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Abstract. Link prediction is one of the most important tasks in graph
machine learning, which aims at predicting whether two nodes in a net-
work have an edge. Real-world graphs typically contain abundant node
and edge attributes, thus how to perform link prediction by simulta-
neously learning structure and attribute information from both interac-
tions/paths between two associated nodes and local neighborhood among
node’s ego subgraph is intractable.
To address this issue, we develop a novel Path-aware Graph Neural
Network (PaGNN) method for link prediction, which incorporates in-
teraction and neighborhood information into graph neural networks via
broadcasting and aggregating operations. And a cache strategy is devel-
oped to accelerate the inference process. Extensive experiments show a
superior performance of our proposal over state-of-the-art methods on
real-world link prediction tasks.

1 Introduction

Graph-structured data are ubiquitous in a variety of real-world scenarios, e.g.,
social networks, protein-protein interactions, supply chains, and so on. As one of
the most common and important tasks of graph mining, link prediction, which
aims at predicting the existence of edges connecting a pair of nodes in a graph,
has become an impressive way to solve various crucial problems such as friend
recommendation [24, 26], supply chain mining [29], entity interactions prediction
[28, 23], and knowledge graph completion [17, 7].

In general, current researches towards link prediction can be categorized into
three lines: heuristic methods, network embedding based methods and graph
neural network based methods. Heuristic methods [13, 2] focus on estimate the
likelihood of the edge through different heuristic similarities between nodes under
certain assumptions, which, unfortunately, may fail when their assumptions do
not hold true in the targeted scenario [11]. Network Embedding (NE) based
methods [3] learn node representation with context (e.g., random walk [14, 5]
or neighborhood [22]) in the graph, followed by a well-trained classifier for link
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prediction. However, most of them fail to take into account the rich attributes of
nodes and edges when learning node representation, so they cannot obtain better
performance and are not suitable for inductive link prediction. By making full use
of the structure and attribute information in an inductive manner, the emerging
Graph Neural Network (GNN) based methods [25] achieve the state-of-the-art
performance in link prediction [12].

u v

Fig. 1. Node roles for link prediction.

Nevertheless, we believe that the effectiveness and efficiency of current GNN-
based methods for link prediction are still unsatisfactory. Current GNN-based
methods can be categorised into two lines: node-centric and edge-centric. Node-
centric GNN-based methods [31] learn representations of two targeted nodes
via certain GNN architecture independently, followed by a pairwise prediction
function (e.g., MLP, dot product, etc). Such a two-tower architecture is good
at modeling the surrounding context centered at each targeted node, but fails
to perceive interactions (or paths, red nodes in Fig 1) between two targeted
nodes (yellow nodes in Fig 1), which are essential for the effectiveness of some
real-world link prediction scenarios. Recently, several edge-centric GNN-based
methods propose to adopt a different technique (e.g., node labeling function [33],
between-node path reachability[27], enclosing-subgraph level pooling [20], meta-
graph [34], etc) to model such interactions or paths to some extent, and achieve
better performance. However, on the one hand, they still do not explicitly inte-
grate the structure and attribute information of interactions between targeted
nodes. For example, the node labeling function [33, 20] only models the struc-
ture information to some extent, while the between-node path reachability [27]
only estimates reachable probability from one node to another via random walk.
Both of them neglect the abundant attributes of interactions/paths. On the other
hand, all of the above approaches are time-consuming in the training or infer-
ence phase, thus the efficiency becomes a great challenge when scaling up to
industrial graphs with billions of nodes and tens of billions edges. For exam-
ple, Graph learning framework [27] computes the reachability via random walks,
which need to be repeated many times until convergence, and this process also
has to be redone for any newly emerging edge. Therefore, it is time-consuming
when performing inference in huge graphs.

Here, we summarize the challenges facing by current link prediction methods
in three aspects:
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– Integrating the structure and attribute information of interaction. Since most
real-world graphs contain abundant node and edge attributes, and most sce-
narios can benefit from such information, the link prediction model should
be able to subtly model the structure information and attribute information
simultaneously.

– Scalability and Efficiency. Existing works that model interactions by calculat-
ing high-order information are usually time-consuming. How to scale up and
become more efficient is another challenge when performing over real-world
huge graphs.

– Inductive ability. In real-world graphs, nodes and edges may emerge at any
time. To handle such newly emerging nodes and edges requires the inductive
ability of the link prediction model.

