
Regularizing Graph Neural Networks via Consistency-Diversity
Graph Augmentations

Deyu Bo1 *, BinBin Hu2, Xiao Wang1, Zhiqiang Zhang2, Chuan Shi1 †, Jun Zhou2

1 Beijing University of Posts and Telecommunications
2 Ant Financial Services Group, Hangzhou, China

{bodeyu, xiaowang, shichuan}@bupt.edu.cn, {bin.hbb,lingyao.zzq,jun.zhoujun}@antfin.com

Abstract

Despite the remarkable performance of graph neural networks
(GNNs) in semi-supervised learning, it is criticized for not
making full use of unlabeled data and suffering from over-
fitting. Recently, graph data augmentation, used to improve
both accuracy and generalization of GNNs, has received con-
siderable attentions. However, one fundamental question is
how to evaluate the quality of graph augmentations in princi-
ple? In this paper, we propose two metrics, Consistency and
Diversity, from the aspects of augmentation correctness and
generalization. Moreover, we discover that existing augmen-
tations fall into a dilemma between these two metrics. Can
we find a graph augmentation satisfying both consistency and
diversity? A well-informed answer can help us understand
the mechanism behind graph augmentation and improve the
performance of GNNs. To tackle this challenge, we analyze
two representative semi-supervised learning algorithms: label
propagation (LP) and consistency regularization (CR). We
find that LP utilizes the prior knowledge of graphs to improve
consistency and CR adopts variable augmentations to pro-
mote diversity. Based on this discovery, we treat neighbors
as augmentations to capture the prior knowledge embodying
homophily assumption, which promises a high consistency
of augmentations. To further promote diversity, we randomly
replace the immediate neighbors of each node with its remote
neighbors. After that, a neighbor-constrained regularization is
proposed to enforce the predictions of the augmented neigh-
bors to be consistent with each other. Extensive experiments on
five real-world graphs validate the superiority of our method
in improving the accuracy and generalization of GNNs.

1 Introduction
Graph neural networks (GNNs), as a typical graph-based
semi-supervised learning (SSL) method, has achieved state-
of-the-art performance (Kipf and Welling 2017; Velickovic
et al. 2018). Despite its success, GNNs has been criticized for
not making full use of unlabeled data (Wang et al. 2020; Feng
et al. 2020), which is an essential requirement of SSL (Yang
et al. 2021). Previous methods tend to use pseudo labels to
overcome this limitation (Sun, Lin, and Zhu 2020; Li, Han,
and Wu 2018), but suffer from poor calibration (Guo et al.

*Work done during Deyu’s internship at Ant Group.
†Corresponding Author.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1.0 1.5 2.0 2.5 3.0
Diversity

0.76

0.77

0.78

0.79

0.80

C
on

si
st

en
cy

Raw data
dropout
dropnode
dropedge
LP
NASA

(a) Dilemma of augmentations (b) A toy semi-supervised dataset

Figure 1: (a) Consistency and diversity of different augmenta-
tions on Cora dataset. Dotted line represents the consistency
of the raw data. Circles with different colors indicate differ-
ent graph augmentations. Black and red crosses show the
consistency and diversity of immediate neighbors and our
proposed augmentation. (b) Toy example of data augmen-
tations in SSL. Blue and red circles are labeled data, gray
circles are unlabeled data and rectangles are augmentations.

2017). Recently, graph data augmentation is used to improve
both accuracy and generalization of GNNs (Rong et al. 2020;
Verma et al. 2021; Feng et al. 2019, 2020; Wang et al. 2020).

Although there are some augmentation strategies on
graphs, such as DropEdge (Rong et al. 2020) and DropNode
(Feng et al. 2020), it is still unknown which augmentation is
better for GNNs. Generally, an easy augmentation contributes
less to the generalization of model and a hard augmentation
may bring additional noise (Yin et al. 2019). Therefore, a
natural question is how to evaluate the quality of graph aug-
mentations in principle? To this goal, as the first contribution
of this paper, we propose two metrics of graph augmentation
in SSL: Consistency and Diversity. Consistency indicates
whether the augmented data belong to the same class with
the raw data and diversity reveals how different the distribu-
tion captured by augmented data is from raw data. Detailed
descriptions can be found in Sec. 2. If the augmentation and
original data are in different classes, it will hurt the accuracy
of the model. While if the augmentation is similar to original
data, it may contribute less to the generalization of the model.
Therefore, a good augmentation should not only ensure the
correctness but also provide sufficient generalization.

Based on the two evaluations, we test three commonly
used graph augmentations, i.e., Dropout (Srivastava et al.

2014), DropEdge and DropNode, with different dropping
rates. The results are shown in Fig. 1(a), where there is a
dilemma between consistency and diversity: an augmentation
with high consistency may have less diversity and vice versa.
Since the dilemma of existing graph augmentations is identi-
fied, a natural question is can we find a graph augmentation
satisfying both consistency and diversity at the same time?
This is not a trivial task because we need to quantitatively
define consistency and diversity for graph data and make a
delicate balance between them.

To solve the dilemma, we need to know the factors that
affect consistency and diversity. We analyze two representa-
tive SSL methods, label propagation (LP) and consistency
regularization (CR), and find that LP uses neighbors as aug-
mentations, which naturally captures the prior knowledge of
graphs and improves consistency. While CR employs variable
augmentations to promote diversity. Based on this discovery,
in this paper, we propose NASA, short for Neighbors Are
Special Augmentations, to augment and regularize GNNs.
NASA consists of two parts: augmentation and regularization.
In the augmentation, we treat neighbors as special augmenta-
tions and propose to disturb nodes by replacing their immedi-
ate neighbors with remote neighbors. Generally, neighbors
can capture the prior knowledge of graphs, i.e., homophily
assumption, and replacing neighbors can improve the vari-
ability, so we can preserve high consistency and diversity
simultaneously. In the regularization, we propose a neighbor-
constrained regularization, which enforces the predictions of
neighbors to be consistent with each other, so that a large
number of unlabeled nodes can be used in training. Moreover,
we show that the proposed regularization can be used as a
supplement of the traditional graph regularization.

