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ABSTRACT

Temporal link prediction, as one of the most crucial work in tem-
poral graphs, has attracted lots of attention from the research area.
TheWSDMCup 2022 seeks for solutions that predict the existence
probabilities of edges within time spans over temporal graph. This
paper introduces the solution of AntGraph, which wins the 1st
place in the competition. We first analysis the theoretical upper-
bound of the performance by removing temporal information, which
implies that only structure and attribute information on the graph
could achieve great performance. Based on this hypothesis, then
we introduce several well-designed features. Finally, experiments
conducted on the competition datasets show the superiority of our
proposal, which achieved AUC score of 0.666 on dataset A and
0.902 on dataset B, the ablation studies also prove the efficiency
of each feature.
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1 INTRODUCTION

As graphs are ubiquitously exist in a wide range of real-world ap-
plications, many problems can be formulated as specific tasks over
graphs. And link prediction [4], as one of themost important task in
graph-structured datasets, is widely applied in biology [10], recom-
mendation [3, 14] and finance [12]. Meanwhile, real-world data is
usually evolving over time, some following literature [11, 13] con-
sider devising temporal graph learning models to uncover tempo-
ral information. However, predicting the links on a temporal graph
is more non-trivial. WSDM Cup 2022 calls for solutions that pre-
dicting the probability of a link within a period of time. In this pa-
per, we will introduce the solution of AntGraph team, which ranks
the first of the competition (achieved AUC score of 0.666 on dataset
A and 0.902 on dataset B). And this technical report is organized
as following:

• First, we give some statistics on the datasets, do some exploratory
analyses and introduce the motivation of the method. According

∗Corresponding author.

Table 1: The statistics of two datasets. Note that “# Node” of

DatasetB is obtained by themaximumvalue of node ids, and

“Inter.” is short for “Intermediate”.

Dataset A Dataset B

# Train 27, 045, 268 8, 278, 431
# Initial Test 8, 197 3, 863
# Inter. Test 49, 903 49, 940
# Final Test 200, 000 200, 000

# Nodes 19, 942 1, 304, 045
# Edges 27, 045, 268 8, 278, 431

# Node feat. 8 N.A.
# Edge feat. N.A. 768
# Edge type 248 14

to the data analyses, we surprisingly find that removing the time
span information in prediction could also achieve satisfactory
performance.

• Subsequently, we introduce the data processing flow, enumer-
ate several feature engineering methods ranging from network
embedding to heuristic graph structure.

• Finally, we conduct comprehensive experiments on the competi-
tion datasets, which show the effectiveness of our proposal, and
exhaustive ablation studies also show the improvement of each
kind of feature.

Our source code are publicly available on GitHub1.

2 DATASETS

In this section, we focus on the exploratory of datasets provided by
the competition, and an in-depth analysis is presented, followed by
the detailed introduction of evaluation metrics.

1https://github.com/im0qianqian/WSDM2022TGP-AntGraph

http://arxiv.org/abs/2203.01820v1


WSDM Cup ’22, February 21–25, 2022, Arizona, USA Qian Zhao, Shuo Yang, Binbin Hu∗ , Zhiqiang Zhang, Yakun Wang, Yusong Chen, Jun Zhou, and Chuan Shi

Table 2: The analysis of the existence of same edges in the initial test set.

Description Total Exist in graph
Exist in graph

label = 1
Exist in graph

label = 0
Not exist
label = 1

Not exist
label = 0

Dataset A
F.>. edge type

8197
7354 (89.72%) 3333 (40.66%) 4021 (49.05%) 183 (2.23%) 660 (8.05%)

F.8. edge type 5886 (71.81%) 2755 (33.61%) 3131 (38.20%) 761 (9.28%) 1550 (18.91%)

Dataset B
F.>. edge type

3863
3195 (82.71%) 2123 (54.96%) 1072 (27.75%) 128 (3.31%) 540 (13.98%)

F.8. edge type 2612 (67.62%) 1685 (43.62%) 927 (24.00%) 566 (14.65%) 685 (17.73%)

Table 3: The performance w.r.t. AUC of our native strategy

compared to the baseline model provided by the sponsor on

both initial and intermediate (Inter.) test set.

