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Abstract

Recommender systems play an important role in helping

users discover items of interest from a large resource collec-

tion in various online services. Although current deep neural

network-based collaborative filtering methods have achieved

state-of-the-art performance in recommender systems, they

still face a few major weaknesses. Most importantly, such

deep methods usually focus on the direct interaction be-

tween users and items only, without explicitly modeling

high-order co-occurrence contexts. Furthermore, they treat

the observed data uniformly, without fine-grained differenti-

ation of importance or relevance in the user-item interactions

and high-order co-occurrence contexts. Inspired by recent

progress in memory networks, we propose a novel multiplex

memory network for collaborative filtering (MMCF). More

specifically, MMCF leverages a multiplex memory layer con-

sisting of an interaction memory and two co-occurrence con-

text memories simultaneously, in order to jointly capture and

locate important and relevant information in both user-item

interactions and co-occurrence contexts. Lastly, we conduct

extensive experiments on four datasets, and the results show

the superior performance of our model in comparison with

a suite of state-of-the-art methods.

1 Introduction

In the era of information overload, recommender sys-
tems have been playing an increasingly important role in
various online services [6], including E-commerce, online
news and social media. Current recommender systems
evolve around learning an effective preference predic-
tion function based on historical user-item interaction
records, known as collaborative filtering (CF) [14]. In
particular, matrix factorization (MF) [7] is one of the
most successful methods among CF techniques, which
models the preference as the inner product of user and
item latent factors. Since the interactions between users
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and items are often complex and may involve vastly dif-
ferent underlying intentions, such a shallow representa-
tion could be inadequate in expressing the preferences.

Due to the ability of modeling non-linear functions,
deep neural networks have yielded state-of-the-art per-
formance in many research areas such as computer vi-
sion and natural language processing. The recent inte-
gration of deep models into recommender systems has
also revealed the remarkable strength of complex non-
linear transformations of user-item interactions. Exist-
ing neural network-based recommendation fall into two
broad categories. The first category replaces the tradi-
tional inner product with nonlinear neural networks to
model more complex prediction functions [2, 15]. Recent
efforts [12, 24] further utilize random walks to augment
user-item interactions, which ultimately train a more
effective deep model. The second category extends the
matrix factorization by incorporating deep representa-
tions learned from additional side information such as
review texts and videos [22, 25].

Unfortunately, these deep recommendation models
still suffer from several limitations. Consider the sce-
nario in Fig. 1(a1)—given that the user u3 purchased
items such as camera (i2), pen (i3) and book (i4) in
the past, the recommender system needs to determine
whether u3 is likely to purchase a memory card (i1).

One limitation of the previous deep models, as
sketched in Fig. 1(b), is that they mainly focus on the
direct interaction between users and items, without ex-
plicitly accounting for the high-order co-occurrence con-
texts between users and items, respectively. Examples
are the co-purchase contexts between users such as u1
and u2 both purchasing the same item camera (i2) in
Fig. 1(a2), as well as the co-purchased context between
items such as the memory card (i1) and camera (i2) both
purchased by the same user u1 in Fig. 1(a3). Such high-
order contexts are especially crucial in sparse datasets
lacking enough user-item interactions. While some ex-
isting works [1, 4, 24] have attempted to utilize higher-
order information, they focus on enriching user-item in-
teractions, rather than explicitly modeling user-user and
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Figure 1: Illustration of our problem. (a) User-item
interactions and co-occurrence contexts. (b) Previous
models focusing on user-item interactions. (c) Our
model with fine-grained interactions and co-occurrence
contexts.

item-item contexts.
Second, most previous works treat the observed

data (i.e., user-item interactions and co-occurrence con-
texts) uniformly, without fine-grained differentiation of
their underpinning preferences or importance. Intu-
itively, a user-item interaction could be influenced by
diverse preferences, given users from different demo-
graphic, socioeconomic or cultural groups. Generally,
such diverse preferences may be weighed differently in
different interactions. While such differentiation has
been explored to some extent for user-item interactions
[1, 20, 27], it remains an open question for co-occurrence
contexts, which are likewise not uniformly important
to the recommendation. As shown in Fig. 1(c), given
a memory card (i1), the co-occurring camera (i2) is a
more important context than a pen (i3), as memory card
and camera are more complementary in nature. Similar
scenarios exist in user co-occurrence contexts. Thus, in
both user-item interactions and co-occurrence contexts,
we need a fine-grained model that allows different pref-
erences and contexts to receive varying attention.