The contribution of this paper is summarized as follows:
• We propose consistency and diversity to evaluate the qual-

ity of existing graph augmentations, and find that they
cannot satisfy the two metrics at the same time. To the
best of our knowledge, this is the first exploration of met-
rics of graph augmentations.

• We propose NASA, which generates graph augmentations
with high consistency and diversity through replacing im-
mediate neighbors with remote neighbors, and constrains
the predictions of augmented neighbors to be consistent.

• We validate the effectiveness of NASA by comparing with
state-of-the-art methods on five real-world datasets. We
also conduct a generalization test to verify the superiority
of NASA on improving the generalization of GNNs.

2 Evaluation of Augmentation
In this section, we will introduce the detailed description of
the two metrics, i.e., Consistency and Diversity. Before that,
we first explain the motivation for designing the two metrics.

Let’s take the “two moons” data as an example (Verma
et al. 2019), as shown in Fig. 1(b), where the blue and red
circles are labeled data, and gray circles are unlabeled data.
We can see that the number of labeled data is relatively small
and cannot reflect the distribution of the entire data. In this
situation, we consider three types of augmentations, i.e., A,
B, C. It is obvious that although A lies in the correct class, it

contributes little information because it is close to raw data
(high consistency, low diversity); B is different from raw data,
but it locates in a wrong class, which brings additional noise
(low consistency, high diversity); C benefits the classification
a lot because it not only has correct labels but also brings ad-
ditional generalization (high consistency, high diversity). The
aforementioned discussion shows that a good augmentation
should generalize to the distribution beyond training data.
Therefore, only using labeled data cannot comprehensively
evaluate the quality of augmentations. To better measure the
correctness and generalization of the augmentations, we need
to introduce additional data, e.g. validation set, for evaluation.
The main idea is as follows:

We first train two models Fθ, F̃θ : Rd → RC , through the
training data Dtrain and its augmentations D̃train, respec-
tively, where d is the dimension of input features, C is the
number of classes and θ denotes the parameters. After that,
we use the two models to predict on the validation setDval. If
the augmentations have better correctness and generalization,
the model F̃θ should have higher accuracy on validation set
and establish a more different decision boundary from Fθ.
This leads to the metrics of consistency and diversity:

Metric of Consistency. We use the accuracy of augmented
model on validation set to represent the level of consistency:

C = Acc(F̃θ(Dval), Yval), (1)

where Yval denotes the labels of validation data. A lower
value of C means that the augmentations are inconsistent
with the raw data, which may hurt the accuracy of the model.
However, a higher value of C does not mean that the quality of
augmentation is necessarily good, because it may contribute
less to the generalization of the model, which leads to the
metric of diversity.

Metric of Diversity. We use the difference between the
predictions of the original model Fθ and augmented model
F̃θ to represent the level of diversity:

D = ||F̃θ(Dval)−Fθ(Dval)||2F , (2)

where || · ||F is the Frobenius norm. A lower value of D indi-
cates that the augmentations have a similar distribution with
original data, which cannot benefit the generalization of mod-
els (Yin et al. 2019). But a higher value of D cannot ensure
the correctness of augmentations. Therefore, the combination
of the two metrics is necessary for the evaluation.

Note that the metrics of consistency and diversity are not
limited to graph data. Instead, they can be used to evaluate
the quality of data augmentations in other semi-supervised
field, such as computer vision (Berthelot et al. 2019; Xie et al.
2020). In the next section, we will introduce our method and
explain how these two metrics guide the model design.

3 Methodology
Let G = (V,E) denote a graph, where V is the set of nodes
with |V | = N and E is the set of edges. Each graph G
has an adjacency matrix A ∈ {0, 1}N×N , where Aij = 1
means there is an edge between vi and vj , otherwise 0.

X ∈ RN×d are the node features and H ∈ RN×C are the
node presentations learned by GNNs. Generally, most ex-
isting GNN can be summarized as a message passing ar-
chitecture (Gilmer et al. 2017), which can be formulated as
H = Trans(Agg{A,X;Φ};Θ). Agg means aggregating
information from neighbors in the graphs and Trans is to
transform the aggregated information into new node represen-
tations. The parameters Φ, Θ are used for aggregation and
transformation, respectively. In a graph augmentation, the
perturbation may occur in both node features and structures.
Therefore, the augmented node representations can be calcu-
lated as H̃ = Trans(Agg{Ã, X̃;Φ};Θ), where Ã and X̃
are the augmented features and structures, respectively.

3.1 Connection Between Consistency
Regularization and Label Propagation

A basic requirement of SSL is to make good use of the unla-
beled data (van Engelen and Hoos 2020; Chong et al. 2020).
Here we review two representative SSL algorithms and dis-
cuss how they use augmentations to assist unlabeled nodes.

Label propagation is a traditional graph-based semi-
supervised algorithm, which propagates labels to unlabeled
nodes along graph topology (Zhou et al. 2003). The objective
function can be defined as:

LLP =
∑
i∈VL

||hi − yi||22 + α
∑
i∈V

∑
j∈Ni

||hi − hj ||22, (3)

where hi is the i-th row of H, VL represents the labeled
nodes, α is a hyper-parameter, yi is a one-hot vector denoted
as the label of vi andNi denotes the neighbors of vi. The first
term is a classification loss, here we take the mean square
loss as example. The second term is a graph Laplacian regu-
larization, which enforces the representations of neighbors to
be consistent. Note that the closed-form solution of Eq. 3 is
H = (I + αL)−1Y, where L is the Laplacian matrix of A.