Method Initial test Inter. test

Dataset A
Baseline model 0.5110 0.5026
Naive strategy (F.>. edge type) 0.5428 0.5432
Naive strategy (F.8. edge type) 0.5597 0.5687

Dataset B
Baseline model 0.5100 0.5026
Naive strategy (F.>. edge type) 0.6391 0.8655
Native strategy (F.8. edge type) 0.5867 0.8059

2.1 A Brief Description

The competition expects participants to adopt a single model (hy-
perparameters can vary) that works well on two kinds of data si-
multaneously, and thus correspondingly provides two representa-
tive large-scale temporal graph datasets.

• Dataset A characterizes a dynamic event graph with enti-
ties as nodes and different types of events as edges. Each
node maybe associated with rich features if available, and
except for the edge types, no any other information is avail-
able for edges.

• Dataset B characterizes a user-item graph with users and
items as nodes and different types of interactions as edges.
Each edge is associated with rich features if available, and
no feature information is available for nodes. Noting that
the sponsor treat the user-item graph as a bipartite graph.
For convenience, we try to convert this graph to an undi-
rectedmulti-relation graph through shifting item ids. In par-
ticular, we perform the above operation by adding the sum
of 1 and themaximumvalue of user ids (denotes as$5 5 B4CD )
for each original item id, as follows:

=>34_83 =

{

=>34_83 8 5 0= DB4A

=>34_83 +$5 5 B4CD 8 5 0= 8C4<
(1)

Since the competition asks participants to predict whether an edge
will exist between two nodes within a given time span, instead of
a single timestamp in the graph, a start and an end timestamp

is respectively given for each query in test stage. Also, for each
dataset, the sponsor provides a train set, an initial test set, an in-
termediate test set and a final test set, and the labels of intermedi-
ate test set and final test set are still not available at present. It is
worthwhile to note that only the performance of the model in

the final test set determines the ranking of the competition.

In summary, we detailed all necessary statistics of two datasets in
Table 1.

2.2 Data Analysis

Generally, an inspiring data analysis could shed some light on the
model design, which plays a vital role in various data mining tasks.
Based on the originally provided data (i.e., the train set and the
initial test set), we perform a series of detailed data analysis as
follows:

• The existence of same edges in the test. We firstly analyze
whether edges of the initial test set have already existed in the
original graph. In this analysis, timestamps are not taken into
consideration. As shown in Table 2, we observe that the orig-
inal graph contains most of edges in the initial test for both
datasets, especially when the edge type is ignored. Surprisingly,
we also find that approximately half of edges (i.e., 40.66% E.B .

49.05% without edge type and 33.61% E.B . 38.20% with edge type)
existed in the graph keep the same labels for Dataset A, while
about three quarters of edges (i.e., 54.96% E.B . 27.75% without
edge type and 43.62% E.B . 24.00% with edge type) existed in the
graph keep the same labels for Dataset B.
Following aforementioned observations, we are curious about
the performance of the most naive strategy that just predict the
existence of each edge via its existence in the original graphs.We
present corresponding results in Table 3, and find that the naive
strategy achieve a more competitive performance than baseline
model provided by the sponsor. It indicates the crucial importance

of first-order relationship for the task.
• Optimal performancewithout considerationof timestamps.
Secondly, we also explore theoretical upper-bounds on perfor-
mance without temporal information. We select the data with
the same node pair in the initial set, and then calculate the mode
or mean value for all labels as the prediction result of these data.
Experiments show that the model can still achieve a good per-
formance, as shown in Table 4.

2.3 Evaluation Metrics

This competition uses Area Under ROC (AUC) as the evaluation
metric for both tasks. Intuitively, the two task have different dif-
ficulties, and sacrificing one task to do well on the another is not
expected. Therefore, the competition further adopt the average of
T-scores as the ranking basis for encouraging the model to per-
formwell on different tasks. The formal definition is introduced as
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Table 4: Explore themaximumAUCwithout temporal infor-

mation.

