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Contrastive Learning for Fine-grained Ship
Classification in Remote Sensing Images
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Abstract—Fine-grained image classification can be considered
as a discriminative learning process where images of different
subclasses are separated from each other while the same subclass
images are clustered. Most existing methods perform synchronous
discriminative learning in their approaches. Although achieving
promising results in fine-grained visual classification (FGVC)
in natural images, these methods may fail in fine-grained ship
classification (FGSC) problem in remote sensing (RS) images
due to the highly “imbalanced fineness” and “imbalanced ap-
pearances” of ships among subclasses. To tackle the issue, we
propose an asynchronous contrastive learning-based method for
effective FGSC. The proposed method, which we refer to as
“Push-and-Pull Network (P2Net)”, includes a “push-out stage”
and a “pull-in stage”, where the first stage forces all the instances
to be de-correlated and then the second one groups them into
each subclass. A dual-branch network is designed to separate/de-
correlate the images with each other, while an Integration Module
is designed to aggregate the de-correlated images into their
corresponding subclass together with a Proxy-based Module
designed for acceleration. In this way, the correlation between
subclasses can be decoupled, which in turn makes the final
classification much easier. Our method can be trained end-to-
end and requires no additional annotations other than category
information. Extensive experiments are conducted on two large-
scale FGSC datasets (FGSC-23 and FGSCR-42). Our method out-
performs other state-of-the-art approaches. Ablation experiments
also suggest the effectiveness of our design. Our code is available
at https://github.com/WindVChen/Push-and-Pull-Network.

Index Terms—Fine-grained classification, contrastive learning,
ship classification, remote sensing.

I. INTRODUCTION

F INE-GRAINED ship classification (FGSC) task in remote
sensing (RS) images aims at differentiating subclasses of

the main ship category. FGSC has great application perspec-
tives in both civil and military fields. In addition, the recent
development of many high-performance object detection meth-
ods [1]–[3] also provides important research foundations for
the downstream FGSC task. Compared with coarse classifi-
cation tasks that only differentiate higher-level classes (e.g.,
ships, airplanes, cars, etc), the fine-grained classification task
is much more challenging. The cues to distinguish different
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Fig. 1. The challenge of high inter-class similarity and low intra-class
similarity in FGSC task in RS. In the first row, ships of different subclasses
are similar in appearance, while in the second row, ship appearances of the
same subclass are quite different.

subclasses of ships are subtle, while the differences intra-class
are significant due to different imaging conditions and different
ship appearances. Fig. 1 shows an example of low intra-class
similarity and high inter-class similarity in ship classification.

FGSC has attracted increasing attention in RS field [4]–[8].
Existing methods of this topic can be roughly divided into
two groups. One group focuses on hand-crafted features [4],
[5] and to some extent combines with the image features
of convolution neural networks (CNN) [6]. The other group
makes use of the powerful deep learning (DL) method and
takes advantage of the few sample learning [7] and data
augmentation [8] to ease the problem of lacking enough data.
Despite the promising results achieved, attention has been
paid more to learning with few samples, and less to fine-
grained classification itself. Thus previous methods may not
be well adapted to the above-mentioned inter-class and intra-
class problems. In other words, the power of DL has not been
fully utilized due to insufficient data support.
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Fig. 2. The main idea behind our method. (a) The synchronous push-
pull process of previous methods (one-step). (b) The asynchronous push-pull
process of the proposed P2Net (two-step). Different colors denote different
subclasses.

Benefit from two large-scale FGSC datasets [9], [10] pro-
posed in the last year, the limited data problem has been
alleviated to some degree, and a very natural idea is to apply
the latest DL methods [11]–[25] in FGVC to FGSC. In the
FGVC task, each subclass is almost at the same level of
fineness, and corresponds to one specific type of object (e.g.,
black-footed albatross in CUB 200 2011 dataset [26], 2012
BMW M3 coupe in Standford Cars dataset [27]). However,
in the FGSC task in RS, the fineness of subclasses is not
that uniform. For example, the subclasses of aircraft carrier
and destroyer usually attract more attention and are finer than
the subclasses of fishing boat. Moreover, there is also an
imbalance of ship appearances among subclasses due to the
limitations of reality. In subclasses such as aircraft carrier, ship
appearances are just that few worldwide, yet there are many
in fishing boat subclass. These two phenomena in the FGSC
task, which we name “imbalanced fineness” and “imbalanced
appearances”, bring more challenges to the FGSC task.

The fine-grained classification problem is commonly viewed
as a push-and-pull process, i.e., images of one subclass are
encouraged to get closer to their corresponding subclass while
getting far away from other subclasses. Some FGVC methods
[23], [25] design additional loss terms for the push and pull
purposes respectively, while the others [19]–[22] only employ
the final classification loss function (often CrossEntropyLoss).
However, most of these methods share the same characteristic
that the loss terms are attached all together at the output
end of the classifier. In other words, they perform the push
and pull processes synchronously, which we refer to as one-
step. However, due to the aforementioned two imbalanced
problems, the synchronous discriminative learning is hard to
sufficiently separate the similar images of different subclasses
before aggregating images of the same subclass.

To address the above issues, we propose an asynchronous
contrastive learning-based method for effective FGSC. We
look at the push-and-pull process from a novel perspective,
and the two processes in our method are conducted asyn-
chronously. Given a set of training images, our method first
takes each image as an individual one and forces them to be

pushed far away and de-correlated from each other. Then, the
pull process is applied to enforce the separated images back to
their corresponding subclass clusters. We refer to our method
as “Push-and-Pull Network (P2Net)”. Fig. 2 shows a basic
idea of our method. In the push-out stage, each input image is
regarded as an individual class and to be dispersed from each
other as much as possible. We leverage the recent advances
in contrastive learning (CL) and design a dual-branch network
for the data separation process. Then in the pull-in stage, an
Integration Module is proposed to cluster the dispersed images.
We also propose a Proxy-based Module to accelerate the image
clustering process. Previous FGVC methods usually set single
[28], [29] explicit or implicit proxy [30], and force the images
to get close to their corresponding proxies. Different from all
these approaches and by taking into account the challenges
of FGSC, we set multiple explicit proxies to represent each
subclass.

