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Abstract

Recent advancements in Multi-modal Large Language Models (MLLMs) have
led to significant progress in developing GUI agents for general tasks such as web
browsing and mobile phone use. However, their application in professional do-
mains remains under-explored. These specialized workflows introduce unique
challenges for GUI perception models, including high-resolution displays and
complex environments which lead to smaller target sizes. In this paper, we in-
troduce ScreenSpot-Pro, a new benchmark designed to rigorously evaluate the
grounding capabilities of MLLMSs in high-resolution professional settings. The
benchmark comprises authentic high-resolution images from a variety of profes-
sional domains with expert annotations. It spans 23 applications across five in-
dustries and three operating systems. Existing GUI grounding models perform
poorly on this dataset, with the best model achieving only 18.9%. Our experi-
ments reveal that strategically reducing the search area enhances accuracy. Based
on this insight, we propose ScreenSeekeR, a visual search method that utilizes
the GUI knowledge of a strong planner to guide a cascaded search, achieving
state-of-the-art performance with 48.1% without any additional training. We
hope that our benchmark and findings will advance the development of GUI
agents for professional settings. The code, data and benchmark are available at
https://gui-agent.github.io/grounding-leaderboard/.

1 Introduction

Imagine a future where the everyday burdens of repetitive computer tasks are lifted, unleashing
people’s full productivity and creativity. A GUI agent capable of taking over the mundane operations
of complex professional applications like Visual Studio Code, AutoCAD, Photoshop, could greatly
enable computer users to focus exclusively on the work that truly matters. Recent advancements
in Multi-modal Large Language Models (MLLMs) [1, 2, 3, 4] have significantly invigorated this
pursuit, driving intensive research efforts in creating pure-vision based GUI agent models that can
directly interact with electronic devices that are integral to modern life [5, 6].
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However, many existing studies primarily address general and easy tasks, such as general computer
control [7, 8], web browsing [9, 10, 11], lifestyle and utility apps [12, 13]. In contrast, professional
applications remain largely unexplored, with only a few works featuring specialized tasks such as
coding in VSCode [14]. These software are designed to provide a comprehensive suite of advanced
features, catering to specialized tasks and workflows, and are thus fundamental in productivity and
creative industries. Developing GUI agent systems could not only reduce the manual burden of
repetitive actions but also enhance productivity and lower the barrier to entry for non-expert users.

To advance toward this vision, we focus on
a previously underexplored challenge: GUI
grounding in professional, high-resolution soft-
ware environments. Given a natural language
instruction and a screenshot, the goal is to
ground the instruction to the precise location
of the target UI element. The primary chal-
lenges in applying GUI grounding models to o H
these professional applications are threefold: mﬂﬂ AL S A

(1) the significantly greater complexity of pro- S, S B Pt
fessional applications compared to general-use

software, which often requires higher resolu- Figure 1: Performance of the expert GUI ground-
tions that may be difficult for existing MLLMs ing models SeeClick [8], OS-Atlas-7B [15],
to handle; (2) as user interfaces are typically UGround [16], and the generalist MLLM Qwen2-
designed with fixed pixel sizes and users need VL-7B [2] on the ScreenSpot-v2 GUI grounding
to display more content on the screen, the in- benchmark [15]. The elements on the x-axis are
creased resolution results in smaller relative tar- arranged in logarithmically decreasing order, rep-
get sizes within the screenshot. This often leads ~resenting their relative size in the entire image.
to poorer performance of GUI grounding mod- There is a universal decrease in accuracy as the
els, as we demonstrate in Figure 1; (3) profes- target box size becomes smaller.

sional users frequently rely on supplementary

documents and external tools to assist their workflows, further complicating the screen and intro-
ducing additional challenges for GUI understanding. Consequently, even if the MLLMs are able
to comprehend the user instructions, it is difficult for them to ground the instructions into precise
locations in such complex screenshots.
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To fill the notable gap in research on GUI operations in professional environments, we introduce
ScreenSpot-Pro, a novel GUI grounding benchmark that includes 1,581 expert-annotated instruc-
tions in their authentic workflows, each in a unique screenshot. They are sourced from 23 applica-
tions in five types of industries, as well as common usages in 3 operating systems. ScreenSpot-Pro
differentiates itself from previous grounding benchmarks [8, 15, 17] in that: (1) Data Diversity:
ScreenSpot-Pro includes authentic high-resolution images and tasks from a wide range of profes-
sional applications and domains, beyond simple web browsing or mobile use, reflecting the com-
plexity and variety of real-world professional scenarios; (2) Applicability: ScreenSpot-Pro provides
full screenshots, avoiding the unrealistic evaluation of GUI grounding in cropped local regions; (3)
Quality: ScreenSpot-Pro is annotated by professional users, ensuring rigorous quality control to
maintain the validity of test samples, thereby guaranteeing reliable and meaningful evaluation re-
sults. A visual comparison of ScreenSpot-Pro and ScreenSpot [8], a widely-used GUI grounding
benchmark, is presented in Figure 2.

Through extensive experiments, we found that strategically narrowing the search area within an
image leads to significant performance improvements. Building on this insight, we propose several
baseline methods for the task, including ScreenSeekeR, an agentic framework designed as a baseline
approach for GUI grounding in high-resolution environments. It leverages the inherent hierarchical
structures in GUI screenshots and the rich GUI-related knowledge within the MLLM planner to
guide the search process. Instead of directly identifying the target UI element, it systematically
reasons over user instructions to predict the most probable regions. These regions are progressively
cropped to remove irrelevant distractions, allowing the grounding model to operate on a simplified
subarea of the image. With this approach, ScreenSeekeR boosts the OS-Atlas-7B [15] model’s
performance from 18.9% to 48.1%, achieving a 254% relative improvement. This finding, along
with ScreenSpot-Pro, offers essential insights that could guide the development of future advanced
GUI grounding models.
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Figure 2: ScreenSpot [8] (left) vs ScreenSpot-Pro (right). ScreenSpot-Pro features screenshots of
the entire screen, while ScreenSpot contains unrealistic screenshots cropped to local areas. Targets
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Figure 3: Task distribution and benchmark results of ScreenSpot-Pro.