Consistency regularization is an emerging semi-supervised
model, which enforces model to have similar predictions
between raw data and random augmentations, so that the
model will be robust to the small data perturbations (Xie et al.
2020). The objective function can be formulated as:

LCR =
∑
i∈VL

||hi − yi||22 + α
∑
i∈V

K∑
k=1

||hi − h̃
(k)
i ||

2
2, (4)

where K is the number of random augmentations and h̃
(k)
i

is the representation of k-th augmentation. The first term of
CR is the same as LP and the second term is a regularization,
which uses the prediction of vi as a pseudo label to supervise
the output of its augmentations.
Remark 1. (Two perspectives of LP and CR) Comparing
Eq. 3 and Eq. 4, we can find that the difference between LP
and CR is the regularization. From the perspective of LP,
using neighbors as augmentations explicitly utilizes the prior
knowledge of graphs, i.e., the homophily assumption. There-
fore, the consistency of neighbors is higher than random
augmentations. From the perspective of CR, the features and
structures of neighbors hj are fixed during training, while
random augmentations h̃

(k)
i will change dynamically, e.g.

0 2 4 6 8 10
Diversity

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

C
on

si
st

en
cy

Raw
1-hop

2-hop

3-hop

(a) Neighbors on Cora

0 2 4 6 8
Diversity

0.45

0.50

0.55

0.60

0.65

0.70

0.75

C
on

si
st

en
cy

Raw
1-hop

2-hop

3-hop

(b) Neighbors on Citeseer

Figure 2: Empirical study of different neighbors’ consistency
and diversity. “Raw” represents the original training nodes,
and “k-hop” indicates the neighbors that are k hops away
from the training nodes, where k ∈ {1, 2, 3}.

dropedge will drop different edges in each epoch, which im-
proves the generalization of GNNs implicitly.

The aforementioned discussion reveals that a good aug-
mentation should not only utilize of the prior knowledge of
data (for consistency), but also provide variable augmenta-
tions (for diversity). This motivates the design of our model.

3.2 Our Proposed Model: NASA
We introduce the details of our proposed model, which con-
sists of two components: augmentation and regularization.
In the augmentation, we propose to use remote neighbors
to replace immediate neighbors to promote diversity. In the
regularization, we propose two techniques to constrain the
predictions of augmentations.

Augmentation on Neighbors. Inspired by the design of
LP, we aim to use neighbors as augmentations to improve the
consistency. However, this way lacks variability and may be
affected by the noise. Therefore, an effective augmentation
strategy is to change the neighbors during training.

To determine which neighbors we should use as substi-
tutes, we make an empirical study to identify their quality.
Specifically, we divide the neighbors into different groups
according to their distances to the training nodes. We then
calculate the consistency and diversity through Eq. 1 and
2, where we use graph convolutional networks (GCNs) as
the test model Fθ, the training nodes are Dtrain and their
neighbors are D̃train. The results are shown in Fig. 2. It can
be seen that the farther the neighbors are from training data,
the lower the consistency and the higher the diversity. In par-
ticular, comparing the 2-hop neighbors with 3-hop neighbors,
we can find that the consistency of 2-hop neighbors decreases
slightly, but 3-hop neighbors hurt the consistency heavily and
do not add much diversity.

Based on the results, we propose Neighbor Replace (NR)
to randomly replace the 1-hop neighbors by the 2-hop neigh-
bors. Specifically, for node vi, we use a Bernoulli distri-
bution to sample its neighbors randomly, i.e., ∀vj ∈ Ni,
εj ∼ Bern(p). For each sampled neighbor vj with εj = 1,
we drop the edges between vj and vi, and randomly choose
a neighbor of vj as the new neighbor of vi, i.e., Nnew

i =
{vk ∼ Nj , εj = 1}. For the neighbors with εj = 0, we do not
change them and denote them as N old

i = {vj ∈ Ni, εj = 0}.

Therefore, the augmented neighbors of vi is defined as
Ñi = Nnew

i ∪N old
i . The benefits of NR are two-fold: first,

the exchange between 1-hop neighbors and 2-hop neighbors
perturbs graph structures, but does not seriously hurt the cor-
rectness. Second, the supervision signals can be propagated
to more unlabeled nodes so that the generalization can be
promoted.

Although graph structures contain the consistency informa-
tion, the inter-edges (Zhao et al. 2021) and NR augmentations
may introduce some noise. Here we propose two techniques,
i.e., neighbor-constrained regularization and dynamic train-
ing, to prevent pseudo labels from being heavily disturbed.

Neighbor-constrained Regularization. After perturbing
the neighbors of each node, we feed the augmented graph
topology Ã and original node features X into an ar-
bitrary GNNs to learn the node representations: H̃ =

Trans(Agg{Ã,X;Φ};Θ). For the labeled nodes, a cross-
entropy loss is used to supervise the predictions of GNNs:

LCE = − 1

NL

∑
i∈VL

yi log h̃i. (5)

Note that here we use labels to supervise the augmented
representations h̃i because we find that this approach can
reduce the risk of over-fitting. For the unlabeled nodes, we
design a novel neighbor-constrained regularization to enforce
the predictions of neighbors to be consistent with each other.
Specifically, we first fuse the predictions of neighbors as the
pseudo label of the center node: ỹi =

1

|Ñi|

∑
j∈Ñi

h̃j . The
average of neighbors’ predictions is similar to the voting
results, which can effectively prevent the pseudo labels from
being affected by the noisy neighbors.

