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Abstract—The rapid detection of ships within the wide sea
area is essential for intelligence acquisition. Most modern deep
learning-based ship detection methods focus on locating ships in
high-resolution (HR) remote sensing (RS) images. Seldom efforts
have been made on ship detection in medium-resolution (MR)
RS images. An MR image covers a much wider area than an
HR one of the same size, thus facilitating quick ship detection.
To this end, we propose a tiny ship detection method namely,
Degraded Reconstruction Enhancement Network (DRENet), for
MR RS images. Different from previous methods that mainly
focus on feature fusion strategies to improve the expression
ability of the detector, we design an additional network branch,
i.e., degraded reconstruction enhancer, to learn to regress an
object-aware blurred version of the input image in the training
phase. Our intuition is that the proposed reconstruction branch
may guide the backbone to focus more on tiny ship targets
instead of the vast background. Moreover, we incorporate a
CRoss-stage Multi-head Attention module in the detector to
further improve the feature discrimination by leveraging the self-
attention mechanism. To fill the gap of lacking a large-scale MR
ship detection dataset, we introduce Levir-Ship, which contains
3876 GF-1/GF-6 multi-spectral images and over 3K tiny ship
instances. Experiments on Levir-Ship validate the effectiveness
and efficiency of the proposed method. Our method achieves
82.4 AP with 85 FPS, which outperforms many state-of-the-art
ship detection methods. Our code and dataset are available at
https://github.com/WindVChen/DRENet.

Index Terms—Convolutional neural network (CNN), ship de-
tection, deep learning, optical image, remote sensing.

I. INTRODUCTION

SHIP detection in optical remote sensing (RS) images
refers to locating ships in RS images and giving their

positions and sizes automatically. As the main carrier of sea
transportation, ship plays a very important role in the military
and civilian fields [1]. The accurate and fast detection of ships
in RS images has been a hot research topic.

With the rapid development of RS technology in recent
years, research on ship detection in optical images is more
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active because of its content-rich and expression-intuitive fea-
tures [2]–[6]. Traditional ship detection methods often require
complicated hand-craft features extraction, and cannot adapt
to changing environments [7], [8]. Nowadays, deep learning
(DL) techniques, especially convolutional neural networks
(CNN), have been widely applied in RS image ship detection.
Compared with traditional methods, DL-based methods can
learn robust multi-level features and classifiers in an end-
to-end manner. Inspired by the great success of DL-based
detectors in the field of computer vision (CV), in recent years,
considerable works have introduced DL techniques into RS
ship detection tasks [9]–[17], which confirmed better detection
performance in terms of accuracy and stability than traditional
counterparts.

The existing DL-based ship detection methods are mostly
modified based on the object detectors in CV. Recent advances
in optical RS ship detection include fusing the ship shape
priors [18], extracting features from ship prow and stern
[12], and applying the orientation information of ships [19].
However, most of these methods focus on high-resolution
(HR) images, thus benefiting from the rich textures and clear
edges.

Despite the great success in ship detection in HR RS images
[19]–[21], seldom efforts have been made in ship detection in
relatively lower resolution RS images, e.g., medium-resolution
(MR, about 16m/pixel) RS images.1 Considering the urgent
need for monitoring and early warning over a wide area of
sea in practical applications [22], [23], ship detection in MR
images is critically important. We argue that MR RS images
are more suitable than HR ones for quick ship detection in
vast sea areas, because an MR image can cover a much wider
area than an HR image of the same size. For instance, to
detect ships in a fixed sea area, supposed we need 1 hour in
16m/pixel MR images (GF-1), then it means we need 256
hours, about 10 days, to finish the same task in 1m/pixel HR
images (SkySat-1). The time cost is apparently unbearable,
especially in such a big data era.

Ship detection in real-world MR RS images has several
challenges. First, ship detection in MR RS images can suffer
from scarce textures and hazy edges of ships. For example, in
a GF-1 image (16m/pixel), a ship may only occupy 20 pixels.
Second, in the real scenario, an RS image may be covered by
massive fractus clouds. The complex imaging conditions may

1Please refer to the website (https://doc.arcgis.com/en/imagery/workflows/
resources/managing-medium-resolution-satellite-data.htm) for detailed defini-
tions of high resolution and medium resolution.
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Fig. 1. Samples of 512×512 size from different datasets. (a): Samples from Airbus Ship Detection Competition dataset2 with a spatial resolution of 2m and
higher. (b): Samples from Levir-Ship dataset with a spatial resolution of 16m.

also induce many false positives in a conventional detector.
Fig. 1 gives an intuitive comparison of HR images and MR
ones. The ships in MR images are difficult to be recognized
(zoomed for best view) and also hard to be distinguished from
fractus clouds. Most detection networks focus on improving
the feature expression ability of the backbone or the neck by
feature fusion [11], [24] and cross-stage connection [21], [25].
We argue that such feature enhancing methods are struggling
to extract discriminative features of tiny ship targets.

To solve the above problems, we propose a degraded recon-
struction enhancement ship detection network called DRENet
- Tiny Ship Detection Based on Degraded Reconstruction
Enhancement in Remote Sensing Images, which contains an
efficient backbone to extract robust feature representations, a
degraded reconstruction enhancer to help the backbone learn to
distinguish ships from irrelevant backgrounds, and an object
detector to locate ships. The pipeline is depicted in Fig. 2.
Different from previous methods that mainly focus on feature
fusion strategies [11], [24] to improve the expression ability
of the detector, we design an additional network branch, i.e.,
degraded reconstruction enhancer, to learn to regress an object-
aware blurred version of the input image in the training phase.
In the enhancer, we design an image processing operation
called “Selective Degradation” to blur the background. Our
intuition is that the proposed reconstruction branch may guide
the backbone to focus more on tiny ship targets instead of
the vast background (e.g., fractus clouds). Please note that our
proposed enhancer is only used in the training phase and is
computing-free in the inferencing phase. Moreover, we incor-
porate a CRoss-stage Multi-head Attention (CRMA) module
in the detector to further improve the feature discrimination
by leveraging the self-attention mechanism.