Our contribution is summarized as follows:

* We present ScreenSpot-Pro, a novel benchmark for GUI grounding with authentic tasks
collected from 26 high-resolution professional desktop environments.

* We identify key challenges in GUI grounding and introduce baseline methods performing
visual search to tackle the difficulties posed by the high resolution and small relative target

sizes.

* We propose ScreenSeekeR, an agentic framework for adapting existing GUI grounding
models to perform visual search in high-resolution screenshots in a training-free fashion,

achieving state-of-the-art performance on ScreenSpot-Pro.

2 Related Works

2.1 GUI Grounding

The aspiration to build autonomous agents that assist humans in daily tasks has long captivated
researchers. Recently, Multimodal Large Language Models [18, 1, 2] have demonstrated remark-
able progress in image understanding and reasoning. These advancements have greatly inspired
applications in GUI agents to process both visual and linguistic inputs, allowing them to handle a
wider range of tasks [19, 12, 20, 21, 22]. A fundamental aspect of GUI agents is grounding, which
translates high-level plans into executable actions located on the screen. Leveraging the capabilities
of MLLMs, GUI grounding models [8, 16, 15, 23] are fine-tuned on large-scale text-position pairs
extracted from screenshots. This process significantly enhances their ability to align language com-



mands with visual elements, improving the accuracy and effectiveness of GUI agents in real-world
applications.

To evaluate GUI grounding abilities, previous benchmarks have primarily focused on simple tasks
such as web browsing and mobile interactions. However, these benchmarks oversimplify the prob-
lem. For instance, ScreenSpot [8] facilitates artificial screenshots by cropping regions from full-
screen images. ScreenSpot-v2 [15] fixes annotation errors in ScreenSpot. VisualWebBench [17]
reformulates location prediction as multiple-choice questions by providing candidate targets. Fur-
thermore, these benchmarks overlook the importance and challenge of productivity tools in profes-
sional settings. To address these limitations, we introduce ScreenSpot-Pro, a benchmark designed to
provide a more rigorous evaluation of GUI grounding in high-resolution professional environments.

2.2 Processing High Resolution Images

Though several approaches have been proposed to tackle the challenge of processing high-resolution
images in MLLMs, including resolution scaling [3] and simple cropping [24, 6], these methods
struggle to perform effectively at ultra-high resolutions due to inherent model limitations, such as
short context lengths and low-resolution training data. For instance, UGround [16] supports reso-
lutions up to 1344 x 1344, while QwenVL [25] operates at 448 x 448. Further increasing input
resolutions necessitates innovative model architectures and significant computational resources for
retraining. An alternative approach involves utilizing visual search techniques [26, 27]. However,
these methods depend on predefined splitting strategies, which constrain search flexibility and may
result in missing contextual information in GUI environments. Moreover, V* [26] requires training
the MLLM with an additional segmentation module to generate guidance maps, which makes it im-
practical for GUI tasks due to the diversity of UI functionalities, compounded by the lack of large
available datasets.

3 ScreenSpot-Pro: Benchmarking GUI Grounding for Professional
High-Resolution Computer Use

In this section, we introduce the data collection range, criteria, processing procedure, quality control
measures, and provide a statistical overview of ScreenSpot-Pro.

3.1 Scope of Data Collection

ScreenSpot-Pro includes six distinct application genres, with a primary focus on four types of pro-
fessional applications. Additionally, it features office productivity software and common operating
system tasks. A detailed list of the collection can be found in Table 1. These categories include:

Development and Programming. Development and programming software supports the entire
lifecycle of software development, from writing code to debugging and testing applications. These
tools provide integrated environments that enhance productivity and collaboration, offering features
like syntax highlighting, version control integration, and debugging tools. The applications in this
category include VSCode (code editor), PyCharm (Python IDE), Android Studio (Android app
development), and Quartus (FPGA programming). Additionally, virtualization is critical for creat-
ing scalable computing solutions and managing virtual environments, so we also include VMware
Fusion (virtual machine management).

Creative Software. Creative software includes applications designed for the creation and editing
of visual, audio, and video content. These tools are essential in industries such as graphic design,
video production, and music composition, enabling professionals to produce high-quality media for
various platforms. The tools in this category include Photoshop (image editing), Premiere (video
editing), Illustrator (vector graphic design), FruitLoops Studio (music production), DaVinci Re-
solve (color grading and video editing), Unreal Engine (game engine and 3D simulation), and
Blender (3D modeling and animation).

Computer-Aided Design (CAD) and Engineering. CAD and engineering software are used to
design and model physical objects and systems. These applications are vital in fields such as en-



gineering, architecture, and product manufacturing, where precision design and simulation are re-
quired. They enable professionals to create detailed 2D drawings, 3D models, and simulate the
behavior of mechanical structures. The tools in this category include AutoCAD (2D/3D design),
SolidWorks (3D CAD and simulation), Inventor (mechanical design), and Vivado (circuit design
and FPGA programming).

Scientific and Analytical. Scientific and analytical software is designed for data analysis, numer-
ical computation, and mathematical modeling. These applications are indispensable in fields like
research, engineering, and data science, providing robust environments for analyzing large datasets,
solving complex mathematical problems, and running simulations. The software in this category
includes MATLAB (numerical computation and algorithm development), Origin (data analysis and
scientific visualization), Stata (statistical analysis), and EViews (econometric modeling).