To deal with the above considerations, two critical
questions must be addressed. First, how to integrate
user-item interactions and co-occurrence contexts in a
unified and end-to-end manner? Second, how to enable
fine-grained differentiation for both user-item interac-
tions and co-occurrence contexts? Inspired by the re-
cent progress in memory networks [11, 17], a few studies
[1, 20, 21] have employed memory networks in recom-

mender systems, which have the advantage of modeling
fine-grained preferences with a memory module. How-
ever, their architecture only operates with a single type
of memory centering around user-item interactions. Dif-
ferent from them, we firstly propose a novel Multiplex
Memory Network for Collaborative Filtering (MMCF),
which leverages multiplex memory layers to jointly cap-
ture user-item interactions and the co-occurrence con-
texts simultaneously in one framework. More specifi-
cally, the multiplex memory layer is designed to accom-
modate multiple types of memory concurrently, consist-
ing of an interaction memory to model user-item in-
teractions and two co-occurrence context memories to
model user-user and item-item contexts, respectively.
These memories are not independent and their inter-
play is also captured by our model. Furthermore, to-
wards fine-grained interactions and contexts, for each
type of memory, an attention mechanism is employed
to locate the important and relevant information in the
memory slots.

In summary, we make the following contributions.
(1) We highlight the importance of explicitly modeling
the user and item co-occurrence contexts in deep mod-
els especially when the user-item interactions are sparse,
which is also observed empirically in our experiments.
(2) We propose a novel model MMCF, a deep multiplex
memory network to jointly capture fine-grained user-
item interactions and co-occurrence contexts through
multiple types of memory in an unified, end-to-end
framework. To our best knowledge, MMCF is the first
memory network concurrently employing multiple types
of memory for collaborative filtering. (3) We conduct
extensive experiments on four real-world benchmarks,
validating the effectiveness of MMCF and its assump-
tions.

2 Related Work

Collaborative filtering (CF) aims to recommend a suit-
able list of items based on historical user-item inter-
action records. In particular, the matrix factorization
(MF) method [5, 7] has shown its effectiveness in many
applications, which decomposes the user-item interac-
tion matrix to learn low-rank latent user and item fac-
tors. Furthermore, many studies [4, 10, 16] have been
proposed to extend a MF-based framework to incorpo-
rate additional side information. In spite of the success
of existing CF-based recommendation methods, they
still suffer from the limited ability of modeling more
complex user-item interactions.

Due to the ability of modeling arbitrary non-linear
functions, deep neural networks endow recommender
system with the potential of capturing more complex
and intricate user-item interactions [2, 9, 15]. Sim-
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Figure 2: Overall architecture of the proposed model MMCF.

ilar to the traditional MF-based model, various at-
tempts [4, 19] have been made to integrate different
side information into the deep models. However, most
of these deep models only concern with coarse-grained
user-item interactions.

To enable fine-grained modeling, several studies at-
tempt to employ memory networks to capture complex
and fine-grained user-item interactions in collaborative
filtering [1, 20, 21]. Additional side information such as
texts [27] and heterogeneous relations [26] can be inte-
grated into the memory network too. However, they still
neglect high-order co-occurrence contexts. In contrast,
our proposed model MMCF hinges on a novel multi-
plex memory layer, which jointly captures fine-grained
user-item interactions as well as user-user and item-item
co-occurrence contexts using multiple types of memory
concurrently. To the best of our knowledge, MMCF is
the first memory network concurrently employing mul-
tiple types of memory in a unifying, end-to-end frame-
work for collaborative filtering.

3 The Proposed Model: MMCF

In this section, we present our model MMCF, a novel
deep multiplex memory network for collaborative filter-
ing.

3.1 Overview We assume a set of historical user-
item interaction records (e.g., product purchasing and

movie watching), denoted as R. R is comprised of
{u, i, rui|u ∈ U , i ∈ I}, where U and I respectively
represent the user and item sets, rui ∈ {0, 1} is set
to one if and only if there is an observed interaction
between user u and item i. Formally, our goal is to
learn a prediction function r̂ui = F(u, i; Θ), such that
r̂ui represents the probability that user u will interact
with (e.g., purchase and watch) item i, and Θ represents
the parameters of the prediction function F .

