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Recently, recommender systems have played an important role in improving web user experiences and in-
creasing profits. Recommender systems exploit users’ behavioral history (i.e., feedback on items) to build
models. The feedback usually includes explicit feedback (e.g., ratings) and implicit feedback (e.g., brows-
ing history, click logs), which are both useful for improving recommendations. However, as far as we are
concerned, no existing works have integrated both explicit and multiple implicit feedback simultaneously.
Therefore, we propose a unified and flexible model, named Multiple Feedback-based Personalized Ranking
(MFPR), to make full use of multiple feedback, which uses a personalized ranking framework. To train model
MFPR, we design an algorithm to generate ordered item pairs as labeled data, with consideration of both
rating scores and multiple implicit feedback. Extensive experiments on two real-world datasets validate the
effectiveness of the MFPR model. With the integration of multiple feedback, MFPR significantly improves
recommendation performance.
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1 INTRODUCTION

To alleviate the information overload problem, recommender systems have been proposed to help
users find items of interest through utilizing the user-item interaction in formation and/or content
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information associated with users and items. Recommender systems have attracted much atten-
tion from multiple disciplines, and many techniques have been proposed to build recommender
systems. The interaction information (i.e., feedback) between users and items is widely exploited
to build recommendation models.

The feedback data in recommender systems usually come in the form of explicit or implicit
feedback [10]. Explicit feedback is the interaction information that directly expresses user prefer-
ences for items, such as the rating information. Implicit feedback is the interaction information
that indirectly reflects users’ opinions and can imply user preferences [20]. Figure 1 shows an ex-
ample of multiple feedback in Douban Book. The rating (1-5 scores) is the explicit feedback that
directly reflects user preferences. There are two types of implicit feedback, which also imply user
preference. The term “wish” means that the user wishes to read the book but has not begun yet;
“reading” means reading the book. We can see that explicit feedback (i.e., rating) quantifies users’
preferences, which is critical for recommendation, while implicit feedback is also an important
complement. We know that in real applications, explicit feedback is usually scarce, but implicit
feedback is usually abundant. Although one kind of implicit feedback may be weak and indirectly
relfect user preferences, the aggregation of this type of feedback provides important hints about
user preferences.

Many methods exploit feedback information to build recommender models. Figure 2 shows how
these methods utilize this information. As shown in Figure 2(a), traditional collaborative filtering
usually utilizes explicit feedback information (i.e., ratings) [11, 14, 26]. Since implicit feedback in-
formation is widely and cheaply available, some studies began to use implicit feedback in recent
years. Some works considered using a single type of implicit feedback [12, 21, 25] (see Figure 2(b)),
and Fortes and Manzato [5] began to combine several types of implicit feedback with a simple
ensemble approach (see Figure 2(c)). In addition, SVD++ [14] is designed to combine rating in-
formation and only one type of implicit feedback for improving rating prediction, as shown in
Figure 2(d). Unfortunately, all these works do not simultaneously utilize comprehensive feedback
information in recommender systems.

In this article, we propose to solve the personalized ranking problem by integrating multiple
feedback, as shown in Figure 2(e). For convenience, multiple feedback means one type of explicit
feedback and multiple types of implicit feedback in the following sections. In many review web
sites, such as Yelp and Dianping, users are required to give a rating score (i.e., explicit feedback) to
an object, and they can also have other interactions with objects, such as “checking in” and “view-
ing.” Obviously, our problem setting is a general framework for utilizing feedback information,
and existing problems are special cases of our problem setting. In addition, many recommenda-
tion algorithms predict users’ rating scores of items and then calculate the RMSE criteria between
predicted and true values to evaluate their effectiveness (e.g., SVD, SVD++). Actually, the rating is
just one way to express user preferences. Users are usually more concerned with the order than
the rating score of items. Therefore, from the recommendation perspective, predicting the rank
of an item is more straightforward and meaningful than predict rating scores. Thus, in this work,
we focus on developing a personalized ranking model that integrates multiple feedback. Although
many methods have been proposed to utilize feedback, these models are usually designed for spe-
cial problem settings, and they cannot be directly applied in a multiple-feedback setting.

Integration of multiple feedback faces two challenges. (1) Design a unified ranking model inte-
grating multiple feedback. To make the best use of this feedback information, we need to design
an effective mechanism to handle relations between explicit and implicit feedback as well as re-
lations among implicit feedback. (2) Generate training samples. As a ranking method, we need to
generate preference pairs or lists for training. However, there are multiple types of feedback. It is
not a trivial task to utilize this feedback to generate the training data.

ACM Transactions on Social Computing, Vol. 1, No. 2, Article 7. Publication date: June 2018.



A Personalized Ranking Recommendation with Multiple Feedbacks 7:3

Users Feedbacks Books

Implicit
Feedback

Fig. 1. An example of multiple feedback between users and books in Douban Book.
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Fig. 2. The schemas of utilizing feedback information.

We first study the personalized ranking recommendation problem integrating multiple feedback
and propose a Multiple Feedback based Personalized Ranking (MFPR) recommendation model. We
integrate the explicit feedback with one type of implicit feedback using the Bayesian Personalized
Ranking framework and then extend this model to integrate more implicit feedback. In addition,
a generation algorithm of training samples is proposed, which can effectively uncover the truth
ranking information of items contained in feedback information. The major contributions of our
article are summarized as follows:

e We first try to solve the personalized ranking recommendation problem by integrating mul-
tiple feedback. The problem widely exists in a real recommender system, and it is a general
problem setting to encompass existing works.

e We propose a Bayesian Personalized Ranking (BPR) based model MFPR to integrate multiple
feedback. Moreover, as there are no readily available training data of pairwise comparisons
for this problem, an effective algorithm is designed to generate the training data that are
more consistent with multiple feedback for the MFPR model.

e We crawl comprehensive Douban Book and Dianping datasets' including ratings and mul-
tiple types of implicit feedback. Extensive experiments on these two real datasets validate
the effectiveness of the proposed method.

IThe datasets are available at https://github.com/7thsword/MFPR-Datasets.
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The preliminary work was published in Reference [17]. However, this article substantially extends
the original work in the following aspects. First, it introduces in detail one important contribu-
tion of this article, the training set generation algorithm where Item Pairs with partial order are
obtained from checking adjacent items in a Permutation of an Explicit item set (IPPE), and gives in-
sightful analysis of IPPE in Section 5. Moreover, we further validate its effectiveness in Section 6.5.
Second, it adds extensive experiments to sufficiently validate the traits of the proposed MFPR. This
includes the following: “Integrate Different Implicit Feedback with Rating” in Section 6.6, “Mean
weighted SFPR versus MFPR” in Section 6.7, and “Parameter Study” in Section 6.8. Moreover, it
adds another baseline MSVD++ in Section 6.3. These approaches indicate broader use of the pro-
posed method, in addition to its advantages. Third, it provides a clearer description of the proposed
method, including the learning algorithm, algorithm framework, and complexity analysis of the
MFPR in Section 4.3. In addition, it describes related works in more detail in Section 2 and provides
an introduction to the basic model SVD in Section 3.3.