Addressing the above challenges, we propose a Path-aware Graph Neural
Network (PaGNN) towards link prediction. Considering the motivation of both
node-centric and edge-centric methods, PaGNN jointly learns the structure and
attribute information from both interactions/paths between two targeted nodes
(edge-centric) and the local neighborhood of each targeted node (node-centric),
through the novel broadcasting and aggregation operation. The broadcasting
operation responds to “send” information from one targeted node to all other
nodes in its local neighborhood and generate the broadcasted embeddings, while
the aggregation operation aims to aggregate information (including to “receive”
the broadcasted embeddings) for another targeted node from its local neigh-
borhood and generate its final embedding. Note that the destination node can
perceive all paths connecting two targeted nodes via aggregating broadcasted
embeddings. Thus, such a broadcasting and aggregation operation can explicitly
integrate structure and attribute information of interactions and local neighbor-
hood of targeted nodes. In addition, addressing the poor scalability and efficiency
of edge-centric methods in the inference phase, we propose a cache embedding
strategy that nearly doubles the speed of the inference phase. Note that by lever-
aging the native inductive power of GNNs, PaGNN can handle newly emerging
nodes and edges naturally. At last, We conduct extensive experiments on sev-
eral public datasets to demonstrate the effectiveness and efficiency of PaGNN
compared with state-of-the-art baselines.

2 Model Formulation

In this section, we introduce the proposed path-aware graph neural network
(PaGNN) model towards link prediction. First, we briefly exhibit the overall ar-
chitecture of PaGNN. Then, we elaborate the detail implementation of PaGNN,
including the broadcasting operator, the aggregation operation, edge represen-
tation learning, and at last the loss function.

2.1 Notations and Definitions

Before diving into PaGNN, we first give the definition of link prediction.
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Fig. 2. Broadcasting Operation

Definition 1. Link Prediction. Given an attributed graph G = (V, E ,X),
where V is the set of nodes, E ⊆ V×V is the set of observed edges, and X ∈ R|V|×d
consists of d-dimensional feature vectors of all nodes, as well as a set of labeled
edges L = {(〈u, v〉, y)|u, v ∈ V, y ∈ {0, 1}}, y = 1 denotes that there exists an
edge between u and v (i.e., (u, v) ∈ E), otherwise y = 0, for an unlabeled edge
set U = {(〈u, v〉|u, v ∈ V}, the goal of link prediction is to predict the existence
probability of edges in U .

2.2 Overview of PaGNN

PaGNN aims to learn the representations on the centralized subgraph of two as-
sociated nodes, Fig 2 and 3 show the overall workflow of PaGNN. By leveraging
the broadcasting and aggregation operations, PaGNN can model all interaction
(i.e., paths) and neighborhood information between two associated nodes of the
targeted edge, and generate their embeddings for link prediction. PaGNN first
performs broadcasting and then aggregation operation on both two targeted
nodes. More specifically, one node broadcasts information (called broadcasted
embedding) to nodes in its local neighborhood, then the other node aggregates
information from its neighborhood If there is any overlap between the broad-
casted neighborhood of two nodes, the information from one node can be aggre-
gated by the other node via the paths between them, which means two nodes can
perceive each other. Therefore, the structure and attribute information of the
interactions, as well as the local neighborhood, of the two nodes, can be subtly
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Fig. 3. Aggregation Operation

modeled through such broadcasting and aggregation operations, and encoded
into their final embeddings. At last, PaGNN simply employs the concatenation
of final embeddings as the edge representation, and performs a MLP on it to
do binary classification. Moreover, our framework is operated on the central-
ized subgraph of associated nodes within fixed steps, thus it naturally provides
inductive ability.

2.3 Broadcasting Operation

The broadcasting operation aims to “send” a message from a node to other nodes
in its local neighborhood. Formally, given a pair of nodes 〈u, v〉, the goal is to
predict whether an edge exists between them. Without loss of generality, we set
node u to broadcast information to other nodes within the H-hops ego-subgraph
centered on u, denoted as GHu , details of broadcasting operation are shown in
Fig 2.