Office Software. Office software includes applications designed to facilitate productivity in tasks
such as document creation, data analysis, communication, and presentation. These tools are widely
used across various industries to manage workflows and support collaborative environments. Key
applications in this category include Word (word processing), Excel (spreadsheets and data analy-
sis), PowerPoint (presentation design).

Operation System Commons. Apart from professional software, ScreenSpot-Pro also includes
basic operating system operations to evaluate models in high-res environments. These samples are
referred to as Operating System Commons, encompassing the general use and interaction with an
OS. These include file management, system utilities, etc., that are fundamental to day-to-day tasks
on any OS. For this category, we include Windows, macOS, and Linux.

3.2 Collection Method and Criteria

ScreenSpot-Pro captures realistic tasks in real-world challenges across various platforms and appli-
cations. Experts with at least five years of experience using the relevant applications were invited
to record the data. They were instructed to perform their regular work routine to ensure the authen-
ticity of the tasks whenever possible. To minimize disruptions to their workflow, we developed a
silently running screen capture tool, accessible through a shortcut key. When activated, this tool
takes a screenshot and overlays it on the screen, allowing experts to label the bounding boxes and
provide instructions directly. This method enhances the consistency and quality of the annotations,
as experts can label tasks in real-time without the need to recall the purposes and context of their
actions in hindsight.

To obtain authentic high-resolution images, we prioritized screens with a resolution greater than
1080p (1920 x 1080), a configuration commonly found among annotators. Monitor scaling was
disabled. In dual-monitor setups, images were captured to span both displays.

Following SeeClick [8], we also specify the type of the target element, categorizing it as either text
or icon. We refined the classification criteria to better discriminate ambiguous cases where icons are
accompanied by text labels, which is common in AutoCAD and Office suites. Specifically, a target
is classified as icon only when no text hints are present. If text labels are present, the target is labeled
as text, even if an icon is included.

3.3 Quality Control

ScreenSpot-Pro has undergone strict quality control to ensure its high-quality in three notable as-
pects.

Task Validity. Each instance in the dataset is reviewed by at least two annotators to ensure its
correctness. Specifically, we removed instructions that caused ambiguity: each instruction must
refer to, and only to, a single area in the image. It is also guaranteed that all instructions can be
executed directly on the screenshot without requiring further actions, such as switching to other
windows, opening menus, or right-clicking.

Target Box Precision. To ensure precise and reliable annotations, the annotations are required
to tightly encompass all parts of interactable regions. For instance, the bounding box for a menu



Table 1: List of software collected in ScreenSpot-Pro.

Icon Abbr. Application Edition & Version OS Icons Texts
Development and Programming
e VSC Visual Studio Code  1.95 macOS 22 33
PyC PyCharm 2023.3 macOS 38 40
A AS Android Studio 2022.2 macOS 44 36
B  ors  Quartus 11 13.0 SP1 Windows 32 13
g VM VMware Fusion 13.6.1 macOS 9 32
Creative
PS Photoshop 2020 Windows 25 26
Pr] PR Premiere 2025 Windows 24 28
a Al Adobe Illustrator 2025 Windows 19 12
A Bl Blender 4.0.2 Windows 15 56
B ro FruitLoops Studio 20.8.3 Windows 31 26
A §) ) Unreal Engine 544 Windows 6 29
§ DR DaVinci Resolve 19.0.3 macOS 23 21
CAD and Engineering
l CAD AutoCAD Mechanical 2019 Windows 7 27
® SW SolidWorks Premium 2018 x64 Windows 14 63
o Inv Inventor Professional 2019 Windows 11 59
) Vvd Vivado 2018.3 Windows 32 48
Scientific and Analytical
4 MAT MATLAB R2022b Windows 19 74
@ Org Origin 2018 Windows 43 19
= Stt Stata SE 16 Windows 41 8
4 Evw  EViews 10 Windows 7 43
Office Suite
| Wrd Word Office 365 (16.90) macOS 15 69
@ PPT PowerPoint Home and Student 2019  Windows 25 57
@ Exc Excel Office 365 (16.82) macOS 13 51
Operating System Commons

s Win Windows 11 Professional - 47 34
@ mac macOS Sonoma 14.5 - 23 42
06) Lnx Linux Ubuntu 24.04 - 19 31

item should not only include the visible text but also extend to cover its full clickable area. This
approach minimizes ambiguity in the bounding boxes, providing a more accurate representation of
the elements for rigorous evaluation.

Icon/Text Classification. During annotation, we observed some icons accompanied by text. To
standardize the criteria, we classify an element as text if there are hint labels on or around the area,
even if the target is graphical.

3.4 ScreenSpot-Pro Statistics

Figure 3 summarizes the collected GUI data, encompassing many applications and resolutions, of-
fering a level of diversity unmatched by previous benchmarks. The text constitute 62.6% of the
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Figure 4: Comparison of visual search strategies used by methods.

Algorithm 1 ScreenSeekeR
1: Input: Instruction 7', Image Iimg, Max Depth Dpax, Min Size Smin
2: Output: Target Bounding Box b
3: function VISUALSEARCH(T, I, Dmax, Smin, d)

4 d « 0, viewport < (0,0,1,1)
5: if depth > Diax or Iimg too small then
6: return DIRECTGROUNDING(/, viewport)
7: end if
8 candidates < POSITIONINFERENCE(Y, I)
9: patches <— GROUND(candidates)
10: dilated_patches <— DILATE(patches, Smin, Rmax)
11: scores < SCOREPATCHES(nms_patches)
12: nms_patches < NMS(dilated_patches)
13: sorted_patches <— SORT(nms_patches, scores)
14: for each patch € sorted_patches do
15: sub_image <— CROPIMAGE(I, patch)
16: b < VISUALSEARCH(T, sub_image,d + 1)
17: if b is not None then
18: return b
19: end if
20: end for
21: return None

22: end function

elements, with the remainder being icons. Notably, targets in ScreenSpot-Pro occupy 0.07% of the
screenshot area on average, a significant reduction compared to 2.01% of ScreenSpot [8].