Description
Initial test
(mode)

Initial test
(mean)

Dataset A
node pair (F.>. edge type) 0.9040 0.9776
node pair (F.8. edge type) 0.9900 0.9997

Dataset B
node pair (F.>. edge type) 0.8946 0.9795
node pair (F.8. edge type) 0.9147 0.9875

follows:

)B2>A4 =

�*� −mean(�*�)

std(�*�)
∗ 0.1 + 0.5 (2)

AverageOfTscore =
)(2>A4� +)(2>A4�

2
(3)

where mean(�*�) and std(�*�) represents the mean and stan-
dard deviation of AUC of all participants. Clearly, an larger average
of T-scores means a better performance.

3 METHODOLOGY

In this section, we introduce our complete solution for large-scale
temporal graph link prediction task, which consists of train data

construction component, feature engineering component and down-
stream model training component. In the following, we will zoom
into each well designed component.

3.1 Train Data Construction

Asmentioned above, the goal of this competition is to predict whether
an edge will exist between two nodes within a given time span,
whereas each edge in the provided graphs is only associated with
a single timestamp. Hence, the inconsistent problem between
training and testing severely threatens the generalization of mod-
els. In addition, previous data analysis has concluded that this task
may not benefit from involving timestamps, therefore, we construct
the train data without timestamps as follows:

3.1.1 Negative sampling. For efficient training, we adopt the shuf-
fling based sampling strategy to sample negative instance in batch,
rather then the whole node set. Moreover, the timestamps are ig-
nored in our negative sampling process. In particular, our negative
sampling process is detailed is follows: i) We denotes edges in the
original graphs as the positive instance set, consisting of source
nodes, target nodes and relations. ii) We only keep source nodes
unchanged, and randomly shuffle target nodes and relations to gen-
erate the negative instance set. iii) We combine the above positive
and negative instance set, and uniformly sample a certain number
of instances to construct the final train set.

3.1.2 Removing redundant features. Firstly, we remove all time re-
lated features, including timestamp, start time, end time. Moreover,
we remove the edge features for Dataset B, since these featues are
not avaiable for most of edges, i.e., the non-empty ratio is 6.67%.

3.2 Feature Engineering

3.2.1 LINE embedding. As concluded in the previous data analy-
sis, the first-order relation is of crucially importance in our link
prediction task. In order to capture such deep correlation between
nodes in an more fine-grained manner, we introduce the LINE em-
bedding, an effective and efficient graph learning framework ar-
bitrary graphs (undirected, directed, and/or weighted). In partic-
ular, LINE is carefully designed preserves both the first-order and
second-order proximities, which is suitable to our scenarios to cap-
ture co-occurrence relation. On the other hands, several heteroge-
neous [2] and knowledge [1, 7, 9] graph representation based meth-
ods are also promising ways for learning powerful representations,
whereas the LNIE experimentally achieves the best performance,
shown in following experiment part.

3.2.2 Node crossing features. After we obtain the representations
for each node in graphs, we construct crossing features to further
reveal the correlation of each node pair. Specifically, we calculate
the similarity of node pairs w.r.t. LINE embeddings in datasets as
the node crossing features. Given a node pair (D, E) with corre-
sponding embedding 4D and 4E , the similarity is calculated through
the cosine operation (i.e., 4D · 4E/| |4D | | × | |4E | |) and the dot product
(i.e., 4D · 4E):

3.2.3 Subgraph features. In addition, we also added the following
statistical features based on the graph structure to well help down-
stream model capture high-order information:

• Unitary feature w.r.t. individual nodes: i) The degree of this node;
ii) The number of different nodes adjacent to this node; iii) The
number of different edge types adjacent to this node.

• Binary information w.r.t. node pairs: i) The number of one hop
paths between two nodes; ii) The number of two hop paths be-
tween two nodes; iii) The number of different edge types be-
tween two nodes.

• Ternary information w.r.t. node pairs and edge types: The num-
ber of occurrences of this triplet.

3.3 Catboost Model

The link prediction task can be easily formulated as a binary classi-
fication problem based on the extracted features from each (source
node, relation, target) triple. On the other hands, gradient boosting
has prove its powerful capability in various applications for clas-
sification. Recently, catboost [6] has gained increasing popularity
and attention due to its fast processing speed and high prediction
performance. We feed the train data (see Section 3.1) as well as
abundant features (see Section 3.2) into catboost model, and then
utilize the produced scores as the final predictions.