Broadcasting operation is performed in a breadth first search (BFS) style
that attempts to “spread out” from the source nodes. At each step, nodes (called
source nodes) broadcast information to their directed neighbors (called destina-
tion nodes). Specifically, in the k-th step, we maintain a source node set N k

s ,
a destination node set N k

d and a broadcasting edge set Bke . N k
s contains the

nodes that will broadcast information (the initial N 1
s only contains node u), N k

d

consists of directed neighbors of nodes in N k
s , Bke are edges connecting nodes in

N k
s and N k

d , in other words, Bke = {(q, p)|(q, p) ∈ EHu , q ∈ N k
s , p ∈ N k

d }.
Each node in N k

s first broadcasts information to their directed neighborhoods
in destination nodes set N k

d via the edges in Bke . Next, each node in N k
d inte-

grates the broadcasted information together with its own embedding. Then, all
destination nodes form the new N k+1

s of the k + 1-th step. This process will be
repeated H times until all nodes in GHu receive broadcasted information from u.
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Algorithm 1 Broadcasting Operation

Require: Source node u, the number of hops H,
node u’s H-hop enclosing subgraph GHu = (VH

u , EHu ),
original node features {xp | p ∈ VH

u }.
Ensure: broadcasted embeddings {hH

u,p | p ∈ VH
u }.

1: h0
u,p ← xp, ∀p ∈ VH

u

2: N 1
s ← {u}

3: for k = 1...H do
4: Bk

e ← {(q, p) | q ∈ N k
s , (q, p) ∈ EHu }

5: N k
d ← {p |(q, p) ∈ BH

e }
6: for p ∈ N k

d do
7: zku,p ← ATT OP (xp, {hk−1

u,q | (q, p) ∈ Bk
e})

8: hk
u,p ← LSTM OP (hk−1

u,p , zku,p)
9: end for

10: for p ∈ VH
u −N k

d do
11: hk

u,p ← hk−1
u,p

12: end for
13: N k+1

s ← N k
d

14: end for

As shown in Algorithm 1, VHu and EHu are the node set and edge set in GHu
respectively. hku,p ∈ Rd denotes the broadcasted information (called broadcasted
embeddings) that starts from u and ends with p at the k-th step. The information
broadcasted from u to node p is initialized as p’s original feature xp (h0

u,p, line 1).

At the k-th step, Bke is updated as the directed edges of N k
s and N k

d is extracted
from GHu , which are the directed neighbors of N k

s (line 5). In order to handle
the situation that different source nodes in N k

s broadcast information to the
same destination node, we first employ the attention mechanism (ATT OP in
line 7) to aggregate the broadcasted embedding, and then we employs a LSTM-
like operator [6] (LSTM OP in line 8) to combine embeddings of the k − 1-th
step and the k-th step. Note that the integrated embedding will become the
propagated embedding of the next step. And for nodes in VHu but not in N k

d ,
the broadcasted embeddings stay the same as previous step (line 10 to 12). The
attention operator ATT OP of the k-th step is defined as:

αkq,p =
exp(vkφ

T
σ(Wk

φ1[xp,h
k−1
u,q ]))∑

q′∈Nk
s ,(q

′,p)∈EHu
exp(vkφ

T
σ(Wk

φ1[xp,h
k−1
u,q′ ]))

, (1)

zku,p = σ(Wk
φ2[

∑
q∈Nk

s ,(q,p)∈EHu

αkq,ph
k−1
u,q ,xp]) (2)

where αkq,p is the attention value, zkq,p is the intermedia embedding after atten-
tion calculation and the input of the next LSTM-like operator, [·, ·] denotes the
concatenation of embeddings, vkφ,W

k
φ1,W

k
φ2 are learnable parameters. Next, the
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LSTM OP integrates the information of the k − 1-th step and the k-th step:

iku,p = σ(Wϕi[h
k−1
u,p , z

k
u,p]),

fku,p = σ(Wϕf [hk−1u,p , z
k
u,p]),

cku,p = fk−1u,p � ck−1u,p + iku,p � tanh(Wϕc[h
k−1
u,p , z

k
u,p]),

oku,p = σ(Wϕo[h
k−1
u,p , z

k
u,p]),

hku,p = oku,p � tanh(cku,p),

where iu,p, fu,p,ou,p are input gate, forget gate and output gate in LSTM
respectively. Wϕi,Wϕf ,Wϕo are learnable parameters and cu,p is the cell state
with c0u,p = 0. After H step, the final broadcasted embedding hHu,p is taken as
the output which may contains the structure and attribute information from
node u to node p.