Although we perform the push-and-pull process asyn-
chronously, our network can be trained in an end-to-end
fashion and only require image-level annotation for training
(weakly-supervised). We conduct experiments on two large-
scale FGSC datasets: FGSC-23 and FGSCR-42. Ablation
studies and visualization are further conducted to illustrate the
idea of our method. The results demonstrate that the proposed
method achieves higher accuracy compared with other state-
of-the-art methods.

Our contributions can be summarized as follows:

1) We introduce a new method for the RS image FGSC
task. The proposed method takes an asynchronous push-
and-pull strategy to tackle the challenges in the FGSC
task, whereas previous methods follow a synchronous
discriminative learning process and thus suffer from the
“imbalanced fineness” and “imbalanced appearances” of
RS objects.

2) We take advantage of the recent advances in CL and
propose a novel push-and-pull network (P2Net). The
network consists of a Push-out part and a Pull-in part,
which are carefully designed to make the classification
both efficient and effective.

3) The proposed P2Net can be trained end-to-end and re-
quires only image-level annotations. The experimental
results on the FGSC-23 and FGSCR-42 datasets validate
the superiority of the P2Net on the FGSC task compared
with the existing methods.

The rest of the paper are organized as follows. The related
work is described in Section II. The details of our network
are given in Section III. Experimental results and visualization
are conducted in Section IV, and the conclusions are drawn
in Section V.

II. RELATED WORK

In this part, we briefly review the recent progress in RS im-
age FGSC. We then review the natural image FGVC methods
studied in the field of computer vision. We also review the
recent advances in CL, which are related to our network.
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A. FGSC in Optical RS Images

Fine-grained RS object classification has raised increasing
attention in recent years [31]–[36]. Sumbul et al. [31] focused
on fine-grained street tree classification and proposed a zero-
shot learning method. They then explored to use of multi-
source data for the classification task [33]. Ni et al. [32] in-
troduced the adaptive density discrimination into fine-grained
terrain classification. Nie et al. [36] proposed a classifier-
adaptive earth mover’s distance for classification of few-
sample fine-grained aircraft. These methods all achieve some
good results. However, the study on the FGSC task is still in
its infancy.

Previous methods of RS image FGSC are mainly based on
hand-crafted features and data utilization due to the lack of
large-scale FGSC datasets. Shi et al. [5] combined the Fourier
transform with CNN to classify the ships, and they then fused
more hand-craft features in their later work [6]. Qi et al. [8]
studied data augmentation in FGSC. Shi et al. [7] proposed to
utilize few-shot learning to solve FGSC problems.

Recently, two large-scale FGSC datasets (FGSC-23 [9] and
FGSCR-42 [10]) are proposed. With the datasets, Zhang et
al. [9] proposed a DL-based method using extra attribute
annotations. Zhao et al. [37] focused on the low-resolution
FGSC task and proposed a feature balance strategy with the
use of both super-resolution and low-resolution images. Chen
et al. [38] introduced a hierarchy and exclusion graph to
model the label hierarchy. Although achieving some good
results, these methods depend on extra annotations and inputs,
thus limiting the possibility of their large-scale application.
In our method, we focus on weakly-supervised approaches
where we assume only image-level annotations are available.
Also, compared with some recent methods that focused on few
samples [39] and the interpretability of the network [40], here
we aim to address the two issues of “imbalanced fineness” and
“imbalanced appearances”, which may bring the FGSC task
challenges.

B. FGVC in Natural Images

FGVC also has drawn increasing attention in the computer
vision field recently. Methods in the FGVC task can be divided
into three categories. The first category mainly focuses on
the representation learning ability of the network. Lin et al.
proposed B-CNN [11] that exploited the discriminative feature
by a bilinear pooling on two local parts of an input image. Yu
et al. [13] proposed a hierarchical bilinear pooling network
based on B-CNN. Although these methods can improve the
classification accuracy, they usually have complex structures
and the computational cost is intensive.

Methods of the second category focus on fine-grained
annotations among subclasses and attract the most attention
currently. The early methods in this direction usually utilize
auxiliary annotations as supervisions. Some research has been
done on the utilization of object’s key part [15] and image’s
key point [41] annotations. The latest research in this category
focuses on how to exploit image-level weakly-supervised
information for fine-grained classification. Zheng et al. [19]
designed a trilinear attention sampling method to detect object

key parts. Ding et al. [22] proposed to use pyramid structure
to determine key regions. The study found that using the key
part location information can effectively improve the accuracy
of fine-grained classification. However, many approaches [20],
[22], [42] in this direction often set pre-defined bounding
boxes like anchors in their pre-processing stage which requires
prior knowledge and is not flexible.

The last category of methods is based on metric learning, in
which similar research problems have been explored in face
identification tasks [43], [44]. Sun et al. [23] proposed con-
strained pair-based loss where different features of the input
image pairs are pushed and pulled. Xu et al. [25] exploited
the discriminative feature by using both the pair-based loss
and proxy-based loss. The metric learning methods usually
bring no extra computational cost, as it mainly focuses on the
design of loss functions. Our P2Net can also be classified as
a metric learning method. However, different from the above
methods that perform push and pull processes synchronously,
we propose a two-step way that can achieve better results in
the FGSC task.

C. Contrastive Learning
Contrastive learning is a recently emerged research topic

in unsupervised/self-supervised representation learning [45]–
[47]. In CL, the input batched images are first transformed
into two views by using different augmentation strategies. The
views of the same image are considered the positive samples,
while the views of different images are considered negative
samples. After that, the augmented images are encoded by
an encoder network and then mapped to a feature space by
a designed projection network, where a carefully designed
contrastive loss is applied. The contrastive loss aims to repulse
negative samples while attracting the positive ones. Thus the
features of positive samples can be clustered while that of
the negative ones can be dispersed. Bachman et al. [48] argue
that the CL can maximize the mutual information among latent
representations of different unlabeled images, which makes CL
successful as an unsupervised learning way.