Next, we present the overall architecture of MMCF
in Fig. 2. After an initial embedding layer for users
and items in Fig. 2(a), we propose a multiplex mem-
ory layer to jointly model user-item interactions and
co-occurrence contexts as shown in Fig. 2(b). Differ-
ent from existing memory network-based CF, we simul-
taneously accommodate multiple types of memory: an
interaction memory (IM) sublayer for user-item inter-
actions, and two co-occurrence context memory (CCM)
sublayersfor user-user and item-item contexts. An at-
tention mechanism is further employed for fine-grained
modeling—IM weighs various underlying preferences for
user-item interactions, whereas CCM locates the impor-
tant and relevant users or items. Moreover, Fig. 2(c)
extends the multiplex memory layer to multiple hops
to model more complex interactions and co-occurrence
contexts. Finally, the output layer in Fig. 2(d) makes a
prediction r̂ui.
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3.2 Embedding Layer Following existing works[2,
4], we transform the one-hot encoding of users and
items into a low-dimensional dense vector via a lookup
(i.e., embedding) layer. Formally, each user-item pair
〈u, i〉 can be denoted as the one-hot representation
pu ∈ R|U|×1 and qi ∈ R|I|×1, where |U| and |I|
are the total number of users and items respectively.
Thus, the lookup layer corresponds to two parameter
matrices P ∈ R|U|×d and Q ∈ R|I|×d, which store
the d-dimensional latent factors for users and items,
respectively. Thus, the embedding of user u and item i,
or xu and yi, can be looked up as follows:

xu = PT · pu,(3.1)

yi = QT · qi.(3.2)

3.3 Multiplex Memory Layer The key difference
in our multiplex memory layer is the joint modeling
of multiple types of memory, including an interaction
memory and two co-occurrence context memories.

3.3.1 Interaction Memory sublayer To start,
given a user-item pair 〈u, i〉, we assume a joint user-
item embedding zui as follows:

(3.3) zui = f(xu,yi),

where f(·) can be addition, element-wise product or
other aggregation. Addition is chosen in our implemen-
tation, which performs the best empirically.

Since each user-item interaction is underpinned
by many latent preferences, we utilize attention-based
memory network to capture such fine-grained interac-
tions. In particular, we propose the Interaction Mem-
ory (IM) sublayer to weigh the importance of latent
preferences in each user-item interaction, as shown in
Fig. 2(b). Inspired by the key-value memory net-
work [11], given a joint user-item embedding, the IM
leverages a key matrix K ∈ RK×d and a memory ma-
trix M ∈ RK×d, where K denotes the number of mem-
ory slots and d is the embedding dimension. To fur-
ther differentiate the importance of these preferences,
we learn an attention vector a ∈ RK based on the simi-
larity between the user-item representation zui and the
key matrix K:

(3.4) am = zTuiKm, ∀m ∈ {1, 2, . . . ,K},

where Km refers to the mth row of K. Thus, the
attention vector signifies the importance of different
memory slots. Finally, we obtain the representation oui

of the user-item pair 〈u, i〉 by aggregating the memory
values based on the attention vector:

(3.5) oui =
∑
m

exp(am)∑K
m′=1 exp(am′)

Mm.

3.3.2 Co-occurrence Context Memory sublay-
ers Beside the user-item interactions, as motivated in
Sect. 1, it is crucial to consider high-order co-occurrence
contexts, i.e., user-user and item-item contexts, espe-
cially in datasets with sparse user-item interactions. In
the following, we first introduce the construction of co-
occurrence contexts, followed by the co-occurrence con-
text memory for capturing the fine-grained influence of
co-occurrence contexts.

Given a user u, his or her co-occurrence context
CU (u) is defined as the set of users who have purchased
at least one common item as u has. Similarly, given an
item i, its co-occurrence context CI(i) is the set of items
which have been purchased by at least one common user
as i has. That is,

CU (u) = {u′ ∈ U | ∃i ∈ I : rui = ru′i = 1},(3.6)

CI(i) = {i′ ∈ I | ∃u ∈ U : rui = rui′ = 1}.(3.7)

However, taking all of the user or item co-occurrences
as contexts may not work well due to noises in the co-
occurrences. Hence, as a common way to assess the
strength of co-occurrences, we filter the co-occurrences
using the pointwise mutual information (PMI) [8]:

PMIU (u, u′) = log
P (u, u′)

P (u)P (u′)
≈ log

#(u, u′) ·NU

#u ·#u′
,

(3.8)

PMII(i, i′) = log
P (i, i′)

P (i)P (i′)
≈ log

#(i, i′) ·NI

#i ·#i′
.

(3.9)

Here, #(4,�) denotes the frequency of � appearing
as the context of 4, #4 =

∑
� #(4,�) and #� =∑

4#(4,�). Moreover, NU and NI are the total
number of co-occurrence contexts for users and items,
respectively. Subsequently, we filter the original co-
occurrence contexts to require their PMI to be more
than log k (i.e., shifted positive PMI):

C̃U (u) = {u′ ∈ CU (u) | PMIU (u, u′) > log k},(3.10)

C̃I(i) = {i′ ∈ CI(i) | PMII(i, i′) > log k}.(3.11)

Here, k is a hyper-parameter to control the sparsity of
the co-occurrence contexts.