4 Baseline Methods

In this section, we present five baseline methods evaluated on the ScreenSpot-Pro benchmark. We
begin with a straightforward approach that utilizes the powerful the GPT-40 [1] model to refine
the instructions. Recognizing that the primary challenge stems from the high resolution of the
screenshots and the small size of UI targets, we then propose planner-free visual search strategies
that employ multi-round grounding to progressively reduce the search area. Lastly, we introduce
ScreenSeekeR, a method that leverages guidance from a MLLM planner to further improve the
search process.

4.1 GPT Instruction
In line with prior work such as UGround [16] and OS-Atlas [15], we leverage GPT-40 to examine

the screenshot and generate a rewritten detailed instruction optimized for the grounding model. The
prompt used are listed in the supplementary materials.

4.2 Planner-Free Visual Search Methods

Iterative Splitting (Figure 4a). Inspired by V*’s iterative approach [26], Iterative Splitting first
performs grounding directly on the whole screenshot, and splits the screenshot into smaller patches.



At each step, it chooses the patch the prediction falls into to continue searching within. We always
use a 2 row X 2 column splitting strategy.

Iterative Narrowing (Figure 4b). This baseline operates in the same ground-and-zoom procedure
as Iterative Splitting, but the patches are cropped to center the prediction. The patch size is set to
half the width and height of the image at each step. This approach closely aligns with a concurrent
work [28].

ReGround. We assess a simple baseline that crops the region surrounding the initial prediction to
re-ground and make a final determination. Comparing to Iterative Narrowing, the size of the crop is
fixed and can be manually configured based on the optimal input size of the models.

4.3 ScreenSeekeR: An Agentic Grounding Framework

Unlike natural images, the UI of applications typically follows a well-defined hierarchy. For exam-
ple, menus, tools, and properties are often organized within sub-panels or child windows, providing
potential cues on where to search for a UI target (Figure 4c). Based on the observation, we pro-
pose ScreenSeekeR, adopting the idea of visual search to address the problem of GUI grounding in
professional high-resolution computer screens.

The core idea behind ScreenSeekeR is to utilize the GUI knowledge of a strong planner (GPT-40)
to generate possible areas to guide the search. Given a text instruction 7" and an image I, the
algorithm begins the search over the entire image and progressively narrows the search area based
on inferred positions. First, the planner proposes the most possible areas to search within based on
the screenshot. The candidate areas are filtered and scored using the predictions of the grounder
model. Then, the planner continues to search recursively or terminate if it thinks the target is found.
The algorithm is summarized in Algorithm 1 and an example is visualized in Figure 5.

Position Inference The core of the algorithm lies in Position Inference, where GPT-40 analyzes
the instruction 7T to predict the potential locations of the target. Initially, it identifies the approxi-
mate location of the target UI and predicts a series of areas that likely enclose the target. It then
leverages common knowledge to infer possible neighboring Ul elements in proximity to the target.
For example, a “new” button typically appears near the “delete” button. This allows the model to
generate a set of candidate regions in the image that are likely to contain the target. The prompts
can be found in Appendix B.

Candidate Area Scoring The grounded bounding boxes are often noisy, so we apply box dilation
to expand smaller ones into larger candidate areas, reducing the risk of missing the target. Next,
candidates are ranked based on the sum of their scores across all grounded boxes to determine the
search order. Each candidate’s score from a given box is computed using a predefined function that
considers the distance between their center points:

o Jexp (_ (x/—0-5);;r2(y’—0-5)2) . if point inside )
0, otherwise
2 = T — 1 ’ Yy—Uy )

y Y =
T2 — X1 Y2 — 1

where (x,y) is the center of a voting box, and (1, y1, 2, y2) represent the coordinates of the can-
didate area. o is set to 0.3 in all experiments. Candidates with more voting boxes closer to their
center receive higher scores, while those further away are assigned progressively lower scores. This
centrality-based approach emulates human visual attention, and mitigates the scoring bias towards
large areas, which would otherwise slow down the search process.

The candidates are then subjected to non-maximum suppression (NMS) to decrease overlapping
regions. When two boxes overlap greatly, the one with a higher score is kept.



Table 2: Model Performance by Software. The abbreviations used in the table are defined in Table 1.