Recently, many effective CL methods [49]–[51] are pro-
posed. He et al. [49] propose MoCo (Momentum Contrast)
method to reduce the memory cost while fusing more in-
formation by designing a dynamic queue. Chen et al. [51]
propose a much simpler siamese network by introducing a
Stop Gradient strategy. Using these CL methods, the need
for expensive image labeling can be alleviated, and a large
number of unlabeled images can be leveraged, enabling better
initialization/pretraining for neural networks. In our P2Net, we
also design a CL-like structure in the Push-out part, consist-
ing of a custom-designed contrastive loss and a projection
structure. However, the goal of the Push-out part is quite
different from the common CL methods. The current CL
methods aim to address the insufficiency of labeled images
and explore a better-pretrained model, while we introduce the
CL idea into our method to tackle the “imbalanced fineness”
and “imbalanced appearances” issues by separating the input
images at an image level. What else, most CL methods are
implemented in a two-step way (pretrain first, then finetune)
in applications, whereas the P2Net in an end-to-end way.



4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, AUGUST XXXX

Input 

(image batch)

Transformed 

image batch (2)

Transformed 

image batch (1)

T1

T2

Backbone

A
v
e

ra
g

e
 P

o
o
lin

g

M
a

x
 P

o
o

lin
g

Push 

Stacks
…

X1

X2

Xflip
2

Sep

Push-out part

Integration 

Module

Category #1 

proxies

Image 1

Image 3

Image 2

Category #2 

proxies

Category #3 

proxies

Agg

Agg

Sep

Linear + Softmax

Output

Push-out Head

Pull-in part

Proxy-based Module

Fig. 3. The detailed structure of P2Net. The Agg and Sep are the abbreviations of Aggregation and Separation operations. In the Push-out part, different
colors denote different input images at an image level, while in the Pull-in part, colors denote different subclasses at a class level.

III. METHODOLOGY

In this section, we introduce the details of the proposed
P2Net, including the pipeline, network architecture, and loss
functions.

A. Overview

In the proposed P2Net, we have two processing stages: a
push-out stage and a pull-in stage. Detailed structures of the
P2Net are shown in Fig. 3. In the training phase, the P2Net
takes in two randomly augmented views T 1 and T 2 from input
image batch I and extracts the corresponding features through
its network backbone. Then the features are processed by the
push-out part first and then by the pull-in part. In the push-
out part, input images are regarded as individual classes of
their own. Views of the same image are forced to get close
while views of different images are forced to be far away
from each other. The Push-out part will enforce the images to
be projected to a feature space where the adhesion/correlation
between images is reduced. Then, in the Pull-in part, each
image again belongs to its corresponding subclass and is
forced to be close to a set of proxies which represent each
subclass. In the inference phase, the Push-out part and the
Pull-in part can be mostly removed, thus the network has
almost no additional computational cost. Note that our method
is flexible in different backbone structures such as ResNet [52],
DenseNet [53], and so on. In this paper, we take ResNet50 as
the default backbone of our architecture. The details of the
two parts are given in the following.

B. Details of Push-out Part

As we mentioned in Section I, the “imbalanced fineness”
and “imbalanced appearances” intensify the difficulty of the
FGSC task. Subclasses in RS objects are usually not at the
same level of fineness and the problem of the intra-class
dissimilarity and inter-class similarity is further exacerbated,
which leads to the ineffectiveness of the existing one-step
methods. Our Push-out part is to alleviate the above chal-
lenges by de-correlating the images. The design of the Push-
out part is inspired by recent CL methods [49]–[51] which
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Fig. 4. The details of the Push Stack and Integration Module. (a) Push Stack.
(b) Integration Module. Note that the structures displayed here are based on
ResNet50.

have achieved amazing representation results by exploring the
relation between unlabeled images.

The Push-out part takes the features extracted by the back-
bone as input. These features are first processed by a global
average/max pooling operation in the spatial dimension and
then projected to a new feature space by several designed
Push Stacks. We refer to the representations of input images
after Push Stack as Xi = f(T i), i ∈ {1, 2}. We design
our Push Stack as a set of fully connected layers with batch
normalization and relu activations. The detailed architectures
are displayed in Fig. 4. The features X1, X2 will be input
to the Push-out head where the views of different images are
separated.

To clearly elaborate the operation of the Push-out head, we
provide a pseudo code in Algorithm 1 to illustrate the process.
For the features X1, X2 ∈ RB×C , B, C are the batch size
and channel number respectively, we unfold them into feature
vectors: X{1,2} = {x{1,2}

1 , x
{1,2}
2 , x

{1,2}
3 , ..., x

{1,2}
B }, x ∈ RC .

The feature vectors at the same location in X1 and X2

correspond to different augmented views of the same input
image, and the different locations correspond to different input
images. We flip X1 or X2 at their sample dimension, in which
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Algorithm 1: The process of the Push-out head

Input: X{1,2} = {x{1,2}
1,2,...,B}, features of different

augmented views after Push Stack
Input: X{1,2}

flip = {x{1,2}
B,B−1,...,1}, the flipped version of

feature X
Define: Aggregate(·), a loss function to make the

augmented views of the same image close
(See in Section III-D1)

Define: Separate(·), a loss function to make the
augmented views of different images separated
(See in Section III-D1)

1 // m denotes different input images
2 for m in 1 : B do
3 // The augmented views of the same image are

forced to aggregate
4 Aggregate(x1

m, x2
m)

5 // The augmented views of different images are
forced to separate

6 Separate(x1
m, x2

B−m+1)
7 end

way we can get X
{1,2}
flip = {x{1,2}

B , x
{1,2}
B−1 , x

{1,2}
B−2 , ..., x

{1,2}
1 }.

When the batch size is even, features at the same location
in the flipped one and the other correspond to different input
images. Therefore, we force the flipped one and the other to
be far away. At the same time, we force features from the
same image in X1 and X2 to get close. To achieve the effect
of the aggregation and separation in the Push-out head, we
design two loss functions, the details of which can be found
in Section III-D1.