Before using the averaged pseudo labels to supervise the
prediction of neighbors, we utilize the sharpening trick to
enforce the classifier output a low-entropy prediction:

p̃ij = ỹ
1
T
ij

/
C−1∑
c=0

ỹ
1
T
ic , (6)

where T ∈ (0, 1] is a scaling factor, controlling the sharpness
of the prediction, i is the index of nodes, j and c indicate the
specific dimensions of the representation (0 < j < C − 1).
Then we use the sharpened pseudo labels to supervise the
predictions of augmented neighbors:

LCR =
1

N

∑
i∈V

∑
j∈Ñi

KL
(
p̃i||h̃j

)
, (7)

where KL is the Kullback-Leibler divergence (Joyce 2011),
measuring the distance between two distributions. Besides,
we will not use the gradient of the pseudo label p̃i to update
parameters Φ and Θ, as suggested by (Miyato et al. 2019).
Through this regularization, unlabeled nodes can be used in
training to prevent the model from over-fitting. The final loss
function is the combination of classification and neighbor-
constrained regularization:

L = LCE + αLCR, (8)

Table 1: Statistics of datasets.

Dataset # Nodes # Edges # Features # Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Computer 13,381 245,778 767 10
Photo 7,487 119,043 745 8

where α is a hyper-parameter for balancing.
Finally, we give a further explanation to show why this reg-

ularization is called ”neighbor-constrained”. In addition, we
analyze its connection to the traditional graph regularization
(Belkin and Niyogi 2003). We can rewrite Eq. 7 as:

LCR =
1

N

∑
i∈V

∑
j∈Ñi

(
p̃i log p̃i − p̃i log h̃j

)
, (9)

where the first term can be removed because of the gradient
truncation. Therefore, if we ignore the sharpening trick, the
second term can be rewritten as:

LCR = − 1

N2

∑
p,q∈Ñi

h̃p log h̃q, (10)

which can be seen as the cross-entropy loss between the aug-
mented neighbors. Eq. 10 requires the predictions of neigh-
bors to be consistent with each other. That is why we call this
regularization “neighbor-constrained”.

Connection with manifold learning. Similart to Eq. 3 and
Eq. 4, the objective function of NASA can be rewritten as:

L =
∑
i∈VL

||h̃i − yi||22 + α
∑
i∈V

∑
j∈Ni

||h̃j −
∑
j

h̃j ||22. (11)

The second term of Eq. 11 is similar to the local linear em-
bedding (LLE) (Roweis and Saul 2000) algorithm, which
uses the weighted sum of neighbors to reconstruct the target
nodes. In this way, the manifold of high-dimensional data
can be preserved in the low dimensional space.

Dynamic Training. During training, we perform NR on
each node in each epoch, that is to say, the augmented graph
topology Ã is different in each epoch. We call this dynamic
training, otherwise static training. The dynamic training of
NASA makes the model more robust. On the one hand, in
each epoch, different neighbors are used for training, which
makes the model to be invariant to the change of neighbors.
On the other hand, there may exist some neighbors that do not
belong to the same class. Using dynamic training can prevent
the model from over-fitting the unsatisfactory augmentations.
Ablation studies can be found in Sec. 4.3.

Complexity. The time complexity consists of two parts:
one is the complexity of GNNs. Here we take GCNs
(Kipf and Welling 2017) as an example, whose complex-
ity is O(L|E|d2) and L is the number of layers. Another
is the complexity of the regularization, whose complex-
ity is O(|E|d). Therefore, the overall complexity of is
O(|E|(Ld2 + d)), which is linear to the number of edges.

Table 2: Node classification results under different label split (%). A higher value indicates a better performance. Bold for the
best. (-) means the standard deviation is too large to have a stable result.

Standard Split Less Label Split Random Split

Cora Citeseer Pubmed Cora Citeseer Pubmed Computer Photo

LP 70.4±0.0 50.6±0.0 71.8±0.0 64.9±3.3 41.8±4.2 71.4±3.8 79.8±3.4 79.0±4.8
GLP 80.3±0.2 71.7±0.6 78.8±0.4 70.1±2.8 60.7±5.5 73.2±4.0 81.9±1.1 89.6±0.7
GCN-LPA 82.8±0.1 72.3±0.2 78.6±0.2 68.8±3.3 53.2±4.7 71.5±3.6 80.4±2.4 89.4±1.5
PTA 83.0±0.5 71.6±0.4 80.1±0.1 67.7±2.8 58.5±4.9 71.5±3.2 82.3±0.9 90.7±2.1

GCN 81.5±0.3 70.3±0.9 79.0±0.2 70.1±2.7 58.4±5.2 71.8±4.4 82.3±1.5 90.4±0.7
GAT 83.0±0.7 72.5±0.7 79.0±0.3 71.4±3.7 62.2±6.5 72.5±4.0 - -
MixHop 81.9±0.4 71.4±0.8 80.8±0.6 67.9±3.0 59.0±5.5 71.3±3.1 - -
GMNN 83.7±0.3 72.9±0.5 80.3±0.4 71.4±2.1 60.5±3.2 72.8±3.1 82.7±1.3 91.0±2.9
APPNP 83.8±0.3 71.6±0.5 79.7±0.3 69.9±2.1 59.3±2.8 71.4±3.5 82.1±1.9 90.6±2.0

