

LEARN.

ADACORE.COM

Introduction to Ada:

Laboratories
Release 2025-12

Gustavo A. Hoffmann

Dec 27, 2025

CONTENTS:

Imperative language 3
1.1 HelloWorld e e e e e 3
1.2 Greetings . . . o v i e e e e 3
1.3 Positive Or Negative o o e e e 4
1.4 NUMDEIS e e e e e e e e e e e 5
Subprograms 7
2.1 Subtractprocedure e 7
2.2 Subtractfunction e 8
2.3 Equality function e 9
2.4 States e e e e 10
2.5 States #2 . . . e e e e e e 11
2.6 States #3 . . . e e e e e e e 13
2.7 States #4 . . . e e e e e e 14
Modular Programming 17
3.1 Months . . . e e e e e 17
3.2 Operations e e e e e e e e e 18
Strongly typed language 21
4.1 Colors . v v o e e e e e e e e e 21
4.2 INtEgEeIS . . i e e e e e 23
4.3 Temperatures e e e 27
Records 31
5.1 Directions e e e e 31
5.2 Colors . . . o e e e e e e 33
5.3 Inventory e e e 37
Arrays 41
6.1 Constrained Array e e e e 41
6.2 Colors: Lookup-Table e 43
6.3 Unconstrained Array i it i e e e e e e e e 46
6.4 Productinfo e e 49
6.5 String 10 L e e e 52
6.6 Listof Names e e e e e e 54
More About Types 59
7.1 Aggregate Initialization 59
7.2 Versioning e e e e 61
7.3 Simpletodo list e e e 63
7.4 Price list . . . 0 e e e e e e e e e e 65
Privacy 71
8.1 Directions e e 71

8.2 Limited Strings
8.3 Bonus exercise
8.3.1 Colors

8.3.2 ListofNames
8.3.3 PricelList...........

9 Generics
9.1 Display Array
9.2 Average of Array of Float

9.3 Average of Array of Any Type . . .
9.4 Genericlist.

10Exceptions
10.1 Uninitialized Value

10.3 Re-raising Exceptions

11Tasking

11.1 Display Service

11.2 Event Manager

11.3 Generic Protected Queue

12Design by contracts
12.1 Price Range

12.2 Pythagorean Theorem: Predicate
12.3 Pythagorean Theorem: Precondition

12.4 Pythagorean Theorem: Postcondition
12.5 Pythagorean Theorem: Type Invariant
12.6 Primary Color

13 Object-oriented programming

13.1 Simple type extension
13.2 OnlineStore

14 Standard library: Containers

14.1 Simpletodo/ list
14.2 List of unique integers

15Standard library: Dates & Times

15.1 Holocene calendar

15.2 List of events

16Standard library: Strings

16.1 Concatenation.

16.2 List of events

17 Standard library: Numerics

17.1 Decibel Factor

17.2 Root-Mean-Square
17.3 Rotation

18 Solutions
18.1 Imperative Language
18.1.1 Hello World

18.1.2 Greetings

18.2 Subprograms
18.2.1 Subtract Procedure
18.2.2 Subtract Function

10.2 Numerical Exception

18.1.3 Positive Or Negative
18.1.4 Numbers

18.2.3 Equality function 155

18.2.4 States e e 156
18.2.5 States #2 e e e e 157
18.2.6 States #3 e e e e e e 158
18.2.7 States #4 e e e e e e e e 158
18.3 Modular Programming 0 i e e e e e e e 159
18.3.1 Months e e 159
18.3.2 Operations e e 161
18.4 Strongly typed language e 163
18.4.1 Colors e e e 163
18.4.2 Integers o e e e e 164
18.4.3 Temperatures i e e e e e e 167
18.5 RECOrdsS o o e e e e e e e e e e 170
18.5.1 Directions o e e e e e e e e e e e 170
18.5.2 Colors e e e 171
18.5.3 INventory e e e e e e e e 174
18,6 ArTaYS . v v o e e e e e e e e e e e e 176
18.6.1 Constrained Array i i i i e e e e e e e e e e e 176
18.6.2 Colors: Lookup-Table 178
18.6.3 Unconstrained Array o L e e 180
18.6.4 Productinfo e e e 182
18.6.5String 10 e e e e e 185
18.6.6 Listof Names e 186
18.7 More AboUut Types i e e e e 189
18.7.1 Aggregate Initialization oo 189
18.7.2 Versioning o e e e e e 191
18.7.3Simpletodo list e 192
18.7.4 Price list e e 194
18.8 PrivacCy o o e e e e 196
18.8.1 Directions e e e e e e e e e e 196
18.8.2 Limited Strings e 198
18.9 GENEIMICS . v v v v e e e e e e 201
18.9.1 Display Array o e e e e e e e e 201
18.9.2 Average of Array of Float o o 202
18.9.3 Average of Array of Any Typeo 204
18.9.4 Genericlist e 206
18.1EXCEPLioONS . . . v e e e e e e 208
18.10.Uninitialized Value 208
18.10.Numerical Exception e e 209
18.10.Re-raising Exceptions 211
18.1TMaskiNg o e e e 213
18.11.Display Service o e e e 213
18.11. Event Manager i i i e e e e 214
18.11.3Generic Protected Queue 216
18.1Design by contracts e e 218
18.12.FPrice Range o o e e e e 218
18.12.2Pythagorean Theorem: Predicate 219
18.12.Fythagorean Theorem: Precondition 221
18.12.#ythagorean Theorem: Postcondition 223
18.12.®Pythagorean Theorem: Type Invariant 224
18.12.@rimary Colors e e 226
18.10bject-oriented programming e 228
18.13.Simple type extension e 228
18.13.0nline Store e e e 230
18.145tandard library: Containers e e 233
18.14.Simpletodo list e 233
18.14.Aist of unique integers. 234
18.15tandard library: Dates & Times i i 236

18.15.Holocene calendar 0 e e e e e e 236

18.15.Aist of events e e e e e e e e e 237
18.165tandard library: Strings e 239
18.16.1Concatenation e e 239
18.16.Aist of events o e e e e e 241
18.17tandard library: Numerics o i e e e e 244
18.17.1Decibel Factor. e e e e e e e e 244
18.17.Root-Mean-Square e e e 245
18.17.Rotation e e e e e e e e e 248

Introduction to Ada: Laboratories

Copyright © 2019 - 2024, AdaCore

This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this

pagel

These labs contain exercises for the Introduction to Ada course.
This document was written by Gustavo A. Hoffmann and reviewed by Michael Frank.

© Note

The code examples in this course use an 80-column limit, which is a typical limit for Ada
code. Note that, on devices with a small screen size, some code examples might be
difficult to read.

L http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

Introduction to Ada: Laboratories

2 CONTENTS:

N o U A W N &

CHAPTER
ONE

IMPERATIVE LANGUAGE

For the exercises below (except for the first one), don't worry about the details of the Main
procedure. You should just focus on implementing the application in the subprogram spec-
ified by the exercise.

1.1 Hello World

Goal: create a "Hello World!" application.
Steps:

1. Complete the Main procedure.
Requirements:

1. The application must display the message "Hello World!".
Remarks:

1. The part that you have to modify is indicated by the -- Implement the application

here! comment in the source code.
Listing 1: main.adb

with Ada.Text IO0; use Ada.Text IO;

procedure Main is

begin
-- Implement the application here!
null;

end Main;

1.2 Greetings

Goal: create an application that greets a person.
Steps:

1. Complete the Greet procedure.
Requirements:

1. Given an input string <name>, procedure Greet must display the message "Hello
<name>!",

1. For example, if the name is "John", it displays the message "Hello John!".
Remarks:

1. You can use the concatenation operator (&).

W W N U A W N e

[I N - T e o < =
P O © ® W o U A W N = O

N~ o U A W N &

Introduction to Ada: Laboratories

2. The part that you have to modify is indicated by the - - Implement the application

here! comment in the source code.

Listing 2: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

procedure Main is

procedure Greet (Name : String) is
begin
-- Implement the application here!
null;
end Greet;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Greet (Argument (1));
end Main;

1.3 Positive Or Negative

Goal: create an application that classifies integer numbers.
Steps:
1. Complete the Classify Number procedure.

Requirements:

1. Given an integer number X, procedure Classify Number must classify X as positive,

negative or zero and display the result:
1. IfX > 0, it displays Positive.
2. If X < 0, it displays Negative.
3. If X = 0, it displays Zero.

Listing 3: classify_number.ads

procedure Classify Number (X : Integer);

Listing 4: classify_number.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Classify Number (X : Integer) is
begin
-- Implement the application here!
null;
end Classify Number;

4 Chapter 1.

Imperative language

© ©® N o U A W N R

e e L e <
© ©® N o 0 A W N H O

[N N N

© ©® N o U A W N R

e
= o

Introduction to Ada: Laboratories

Listing 5: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Classify Number;

procedure Main is
A : Integer;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

A := Integer'Value (Argument (1));

Classify Number (A);
end Main;

1.4 Numbers

Goal: create an application that displays numbers in a specific order.
Steps:

1. Complete the Display Numbers procedure.
Requirements:

1. Given two integer numbers, Display Numbers displays all numbers in the range start-
ing with the smallest number.

Listing 6: display_numbers.ads

procedure Display Numbers (A, B : Integer);

Listing 7: display_numbers.adb

procedure Display Numbers (A, B : Integer) is
begin

-- Implement the application here!

null;
end Display Numbers;

Listing 8: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Display Numbers;

procedure Main is
A, B : Integer;
begin
if Argument Count < 2 then
Put Line ("ERROR: missing arguments! Exiting...");
return;
(continues on next page)

1.4. Numbers 5

12
13
14
15
16
17
18
19
20

Introduction to Ada: Laboratories

elsif Argument Count > 2 then

Put Line ("Ignoring additional arguments...

end if;

A Integer'Value (Argument (1));

(continued from previous page)

B := Integer'Value (Argument (2));
Display Numbers (A, B);
end Main;
6 Chapter 1. Imperative language

oA W N R

© @ N U A W N R

I I N T s T e O o < =
P O © ® N o U A W N = O

CHAPTER
TWO

SUBPROGRAMS

2.1 Subtract procedure

Goal: write a procedure that subtracts two numbers.
Steps:

1. Complete the procedure Subtract.
Requirements:

1. Subtract performs the operation A - B.

Listing 9: subtract.ads

-- Write the correct parameters for the procedure below.
procedure Subtract;

Listing 10: subtract.adb

procedure Subtract is

begin
-- Implement the procedure here.
null;

end Subtract;

Listing 11: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Subtract;

procedure Main is
type Test_Case_Index is
(Sub 10 1 Chk,
Sub 10 100 Chk,
Sub 0 5 Chk,
Sub 0 Minus 5 Chk);

procedure Check (TC : Test Case Index) is
Result : Integer;
begin
case TC is
when Sub 10 1 Chk =>
Subtract (10, 1, Result);
Put Line ("Result: " & Integer'Image (Result));
when Sub 10 100 Chk =>
Subtract (10, 100, Result);

(continues on next page)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

[N N

© @ N o U A W N R

=
= o

Introduction to Ada: Laboratories

(continued from previous page)