Development CAD = Scientific Officy os

Model ‘ ‘ » Creative ‘C ‘ e | ave
AS PyC VSC VM UE | PS Bl PR DR AI FL CADSW Inv Qrs Vvd |MAT Org Evw Stt |[PPT Exc Wrd|Lnx mac Win
0S-Atlas-7B 8.8 154 255 341 229|176 225 173 273 32 105(|29 39 29 133 263|237 113 540 122|220 125 440 200 200 12.3|18.9
UGround (7B) 75 77 218 317 20.0|21.6 254 173 114 00 140(29 00 7.1 156 287|237 6.5 460 00 [256 156 369 180 123 25 |165
AriaUI (3.9/25.3B MoE) 0.0 38 21.8 24 0.0 {275 268 173 23 00 123[00 13 14 200 175|215 16 440 6.1 |61 16 369 20 31 25113
ShowUI (2B) 38 77 55 220 11459 70 58 00 32 3500 00 14 156 50 | 86 129 160 6.1 | 98 63 226 40 108 49 | 7.7
CogAgent (18B) 25 51 164 98 29 |11.8 70 77 00 00 53|00 1.3 00 1.1 188|161 1.6 340 20| 6.1 00 214 20 46 25|77
0S-Atlas-4B 1.3 13 127 24 00|00 28 19 23 32 53|00 00 14 22 38|75 32 200 00|49 00 83 60 00 37|37
MiniCPM-V (7B) 00 26 91 24 00|39 00 38 00 00 00[00 00 00 67 11322 16 180 00|49 00 36 00 31 37|30
Qwen2-VL-7B 00 00 55 00 29|20 00 00 00 00 18[00 00 00 22 13|22 00 120 20|24 00 60 20 00 00| L6
SeeClick (7B) 00 00 00 24 00|00 14 19 00 00 0029 00 57 00 00|00 00 80 20|00 00 24 20 15 12| L1
Qwen2-VL-72B 00 13 1.8 00 00|20 14 00 00 00 0000 13 14 22 00|00 00 80 41|00 00 24 00 00 12| 10
GPT-40 00 13 00 24 29|20 00 00 00 00 0000 13 29 00 13|22 00 20 00|00 16 12 00 00 00|08
QwenVL-7B 00 00 00 00 00|00 00 00 00 00 00|00 00 00 00 00]00 00 00 20|00 00 00 00 00 00]O0.1

Table 3: Performance breakdown of various models across application categories on ScreenSpot-
Pro.

Model Development # Creative CAD 41 Scientific Office oS Avg

Text Icon Avg | Text Icon Avg | Text Icon Avg | Text Icon Avg | Text Icon Avg | Text Icon Avg | Text Icon Avg
OSAtlas-7B 331 1.4 17.7 | 288 28 179|122 47 103|375 73 244 339 57 274|271 45 168|281 40 189
UGround (7B) 266 2.1 147|273 28 170|142 16 11.1 319 27 193 31.6 113 270|178 00 97 | 250 28 165
AriaUI (3.9/253B MoE) 162 0.0 84 | 237 21 147 | 76 16 61 |271 64 181 203 19 161 | 47 00 26 |17.1 20 113
CogAgent (18B) 149 07 80| 96 00 56 | 71 31 61 |[222 1.8 134 130 00 100| 56 00 31 |120 08 7.7
ShowUI (2B) 169 14 94|91 00 53|25 00 19 132 73 106 153 75 135|103 22 6.6 | 108 26 7.7
OSAtlas-4B 71 00 37|30 14 2320 00 15|90 55 75 51 38 48| 56 00 3.1 |50 17 37
MiniCPM-V (7B) 71 00 37|20 00 12| 41 16 34 |83 00 47 28 38 30| 37 11 26|45 07 30
Qwen2-VL-7B 26 00 13|15 00 09|05 00 04|63 00 35 34 19 30|09 00 05|25 02 16
SeeClick (7B) 06 00 03|10 00 06 |25 00 19|35 00 20 11 00 09|28 00 15| 1.8 00 1.1
GPT-40 13 00 07|10 00 06 (20 00 15|21 00 12 11 00 09|00 00 00| 13 00 08
QwenVL-7B 00 00 00|00 00 00|00 00 00|07 00 04 00 00 00] 00 00 00| 01 00 0.1

Recursive Search The algorithm recursively searches each candidate area by cropping out a sub-
image, which is passed into the recursive search function, VisualSearch(I, sub_image, d+1). The
grounder model is invoked if the patch size is sufficiently small (a hyperparameter set to 1280 pixels),
and the planner verifies the correctness of the bounding box. This recursive process continues until
the planner determines that the target has been found or until the maximum search depth is reached.

5 Experiments

With ScreenSpot-Pro, we rigorously evaluate the correctness whether the model’s predictions fall
into the annotated ground truth boxes. For models inferencing boxes, we consider the center point
of the generated box as the prediction.

End-to-end Models. We conduct the experiments on several MLLMs that support GUI Ground-
ing: QwenVL-7B [25], Qwen2VL-7B [2], MiniCPM-V-2.6 (8B) [29], CogAgent (18B) ' [6],
SeeClick (7B) [8], UGround (7B) [16], OSAtlas-4B, OSAtlas-7B [15], ShowUI (2B) [30] and Aria-
UI (Mixture of Experts, 3.9B active) [23]. We handle the varying formats of the location outputs to
ensure a fair comparison across models.

Baseline Methods. We compare the five baseline methods introduced in Section 4 with OS-Atlas-
7B [15] as the grounding model, and GPT-40 [1] as the planner if applicable. The number of
iterations in Iterative Splitting and Iterative Narrowing are both set to 3 following (author?) [28] for
a fair comparison.

5.1 Results of End-to-End Models

Models struggle on ScreenSpot-Pro, even the specialist models The full results of the GUI
grounding models are presented in Table 2. OS-Atlas-7B leads the performance with an accuracy of
18.9%, closely followed by UGround and AriaUI. None of the other models achieved an accuracy
above 10%. Notably, GPT-40 scored only 0.8%, highlighting its limitations for the GUI grounding
task despite its strong understanding capability.

Icons targets are more difficult to ground than texts Table 3 demonstrates that the benchmarked
models struggle significantly in identifying and grounding icon elements in the GUI, a consistent

'"THUDM/cogagent-chat-hf



finding with (author?) [8]. The challenge is exacerbated by the professional applications, as they
may feature an extensive number of icons as a result of the complex functionality, e.g. Origin’s tool-
bar (see Figure 3 in the Appendix). Moreover, the icons carry unique meanings within professional
contexts that are rarely encountered in the web data, on which many models are primarily trained.

5.2 Results of Baseline Methods

Table 4: Comparison of methods on ScreenSpot-Pro with OS-Atlas-7B.