To model the above co-occurrence contexts, we
propose the Co-occurrence Context Memory (CCM)
sublayer , as shown in Fig. 2(b). In particular, there
are two CCMs in a multiplex memory layer, for user-
user and item-item contexts, respectively. We elaborate
on the co-occurrence contexts for items first. Simlar to
IM, the item CCM utilizes a key matrix KI ∈ R|I|×d
and a memory matrix MI ∈ R|I|×d. However, unlike
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IM, the number of memory slots equals to the number
of items, i.e., each memory slot stands for an item, and
we aim to capture the co-occurrence items for the item
i involved in a given user-item interaction. Thus, the
key matrix can just be the item embeddings matrix Q,
and we are only interested in its rows corresponding
to the co-occurrence contexts C̃I(i). However, not all
items in the co-occurrence contexts C̃I(i) are uniformly
important. As motivated in Sect. 1, while a camera
could co-occur with both a memory card and a pen, the
memory card is likely to be a more important context
for the camera. To enable fine-grained differentiation
of the co-occurrence items, we employ the attention
mechanism to focus on the important or relevant items.
Specifically, we learn an attention vector aI ∈ R|I| to
weigh the co-occurrence items, based on the similarity
between the given user-item interaction zui and each
row of the key matrix KI :

aIi′ =

{
zTuiK

I
i′ , ∀i′ ∈ C̃I(i),

0, ∀i′ /∈ C̃I(i).
(3.12)

Subsequently, for a user-item pair 〈u, i〉, we formulate
the embedding of its item co-occurrence contexts by
weighing relevant information from the memory matrix
MI with the attention vector:

oIui =
∑

i′∈C̃(I)(i)

exp (aIi′)∑
i′′∈C̃I(i) exp (aIi′′)

MIi′ .(3.13)

Finally, the user co-occurrence contexts can be similarly
modeled by the user CCM, which mirrors the item
CCM above. In brief, it utilizes a key matrix KU ∈
R|U|×d and a memory matrix MU ∈ R|U|×d, based
on which we learn an attention vector aU ∈ R|U|
to weigh the importance of user contexts similarly as
Eq. (3.12). Lastly, the embedding of the user co-
occurrence contexts oUui can be obtained similarly as
Eq. (3.13). We omit the equations due to space
constraint.

3.4 Multi-hop Multiplex Memory A single mem-
ory layer may be inadequate in capturing more complex
interactions and co-occurrence contexts. To increase the
expressiveness, we stack multiple hops of the multiplex
memory layer as shown in Fig. 2(c).

In the single-hop IM discussed earlier, for a given
user-item pair 〈u, i〉 with input embedding zui, our
model query the key matrix K and aggregate the
memory matrix M to derive the output embedding oui.

To extend to multiple hops, let z
(l)
ui and o

(l)
ui be the input

and output of the lth hop of the interaction memory.
Following [1], we apply a nonlinear ReLU projection

between hops, transforming the input of the l+ 1th hop
as

(3.14) z
(l+1)
ui = ReLU(W(l)z

(l)
ui + o

(l)
ui + b(l)),

where W(l) and b(l) are the weight matrix and bias
vector, respectively. In this way, we are able to stack
arbitrary hops to capture complex interactions between
users and items. Note that the input of the first hop

z
(0)
ui is obtained by Eq. (3.3).

Similarly, the input of the l + 1th hop for user and
item CCM can be calculated as follows:

z
U(l+1)
ui = ReLU(WU(l)z

U(l)
ui + o

U(l)
ui + bU(l)),(3.15)

z
I(l+1)
ui = ReLU(WI(l)z

I(l)
ui + o

I(l)
ui + bI(l)),(3.16)

which enable us to stack arbitrary hops to capture
complex co-occurrence contexts of users and items.

Again, the input of the first hop z
U(0)
ui and z

I(0)
ui is

obtained by Eq. (3.3).

3.5 Output Layer and Final Loss After L hops of
the multiplex memory layer, for a user-item pair 〈u, i〉,
we obtain the interaction memory embedding o

(L)
ui and

co-occurrence memory embeddings o
U(L)
ui and o

I(L)
ui . We

integrate them into a unified representation

õui = o
U(L)
ui ⊕ o

(L)
ui ⊕ o

I(L)
ui ,(3.17)

where ⊕ is the concatenation operator. We feed the
unified representation õui into a multi-layer perceptron
as the final prediction function:

r̂ui = ReLU(WN . . .ReLU(W1õui + b1) + . . .+ bN ).
(3.18)

Here, W∗ and b∗ denote the weight and bias in each
layer. Following [2, 4], we learn the parameters of our
model based on the cross entropy loss equipped with
negative sampling [18], as follows.