Put Line ("Result: " & Integer'Image (Result));
when Sub 0 5 Chk =>

Subtract (0, 5, Result);

Put Line ("Result: " & Integer'Image (Result));
when Sub 0 Minus 5 Chk =>

Subtract (0, -5, Result);

Put Line ("Result: " & Integer'Image (Result));
end case;

end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

2.2 Subtract function

Goal: write a function that subtracts two numbers.
Steps:

1. Rewrite the Subtract procedure from the previous exercise as a function.
Requirements:

1. Subtract performs the operation A - B and returns the result.

Listing 12: subtract.ads

-- Write the correct signature for the function below.
-- Don't forget to replace the keyword "procedure" by "function."
procedure Subtract;

Listing 13: subtract.adb

procedure Subtract is

begin
-- Implement the function here!
null;

end Subtract;

Listing 14: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Subtract;

procedure Main is
type Test_Case_Index is
(Sub_10 1 Chk,
Sub 10 100 Chk,
Sub 0 5 Chk,
Sub 0 Minus 5 Chk);
(continues on next page)

8 Chapter 2. Subprograms

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

U oA W N e

Introduction to Ada: Laboratories

(continued from previous page)

procedure Check (TC : Test Case Index) is
Result : Integer;
begin
case TC is
when Sub 10 1 Chk =>
Result := Subtract (10, 1);
Put Line ("Result: " & Integer'Image (Result));
when Sub 10 100 Chk =>
Result := Subtract (10, 100);
Put Line ("Result: " & Integer'Image (Result));
when Sub 0 5 Chk =>
Result := Subtract (0, 5);
Put Line ("Result: " & Integer'Image (Result));
when Sub 0 Minus 5 Chk =>
Result := Subtract (0, -5);
Put Line ("Result: " & Integer'Image (Result));
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

2.3 Equality function

Goal: write a function that compares two values and returns a flag.
Steps:

1. Complete the Is Equal subprogram.
Requirements:

1. Is Equal returns a flag as a Boolean value.

2. The flag must indicate whether the values are equal (flag is True) or not (flag is False).

Listing 15: is_equal.ads

-- Write the correct signature for the function below.
-- Don't forget to replace the keyword "procedure" by "function."
procedure Is Equal;

Listing 16: is_equal.adb

procedure Is Equal is

begin
-- Implement the function here!
null;

end Is Equal;

2.3. Equality function 9

© ©® N o U A W N R

U oA B A B B A B A DN AW W W W W W W W W W N NNNNNNNNN®KRERHR B B B B B B
S © ® W o 00U B W N P O © ® N O 00 A W N RPL O ©W ® N 60 U & W N B O © ® N 6 U A W N B O

Introduction to Ada: Laboratories

Listing 17: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Is Equal;

procedure Main is
type Test_Case_Index is
(Equal Chk,
Inequal Chk);

procedure Check (TC : Test Case Index) is

procedure Display Equal (A, B : Integer;
Equal : Boolean) is
begin
Put (Integer'Image (A));
if Equal then
Put (" is equal to ");
else
Put (" isn't equal to ");
end if;
Put Line (Integer'Image (B) & ".");
end Display Equal;

Result : Boolean;
begin
case TC is
when Equal Chk =>
for I in 0 .. 10 loop
Result := Is Equal (I, I);
Display Equal (I, I, Result);
end loop;
when Inequal Chk =>
for I in 0 .. 10 loop
Result := Is Equal (I, I - 1);
Display Equal (I, I - 1, Result);
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

2.4 States

Goal: write a procedure that displays the state of a machine.
Steps:
1. Complete the procedure Display State.

10 Chapter 2. Subprograms

o U A W N K

© ©® N o U A W N R

e e e e <
© ® N o U A W N B O

Introduction to Ada: Laboratories

Requirements:

1. The states can be set according to the following numbers:

Number State

0 Off
1 On: Simple Processing
2 On: Advanced Processing

2. The procedure Display State receives the number corresponding to a state and dis-
plays the state (indicated by the table above) as a user message.

Remarks:

1. You can use a case statement to implement this procedure.

Listing 18: display_state.ads
procedure Display State (State : Integer);

Listing 19: display_state.adb
with Ada.Text IO; use Ada.Text IO;

procedure Display State (State : Integer) is
begin

null;
end Display State;

Listing 20: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text IO; use Ada.Text I0;

with Display State;

procedure Main is
State : Integer;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

State := Integer'Value (Argument (1));

Display State (State);
end Main;

2.5 States #2

Goal: write a function that returns the state of a machine.
Steps:
1. Implement the function Get State.

Requirements:

2.5. States #2 11

A W N R

© ©® N o U A W N R

e
w N R~ O

Introduction to Ada: Laboratories

1. Implement same state machine as in the previous exercise.
2. Function Get_State must return the state as a string.
Remarks:
1. You can implement a function returning a string by simply using quotes in a return
statement. For example:
Listing 21: get hello.ads

1 function Get Hello return String;

Listing 22: get _hello.adb

function Get Hello return String is
begin

return "Hello";
end Get Hello;

A W N R

Listing 23: main.adb

with Ada.Text I0; use Ada.Text I0;
with Get Hello;

procedure Main is
: constant String := Get Hello;
begin
Put Line (S);
end Main;

©® N O U A W N E

2. You can reuse your previous implementation and replace it by a case expression.

1. Forvalues that do not correspond to a state, you can simply return an empty string
(II II)l

Listing 24: get state.ads

function Get State (State : Integer) return String;

Listing 25: get state.adb

function Get State (State : Integer) return String is
begin

return "";
end Get State;

Listing 26: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Get State;

procedure Main is
State : Integer;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then
Put Line ("Ignoring additional arguments...");

(continues on next page)

12 Chapter 2. Subprograms

A W N e

N o U A W N e

Introduction to Ada: Laboratories

(continued from previous page)
end if;

State := Integer'Value (Argument (1));

Put Line (Get State (State));
end Main;

2.6 States #3

Goal: implement an on/off indicator for a state machine.
Steps:
1. Implement the function Is On.
2. Implement the procedure Display On Off.
Requirements:
1. Implement same state machine as in the previous exercise.
2. Function Is_On returns:
* True if the machine is on;
» otherwise, it returns False.
3. Procedure Display On Off displays the message
* "On" if the machine is on, or
» "Off" otherwise.
4. Is On must be called in the implementation of Display On Off.
Remarks:

1. You can implement both subprograms using if expressions.

Listing 27: is_on.ads

function Is On (State : Integer) return Boolean;

Listing 28: is_on.adb
function Is On (State : Integer) return Boolean is
begin

return False;
end Is On;

Listing 29: display_on_off.ads
procedure Display On Off (State : Integer);

Listing 30: display _on_off.adb

with Ada.Text IO; use Ada.Text IO;
with Is On;

procedure Display On Off (State : Integer) is
begin

Put Line ("");
end Display On Off;

2.6. States #3 13

© ©® N o U A W N R

I N T i < =
P O © ® W o 0 A W N = O

1

Introduction to Ada: Laboratories

Listing 31: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Display On Off;
with Is On;

procedure Main is
State : Integer;
begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

State := Integer'Value (Argument (1));

Display On Off (State);
Put Line (Boolean'Image (Is On (State)));
end Main;

2.7 States #4

Goal: implement a procedure to update the state of a machine.
Steps:

1. Implement the procedure Set Next.
Requirements:

1. Implement the same state machine as in the previous exercise.

2. Procedure Set Next updates the machine's state with the next one in a circular man-
ner:

* In general, after a call to Set_Next for an integer variable N (Set Next (N)), the
new value of N must be the next number for that variable N (i.e., N := N'Old +
1).

- In other words, a call to Set Next (N) has the same effectas N := N + 1.

- For example, after the statements N := 1; Set Next (N);, we have that N
= 2.

 However, if the state is the last valid one for the machine (which, for this exercise,
it's 2), the next state must be the first valid one (in this case: 0).

- In other words, for N := 2; Set Next (N);, we have thatN = 0.
Remarks:

1. You can use an if expression to implement Set Next.

Listing 32: set next.ads

procedure Set Next (State : in out Integer);

14 Chapter 2. Subprograms

A W N R

© ® N o U A W N R

11
12
13
14
15
16
17
18
19
20

Introduction to Ada: Laboratories

Listing 33: set_next.adb

procedure Set Next (State : in out Integer) is
begin

null;
end Set Next;

Listing 34: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Set Next;
procedure Main is
State : Integer;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");
return;
elsif Argument Count > 1 then
Put Line ("Ignoring additional arguments...");
end if;
State := Integer'Value (Argument (1));
Set Next (State);
Put Line (Integer'Image (State));
end Main;

2.7. States #4

15

Introduction to Ada: Laboratories

16 Chapter 2. Subprograms

A W N =

W @ N U A W N e

R e
N = O

CHAPTER
THREE

MODULAR PROGRAMMING

3.1 Months

Goal: create a package to display the months of the year.
Steps:

1. Convert the Months procedure below to a package.

2. Create the specification and body of the Months package.
Requirements:

1. Months must contain the declaration of strings for each month of the year, which are
stored in three-character constants based on the month's name.

* For example, the string "January" is stored in the constant Jan. These strings
are then used by the Display Months procedure, which is also part of the Months
package.

Remarks:
1. The goal of this exercise is to create the Months package.
1. In the code below, Months is declared as a procedure.
* Therefore, we need to convert it into a real package.
2. You have to modify the procedure declaration and implementation in the code
below, so that it becomes a package specification and a package body.
Listing 35: months.ads

-- Create specification for Months package, which includes
-- the declaration of the Display Months procedure.

procedure Months;

Listing 36: months.adb

-- Create body of Months package, which includes
-- the implementation of the Display Months procedure.

procedure Months is

procedure Display Months is

begin
Put Line ("Months:");
Put _Line ("- " & Jan);
Put Line ("- " & Feb);
Put Line ("- " & Mar);
Put Line ("- " & Apr);

(continues on next page)

17

13
14
15
16
17
18
19
20

22
23
24
25

© ® N o U A W N R

N ONON NN NNNN B B B 2R e E e e
©® N o U B W N P O 0 ® N o0 U A W N E O

Introduction to Ada: Laboratories

(continued from previous page)

Put Line ("- " & May);
Put Line ("- " & Jun);
Put Line ("- " & Jul);
Put Line ("- " & Aug);
Put Line ("- " & Sep);
Put Line ("- " & Oct);
Put Line ("- " & Nov);
Put _Line ("- " & Dec);

end Display Months;

begin
null;

end Months;

Listing 37: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Months; use Months;
procedure Main is

type Test_Case_Index is
(Months_Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Months Chk =>
Display Months;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

3.2 Operations

Goal: create a package to perform basic mathematical operations.
Steps:
1. Implement the Operations package.
1. Declare and implement the Add function.
2. Declare and implement the Subtract function.
3. Declare and implement the Multiply: function.
4. Declare and implement the Divide function.