The remainder of this article is organized as follows: We describe the related works in Section 2,
and Section 3 presents preliminary knowledge and problem formulation. We introduce the pro-
posed model in Section 4 and then detail the novel training set generation algorithm in Section 5.
Experiments and analysis are shown in Section 6. Finally, we conclude the article in Section 7.

2 RELATED WORK

Rating prediction methods are a popular type of recommendation technique. The task is to pre-
dict the unknown user-item ratings by minimizing the error of predicted ratings and true ratings
in training data. Traditional collaborative filtering (CF) is one of the most popular techniques for
rating prediction, including user-based CF and item-based CF. Recently, a series of matrix factor-
ization models [19, 26, 27, 29] showed their power in rating prediction, which mainly factorized a
known but incomplete user-item rating matrix into two low-rank user-specific and item-specific
matrices. Then, the factorized matrices were used to predict ratings.

For the past number of years, many techniques have been proposed for building recommender
systems. According to the input data, these techniques can be roughly classified into three cate-
gories: explicit feedback based, implicit feedback based, and hybrid feedback based. Explicit feed-
back is usually considered more reliable and of high quality. A series of matrix factorization models
exploiting explicit feedback show their potential in recommender systems, such as Probabilistic
Matrix Factorization (PMF) [26], Singular Value Decomposition (SVD) [14], Non-negative matrix
factorization (NMF) [11] and Hete-MF [29].

Since implicit feedback is often easily available, many methods using implicit feedback have
been proposed. For example, BPRMF [25] utilized implicit feedback to generate training pairs and
then learned the parameters in the BPR model; Fortes and Manzato [5] ensembled several BPRMF
and each BPRMF instance utilized one type of the multiple implicit feedback; Gurbanov et al.
[9] presented the model MMF that predicted a target user action by leveraging actions of mul-
tiple types. Essentially, it utilized multiple types of implicit feedback to predict a target implicit
feedback.

In addition, some researchers began to exploit hybrid feedback. For example, Koren [14] de-
signed the SVD++ to combine ratings with single implicit feedback (i.e., whether a user rated an
item) for predicting ratings more accurately. Fortes and Manzato [4] developed a hybrid model
for personalized ranking that uses SVD to handle explicit feedback and BPRMF to handle implicit
feedback (i.e., whether a user tagged an item). Tang et al. [28] conducted a series of experiments
to explore how to reasonably integrate user positive and negative implicit feedback for improving
the CTR of the news feed and email campaign of the Linkedin system. Gurbanov et al. [8] proposed

ACM Transactions on Social Computing, Vol. 1, No. 2, Article 7. Publication date: June 2018.



A Personalized Ranking Recommendation with Multiple Feedbacks 7:5

a recommender system integrating sequence mining and CF models to predict whether a user will
perform an action of a target type on an item. The above methods usually utilized some feedback
information, while our method makes full use of implicit and explicit feedback information.

Multi-label classification methods have also been applied in recommendation. For example,
Agrawal et al. [1] proposed an algorithm that used multi-label random forests as classifier and
recommend bid phrases from a given ad landing page. Oliveira et al. [6] used multi-label k-nearset
neighbor as classifier and recommend programming activities. The “label” in these methods usually
represents characteristics of items or users, while the “feedback” in our work embodies interac-
tions between users and items. They are two different types of signals in recommender systems
and lead to different analysis methods. So multi-label classification methods cannot be directly
applied to our problem.

Recently, learning to rank (LTR) [16, 18, 25] has attracted increasing attention in the machine
learning community. LTR is the core technology for ranking tasks, such as document ranking in
information retrieval. Such techniques began to be applied to the personalized recommendation
in recent years. There are many LTR methods, and they can be classified into three categories:
pointwise, pairwise, and listwise. In pointwise methods, the model learns to output a score or class
label for each input single document. Specifically, the rating prediction models can be considered
as a kind of pointwise method. In listwise methods [3, 22], the model learns to output a ranked
document list for the input document collections; in pairwise methods [13], the model focuses on
learning with a preference for each input document pair, where Bayesian Personalized Ranking
[25] is a typical approach.

3 PRELIMINARY

In this section, we introduce some basic concepts, the problem formulation and the base model.

3.1 Explicit and Implicit Feedback

In real recommender systems, feedback information is prevalent between users and items. Feed-
back data can be divided into two categories: explicit and implicit. Formally, when feedback data
are in the form of explicit feedback with single implicit feedback, each user u is associated with
two types of item sets: an explicit feedback set E(u) and implicit item set N (u).

Explicit feedback is intentionally provided by users to directly express user preferences (e.g.,
like or dislike) for items. For example, user ratings are one of the most popular types of explicit
feedback. For an item i € E(u), user u has given the rating R,; to item i. The rating R,; is usually
an integer between 1 and 5, indicating the preference of user u for item i. Higher ratings indicate
a stronger preference. Explicit feedback is very important for recommender systems. Traditional
collaborative filtering methods are usually based on explicit feedback. However, this kind of feed-
back is usually difficult to collect, since many users are not willing to give ratings to items.

Implicit feedback reflects user opinions indirectly and can imply user probable preferences [20].
For example, in music recommender systems, users may “collect,” “download,” and “share” songs.
Foranitemi € N(u), the implicit feedback does not necessarily mean that user u likes the item i. In
turn, for an item i ¢ N(u), the implicit feedback does not mean that a user dislikes item i. Implicit
feedback just provides indication of possible user preferences. For instance, if a user adds a song
to a playlist, she may know it through her friends but not have heard it yet, which only indicates
that she may like it. Implicit feedback widely exists in recommender systems. These types of data
are huge in real systems, since there are many ways to interact with items through these systems,
and this interaction with items can be converted into implicit feedback.

When feedback data consist of explicit feedback with multiple types of implicit feedback, each
user is associated with a single explicit feedback and 7 types of implicit feedback (r > 2). For user
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u, the explicit item set still denoted as E(u) contains items user u has rated (i.e., a rating), and the
implicit item sets denoted as N*(u), N2(u), ..., N7 (1), where N (u), contains items about which
user u has expressed the t-type implicit feedback (t = 1, ..., 7).

3.2 Problem Formulation

Let U and I denote the set of users and items, respectively. We define a ranking recommendation
problem on multiple feedback data Ry = {U, 1, Ef, Ir}. Er, defined as Ef = {E(u)|u € U}, to be ex-
plicit feedback data consisting of all users’ explicit item sets. Ir, defined as Iy = {N'(u)|u € U, t =
1,...,7}, is implicit feedback data consisting of all users’ implicit item sets. Hence, as shown in
Figure 2(e), our task is to design a model to make full use of the explicit feedback data E and the
implicit feedback data Ir.