2.4 Aggregation Operation

Different from conventional GCN-based model, the aggregation operation in
PaGNN not only recursively aggregates neighbor attributes but also aims to
“receive” the broadcasted embeddings from the other node. Suppose informa-
tion is broadcasted from u and aggregated to v, we will introduce details of
aggregation operation, as illustrated in Fig 3.

First, node u broadcasts information to nodes among its centralized sub-
graph GHu , then hHu,p, ∀p ∈ VHu is obtained. Afterwards, nodes in v’s centralized

subgraph GHv aggregate broadcasted embeddings and initial node attribute to
v. Before aggregation, initial embedding r0u,p is set to combination of its broad-
casted embedding and initial node attributes. In particular, if there is no path
between u and p, the broadcasted information is set to 0, which is defined as:

r0u,p =

{
[hHu,p,xp], p ∈ VHv ∩ VHu
[0,xp], p ∈ VHv − VHu

, ∀p ∈ VHv (3)

At last, for each node p ∈ VHv , p aggregates information from its neighbors
in a GCN style:

rku,p ← AGG(rk−1u,p , {rk−1u,i | (i, p) ∈ EHv }), ∀p ∈ VHv (4)

where AGG is the aggregation function, rHu,v represents information that broad-
casted from u and aggregated to v at H-th step is taken as output.

2.5 Edge Representation Learning

With the broadcasting and the aggregation operation mentioned above, edge
〈u, v〉 is represented from two ways. PaGNN first broadcasts information from u
among GHu and aggregates information to v among GHv , rHu,v is obtained. Mean-

while, we broadcast information from v among GHv and aggregate to u among
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GHu , rHv,u is obained. Concatenation of two embeddings is taken as the edge rep-
resentation:

su,v = [rHu,v, r
H
v,u] (5)

Loss Function . On the basis of edge representation, we employ a cross
entropy loss based on the edge representation:

loss = − 1

|L|
∑

(〈u,v〉,y)∈L

y log(ŷ) + (1− y) log(1− ŷ), (6)

Where ŷ = MLP (su,v) and MLP (·) is a multi-layer perception with two fully-
connected layers.

2.6 Cache Strategy in Inference

As PaGNN is operated on subgraph of each candidate edge, it’s more time-
consuming than node-centric model. To address this, we design a cache mecha-
nism to accelerate the inference.

For two associated nodes 〈u, v〉, since u only broadcasts information to neigh-
bors among its ego subgraph GHu , it’s obviously that no matter where v is, the
broadcasted embeddings of u are the same. In other words, different v doesn’t
affect any broadcasted embeddings of u. Base on this property, we can pre-
calculate broadcasted embeddings hHu,p for u and cache it in storage. When u
appears as a targeted node in inference, the cached broadcasted embeddings can
be reused. As a result, only aggregation operation is necessary by leveraging
cache strategy.

Time Complexity . For PaGNN, suppose information is broadcasted from u
and aggregated to v, the time complexity is O(H(|EHu |+ |VHu |)) for broadcasting
and O(H(|EHv |+|VHv |)) for aggregating. Based on above analysis, the overall time
complexity for training and inference stage is O(H(|EHu |+ |VHu |+ |VHv |+ |VHv |)).

With the cache strategy, the inference time complexity decreases toO(H(|EHv |+
|VHv |)), since only aggregation operation is required. As a result, our cache strat-
egy has a nearly two times speed-up for PaGNN.

2.7 Summary

Comparing with other GNN models, PaGNN integrates the broadcasted em-
beddings into the aggregation process (Equation 3 and 4). The broadcasting
mechanism guarantees that information is broadcasted from a subset of nodes
Ns, and other nodes in Nd can only absorb information from nodes in the sub-
set. This mechanism guarantees that we only aggregate the information from
the path between two target nodes.

On one hand, nodes on the overlap of two ego-subgraphs (p ∈ VHv ∩VHu ) not
only receive broadcasted information from u, but also aggregate this information
to v, these nodes are called “bridge nodes”. And if p ∈ VHv −VHu , the “interaction
information” is set to 0, indicating that node p isn’t on any path between u and
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v, which is also useful to label the node role. Therefore node v integrates all
the structure and attribute information from interaction between u and
v through the “bridge nodes”. On the other hand, all nodes in GHv aggregate its
attributes to v, thus representation of node v also embeds the structure
and attribute information from its local neighborhood .