2. Implement the Operations.Test package

18 Chapter 3. Modular Programming

o U A W N B N o U A W N &

W W N U A W N e

© ©® N o U A W N K

=
= o

Introduction to Ada: Laboratories

1. Declare and implement the Display procedure.
Requirements:

1. Package Operations contains functions for each of the four basic mathematical oper-
ations for parameters of Integer type:

1. Function Add performs the addition of A and B and returns the result;
2. Function Subtract performs the subtraction of A and B and returns the result;
3. Function Multiply performs the multiplication of A and B and returns the result;
4. Function Divide performs the division of A and B and returns the result.
2. Package Operations.Test contains the test environment:
1. Procedure Display must use the functions from the parent (Operations) package
as indicated by the template in the code below.
Listing 38: operations.ads

package Operations is

-- Create specification for Operations package, including the
-- declaration of the functions mentioned above.

end Operations;

Listing 39: operations.adb

package body Operations is

-- Create body of Operations package.

end Operations;

Listing 40: operations-test.ads

package Operations.Test is

-- Create specification for Operations package, including the
-- declaration of the Display procedure:

- - procedure Display (A, B : Integer);

end Operations.Test;

Listing 41: operations-test.adb

package body Operations.Test is

-- Implement body of Operations.Test package.

procedure Display (A, B : Integer) is
: constant String Integer'Image (A);
: constant String Integer'Image (B);

begin
Put Line ("Operations:");
Put Line (A Str & " + " & B Str & " ="
(continues on next page)

3.2. Operations 19

12
13
14
15
16
17
18

© ® N o U A W N R

AW W W W W W W W W W N NNNNNNWDNNN®RERHRB B B B B B B
© © ® N o6 U A W N B © © ® N 0 U & W N B O © ©® N 0 0 &2 W N = O

Introduction to Ada: Laboratories

(continued from previous page)

& Integer'Image (Add (A, B))
&II’II);
-- Use the line above as a template and add the rest of the
-- 1Implementation for Subtract, Multiply and Divide.
end Display;

end Operations.Test;

Listing 42: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Operations;
with Operations.Test; use Operations.Test;

procedure Main is

type Test Case Index is
(Operations Chk,
Operations Display Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Operations Chk =>
Put _Line ("Add (100, 2) ="
& Integer'Image (Operations.Add (100, 2)));
Put Line ("Subtract (100, 2) ="
& Integer'Image (Operations.Subtract (100, 2)));
Put Line ("Multiply (lee0, 2) ="
& Integer'Image (Operations.Multiply (100, 2)));
Put_Line ("Divide (100, 2) ="
& Integer'Image (Operations.Divide (100, 2)));
when Operations Display Chk =>
Display (10, 5);
Display (1, 2);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

20 Chapter 3. Modular Programming

CHAPTER
FOUR

STRONGLY TYPED LANGUAGE

4.1 Colors

Goal: create a package to represent HTML colors in hexadecimal form and its corresponding
names.

Steps:
1. Implement the Color Types package.

1. Declare the HTML_Color enumeration.

2. Declare the Basic HTML Color enumeration.

3. Implement the To Integer function.

4. Implement the To HTML Color function.

Requirements:

1. Enumeration HTML Color has the following colors:
* Salmon
* Firebrick
* Red
* Darkred
* Lime
* Forestgreen
* Green
* Darkgreen
* Blue
* Mediumblue
* Darkblue

2. Enumeration Basic HTML Color has the following colors: Red, Green, Blue.

3. Function To_Integer converts from the HTML Color type to the HTML color
code — as integer values in hexadecimal notation.

* You can find the HTML color codes in the table below.
4. Function To HTML Color converts from Basic HTML Color to HTML Color.

5. This is the table to convert from an HTML color to a HTML color code in hex-
adecimal notation:

21

© @ N o U A W N R

10
11
12
13
14
15
16
17
18
19
20

© ©® N o U A W N R

10

11

12

13

Introduction to Ada: Laboratories

Color HTML color code (hexa)
Salmon #FA8072
Firebrick #B22222
Red #FF0O000
Darkred #8B0O0OOO
Lime #0OFFO0
Forestgreen #228B22
Green #008000
Darkgreen #006400
Blue #000OFF

Mediumblue #0000CD
Darkblue #00008B

Remarks:

1. In order to express the hexadecimal values above in Ada, use the following syntax:

16#<hex_value># (e.g.: 16#FFFFFF#).

2. For function To Integer, you may use a case for this.

Listing 43: color_types.ads

package Color_Types is

Include type declaration for HTML Color!

type HTML Color is [...]

Include function declaration for:

function To Integer (C : HTML Color) return Integer;

Include type declaration for Basic HTML Color!

type Basic HTML Color is [...]

Include function declaration for:
- Basic HTML Color => HTML Color

function To HTML Color [...];

end Color Types;

Listing 44: color_types.adb

package body Color_Types is

Implement the conversion from HTML Color to Integer here!

function To Integer (C : HTML Color) return Integer 1is

begin

-- Hint: use 'case' for the HTML colors;
-- use 16#...# for the hexadecimal values.

end To Integer;

Implement the conversion from Basic HTML Color to HTML Color here!

function To HTML Color [...] 1is

(continues on next page)

22

Chapter 4. Strongly typed language

14

15

© ©® N o U A W N R

AR R A W W OW W W W W W W W N NNNNNNNNNKRERBH B B B B B B B
W N P O © ® N o 00 B W RN B O © ® N 0 U & W N P O © @ N 60 U A W N ~ O

Introduction to Ada: Laboratories

(continued from previous page)

end Color Types;

Listing 45: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with Ada.Integer Text I0;

with Color Types; use Color Types;

procedure Main is
type Test Case Index is
(HTML Color Range,
HTML Color To Integer,
Basic HTML Color To HTML Color);

procedure Check (TC : Test Case Index) is
begin
case TC is
when HTML Color Range =>
for I in HTML Color'Range loop
Put Line (HTML Color'Image (I));
end loop;
when HTML Color To Integer =>
for I in HTML Color'Range loop
Ada.Integer Text I0.Put (Item => To Integer (I),
Width => 6,
Base => 16);
New Line;
end loop;
when Basic HTML Color To HTML Color =>
for I in Basic HTML Color'Range loop
Put Line (HTML Color'Image (To HTML Color (I)));
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

4.2 Integers

Goal: implement a package with various integer types.
Steps:
1. Implement the Int Types package.
1. Declare the integer type I 100.
2. Declare the modular type U _100.

4.2. Integers 23

Introduction to Ada: Laboratories

Implement the To I 100 function to convert from the U 100 type.
Implement the To_U 100 function to convert from the I 100 type.
Declare the derived type D_50.

Declare the subtype S_50.

Implement the To_D 50 function to convert from the I_100 type.

© N o U kW

Implement the To_S 50 function to convert from the I_100 type.
9. Implement the To I 100 function to convert from the D 50 type.
Requirements:
1. Types I 100 and U_100 have values between 0 and 100.
1. Type I 100 is an integer type.
2. Type U 100 is a modular type.
2. Function To I 100 converts from the U 100 type to the I 100 type.
3. Function To_U 100 converts from the I 100 type to the U 100 type.
4. Types D 50 and S_50 have values between 10 and 50 and use I 100 as a base type.
1. D 50 is a derived type.
2. S 50 is a subtype.
5. Function To D 50 converts from the I 100 type to the D 50 type.
6. Function To S 50 converts from the I 100 type to the S_50 type.
7. Functions To D 50 and To S 50 saturate the input values if they are out of range.
* If the input is less than 10 the output should be 10.
 If the input is greater than 50 the output should be 50.
8. Function To I 100 converts from the D 50 type to the I 100 type.
Remarks:

1. For the implementation of functions To D 50 and To_S 50, you may use the type at-
tributes D 50'First and D_50'Last:

1. D 50'First indicates the minimum value of the D 50 type.
2. D 50'Last indicates the maximum value of the D_50 type.
3. The same attributes are available forthe S 50 type (S 50'FirstandS 50'Last).

2. We could have implemented a function To I 100 as well to convert from S 50 to
I 100. However, we skip this here because explicit conversions are not needed for
subtypes.

Listing 46: int_types.ads
package Int Types is

-- Include type declarations for I 100 and U 100!

type I 100 is [...]
-- type U 100 is [...]

©W @ N U A W N e

function To I 100 (V : U 100) return I 100;

—
o

function To U 100 (V : I 100) return U 100;

=
[

(continues on next page)

24 Chapter 4. Strongly typed language

12
13
14
15
16
17
18
19
20
21
22
23
24

© ©® N o U A W N K

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Introduction to Ada: Laboratories

(continued from previous page)

-- Include type declarations for D 50 and S 50!
-- [...] D50 is [...]
-- [...] S50 is [...]

function To D 50 (V : I 100) return D 50;
function To S 50 (V : I 100) return S 50;

function To I 100 (V : D 50) return I _100;

end Int Types;

Listing 47: int_types.adb

package body Int_Types is

function To I 100 (V : U 100) return I 100 is

begin
-- Implement the conversion from U 100 to I 100 here!
null;

end To I 100;

function To U 160 (V : I 100) return U 100 is

begin
-- Implement the conversion from I 100 to U 100 here!
null;

end To U 100;

function To D 50 (V : I 100) return D 50 is
Min : constant I 100 := I 100 (D 50'First);
Max : constant I 100 := I 100 (D _50'Last);

begin
-- Implement the conversion from I 100 to D 50 here!
-- Hint: using the constants above simplifies the checks needed for
-- this function.
null;
end To D 50;
function To S 50 (V : I 100) return S 50 is
begin
-- Implement the conversion from I 100 to S 50 here!
-- Remark: don't forget to verify whether an explicit conversion like
-- S 50 (V) is needed.
null;
end To S 50;

function To I 100 (V : D 50) return I 100 is
begin
-- Implement the conversion from I 100 to D 50 here!
-- Remark: don't forget to verify whether an explicit conversion like
-- I 100 (V) is needed.
(continues on next page)

4.2. Integers 25

45
46
47
48
49

© ©® N o U A W N R

ooy LU A A A B A B A B BN W W W W W W W W W WNNDNDNNNNNNN®REREHRB®RB B B B B 9
W N P O © ©® N O U F W N RFH O © ® N 0 00 F WKNRH O O ® N O A WNRP O VW ® N O U A W N R O

Introduction to Ada: Laboratories

with Ada.Command Line;
with Ada.Text I0;

with Int Types;

null;
end To I 100;

end Int Types;

Listing 48: main.adb

use Ada.Command Line;
use Ada.Text IO;

use Int Types;

procedure Main is
package I_100_IO0 is new Ada.Text_IO.Integer_IO (I 100);

package U_100_IO0 is new Ada.Text_IO.Modular_IO (U 100
package D_50 _I0 is new Ada.Text_IO0.Integer_IO (D 50)

use I 100 IO;
use U_100_I0;
use D 50 IO;

type Test_Case_Index is

(I 100 Range,

U 100 Range,

U 100 Wraparound,

U 100 To I 100,

I 100 To U 100,

D 50 Range,

S 50 Range,

I 100 To D 50,

I 100 To S 50,

D 50 To I 100,

S 50 To I 100);
procedure Check (TC : Test Case Index) is
begin

I 100 I0.Default Width := 1;
U 100 I0.Default Width := 1;
D 50 I0.Default Width := 1;

case TC is

when I 100 Range =>
Put (I 100'First);
New Line;
Put (I 100'Last);
New Line;

when U 100 Range =>
Put (U 100'First);
New Line;
Put (U 100'Last);
New Line;

when U 100 Wraparound =>
Put (U 100'First - 1);
New Line;
Put (U _100'Last + 1);
New Line;

when U 100 To I 100 =>
for I in U 100'Range loop

I 100 I0.Put (To I 100 (I));
New Line;

(continued from previous page)

);
);

(continues on next page)

Chapter 4.