It is obvious that existing works usually utilize incomplete feedback data. For example,
traditional collaborative filtering (e.g., SVD [14]) is based on the data Rgy = {U, I, Er}, the widely
used SVD++ is based on the data R; = {U, T, Ef, Ir} with 7 = 1, and the recent work of Fortes
and Manzato [5] only considered data Ry = {U, I, Ir}. Thus, our problem setting is a general
framework that includes the existing problem setting as a special case. Our problem setting is
very popular in the real world.

3.3 Base Learner Integrating Explicit and Implicit Feedback

Some effective learners have been proposed to utilize feedback data. Assume that there are m
users and n items (i.e., |U| = m, |T| = n). Given a rating matrix R = (R,;)™*", R,; denotes the
score user u has rated on item i. A classical factorization model [14] is induced by an SVD-like
low-rank matrix factorization. Each user u and item i are represented by latent vectors p, € R?
and g; € RY, respectively (d < min(m, n)). Rating prediction for item i by user u can be modeled
as follows:

Iéui =Puq,T- (1)

In Reference [14], Koren et al. proposed a factorization model called SVD++, considering the in-
tegration of explicit and implicit feedback to predict ratings more accurately. The predicted rating
R, user u may give to item i can be modeled as

A _1
Rui = |pu+ IN(w)|2 Z ve|dis @)
keN(u)

where y; € R? is the implicit latent vector of item k and N(u) is the implicit item set as men-
tioned above. It is worth noting that Equation (2) does not contain the bias and average compo-
nent. As we use pairwise training data, the user bias and average component are eliminated. The
details are described in Section 4.2. Now, a user u is modeled as p, + |N(u)|_% DkeN(u) Yk, and

the complemented sum term [N (u) |_% Y.keN(u) Yk represents the perspective of implicit feedback.
SVD++ models implicit feedback as a part of the user factor, which is a straightforward but effective
method. It makes the best use of explicit feedback and adds implicit feedback as supplements.

Unfortunately, these existing models cannot be directly applied to our problem setting. Although
SVD++ also considers explicit and implicit feedback, it just integrates one type of implicit feed-
back. In addition, SVD++ is originally designed for the rating prediction problem. Since predicting
exact ratings is not necessary for many recommendation applications, we propose using a ranking
framework.
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4 PERSONALIZED RANKING WITH MULTIPLE FEEDBACK

It is not a trivial task to design a unified ranking model integrating multiple feedback. The explicit
and implicit feedback have different characteristics, and we must therefore treat them differently.
In addition, we also need to integrate multiple implicit feedback. As analyzed above, existing mod-
els cannot be directly applied to this problem. A naive method is to treat all feedback as feature
vectors. However, as shown in Section 6.3, the FM method [23] does not achieve good performance,
because the features of explicit feedback are ignored.

In this article, we propose a unified MFPR. By adapting the SVD++ model with the Bayesian
Personalized Ranking, we first design a Personalized Ranking model integrating explicit feedback
with one-Single implicit Feedback (called SFPR). And we then extend the SFPR model by integrat-
ing multi-type implicit feedback. In this section, we first present the SFPR model and its learning
method and then put out the MFPR model.

4.1 The SFPR Model

First, we design a ranking model to combine explicit feedback with one type of implicit feedback.
Here, we extend the Bayesian Personalized Ranking (BPR) framework [25] originally designed
for handling single implicit feedback to integrate explicit with implicit feedback. Assume that a
training set 7, consists of triples of the form (u, i, j) with i > j denoting that user u shows more
preference on item i than item j. Note that the generation of training set 7; is an important issue
that will be discussed in Section 5. The Bayesian formulation of finding the correct personalized
ranking is to maximize the following posterior probability:

p(817;) o p(7-10)p(6), ®)

where 0 is the parameter of a certain base learner and p(0) is the prior probability of a base learner
parameter.

We use p(i > j;u|0) to denote the probability that user u prefers item i over item j. With the
assumption that each triple (u, i, j) € 7; is independent, the likelihood function can be expanded
as follows:

p0) =[] pti>jsulo). ()
(u,i,j)€Tr

To integrate single explicit feedback with single implicit feedback, we choose SVD++ in Equa-
tion (2) as our base learner; SVD++ effectively differentiates explicit and implicit feedback, and it
fully utilizes the explicit feedback. Then the individual probability that a user really prefers item
i over item j can be designed as:

P(i > ],uI@) = O'(Iéui - fzuj)a (5)

_1
1+e "

For convenience, we simplify Rui — Ry ; in Equation (5) as X,;;. Note that %,;; is a real-valued
function of 6 that captures the ranking relation between item i and item j with the given user
u. Assume that p(6) is a Gaussian distribution with zero mean and variance-covariance matrix
Y9 = Agl. Now we can estimate parameter 0 of the base learner by maximizing the posterior

where o is the logistic sigmoid function o(x) =
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probability in Equation (3) as follows:
max L = In p(6]7y)

= Z Inp(i > j;ul0) — AgllO]|*

(u,i,j)€Tr

= > Inouy) - Aell6I2, ©)
(u,i,j)€7r

where A¢||0||? is an L2 regularization term that can be derived from the Gaussian distribution p(0)
mentioned above.

4.2 Learning Algorithm of SFPR Model

Note that the objective function in Equation (6) is differentiable, and we can employ gradient
ascent-based algorithms as the optimizer. The gradient of Equation (6) with respect to the param-
eter 0 is

0L d 0
oL _ —Ino (Ruij) — Ao 1101
90 (u,1,j) €7y 9 9
14
o ———— —%uij — A0 (7)
(wiper, 1+ €™ 00

In the article, we apply stochastic gradient ascent (SGA) to optimize the model SFPR. Then with a
training sample (u, i, j), the model parameter 8 can be updated as

1 0

0«06 _—
— +’7(1+exu11(39

Xuij AH 9) (8)

where 7 is the given learning rate. The gradient of %,;; with respect to each model parameter has
to be known before the gradient ascent process. As defined above, we can get the X,,;; = = Ryui — Ruj j
as

Ruij = (pu +IN@I™? ] yk)mi -q)". ©)
keN(u)

The model parameters in Equation (9) are py, ¢;, ¢;, and [N (u)|, while [N (u)] is the length of the
implicit item set of user u that is fixed, so we can get the derivatives of other parameters as

qi — qj : if 0 = pu,

0%yij _Jput IN(u)l"2 zllkeN(u) Yk if 0 = qi, (10)
00 —(pu + IN(u)|"2 ZkeN(u) ye) if 0 =gqj,
IN@)I"2 (q; - q) if 0 = yk.