To the most of our knowledge, there is still no public dataset
for MR RS image ship detection. Therefore, we propose a
dataset named “Levir-Ship” to promote our research. Levir-
Ship contains 3876 images of 512×512 pixels collected from

2https://www.kaggle.com/c/airbus-ship-detection/overview.

GaoFen-1 and GaoFen-6 satellites with the spatial resolution
of 16m/pixel. We conduct experiments on Levir-Ship and the
results show the effectiveness and efficiency of our method.

The contribution of our work can be summarized as follows:
• We propose an effective method (DRENet) for efficient

tiny ship detection. A degraded reconstruction enhancer
is leveraged to guide the backbone to focus more on
the target instead of the background, and the cross-stage
multi-head attention is introduced to further improve the
discrimination ability of the detector.

• We introduce the Levir-Ship detection dataset, consisting
of 3876 GF-1/GF-6 images (each size of 512×512 pixels
with the spatial resolution of 16m/pixel) and more than
3K tiny ship instances.

• Extensive experiments on the Levir-Ship validate the
effectiveness and efficiency of the proposed method. Our
method achieves 82.4 AP with 85 FPS, and surpasses
several state-of-the-art ship detection methods.

The rest of the paper are organized as follows. Related
work is introduced in section II. In section III, we give a
detailed description of our method. Section IV describes Levir-
Ship dataset and the comparison with other ship detection
datasets. Experimental results are reported in section V, and
the conclusion is drawn in section VI.

II. RELATED WORK

Ship detection has been extensively studied for decades.
Generally, traditional methods perform a multi-stage coarse-to-
fine process to obtain detection results [28]–[32]. The detection
process can often be divided into two steps - region proposal
and region refining, and make use of hand-craft features.
Although achieving some good results in certain scenarios,
these methods are vulnerable to complex situations, together
with the limitation of heavy reliance on prior and complex
operating procedures.

In recent years, benefiting from the development of hard-
ware and big data, many effective DL object detection methods
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Fig. 2. The overall structure of DRENet. a) Backbone: A lightweight backbone to enable robust features extraction efficiently. b) Enhancer: The proposed
degraded reconstruction enhancer to guide the backbone to extract many discriminative features by regressing degraded images. The degraded images come
from the proposed “Selective Degradation” operation. c) Detector: The detector to display the final detection results. We introduce into the detector a CRoss-
stage Multi-head Attention (CRMA) module, which can gain a large receptive field to locate ships accurately while saving much computation. (For details of
RCAB and SPP, please refer to [26] and [27]. The implementations of upsampling layers are aligned with [26] and [27], with nearest-neighbor interpolation
in the detector while sub-pixel convolution in the enhancer.)

have been proposed [33]. They are more flexible, unified,
and strong to deal with the task, and can be divided into
two-stage methods and one-stage methods. Two-stage meth-
ods are mainly based on the RCNN series [34]–[37]. They
often play the idea of obtaining candidate bounding boxes
first, and then classifying and regressing the results from
the candidate. Comparing with two-stage methods, one-stage
methods headed by Yolo [27], [38]–[41], SSD [42], RetinaNet
[43], EfficientDet [44] directly give the detection results. They
obtain a higher detection speed expending a little accuracy
in general. However, both two-stage and one-stage methods
rely on the setting of anchor boxes, which needs much prior
knowledge and constrains the methods’ generalization. Thus, a
series of anchor-free methods are proposed, such as CornerNet
[45], CenterNet [46], FCOS [47], etc, which prevent anchor
boxes initialization and also achieve accurate detection results.

Motivated by the above approaches, many effective RS
image object detection methods have emerged in recent years
[48]–[53]. For example, Wang et al. [49] proposed a one-
stage method, Zhang et al. [50] proposed an anchor-free
method, and Huang et al. [52] proposed an object-adaptation
label assignment, which achieve many good results. While
more specific to ship target, many methods have made great
contributions to ship detection in RS images with DL technol-
ogy. Li et al. [11] proposed a hierarchical selective filtering
layer structure based on Faster-RCNN adapting to different
scales of ships. Tian et al. [12] added atrous spatial pyramid
pooling on the basis of Mask-RCNN, and used dense layer
jump connections to use feature information in the backbone
effectively achieving high detection accuracy. Chen et al.

[24] introduced dilated convolution and attention mechanism
in YOLOv3, and proposed ImYOLOv3. Also, researchers
introduce prior information to get high performance. Zhang
et al. [18] pre-designed the structure of the candidate object
according to the ship structure, and then inputted the proposals
into CNN to detect the ship. Wu et al. [20] used the promi-
nence of the ship’s head to detect the ship by positioning the
ship’s bow. Tang et al. [54] extracted the ship by using the
difference in hue, saturation, and value between the ship and
the surrounding. These methods often focus on HR images and
utilize the features extracted by clear edges and rich textures
to achieve high performance. However, when tackling the tiny
ship detection problem, they may perform badly. In the paper,
we propose DRENet to address tiny ship detection.