Strongly typed language

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9
95
9
97
98
99

100

101

102

Introduction to Ada: Laboratories

end loop;
when I 100 To U 100 =>
for I in I 100'Range loop
Put (To U 100 (I));
New Line;
end loop;
when D 50 Range =>
Put (D_50'First);
New Line;
Put (D 50'Last);
New Line;
when S 50 Range =>
Put (S 50'First);
New Line;
Put (S 50'Last);
New Line;
when I 100 To D 50 =>
for I in I 100'Range loop
Put (To D 50 (I));
New Line;
end loop;
when I 100 To S 50 =>
for I in I _100'Range loop
Put (To S 50 (I));
New Line;
end loop;
when D 50 To I 100 =>
for I in D 50'Range loop
Put (To I 100 (I));
New Line;
end loop;
when S 50 To I 100 =>
for I in S 50'Range loop
Put (I);
New Line;
end loop;
end case;
end Check;

begin
if Argument Count < 1 then

(continued from previous page)

Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));

end Main;

4.3 Temperatures

Goal: create a package to handle temperatures in Celsius and Kelvin.

Steps:

1. Implement the Temperature Types package.

1. Declare the Celsius type.
2. Declare the Int Celsius type.

4.3. Temperatures

27

© ® N o U A W N R

L i e
o A W N B O

Introduction to Ada: Laboratories

Implement the To Celsius function.
Implement the To_Int Celsius function.

Declare the Kelvin type.

o v~ W

Implement the To _Celsius function to convert from the Kelvin type.
7. Implement the To_Kelvin function.
Requirements:

1. The custom floating-point types declared in Temperature Types must use a precision
of six digits.

2. Types Celsius and Int Celsius are used for temperatures in Celsius:
1. Celsius is a floating-point type with a range between -273.15 and 5504.85.
2. Int Celsius is an integer type with a range between -273 and 5505.
3. Functions To Celsius and To Int Celsius are used for type conversion:
1. To Celsius converts from Int Celsius to Celsius type.
2. To_Int Celsius converts from Celsius and Int Celsius types:

4. Kelvin is a floating-point type for temperatures in Kelvin using a range between 0.0
and 5778.0.

5. The functions To_Celsius and To_Kelvin are used to convert between temperatures
in Kelvin and Celsius.

1. In order to convert temperatures in Celsius to Kelvin, you must use the formula
K = C +273.15, where:

* K is the temperature in Kelvin, and
* Cis the temperature in Celsius.
Remarks:
1. When implementing the To Celsius function for the Int Celsius type:

1. You'll need to check for the minimum and maximum values of the input values
because of the slightly different ranges.

2. You may use variables of floating-point type (Float) for intermediate values.

2. For the implementation of the functions To Celsius and To Kelvin (used for con-
verting between Kelvin and Celsius), you may use a variable of floating-point type
(Float) for intermediate values.

Listing 49: temperature_types.ads

package Temperature_Types is

-- Include type declaration for Celsius!

-- Celsius is [...];
-- Int Celsius is [...];

function To Celsius (T : Int Celsius) return Celsius;
function To Int Celsius (T : Celsius) return Int Celsius;

-- Include type declaration for Kelvin!

-- type Kelvin is [...];
(continues on next page)

28 Chapter 4. Strongly typed language

16
17
18
19
20
21
22
23
24

© ® N o U A W N R

10
11
12
13
14
15
16
17
18
19
20

© ©® N o U A W N K

N ONONNN B B H R B e Bl e
&£ W N P SO © ® N o 00 & W N = O

Introduction to Ada: Laboratories

(continued from previous page)

-- Include function declarations for:
-- - Kelvin => Celsius
-- - Celsius => Kelvin

-- function To Celsius [...];
-- function To Kelvin [...];

end Temperature Types;

Listing 50: temperature_types.adb

package body Temperature_Types is

function To Celsius (T : Int Celsius) return Celsius is
begin

null;
end To Celsius;

function To Int Celsius (T : Celsius) return Int Celsius is
begin

null;
end To Int Celsius;

-- Include function implementation for:
-- - Kelvin => Celsius
-- - Celsius => Kelvin

-- function To Celsius [...] 1is
-- function To Kelvin [...] 1Is

end Temperature Types;

Listing 51: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Temperature Types; use Temperature Types;

procedure Main is
package Celsius_IO is new Ada.Text_IO.Float_IO (Celsius);
package Kelvin IO is new Ada.Text IO.Float IO (Kelvin);
package Int_Celsius_IO is new Ada.Text_IO.Integer_ IO (Int Celsius);

use Celsius I0;
use Kelvin I0;
use Int Celsius IO;

type Test_Case_Index is
(Celsius Range,
Celsius To Int Celsius,
Int Celsius To Celsius,
Kelvin To Celsius,
Celsius To Kelvin);

procedure Check (TC : Test Case Index) is
begin
Celsius _I0.Default Fore := 1;
(continues on next page)

4.3. Temperatures 29

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Introduction to Ada: Laboratories

Kelvin I0.Default Fore := 1;
Int Celsius I0.Default Width := 1;

case TC is

when Celsius Range =>
Put (Celsius'First);
New Line;
Put (Celsius'Last);
New Line;

when Celsius To Int Celsius =>
Put (To_Int Celsius (Celsius'First));
New Line;
Put (To_Int Celsius (0.0));
New Line;
Put (To Int Celsius (Celsius'lLast));
New Line;

when Int Celsius To Celsius =>
Put (To Celsius (Int Celsius'First));
New Line;
Put (To_Celsius (0));
New Line;
Put (To Celsius (Int Celsius'lLast));
New Line;

when Kelvin To Celsius =>
Put (To Celsius (Kelvin'First));
New Line;
Put (To Celsius (0));
New Line;
Put (To Celsius (Kelvin'Last));
New Line;

when Celsius To Kelvin =>
Put (To Kelvin (Celsius'First));
New Line;
Put (To_Kelvin (Celsius'lLast));
New Line;

end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

(continued from previous page)

30 Chapter 4. Strongly typed language

W N U A W N e

i < e
A W N B O

CHAPTER
FIVE

RECORDS

5.1 Directions

Goal: create a package that handles directions and geometric angles.
Steps:
1. Implement the Directions package.
1. Declare the Ext_Angle record.
2. Implement the Display procedure.
3. Implement the To_Ext Angle function.
Requirements:

1. Record Ext_Angle stores information about the extended angle (see remark about
extended angles below).

2. Procedure Display displays information about the extended angle.

1. You should use the implementation that has been commented out (see code be-
low) as a starting point.

3. Function To Ext Angle converts a simple angle value to an extended angle
(Ext_Angle type).

Remarks:

1. We make use of the algorithm implemented in the Check Direction procedure (chap-
ter on imperative language).

2. For the sake of this exercise, we use the concept of extended angles. This includes
the actual geometric angle and the corresponding direction (North, South, Northwest,
and so on).

Listing 52: directions.ads

package Directions is
type Angle_Mod is mod 360;

type Direction is

(North,
Northeast,
East,
Southeast,
South,
Southwest,
West,
Northwest);

(continues on next page)

31

Introduction to Ada: Laboratories

(continued from previous page)

15 function To Direction (N: Angle Mod) return Direction;
16

17 -- Include type declaration for Ext Angle record type:
18 -

19 -- NOTE: Use the Angle Mod and Direction types declared above!
20 - -

21 -- type Ext Angle is [...]

22 - -

23

24 function To Ext Angle (N : Angle Mod) return Ext Angle;
25

26 procedure Display (N : Ext Angle);

27
28 end Directions;

Listing 53: directions.adb

1 with Ada.Text I0; use Ada.Text IO;

2

3 package body Directions is

4

5 procedure Display (N : Ext Angle) is

6 begin

7 -- Uncomment the code below and fill the missing elements
s -

9 -- Put Line ("Angle: "

10 -- & Angle Mod'Image ()

1 -- & " ="

12 -- & Direction'Image ()

13 -- & ".");

14 null;

15 end Display;

16

17 function To Direction (N : Angle Mod) return Direction is
18 begin

19 case N is

20 when 0 => return North;

21 when 1 .. 89 => return Northeast;

22 when 90 => return East;

23 when 91 .. 179 => return Southeast;

24 when 180 => return South;

25 when 181 .. 269 => return Southwest;

26 when 270 => return West;

27 when 271 .. 359 => return Northwest;

28 end case;

29 end To Direction;

30

31 function To Ext Angle (N : Angle Mod) return Ext Angle is
32 begin

33 -- Implement the conversion from Angle Mod to Ext Angle here!
34 -

35 -- Hint: you can use a return statement and an aggregate.
36 -

37 null;

38 end To Ext Angle;

40 end Directions;

32 Chapter 5. Records

Introduction to Ada: Laboratories

Listing 54: main.adb

1 with Ada.Command Line; use Ada.Command Line;
> with Ada.Text IO; use Ada.Text IO0;

3

4 with Directions; use Directions;

5

s procedure Main is

7 type Test_Case_Index is

8 (Direction Chk);

9

10 procedure Check (TC : Test Case Index) is
1 begin

12 case TC is

13 when Direction Chk =>

14 Display (To Ext Angle (0));

15 Display (To Ext Angle (30));

16 Display (To Ext Angle (45));

17 Display (To Ext Angle (90));

18 Display (To Ext Angle (91));

19 Display (To_ Ext Angle (120));

20 Display (To Ext Angle (180));

21 Display (To Ext Angle (250));

22 Display (To_Ext Angle (270));

23 end case;

24 end Check;

25

26 begin

27 if Argument Count < 1 then

28 Put Line ("ERROR: missing arguments! Exiting...");
29 return;

30 elsif Argument Count > 1 then

31 Put Line ("Ignoring additional arguments...");
32 end if;

33

34 Check (Test Case Index'Value (Argument (1)));

35 end Main;

5.2 Colors

Goal: create a package to represent HTML colors in RGB format using the hexadecimal
form.

Steps:
1. Implement the Color Types package.
1. Declare the RGB record.
2. Implement the To_RGB function.
3. Implement the Image function for the RGB type.
Requirements:

1. The following table contains the HTML colors and the corresponding value in hexadec-
imal form for each color element:

5.2. Colors 33

© ©® N o U A W N K

e i
A W N = O

Introduction to Ada: Laboratories

Color Red Green Blue
Salmon #FA #80 #72
Firebrick #B2 #22 #22
Red #FF #00 #00
Darkred #8B #00 #00
Lime #00 #FF #00
Forestgreen #22 #8B #22
Green #00 #80 #00
Darkgreen #00 #64 #00
Blue #00 #00 #FF

Mediumblue #00 #00 #CD
Darkblue #00 #00 #8B

2. The hexadecimal information of each HTML color can be mapped to three color ele-
ments: red, green and blue.

1. Each color element has a value between 0 and 255, or 00 and FF in hexadecimal.

2. For example, for the color salmon, the hexadecimal value of the color elements

are:
* red = FA,
* green = 80, and
* blue =72.