4 EXPERIMENTS

4.1 Overall Performance

Performance in the leaderbord. We present the results of top
five teams from the learderboard in Table 6. We observation that
our solution achieve the best performance in Dataset A and com-
petitive performance inDataset B. As the best performance achived
w.r.t. the final ranking metric further indicating that our solution
works well on both kinds of data simultaneously.
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Table 5: Overall experimental results of different methods in two datasets.

Model
Dataset A Dataset B

Initial AUC Inter. AUC Initial AUC Inter. AUC

baseline 0.5110 0.5026 0.5100 0.5026
DeepWalk [5] 0.5352 0.5707 0.5246 0.4985
TransE [1] 0.5182 0.5614 0.6389 0.8903
RotatE [7] 0.5315 0.5736 0.6323 0.8981
ComplEx [9] 0.5514 0.5821 0.6359 0.9014
LINE [8] 0.6072 0.6320 0.6425 0.8905

catboost (raw input data) 0.6045 0.6222 0.5545 0.5869
+ LINE embedding 0.6377 (+5.49%) 0.6540 (+5.11%) 0.6399 (+15.40%) 0.9013 (+53.57%)
+ Subgraph features 0.6611 (+9.36%) 0.6673 (+7.25%) 0.5861 (+5.70%) 0.7561 (+28.83%)
+ LINE embedding + Subgraph features 0.6619 (+9.50%) 0.6659 (+7.02%) 0.6368 (+14.84%) 0.8978 (+52.97%)
+ LINE embedding + Node crossing features 0.6573 (+8.73%) 0.6673 (+7.25%) 0.6504 (+17.29%) 0.9001 (+53.37%)
+ All (submitted version) 0.6657 (+10.12%) 0.6671 (+7.22%) 0.6459 (+16.48%) 0.9028 (+53.83%)

Table 6: Top five results in the final learderboard.

Rank Team name
Dataset A
Final AUC

Dataset B
Final AUC

Average of
T/100

1 AntGraph(Ours) 0.666001 0.901961 0.630737

2 nothing here 0.662482 0.906923 0.628942
3 NodeInGraph 0.627821 0.865567 0.585137
4 We can [mask]! 0.603621 0.898232 0.572372
5 IDEAS Lab UT 0.605264 0.873949 0.566849

Compare to baselines. We compare our methods with other 6
methods, including the official baseline2 and several classic net-
work embeddingmethods, i.e.,DeepWalk [5], TransE [1], RotatE [7],
LINE [8], and ComplEx [9]. The experimental results in Table 5
shows that our solution outperforms all baselines by a consider-
able margin.

Overall, both of observations verfy the effectiveness of our pro-
posal.

4.2 Ablation studies

In this section, we perform a series of ablation studies to analyses
the impact of kinds of features proposed in Section 3.2, including
LINE embedding, node crossing features and subgraph features.
We summarize the comparison results in Table 5, and we have
following observations: i) All extracted feature help base model
achieve better performance, and the best performance is yielded
in most cases with the incorporation of all features. ii) Involving
LINE features show a greater improvement than models involving
subgraph features in Dataset B, while opposite trend is observed
in Dataset A. An intuitive explanation is that Dataset B is much
sparser than Dataset A, and thus subgraph structure are hardly
exploited in Dataset B. Overall, compared to the base model only
using raw feature, our final submitted model achieve a relative im-
provement of 7.22% on dataset A and 53.83% on dataset B, respec-
tively.

2https://github.com/dglai/WSDM2022-Challenge

5 CONCLUSION

This paper describes our solution forWSDM 2022 Challenge - Tem-
poral Link Prediction. For this task, we design a novel negative
sampling strategy, and combined with data analysis to delete re-
dundant information. We introduce the LINE embedding to pro-
vide local and global features of graph. At the same time, we de-
sign node crossing features and subgraph features. In the end, our
team AntGraph was ranked the 1st place on the final leaderboard.
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