Compared with the existing CL methods [49]–[51], [54],
the Push-out part explores a more efficient contrastive loss
and a more suitable projection structure for the FGSC task.
The final Push-out loss led by our flipped operation (See
details in Section III-D) and the Push Stack designed can
save more memory space, and reduce more calculations while
leading to higher classification accuracy, which can be verified
in Section IV-E. Also should be noticed that the standing
point for the designed Push-out part is different from the
current CL methods, where the Push-out part is for tackling the
“imbalanced fineness” and “imbalanced appearances” issues
we discussed above, while the current CL methods are usually
for addressing the insufficiency of labeled data and model pre-
training.

C. Details of Pull-in Part

After the Push-out ope, the input images are de-correlated
in their feature space. The Pull-in part includes an Integration
Module and a Proxy-based Module. The Integration module’s
structure is displayed in Fig. 4. The first 1 × 1 convolution
layer is used for reducing the number of features from the
channel dimension. The second convolution layer is used for
information fusion from a spatial dimension with a 3 × 3
kernel. Through the Integration module, the network can

better process the potential relation of the previous separated
features, thus speeding up the pull process.

To further enforce the separated images to be pulled back
into their corresponding subclasses, the Proxy-based Module is
designed after the Integration Module. We use Zi = g(T i) to
denote the features of different augmented views after the Inte-
gration module. Different from the description in Section III-B,
we unfold Z{1,2} in a new form: Z{1,2} = {zim, ym}B , i ∈
{1, 2},m ∈ {1 : B}, ym ∈ {1 : K}, where B and K denote
batch size and number of subclasses respectively. Here, we
no longer look at each input image at the image level but at
a class level, as we assign the subclass label attribute ym to
each zim vector. That means the feature vectors at different
locations (denoted by the subscript m) can share the same
subclass attribute (denoted by ym). Then, we construct a set
of learnable proxy vectors whose number is positively related
to the subclass number and size identical to zim. We force each
feature vector to get close to the proxies of its corresponding
subclass. As we mentioned in Section I, the subclasses in
the FGSC task are not at the same level of fineness as that
in the FGVC task, and also consist of different numbers
of appearances. Therefore, the previous proxy-based methods
[28], [29] that just select one proxy vector to represent each
subclass are not suitable for FGSC. Different from the previous
methods, for each subclass, we select multiple proxies. Sup-
pose P = {pk|k ∈ {1, 2, ..., NK}}, pk ∈ RC represents the
proxy vectors, where C,N,K denote the channel number, the
number of each subclass’s proxies and the subclasses number
respectively.

We force zim to be close to {pk|k ∈ {N(ym − 1) + 1 :
Nym}}, while far away from {pk|k /∈ {N(ym − 1) + 1 :
Nym}}. What else, to prevent proxies of the same subclass
to be identical, we also force proxies to get away from each
other. Note that these proxies are explicitly set and will not
add additional cost like the implicit way [30]. The detailed
implementation of the aggregation and separation in the Proxy-
based Module can be found in Section III-D2. The pseudo
code of our Proxy-based Module is displayed in Algorithm 2.

D. Objective Function
The objective functions for training can be divided into

three parts: (1) the loss of the Push-out part, (2) the loss of
the Pull-in part, and (3) the loss of the final classifier. (For
simplicity, some variables such as B, N , K in the following,
if not specified, correspond to the same meaning mentioned
before in Section III.)

1) Push-out Loss: As mentioned above, in the Push-out
part, each input image is enforced to be separated from each
other, and aggregated with augmented views of the same
origin. Here we use cosine similarity to measure the degree
of separation and aggregation as follows:

Sep(a, b) = D(a, b)

Agg(a, b) = −D(a, b),
(1)

where D(a, b) = a · b/(∥a∥2 · ∥b∥2) denotes the cosine
similarity between the two input representation vectors a, b.

For the representation xi
m of each image in each view after

Push Stack, we force it to be far away from xj
n, where n =
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Algorithm 2: The process of the Proxy-based Module
in the Pull-in part

Input: Z{1,2} = {zim, ym}B , features of different
augmented views after Integration Module

Input: P = {pk}NK , proxies of subclasses
Define: Aggregate(·), a loss function to make the

inputs closed (See in Section III-D2)
Define: Separate(·), a loss function to make the

inputs separated (See in Section III-D2)
1 /*Pull the input features into corresponding subclass*/
2 // i denotes different augmented views
3 for i in {1, 2} do
4 // m denotes different input images
5 for m in 1 : B do
6 // k denotes different proxies
7 for k in 1 : NK do
8 if k ∈ {N(ym − 1) + 1 : Nym} then
9 // Force z closed with the proxies of the

same subclass
10 Aggregate(zim, pk)
11 else
12 // Force z away from the proxies of the

different subclasses
13 Separate(zim, pk)
14 end
15 end
16 end
17 /*Force the proxies not be identical*/
18 for k in 1 : NK do
19 for k′ in 1 : NK do
20 if k′ ̸= k then
21 Separate(pk, pk′)
22 else
23 continue
24 end
25 end
26 end
27 end

B + 1 −m and j ̸= i. The representation xj
n corresponds to

the image at the same position after flipping the batch. The
separation loss for one batch can be formulated as:

Lsep =

B∑
m=1

Sep(x1
m, sg(x2

n)) + Sep(x1
n, sg(x

2
m)), (2)

where sg(·) denotes a stop-gradient operation and a symmet-
rical structure is adopted, which are proven to be effective in
preventing model collapse [51].

To constrain similarity between the two views of the same
image, we define the aggregation loss as:

Lagg =

B∑
m=1

Agg(x1
m, sg(x2

m)) + Agg(x2
m, sg(x1

m)), (3)

Our push-out loss is the average between the separation loss
and the aggregation loss: LPush = 1

2B (Lsep + Lagg). Note

that the Push-out part is a dual-branch network (one branch
starting with average pooling and one branch starting with max
pooling), we calculate the push-out loss for each branch and
then sum them up.

2) Pull-in Loss: In the Pull-in part, the previously separated
images are again pulled into corresponding subclass proxies.
Here, the objective function includes three parts: pull the
images with proxies that represent the same subclass, push
the images out of proxies that represent different subclasses,
and separate the proxies from each other.