We set regularization parameters A,, A4, and 4, for user explicit latent vectors, item explicit
latent Vectors and item implicit latent vectors, respectively. Referring to Equation (8), we define
Auij = and for any sample (u, i, j) € 7, parameters of SFPR can be updated using SGA:

1+ Xut}

Pu — Pu +1(Ayij(qi — q;) — Appu), (11)

qi — qi + U(Auij (Pu + |N(u)|‘% Z }’k) - Aq‘]i)a (12)

keN(u)
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9 g+ (—Auij (Pu +IN@I ) Yk) - Aqu), (13)

keN(u)
fork e N(u) :
Vi < vie + n(IN@I 7 Auij(gi = 47) = Ayve). (14)

It is noteworthy that when using the trained SFPR to do prediction, the R,; cannot be regarded as
the predicted rating (i.e., 1 to 5 scores) as usual. Here, we call R,,; the predicted ranking score, which
implies thr degree that user u prefers to item i. Higher scores indicate a stronger user preference.

4.3 The MFPR Model

The proposed SFPR is designed to integrate single explicit feedback and single implicit feedback.
Then, we extend the SFPR model to integrate more implicit feedback. When considering multiple
feedback, as mentioned in Section 3.1, each user u is associated with an explicit item set E(u) and
T types of implicit item sets N!(u), N%(u), ..., N7 (). For integrating multiple implicit feedback,
our extended preference predictor can be designed as

T

ﬁm=(pu+§Z|Nf<u)r% >, y,i)q?, (15)

t=1 keN*t(u)

where y/ € R? represents the implicit latent vector of item k under the ¢-th implicit feedback. The
model in Equation (15) can be seen as a more general version of the SFPR model.
Now we have the x,,;; = Ry; — Ry; as

xu,-,-=(pu+§;wf<u>r% 2 y,:)<q,-—q,->T. (16)

keN*(u)

With Ayij, Ap, Ag, A, defined as previously, for any sample (u,1,j) € Iy yielding:

qi — 9q; if 0 = py,
0. |t TSN Seeve v 10=g5 )
907 | =(pu+ 7 2o INY W12 Xpenewy vp) i 0 =g,

IN* ()% (q; - g;) if 0 = y[.

Similarly, we apply SGA to solve the optimization problem. The whole algorithm framework is
shown in Algorithm 1. The time complexity of MFPR can be analyzed as follows. The computation
of MFPR mainly contains two parts: (1) calculating parameters and gradients (Lines 6, 7, and 13) and
(2) updating parameters (Lines 8—-10 and 14). The number of latent dimensions is d, and |[N* ()|
can be estimated by a small constant ¢ and ¢ <« m, ¢ < n. The complexity in Lines 6 and 7 is
O(c X 7 x d). The complexity in Line 13 is O(c X 7 X d). And the complexity in Lines 8-10 and 14
is O(d). So, the entire complexity of Lines 11-16 is O(c? x 72 x d). In summary, the complexity of
MFPR is O(c? x 72 x d x |7;| x r), where r is the number of iterations.

5 TRAINING SET GENERATION ALGORITHM

As mentioned above, our MFPR model is fed with training data in the form of (u, i, j) with i > j de-
noting that user u prefers item i over item j. There is an important issue of how we can effectively
generate (u, i, j) from multiple feedback, since the preference partial pairs significantly affect per-
formances [2]. For those traditional personalized ranking models utilizing only one or more types
of implicit feedback, such as BPRMF in Reference [25] and the approach in Reference [5], their
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ALGORITHM 1: Algorithm Framework of MFPR

Input: 7;: the training set of training triples
1: learning rate for gradient ascent
Ap, g, Ay: regularization parameters defined above
Output: p,(u = 1---m): the explicit latent vector of user u
qi(i = 1---n): the explicit latent vector of item i
Yi(k = 1---n): the implicit latent vector of item k
1 Initialize py, q;, yli(t =1---n) for all users and all items

2 Define Xy;; = Ryi — ﬁuj with Equation (16)
3 Define Ay;j = 1/(1 + e’%uif) as in Section 4.2

4 repeat

5 for (u,i,j) in 77 do

6 Calculate £yj, Ayij

7 Calculate =2 %,i7, 22-%yij, 72%uij

Bpy TUil> Bq; Xuil> dq; Xuij

s Update py := pu + n(Auij %ffuij = AppPu)
9 Update g; := gq; + U(Auijaiqifuij - Aqqi)
10 Update g; := q; + n(Auijg%ijuij - 449))
11 fort < 1tor do

12 for k € Nt (u) do
13 Calculate aiyliffui j
14 Update yli = ylz +n(Ayij %},ﬁffuij - Ay)’;ﬁ)
15 end

16 end

17 end

18 until convergence;

training set generation algorithms just take implicit feedback into count. Specifically, they draw
partially ordered item pairs from the Cartesian product of user’s interacted items (items that be-
long to a user’s implicit item set) and a user’s non-interacted items (items that do not belong to
a user’s implicit item set). However, in terms of multiple feedback, such a training set generation
algorithm is inapplicable for MFPR. In addition to implicit feedback, there is quantified rating in-
formation in our problem setting, which can better reflect preference sequences. Hence, we need
to design a new training set generation algorithm.

Burgess and Shaked et al. [2] have proved that if the ranking probabilities of every adjacent
document pair in a permutation of all documents to be ranked are known, then the ranking prob-
abilities of any document pair can be derived. Inspired by this conclusion, we design a training set
generation algorithm that utilizes the most significant preference information in the multiple feed-
back: rating information. For each user u, we randomly split his or her explicit item set E(u) into
two subsets E;,(u) and E;.(u) with the given split ratio, where E;,(u) is designed for constructing
the training set 7, and E;.(u) is for the testing set 7.. When constructing 7, we first obtain a
random permutation of E;,(u). Then, for every adjacent item pair (i, j) in the permutation: (1) If
Rui > Ryj, then put the triple (u, i, ) into 7; (2) if Ry; < Ry;, then put the triple (u, j, i) into 7y;
and (3) if R,; = Ry, then skip and continue to check next adjacent pair. Through the process for
every user, we can eventually get the training set 7. And a similar process is applied to the testing
set 7.
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Fig. 3. Example of generating training data for user u.

Figure 3 gives an example for user u. We have E;,(u) = {6,8,9,11,17} and the corresponding
ratingsare R, ¢ = 4, Rys = 3,Ry,0 = 2,R;;,11 = 5,and R, 17 = 4. Assume that a random permutation
of E; is Py, = {11,8,17,6,9}, and then we in turn check every adjacent item pair (11, 8), (8, 17),
(17,6), (6,9) of the permutation. Finally, the triples (u, 11, 8), (u, 17,8), and (u, 6,9) are selected
and put into the training set 7. Algorithm 2 shows the whole algorithm framework, and we refer
to this algorithm as IPPE.

