <- F(x( t + 1)), (30) 

it is true that 

Df(x(t+ 1), x(t)) <- Of(x, x(t)). (31) 

Therefore, x(t+ 1) is the unique Dr-projection of  x(t) onto the convex set 

= {x ~ X I F(x) ~ F(x(t  + 1))}. (32) 

Using Proposition 3.5 and the fact that X * _  f~, we have 

O<--Df(x(t+l),x(t))<-Ds(x*,x(t))-Df(x*,x(t+l)), (33) 

for every x* ~ X* n S. Thus, 

Ds(x*,x(t+l))<-Df(x*,x(t)), Vx* ~ X * n  $, VI. (34) 

This last inequality amounts to saying that {x(t)} is Dy-F~jer-monotone 
with respect to the set X*  n S, and it implies that {x(t)} is bounded because 
it means that 

x(t) ~ t.~(x*, ~), vt, (35) 

with a = Dy(x*, x(0)), and Assumption A1 applies. 

Step 2. Let {x(t)}t~r, T _ N o ,  be a subsequence converging to x ~ e  
X n ~  Recall that, by (7) and (34), the sequence {Dy(x*,x(t))},~o is 
nonnegative and nonincreasing; thus, lira Ds(x*, x(t)) exists for any x * c  
X*  n S. In view of (33), 

l imDs(x(t+l),x(t))=O, as t~oo;  

thus, also 

lim Ds(x(t + 1), x(t)) = 0, (36) 
t-~OO 

t ~ T  

which by Assumption A3 implies that {x( t+  1)},~r also converges to x ~. 
Next, observe that (29) remains true with x = x(t);  thus, 

F(x(t+l))+[1/c(t)]Dy(x(t+l),x(t))<-F(x(t)) ,  Vt, (37) 

because 

Os(X( t), x( t)) = O. 
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This implies 

F(x(t))  - F(x( t  + 1)) 

>_[1/c(t)]Df(x(t+ l),x(t))>--O, Yr. (38) 

Therefore, {F(x(t))},~No is nonincreasing and {F(x(t))}t~r converges to 
F(x~). 

Let x* ~ X *  n S and t~ ~ (0, 1), and set 

x = ~ex* + (1 - ot)x(t+ 1) 

in (29). From the convexity of  F(x), we get 

F(x( t+  1 ) ) + [ 1 / c ( t ) ] D f ( x ( t +  1), x(t)) 

<-- F(t~x* + (1 - a)x(  t + 1)) 

+ [1/c(t)]Df(otx* + (1 - ot)x(t + 1), x(t)) 

<- t~F(x*) + (1 - a) F(x( t  + 1)) 

+ [1/c(t)]Dy(cex* + (1 - ot)x(t + 1), x(t)), (39) 

which, by (5), can be rewritten as 

ac(t)[F(x(t  + 1)) - F (x*) ]  

<--f(x(t + 1) - a (x*  - x ( t  + 1))) - f ( x ( t  + 1)) 

- a (Vf(x( t ) ) ,  x* - x ( t  + 1)). (40) 

Dividing by ot taking the limit as t~-> 0 +, and denoting by f ' ( . ; '  ) the 
directional derivative, we get 

c(t)[F(x(t  + 1)) - F(x*) ]  

<-f '(x(t+ 1); x* - x ( t +  1)) - (V f (x ( t ) ) ,  x* - x ( t +  1)) 

= (Vf (x ( t+  1)) -V f ( x ( t ) ) ,  x * - x ( t +  1)) 

= D f ( x * , x ( t ) ) - D f ( x * , x ( t + l ) ) - D f ( x ( t + l ) , x ( t ) ) .  (41) 

The optimality of  x* and the fact that c( t )>c>O, Vt, guarantee the 
nonnegativity of  the left-hand side of  (41) for all t. 

