2 unstable releases
| 0.1.0 | Nov 20, 2025 |
|---|---|
| 0.0.1 | Nov 18, 2025 |
#102 in Visualization
1MB
8K
SLoC
Contains (Mach-o exe, 495KB) test_prelude, (WOFF font, 16KB) assets/roboto.woff2
Velociplot π¦
Scientific plotting at velociraptor speed
velociplot (Velociraptor + plot) is a fast, publication-quality plotting library for Rust. Quick, precise, and deadly effective for creating scientific figures.
π― What is velociplot?
Veloci-plot = Velocity + plot
Like a velociraptor: quick, precise, and deadly effective
A pure Rust plotting library designed for scientists, engineers, and developers who need high-performance, publication-ready visualizations.
β¨ Features (Planned)
- π¦ Blazingly Fast - Plot millions of points in milliseconds
- π Publication Quality - LaTeX math, precise DPI control, vector output
- π Scientific Plots - Line, scatter, histogram, heatmap, contour, 3D surface
- π¨ Beautiful Defaults - Perceptually uniform colormaps, colorblind-friendly
- π Multiple Formats - PDF, SVG, PNG, EPS (vector + raster)
- π§ Ergonomic API - Simple for basics, powerful for complex figures
- π Pure Rust - No Python/matplotlib required
π§ Status
Early Development - Basic plotting is now functional!
Current version: 0.0.1-alpha
β What works now:
- β Line plots with customizable colors and widths
- β Axes with tick marks and labels
- β Grid lines
- β Legends with automatic positioning
- β Text rendering (axis labels, legend text, annotations)
- β PNG output via tiny-skia backend
- β Data from functions, vectors, or tuples
- β Automatic bounds calculation
- β Pure Rust, no C dependencies
π§ Coming soon: More plot types (scatter points, bar, histogram), SVG/PDF output, LaTeX math rendering
π Quick Example
use velociplot::prelude::*;
// Create data - a simple parabola
let data = Series::from_function(0.0, 10.0, 50, |x| x * x);
// Create and customize the plot
let plot = LinePlot::new(data)
.color(Color::from_hex("#1f77b4").unwrap())
.line_width(2.5);
// Set up canvas and render
let bounds = plot.bounds().unwrap().with_padding(0.1);
let mut canvas = SkiaCanvas::new(800, 600, bounds)?;
canvas.fill_background(&Color::WHITE.to_rgba())?;
// Add axes with grid
let x_axis = Axis::new(AxisPosition::Bottom)
.label("X")
.show_grid(true);
let y_axis = Axis::new(AxisPosition::Left)
.label("Y = XΒ²")
.show_grid(true);
x_axis.draw(&mut canvas)?;
y_axis.draw(&mut canvas)?;
plot.draw(&mut canvas)?;
// Add legend
if let Some(entry) = plot.legend_entry() {
let legend = Legend::new()
.add_entry(entry)
.position(LegendPosition::UpperRight);
legend.draw(&mut canvas)?;
}
// Save to PNG
canvas.save_png("plot.png")?;
See examples/ for more including multi-series plots with legends!
Custom Fonts
You can use custom fonts for text rendering:
let mut canvas = SkiaCanvas::new(800, 600, bounds)?;
// Load a custom font from a file
canvas.load_font_from_file("path/to/your/font.ttf")?;
// Or load from bytes
let font_bytes = include_bytes!("../assets/MyFont.ttf");
canvas.load_font_from_bytes(font_bytes)?;
By default, velociplot uses JetBrains Mono embedded in the library.
Legend Customization
Understanding Vertical Alignment
Legends display a colored line next to text labels. The vertical alignment determines where that line appears relative to the text. Different fonts have different proportions (x-height, ascenders, descenders), so the "visually centered" position varies.