Please note that we only use explicit feedback (i.e., rating information), without implicit feed-
back, to generate training data. Why not add implicit feedback as a supplement? There are two
reasons. (1) Explicit feedback significantly reflects user preferences, while implicit feedback implies
user preferences with uncertainty. It will add much noise to the training data when considering
implicit feedback. (2) Referring to the update process in Algorithm 1, we can note that the implicit
feedback data have been utilized implicitly in the model when we use rating-related training data.
So, it is not necessary to adopt implicit feedback in generating training data. In addition, the IPPE
method considers every adjacent item pair rather than any item pair. This strategy significantly
reduces the size of training samples without much sacrifice in recommendation performance.

6 EXPERIMENT

In this section, we conduct a series of experiments on two real-world datasets and verify the su-
periority of the proposed models compared to state-of-the-art baselines.

6.1 Datasets

In this article, we focus on exploiting user multiple feedback, including explicit feedback and mul-
tiple types of implicit feedback. As far as we know, it is difficult to obtain such public datasets.
Hence, we crawled two real-world datasets for the experiments.

The Douban Book dataset is crawled from Douban,? which is a well-known social media net-
work in China. When crawling data, we first select some active users in an interest group as seed
users, and then crawl other users followed by the seed users in the next iteration. We crawl users
iteratively in the above way. At the same time, we crawl the books that the crawled users gave
feedback on. Finally, a sub-network of the Douban social network is obtained for our experiments.
The dataset contains 190,590 ratings (1-5 scores) from 12,850 users and 22,040 books. The ratings
of users to books are considered explicit feedback. There are six types of implicit feedback: “wish,”
“reading,” “read,” “tag,” “comment,” and “rated.” This implicit feedback is represented by a binary

Zhttp://book.douban.com.
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ALGORITHM 2: The Training Set Generation Algorithm IPPE
Input: e: split ratio
E(1),E(2),...,E(m): user rated item sets
Output: 7;, 7¢: training and testing set
1 Initialize 77 = &, e = @
2 foru « 1tomdo
3 Randomly split E(u) into E;r(u) and E¢. (1) using €

4 Get random permutation Py (u), Pre(u) of Etr(u), Efe(u)
5 for adjacent item i, j in Pyy(u) do
6 if Ry; > Ryj then
7 Put (u, i, j) into T,
8 else
9 if Ry < Ry;j then
10 Put (u, j, i) into T,
11 end
12 end
13 end
14 for adjacent item i,j in Pye(u) do
15 if Ry; > Ruj then
16 Put (u, i, j) into Te
17 else
18 if Ry; < Ryj then
19 Put (u, j, i) into T,
20 end
21 end
22 end
23 end

matrix (“1” for done and “0” for not). Note that the “rated” implicit feedback is from rating infor-
mation that has been degraded into a binary matrix (“1” means “rated” and “0” for “not rated”).

The Dianping dataset is crawled from the Dianping website,® which is a well-known life-service
social platform providing reviews of users on businesses in China. This dataset contains 188,813
ratings (1-5 scores) from 10,549 users and 17,707 restaurants. There are four types of ratings in
Dianping, including overall rating (1-5 scores) and ratings (1-5 scores) on taste, environment, and
service. We use the overall ratings as explicit feedback and degrade overall, taste, environment
and service ratings into “1” if rating > 3 and otherwise “0.” Then four types of implicit feedback
(0/1) are obtained: “good taste,” “good environment,” “good service,” and “good overall.” A detailed
description of the two datasets can be seen in Table 1.

» ¢

6.2 Evaluation Metrics
We use two evaluation metrics, which are widely used to evaluate ranking performance. Zero-One
Error [15] is the average ratio of correctly ordered item pairs of triples (u, i, j) in testing set 7:

1
f0/1 = T—
T

D 1l (Rui = Ryy) > 0], (18)

(u,i,j)€Te

Shttp://www.dianping.com.

ACM Transactions on Social Computing, Vol. 1, No. 2, Article 7. Publication date: June 2018.


http://www.dianping.com

A Personalized Ranking Recommendation with Multiple Feedbacks 7:13

Table 1. Statistics of Datasets

Dataset | Type | A-B | #A | #B | #A-B
explicit | rating 12,850 | 22,040 | 190,590

wish 11,107 | 16,406 | 162,565

reading 9,776 12,787 71,662

Douban implicit | read 12,029 | 20,014 | 174,726
Book tag 8,487 19,942 | 162,070
comment 8,776 18,888 | 151,758

rated 12,850 | 22,040 | 190,590

explicit | rating 10,549 | 17,707 | 188,813

good taste 10,473 | 14,043 | 122,060

Dianping | implicit | good environment | 10,293 | 12,135 | 90,350
good service 10,354 | 13,271 | 105,846

good overall 10,425 | 14,283 | 125,173

where x,,;; is the difference between predicted ranking score R,; and R, ; as defined above. And
[c] denotes a condition indicator that returns 1 iff ¢ is true and otherwise 0. We can note that the
metric Zero-One Error is similar to AUC (Area Under the ROC Curve).

NDCG@k [15] is designed to take into count the order of items in the recommendation list. To
define NDCG, @k for a user u, DCG, @k should be given formally first:

k Rui _
DCG, @k = Z 12 ! (19)
i=1

0gx(i+ 1)’

where i ranges over positions in the recommended list of user u, we use the observed rating R,;
to weigh the degree user u prefers item i. NDCG, @k is the ratio of DCG, @k to ideal DCG for that
user:

DCG, @k

NDCG, @k = ————,
@ IDCG, @k

(20)
where IDCG, @k is the maximum possible DCG when the recommended items are just in descend-
ing order by user u preference. NDCG@k is the mean value of NDCG, @k over all users, reflecting
the model performance of the recommended list at the top k ranking.

6.3 Comparison Methods

We compare the performance of the proposed SFPR and MFPR with five representative methods.
According to different problem settings, the methods can be classified into three categories: ex-
plicit feedback based (i.e., SVD), implicit feedback based (i.e., BPRMF, EN-BPRMF), hybrid feedback
based (i.e., MP, SVD++ and FM). These baselines are summarized as follows.

e Most Popular (MP). This baseline ranks items according to their popularity and is non-
personalized.

e SVD [14]. This method is a typical matrix factorization based model. It is a rating prediction
model and the input data need only rating information. We rank items using the predicted
ratings in our experiments.

e BPRMF [25]. This pairwise ranking method introduced by Rendle et al. is a personalized
ranking model using only one type of implicit feedback.
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e Ensemble of BPRMF (EN-BPRMF) [5]. This method is an ensemble approach to unify differ-
ent types of implicit feedback based on BPRMF. In the experiments, we ensemble all types
of implicit feedback using this approach.

e SVD++ [14]. This method is also a matrix factorization based rating prediction model and it
integrates rating information with one type of implicit feedback. We rank items using the
predicted ratings.

e MSVD++. This method is adapted from SVD++. It integrates rating information with multi
types of implicit feedback using Equation (15) to predict ratings. Similarly, we rank items
by predicted ratings.

e Factorization Machine (FM) [23]. This method is a general predictor working with any
real valued feature vector and combines the advantages of support vector machines with
factorization models. We integrate rating information and all types of implicit feedback into
the feature vector. It is a rating prediction model and, we rank items using the predicted
rating.