3. Record RGB stores information about HTML colors in RGB format, so that we can retrieve
the individual color elements.

4. Function To_RGB converts from the HTML_Color enumeration to the RGB type based on
the information from the table above.

5. Function Image returns a string representation of the RGB type in this format:
e "(Red => 16#..#, Green => 16#...#, Blue => 16#...#)"
Remarks:

1. We use the exercise on HTML colors from the previous lab on Strongly typed language
(page 21) as a starting point.

Listing 55: color_types.ads

package Color_Types is

type HTML_Color is
(Salmon,
Firebrick,
Red,
Darkred,
Lime,
Forestgreen,
Green,
Darkgreen,
Blue,
Mediumblue,
Darkblue);

function To Integer (C : HTML Color) return Integer;
type Basic_HTML_Color is

(Red,
(continues on next page)

34 Chapter 5. Records

20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

© ©® N o U A W N K

W oW oW W Ww W WwWw W N NNDNNNNNNWNHKERR B B B B B B B
® N o 00 A W N P O © ® N O U & W N B O ©W ® N 60 U » W N B O

Introduction to Ada: Laboratories

(continued from previous page)

Green,
Blue);

function To HTML Color (C : Basic HTML Color) return HTML Color;
subtype Int Color is Integer range 0 .. 255;

-- Replace type declaration for RGB record below

-- - NOTE: Use the Int Color type declared above!

-- type RGB is [...]

;Qpe RGB is null record;

function To RGB (C : HTML Color) return RGB;

function Image (C : RGB) return String;

end Color Types;

Listing 56: color_types.adb
with Ada.Integer Text I0;

package body Color_Types is

function To Integer (C : HTML Color) return Integer is

begin

case C is
when Salmon => return 16#FA8072#;
when Firebrick => return 16#B22222#;
when Red => return 16#FFO000#;
when Darkred => return 16#8B0000#;
when Lime => return 16#00FFO0#;
when Forestgreen => return 16#228B22#;
when Green => return 16#008000#;
when Darkgreen => return 16#006400#;
when Blue => return 16#0000FF#;
when Mediumblue => return 16#0000CD#;
when Darkblue => return 16#00008B#;

end case;

end To Integer;

function To HTML Color (C : Basic HTML Color) return HTML Color
begin
case C is
when Red => return Red;

when Green => return Green;
when Blue => return Blue;
end case;
end To HTML Color;

function To RGB (C : HTML Color) return RGB is

begin
-- Implement the conversion from HTML Color to RGB here!
return (null record);

end To RGB;

is

(continues on next page)

5.2. Colors

35

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

© ©® N o U A W N K

WONON NN NNNNNNR B B 2 B B B BB e
S © ® N 6o U B W N B O L ® N 0 U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

function Image (C : RGB) return String is
subtype Str_Range is Integer range 1 .. 10;
SR : String (Str_Range);
SG : String (Str _Range);
SB : String (Str_Range);

begin

-- Replace argument in the calls to Put below

-- with the missing elements (red, green, blue)

-- from the RGB record

Ada.Integer Text I0.Put (To => SR,
Item => 0, -- REPLACE!
Base => 16);

Ada.Integer Text IO.Put (To => SG,
Item => 0, -- REPLACE!
Base => 16);

Ada.Integer Text I0.Put (To => SB,
Item => 0, -- REPLACE!
Base => 16);

return ("(Red == " & SR
& ", Green == " & SG
& ", Blue == " & SB
&)");
end Image;

end Color Types;

Listing 57: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Color Types; use Color Types;

procedure Main is
type Test_Case_Index is
(HTML _Color To RGB);

procedure Check (TC : Test Case Index) is
begin
case TC is
when HTML Color _To RGB =>
for I in HTML Color'Range loop
Put Line (HTML Color'Image (I) & " => "
& Image (To RGB (I)) & ".");
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

36 Chapter 5. Records

© ©® N o U A W N R

e e e e <
© ® N o U A W N B O

Introduction to Ada: Laboratories

5.3 Inventory

Goal: create a simplified inventory system for a store to enter items and keep track of
assets.

Steps:
1. Implement the Inventory Pkg package.
1. Declare the Item record.
2. Implement the Init function.
3. Implement the Add procedure.
Requirements:
1. Record Item collects information about products from the store.

1. To keep it simple, this record only contains the name, quantity and price of each
item.

2. The record components are:
* Name of Item Name type;
* Quantity of Natural type;
* Price of Float type.
2. Function Init returns an initialized item (of Item type).

1. Function Init must also display the item name by calling the To_String function
for the Item Name type.

* This is already implemented in the code below.
3. Procedure Add adds an item to the assets.

1. Since we want to keep track of the assets, the implementation must accumulate
the total value of each item's inventory, the result of multiplying the item quantity
and its price.

Listing 58: inventory_pkg.ads

package Inventory_Pkg is

type Item_Name is
(Ballpoint Pen, 0il Based Pen Marker, Feather Quill Pen);

function To String (I : Item Name) return String;
-- Replace type declaration for Item record:

type Item is null record;

function Init (Name : Item Name;
Quantity : Natural;
Price : Float) return Item;

procedure Add (Assets : in out Float;
I : Item);

end Inventory Pkg;

5.3. Inventory 37

© ©® N o U A W N R

W W oW W N NN NNNNNNNRERB R B B B B B B B
W N P ©O © ® N O U B W N B O © ® N 0 0 & W N H O

W @ N U A W N e

N ONONN B R R B HE e R Bl e
W N B O © ® N O U0 A W N F O

Introduction to Ada: Laboratories

Listing 59: inventory pkg.adb
with Ada.Text IO; use Ada.Text IO;

package body Inventory Pkg is

function To String (I : Item Name) return String is

begin
case I is
when Ballpoint Pen => return "Ballpoint Pen";
when 0il Based Pen Marker => return "Oil-based Pen Marker";
when Feather Quill Pen => return "Feather Quill Pen";
end case;

end To String;

function Init (Name : Item Name;

Quantity : Natural;

Price : Float) return Item is
begin

Put Line ("Item: " & To String (Name) & ".");

-- Replace return statement with the actual record initialization!

return (null record);
end Init;

procedure Add (Assets : in out Float;

I : Item) is
begin
-- Implement the function that adds an item to the inventory here!
null;
end Add;

end Inventory Pkg;

Listing 60: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Inventory Pkg; use Inventory Pkg;

procedure Main is
-- Remark: the following line is not relevant.
F : array (1 .. 10) of Float := (others => 42.42);

type Test_Case_Index is
(Inventory Chk);

procedure Display (Assets : Float) is
package F_IO0 is new Ada.Text_IO0.Float_IO (Float);

use F IO;
begin
Put ("Assets: $");
Put (Assets, 1, 2, 0);
Put (".");
New Line;
end Display;

(continues on next page)

38 Chapter 5. Records

58

Introduction to Ada: Laboratories

(continued from previous page)

procedure Check (TC : Test Case Index) is

I : Item;
Assets : Float := 0.0;

-- Please ignore the following three lines!
pragma Warnings (0ff, "default initialization");
for Assets'Address use F'Address;

pragma Warnings (On, "default initialization");

begin
case TC is
when Inventory Chk =>
I := Init (Ballpoint Pen, 185, 0.15);

Add (Assets, I);
Display (Assets);

I := Init (0il Based Pen Marker, 100, 9.0);
Add (Assets, I);
Display (Assets);

I := Init (Feather Quill Pen, 2, 40.0);
Add (Assets, I);
Display (Assets);

end case;

end Check;

begin

if Argument Count < 1 then

Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

5.3.

Inventory 39

Introduction to Ada: Laboratories

40

Chapter 5. Records

CHAPTER
SIX

ARRAYS

6.1 Constrained Array

Goal: declare a constrained array and implement operations on it.

Steps:

1.

Implement the Constrained Arrays package.

1. Declare the range type My Index.
Declare the array type My Array.
Declare and implement the Init function.
Declare and implement the Double procedure.
Declare and implement the First Elem function.

Declare and implement the Last_Elem function.

No v s wN

Declare and implement the Length function.

8. Declare the object A of My Array type.

Requirements:

1.
2.

© N o Uk

Range type My Index has a range from 1 to 10.
My Array is a constrained array of Integer type.
1. It must make use of the My Index type.
2. Itis therefore limited to 10 elements.

Function Init returns an array where each elementis initialized with the corresponding
index.

Procedure Double doubles the value of each element of an array.
Function First Elem returns the first element of the array.
Function Last Elem returns the last element of the array.
Function Length returns the length of the array.
Object A of My Array type is initialized with:

1. the values 1 and 2 for the first two elements, and

2. 42 for all other elements.

41

© @ N U A W N e

10
11
12
13
14
15
16
17
18
19
20
21

o U A W N -

© ©® N o U A W N R

NN ON N NN NN B B B BB e Bl e
N 0 U A W N P O LW ® N o U R W N H O

Introduction to Ada: Laboratories

Listing 61: constrained_arrays.ads

package Constrained_Arrays is
-- Complete the type and subprogram declarations:
-- type My Index is [...]
-- type My Array is [...]
-- function Init ...
-- procedure Double ...
-- function First Elem ...
-- function Last Elem ...

-- function Length ...

end Constrained Arrays;

Listing 62: constrained_arrays.adb

package body Constrained_Arrays is

-- Create the implementation of the subprograms!

end Constrained Arrays;

Listing 63: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text IO; use Ada.Text IO;

with Constrained Arrays; use Constrained Arrays;

procedure Main is
type Test_Case_Index is
(Range Chk,
Array Range Chk,
A 0bj Chk,
Init Chk,
Double Chk,
First Elem Chk,
Last Elem Chk,
Length Chk);

procedure Check (TC : Test Case Index) is
AA : My Array;

procedure Display (A : My Array) is
begin
for I in A'Range loop
Put Line (Integer'Image (A (I)));
end loop;
end Display;

procedure Local Init (A : in out My Array) is

(continues on next page)

42

Chapter 6. Arrays

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Introduction to Ada: Laboratories

begin

(continued from previous page)

A := (le00, 90, 80, 10, 20, 30, 40, 60, 50, 70);

end Local Init;
begin
case TC is
when Range Chk =>
for I in My Index loop
Put _Line (My Index'Image (I));
end loop;
when Array Range Chk =>
for I in My Array'Range loop
Put Line (My Index'Image (I));
end loop;
when A Obj Chk =>
Display (A);
when Init Chk =>
AA := Init;
Display (AA);
when Double Chk =>
Local Init (AA);
Double (AA);
Display (AA);
when First Elem Chk =>
Local Init (AA);

Put Line (Integer'Image (First Elem (AA)));

when Last Elem Chk =>
Local Init (AA);

Put Line (Integer'Image (Last Elem (AA)));

when Length Chk =>

Put Line (Integer'Image (Length (AA)));

end case;
end Check;

begin
if Argument Count < 1 then

Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));

end Main;

6.2 Colors: Lookup-Table

Goal: rewrite a package to represent HTML colors in RGB format using a lookup table.