(3.19)∑
〈u,i〉∈R+

⋃
R−

rui log r̂ui + (1− rui) log(1− r̂ui) + λ||Θ||,

where R+ and R− denote the positive and negative
user-item interactions, respectively. Moreover, rui is
the ground truth whereas r̂ui is the predicted score. Θ
represents the parameter set of our model.

Finally, we examine the time complexity of MMCF.
In a single-hop multiplex memory layer, a user-item
pair (i.e., 〈u, i〉) requires O(d(|C̃U (u)| + |C̃I(i)| + K))
time, where d is the embedding dimension, |C̃U (u)| (or
|C̃I(i)|) denotes the number of co-occurring users (or
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Dataset #User #Item #Rating Density
Movielens-100k 943 1,682 100,000 6.30%

Delicious 1,050 1,196 7,698 0.61%
Ciao 6,760 11,166 146,996 0.19%

BookCross 19,571 39,702 605,178 0.08%

Table 1: Summary of datasets. The last column reports
the percentage of non-zero cells in the user-item matrix.

items) based on the shifted positive PMI, and K is the
number of memory slots. Note that these quantities are
all relatively small numbers. In particular, d and K
are constants, whereas |C̃U (u)| (or |C̃I(i)|) is less than
64 in 92.47% (or 89.73%) of the cases with an average
value of 57.62 (or 61.27) on the Movielens dataset (other
datasets show similar statistics). Given multiple hops,
the total time is also linear to the number of hops L.
In practice, L is typically a small constant between 2
and 5, which is expressive enough for modeling complex
interactions.

4 Experiments

In this section, we conduct extensive experiments on
several real-world datasets, with the aim of answering
the following main research questions:

• RQ1: Does our MMCF model outperform state-
of-art methods on the recommendation task?

• RQ2: How does the multiplex memory network
work to improve recommendation?

• RQ3: How do the co-occurrence contexts benefit
the recommendation task?

4.1 Experimental Setup We first describe the set-
tings of our experiments.

Datasets. We adopt four real-world datasets from
different domains, namely, Movielens-100k1, Delicious2,
Ciao3 and BookCross4. For the Movielens dataset, we
follow previous studies [2, 4] to treat a rating as an
interaction record, indicating whether a user has rated
an item. The other three datasets only contains the
interaction records of users. Table 1 summarizes the
descriptions of the four datasets.

Evaluation protocol. To evaluate the recommen-
dation performance, we adopt the leave-one-out evalu-
ation, which holds out the most recent interaction as
the test set and utilizes the remaining data for training.

1https://grouplens.org/datasets/movielens/100k/
2https://grouplens.org/datasets/hetrec-2011/
3https://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm
4https://grouplens.org/datasets/book-crossing/

Following the strategy in existing works [2, 4, 5], we ran-
domly sample 100 items that are not interacted by the
user, and further rank the test item among the sampled
items. We subsequently evaluate the performance of the
top-N ranked list using Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG).

Baselines. We consider three categories of rep-
resentative recommendation methods: traditional CF
methods (i.e., BPR, MF and eALS), neural network-
based methods (i.e., NeuMF, DMF and LRML) and
methods considering high-order interactions (i.e., CMN
and HOP-Rec).

• BPR [13]: Bayesian Personalized Ranking, which
optimizes the pairwise ranking.

• MF [7]: The standard latent factor model with the
cross entropy loss [2].

• eALS [3]: A strong matrix factorization method,
which optimizes the squared loss.

• NeuMF [2]: It is a neural network-based method,
consisting of an MF module and an MLP model.

• DMF [23]: Another neural network-based method
with MF and MLP.

• LRML [20]: A state-of-the-art memory-based at-
tention model for recommendation, which models
the relational translation for each user-item inter-
action.

• CMN [1]: Another state-of-the-art memory net-
work model, which additionally considers similar
users who also interacted with the current item.
Note that it only focus on the local item in each
interaction, which is different from our user co-
occurrence contexts derived from the global item
distribution.

• HOP-Rec [24]: A state-of-the-art graph-based
model, which exploits random walk to gather high-
order user-item interactions to enrich the interac-
tion data. In particular, they do not consider the
high-order user-user or item-item co-occurrences.