Since BPRMF, SVD++ and the proposed SFPR need one type of implicit feedback, we choose
the “read” feedback in Douban Book and the “good overall” feedback in Dianping for them; the
reason is that the best performances are achieved in these conditions, and the details are explained
in Section 6.6. In addition, some baselines are obtained from open resources. FM is from libFM
[24], and MP and BPRMF are from MyMediaLite [7]. Moreover, these methods are set to optimal
parameters on these datasets.

6.4 Effectiveness

This section validates the effectiveness of the proposed SFPR and MFPR compared to those base-
lines. For Douban Book and Dianping datasets, we generate training set 7, and testing set 7, using
different split ratios 30%, 50%, 70%. The random split was carried out 5 times independently in all
experiments, and we report the mean values of ¢y/; and NDCG.

For fair comparison, we set the same number of latent dimension d = 10 for all matrix factor-
ization based methods. Parameters of all methods are tuned to the optimal values through cross
validation. We select ¢y/;, NDCG@5, NDCG@10, and NDCG@15 as evaluation metrics. We also
record the improvement ratio on these evaluation metrics of all methods compared to the SVD.
Moreover, we also conduct the ¢-test experiments with 95% confidence, which shows that the &/,
and the NDCG improvement difference is statistically stable and non-contingent. The experimen-
tal results are shown in Tables 2 and 3. The main findings from the experimental comparisons are
summarized as follows:

e MFPR achieves the best performance in all conditions, which validates the significant ben-
efits of integrating both explicit feedback and multiple implicit feedback. The experiments
also confirm that better performance can be achieved by integrating more feedback infor-
mation. For example, for those ranking methods, SFPR outperforms BPRMF due to the inte-
gration of ratings, and the superiority of MFPR to SFPR is from more implicit feedback. For
those rating prediction methods, SVD++ outperforms SVD because of implicit feedback.
MSVD++ outperforms SVD++, because it integrates multiple implicit feedback. MSVD++
is not inferior to SFPR, because MSVD++ integrates multiple implicit feedback. Note that
MSVD++, FM, and MFPR utilize all feedback information, while MFPR always has better
performance; MFPR not only designs an effective mechanism treating explicit and implicit
feedback differently but also uses an effective rank model, while FM handles all feedback
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Table 2. Performance Comparisons on Douban Book (d = 10, the Baseline of Improvement Ratio Is SVD)

Training| Metric | MP | SVD |BPRMF [EN-BPRMF|SVD++|MSVD++| EM | SFPR | MFPR

£0/1 0.5210 {0.5251| 0.5314 0.5372 | 0.6089| 0.6260 |0.6145|0.6270(0.6307

Improve | —0.66% 1.20% 2.30% 15.96%| 19.22% (17.03%|19.41%|20.11%
NDCG@5 | 0.7831 |0.7879| 0.7845 0.7861 |0.8291| 0.8371 |0.8288|0.8371|0.8399

30% Improve | —0.78% -0.43% | —0.23% | 5.23% | 6.24% |5.19%|6.24% | 6.60%
NDCG@10| 0.8301 (0.8332| 0.8318 0.8323 |0.8656| 0.8718 |0.8691|0.8706|0.8726
Improve | —0.37% -0.17%| —-0.11% | 3.89% | 4.63% |4.31% |4.49% | 4.73%
NDCG@15| 0.8559 [0.8576| 0.8567 0.8575 |0.8852| 0.8905 |0.8885|0.8897|0.8917
Improve | —0.20% -0.10% | —0.01% | 3.22% | 3.84% |3.60% |3.74% | 3.98%

£0/1 0.5225 {0.5909| 0.5299 0.5374 0.6396| 0.6511 [0.6399|0.6605|0.6636

Improve [-11.58% -10.32%| —-9.05% | 8.24% | 10.19% | 8.29% |11.78%|12.30%
NDCG@5 | 0.7969 |0.8347| 0.7989 0.7994 |0.8516| 0.8576 |0.8500{0.8564|0.8611

50% Improve | —4.53% —-4.29% | —4.23% | 2.02% | 2.74% |1.83%|2.60% | 3.16%
NDCG@10| 0.8478 [0.8747| 0.8493 0.8494 |0.8887| 0.8927 |0.8864|0.8927|0.8959
Improve | —3.08% —-290%| —2.89% | 1.60% | 2.06% |1.34%|2.06% |2.42%
NDCG@15| 0.8705 (0.8933| 0.8714 0.8719 |0.9052| 0.9086 |0.9035|0.9088(0.9118
Improve | -2.55% —245% | —2.40% | 133% | 1.71% |1.14%|1.74% | 2.07%

£0/1 0.5239 [0.6242| 0.5312 0.5397 10.6558 | 0.6639 |0.6582|0.6676|0.6756

Improve |-16.07% —-14.90%| —13.54% | 5.06% | 6.36% |5.45% |6.95% | 8.23%
NDCG@5 | 0.8338 |0.8791| 0.8403 0.8409 |0.8874| 0.8899 |0.8875|0.8895|0.8932

70% Improve | -5.15% —-441% | —4.35% | 094% | 1.22% |0.96% |1.18% | 1.60%
NDCG@10| 0.8814 [0.9110| 0.8821 0.8824 10.9172| 0.9189 |0.9164|0.9196|0.9220
Improve | -3.25% -317%| -3.14% | 0.68% | 0.88% |0.59%|0.94% | 1.21%
NDCG@15| 0.8953 [0.9212| 0.8957 0.8959 10.9270| 0.9282 |0.9273|0.9286(0.9309
Improve |—-2.81% =2.27%| —=2.75% | 0.63% | 0.76% |0.66% |0.80% | 1.05%

equally. In all, exploiting and integrating multiple feedback is really helpful to improve the
performance in the personalized ranking recommendation task.

When considering different training data ratios, we can find that the improvements of those
models integrating explicit feedback with implicit feedback (i.e., SVD++, MSVD++, FM,
SFPR, and MFPR) over the SVD are more significant for fewer training data. This indi-
cates that integrating implicit feedback into models can effectively alleviate data sparsity of
rating information. Specifically, MSVD++, FM outperforms SVD++ and MFPR outperforms
SFPR, because of more implicit feedback is integrated. More combined implicit feedback
means more supplementary information for ratings. Thus, it is necessary to achieve much
better recommendation performance by integrating comprehensive multiple feedback, par-
ticularly when rating information is insufficient.