Model »Dev  # Creative CAD 1 Scientific Office oS Qverall

- Text @ Icon Avg
OS-Atlas-7B 17.7 17.9 10.3 24.4 27.4 16.8 28.1 4.0 18.9
GPT-4o0 Instruction 19.7 19.6 10.7 323 274 15.3 30.2 5.6 20.8
Iterative Splitting 33.1 27.3 23.8 25.2 439 36.2 43.5 10.8 31.0
Iterative Narrowing 34.4 27.3 20.3 29.5 40.9 43.9 435 13.1 31.9
ReGround 37.5 38.1 333 37.8 59.1 37.8 55.7 15.1 40.2
w/o Recursive Search 40.8 35.5 333 445 58.7 434 51.8 16.2 41.9
w/o Neighbor Inference 46.8 41.6 333 449 63.0 53.6 62.4 20.4 46.4
w/o Patch Scoring 48.5 42.8 34.1 47.6 61.3 50.0 63.3 20.2 46.8
ScreenSeekeR 49.8 . 41.9 1240 37.9 276 47.2 s 64.3 1360 52.0 4352 64.1 360 22.4 154 48.1 20>

ReGround achieves the best result among
planner-free methods. The results of base- Taple 5: Performance comparison of different
line models are listed in Figure 4. Interestingly, planner models and grounding models in the

the simplest baseline ReGround achieved the ScreenSeekeR algorithm on ScreenSpot-Pro.
highest performance with OS-Atlas-7B, reach-

ing 40.2%. Iterative Narrowing slightly outper- ~ Planner Grounder Text Icon Avg
formeq Iterative .Fqcusing, likely due; to its su- Owenz-vL7op UGround 7B) 337 96 245
perior image-splitting strategy handling targets wens Vi OS-Atlas-7B 357 83 260
near the center of the screenshot without cutting  gpt.4, UGround (7B) 562 152 405
them off. OS-Atlas-7B 64.1 224 48.1

ScreenSeekeR achieves SOTA on

ScreenSpot-Pro Table 5 demonstrates the superior performance of ScreenSeekeR on ScreenSpot-
Pro. While the base model, OS-Atlas-7B, achieves only 18.9% accuracy, and explaining instructions
with GPT-40 results in only a 1.9% improvement, our method significantly boosts its accuracy
to an impressive 48.1% without any additional training. These results highlight that the primary
bottleneck lies in the grounding model. With a proper design, models with strong screenshot
understanding capabilities, even if not specifically optimized for grounding, can still be leveraged
to significantly improve grounding performance.

ScreenSeekeR generates intuitive and explainable search traces As shown in the case study in
Figure 1, given the task of “delete file or folder”, the plain model completely fails and ReGround
was misled into grounding the file tab in the background VSCode window, as its initial grounding
attempt was too far away from the ground truth. In contrast, ScreenSeekeR not only successfully
grounds the target Ul but also generates a natural search trajectory. It first focuses on the open
Explorer window, then searches the top action bar before identifying the target, closely aligning
with a human user’s thought process. This feature is not only effective but also makes it possible to
interpret the model, as it provides a clear and understandable explanation of the search process.

5.3 Ablation studies

Ablations on the crop size of ReGround Ta-

ble 6 examines the impact of crop size in Re- Table 6: Ablation of crop size in ReGround.

Ground on the two top-performing models, OS-

Atlas_7B and UGround (7B). Both models ex- Crop Size 512 x 512 768 x 768 1024 x 1024 1280 x 1280
1hi 1thi 1 OS-Atlas-7B 25.1 342 40.2 40.1

hlblt peak performance within spef:lflc resqlu— Uomound (78) 370 s B o3

tion ranges, with performance declining as im-

age sizes deviate. OS-Atlas-7B achieves its best
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The <element>delete button</element> @ The <element>delete button</element>
is most likely to be found in the is most likely to be found in the
<area>top action bar</area>, next to <area>toolbar at the top of the file
the <neighbor>New button</neighbor. explorer window</area>.

k ScreenSeekeR j

@ The <element>delete button</element> @
is most likely to be found in the
<area>File Explorer window</area>.

Figure 5: A case study comparing ScreenSeekeR (bottom) with the plain model prediction (top left)
and ReGround (top right). The task is “delete file or folder”. Grounding results are marked in the
same color as the text references under the screenshots. Final results are drawn in red boxes.

score with 1024x1024 crops, while UGround performs optimally with 768x768 crops. This behav-
ior is expected: when images are too small, crucial context is lost [28], whereas images that are too
large exceed the model’s processing capacity.

Ablation on key designs of ScreenSeekeR To evaluate the impact of each key component, we
conducted ablation studies on ScreenSeekeR. In the bottom part of Table 4, we show that removing
subsequent searches and retaining only the first planner decision led to the most significant perfor-
mance drop, reducing accuracy to 41.9%. When neighbor inference is ablated, limiting the planner
to only identifying the target’s location, performance decreased slightly by 1.7%. Additionally, sub-
stituting the patch scoring method with a simple majority vote strategy resulted in a performance
drop to 46.8%. These results underscore the crucial role each design element plays in the effective-
ness of ScreenSeekeR.

Ablation of planner and grounder of ScreenSeekeR We study the impact of different planner
and grounder models in ScreenSeekR in Table 5. Given the absence of planner models specifically
trained for GUI visual search tasks, we include Qwen2-VL-72B [2] as a representative compari-
son. Our analysis reveals that Qwen2-VL-72B struggles with interpreting GUI screenshots, often
producing ambiguous references such as “other tools” and “icons,” which lack actionable speci-
ficity. Despite this limitation, it still outperforms the two standalone grounder models by 8.0% and
7.1%, respectively. Incorporating GPT-40 as the planner significantly enhances performance, with
0OS-Atlas demonstrating a larger margin over UGround in this configuration.