We implement the proposed MMCF model5 in
Tensorflow. We employ Xavier initialization to initialize
model parameters, and use a pre-trained MF model
to initialize user and item embeddings. We perform
Adaptive Moment Estimation to optimize MMCF using
a learning rate of 0.01. Unless otherwise stated, we
show the results of two-hop multiplex memory layer,
with an embedding size d = 64, memory slots K = 64,

5We will release the code and data with the final version.
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Datasets Metrics BPR MF eALS NeuMF DMF LRML CMN HOP-Rec MMCF

Movielens-100k

HR@10 0.6766 0.6702 0.6638 0.6723 0.6458 0.6363 0.6792 0.6734 0.6845
NDCG@10 0.3853 0.3869 0.3819 0.3816 0.3608 0.3665 0.3872 0.3842 0.3934

HR@20 0.8388 0.8246 0.8155 0.8176 0.8091 0.8038 0.8357 0.8343 0.8411
NDCG@20 0.4265 0.4250 0.4204 0.4088 0.3839 0.4088 0.4276 0.4267 0.4342

Delicious

HR@10 0.1629 0.1733 0.1679 0.2010 0.2323 0.1086 0.2124 0.2317 0.2357
NDCG@10 0.0903 0.1011 0.1009 0.1124 0.1284 0.0531 0.1252 0.1261 0.1273

HR@20 0.2524 0.2790 0.2724 0.2695 0.3238 0.1876 0.3152 0.3457 0.3706
NDCG@20 0.1127 0.1285 0.1273 0.1138 0.1437 0.0728 0.1397 0.1479 0.1602

Ciao

HR@10 0.1709 0.2058 0.2173 0.1908 0.2381 0.1802 0.2410 0.2386 0.2565
NDCG@10 0.0839 0.1070 0.1072 0.0967 0.1228 0.0879 0.1240 0.1216 0.1264

HR@20 0.3025 0.3194 0.3543 0.3101 0.3837 0.3151 0.4080 0.4171 0.4306
NDCG@20 0.1168 0.1304 0.1416 0.1190 0.1457 0.1207 0.1531 0.1621 0.1699

BookCross

HR@10 0.2284 0.2568 0.2642 0.2608 0.2930 0.2716 0.3076 0.3014 0.3252
NDCG@10 0.1243 0.1352 0.1496 0.1368 0.1540 0.1425 0.1594 0.1617 0.1734

HR@20 0.3576 0.4233 0.3947 0.4032 0.4386 0.4244 0.4512 0.4423 0.4858
NDCG@20 0.1567 0.1951 0.1824 0.1752 0.1926 0.1804 0.1985 0.1974 0.2134

Table 2: Performance comparison on four datasets. The best method appears in boldface for each metric, and
the best performing baseline appears underlined.

batch size of 512, PMI sparsity parameter k = 20 and
regularization parameter λ = 0.01.

The key hyper-parameter settings for baseline as
follows. The embedding size for all models are tuned
among {16, 32, 64, 128} and the learning rate is tuned
among {0.001, 0.005, 0.01}. For CMN, we tune the
number of memory hop L among {1,2,3,4} for four
datasets. For HOP-Rec, the parameter K is tuned from
1 to 3 for each datasets. For LRML, the memory size for
the four datasets are set as: N = 16 for MovieLens-100k,
Delicious and Ciao; N = 32 for BookCross. For MF,
eALS and NeuMF, we follow the optimal configuration
and architecture reported in [2, 3].

4.2 Performance Comparison (RQ1) The empir-
ical results of our proposed model MMCF and the base-
lines are reported in Table 2. The main findings can be
summarized as follows.

First, our proposed MMCF achieves the best per-
formance in majority of the cases. Our model is partic-
ularly advantageous on sparse datasets such as Ciao,
where outperforms the baselines by 6.43∼50.08% in
HR@10 and 1.93∼50.06% in NDCG@10, compared to
0.78∼7.5% in HR@10 and 1.60∼9.04% in NDCG@10 on
the denser Movielens dataset. This observation demon-
strates the effectiveness of MMCF for the recommenda-
tion task in two aspects. For one, our model provides
for a better mechanism through a multiplex memory
network to jointly model the fine-grained attentive ef-
fects on user-item interaction and co-occurrence con-
texts. Furthermore, co-occurrence contexts are very
helpful in enriching sparse user-item interactions.

Second, neural network-based methods (i.e.,
NeuMF, DMF and LRML) generally outperform tra-

Datasets Metrics K = 1 K = 16 K = 32 K = 64

Movielens-100k
HR@20 0.8341 0.8382 0.8377 0.8411

NDCG@20 0.4269 0.4301 0.4321 0.4342

Delicious
HR@20 0.3510 0.3590 0.3610 0.3706

NDCG@20 0.1556 0.1567 0.1581 0.1602

Ciao
HR@20 0.4210 0.4326 0.4274 0.4306

NDCG@20 0.1636 0.1710 0.1672 0.1699

BookCross
HR@20 0.4821 0.4903 0.4863 0.4858

NDCG@20 0.2074 0.2174 0.2145 0.2134

Table 3: Impact of the number of memory slots K.

ditional CF-based methods (i.e., BPR, MF and eALS).
It implies the potential ability of neural networks for
modeling complex interactions in recommender systems.
Moreover, Hop-Rec and CMN achieve competitive per-
formance especially on sparse datasets, which indicates
the usefulness of high-order interactions. However,
CMN only focuses on users associated with the local
items in each interaction, and Hop-Rec only explores
high-order user-item interactions.