III. METHODOLOGY

The DRENet, shown in Fig. 2, consists of an efficient
backbone, a Degraded Reconstruction Enhancer (DRE), and
a ship detector. We follow YOLOv5s (a small version of
YOLOv5) [27] as the backbone to efficiently extract multi-
scale image features. The degraded reconstruction enhancer is
designed to guide the backbone to acquire many discriminative
features by regressing an object-aware blurred version of the
input image in the training phase. The supervision of the
enhancer comes from a “Selective Degradation” operation we
propose. In the detector, we introduce a CRoss-stage Multi-
head Attention (CRMA) module to better locate ships within
the input image. Details will be introduced as follows.
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Algorithm 1 Selective Degradation for obtaining DRE super-
vision information
Input: I , the input image
Input: G, all the ground-truth boxes set in I
Define F (·), an increasing function to adjust the mean kernel

size
Define Center(·), a function to get the box’s central coordi-

nate
Define Distance(·, ·), a function to compute the Euclidean

Distance between two inputs
Define EvenInt(·), a function to return the nearest even

number that is less than the input
Define Resize(·), a function to resize the image by nearest

neighbor interpolation
Output: Î , the label of I in DRE

1: for i = 0; i < H; i++ do
2: for j = 0; j < W ; j ++ do
3: k ← +∞
4: for each g ∈ G do
5: c← Center(g)
6: t← Distance((i, j), c)
7: if t < k then
8: k = t
9: end if

10: end for
11: k = F (k)
12: k ← EvenInt(k)

13: Î(i, j) = 1
(k+1)2

∑m=i+ k
2 ,n=j+ k

2

m=i− k
2 ,n=j− k

2

I(m,n)

14: end for
15: end for
16: Î = Resize(Î)
17: return Î

A. Degraded Reconstruction Enhancer

The degraded reconstruction Enhancer (DRE) utilizes the
features extracted by the backbone to reconstruct the degraded
input image, which could guide the backbone to pay more
attention to ships, keep more information about the objects,
and omit the complex background.

1) Supervision of DRE: In this part, we propose a method
named “Selective Degradation” to generate labels for the
enhancer. Selective Degradation, with the nature of filtering,
performs mean filters of different sizes on different posi-
tions in original images. Details of Selective Degradation
are illustrated in Algorithm 1. Fig. 3 depicts how to get
the mean kernel size of a certain position in an image. By
Selective Degradation, we can get a “pseudo saliency map”
in which ships would be kept completely, and the background
is processed to be fuzzy. Through the training of DRE, the
backbone will pay more attention to the tiny ships instead of
the textures, details, or the fractus clouds of the background.

2) Design of DRE: As is shown in Fig. 2, we take feature
maps from the backbone as the input of the enhancer. Here
we just utilize the feature maps with the shape of 64 × 64

D1 D2

K𝒆𝒓𝒏𝒆𝒍𝑺𝒊𝒛𝒆 = 𝑭(𝑫𝒎𝒊𝒏)

𝑫𝒎𝒊𝒏 = 𝒎𝒊𝒏(𝑫𝟏,𝑫𝟐,… )

K𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒

Apply the mean filter

Repeat at all coordinates

Fig. 3. The specific operation of Selective Degradation: calculate the mean
filter kernel size at each point. D1 and D2 represent the distance from the
current pixel position to each ship target, while F (·) is an increasing function
to adjust the mean kernel size, where the output, i.e. the mean kernel size
will increase as Dmin increases.

to reconstruct the degraded label with a shape of 128 × 128,
leveraging the performance and convenience. We refer to the
existing super-resolution method [26] to design the structure
of DRE, but there are some differences. In [26], as the goal
is to improve the quality of the super-resolution image, the
network is actually complex and deep. However, instead of
reconstructing perfect Selective Degradation labels, our goal
is to acquire a discriminative feature representation of the
backbone. Therefore, we make a relatively shallow enhancer
network, with just a single RCAB (Residual Channel Attention
Block, a component module in [26]) used, to concentrate more
on the training of the backbone. Based on the mechanism of
“Selective Degradation”, the labels of the enhancer focus on
the ship target and omit the complex background. Thus, the
enhancer provides a tendency to obtain robust feature repre-
sentations in the backbone, and classify ships more exactly.

Compared with the existing super-resolution methods [26],
[55], [56], the proposed DRE focuses more on improving the
detection results of tiny ships. The supervision of DRE is an
object-aware blurred version of the input image (different from
the clear image of existing super-resolution methods), which
can guide the backbone to pay more attention to ships and
be more robust against the disturbances from complex back-
grounds. Further, different from the existing super-resolution
methods that use labels of higher image resolution, our
proposed DRE reconstructs labels of lower image resolution
(128 × 128) than the input image (512 × 512), which saves
much computation and memory. The structure of DRE is also
much simpler and shallower than that of the existing super-
resolution methods.

B. Efficient Detector

To achieve efficient ship detection, our detector is based on
YOLOv5s. We have made some modifications for the tiny ship
detection task to further improve efficiency.

In order to spread the rich spatial information of the low-
level features to the deep-level features at a short and fast
path, YOLOv5 adopts the PAN [57] structure. However, when
assigning anchors to each output layer in tiny ship object
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detection, most of the bounding boxes fall on the shallow
detection layers while few on the deep detection layers. It
is actually a time-costing operation but retrieving few benefits
to enrich the spatial information of the deep detection layer. In
DRENet, we remove the PAN path to improve the detection
speed.