5.4 Error Analysis

We randomly sampled 78 examples (3 per application) with three baseline methods, and manually
grouped the errors into four categories: Misled by Icon and Misled by Text, where the model selects
other elements instead of the actual target; Near Miss, where the prediction is close (within 3 x the
size of the ground-truth box); Random Guess, where the output lacks clear relevance; and Not Found
where the model fails to find the target.

The results, shown in Figure 6, underscore the need for more precise grounder models, as all methods
exhibited frequent near misses. Enhancing GUI understanding and instruction-following capabilities
is also critical. Many errors stem from misinterpreting visually or semantically similar elements. For
example, the model selects the word “tool” instead of the specific tool mentioned in the instruction.
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Error Type Distribution
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Figure 6: Error distribution with OS-Atlas-7B as the grounder.

A significant portion of mistakes also arose from incorrect icon recognition, suggesting limited
domain knowledge in current MLLMs. Among the methods, ScreenSeekR achieved the lowest
error rates across all categories except for “Not Found”, where the planner fails to locate the target
and terminates the search. In contrast, the other two methods always produce a prediction, but this
often results in a higher number of “Random Guess” errors.

6 Conclusion

The growing capabilities of MLLMs present new opportunities for GUI grounding, yet existing mod-
els struggle with the unique challenges of high-resolution interfaces. We introduced ScreenSpot-Pro,
a benchmark that rigorously evaluates GUI grounding in complex professional environments. Our
evaluation showed that current models perform poorly, highlighting the need for better strategies. In-
spired by our findings, we proposed several visual search baseline models, including ScreenSeekeR,
an agentic framework that enhances accuracy by refining the search space, achieving a substantial
performance boost without additional training. ScreenSpot-Pro has the potential to shift the research
focus from grounding simplistic tasks to more realistic scenarios where agents must interpret and
interact with an entire screen, powering development of practical GUI agent tools.
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Table 7: Performance of GUI grounding models with Chinese instructions. The abbreviations used
in the table are defined in Table 1 in the main text.

Model ‘ Development ‘ » Creative CAD 1 Scientific ‘ Office os Avg
AS PyC VSC VM UE | PS Bl PR DR Al FL [CADSW Inv Qrs Vvd |MAT Org Evw Stt |PPT Exc Wrd|Lnx mac Win
0S-Atlas-7B 113 154 21.8 341 229|11.8 239 212 114 65 140|59 3.9 29 89 238|140 11.3 440 122 17.1 109 369|160 169 14.8|16.8
AriaUl (MOE, 3.9B/25.3B) 0.0 3.8 182 24 0.0 |235 127 11.5 00 00 10500 00 00 133 188|194 16 520 6.1 24 00 202|20 62 25|90
UGround (7B) 38 26 109 146 86|98 113 38 9.1 32 70 (0.0 00 43 67 125|108 48 300 20 122 47 60 |120 7.7 3.7 |77
ShowUI (2B) 38 64 55 220 57|78 42 38 00 00 35|59 26 14 156 75|97 113 180 102 98 16 83| 40 108 62 | 7.0
CogAgent (18B) 00 51 109 49 00|59 56 58 00 32 35|00 13 00 67 50|75 16 140 20 12 00 24|40 31 25|37
OS-Atlas-4B 00 13 73 00 00|20 28 00 45 00 7.0 (59 00 14 00 38|54 48 120 00 49 16 24|40 00 25|28
MiniCPM-V (7B) 13 26 36 00 00|00 00 19 00 00 35|00 13 00 44 88|00 00 280 00 37 31 00|00 15 25]25
Qwen2-VL-7B 00 00 36 00 00|20 14 38 00 00 18|00 00 00 44 13|22 16 220 61 24 00 24|00 L5 00|20
GPT-40 25 00 00 00 29|20 14 38 00 00 00|00 26 14 00 00|22 00 20 00 12 00 00|00 L5 00]O09
SeeClick (7B) 00 26 00 00 00|00 28 00 00 00 00|00 00 43 00 00|11 00 80 00 12 00 12|00 L5 00|09
QwenVL-7B 00 00 00 00 00]00 00 00 00 00 00|00 00 00 00 00]00 00 00 20 00 00 00]00 15 00]O02

A ScreenSpot-Pro-CN

In many real-world settings, especially in regions where English is not the primary language, users
often switch between their native language and English while performing digital tasks. This creates
a need for GUI agents that can understand and operate across multiple languages without losing
context or functionality. To reflect this multilingual reality, each task in our benchmark includes
instructions in both English and Chinese. The Chinese instructions were initially generated using
GPT-4 [31], then carefully reviewed and refined by the authors to ensure the meaning, tone, and
intent matched the English version. This bilingual setup allows us to test how well agents handle
language-switching scenarios, ensuring they remain useful and accurate across diverse linguistic
environments.

We observed that Chinese instructions consistently present greater challenges for current models.
As detailed in Table 7, the majority of models experienced a notable decline in performance when
evaluated with Chinese instructions compared to their English counterparts. For example, the state-
of-the-art OS-Atlas-7B [15] achieved only 16.8% accuracy under Chinese instructions, 2.1% lower
than its performance on English instructions. Among all models, UGround-7B [16] exhibited the
most dramatic decrease, falling from 16.4% to just 7.7%, which underscores its limited capacity
to generalize across languages. Interestingly, GPT-40 [1] and QwenVL-7B [25] were exceptions
to this trend, showing slight improvements in their Chinese performance. However, these gains
are marginal and do not meaningfully impact their overall low accuracy, suggesting that effective
multilingual understanding remains an open challenge for most current models.

B Prompts

The prompts used in this work are listed in Table 8, 9 and 10.