From the results, we can also note that pairwise methods are more suitable for person-
alized ranking recommendations. Specifically, SVD, SVD++, MSVD++, and FM are rating
prediction models, also known as pointwise methods, while SFPR and MFPR are pairwise

ACM Transactions on Social Computing, Vol. 1, No. 2, Article 7. Publication date: June 2018.



7:16 C. Shi et al.

Table 3. Performance Comparisons on Dianping (d = 10, the Baseline of Improvement Ratio Is SVD)

Training| Metric MP | SVD |BPRMF|EN-BPRMF|SVD++|MSVD++| FM | SFPR | MFPR
£0/1 0.59570.5922| 0.5999 0.6072 | 0.6118 | 0.6148 [0.6220{0.6248|0.6253

Improve | 0.59% 1.30% 2.53% 331% | 3.82% |5.03%|5.50% | 5.59%
NDCG@5 |0.8214 |0.8178]| 0.8225 0.8261 0.8293 | 0.8314 |0.8365|0.8377|0.8387

30% Improve | 0.44% 0.57% 1.01% 1.41% | 1.67% |2.29%|2.43% | 2.56%
NDCG@10|0.8619 |0.8594| 0.8630 0.8658 |0.8692| 0.8704 |0.8689(0.8721|0.8752
Improve | 0.29% 0.42% 0.74% 1.14% | 1.28% |1.11%|1.48% | 1.84%
NDCG@15(0.8776 |0.8750| 0.8789 0.8814 0.8843 | 0.8852 [0.8843(0.8861(0.8896
Improve | 0.30% 0.45% 0.73% 1.06% | 1.17% |[1.06%|1.27% | 1.67%

£0/1 0.596510.6191| 0.6009 0.6062 | 0.6304| 0.6330 (0.6307(0.6345|0.6367

Improve |-3.65% —2.94%| —2.08% | 1.83% | 2.25% |1.87%|2.49% | 2.84%
NDCG@5 |0.8628 |0.8727| 0.8643 0.8674 | 0.8774| 0.8792 |0.8778(0.8801|0.8815

50% Improve |-1.13% -0.96%| -0.61% | 0.54% | 0.74% |0.58%|0.85% | 1.01%
NDCG@10| 0.8924 {0.8999| 0.8940 0.8961 0.9044 | 0.9053 |0.9040|0.9056|0.9076
Improve |-0.83% -0.66%| —0.42% | 0.50% | 0.59% |0.46%|0.63% | 0.86%
NDCG@15|0.9030 {0.9097| 0.9045 0.9066 |0.9141| 0.9149 (0.9136{0.9145|0.9165
Improve |—-0.74% —0.57%| —0.34% 0.48% | 0.57% |0.43%|0.53%| 0.75%

£0/1 0.598710.6348| 0.6006 0.6103 | 0.6411| 0.6439 (0.6437|0.6468|0.6498

Improve |-5.69% —-5.39%| -3.86% | 0.99% | 1.43% |1.40%|1.89% | 2.36%
NDCG@5 |0.8858 |0.8982| 0.8875 0.8891 0.9012 | 0.9015 |0.8996|0.9015|0.9029

70% Improve |-1.38% -1.19%| -1.01% 0.33% | 0.37% |0.16%|0.37%| 0.50%
NDCG@10(0.9099 {0.9196 0.9110 0.9126 | 0.9217| 0.9222 [0.9209(0.9219|0.9234
Improve |-1.05% -0.94%| -0.76% | 0.23% | 0.28% |0.14%|0.25% | 0.41%
NDCG@15|0.9172(0.9259| 0.9183 0.9197 | 0.9276| 0.9284 (0.9272{0.9280|{0.9297
Improve |—0.94% -0.82%| —0.67% | 0.18% | 0.27% |0.14%|0.23% | 0.41%

ranking models. Particularly, SFPR uses the same base learner as SVD++, while MFPR uses
the same base learner as MSVD++. We can see that SFPR and MFPR outperform SVD++
and MSVD++, respectively, which demonstrates the effectiveness of the pairwise method.
Note that the other two pairwise ranking models (i.e., BPRMF and EN-BPRMF) fail to defeat
those pointwise models. We think the reason lies in the fact that BPRMF and EN-BPRMF
only utilize implicit feedback, so they fail to generate accurate partial order item pairs as
a training set. In contrast, our SFPR and MFPR generate item pairs with a more accurate
ranking order as a training set from explicit feedback.

6.5 Impact of Different Training Set Generation Algorithms

Next, we verify the effectiveness of the designed training set generation method IPPE. As shown
in Algorithm 2, the method IPPE is designed to make full use of the high-quality explicit feedback
(i.e., rating), and, thus, the proposed training set generation approach mainly focuses on the ratings
of users. To validate the superiority of the IPPE, we compare it with the following two baseline
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Fig. 4. The comparison of the algorithms IPUC, IPRE, and IPPE.

methods. Following the idea of BPRMF in Reference [25], for user u, we make a Cartesian product
of E;r(u) with a user’s unknown items to construct a training set. We name this approach IPUC,
which means Item Pairs of partial order are obtained from an Unknown item related Cartesian
product. We also consider a variation of the IPPE method. For E;,(u) of each user u, we sample
two items each time randomly and generate the item pair with partial order according to their
observed ratings. To produce a similar training data size as Algorithm 2, the random process for
each user u was conducted |E;,(u)| times. We refer to this approach as IPRE, which means Item
Pairs of partial order are obtained from checking Random pairs in an Explicit item set. And we
retain the same generation strategy for the testing set as in Algorithm 2 for these two approaches.

To validate the effectiveness of IPPE, we first apply the IPUC, IPRE, and IPPE algorithms to the
BPRMF model [25] and refer to them as IPUC-BPRMF, IPRE-BPRMF, and IPPE-BPRMF, respec-
tively. For fair comparison, we use three algorithms to generate partial pairs from the Douban
Book and Dianping datasets with same training set size. Here, we use three different split ratios:
30%, 50%, and 70%, and we report the performance of these three methods on &/, and NDCG@5
in Figure 4(a) and Figure 4(b). On both datasets, the IPPE-BPRMF is superior to IPUC-BPRMF and
IPRE-BPRMF; the algorithm IPPE makes full use of the rating data, and the generated training
pairs have a more accurate partial order.