Why this matters:
- Typography has multiple reference points: baseline, x-height, cap-height
- The optical center (where text "feels" centered) isn't at 50% of the text box
- Most lowercase letters (a, e, o, n) sit on the baseline and extend to the x-height
- The visual center is typically around the middle of the x-height
How it works:
Text Box: βββββββββββ β 0.0 (top)
β T β
β e ββββ 0.70 (default - optical center)
β x β
β t ββββ 0.75 (baseline)
βββββββββββ β 1.0 (bottom)
Fine-tune the alignment to match your font:
let legend = Legend::new()
.add_entry(entry)
.position(LegendPosition::UpperRight)
.line_vertical_align(0.70); // 0.0 = top, 1.0 = bottom
Recommended values:
0.55- Higher (fonts with large x-height like Verdana)0.65- Geometric center of x-height0.70- Default (optimized for JetBrains Mono)0.75- Baseline (mathematical horizontal reference)
Testing your font:
cargo run --example legend_alignment_test
# Generates 6 comparison plots (0.50, 0.55, 0.60, 0.65, 0.70, 0.75)
# Open the PNG files and pick the one that looks best centered
The default (0.70) was chosen after visual testing with JetBrains Mono, the embedded font. If you load a custom font, you may want to adjust this value.
π¦ Installation
# Add to Cargo.toml (not yet on crates.io)
[dependencies]
velociplot = { git = "https://github.com/ibrahimcesar/velociplot" }
Or build from source:
git clone https://github.com/ibrahimcesar/velociplot
cd velociplot
cargo build --release
cargo run --example basic_line
πΊοΈ Roadmap
Phase 1: Foundation β DONE!
- Core architecture and traits
- Basic 2D coordinate system
- Simple line plots
- PNG output (raster via tiny-skia)
- Color and style system
Phase 2: Core Plots
- Bar charts and histograms
- Error bars and bands
- Multiple series support
- Legend and annotations
- Axis customization (labels, limits, scales)
Phase 3: Publication Quality
- LaTeX math rendering
- Vector output (PDF, SVG, EPS)
- DPI and size control
- Multiple subplots and layouts
- Publication templates (Nature, Science, IEEE, ACS)
Phase 4: Advanced Plots
- Heatmaps and colormaps
- Contour plots
- 3D surface plots
- Polar plots
- Vector fields (quiver)
Phase 5: Ecosystem Integration
- Integration with
ndarray - Integration with
polarsDataFrames - Jupyter notebook support
- CLI tool for quick plotting
- Python bindings (PyO3)
π¨ Design Philosophy
Inspired by matplotlib, but Rust-native:
- β Performance - 10-100x faster than Python/matplotlib
- β Type Safety - Catch errors at compile time
- β No Dependencies - No Python, no C libraries (for core features)
- β Modern Defaults - Beautiful out-of-the-box
- β Progressive Disclosure - Easy to start, powerful when needed
API Principles:
- Simple one-liners for common tasks
- Builder pattern for complex figures
- Method chaining for fluent API
- Sensible defaults (but full control when needed)
π― Use Cases
- Academic Papers - Publication-ready figures with LaTeX
- Data Analysis - Quick exploratory plots
- Engineering - Technical visualizations and reports
- Real-time Monitoring - High-performance streaming plots
- Web Services - Generate plots server-side (no GUI needed)
π§ Architecture
velociplot/
βββ velociplot-core/ # Core plotting engine
βββ velociplot-backend/ # Rendering backends (Cairo, Skia, etc.)
βββ velociplot-formats/ # Output formats (PDF, SVG, PNG)
βββ velociplot-styles/ # Style presets and themes
βββ velociplot-cli/ # Command-line tool (optional)
π€ Contributing
Contributions are welcome! This project is in early stages.
How to contribute:
- π Report bugs or suggest features via Issues
- π» Submit PRs for bug fixes or features
- π Improve documentation
- π¨ Create plot examples or style templates
- π§ͺ Add test cases
π Documentation
- API Documentation (coming soon)
- User Guide (coming soon)
- Examples Gallery (coming soon)
π Acknowledgments
Standing on the shoulders of giants:
- matplotlib - The gold standard for scientific plotting
- plotters - Rust plotting pioneer
- egui_plot - Interactive plotting in Rust
- poloto - SVG plotting techniques
- resvg - SVG rendering
π License
MIT OR Apache-2.0
π¦ Why "velociplot"?
Because your scientific plots should be as fast and efficient as a velociraptor hunting prey. No more waiting minutes for matplotlib to render complex figures!
velociplot - Because your plots shouldn't take ages to render π¦β‘
πΈ Example Output
Basic Line Plot

Multiple Series

Status: β Phase 1 Complete - Basic plotting now functional!
Star β this repo to follow development!
Contributors
![]() Ibrahim Cesar π» π π‘ π€ π π§ β |
This project follows the all-contributors specification. Contributions of any kind welcome!
Dependencies
~0.2β15MB
~140K SLoC