Considering different output layers of FPN [58] are assigned
with an imbalanced number of training samples, we add two
“Scale Layers” behind the two Upsampling layers in the
detector (depicted in Fig. 2), following the work of [59].
The Scale Layer is actually just a single learnable parameter
that can balance the backpropagated gradients from differ-
ent output layers in the bottom-up pathway layers of FPN.
Supposed there are two layers C1, and C2 in the bottom-up
pathway from shallow to deep, and two layers P1, and P2
in the top-down pathway corresponded. In the original FPN,
P1 = C1 + upsample(P2), after we add the scale layer, it
turns to be P1 = C1 + α × upsample(P2), where α is a
learnable parameter.

To achieve a full-image receptive field, we propose a CRoss-
stage Multi-head Attention (CRMA) module, and replace the
CSP-like layers in the bottleneck of YOLOv5s. The CSP-like
layers in YOLOv5 are designed based on CSPNet [60]. The
structure splits the input in half from the channel dimension,
then passes the two parts into two branches (one branch with
many convolution operations while the other just an identical
mapping), and at last concatenates the two branches’ outputs as
the final output. In our work, we argue the many convolutions
in the branch are low cost-effective and replace them with
the Multi-Head Self-Attention (MHSA) layer designed in [61],
which can enlarge the network’s receptive field much while
keeping low parameters and complexity, and also more suitable
for vision task (with relative positional encodings used and Q,
K, V in 2D style) compared with the original version in [62].
By fusing CSPNet’s idea and the MHSA layer, we construct
the CRMA module. More details of CRMA are shown in Fig.
2 and TABLE I. Also note that we replace all the five CSP-
like layers with our CRMA in YOLOv5s’s bottleneck, which
can gain much reduction of computation and complexity of
the network while keeping good performance.

C. Loss Function

The loss function of DRENet is composed of two parts,
including the enhancer loss and the detector loss.

1) Enhancer Loss: We apply mean square error (MSE)
to form the reconstruction error of the enhancer. The loss
function is formulated as follows:

Lossenhancer =

∑
(y∗ − y)2

N
(1)

where y∗ represents the pixel value of the reconstruction result,
y represents the pixel value of the “Selective Degradation”
label, and N represents the number of total pixels.

2) Detector Loss: The detector loss function contains re-
gression loss and classification loss. We conduct typical loss
in object detection task - CIoULoss [63] for regression error,
and Binary Cross-Entropy Loss for classification. In DRENet,
they are defined as:

TABLE I
DETAILS OF CRMA CONFIGURATION. CBS REPRESENTS OPERATIONS OF

CONVOLUTION, BATCH NORMALIZATION, AND SILU ACTIVATION
FUNCTION. MHSA DENOTES THE MULTI-HEAD SELF-ATTENTION LAYER.

Input: 16×16×512

Pathway Layer Filters Size Output

1

CBS 256 1×1 16×16×256

CBS 128 1×1 16×16×128

MHSA — — 16×16×128

CBS 256 1×1 16×16×256

Residual — — 16×16×256

2 CBS 256 1×1 16×16×256

Output Concat — — 16×16×512

lossreg = 1− CIoU (2)

CIoU = IOU − ρ2(b, bgt)

c2
− ν2

1− IOU + ν
(3)

ν =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2 (4)

where b and bgt denote the central points of predicted box
and target box, ρ(·) denotes the Euclidean distance, c is the
diagonal length of the smallest enclosing box covering the
two boxes, ν measures the consistency of aspect ratio, and
wgt, hgt, w, h respectively represent the width and height of
two boxes.

losscls = −
∑

(yn × ln y∗n + (1− yn)× ln(1− y∗n))

n
(5)

where n represents the number of all anchor boxes, y∗n denotes
the probability of the n-th predicted bounding box. yn is the
label corresponding to the predicted bounding box, which is
formulated by CIoU . Finally, we design the detector loss with
a balanced factor of 0.05.

Lossdetector = lossreg + 0.05× losscls (6)

3) DRENet Loss: The training of the enhancer and detector
jointly may occur unbalance between the two branches, thus
leading to sub-optimal. How to weigh the two branches has a
great impact on the performance of ship detection. Motivated
by the work of Kendall et al. [64], we design a method to
balance the training preference of the enhancer and detector
automatically, which is achieved by two learnable weight
coefficients. Finally, the DRENet loss is defined as:

Loss =
1

2a2
Lossenhancer+

1

2b2
Lossdetector+ln a+ln b (7)

where a and b are two coefficients automatically learned by
the network. In training, a and b in the first two items of Loss
tend to be large values, while in the last two, they tend to be
small. They are regulated by each other. This design can help
the training progress smooth and steady.
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D. Implementation Details
Our backbone follows the design of YOLOv5s. There are

5 stages in the backbone, each with downsampling by 2, thus
we have different feature maps, 256×256, 128×128, 64×64,
32×32 and 16×16. Taking the features of 64×64, 32×32, and
16×16 as detector’s input, we obtain the probability, position,
and shape of the ship by inference. As for the enhancer, we
take the 64 × 64 feature maps for reconstructing a degraded
label with a shape of 128× 128.

We adopt Stochastic Gradient Descent (SGD) optimizer
with 0.99 momentum and 0.0005 weight decay. The learning
rate is initially set to 0.01 and decays in a Cosine annealing
strategy until 500 epochs. The batch size is 16. While for the
optimization of the two weight coefficients a and b in loss,
we adopt Adaptive moment estimation (Adam) optimizer with
learning rate set to 0.01. Notably, the enhancer and detector
are jointly optimized in the training phase, but in the testing
phase, the enhancer can be removed and only the detector is
used.