We use the class label ym of each sample to guide its
representation zim close to proxy vectors belonging to the same
category ym, while far away from that belonging to different
categories.

The aggregation and separation loss between the image
feature and the proxies are defined as:

Lap =
1

2BN

2∑
i=1

B∑
m=1

Nym∑
k=N(ym−1)+1

Agg(zim, pk) (4)

Lsp =
1

2BN(K − 1)

2∑
i=1

B∑
m=1

NK∑
k=1,k/∈S

Sep(zim, pk) (5)

where S denotes the set {N(ym − 1) + 1 : Nym}.
As each category is represented by multiple proxies, to

prevent these proxies to be identical, we further define a loss
to separate the proxies as:

Lp =
1

2NK(NK − 1)

NK∑
k=1

NK∑
k′=1,k′ ̸=k

Sep(pk, pk′) (6)

Our overall pull-in loss is LPull = Lap + Lsp + Lp.
3) Classifier Loss: We choose the standard cross-entropy

loss (abbreviated as CE) as the classification loss:

LCls =
1

2B

2∑
i=1

B∑
m=1

CE(ŷim, ym) (7)

where ŷ is the final network prediction, y is the label of the
input.

By considering all the above losses, the final loss function
for training is written as:

L = αLPush + βLPull + γLCls (8)

where α, β, and γ are the balancing weights of the three loss
terms and we set them all to 1 in our work.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the FGSC datasets we adopt are first intro-
duced. The second part gives the implementation details of
our method. We present the evaluation protocol in the third
part, and then our experimental results are given.

A. Datasets

We experiment on the datasets FGSC-23 [9] and FGSCR-
42 [10]. In the following, we give a brief summary of these
two datasets.



CHEN et al.: CONTRASTIVE LEARNING FOR FINE-GRAINED SHIP CLASSIFICATION IN REMOTE SENSING IMAGES 7

(a) Instances per category for the FGSC-23 dataset

(b) Instances per category for the FGSCR-42 dataset

Fig. 5. Number of annotated instances per category for (a) FGSC-23 and (b) FGSCR-42. The number in the front of the horizontal axis label represents the
index of the category.

1) FGSC-23: has about 4,081 images from 23 subcate-
gories. The images are mainly from Google Earth and GF-1
Satellite. Among the subcategories, there are aircraft carrier,
destroyer, oil tanker, fishing boat, and so on.

2) FGSCR-42: has about 7,776 images from 42 subcate-
gories. The images are mainly collected from Google Earth
and the previous datasets (e.g., DOTA [55]). In FGSCR-42,
the military ships are further divided, e.g., the aircraft carrier
is divided into Nimitz-class, KittyHawk-class, and so on.

To better illustrate the existing “imbalanced fineness” and
“imbalanced appearances” issues discussed in Section I, we
present more details in Fig. 5. We can see that the military
ships are usually divided into finer subclasses compared with
the civilian ships, which corresponds to the “imbalanced
fineness”. What else, considering that some categories like
aircraft carriers have so few ships around the world, it leads
to the problem of “imbalanced appearances”.

In our experiments, the datasets are divided into a training

set, valid set, and test set in a 3:1:1 ratio. Since the occurrence
frequency is not equal between military and civil subclasses,
both datasets have an imbalanced sample problem (FGSC-23 is
subtle while FGSCR-42 more serious). Therefore, we perform
augmentation to the fewer-sample subclasses in the training
set. The augmented operations include random crop and scale,
random gaussian blur, random rotation, and random horizontal
and vertical flip.

B. Implementation Details

We implement the backbone of our network based on
ResNet50 pretrained on ImageNet. The Push-out part is de-
signed as a dual-branch network, where the two branches start
with average and max pooling respectively, and are followed
by the same Push Stack structure. Through the branch with
average pooling, the input images can be separated at a global
level, while at a local level through the max-pooling branch.
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TABLE I
COMPARISON RESULTS OF DIFFERENT APPROACHES ON FGSC-23 AND FGSCR-42 DATASETS. ALL THE METHODS ARE IMPLEMENTED BASED ON

RESNET50. THE BEST RESULTS ARE MARKED IN BOLD, AND THE SECOND-BEST ONES ARE UNDERLINED.

Method Params (M) FLOPs (G)
AA

FGSC-23 FGSCR-42

ResNet50 23.6 4.12 86.92 91.62

HBPNet (ECCV 18 [13]) 74.9 6.59 87.72 91.32
DCL (CVPR 19 [56]) 23.8 4.12 85.35 90.24

TASN (CVPR 19 [19]) 34.8 18.7 87.03 91.85
GFNet (NIPS 20 [21]) 56.5 4.59 87.13 92.03

API-Net (AAAI 20 [24]) 23.6 4.12 87.78 91.47
ProtoTree (CVPR 21 [57]) 108.8 20.7 84.17 89.92

P2Net (ours) 26.9 4.23 88.99 93.21

TABLE II
THE COMPARISONS WITH DIFFERENT PROJECTION STRUCTURES ON THE

FGSC-23 DATASET. THE BEST ONES ARE MARKED IN BOLD.

Projection Structure AA

SimCLR [50] projection 87.44
SimSiam [51] projection 87.01

Push Stack (ours) 88.99

TABLE III
THE COMPARISON RESULTS AMONG CONTRASTIVE LOSS OF SIMCLR,

SIMSIAM, AND OUR P2NET ON THE FGSC-23 DATASET. THE BEST ONES
ARE MARKED IN BOLD.

Push-out Loss AA

Loss in SimCLR [50] 88.21
ours (remove stopgrad) 88.63

Loss in SimSiam [51] 87.64
ours 88.99

We design the Push Stack as a bottleneck-like structure that
can fuse much information while economical.

The category label of the image is the only annotation
used for training. In the training phase, the network takes
two views (T1, T2) transformed from the input images. The
transformations are almost the same as the augmentations in
the preprocess, except for replacing the operation of random
crop and scale with a customized resize operation to ensure
224×224×3 input size. We argue that the standard resize
operation that directly stretches the image to fulfill a specific
size can lose a lot of information when the input image has a
large aspect ratio, which is very common to the ship images in
RS. Considering that, our resize operation stretches the image
while keeping its original ratio, and then pads the rest space
with all-zero pixel values.