C ScreenSpot-Pro vs. ScreenSpot-v2

In this section, a further comparison of our proposed ScreenSpot-Pro against the ScreenSpot [15]
benchmark is provided. We select its v2 version because it fixed many incorrect annotations from
the original version. Figure 7 compares grounder model performance on these two benchmarks:
ScreenSpot-v2[15] on the x axis and the our ScreenSpot-Pro on the y axis. Each point represents
a model, with its size reflecting the model’s parameter count. While some models like OSAtlas-
7B[15] and UGround (7B) [16] perform well on both benchmarks, others such as ShowUI (2B)[30]
and OSAtlas-4B [15] show significant discrepancies in performance, excelling in ScreenSpot-v2
but underperforming in ScreenSpot-Pro. Specifically, SeeClick is a fine-tuned version of Qwen2-
VL-7B [2]. While its performance on ScreenSpot-v2 increases by around 15%, the accuracy on
ScreenSpot-Pro drops. Interestingly, Qwen2-VL-72B [2] performs worse than Qwen2-VL-7B de-
spite its 10 times larger size. These variations underscore the distinct nature of the tasks represented
in ScreenSpot-Pro.

D Data Examples

We showcase some examples from the ScreenSpot-Pro benchmark in Figure 8 and 9.

15



Table 8: Position Inference Prompt

Position Inference Prompt

I want to identify a UI element that best matches my instruction. Please help me determine
which region(s) of the screenshot to focus on and list the UI elements that might appear
next to the target.

If the target does not exist in the screenshot, please output "No target”.

Output Requirements:

1. List the possible regions in descending order of probability.

2. Always make specific, clear and unique references to avoid ambiguity. References such
as ”Other icons” and "window” are NOT allowed.

3. Use the following XML tags to describe items in the screenshot:

- jelement;: Wrap a specific Ul element.

- jarea;: Describe an area of the Ul containing multiple elements.

- ineighbor;: Describe a Ul element that may appear around the target.

Example Output:

The jelement;shortcut linkj/element;, is most likely to be found in the jarea;Settings win-
dowj/area;, in the jarea;tools panel;j/area;, next to the jneighbor;Search buttonj/neighbor,.
Important Notes:

- The target Ul element is guaranteed to be present in the screenshot.

Do not speculate about operations that could change the screenshot.

Instruction:

{instruction}

Table 9: Result checking Prompt

Result Checking Prompt

You are given a cropped screenshot. Your task is to evaluate whether the marked element
in the red box matches the target described in my instruction.

Please follow these steps:

1. Analyze the screenshot by describing its visible content and functionalities.

2. Determine which of the following applies:

- ’is_target’: The marked element is the target.

- "target_elsewhere’: The marked element is not the target, but it exists elsewhere.
- "target_not_found’: The marked element is not the target, and it does not exist.
3. If the target exists, rewrite the instruction to make it clearer.

After your analysis, provide the result in JSON format:

- result”: (str) One of ’is_target’, ’target_elsewhere’, or "target_not_found’.

- “new_instruction”: (str, default null) A clearer version of the instruction.

Here is my instruction:

{instruction}
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Table 10: GPT Instruction Refinement Prompt

Element Description Prompt

Task Description

You are an excellent agent for mobile, web, and desktop navigation tasks.

Describe the target element for this task based on the provided screenshot:

Task: {task}

Element Description Requirements

- Provide a concise description of the element you want to operate.

- Ensure your description is both concise and complete, covering all the necessary informa-
tion in less than 30 words, and organized into one sentence.

- If you find identical elements, specify their location and details to differentiate them from
others.

Output Format
Your output should only include the element description itself and follow the requirements.
Do not start with “the target element” or “the element”.

Model performance on ScreenSpot-Pro vs ScreenSpot-v2

20.01 OSAtlas-78
@)
17.54 UGround (7B)
O]
15.01
12.54
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ScreenSpot-Pro
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Figure 7: Model performance on ScreenSpot-Pro vs. ScreenSpot-v2. The circle sizes represent the
size of the models.
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Instruction: Blur Dissolve. Instruction: Refresh the file explorer.

Application: davinci Application: vscode
Type: icon Type: icon
Bounding Box: [460, 1344, 709, 1375] Bounding Box: [473, 183, 503, 219]

Instruction: choose chord type for 1. Instruction: Execute Python scripts.
Application: fruitloops Application: unreal engine
Type: text Type: text

Bounding Box: [853, 652, 897, 677] Bounding Box: [246, 2035, 377, 2054]

Instruction: Change the coordinate mode of the ® =
object. Instruction: unlink audio and video.

Application: blender Application: premiere
Type: icon Type: text
Bounding Box: /803, 54, 882, 71] Bounding Box: [1499, 592, 1801, 613]

Figure 8: Examples of tasks in ScreenSpot-Pro.
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Instruction: restart from CD. Instruction: Change model.
Application: VMWare Application: macOS
Type: text Type: text

Bounding Box: [2024, 695, 2188, 718] Bounding Box: (1109, 211, 1209, 236]

Instruction: select the correct deb package to ™~ e B
download according to the error message in the
terminal. Instruction: Show comments.
Application: /inux common Application: powerpoint
Type: text Type: text
Bounding Box: [960, 639, 1001, 655] Bounding Box: [614, 72, 681, 136]
e — e 3 .

- Instruction: select the SM1.smf file in Quartus
Instruction: disable masking. window.

Application: origin Application: quartus
Type: icon Type: text
Bounding Box: /998, 2078, 1021, 2097] Bounding Box: [1248, 270, 1365, 289]

Figure 9: More examples of tasks in ScreenSpot-Pro.
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Figure 10: An example of the annotation tool. When activated, the tool captures a screenshot and
overlays it on the screen, allowing experts to drag to label the bounding box (the red box around
“Open Folder”) and input the instruction in the popup dialog directly.
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