GAUG 83.6±0.5 73.3±1.1 80.2±0.3 72.5±2.8 62.2±5.8 73.2±2.7 - -
DropEdge 82.8±0.9 72.3±1.3 79.6±0.8 71.4±3.0 62.0±6.6 72.2±3.9 81.5±1.4 89.4±1.7
GraphVAT 82.9±0.5 73.8±0.9 79.5±0.3 70.6±4.2 61.2±5.1 73.4±3.3 82.3±3.1 90.5±2.6
GraphMix 83.9±0.6 74.7±0.6 81.0±0.5 72.3±6.1 61.0±4.5 74.6±3.2 84.2±2.5 91.3±1.9
GRAND 84.5±0.3 74.2±0.3 80.0±4.3 73.4±2.4 62.6±4.2 74.0±2.7 84.8±1.5 91.7±2.2
NodeAug 84.3±0.5 74.9±0.5 81.5±0.5 74.2±3.2 62.4±4.1 74.4±3.5 84.5±2.2 92.3±2.5
NASA 85.1±0.3 75.5±0.4 80.2±0.3 75.2±4.0 63.4±4.8 74.0±2.3 85.5±3.3 92.7±2.9

4 Experiments
4.1 Experimental Setup
We test the performance of different methods in the semi-
supervised node classification task. Specifically, we use five
different datasets — three citation datasets, e.g., Cora, Cite-
seer and Pubmed from (Kipf and Welling 2017) and two
co-purchase datasets, e.g., Amazon Computers and Ama-
zon Photo from (Shchur et al. 2018). The statistics of these
datasets are shown in Table 1. Besides, we consider three
different data splits to evaluate these methods more compre-
hensively. The first is the standard split of citation networks,
provided by (Kipf and Welling 2017), which is widely used
in the node classification task (Velickovic et al. 2018). In
the standard split, each class has 20 labeled nodes, and 500
nodes for validation, 1000 nodes for testing. The second is a
less label split of citation networks, where each class has 5
labeled nodes, and the set of validation and testing nodes is
same to the standard split. The less label split poses a greater
challenge to the model’s generalization. The third split is
the random split of co-purchase datasets, where 20 nodes
per class are randomly sampled for training, 30 nodes for
validation and others for testing, as suggested by (Shchur
et al. 2018). All the data splits are widely used in previous
works (Feng et al. 2020; Wang et al. 2020).

Benchmarks. We choose three kinds of methods as
benchmarks: LP-based methods, GNNs-based methods and
regularization-based methods. A detailed description and dis-
cussion of these methods can be found in Sec. 5

• LP-based methods: Original LP (Zhou et al. 2003), GLP
(Li et al. 2019), GCN-LPA (Wang and Leskovec 2020)
and PTA (Dong et al. 2021).

• GNNs-based methods: GCN (Kipf and Welling 2017),
GAT (Velickovic et al. 2018), MixHop (Abu-El-Haija
et al. 2019), GMNN (Qu, Bengio, and Tang 2019) and
APPNP (Klicpera, Bojchevski, and Günnemann 2019).

• Regularization-based methods: GAUG(Zhao et al. 2021),
DropEdge (Rong et al. 2020), GraphVAT (Feng et al.
2019), GraphMix (Verma et al. 2021), GRAND (Feng
et al. 2020) and NodeAug (Wang et al. 2020).

Implementation. The hyper-parameters are set as follows:
learning rate=0.01, weight decay=1e-3, hidden unit=32 and
Adam optimizer (Kingma and Ba 2015) for all methods.
For the benchmarks, if the original papers provide the
hyper-parameters, we set them as the authors suggested.
For NASA, dropout rate is searched in {0.1, ..., 0.9}, tem-
perature of sharpening is searched in {0.1, ..., 1.0} and
α = {0.1, ..., 1.0} for all datasets. We run NASA for 1000
epochs and select the model with the lowest validation loss
for test. For the less label split and random split, we make 5
random splits with seed {0, 1, 2, 3, 4}, and for each method,
we run 10 times and report the mean accuracy and standard
deviation. Note that for fair comparison, we use the standard
two-layer GCNs as the backbone for the regularization-based
methods and NASA, because we want to ensure that the im-
provement comes from the regularization term itself instead
of the advanced GNNs.

4.2 Performance on Node Classification
The performance of different methods are summarized in
Table 2. From top to bottom, we show the results of the three
types of baselines, from which we can draw the following
conclusions: First, the accuracy of LP-based methods is usu-
ally lower than the other two types of methods, indicating

0 200 400 600 800 1000
Epoch

0.5

1.0

1.5

2.0
Lo

ss
GCN_train
GCN_valid
NASA_train
NASA_valid

(a) NASA vs. GCN

0 200 400 600 800 1000
Epoch

0.5

1.0

1.5

2.0

Lo
ss

LP_train
LP_valid
NASA_train
NASA_valid

(b) NASA vs. LP

0 200 400 600 800 1000
Epoch

0.5

1.0

1.5

2.0

Lo
ss

GRAND_train
GRAND_valid
NASA_train
NASA_valid

(c) NASA vs. GRAND

0 200 400 600 800 1000
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

GCN_train
GCN_valid
NASA_train
NASA_valid

(d) NASA vs. GCN

0 200 400 600 800 1000
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

LP_train
LP_valid
NASA_train
NASA_valid

(e) NASA vs. LP

0 200 400 600 800 1000
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

GRAND_train
GRAND_valid
NASA_train
NASA_valid

(f) NASA vs. GRAND

Figure 3: Curves of training and validation loss on Cora (a-c) and Citeseer (d-f). A smaller gap between the training and validation
loss indicates a better generalization.