IV. LEVIR-SHIP

In recent decades, there are many effective object detection
datasets in optical remote sensing.

NWPU-VHR-10 [65] contains 800 images in 10 categories.
However, there are only 57 images including total 302 ships,
which is not enough to train a DL network and suffers from
overfitting. In addition, the spatial resolution of the dataset is
0.5-2m.

HRSC2016 [66] is a single-class dataset for ship detection.
The images are all from 6 well-known ports. There are 1070
images, and 2976 objects in total. The spatial resolution of the
dataset is 0.4-2m.

DIOR [67] is a relatively large dataset proposed in recent
years. It contains 20 categories, 23463 images, and 192472
instances. The ship category has 2702 images and 62400
objects in total. However, the ship is also under a high spatial
resolution.

HRRSD [68] is another large-scale RS dataset recently
proposed. There are 13 categories, 21761 images, and 55740
instances. It contains 2165 images with 3886 ship objects, but
the resolution of 0.15-1.2m is still too high.

Most ship detection datasets focus on high spatial resolution,
such as 0.3m, 0.5m, and 2m [65]–[68]. Few datasets concen-
trate on tiny ship objects with a lower spatial resolution. In our
work, we propose a tiny ship detection dataset named Levir-
Ship under the spatial resolution of 16m.

Images in Levir-Ship are captured from multispectral cam-
eras of GaoFen-1 and GaoFen-6 satellites. We only use
the R, G, and B bands. 85 scenes have been collected in
the dataset with pixel resolutions between 10000×10000 and
50000×20000. We crop the original images to finally get 1973
positive samples and 1903 negative samples with the size of
512×512. As shown in Fig. 4, we plot the distribution of
width/height of ships in the Levir-Ship dataset. We can observe
that the ship pixel size in Levir-Ship is almost below 20×20,
and centralizes at around 10×10. The ship in Levir-Ship is
relatively small compared to the vast background, which brings
many challenges to the detection network.

 

Fig. 4. Ship target size statistics in LEVIR-SHIP. We use the smallest
enclosing rectangle of the actual ship target as a measure.

TABLE II shows the comparison between Levir-Ship and
several existing RS object detection datasets. The ship in
Levir-Ship is surrounded by complex background, and is hard
to recognize, compared with those ships in HR images. In
addition, due to the influence of different time, different pho-
tographers, and different locations, the images show different
conditions, which brings many challenges to the task.

From Fig. 5, we can see that the background is complex,
and ships in the images are hard to find even zoomed in
several times. Meanwhile, since Levir-Ship covers a variety
of environmental conditions, DL network can obtain better
generalization, stability, and sufficiency.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct experimental comparative anal-
yses of the proposed method. Our experiment is based on
Levir-Ship, and we randomly divide the dataset into training
set, validation set, and test set (details shown in TABLE III).
All experiments are implemented on an NVIDIA Tesla V100
GPU.

A. Evaluation Metrics

We evaluate the effectiveness and efficiency of the proposed
method by detection accuracy and model complexity. The
metrics are Average Precision (AP), Floating Point Operations
(FLOPs), Model Parameters, and Frames Per Second (FPS).
Details are described as follows.

To evaluate detection accuracy, We use AP50 (prediction
is a true positive sample when the IoU is larger than 0.5)
as the evaluation metric to measure the detection accuracy of
the model. In calculating AP value, we conduct the method
illustrated in the COCO dataset (in the Precision-Recall curve,
according to classification confidence, 101 points are sampled
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TABLE II
COMPARISON BETWEEN THE PROPOSED LEVIR-SHIP DATASET AND FOUR PUBLICLY AVAILABLE OBJECT DETECTION DATASETS. BB NUMBER

DENOTES THE NUMBER OF BOUNDING BOXES. FOR DATASETS CONTAINING MULTIPLE CATEGORIES, ONLY INFORMATION ABOUT THE SHIP CATEGORY IS
LISTED HERE.

Dataset Images Number BB Number Source Resolution Year

NWPU VHR-10 57 302 Google Earth 0.5-2m 2014

HRSC2016 1070 2976 Google Earth 0.4-2m 2016

DIOR 2702 62400 Google Earth 0.5-30m 2018

HRRSD 2165 3886 Google Earth & Baidu Earth 0.15-1.2m 2019

LEVIR-SHIP (Ours) 3876 3219 GaoFen-1 & GaoFen-6 16m 2021

(a) Images with different amounts of cloud (b) Images of different land percentages

(c) Images of different light intensity (d) Images of different sea area characteristics

Fig. 5. A partial display of the data contained in LEVIR-SHIP under different situations that may be encountered in the process of ship detection. The blue
bounding boxes are the ground truth.

TABLE III
THE DIVISION OF TRAINING SET, VALIDATION SET, AND TEST SET

Image number Target number

Training set 2320 2002

Validation set 788 665

Test set 788 552

at equal intervals, and then the Precision values corresponding
to these points are accumulated and averaged to obtain the final
AP value) to ensure that the calculation of the Precision-Recall
curve area is more accurate. We use FLOPs, Parameters, and
FPS to reflect the detection speed.

B. State-of-the-art Comparison

We compare DRENet with other state-of-the-art networks in
ship detection on Levir-Ship dataset, including YOLOv3 [40],
YOLOv5s [27], Retinanet [43], SSD [42], FasterRCNN [36],
EfficientDet [44], FCOS [47], CenterNet [46], HSFNet [11],
ImYOLOv3 [24], DFR and RFE structure proposed by Tian et
al. [12]. The last three methods are proposed for ship detection
task. We have also tried to compare with some traditional

methods such as SVDNet [28] and PCANet [69] (configured as
[28]), but unfortunately found these methods failed as the ship
targets only cover a small area of the image. Unless otherwise
specified, we train all networks for 500 epochs, using batch
size 16.