We implement our method with Pytorch and train all the
models on a single RTX 3090 GPU card. We adopt Stochastic
Gradient Descent (SGD) optimizer for training with momen-
tum of 0.9 and weight decay of 1e-4. The initial learning
rate (lr) of the backbone is set to 0.01 and decays in a

Cosine annealing strategy, while the lr of other network parts
is positively related to that of the backbone (See details in
Section IV-H). We also run 10 epochs warm-up to stabilize
the training phase. All the models are trained for 100 epochs
with a minibatch size of 64. The number of Push Stack
and proxies in each subclass are set to 2 and 3 respectively
if not specified, and the commonly used Xavier Uniform
[58] scheme is adopted to initialize the proxies. Note that
in the inference phase, Push-out and Pull-in parts are mostly
removed, only the Integration Module being kept.

C. Evaluation Protocol

Considering the sample imbalance in the FGSC datasets,
different from the existing methods that choose overall ac-
curacy (OA) to evaluate the network performance, we adopt
average accuracy (AA) which is more reasonable. The AA
metric is defined as:

AA =
1

C

C∑
c=1

Acc(c) (9)

where C denotes the number of categories, and Acc(·) denotes
the accuracy of each category.

We also make use of the accuracy rate (AR) and misclas-
sification rate (MR) of each category to display the network’s
detailed performance, and confusion matrix (CM) for more
intuitive visual perception (For brevity, we embed AR and
MR into CM for display.). Floating Point Operations (FLOPs)
and Model Parameters (Params) are also adopted to illustrate
the computational complexity of the network in the inference
phase.

D. Comparisons with State-of-the-Art Methods

Table I shows the performance evaluation of different ap-
proaches to FGSC-23 and FGSCR-42 datasets. Since there are
still few effective weakly supervised FGSC in RS, we here
choose some state-of-the-art methods [13], [19], [21], [24],
[56], [57] in the FGVC for a fair comparison. Considering
different fineness degrees of subclasses, we set the number of
proxies to 3 in the FGSC-23 dataset and 2 in the FGSCR-42.
From the results, we can see that our method achieves the best
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 6. Confusion matrixes of different methods on the FGSC-23 and FGSCR-42 datasets. The horizontal and vertical coordinates are the category index
(See details in Fig. 5). (a)-(h) are respectively the results of ResNet50, HBPNet, DCL, TASN, GFNet, API-Net, ProtoTree, and our P2Net on the FGSC-23
dataset. While (i)-(p) are the results on the FGSCR-42 dataset. For brevity, we filter out the values of zero in CM.

AA on both FGSC-23 and FGSCR-42 datasets (2.07% and
1.59% higher than baseline ResNet50 respectively). Moreover,
our method has almost the same computation as the baseline,
except for the limited amount of computation introduced by
the Integration Module, and has far less computation than the
methods like GFNet. To further verify that our AA improve-
ment is not from the additional cost, we conduct ablation

experiments in Section IV-F, where we can see that there
will be no accuracy gain if we only have Integration Module
applied.

We further display visually the CM results in Fig. 6, which
detail the performance of different methods on each category
of the FGSC-23 and FGSCR-42 dataset. The values on the
CM’s diagonal are the AR for each subclass, while the values
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TABLE IV
THE ABLATION EXPERIMENTS OF THE DIFFERENT PARTS OF P2NET ON THE FGSC-23 DATASET. THE COARSE ABLATION FOCUSES ON THE PUSH-OUT

AND PULL-IN PARTS, WHILE THE FINE ABLATION FOCUSES ON THE MODULES IN EACH PART.

Ablation
Push-out Part Pull-in Part

AA
Average Pooling Branch Max Pooling Branch Integration Module Proxy-based Module

ResNet50 - - - - 86.92

Coarse Ablation
+ + - - 86.35
- - + + 88.07
+ + + + 88.99

Fine Ablation

Push

+ - - - 87.38
- + - - 86.82
+ + - - 86.35
- + + + 88.23
+ - + + 88.78
+ + + + 88.99

Pull

- - - + 87.95
- - + - 86.98
- - + + 88.07
+ + - + 87.32
+ + + - 88.5
+ + + + 88.99

of the other regions are the MR. Compared with the other
methods, it can be seen that for many of the ship subclasses,
the P2Net achieves the best AR, while for the others, the P2Net
also achieves a relatively good result. In a more intuitive way,
we can observe in both datasets (FGSCR-42 is more obvious)
that the CM of P2Net has fewer and darker valued regions
off the diagonal, which corresponds to a smaller MR to other
classes and again verifies our method’s superiority over the
others.

E. Comparisons with Contrastive Learning Methods

We also make comparisons with other CL methods to verify
the effectiveness of the proposed projection structure and
contrastive loss of our Push-out part. All experiments below
are conducted on the FGSC-23 dataset [9] if not specified.

Effectiveness of Projection Structure. Previous CL meth-
ods like SimCLR [50] and SimSiam [51] do not pay specific
attention to the projection structure, leading the structure to be
somewhat too complex (SimSiam) or too simple (SimCLR).
We thus propose the Push Stack to search for an optimal
projection structure. Table II shows the performance of our
Push Stack compared with the structure used in SimCLR [50]
and SimSiam [51]. Compared with previous projection struc-
tures, our Push Stack achieves a much better result (1.55%
and 1.98% higher than SimCLR and SimSiam respectively).

Effectiveness of Contrastive Loss. We also mentioned in
Section III-B that our contrastive loss, i.e., Push-out loss with
the flipped operation can achieve better results than previous
CL methods. In Table III, we show the results compared
with SimCLR [50] and SimSiam [51]. For a fair compari-
son, when compared with SimCLR, we remove the stopgrad
operation borrowed from SimSiam. The results (0.42% better
than SimCLR and 1.35% than SimSiam in AA) suggest the

effectiveness of our Push-out loss and our flipped operation.
We argue that the decay of SimSiam is because it only takes
into account the aggregation of different augmented views of
the same origin, but ignores the separation, while the decay
of SimCLR is more probably caused by too much separation,
as it not only separates the inter-view images but also the
intra-view ones.