In summary, PaGNN jointly learns structure and attribute information from
both interaction and local neighborhood. And since PaGNN is operated on sub-
graphs of associated nodes, it provides inductive ability.

3 Experiments

3.1 Experiment setup

Data Protection Statement (1) The data used in this research does not
involve any Personal Identifiable Information (PII). (2) The data used in this
research were all processed by data abstraction and data encryption, and the
researchers were unable to restore the original data. (3) Sufficient data protection
was carried out during the process of experiments to prevent the data leakage
and the data was destroyed after the experiments were finished. (4) The data is
only used for academic research and sampled from the original data, therefore it
does not represent any real business situation in Ant Financial Services Group.

Datasets We adopt four real-world dataset from different domains to evaluate
the effectiveness of our model, consisting of Collab 1 and PubMeb [30] from
bibliographic domain, Facebook 2 from social domain and SupChain [29] from
E-commerce domain. The statistics of these datasets are illustrated in Table 1.

Table 1. The Statistics of the Datasets.

Datasets PubMed Facebook Collab SupChain

Nodes 19.7K 4.0K 235.8K 23.4M
Edges 44.3K 66.2K 1.2M 103.2M

Node features 500 161 53 95

Baseline We compare our proposal with following three categories of link pre-
diction methods:

Heuristic methods. Two heuristic methods are implemented: the Common
Neighbors (CN) [13] and the Jaccard [19].

1 https://snap.stanford.edu/ogb/data/linkproppred
2 https://snap.stanford.edu/data/egonets-Facebook.html
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Network embedding methods. We include two network embedding meth-
ods, DeepWalk [14] and Node2vec [5]. Network embedding based methods are
implemented based on open source code 3, which can not be applied to large
scale graph, as a consequence, experiment on dataset SupChain is unable to be
conducted.

Node-centric GNN methods. We take PinSage [31] as baseline, which en-
codes node information via a GNN model, and then predicts the edges based on a
pairwise decoder (a MLP layer). In our experiment, GCN and GAT [21] models
are chosen as encoders, which are represented as PinSageGCN , PinSageGAT .

Edge-centric GNN methods. We also compare our model with link pre-
diction models that learn high order interactive structure on targeted edge’s
subgraph, such as SEAL [33], and GraIL [20]. Note that, SEAL and GraIL not
only label node roles but also integrate it with node attributes.

Ablation studies. To study the effectiveness of broadcasted embeddings, we
remove it before information aggregation, i.e. Equation 3 is set as r0u,p = [0,xp].
This method is represented as PaGNNbroadcast. We further quantitatively an-
alyze whether only broadcasting information from one node is enough for pre-
dicting the edges, i.e., Equation 5 is changed to su,v = rHu,v, it’s represented
as PaGNNtwo way. And in order to demonstrate effectiveness of LSTM OP in
broadcasting, we change LSTM OP to concatenation, i.e. hku,p = [hk−1u,p , z

k
u,p] in

Algorithm 1 (line 8), and it is represented as PaGNNlstm.
Specifically, GAT is chosen as the aggregation function for all edge-centric

GNN methods.

Parameter Setting For all GNN models, we set the scale of the enclosing
subgraph H to 2, embedding size to 32, and other hyper-parameters are set to be
the same. For all labeled candidate edges, we randomly sampled 75% of the them
as the training set, 5% as the validation set, and 20% as the test set. The negative
injection trick mentioned in previous work [1] is also employed, i.e. the negative
samples are also inserted into original graph G. We adopt Adam optimizer for
parameter optimization with an initial learning rate 0.001. The other hyper-
parameters are set to be the same. All GNN based models are trained on a
cluster of 10 Dual-CPU servers with AGL [32] framework.

Metric In the link prediction task, we adopt the Area Under Curve (AUC)
and F1-score as metrics to evaluate all these models, as done in many other link
prediction work.