Furthermore, we apply these three different training set generation algorithms in SFPR and
MFPR. As shown in Figure 5, SFPR based on the methods IPUC, IPRE, and IPPE are referred to
as SFPRy ¢, SFPRgE, and SFPRpg, respectively. This is similar for MFPR. We conduct experiments
on both the Douban Book and Dianping datasets, and the “read” feedback and the “good overall”
feedback are still chosen for the SFPR. The performance on Zero-One Error and NDCG@5 with the
70% training set are reported in Figure 5(a) and Figure 5(b). We can observe that IPPE-based mod-
els show much better performance than IPUC-based models. Specifically, SFPRy ¢ and MFPRy ¢
exhibit very bad performance, such as BPRMF in Tables 2 and 3. Since the method IPPE makes full
use of the rating information, the corresponding training set 7, consists of item pairs with more ac-
curate partial order. On the contrary, the approach IPUC simply discards the item orders implied
by rating information and handles the rating as ordinary implicit feedback. Moreover, we ob-
serve that SFPRpr and MFPRpg outperform SFPRgr and MFPRgE, respectively, slightly but stably.
This shows that sampling adjacent item pairs from random permutations is a better strategy than
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Fig. 7. Integration with different implicit feedback in Dianping.

sampling item pairs randomly. In summary, for multiple feedback data, the proposed IPPE method
is more effective at generating training sets for the personalized ranking models.

6.6

Here we explore the impacts of integrating different types of implicit feedback with rating infor-
mation. Here, we apply SVD++ and SFPR to integrate different implicit feedback with ratings. That
is, we employ six different types of implicit feedback (wish, reading, read, tag, comment, and rated)
in Douban Book and four different types of implicit feedback (good taste, good environment, good
service and good overall) in Dianping. In addition, we also run MFPR to integrate all feedback. The
split ratio is set to 50%, and the average results are shown in Figure 6 and Figure 7.

We observe that various implicit feedback makes substantially different contributions to
improvement in personalized ranking performance. In Douban Book, among six different types of
implicit feedback, the “read” feedback achieves the best performance while the “tag” performs the
worst. We think the reason may lie in that the “read” feedback has a stronger indication of user
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Fig. 8. Performance of mean-weighted blending of SFPR and MFPR on Douban Book and Dianping.

preferences than other implicit feedback. In Dianping, “good overall” has the best performance,
while “good environment” and “good service” perform relatively poorly. We think that there is a
similar reason for this phenomenon. That is, “good overall” shows a stronger indication of user
preferences, since it is derived from the overall ratings. In general, the better performance is
achieved by integrating implicit feedback with stronger indications of user preferences. Addition-
ally, the “read” feedback in Douban Book and the “good overall” feedback in Dianping perform
the best, so we choose the two implicit feedback for those models in the above effectiveness
experiments.

Moreover, MFPR, which integrates all types of implicit feedback, always has better performance
than SVD++ and SFPR, which can integrate only one type of implicit feedback with ratings. On
both datasets, SFPR outperforms SVD++ in most cases. This verifies again that the pairwise method
is more powerful than the pointwise method for this ranking task.

6.7 Mean-weighted SFPR versus MFPR

As mentioned previously, explicit and implicit feedback have different characteristics; thus, the
relations between the explicit feedback and the implicit feedback and the relations among differ-
ent forms of implicit feedback are key points to be considered when designing the personalized
ranking model. We verify this claim in this section.

A simple and intuitive way to integrate user multiple feedback is to conduct linear blending of
SFPR models with the average weight. Since there are six different types of implicit feedback in
the Douban Book dataset and four different types of implicit feedback in the Dianping dataset, the
EN-SFPR in Figure 8(a) represents the linear blending of six various SFPR based on six different
types of implicit feedback using the average weight %, and the EN-SFPR in Figure 8(b) represents
the linear blending of four various SFPR using the average weight ;. Meanwhile, other models
(i.e., SFPR and MFPR) in Figure 8 are the same model as those in Table 2 and Table 3. Here, we
use three different split ratios: 30%, 50%, 70%, and the performance of these models on &, and
NDCG@5 are shown in Figure 8(a) and Figure 8(b).

Consistent with previous experimental results, MFPR shows better performance than the
SFPR. We also observe that the MFPR is superior to the EN-SFPR, and this indicates that simple
mean-weighted linear blending of SFPR does address the relations among different forms of
implicit feedback well. However, it is not the case for MFPR; the learning process of MFPR handles
the relations among various forms of implicit feedback well by delicately modeling those relations
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Fig. 9. Performance of MFPR with various training ratio € and the latent dimension d on Douban Book.

in the MFPR. Moreover, we note that the EN-SFRP is even inferior to the SFPR. As concluded
in Section 6.6, each type of implicit feedback contributes significantly differently in promoting
model recommendation performance. The EN-SFPR, simple blending of the SFPR, cannot tap
the potential of integrating user multiple feedback and even lowers the importance of the most
important implicit feedback (e.g., the “read” in Douban Book and the “good overall” in Dianping).

6.8 Parameter Study

Finally, we explore how the training ratio € and the number of latent dimensions d affect the
performance of MFPR. Due to the similarity of the experimental results to those of Dianping, here
we only show the experimental results of Douban Book.

The training ratio € controls the ratio of explicit feedback data to be trained. In the experiments,
we set € with 30%, 40%, 50%, 60%, 70%, and 80%, and Figure 9(a) shows the corresponding results.
The performance of MFPR improves as training ratio € increases. It is reasonable that more training
data are helpful to enhance the recommendation performance.

The number of latent dimensions d is an important parameter for matrix factorization-based
models. Generally, performance of matrix factorization-based models improves as the latent di-
mension d increases. However, considering the time complexity of MFPR (see Section 4.3), a larger
d indicates a longer training time and lower prediction efficiency. Thus, the proper d is set to
balance accuracy and efficiency. In the experiments, we set d with 2, 4, 6, 10, 20, 50, and 100,
and the corresponding results are shown in Figure 9(b). We observe that when d grows from 2
to 10, the performance of MFPR improves significantly. However, when d grows from 10 to 100,
the performance of MFPR for the most part remains steady. Hence, to balance the model’s accu-
racy and efficiency, d = 10 is set for all matrix factorization-based methods in our experiments, as
mentioned.

7 CONCLUSION AND FUTURE WORK

In this article, we conjecture that integrating explicit feedback (i.e., ratings) and multiple implicit
feedback can effectively improve personalized recommendation performance. Hence, we study
the personalized ranking recommendation problem integrating multiple feedback, and a unified
multiple feedback based personalized ranking framework MFPR. Extensive experiments on two
real-world datasets show that MFPR outperforms state-of-the-art models that use rating or im-
plicit feedback or hybrid feedback. Moreover, we have also designed a delicate algorithm IPPE to
generate training data with a more accurate partial order for the proposed ranking model. The
empirical evaluation results also show that IPPE is a good training data generation strategy.

ACM Transactions on Social Computing, Vol. 1, No. 2, Article 7. Publication date: June 2018.



A Personalized Ranking Recommendation with Multiple Feedbacks 7:21

The implicit feedback exploited in this article all indicate positive user preferences. In the future,
we will further exploit implicit feedback with negative user preferences (e.g., “dislike” and “skip”)
and other types of explicit feedback. In addition, other LTR models (e.g., the listwise rank model)
can be applied to better integrate multiple feedback information. Since the proposed method is an
offline algorithm, an online version would be useful to extend its applicability.
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