F. Ablation Studies

In this subsection, we conduct ablation studies to evaluate
the contributions of each part in the proposed P2Net.

We investigate the ablation of different parts in two ways:
coarse and fine. The coarse ablation refers to the experiments
where we focus on the effect of the Push-out part and the
Pull-in part, while in the fine ablation, we further explore each
component in the above two parts. As shown in Table IV, the
results are divided into four parts. The first is the baseline
ResNet50, the second is the coarse ablation, and the last two
are the fine ablation of the Push-out and the Pull-in part. The
results can be summarized as follows:

• In the coarse ablation experiment, we can see when only
applying the Push-out part to the backbone, AA has a
0.57% decay, which is mainly because just the final linear
layer has not enough capacity to pull the separated images
back. When the Pull-in part is also applied, a noticeable
AA increase (2.64%) can be observed. This again verifies
the effectiveness of our idea in P2Net, that is, the fine-
grained classification task will be much easier if we do
the push and pull asynchronously.

• In the fine ablation results of the Push-out part, the idea of
the global and local level push branch talked in Section
IV-B suggests effectiveness. When adding the Average
Pooling Branch (APB) on the Pull-in part, there is a
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TABLE V
THE EFFECTS OF DIFFERENT NUMBERS OF PUSH STACK ON THE FGSC-23

DATASET. THE BEST ONE IS MARKED IN BOLD.

Push Stack Number AA

1 88.18
2 88.99
3 87.60

TABLE VI
THE EFFECTS OF DIFFERENT NUMBERS OF PROXIES IN EACH SUBCLASS

ON THE FGSC-23 DATASET. THE BEST ONES ARE MARKED IN BOLD.

proxies of Each Subclass AA

1 87.77
2 88.04
3 88.99
4 88.99
5 88.67

noticeable 0.71% increase in AA, and so is the Max
Pooling Branch (MPB), though not that obvious. We may
also note that when only APB is applied, there is an
increase (0.46%) in AA, yet a little drop when MPB is
applied and a big drop when both two applied. The reason
behind this phenomenon may come from the balance and
imbalance between the power of push and pull. The push
power from APB can match with the pull power from
the last linear layer, thus it can get a good result. As the
MPB performs push power at a local level with its max-
pooling operation, this local push power will diminish
after the average pooling layer behind, thus it has little
impact on the final result. However, when we accumulate
the push power from APB and MPB, the power actually
overwhelms that from the last linear layer, leading to an
imbalance and an obvious deterioration in AA. That is
also the reason why we design the Pull-in part to keep a
balance.

• The fine ablation results of the Pull-in part further illus-
trate the essence of our P2Net. As we add the dual-branch
Push-out part, we can see a decrease in AA. Then when
we again add the Integration Module and Proxy-based
Module of the Pull-in part in turn, there is a gradual
increase in AA. The effectiveness of our Integration
Module and Proxy-based Module is thus verified in this
part. The results also show that the accuracy has just little
improvement (0.06%) when only the Integration Module
applied. This further verifies that the accuracy increase
in the inference phase is not from the additional cost.

From the above analyses, the contributions of each part
in the P2Net can be recognized, and the thought behind our
method is further proved effective.

G. Controlled Experiments

Here, we investigate the effect of different settings in the
Push-out part and the Pull-in part.

TABLE VII
THE PERFORMANCE OF P2NET ON DIFFERENT BACKBONES ON THE

FGSC-23 DATASET. THE BEST ONES ARE MARKED IN BOLD.

Backbone Whether with P2Net AA

ResNet50 [52]
w/o 86.92
w 88.99

DenseNet121 [53]
w/o 87.36
w 88.96

Xception [59]
w/o 85.73
w 89.73

Mobilev3 large [60]
w/o 85.86
w 87.34

InceptionV4 [61]
w/o 87.74
w 88.89

TABLE VIII
THE PERFORMANCE OF DIFFERENT TRAINING STRATEGIES ON THE

FGSC-23 DATASET. THE BEST ONE IS MARKED IN BOLD.

Strategy AA

Three inputs: two transformed and one original 85.5
Pretrain, then fine tune 87.5
End-to-end train (ours) 88.99

1) Different Push Stack Number: Table V shows the results
with different numbers of Push Stacks. It can be seen there
are both decays when using only a single Push Stack and
three Push Stacks. We argue the decays are mainly caused by
the imbalance of the push power and the pull power. On one
hand, when using a single Push Stack, the backbone receives
more impact from the Push-out part and the images can be
farther away from each other and not easy to pull back. On
the other hand, when using three Push Stacks, the adhesion
among images can not be sufficiently removed, thus similar
images of different subclasses cannot be divided that easily.
Therefore, we set the number to 2.

2) Different Number of proxies in Each Subclass: As we
argued in Section III-C, the subclasses in FGSC are unequal
to each other, e.g., more types of ships in the civil subclass
while fewer in the military one. Thus the existing proxy-
based methods [28], [29] that choose only one proxy for each
subclass are not that useful in the FGSC task. In our work,
more than one proxy is chosen to represent each subclass. The
results in Table VI prove it effective to represent each subclass
with several proxies. It can be observed that compared with
only one proxy, when we set the number to 3 or 4, there is
1.22% increase in AA. It also should be noticed that proxies
should not be set too many, as it may deviate the network
training from our original purpose of pulling in the separated
images (there is a decay after we set the number to 5).

H. Generalization, Training Strategy and lr Setting Studies

In this subsection, we investigate the generalization of our
P2Net on different backbone structures, the effects of different



12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, AUGUST XXXX

TABLE IX
THE EXPERIMENTAL RESULTS OF DIFFERENT LR SETTINGS ON FGSC-23 DATASET, WHERE DETACH DENOTES THAT LR IN DIFFERENT NETWORK PARTS

IS SPLIT, SCALE DENOTES HOW MANY TIMES THE LR OF OTHER PARTS IS BACKBONE’S. THE BEST ONES ARE MARKED IN BOLD.

lr (Backbone) Whether detach
Scale (n*lr)

AA
Modules other than Proxy-based Proxy-based Module

0.001
False

- - 85.69
0.01 - - 88.17
0.05 - - 85.89

0.01 True

1
10

87.97
5 88.99

10 87.86

5
5 87.5

10 88.99
15 87.84

training strategies and lr settings.
1) Generalization: We explore the generalization perfor-

mance of P2Net on some popular backbone structures, e.g.,
DenseNet [53], Xception [59] and so on. From the results
shown in Table VII, we can see when applied to other
backbones, our P2Net can also achieve a significant AA
increase (4% especially on Xception), which proves a good
generalization ability.