4.3 Analysis of Multiplex Memory Network
(RQ2) Next, we investigate how our multiplex memory
network affects the recommendation performance.

First, we study how the number of memory slots K
in the interaction memory impacts the performance, by
varying it among {1, 16, 32, 64}. Note that we employ
a neural attention mechanism to weigh memory slots
differently in different interactions, in order to model
fine-grained latent preferences. Intuitively, each mem-
ory slot stands for one latent preference. Thus, K = 1
is a special case where we do not learn fine-grained pref-
erences. As we can observe, when no fine-grained pref-
erences are learned (i.e., K = 1), the performance is the
worst on all of the datasets. On the other hand, with

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



1hop 2hop 3hop 4hop
0.8300

0.8325

0.8350

0.8375

0.8400

0.8425

0.8450
H

R@
20

0.426

0.428

0.430

0.432

0.434

ND
CG

@
20

HR
NDCG

(a) Movielens

1hop 2hop 3hop 4hop
0.345

0.350

0.355

0.360

0.365

0.370

0.375

HR
@

20

0.156

0.158

0.160

0.162

0.164

ND
CG

@
20

HR
NDCG

(b) Delicious

1hop 2hop 3hop 4hop

0.40

0.41

0.42

0.43

HR
@

20

0.160

0.162

0.164

0.166

0.168

0.170

0.172

ND
CG

@
20

HR
NDCG

(c) Ciao

1hop 2hop 3hop 4hop
0.470

0.475

0.480

0.485

0.490
HR

@
20

0.206

0.208

0.210

0.212

0.214

ND
CG

@
20

HR
NDCG

(d) BookCross

Figure 3: Impact of the number of hops L.

fine-grained learning (i.e., K > 1), on dense datasets
(i.e., Movielens and Delicious) our proposed MMCF
model can benefit from more memory slots, whereas
fewer memory slots are adequate on sparse datasets
(i.e., Ciao and BookCross). Next, we vary the num-
ber of hops L among {1, 2, 3, 4}, and report the results
in Fig. 3. Generally, we observe that multiple hops of
the multiplex memory layer often outperform a single
hop. It demonstrates that stacking multiple memory
layers can better model complex interactions by lever-
aging additional memory components. However, it does
not always yield a performance improvement with more
hops due to overfitting.

4.4 Analysis of Co-occurrence Contexts (RQ3)
To examine the effect of the co-occurrence contexts, we
study four variants of MMCF: (i) MMCFno: MMCF
without any co-occurrence contexts; (ii) MMCFU :
MMCF with only user co-occurrence contexts; (iii)
MMCFI : MMCF with only item co-occurrence con-
texts; (iv) MMCFeq: MMCF with both user and item
co-occurrence contexts, but without the attention mech-
anism such that each user or item receives an equal
weight.

From Table 4, we observe that the general perfor-
mance order among MMCF and its first three vari-
ants is as follows (except on the Delicious dataset):
MMCF> MMCFU ≈ MMCFI > MMCFno, which can
reveal three major implications. First, user and item
co-occurrence contexts are valuable high-order informa-
tion that can complement user-item interactions. Thus,
ignoring them altogether (i.e., MMCFno) is not ideal.
Second, the attention mechanism is crucial to effectively

Datasets Metrics MMCFno MMCFU MMCFI MMCFeq MMCF

Movielens-100k
HR@20 0.8314 0.8346 0.8367 0.8336 0.8411

NDCG@20 0.4265 0.4293 0.4321 0.4301 0.4342

Delicious
HR@20 0.3171 0.4229 0.3343 0.3376 0.3706

NDCG@20 0.1517 0.1770 0.1555 0.1542 0.1602

Ciao
HR@20 0.4150 0.4154 0.4174 0.4123 0.4306

NDCG@20 0.1656 0.1623 0.1575 0.1613 0.1699

BookCross
HR@20 0.4610 0.4697 0.4704 0.4633 0.4858

NDCG@20 0.1954 0.2017 0.2003 0.2022 0.2134

Table 4: Effects of user and item co-occurrence contexts.