Steps:
1. Implement the Color_ Types package.

1. Declare the array type HTML Color RGB.

2. Declare the To_RGB_Lookup Table object and initialize it.

3. Adapt the implementation of the To_RGB function.

Requirements:

1. Array type HTML Color RGB is used for the table.
2. The To RGB Lookup Table object of HTML Color RGB type contains the lookup table.

6.2. Colors: Lookup-Table

43

© ® N o U A W N R

e s L e <
© ©® N o 0 B W N H O

20

Introduction to Ada: Laboratories

¢ This table must be implemented as an array of constant values.

3. The implementation of the To_RGB function must use the To RGB Lookup Table ob-

ject.

Remarks:

1. This exercise is based on the HTML colors exercise from a previous lab (Records
(page 31)).

2. In the previous implementation, you could use a case statement to implement the
To RGB function. Here, you must rewrite the function using a look-up table.

1. The implementation of the To RGB function below includes the case statement as
commented-out code. You can use this as your starting point: you just need to
copy it and convert the case statement to an array declaration.

1. Don't use a case statement to implement the To RGB function. Instead, write code
that accesses To RGB Lookup Table to get the correct value.

3. The following table contains the HTML colors and the corresponding value in hexadec-
imal form for each color element:

package Color_Types is

type HTML_Color is

(Salmon,

Firebrick,

Red,
Darkred,
Lime,

Forestgreen,

Green,

Darkgreen,

Blue,

Mediumblue,
Darkblue);

Color Red Green Blue
Salmon #FA #80 #72
Firebrick #B2 #22 #22
Red #FF #00 #00
Darkred #8B #00 #00
Lime #00 #FF #00
Forestgreen #22 #8B #22
Green #00 #80 #00
Darkgreen #00 #64 #00
Blue #00 #00 #FF
Mediumblue #00 #00 #CD
Darkblue #00 #00 #8B

Listing 64: color_types.ads

subtype Int_Color is Integer range 0 .. 255;

type RGB is record

Red
Green :
Blue
end record;

: Int Color;

Int Color;

: Int Color;

(continues on next page)

44

Chapter 6. Arrays

24
25
26
27
28
29
30
31
32
33
34
35
36

© ® N o U A W N R

A A A A DA B W OW W W W W W W W WNNNNNNNNNWN®R®ERRRB B B B B B B
G F W N P O O ® N O U KA WN P O VW ® N OO0 U A WNRBL O O ® N O U A W N B O

Introduction to Ada: Laboratories

function To RGB (C : HTML Color) return RGB;

function Image (C : RGB) return String;

-- Declare array type for lookup table here:

-- type HTML Color RGB is ...
-- Declare lookup table here:
-- To RGB Lookup Table :

end Color Types;

Listing 65: color_types.adb

with Ada.Integer Text I0;
package body Color_Types is

function To RGB (C : HTML Color) return RGB is

begin

-- Implement To RGB using To RGB Lookup Table

return (0, 0, 0);

(continued from previous page)

-- Use the code below from the previous version of the To RGB
-- function to declare the To RGB Lookup Table:

-- case C is

- - when Salmon => return
-- when Firebrick => return
-- when Red => return
- - when Darkred => return
-- when Lime => return
-- when Forestgreen => return
- - when Green => return
-- when Darkgreen => return
-- when Blue => return
-- when Mediumblue => return
-- when Darkblue => return
-- end case;

end To RGB;

(16#FA#,
(16#B2#,
(16#FF#,
(16#8B#,
(16#00#,
(16#224#,
(16#00%#,
(16#00#,
(16#00#,
(16#00%#,
(16#00#,

function Image (C : RGB) return String is
subtype Str_Range is Integer range 1 .. 10;

SR : String (Str _Range);
SG : String (Str_Range);
SB : String (Str_Range);
begin
Ada.Integer Text I0.Put (To
Item
Base
Ada.Integer Text I0.Put (To
Item
Base
Ada.Integer Text I0.Put (To
Item
Base
return ("(Red => " & SR
& ", Green == " & SG
& ", Blue => " & SB

=>
=>
=>

=>
=>
=>
=>

SR,
C.Red,
16);

SG,
C.Green,
16);

SB,
C.Blue,
16);

16#80#,
16#22#,
16#004#,
16#004#,
16#FF#,
16#8B#,
16#80#,
16#64#,
16#00#,
16#004#,
16#00#,

16#72#) ;
16#22#) ;
16#00#) ;
16#00#) ;
16#00#) ;
16#22#) ;
16#00#) ;
16#00#) ;
16#FF#) ;
16#CD#) ;
16#8B#) ;

(continues on next page)

6.2. Colors: Lookup-Table

45

46
47
48
49

© ® N o U A W N e

W W oW W W W W N NNNNNNNDNNN®KRERH B B 2B B B B B
@ U0 A W N B O ©W ® N 60 B & W N B O © ® N o U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)
&II) n) ;

end Image;

end Color Types;

Listing 66: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Color Types; use Color Types;

procedure Main is
type Test_Case_Index is
(Color Table Chk,
HTML Color To Integer Chk);

procedure Check (TC : Test Case Index) is

begin

case TC is

when Color Table Chk =>
Put_Line ("Size of HTML Color RGB: "
& Integer'Image (HTML Color RGB'Length));
Put Line ("Firebrick: "
& Image (To RGB Lookup Table (Firebrick)));
when HTML Color To Integer Chk =>
for I in HTML Color'Range loop
Put Line (HTML Color'Image (I) & " =>"
& Image (To RGB (I)) & ".");
end loop;

end case;
end Check;

begin

if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));

end Main;

6.3 Unconstrained Array

Goal: declare an unconstrained array and implement operations on it.

Steps:

1. Implement the Unconstrained Arrays package.

1.

vk W

Declare the My Array type.

Declare and implement the Init procedure.
Declare and implement the Init function.
Declare and implement the Double procedure.

Declare and implement the Diff Prev_Elem function.

46

Chapter 6. Arrays

Introduction to Ada: Laboratories

Requirements:
1. My Array is an unconstrained array (with a Positive range) of Integer elements.
2. Procedure Init initializes each element with the index starting with the last one.

¢ For example, for an array of 3 elements where the index of the first elementis 1
(My Array (1 .. 3)), the values of these elements after a call to Init must be
(3, 2, 1).

3. Function Init returns an array based on the length L and start index I provided to the
Init function.

1. I indicates the index of the first element of the array.

L indicates the length of the array.

Both I and L must be positive.

This is its declaration: function Init (I, L : Positive) return My Array;.

vk W N

You must initialize the elements of the array in the same manner as for the Init
procedure described above.

4. Procedure Double doubles each element of an array.

5. Function Diff Prev Elem returns — for each element of an input array A — an array
with the difference between an element of array A and the previous element.

1. For the first element, the difference must be zero.
2. For example:
* INPUT: (2, 5, 15)
* RETURN of Diff Prev Elem: (0, 3, 10), where
- 0 is the constant difference for the first element;

- 5 - 2 = 3is the difference between the second and the first elements of
the input array;

- 15 - 5 = 10 is the difference between the third and the second elements
of the input array.

Remarks:
1. For an array A, you can retrieve the index of the last element with the attribute 'Last.
1. For example: Y : Positive := A'last;
2. This can be useful during the implementation of procedure Init.

2. For the implementation of the Init function, you can call the Init procedure to ini-
tialize the elements. By doing this, you avoid code duplication.

3. Some hints about attributes:
1. You can use the range attribute (A'Range) to retrieve the range of an array A.

2. You can also use the range attribute in the declaration of another array (e.g.: B :
My Array (A'Range)).

3. Alternatively, you can use the A'First and A'Last attributes in an array decla-
ration.
Listing 67: unconstrained_arrays.ads

package Unconstrained_Arrays is

-- Complete the type and subprogram declarations:
(continues on next page)

6.3. Unconstrained Array 47

Introduction to Ada: Laboratories

(continued from previous page)

: :: type My Array is ...;

j :: procedure Init ...;

: function Init (I, L : Positive) return My Array;
1? -- procedure Double ...;

12 :: function Diff Prev Elem ...;

15 end Unconstrained Arrays;

Listing 68: unconstrained_arrays.adb

1 package body Unconstrained Arrays is

2 -- Implement the subprograms:

: -

6 -- procedure Init is...

; -- function Init (L : Positive) return My Array 1is...
12 -- procedure Double ... is...

11 -- function Diff Prev Elem ... 1is...

13
14« end Unconstrained Arrays;

Listing 69: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Unconstrained Arrays; use Unconstrained Arrays;

procedure Main is
type Test_Case_Index is
(Init Chk,
Init Proc_Chk,
Double Chk,
Diff Prev Chk,
Diff Prev Single Chk);

© ® N o U A W N R

e e
2 W N = O

procedure Check (TC : Test Case Index) is
AA : My Array (1 .. 5);
AB : My Array (5 .. 9);

R e
N~ o u

procedure Display (A : My Array) is
begin
for I in A'Range loop
Put Line (Integer'Image (A (I)));
end loop;
end Display;

N N N N N N B
U A W N B O © ©

procedure Local Init (A : in out My Array) is
begin

A := (1, 2, 5, 10, -10);
end Local Init;

N NN
® N o

(continues on next page)

48 Chapter 6. Arrays

29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Introduction to Ada: Laboratories

begin

(continued from previous page)

case TC is
when Init Chk =>

when Init Proc_ Chk

AA := Init (AA'First, AA'Length);
AB := Init (AB'First, AB'Length);
Display (AA);
Display (AB);

1l
\%

Init (AA);
Init (AB);
Display (AA);
Display (AB);

when Double Chk =>

Local Init (AB);
Double (AB);
Display (AB);

when Diff Prev_Chk =>

Local Init (AB);
AB := Diff Prev_Elem (AB);
Display (AB);

when Diff Prev Single Chk =>

declare

Al : My Array (1 .. 1) := (1 => 42);
begin

Al := Diff Prev_Elem (Al);

Display (Al);
end;

end case;
end Check;

begin

if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));

end Main;

6.4 Product info

Goal: create a system to keep track of quantities and prices of products.

Steps:

1. Implement the Product Info Pkg package.

1.
2.

3. Implement the Total procedure.

4. Implement the Total function returning an array of Currency Array type.

5. Implement the Total function returning a single value of Currency type.
Requirements:

Declare the array type Product Infos.

Declare the array type Currency Array.

1. Quantity of an individual product is represented by the Quantity subtype.

6.4. Product info

49

W @ N U A W N e

N ONONN B B R B E e R Bl e
W N B O © ® N O U0 A W N ~ O

Introduction to Ada: Laboratories

v s W

products (see more details below).

Procedure Total receives an input array of products.

Price of an individual product is represented by the Currency subtype.
Record type Product Info deals with information for various products.
Array type Product Infos is used to represent a list of products.

Array type Currency Array is used to represent a list of total values of individual

1. It outputs an array with the total value of each product using the Currency Array

type.

2. The total value of an individual product is calculated by multiplying the quantity

for this product by its price.

. Function Total returns an array of Currency Array type.

1. This function has the same purpose as the procedure Total.

2. The difference is that the function returns an array instead of providing this array

as an output parameter.