2) Different Training Strategies: Since we combine the idea
of CL, a natural question is what if we first pretrain the Push-
out part and then finetune the whole P2Net. Moreover, we
also care about whether the network can perform better when
it takes three inputs: two augmented views and one original
one (the formal two for Push-out and Pull-in part, the latter for
classifier). With these questions, we conduct the experiments
in Table VIII. First, we can see the pretrained training strategy
fails to work well, we think this is because the Push-out part
and the Pull-in part actually complement each other and guide
each other in joint training to achieve good results. Second, the
three-input strategy also fails (more than 3% decay in AA).
We argue that it is the inconsistency of the inputs targeted
by the loss functions, which may lead to ambiguity during
network optimization, that causes the deterioration.

3) Different Settings of learning rate (lr): As mentioned in
Section IV-B, we train our P2Net with the backbone pretrained
on ImageNet. However, there is no pretraining on other parts of
P2Net except the backbone part. Therefore, it is not suitable to
set an lr shared with the whole network, and the non-pretrained
parts should be trained with a larger lr. Moreover, we argue
the lr of the Proxy-based module be set to a further larger
value, as the network will not be able to complete the Pull-in
work well if the sync update of the proxies is lagging. The
experimental results are displayed in Table IX. As we can see,
when we set the lr of the Proxy-based module and the other
modules to 10 and 5 times of backbone’s, we achieve the best
result.

I. Visualization

To further understand the working mechanism behind our
P2Net, we visualize the feature distribution of the input images

in Fig. 7 using the t-SNE method [62]. From figure (b), we
can see when only the Push-out part is applied, images are
separated successfully from each other. When the classifier
is also applied, the separated images are pulled into the
corresponding subclass, which is shown in figure (c). However,
since the last linear layer does not have enough pull power, the
final aggregation result is not as good as the baseline ResNet50
in figure (a). Then, we design a much powerful Pull-in part.
From figure (d), we can see when the Pull-in part and classifier
are combined, the images of each subclass gather much closer.
After adding the Push-out part, it can be seen from the last
two figures (d) and (e) that the several subclasses, which are
originally concentrated, are now separated. Compared with the
result of the baseline ResNet50 in figure (a), we can see that
subclasses are much farther away from each other, while the
images of the same subclass get much closer.

J. Effect on Challenge of Imbalanced Samples

As our method mainly focuses on the “imbalanced fineness”
and “imbalanced appearances” issues, in the previous experi-
ments, we try to remove the effect of the imbalanced samples
in the FGSC-23 and FGSCR-42 datasets by augmenting the
categories with few samples as mentioned in Section IV-B.

Here, we further explore whether our method can benefit
the issue of imbalanced samples. In Table X, we display the
comparisons of the performance with other methods on the
original FGSC-23 and FGSCR-42 datasets, that is, without
pre-augmentations. From the results, we can see that the P2Net
keeps outperforming other methods when facing imbalanced
datasets. In the experiments on the original FGSC dataset,
all the methods encounter a reduction of accuracy compared
with the results in TABLE IV-D. Compared with the big drop
of other methods, the P2Net has just a bit reduction and
still achieves high accuracy. While on the original FGSCR-
42 dataset, we can observe a general increase of accuracy
except for the ProtoTree method (it may verify the direct
augmentations are not that suitable for alleviating the effect of
the imbalanced samples), and the P2Net has a relatively big
boost (about 1%), still better than the other methods. Detailed
classification results on each category are further displayed
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(a) ResNet50 (b) Only Push-out Part

(c) Only Push-out Part and Classifier (d) Only Pull-in Part and Classifier (e) Final P2Net

Fig. 7. The feature distribution when applied different parts of P2Net on FGSC-23 dataset. Different colors represent different subclasses.

TABLE X
COMPARISON RESULTS OF DIFFERENT APPROACHES ON THE ORIGINAL

FGSC-23 AND FGSCR-42 DATASETS. THE DATASETS ARE NOT
PRE-AUGMENTED. THE BEST RESULTS ARE MARKED IN BOLD.

Method
AA

FGSC-23 FGSCR-42

ResNet50 85.68 91.85

HBPNet (ECCV 18 [13]) 86.09 92.09
DCL (CVPR 19 [56]) 84.31 90.65

TASN (CVPR 19 [19]) 86.11 92.87
GFNet (NIPS 20 [21]) 85.37 92.85

API-Net (AAAI 20 [24]) 85.32 91.92
ProtoTree (CVPR 21 [57]) 80.46 79.14

P2Net (ours) 88.56 94.19

in Fig. 8, where we can observe that the CM of the P2Net
has fewer and darker valued regions off the diagonal, which
corresponds to a smaller MR to other classes and verifies the
effectiveness of our method.

V. CONCLUSION

In this paper, we propose a new method called P2Net for
the FGSC task. We define two challenging phenomena in the
FGSC task, “imbalanced fineness” and “imbalanced appear-
ances”, which may cause many difficulties for current state-of-
the-art methods. Different from existing methods that perform
synchronous discriminative learning, our method introduces
an asynchronous push-and-pull strategy where input images
are first de-correlated with each other and then aggregated

into subclasses. The proposed P2Net leverages the idea of
CL and consists of a Push-out part and a Pull-in part that
perform the above two processes respectively. With the two
parts, our network can decouple the subclasses, and thus
make the classification much easier. All network components
in our method do not require extra annotations and can be
trained in an end-to-end fashion. Extensive experiments on
two public datasets (FGSC-23 and FGSCR-42) demonstrate
the superiority of our method.
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