3.2 Performance Comparison

Table 2 summarizes the performance of the proposed method and other methods
on four datasets. Based on the results of the experiment, we summarize the
following points:

3 https://github.com/shenweichen/GraphEmbedding
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Table 2. Performance comparison on four Datasets

Types Model
AUC F1

Facebook PubMed Collab SupChain Facebook PubMed Collab SupChain

Heuristic CN 0.927 0.662 0.771 0.601 0.869 0.492 0.703 0.593
Heuristic Jaccard 0.938 0.630 0.801 0.622 0.874 0.527 0.719 0.601

NE DeepWalk 0.884 0.842 0.864 - 0.826 0.826 0.811 -
NE Node2vec 0.902 0.897 0.857 - 0.855 0.867 0.821 -

Node PinSageGCN 0.924 0.823 0.851 0.941 0.900 0.766 0.910 0.763
Node PinSageGAT 0.917 0.832 0.833 0.968 0.902 0.774 0.909 0.822

Edge SEAL (attributed) 0.963 0.898 0.909 0.977 0.915 0.841 0.923 0.862
Edge GraIL (attributed) 0.971 0.904 0.947 0.979 0.928 0.848 0.964 0.864

Edge PaGNNtwo way 0.909 0.762 0.902 0.976 0.820 0.720 0.921 0.861
Edge PaGNNbroadcast 0.940 0.866 0.853 0.970 0.917 0.790 0.910 0.848
Edge PaGNNlstm 0.969 0.934 0.958 0.978 0.932 0.852 0.976 0.868
Edge PaGNN 0.972 0.944 0.967 0.987 0.933 0.878 0.979 0.897

Heuristic-based methods achieve considerable performance on the so-
cial network dataset (i.e., Facebook), but poor performance on the other three
datasets. It indicates that the assumptions of heuristic methods are not appli-
cable in many types of network data. Compared with the heuristic method, the
network embedding methods achieve better results, but the effectiveness are
worse than node-centric GNN models. One reason is that the GNN method
straightforwardly leverages the node attributes and learns representations in a
supervised manner.

All edge-centric GNN models achieve better performance since they take
the interaction structure into account. And PaGNN performs better than the
other edge-centric GNN models: SEAL and GraIL, although they have com-
bined high-order interactions with node attributes. This is because PaGNN
explicitly incorporates interaction and node attribute information into GNN.
Labeling nodes with the structure may not achieve satisfied performance when
the attribute on path is crucial.

From the experimental results of ablation studies, PaGNNtwo way is worse
than PaGNN and it’s unstable on some datasets. It is due to when there is no
path between two nodes, the final representation only contains local neighbor-
hood information of one node, performance of PaGNNtwo way drops signifi-
cantly. For example, PubMed data is relatively sparse and only 18.2% samples
are connected, the performance of PaGNNtwo way is poor. Comparing the per-
formance of PaGNN and PaGNNlstm, it can be observed that LSTM OP is
effective to integrate the interactions and node attributes, since LSTM forgets
useless information. In particular, by observing results of PaGNNbroadcast and
PaGNN, the broadcasted embeddings significantly improve the performance,
which verify the effectiveness of the broadcasting operation.

On average, PaGNN improved upon the best baseline of every dataset by
1.7% in AUC and by 1.4% in F1. In summary, PaGNN outperforms all baselines,
and every studied component has a positive impact on final results.
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Parameter Sensitivity We also evaluate model performance on the Collab
dataset as H ranges from 1 to 5, shown in Fig 4(a). All models achieved the best
performance when H=2. The AUC value decreases when H > 2, which indicates
a large H may bring in noises from distant nodes. PaGNNlstm shows better
performance than PaGNN when H=1, since the LSTM OP has no advantage
when path is short. WhenH becomes larger, PaGNN shows better performance,
since LSTM forgets useless path information of distant nodes.

The convergence of different models is also evaluated. Fig 4(b) records the
validation AUC of varying training steps. PinSageGAT first achieves the best
performance at 6K training steps, as it learns minimum parameters. GraIL and
PaGNN need more time to be converged, which takes about 8K to 10K training
steps. Fig 4(c) compares the performance of varying node embedding size, three
models are over-fitting when embedding size is larger than 32.

(a)Testing AUC - H (b)Validation AUC - Steps (c)AUC - Embedding Size

Fig. 4. Parameter Sensitivity.