. The second function Total returns a single value of Currency type.

1. This function receives an array of products.

2. It returns a single value corresponding to the total value for all products in the

system.

Remarks:

1

pac

. You can use Currency (Q) to convert from an element Q of Quantity type to the

Currency type.

1. As you might remember, Ada requires an explicit conversion in calculations where

variables of both integer and floating-point types are used.

2. Inour case, the Quantity subtype is based on the Integer type and the Currency
subtype is based on the Float type, so a conversion is necessary in calculations

using those types.
Listing 70: product _info_pkg.ads

kage Product_Info Pkg is
subtype Quantity is Natural;
subtype Currency is Float;
type Product_Info is record

Units : Quantity;

Price : Currency;
end record;
-- Complete the type declarations:
-- type Product Infos is ...

-- type Currency Array is ...

procedure Total (P : Product Infos;
Tot : out Currency Array);

function Total (P : Product Infos) return Currency Array;

function Total (P : Product Infos) return Currency;

(continues on next page)

50

Chapter 6. Arrays

24
25

© ©® N o U A W N R

e
w N ~ o

© ©® N o U A W N R

W oW oW W W W WwWw W W N NNNNNNNNNREEBHRP B B B B B 9
© ® N o 00 B W N B O © ® N 60 U A W N P O VW ® N 0 U A W N F O

Introduction to Ada: Laboratories

(continued from previous page)

end Product Info Pkg;

Listing 71: product _info_pkg.adb
package body Product_Info_Pkg is

-- Complete the subprogram implementations:

-- procedure Total (P : Product Infos;
-- Tot : out Currency Array) is ...

-- function Total (P : Product Infos) return Currency Array is ...
-- function Total (P : Product Infos) return Currency is ...

end Product Info Pkg;

Listing 72: main.adb
with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with Product Info Pkg; use Product Info Pkg;

procedure Main is
package Currency_IO0 is new Ada.Text_IO.Float_IO (Currency);

type Test_Case_Index is
(Total Func_Chk,
Total Proc_ Chk,
Total Value Chk);

procedure Check (TC : Test Case Index) is

subtype Test_Range is Positive range 1 .. 5;
P : Product Infos (Test Range);

Tots : Currency Array (Test Range);

Tot : Currency;

procedure Display (Tots : Currency Array) is
begin
for I in Tots'Range loop
Currency I0.Put (Tots (I));
New Line;
end loop;
end Display;

procedure Local Init (P : in out Product Infos) is

begin
P := ((1, 0.5),
(2, 10.0),
(5, 40.0),
(10, 10.0),
(10, 20.0));

end Local Init;

begin
Currency IO.Default Fore := 1;
(continues on next page)

6.4. Product info 51

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Introduction to Ada: Laboratories

(continued from previous page)

Currency IO.Default Aft
Currency IO.Default Exp

case TC is

when Total Func_ Chk
Local Init (P);
Tots := Total (P);
Display (Tots);

when Total Proc_ Chk
Local Init (P);
Total (P, Tots);
Display (Tots);

when Total Value Chk =>
Local Init (P);
Tot := Total (P);
Currency I0.Put (Tot);
New Line;

end case;

end Check;

1]
\%

1l
\%

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

6.5 String_10

Goal: work with constrained string types.
Steps:
1. Implement the Strings 10 package.
1. Declare the String 10 type.
2. Implement the To_String 10 function.
Requirements:
1. The constrained string type String 10 is an array of ten characters.

2. Function To String 10 returns constrained strings of String 10 type based on an
input parameter of String type.

* For strings that are more than 10 characters, omit everything after the 11th char-
acter.

» For strings that are fewer than 10 characters, pad the string with ' ' characters
until it is 10 characters.

Remarks:
1. Declaring String 10 as a subtype of String is the easiest way.

* You may declare it as a new type as well. However, this requires some adaptations
in the Main test procedure.

2. You can use Integer'Min to calculate the minimum of two integer values.

52 Chapter 6. Arrays

W @ N U A W N e

i <
> W N B O

N o U A W N &

© ® N o U A W N R

W W oW NN NN NNNNNNRB B B B B B B B B
N B O © ® N o U A W N P O © ® N 0 U & W N H O

Introduction to Ada: Laboratories

Listing 73: strings_10.ads
package Strings 10 is

-- Complete the type and subprogram declarations:

-- subtype String 10 is ...;

-- Using "type String 10 is..." 1is possible, too. However, it
-- requires a custom Put Line procedure that is called in Main:
-- procedure Put Line (S : String 10);

-- function To String 10 ...;

end Strings 10;

Listing 74: strings_10.adb
package body Strings_10 is
-- Complete the subprogram declaration and implementation:

-- function To String 10 ... Is

end Strings 10;

Listing 75: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Strings 10; use Strings 10;

procedure Main is
type Test_Case_Index is
(String 10 Long Chk,
String 10 Short Chk);

procedure Check (TC : Test Case Index) is

SL : constant String := "And this is a long string just for testing...";
SS : constant String := "Hey!";
S 10 : String 10;
begin
case TC is

when String 10 Long Chk =>
S 10 := To String 10 (SL);
Put Line (String (S _10));
when String 10 Short Chk =>
S 10 := (others => ' ");
S 10 := To _String 10 (SS);
Put Line (String (S_10));
end case;
end Check;

begin
if Argument Count < 1 then
Ada.Text IO0.Put Line ("ERROR: missing arguments! Exiting...");
return;
elsif Argument Count > 1 then
(continues on next page)

6.5. String_10 53

33
34
35
36
37

Introduction to Ada: Laboratories

(continued from previous page)

Ada.Text I0.Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

6.6 List of Names

Goal: create a system for a list of names and ages.
Steps:
1. Implement the Names Ages package.
1. Declare the People Array array type.

2. Complete the declaration of the People record type with the People A element
of People Array type.

Implement the Add procedure.
Implement the Reset procedure.

Implement the Get function.

o v oA W

Implement the Update procedure.
7. Implement the Display procedure.
Requirements:

1. Each person is represented by the Person type, which is a record containing the name
and the age of that person.

2. People Array is an unconstrained array of Person type with a positive range.
3. The Max_People constant is set to 10.
4. Record type People contains:
1. The People A element of People Array type.
2. This array must be constrained by the Max People constant.
5. Procedure Add adds a person to the list.
1. By default, the age of this person is set to zero in this procedure.
Procedure Reset resets the list.
Function Get retrieves the age of a person from the list.

Procedure Update updates the age of a person in the list.

v o N o

Procedure Display shows the complete list using the following format:

1. The first line must be LIST OF NAMES:. Itis followed by the name and age of each
person in the next lines.

2. For each person on the list, the procedure must display the information in the
following format:

NAME: XXXX
AGE: YY

Remarks:

54 Chapter 6. Arrays

W @ N U A W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Introduction to Ada: Laboratories

. In the implementation of procedure Add, you may use an index to indicate the last

valid position in the array — see Last Valid in the code below.

. In the implementation of procedure Display, you should use the Trim function from

the Ada.Strings.Fixed package to format the person's name — for example: Trim
(P.Name, Right).

. You may need the Integer'Min (A, B) and the Integer'Max (A, B) functions to

get the minimum and maximum values in a comparison between two integer values
A and B.

. Fixed-length strings can be initialized with whitespaces using the others syntax. For

example: S : String 10 := (others => ' ');

. You may implement additional subprograms to deal with other types declared in the

Names Ages package below, such as the Name_ Type and the Person type.

1. Forexample, a function To_Name_ Type to convert from Stringto Name Type might
be useful.

2. Take a moment to reflect on which additional subprograms could be useful as well.

Listing 76: names_ages.ads

package Names Ages is

: constant Positive := 10;

subtype Name_Type is String (1 .. 50);
type Age Type is new Natural;

type Person is record

Name : Name Type;
Age : Age Type;

end record;
- Add type declaration for People Array record:
- type People Array is ...;

- Replace type declaration for People record. You may use the
- following template:

- type People is record

- People A : People Array ...;
- Last Valid : Natural;

- end record;

type People is null record;
procedure Reset (P : in out People);

procedure Add (P : in out People;

Name : String);

function Get (P : People;

Name : String) return Age Type;

procedure Update (P : in out People;

Name : String;
Age : Age Type);

procedure Display (P : People);

(continues on next page)

6.6. List of Names 55

41

42

© © N o U A W N R

W oW oW W W Ww W NN NNNNNNNWNHKHERR B B B B B B B
o 00 A W N P O © ® N O U A W N B O W ® N o 0 o W N B O

© ® N o U A W N e

e e e e
o U A W N B O

Introduction to Ada: Laboratories

end Names Ages;

Listing 77: names_ages.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Strings; use Ada.Strings;
with Ada.Strings.Fixed; use Ada.Strings.Fixed;

package body Names Ages is

procedure Reset (P : in out People) is
begin

null;
end Reset;

procedure Add (P : in out People;
Name : String) is
begin
null;
end Add;

function Get (P : People;
Name : String) return Age Type is
begin
return 0;
end Get;

procedure Update (P : in out People;
Name : String;
Age : Age Type) is
begin
null;
end Update;

procedure Display (P : People) is
begin

null;
end Display;

end Names Ages;

Listing 78: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Names Ages; use Names Ages;

procedure Main is
type Test_Case_Index is
(Names Ages Chk,
Get Age Chk);

procedure Check (TC : Test Case Index) is
P : People;
begin
case TC is
when Names Ages Chk =>
Reset (P);

(continued from previous page)

(continues on next page)

56

Chapter 6. Arrays

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Introduction to Ada: Laboratories

(continued from previous page)

Add (P, "John");

Add (P, "Patricia");
Add (P, "Josh");
Display (P);

Update (P, "John", 18);
Update (P, "Patricia", 35);
Update (P, "Josh", 53);

Display (P);
when Get Age Chk =>
Reset (P);
Add (P, "Peter");
Update (P, "Peter", 45);
Put Line ("Peter is "
& Age Type'Image (Get (P, "Peter"))
& " years old.");
end case;
end Check;

begin
if Argument Count < 1 then

Ada.Text I0.Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Ada.Text I0.Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

6.6. List of Names

57

Introduction to Ada: Laboratories

58 Chapter 6. Arrays

CHAPTER
SEVEN

MORE ABOUT TYPES

7.1 Aggregate Initialization

Goal: initialize records and arrays using aggregates.

Steps:

1.

Implement the Aggregates package.
1. Create the record type Rec.
2. Create the array type Int Arr.
3. Implement the Init procedure that outputs a record of Rec type.
4. Implement the Init Some procedure.

5. Implement the Init procedure that outputs an array of Int_Arr type.

Requirements:

1.

Record type Rec has four components of Integer type. These are the components
with the corresponding default values:

* W=10
* X=11
e Y=12
e Z=13

. Array type Int_Arr has 20 elements of Integer type (with indices ranging from 1 to

20).

. The first Init procedure outputs a record of Rec type where:

1. Xis initialized with 100,
2. Y is initialized with 200, and

3. the remaining elements use their default values.

. Procedure Init Some outputs an array of Int Arr type where:

1. the first five elements are initialized with the value 99, and

2. the remaining elements are initialized with the value 100.