Table 3: Ablation study on augmentation (%)

NASA Cora Citeseer

w/o augmentation 84.5±0.1 75.0±0.1

w/ NR 85.1±0.3 75.5±0.4

w/ dropedge 84.7±0.5 75.1±0.2
w/ dropnode 84.6±0.3 74.9±0.3
w/ dropout 84.5±0.2 74.7±0.2

Table 4: Ablation study on regularization (%)

NASA Cora Citeseer

w/ dynamic training 85.1±0.3 75.5±0.4
w/ static training 84.7±0.9 70.7±12.6

w/o augmentation 84.5±0.1 75.0±0.1
w/o neighbor 83.4±0.4 73.1±0.7

w/o sharpening 83.7±0.5 72.7±0.5

that only using the dependency of labels cannot achieve satis-
factory results. Besides, the performance of regularization-
based methods are significantly higher than the GNNs-based
methods, which shows the effectiveness of regularization
term. Specially, NASA relatively improves the performance
of GCNs by 4.4%, 7.4% and 1.5% on standard Cora, Citeseer
and Pubmed, respectively. As for the less label split, NASA
makes more improvements, i.e., 7.3%, 8.6% and 3.1%, which
proves the superiority of our proposed regularization in uti-
lizing large amounts of unlabeled data. In the random split,
NASA also achieves state-of-the-art performance. Finally, we
notice that the performance of NASA on Pubmed is weaker
than GraphMix and NodeAug. We guess this is because in
Pubmed, the neighbors do not contribute much to classifica-
tion.

4.3 Ablation Study
In order to prove the effectiveness of different components in
NASA, we conduct two ablation study on two datasets: Cora
and Citeseer. Specifically, we validate the effectiveness of
the graph augmentation strategy and regularization term of
NASA, respectively. The results are shown in Table 3 and 4.

In Table 3, we test how different augmentation strategies

influence the performance of NASA. First, we can find that
without augmentation, the result is more stable but the accu-
racy drops, which indicates that augmentations can help to
improve the performance of model. Besides, the augmenta-
tions on graph structures, i.e., NR and dropedge, are more
useful than the augmentations on node features, i.e., dropn-
ode and dropout. This phenomenon is also observed by (You,
Ying, and Leskovec 2020). Therefore, the future work of
graph augmentations can pay more attentions on perturbing
the topology of the graphs.

In Table 4, we list the results of different variants of the
regularization term in NASA. The first two rows reveal the
advantage of dynamic training in regularization. We can find
that the accuracy of static training is lower than dynamic
training, and the standard deviation is much higher, espe-
cially in Citeseer. This shows that static training is easily af-
fected by the extreme augmentations, while dynamic training
is more stable. The middle two rows validate the effective-
ness of augmentation and neighbor. Without any of them,
the performance of the NASA will decrease, which reflects
the observations in Fig. 1(a). The last row demonstrates the
usefulness of sharpening.

4.4 Generalization Analysis
We design this experiment to validate the superiority of
NASA on improving the generalization of GNNs. Specif-
ically, we use the generalization gap (GP) to measure the
generalization of different models. GP is a commonly used
metric of model generalization (Jiang et al. 2019), which is
defined as the difference between the training loss and vali-
dation loss. Note that a smaller value of GP indicates a better
generalization. In the experiment, we first jointly optimize
the classification and regularization loss in the training pro-
cess. While in inference, the regularization term is removed,
and the training and validation loss is calculated by the back-
bone GNNs only. In this situation, augmentations can only
affect the models in the training stage, which requires the
regularization term to make full use of the unlabeled data.

From Fig. 3, we can find that the gap of CR-based methods,
i.e., NASA and GRAND, is always smaller than GCN and LP,
indicating that CR has an advantage on improving the gen-
eralization of GNNs. Besides, compared with GRAND, the
gap of NASA shrinks 12.5% and 25% on Citeseer and Cora,
respectively. This observation shows that the regularization
of NASA is more effective than the state-of-the-art regular-
ization method on GNNs. It is worth noting that the shrinking
of NASA’s gap benefits from the decrease of validation loss

(a) Overall visualization (b) Neighbor

(c) DropNode (d) Neighbor Replace

Figure 4: (a) Visualization of the node representations in
Cora. Colors denote different classes. We zoom in the red
class to show the augmentations of (b) Neighbors for LP, (c)
DropNode for CR and (d) Neighbor Replace for NASA.

rather than the increase of training loss, which proves that
NASA can make good use of the unlabeled data. Finally, we
find an interesting phenomenon that the loss curve of NASA
will increase in the begin of training. We think this is because
the model tends to optimize the regularization term at first.

4.5 Case Visualization

In Fig. 1(a), we introduce the dilemma between the consis-
tency and diversity of graph augmentations. Here, we give a
closer visualization of different augmentations. We consider
three graph augmentation strategies: immediate neighbors,
DropNode and NR, which are corresponding to LP, CR and
NASA, respectively. For DropNode, the drop probability is
set to 0.5, as suggested by (Feng et al. 2020). We take one
node in the training set as an example and zoom in its repre-
sentation and augmentations together. The visualizations are
shown in Fig. 4(a).

In Fig. 4(b), we can find that, except for one neighbor,
the others (black circles) are close to the original node (red
circle), which indicates that the consistency of neighbors is
good, but the diversity is poor. In Fig. 4(c), the augmentations
are far from the original node and some of them are out of
the cluster. This shows that although DropNode can provide
a better diversity, the consistency of it cannot be guaranteed.
Fig. 4(d) shows the augmentations of NR. We can see that
the augmentations are in the different locations of the clus-
ter, which exhibits a better consistency and diversity than
LP and CR. The reasons why NR performs well is that it
uses the neighbors within two-hops as augmentations, which
have more diversity than the immediate neighbors and better
consistency than random augmentations.

5 Related Work
Label Propagation. LP (Zhou et al. 2003) is a simple yes
effective algorithm in graph-based SSL, which propagates
labels to the unlabeled nodes along network structures. The
major shortcoming of LP is that it cannot utilize node fea-
tures, so its performance heavily depends on the network
structures and initialization. Some methods are proposed to
deal with this problem. Generalized Label Propagation (GLP)
(Li et al. 2019) generalizes LP by extending the graph filter of
LP to node features. GCN-LPA (Wang and Leskovec 2020)
combines GNNs with LP, where the objective function of LP
is used to learn the weights of edges for graph convolution.
Besides, (Dong et al. 2021) proves that the decoupled GCNs,
e.g., APPNP(Klicpera, Bojchevski, and Günnemann 2019),
is equal to a two-step label propagation.