Datasets Metrics k = 1 k = 5 k = 10 k = 20 k = 30 k = 40

Movielens-100k
HR@20 0.8314 0.8350 0.8406 0.8411 0.8385 0.8396

NDCG@20 0.4244 0.4281 0.4363 0.4342 0.4320 0.4334

Delicious
HR@20 0.3212 0.3514 0.3628 0.3706 0.3728 0.3686

NDCG@20 0.1521 0.1550 0.1553 0.1601 0.1634 0.1609

Ciao
HR@20 0.4093 0.4170 0.4301 0.4306 0.4240 0.4240

NDCG@20 0.1568 0.1627 0.1715 0.1699 0.1679 0.1677

BookCross
HR@20 0.4653 0.4723 0.4801 0.4858 0.4845 0.4820

NDCG@20 0.2054 0.2080 0.2100 0.2134 0.2133 0.2103

Table 5: Impact of shifted positive PMI.

utilizing the co-occurrence contexts, since the model
without attention (i.e., MMCFeq) does not perform as
well as MMCF. Third, the user and item co-occurrence
contexts are complementary to rather than repetitive of
each other, since integrating both of them (i.e., MMCF)
can further enhance the recommendation performance.

It is worth noting that on the Delicious dataset,
we have MMCFU > MMCF. One possible explanation
might be that the item co-occurrence contexts on the
Delicious dataset are noisy, which would harm the over-
all model. We find out that most user and distributions
follow the power law, except the item distribution on
the Delicious dataset which significantly deviates from
the others (see Supplementary 6.1). This deviation may
indicate potential noises in item co-occurrence contexts,
and thus may negatively impact the model.

Even when the users and items in co-occurrence
contexts follow the power law, there may still exist
considerable noises, which could be filtered using the
shifted positive PMI by the value of log k in Eq. 3.10
and Eq. 3.11. We examine the impact of such filtering
by varying k ∈ {1, 5, 10, 20, 30, 40} and present
the performance change in Table 5. We observe that
the performance initially increases with the increase of
k, and the optimal performance is generally obtained
around 10 ≤ k ≤ 30. This implies that noises may exist
when not enough filtering is done. Subsequently, the
performance drops if we further increase k, as we have
filtered some useful co-occurrence contexts.

4.5 Additional experiments. Apart from the
above main research questions, we further conducted
experiments on parameter sensitivity on the embedding
dimension d and the regularization parameter λ. More-
over, we showcase a visualization of the learned atten-
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tion, which demonstrates that our multiplex memory
network can model fine-grained semantics. Due to the
space constraint, they are included in Supplementary
6.2 and 6.3, respectively.

5 Conclusion

In this paper, we firstly proposed a novel multiplex
memory network for collaborative filtering (MMCF).
The key contribution of MMCF is the concurrent model-
ing of multiple types of memory, to jointly capture user-
item interactions and high-order co-occurrence contexts
in a fine-grained manner. Specifically, using a neural
attention mechanism, the interaction memory learn the
weights for various latent preferences underpinning each
user-item interaction, whereas the co-occurrence con-
text memories learn to locate the important and rele-
vant user or item. Finally, we conduct extensive exper-
iments on four public datasets, and our model MMCF
outperforms a range of state-of-the-art recommender
models.
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6 Supplementary

6.1 Frequency distribution of users and items
in co-occurrence contexts To better understand the
item irregularity on Delicious, we plot the frequency
distribution of users and items in co-occurrence contexts
with respect to their degrees, on the four datasets in
Fig. 4.
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Figure 4: Distribution of users and items in co-
occurrence contexts. We normalize the degree and fre-
quency between [0, 1] for better visualization.

6.2 Parameter Sensitivity In addition, we exam-
ine the impact of the embedding size d and the regu-
larization parameter λ. For brevity we only present the
results on the Movielens datasets using HR@20 as the
metric. Similar findings have been observed on other
datasets and metrics. First, we vary the embedding size
d ∈ {16, 32, 64, 128} in Fig 5(a), where the performance
is stable at around 64 or 128. A very small d may lack
the expressiveness to model complex interactions. Sec-
ond, we vary the regularization parameter λ ∈ {0.001,
0.005, 0.01, 0.05, 0.1} in Fig. 5(b), where the perfor-
mance is largely stable between 0.005 and 0.05.
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Figure 5: Parameter study for MMCF on Movielens.

6.3 Attention Visualization Finally, to visualize
how the multiplex memory layer with the multi-hop
design works, we present a case study on user u344
and item i1082 in the Movielens dataset. The attentive
weights learned in the IM and item CCM are shown as
heatmaps in Fig. 6. As the number of hops increases,

the IM attention becomes more concentrated in fewer
memory slots in Fig. 6(a). Meanwhile, each cell in
Fig. 6(b) represents the mean attention weights of the
movies in a genre in the co-occurrence contexts of
movie i1082, and we showcase the ten most relevant
genres. We observe that the genre “drama” attains the
highest weight after 3 hops of the item CCM, which
is intuitive since movie i1082 also belongs to the same
genre, demonstrating that the CCM can capture the
most relevant context.
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Figure 6: Attention visualization on Movielens.
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