From the existence of  limt_~ Dy(x*, x(t)) ,  for any x* ~ X* n $, we 
obtain 

lim [ Ds(x*, x(t)) - Dy(x*, x(t  + 1))] = 0, (42) 
t--*OO 

tt~ T 
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and the remaining term in the right-hand side of  (41) also tends to zero by 
(36). Thus, 

0 = lim [ F ( x ( t  + 1)) - F (x*) ]  = F(x °°) - F(x*), (43) 
t ---~oo 

t ~ T  

and so x°°~ X*. 

Step 3. Let 

{x ( t ) } ,~ -  1 ~ x* ~ x *  c~ g, 

{x(t)}t~T2 t -~  X** E X* n S, 

for some T~ _ No and T2__ No. Defining 

H(x(t))  = Df(x*, x ( t ) ) -  Df(x**, x(t)), 

it follows that the limit 

(44) 

(45) 

(46) 

lim H ( x (  t) ) = H (47) 
t ---~ o o  

exists. Therefore, we have, by (7), 

H = lim H(x(t))  = -Dr(x**, x*) <- O, (48) 
t ~ o o  

t ~ T 1  

yielding 

H = lim H(x(t))  = Dy(x*, x**) >- O, (49) 
t---~ cx) 

t ~  T 2 

DA x*, x**) = DA x**, x*) = O, 

which implies that x * =  x**. 

(50) 

[] 

4. Quadratic Case, Entropy Case, and Other Cases 

Choosing the auxiliary function f ( x )  = (1/2)ilxll 2 with A = S = S =  R" 
gives D/(x, y) = (1/2)l lx-Yll  2 and immediately returns the PMD algorithm 
to its original form with quadratic additive terms; see Refs. 3-4. 
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Define the x log x (Shannon) entropy functional ent x, which maps R~_ 
into R by 

ent x = - ~ xj log( xJ aj ), (51) 
j=l 

where a = (aj) ~ R n is a given positive vector, log is the natural logarithm, 
and 0 log 0 -- 0 by convention. 

The function -ent  x is a Bregman function, in the terminology of Ref. 
6, with A=R~_ and zone S={x~R"lx>O}; see, e.g., Ref. 9, Lemma 5. 
Furthermore, it can be verified that Assumptions A1-A5 hold, and thus the 
analysis of the PMD algorithm presented here applies. 

For f(x) = -en t  x, we have 

Df(x,y)= ~. xj[log(xJyj)-l]+ ~ yj, (52) 
j=1 j = l  

and the iterative step of the entropy-type PMD algorithm is obtained 
from (9). 

In the case where problem (1) is linear programming, F(x) = (b, x) for 
some given b = (bj) ~ R", and x ~ X are linear constraints, (9) becomes 

x ( t + l ) = a r g m i n  ~ xjbj+[1/c(t)] ~ xj[log(x/xj(t))-l] 
xcXnR~- L j = I  j = l  

+[1/c(t)] ~ xj(t)l. (53) 
j = l  J 

This is essentially a linearly constrained pure entropy optimization 
problem obtained by subsuming all linear terms into the entropy functional. 
For such problems, several useful iterative algorithms exist (see Ref. 9), 
which lend themselves efficiently to parallel computation; see, e.g., Refs. 
24-25. The advantages, in practice, of an entropy or otherwise oriented 
PMD algorithm over the original quadratic-additive-term proximal minimiz- 
ation algorithm, if any, depend to a great extent on two factors. One is the 
specific form of the original problem (1); the second is the availability of 
efficient special-purpose algorithms for performing the step (9). Various 
special-purpose algorithms exist (e.g., Refs. 26-27); others may be 
developed. 

Such practical questions may be settled in further experimental research 
which is outside the scope of the present paper. See, e.g., Refs. 28-29 for 
recent experimental work with the algorithms of this paper. There seems 
to be also room for further study in the identification of additional specific 
usable and useful auxiliary functions; see, e.g., the characterization of 
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Bregman functions in Ref. 7 and the results in Ref. 22. See also Ref. 15, 
Examples  3.1. 
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