Graph Neural Networks. GNNs makes a breakthrough in
the field of semi-supervised node classification. Currently,
GNNs can be divided into two categories: spectral methods
and spatial methods. Spectral methods aim to utilize the the-
ory of graph signal processing to design graph filters, such
as GCN (Kipf and Welling 2017) and GraphHeat (Xu et al.
2019). Spatial methods focus on designing the message pass-
ing of GNNs. For example, GAT (Velickovic et al. 2018)
uses attention mechanism to learn the importance of neigh-
bors and MixHop (Abu-El-Haija et al. 2019) concatenates
the representations of neighbors with different orders. How-
ever, none of them explicitly utilize the unlabeled nodes for
training, which are easily to over-fit the scarce training data.

Regularization on GNNs. The use of CR in SSL is first
adopted in the field of computer vision (Berthelot et al. 2019;
Sohn et al. 2020; Xie et al. 2020) and then draws attentions
in graph data. CR provides an explicit way to use unlabeled
data, which significantly improve the generalization of mod-
els. Data augmentation is an important component of CR.
In order to apply CR to GNNs, a lot of graph augmenta-
tions are proposed. For example, GRAND (Feng et al. 2020)
proposes DropNode, GraphVAT (Feng et al. 2019) designs
graph virtual adversarial training, GAUG (Zhao et al. 2021)
proposes a learnable augmentation strategy and GraphMix
(Verma et al. 2021) uses linear interpolation. They prefer to
perform random perturbations on either graph structures or
node features or both. Different from them, we tend to use
the prior knowledge to augment graphs, thus guaranteeing
the consistency of the augmentations.

6 Conclusions
In this paper, we study how to use graph augmentation to
regularize GNNs and improve its performance and general-
ization ability. We find that existing graph augmentations fall
into a dilemma between consistency and diversity. To solve
this problem, we propose a new regularization, NASA, to
utilize the augmented neighbors with high consistency and
diversity to regularize GNNs. Experimental results validate
the superiority of NASA on improving the performance and
generalization of GNNs. An important future work is to pre-
vent NASA from being affected by the noisy neighbors and
generalize the method to heterophilic graphs.

7 Acknowledgments
This work is supported in part by the National Natural
Science Foundation of China (No. U20B2045, 61772082,
61702296, 62002029, 62172052), the Fundamental Research
Funds for the Central Universities 2021RC28, and BUPT
Excellent Ph.D. Students Foundation (No. CX2020115).

References
Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.;
Lerman, K.; Harutyunyan, H.; Steeg, G. V.; and Galstyan, A.
2019. MixHop: Higher-Order Graph Convolutional Architec-
tures via Sparsified Neighborhood Mixing. In ICML.
Belkin, M.; and Niyogi, P. 2003. Laplacian Eigenmaps for
Dimensionality Reduction and Data Representation. Neural
Comput., 15(6): 1373–1396.
Berthelot, D.; Carlini, N.; Goodfellow, I. J.; Papernot, N.;
Oliver, A.; and Raffel, C. 2019. MixMatch: A Holistic Ap-
proach to Semi-Supervised Learning. In NeurIPS.
Chong, Y.; Ding, Y.; Yan, Q.; and Pan, S. 2020. Graph-based
semi-supervised learning: A review. Neurocomputing, 408:
216–230.
Dong, H.; Chen, J.; Feng, F.; He, X.; Bi, S.; Ding, Z.; and
Cui, P. 2021. On the Equivalence of Decoupled Graph Con-
volution Network and Label Propagation. In WWW.
Feng, F.; He, X.; Tang, J.; and Chua, T.-S. 2019. Graph
Adversarial Training: Dynamically Regularizing Based on
Graph Structure. IEEE Trans. Knowl. Data Eng.
Feng, W.; Zhang, J.; Dong, Y.; Han, Y.; Luan, H.; Xu, Q.;
Yang, Q.; Kharlamov, E.; and Tang, J. 2020. Graph Random
Neural Networks for Semi-Supervised Learning on Graphs.
In NeurIPS.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. In ICML.
Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017. On
Calibration of Modern Neural Networks. In ICML.
Jiang, Y.; Krishnan, D.; Mobahi, H.; and Bengio, S. 2019.
Predicting the Generalization Gap in Deep Networks with
Margin Distributions. In ICLR.
Joyce, J. M. 2011. Kullback-Leibler Divergence. In Interna-
tional Encyclopedia of Statistical Science, 720–722. Springer.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. In ICLR.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In ICLR.
Klicpera, J.; Bojchevski, A.; and Günnemann, S. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personal-
ized PageRank. In ICLR.
Li, Q.; Han, Z.; and Wu, X. 2018. Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning. In
AAAI.
Li, Q.; Wu, X.; Liu, H.; Zhang, X.; and Guan, Z. 2019. Label
Efficient Semi-Supervised Learning via Graph Filtering. In
CVPR.