TABLE IV shows the comparative results of networks. It
can be seen that compared with other methods, our proposed
method achieves the highest detection accuracy and real-time
detection speed. DRENet achieves a healthy 1.5 point AP
gap with the closest competitor, EfficientDet-D2 [44], while
being much faster (85 vs.21 FPS). Compared with the fastest
YOLOv5s [27], DRENet is a minor slower but much more
accurate (82.4 vs.75.6 AP). Furthermore, the Params and
FLOPs of DRENet are small. These can demonstrate the
excellent detection performance of DRENet on the tiny ship
detection task.

Fig. 6 gives some detection results between DRENet and
other methods. Blue boxes represent true positive detections.
Red boxes denote false negative detections. Yellow boxes indi-
cate false positive samples. From the top to the bottom in the
figure, the complexity of the background gradually rises. The
ship in the image behaves very small, and the distinguishable
features are not clear enough. Meanwhile, some ships are sur-
rounded by fractus clouds, leading to a challenge in detection.
We can observe that our method achieves better detection
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TABLE IV
COMPARISON WITH SOME WELL-KNOWN DETECTION METHODS AND STATE-OF-THE-ART SHIP DETECTION METHODS. THE BOLD REPRESENTS THE

OPTIMAL METRIC.

Methods Params(Inference) FLOPs(Inference) AP FPS

YOLOv3 61.52M 99.2G 69.9 61

YOLOv5s 7.05M 10.4G 75.6 95

Retinanet (ResNet50) 36.33M 104.4G 74.9 12

SSD (VGG16) 24.39M 175.2G 52.6 25

FasterRCNN (VGG16) 136.70M 299.2G 70.8 10

EfficientDet-D0 3.84M 4.6G 71.3 32

EfficientDet-D2 8.01M 20.0G 80.9 21

FCOS (ResNet50) 5.92M 51.8G 75.5 37

CenterNet (Hourglass-104) 191.24M 584.6G 77.7 25

HSFNet 157.59M 538.1G 73.6 7

ImYOLOv3 62.86M 101.9G 72.6 51

MaskRCNN (ResNet50)+DFR+RFE 24.99M 237.8G 76.2 6

DRENet (ours) 4.79M 8.3G 82.4 85

results than other methods. DRENet can detect more true
positive ships and miss fewer targets. Additionally, the false
positive detections can be well avoided, compared with other
method detection results shown in the figure. For example, as
for 3rd-row images, no methods mentioned can find the ship
behind the cloud except for DRENet. The comparable results
show DRENet has higher applicability and robustness for the
tiny ship object detection task.

To further analyze the performance of our method under
different background situations, we roughly divide the test
set into further five subsets: “clam sea”, “thin cloud”, “thick
cloud”, “strong wave” and “fractus cloud”, according to dif-
ferent background situations. To better illustrate the difference
between these situations, for each subset we select an example
image, displayed in Fig. 7. TABLE V shows the comparisons
of DRENet with other methods in different situations, from
which we can observe that the subsets “thick cloud”, “strong
wave” and “fractus cloud” are more difficult than the other
two, as the performance of other methods has dropped a lot
in these scenes. From the results, we can see that our method
is more robust to complex backgrounds like “fractus cloud”
than other methods while also keeping good performance in
the simple scene like “calm sea”.

C. Controlled Experiment

1) Degradation Function F : We compare the degradation
effect on the original input image when taking different
function F (·) to adjust the mean kernel size, including linear
function, logarithmic function, and exponential function. As
shown in Fig. 8, it can be seen that the exponential function
conducts a more obvious degradation effect and can better
meet the need of the enhancer to highlight the ship and
blur the background. In order to keep the details of the ship
and minimize the effect of the background, we apply the
exponential function to calculate the size of the mean filter

kernel at each pixel position. The steps are given in Algorithm
1.

2) Design of Enhancer : The degraded reconstruction en-
hancer is used for extracting more distinguishable basic feature
representation between ship target and background. We con-
duct experiments on the different structures and supervisions
of the enhancer.

Different Enhancer Structure. Here, we make compar-
isons on different inner structures of the enhancer to select
the most suitable enhancer structure for the ship detection
task. We evaluate the performance by AP and network com-
plexity. TABLE VI shows the results in detail. “n-RCAB”
represents the number of RCAB included in our enhancer net-
work. “Upsampling” denotes different upsampling multiples,
corresponding to reconstructing Enhancer labels of different
resolutions. It can be seen from the results that when 1
RCAB structure and upsampling 2 times are carried out, the
performance is the best. When the enhancer becomes more
complex, the training of the enhancer focus more on high-
level layers, instead of the basic layers of the backbone. This
may illustrate why the performance declines as the structure
becomes weighted. Meanwhile, when the upsampling factor
gets larger, reconstruction of the degraded image becomes
more difficult, which leads to the deterioration of the enhancer.
Then the trained enhancer cannot achieve the proper feature
representation the detector needs.