Case Study . To examine whether PaGNN learns interaction information, we
illustrate an example of Facebook dataset in Fig 5, the goal is to predict whether
two yellow nodes exist an edge, nodes on the path between them are colored
with green and other nodes are colored gray, and the value is the attention of
corresponding edge in last aggregation step. We can learn that the neighbor
attention output by PinSageGAT between associated node and its neighbors
is almost the same, without regard to where the neighbor is. Attention value
of nodes on the path of edge-centric methods is larger, which indicates they
have ability to find the pattern that nodes on path are more important. And
comparing with GraIL, attention value of green nodes for PaGNN is larger,
shown in Fig 5(b) and (c).

To further prove the impact of paths, in Facebook and SupChain dataset,
we categorize candidate relations into different groups according to the number
of paths between two target persons or enterprises, proportion of each group is
illustrated in Fig 6. It can be learned that observed friends in social network
and enterprises with supply-chain relationship tend to have more paths, which
drives to effectively capture fine-grained interactions between target node pairs.
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Fig. 5. Attention of Different Models.

(a) SuppChain (b) Facebook

Fig. 6. Relation distribution of different path number.

3.3 Efficiency Analysis

Training Phase We calculate the training time of three models with varying H
on Collab dataset (Fig 7(a)). The training time increases rapidly as H increases,
and all edge-centric models are more time-consuming than node-centric models.
PaGNN takes about 1.5 longer the training time comparing with PinSageGAT
when H=1, but about 3.5 times the training time when H=5. It is due to that
as H increases, the subgraphs become larger, for node-centric methods, differ-
ent edges’ subgraphs in same batch share more common nodes, which avoids
duplicate computation comparing with edge-centric methods.

Inference Phase Efficiency evaluation of inference phase is illustrated in Fig 7(b).
It can be inferred that edge-centric methods need more time. For example,
PaGNN takes 2.4 times longer than PinSageGAT when H=5, and GraIL takes
2.0 times longer. Fortunately, the cache strategy significantly improves the effi-
ciency of PaGNN, which takes 1.7 times longer than PinSageGAT when H=5
and has a 30% speed-up compared to PaGNN without cache strategy. In par-
ticular, although the time complexity of cache strategy analysed in Section 2.6
has a two times speed-up theoretically, the statistics reported here are the time
cost of the whole inference phase (also including subgraph extraction, input data
preparing).

To summarize, comparing with node-centric models (e.g. PinSage), edge-
centric models (e.g. PaGNN, SEAL, GraIL) achieve better performance despite
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(a) Training Time - H. (b) Inference Time - H.

Fig. 7. Training and Inference Time per Step.

being more time-consuming, since edge-centric models consider high-order inter-
active information. Nevertheless, our proposal with the cache strategy takes less
time comparing with other edge-centric models (SEAL and GraIL).

4 Related Work

Previous work for link prediction can be divided into the heuristic methods,
network embedding, and supervised methods. Heuristic methods usually assume
that nodes with links satisfy some specific properties. For instance, common
neighbor [13] defines the similarity as the number of shared neighbors of two
nodes. Katz index [9] calculates similarity by counting the number of reachable
paths. The rooted PageRank [2] calculates the stationary distribution from one
node to other nodes through random walk. These heuristic methods rely on
hand-crafted rules and have strong assumptions, which can not be applied to all
kinds of networks.

Recently, a number of researchers propose to perform link prediction through
constructing node latent features, which are learned via classical matrix factor-
ization [10, 18] and shallow graph representation learning (e.g., Deepwalk [14]
and Node2Vec [5]). And there is also research [33, 20] inductively predicts node
relations by leveraging graph neural networks, which combine high-order topo-
logical and initial features in the form of graph patterns. However, it learns
high-order information and node attributes seperately. Some literature [16, 4,
34, 15, 8] also considers integrating target behavior information in a heteroge-
neous graph, which requires nodes and edges belong to a specific type. Reseach
work [27] also employs characteristics of path reachability to represent high-order
information, but fails to integrate the path structure and attributes.

5 Conclusion

In this paper, we aim at simultaneously leveraging the structure and attribute
information from both interactions/paths and local neighborhood, to predict
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the edge between two nodes. A novel PaGNN model is proposed which first
broadcasts information from one node, afterwards aggregates broadcasted em-
beddings and node attributs to the other node from its ego subgraph. PaGNN
inductively learns representation from node attributes and structures, which in-
corporates high-order interaction and neighborhood information into GNN. And
we also employ a cache strategy to accelerate inference stage. Comprehensive
experiments show the effectiveness and efficiency of our proposal on real-world
datasets.
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