Miyato, T.; Maeda, S.; Koyama, M.; and Ishii, S. 2019. Vir-
tual Adversarial Training: A Regularization Method for Su-
pervised and Semi-Supervised Learning. IEEE Trans. Pattern
Anal. Mach. Intell., 41(8): 1979–1993.
Qu, M.; Bengio, Y.; and Tang, J. 2019. GMNN: Graph
Markov Neural Networks. In ICML.
Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2020. DropE-
dge: Towards Deep Graph Convolutional Networks on Node
Classification. In ICLR.
Roweis, S. T.; and Saul, L. K. 2000. Nonlinear dimensionality
reduction by locally linear embedding. science, 290(5500):
2323–2326.
Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann, S.
2018. Pitfalls of Graph Neural Network Evaluation. CoRR,
abs/1811.05868.
Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.;
Raffel, C.; Cubuk, E. D.; Kurakin, A.; and Li, C. 2020. Fix-
Match: Simplifying Semi-Supervised Learning with Consis-
tency and Confidence. In NeurIPS.
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. J. Mach. Learn. Res.,
15(1): 1929–1958.
Sun, K.; Lin, Z.; and Zhu, Z. 2020. Multi-Stage Self-
Supervised Learning for Graph Convolutional Networks on
Graphs with Few Labeled Nodes. In AAAI.
van Engelen, J. E.; and Hoos, H. H. 2020. A survey on
semi-supervised learning. Mach. Learn., 109(2): 373–440.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In ICLR.
Verma, V.; Lamb, A.; Kannala, J.; Bengio, Y.; and Lopez-
Paz, D. 2019. Interpolation Consistency Training for Semi-
supervised Learning. In IJCAI.
Verma, V.; Qu, M.; Lamb, A.; Bengio, Y.; Kannala, J.; and
Tang, J. 2021. GraphMix: Regularized Training of Graph
Neural Networks for Semi-Supervised Learning. AAAI.
Wang, H.; and Leskovec, J. 2020. Unifying Graph Convo-
lutional Neural Networks and Label Propagation. CoRR,
abs/2002.06755.
Wang, Y.; Wang, W.; Liang, Y.; Cai, Y.; Liu, J.; and Hooi, B.
2020. NodeAug: Semi-Supervised Node Classification with
Data Augmentation. In KDD.
Xie, Q.; Dai, Z.; Hovy, E. H.; Luong, T.; and Le, Q. 2020.
Unsupervised Data Augmentation for Consistency Training.
In NeurIPS.
Xu, B.; Shen, H.; Cao, Q.; Cen, K.; and Cheng, X. 2019.
Graph Convolutional Networks using Heat Kernel for Semi-
supervised Learning. In IJCAI.
Yang, X.; Song, Z.; King, I.; and Xu, Z. 2021. A Survey on
Deep Semi-supervised Learning. CoRR, abs/2103.00550.
Yin, D.; Lopes, R. G.; Shlens, J.; Cubuk, E. D.; and Gilmer,
J. 2019. A Fourier Perspective on Model Robustness in
Computer Vision. In NeurIPS, 13255–13265.
You, J.; Ying, Z.; and Leskovec, J. 2020. Design Space for
Graph Neural Networks. In NeurIPS.

Zhao, T.; Liu, Y.; Neves, L.; Woodford, O. J.; Jiang, M.;
and Shah, N. 2021. Data Augmentation for Graph Neural
Networks. In AAAI.
Zhou, D.; Bousquet, O.; Lal, T. N.; Weston, J.; and Schölkopf,
B. 2003. Learning with Local and Global Consistency. In
NeurIPS.

A Experimental Investigate

1.0 1.5 2.0 2.5 3.0
Diversity

0.76

0.77

0.78

0.79

0.80

C
on

si
st

en
cy

Raw data
dropout
dropnode
dropedge
LP
NASA

(a) Cora

1.0 1.5 2.0 2.5 3.0
Diversity

0.675

0.680

0.685

0.690

0.695

0.700

0.705

C
on

si
st

en
cy

Raw data
dropout
dropnode
dropedge
LP
NASA

(b) Citeseer

1.0 1.5 2.0 2.5 3.0 3.5
Diversity

0.76

0.77

0.78

0.79

0.80

C
on

si
st

en
cy

Raw data
dropout
dropnode
dropedge
LP
NASA

(c) Pubmed

B Detailed Information of Datasets and
Environment

The environment where the code runs is shown as follows:

• Operating system: Linux 4.9.151-015.x86 64.
• CPU information: Intel(R) Xeon(R) CPU E5-2682 v4

@2.50GHz.
• GPU information: NVIDIA® Tesla™ M40 GPU Comput-

ing Accelerator - 12G.

C Detailed Parameters of NASA

Table 1: Hyper-parameters of NASA.

Split Dataset Dropout Balance (α) Scaling (T)

Standard Split
Cora 0.7 1.0 0.5
Citeseer 0.1 1.0 0.5
Pubmed 0.5 0.5 0.2

Less Label Split
Cora 0.8 1.0 0.7
Citeseer 0.8 1.0 1.0
Pubmed 0.5 0.5 0.5

Random Split
Computer 0.3 0.7 0.5
Photo 0.5 1.0 0.3

t

D Source Code of Benchmarks
We make sure that the code and data we use are public and
do not contain any information about the authors of this
paper. The acquisition of code and data complies with the
provider’s license and all of them do not contain any offensive
content. The address of benchmarks’ data and code are listed
as follows:

Cora, Citeseer, Pubmed, Amazon-Computer & Amazon-
Photo (Apache-2.0 License): https://docs.dgl.ai/en/latest/api/
python/dgl.data.html#node-prediction-datasets

LP & GLP (MIT License): https://github.com/liqimai/
Efficient-SSL

GCN-LPA (MIT License): https://github.com/hwwang55/
GCN-LPA

PTA (MIT License): https://github.com/DongHande/PT
propagation then training

GCN, GAT, MixHop, GMNN, APPNP, GRAND & DropE-
dge (Apache-2.0 License): https://github.com/dmlc/dgl/tree/
master/examples/pytorch

GraphVAT (without License): https://github.com/fulifeng/
GraphAT

GraphMix (without License): https://github.com/
vikasverma1077/GraphMix