Different Supervision Form. We compare different label
generation strategies in the enhancer to acquire better super-
vision for the reconstruction branch. As shown in TABLE
VII, different generation strategies have different impacts
on detection accuracy. The enhancer structure we take is 1
RCAB and upsampling 2 times. From the table, we can make
some observations. First, direct down-sampling can improve
the detection performance compared with only the detector
without the enhancer. This may be because the backbone
retains more spatial information by fitting the label, which
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(a) (b) (c) (d) (e)

Fig. 6. Comparisons of the detection results by different methods. (a) YOLOv5s. (b) EfficientDet-D2. (c) ImYOLOv3. (d) Method [12]. (e) Ours. The blue
box represents the real target detected, the red box represents the missed target and the yellow box represents false alarms. To facilitate observation, we
randomly enlarge some missed ship targets.

makes more contributions to the detection of tiny ships.
Second, we can also see the sudden-blur method reduces the
detection accuracy, which is mainly because a ship in Levir-
Ship dataset only occupies a small area, and the training of
the network will suffer from a relatively small loss. Thus,

the network learning deviates from the original direction and
cannot focus on the details of the tiny ship while suppressing
the background. Third, by using “Selective Degradation”,
i.e. the continuity-blur in TABLE VII to generate the label,
the detection performance has been significantly improved.
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(a) (b) (c) (d) (e)

Fig. 7. Images as examples for each background situation. (a) calm sea. (b) thin cloud. (c) thick cloud. (d) strong wave. (e) fractus cloud.

TABLE V
THE COMPARISONS OF DRENET WITH OTHER METHODS IN DIFFERENT SITUATIONS, WHERE “NUMBER” DENOTES IMAGES’ NUMBER OF EACH

SITUATION. THE HIGHEST AP VALUE IS MARKED IN BOLD.

Situations Number YOLOv5s EfficientDet-D2 ImYOLOv3 Method [12] DRENet (ours)

calm sea 262 76.8 83.0 75.9 78.4 82.1
thin cloud 238 84.3 83.9 83.7 82.4 87.3
thick cloud 60 60.5 78.9 56.6 70.1 86.8
strong wave 101 73.4 73.3 62.8 71.8 82.8
fractus cloud 127 72.1 74.7 61.8 64.4 76.5

TABLE VI
COMPARISON OF DIFFERENT NETWORK COMPLEXITY IN THE ENHANCER. “TRAIN” REPRESENTS THE TRAINING PROCESS WHERE WE KEEP THE

DEGRADED RECONSTRUCTION ENHANCER. THE HIGHEST AP VALUE IS MARKED IN BOLD.

Structure n-RCAB Upsampling AP Params(Train) FLOPs(Train)

YOLOv5s — — 75.6 7.05M 10.4G

YOLOv5s+Degraded reconstruction
enhancer

1 ×2 76.8 8.25M 20.3G
1 ×4 76.2 8.84M 40.0G
2 ×2 76.6 8.55M 22.7G
2 ×8 75.6 9.73M 121.2G

TABLE VII
COMPARISON OF DIFFERENT LABELS IN THE ENHANCER.

“SUDDEN-BLUR” MEANS TO UNIFORMLY BLUR THE AREA OUTSIDE THE
TARGET WITHOUT OPERATING ON THE AREA AROUND THE TARGET,

WHILE “CONTINUITY-BLUR” REPRESENTS THE SELECTIVE
DEGRADATION WITH THE EXPONENTIAL FUNCTION APPLIED AS F (·).

THE HIGHEST AP VALUE IS MARKED IN BOLD.

Label generation method AP

Original (YOLOv5s) 75.6

Down-sampling 76.6

Sudden-blur+Down-sampling 75.2

Continuity-blur(λ=1.01)+Down-sampling 76.8

Continuity-blur(λ=1.03)+Down-sampling 78.7

Continuity-blur(λ=1.05)+Down-sampling 77.1

In addition, we take different parameters λ in degradation
function F , and finally select 1.03 because of its relatively
great performance.

3) Structure of Detector: We have made some improve-
ments to the original YOLOv5s prototype to achieve better
performance in tiny ship detection. To verify the effect of
different modifications, we conduct a series of ablation study

on the detector. Results are shown in TABLE VIII. We can
get some observations from the table. First, by adding “Scale
Layer”, a minor improvement appears without increasing the
complexity. It may be because the Scale Layer alleviates the
problem of unbalanced training of different layers in FPN to a
certain extent. Second, after replacing the CSP bottleneck with
the CRMA module we propose, the complexity is significantly
reduced, and the detection AP has risen by 4.2. We believe
this is due to the greater receptive field which leads to richer
features that benefit tiny ship object detection. It verifies the
effectiveness of the designed CRMA structure. We further
make a trade-off of whether to remove PAN. From TABLE
IX, we can observe the number of network parameters and
operations be greatly reduced at the little expense of detection
accuracy when the PAN structure is removed. Thus, we remove
PAN in our final model.

Compared with the YOLOv5s prototype, the amount of
parameters and FLOPs has been reduced by nearly −32% and
−19% respectively, while AP has increased 4.7 points. With
faster speed, smaller model, and higher accuracy, the improved
detector is more suitable for detecting ships in MR RS images.

4) Network Overall Setting: In this part, we will conduct
experiments on loss function and training strategy.

Loss Function. DRENet is composed of an enhancer and
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TABLE VIII
THE ABLATION STUDY OF THE MODIFICATIONS IN THE DETECTOR. THE OPTIMAL VALUES ARE MARKED IN BOLD.

Network description Scale CRMA AP Params FLOPs

Baseline (YOLOv5s) # # 75.6 7.05M 10.4G

Add Scale ! # 76.3 7.05M 10.4G

Replace CSP bottleneck with CRMA # ! 79.8 5.69M 9.1G

Add Scale and CRMA ! ! 80.8 5.69M 9.1G

(a) Origin images (b) Different function F (·)

(c) y = logλx (d) y = λx (e) y = λx

Fig. 8. The degradation effect when takes a logarithmic function, linear
function, and exponential function to calculate the mean filter kernel size
at each position. The red circles in the images are the ships. λ is a constant
of functions, which is set to ensure the ship areas are kept clear
. x is the shortest distance to ship targets and y denotes the
kernel size.

TABLE IX
THE TRADE-OFF BETWEEN KEEPING PAN AND REMOVING PAN. W

DENOTES KEEPING, WHILE W/O DENOTES REMOVING.

AP Params FLOPs

w 80.8 5.69M 9.1G

w/o 80.3 4.79M 8.3G

detector, and the two parts need to be trained jointly. The
total loss contains the supervision of the detection label and
degraded reconstruction label. Including the automatically
balanced learning method mentioned in DRENet Loss (see
Section III-C3), we also design a fixed balanced factor to
verify the performance. The formula with a fixed balanced
factor is indicated as:

loss = lossdetector + α× lossenhancer (8)

Where α is a fixed factor to balance the detector loss and
enhancer loss. Comparative results are shown in TABLE X. It
indicates that the automatic weight learning method can bring
a significant improvement. Meanwhile, in the method with a

TABLE X
COMPARISON OF DIFFERENT CONFIGURATION METHODS OF THE LOSS

FUNCTION. α DENOTES THE WEIGHT OF THE SUM OF THE TWO BRANCH
LOSS FUNCTIONS. THE HIGHEST AP VALUE IS MARKED IN BOLD.

Combination description weight α AP

Fixed weight summation

100 80.9
10 81.6
1 81

0.1 80.6

Automatic weight summation — 82.4

TABLE XI
COMPARISON OF DIFFERENT TRAINING METHODS. PRE-TRAINING REFERS

TO TRAINING THE ENHANCER FIRST, AND THEN JOINT TRAINING. THE
HIGHEST AP VALUE IS MARKED IN BOLD.

Training method Pretrained epoches AP

Joint train without pre-training — 82.4

Joint train with pre-training

100 81.9
300 81.4
500 80.5

1000 77.5

TABLE XII
GENERALIZATION OF DRENET ON THE DOWNSAMPLED VERSION OF

EXISTING HR DATASET.

Method Enhancer Efficient Detector AP

YOLOv5s - - 51.5

DRENet

+ - 52.8

- + 50.9

+ + 51.6

fixed balanced factor, as the factor α gets larger from 0.1 to
10, AP also increases, which again reveals the effectiveness
of the enhancer.

Training Strategy. TABLE XI shows the results of different
training methods. Our goal is to seek better performance on
ship detection, and the enhancer is just an auxiliary branch.
So we try to pre-train the enhancer and then perform joint
training. However, the experimental result shows that the
performance of pre-training is worse than that of direct joint
training, and as the pre-training epoch increases, AP gradually
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declines. We believe that this phenomenon is mainly because
the two branches complement each other. Since the enhancer
can be regarded as a target location plus target segmentation,
it is more difficult to directly train the enhancer, and network
learning may appear to be deteriorated and divergent. While
the detector can provide targets’ position guidance for the
enhancer, so that it can have a better learning effect. Therefore,
the pre-training of the enhancer will result in poor detection
accuracy, and will intensify with the number of epochs.

5) Generalization on Existing High-Resolution Dataset:
We also analyze the generalization of our method on the
existing HR dataset, that is, implementing experiments on the
downsampled version of HR images.

Here we choose the HRRSD dataset to implement the
experiments. Considering the size and resolution (0.15-1.2m)
of the images in HRRSD, we first reshape all the images
into 64×64, and then do ablation experiments to reveal the
performance of DRENet.

From the results in TABLE XII, it appears that when only
our efficient detector applied, the AP value drops a bit (-0.6),
and we argue it is mainly caused by the size of the input.
As the image size is only 64×64, after being processed by
the network’s backbone, the features consumed by CRMA
will be at an even smaller size, thus the large-receptive-field
characteristic of CRMA cannot gain more advantages than
the convolution operations in YOLOv5s’s CSP-like structure.
Therefore, as we remove PAN structure in our efficient detec-
tor, the performance then deteriorates, which is also verified
in TABLE IX.

While, we can also observe from the results that our en-
hancer continues displaying a big boost. When we only apply
the enhancer, AP increases +1.3 points, and when we combine
both the enhancer and detector, our DRENet achieves a near
performance (AP +0.1) compared with baseline YOLOv5s.
These results can further demonstrate the effectiveness of
our enhancer. Considering the computation and complexity
saved in our DRENet (demonstrated in TABLE IV), DRENet
actually achieves good performance even in the downsampled
version of the existing high-resolution dataset.

VI. CONCLUSION

In this paper, we propose a tiny ship detection dataset -
“Levir-Ship”, and an efficient tiny ship detection network -
DRENet towards the real-world tiny ship detection task. Levir-
Ship contains 3876 images from GaoFen-1 and GaoFen-6
satellites with multispectral cameras of 16m spatial resolution.
DRENet performs two parts, including an enhancer to obtain
more distinguishable features in the backbone, and a detector
to carry efficient detection on tiny ships. The enhancer is
inference-free, so it would not introduce extra inference cost
on application. Experiments on Levir-Ship verify that our
proposed DRENet has higher detection accuracy and ensures
real-time detection speed at the same time compared with other
state-of-the-art detection methods.
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