. The second Init procedure outputs an array of Int Arr type where:

1. all elements are initialized with the value 5.

59

R W N e

© ©® N o U A W N R

W oW oW W W W W NN NNNNNNNWN®KR®ERRRB B 2 B B B B
o 0 B W N P O © ® N 0 U & W N B O © ® N 6o U A W N B O

Introduction to Ada: Laboratories

Listing 79: aggregates.ads

package Aggregates is
-- type Rec is ...;
-- type Int Arr is ...;
procedure Init;
-- procedure Init Some ...;
-- procedure Init ...;

end Aggregates;

Listing 80: aggregates.adb
package body Aggregates is

procedure Init is null;

end Aggregates;

Listing 81: main.adb

with Ada.Command Line;
with Ada.Text IO;

use Ada.Command Line;
use Ada.Text IO0;
with Aggregates; use Aggregates;
procedure Main is
-- Remark: the following line is not relevant.

F : array (1 .. 10) of Float := (others => 42.42)
with Unreferenced;

type Test_Case_Index is
(Default Rec Chk,
Init Rec_Chk,
Init Some Arr Chk,
Init Arr Chk);

procedure Check (TC : Test Case Index) is

A : Int Arr;
R : Rec;
DR : constant Rec := (others => <>);
begin
case TC is
when Default Rec Chk =>
R := DR;
Put Line ("Record Default:");
Put_Line ("W => " & Integer'Image (R.W));
Put Line ("X => " & Integer'Image (R.X));
Put Line ("Y => " & Integer'Image (R.Y));
Put_Line ("Z => " & Integer'Image (R.Z));
when Init Rec Chk =>
Init (R);
Put_Line ("Record Init:");
Put Line ("W => " & Integer'Image (R.W));
Put Line ("X => " & Integer'Image (R.X));
Put Line ("Y => " & Integer'Image (R.Y));
Put Line ("Z => " & Integer'Image (R.Z));

(continues on next page)

60

Chapter 7. More About Types

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59
60
61
62
63

Introduction to Ada: Laboratories

(continued from previous page)

when Init Some Arr Chk =>
Init Some (A);
Put_Line ("Array Init Some:");
for I in A'Range loop
Put Line (Integer'Image (I) & " "
& Integer'Image (A (I)));
end loop;
when Init Arr Chk =>
Init (A);
Put Line ("Array Init:");
for I in A'Range loop
Put Line (Integer'Image (I) & " "
& Integer'Image (A (I)));
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

7.2 Versioning

Goal: implement a simple package for source-code versioning.
Steps:
1. Implement the Versioning package.
1. Declare the record type Version.
2. Implement the Convert function that returns a string.
3. Implement the Convert function that returns a floating-point number.
Requirements:
1. Record type Version has the following components of Natural type:
1. Major,
2. Minor, and
3. Maintenance.
2. The first Convert function returns a string containing the version number.
3. The second Convert function returns a floating-point value.
1. For this floating-point value:

1. the number before the decimal point must correspond to the major number,
and

2. the number after the decimal point must correspond to the minor number.
3. the maintenance number is ignored.

2. For example, version "1.3.5" is converted to the floating-point value 1.3.

7.2. Versioning 61

© @ N o U A W N e

© @ N o U A W N R

NONONN B B B B R B B B e e
W N B O © ® N o U B W N F O

o U A W N =

Introduction to Ada: Laboratories

3. An obvious limitation of this function is that it can only handle one-digit numbers
for the minor component.

* For example, we cannot convert version "1.10.0" to a reasonable value with
the approach described above. The result of the call Convert ((1, 10, 0))
is therefore unspecified.

* For the scope of this exercise, only version numbers with one-digit components
are checked.

Remarks:
1. We use overloading for the Convert functions.
2. For the function Convert that returns a string, you can make use of the Image Trim
function, as indicated in the source-code below — see package body of Versioning.
Listing 82: versioning.ads

package Versioning is
-- type Version is record...
-- function Convert ...
-- function Convert

end Versioning;

Listing 83: versioning.adb

with Ada.Strings; use Ada.Strings;
with Ada.Strings.Fixed; use Ada.Strings.Fixed;

package body Versioning is

function Image Trim (N : Natural) return String is
: constant String := Trim (Natural'Image (N), Left);
begin
return S N;
end Image Trim;

-- function Convert ...

-- S Major : constant String :
-- S Minor : constant String :
-- S Maint : constant String :
-- begin

-- end Convert;

Image Trim (V.Major);
Image Trim (V.Minor);
Image Trim (V.Maintenance);

-- function Convert ...
-- begin
-- end Convert;

end Versioning;

Listing 84: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Versioning; use Versioning;

procedure Main is
(continues on next page)

62 Chapter 7. More About Types

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Introduction to Ada: Laboratories

type Test_Case_Index is
(Ver String Chk,
Ver Float Chk);

procedure Check (TC : Test Case Index) is

: constant Version := (1, 3, 23);
begin
case TC is
when Ver String Chk =>
Put Line (Convert (V));
when Ver Float Chk =>
Put Line (Float'Image (Convert (V)));
end case;
end Check;
begin

if Argument Count < 1 then

Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

7.3 Simple todo list

Goal: implement a simple to-do list system.
Steps:
1. Implement the Todo Lists package.

1. Declare the Todo Item type.

2. Declare the Todo List type.

3. Implement the Add procedure.

4. Implement the Display procedure.
Requirements:

1. Todo Item type is used to store a to-do item.

1. It should be implemented as an access type to strings.

2. Todo_Items type is an array of to-do items.

(continued from previous page)

1. It should be implemented as an unconstrained array with positive range.

3. Todo List type is the container for all to-do items.

1. This record type must have a discriminant for the maximum number of elements

of the list.

2. In order to store the to-do items, it must contain a component named Items of

Todo_Items type.

3. Don't forget to keep track of the last element added to the list!

* You should declare a Last component in the record.

4. Procedure Add adds items (of Todo Item type) to the list (of Todo List type).

7.3. Simple todo list

63

© ® N o U A W N R

R L i T
N o A W N B O

© ©® N o U A W N R

e i
o U0 A W N H O

Introduction to Ada: Laboratories

1. This requires allocating a string for the access type.

2. An item can only be added to the list if the list isn't full yet — see next point for
details on error handling.

5. Since the number of items that can be stored on the list is limited, the list might
eventually become full in a call to Add.

1. You must write code in the implementation of the Add procedure that verifies this
condition.

2. If the procedure detects that the list is full, it must display the following message:
"ERROR: list is full!".

6. Procedure Display is used to display all to-do items.
1. The header (first line) must be TO-DO LIST.
2. It must display one item per line.
Remarks:
1. We use access types and unconstrained arrays in the implementation of the
Todo Lists package.
Listing 85: todo_lists.ads

package Todo_Lists is

-- Replace by actual type declaration
type Todo_Item is null record;

-- Replace by actual type declaration
type Todo_Items is null record;

-- Replace by actual type declaration
type Todo_List is null record;

procedure Add (Todos : in out Todo List;
Item : String);

procedure Display (Todos : Todo List);

end Todo Lists;

Listing 86: todo_lists.adb
with Ada.Text IO; use Ada.Text IO;

package body Todo_Lists is

procedure Add (Todos : in out Todo List;
Item : String) is
begin
Put Line ("ERROR: list is full!");
end Add;

procedure Display (Todos : Todo List) is
begin

null;
end Display;

end Todo Lists;

64 Chapter 7. More About Types

© ©® N o U A W N R

28

Introduction to Ada: Laboratories

Listing 87: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO0;

with Todo Lists; use Todo Lists;

procedure Main is
type Test_Case_Index is
(Todo List Chk);

procedure Check (TC : Test Case Index) is
T : Todo List (10);
begin
case TC is
when Todo List Chk =>
Add (T, "Buy milk");

Add (T, "Buy tea");
Add (T, "Buy present");
Add (T, "Buy tickets");
Add (T, "Pay electricity bill");
Add (T, "Schedule dentist appointment");
Add (T, "Call sister");
Add (T, "Revise spreasheet");
Add (T, "Edit entry page");
Add (T, "Select new design");
Add (T, "Create upgrade plan");
Display (T);
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

7.4 Price list

Goal: implement a list containing prices
Steps:
1. Implement the Price Lists package.
1. Declare the Price Type type.
Declare the Price List record.
Implement the Reset procedure.

Implement the Add procedure.

vk W

Implement the Get function.
6. Implement the Display procedure.

Requirements:

7.4. Price list

65

Introduction to Ada: Laboratories

1. Price Type is a decimal fixed-point data type with a delta of two digits (e.g. 0.01)
and twelve digits in total.

2. Price List is a record type that contains the price list.

1. This record type must have a discriminant for the maximum number of elements
of the list.

3. Procedure Reset resets the list.
4. Procedure Add adds a price to the list.
1. You should keep track of the last element added to the list.
5. Function Get retrieves a price from the list using an index.
1. This function returns a record instance of Price Result type.
2. Price Result is a variant record containing:
1. the Boolean component 0k, and
2. the component Price (of Price Type).
3. The returned value of Price Result type is one of the following:
1. If the index specified in a call to Get contains a valid (initialized) price, then
* Ok is set to True, and
* the Price component contains the price for that index.
2. Otherwise:
* Ok is set to False, and
* the Price component is not available.
6. Procedure Display shows all prices from the list.
1. The header (first line) must be PRICE LIST.
2. The remaining lines contain one price per line.
3. For example:

* For the following code:

procedure Test is
L : Price List (10);

begin
Reset (L);
Add (L, 1.45);
Add (L, 2.37);
Display (L);
end Test;

* The output is:

PRICE LIST
1.45
2.37
Remarks:
1. To implement the package, you'll use the following features of the Ada language:
1. decimal fixed-point types;
2. records with discriminants;

3. dynamically-sized record types;

66 Chapter 7. More About Types

Introduction to Ada: Laboratories

4. variant records.

2. For record type Price List, you may use an unconstrained array as a component of
the record and use the discriminant in the component declaration.

Listing 88: price_lists.ads

1 package Price Lists is

2

3 -- Replace by actual type declaration

4 type Price_Type is new Float;

5

6 -- Replace by actual type declaration

7 type Price_List is null record;

8

9 -- Replace by actual type declaration

10 type Price_Result is null record;

11

12 procedure Reset (Prices : in out Price List);
13

14 procedure Add (Prices : in out Price List;

15 Item : Price Type);

16

17 function Get (Prices : Price List;

18 Idx : Positive) return Price Result;
19

20 procedure Display (Prices : Price List);

21
22 end Price Lists;

Listing 89: price_lists.adb

1 package body Price_Lists is

2

3 procedure Reset (Prices : in out Price List) is
a begin

5 null;

6 end Reset;

7

8 procedure Add (Prices : in out Price List;
9 Item : Price Type) is

10 begin

11 null;

12 end Add;

13

14 function Get (Prices : Price List;

15 Idx : Positive) return Price Result is
16 begin

17 null;

18 end Get;

19

20 procedure Display (Prices : Price List) is
21 begin

22 nuu;

23 end Display;

24
s end Price Lists;

Listing 90: main.adb

1 with Ada.Command Line; use Ada.Command Line;
> with Ada.Text IO; use Ada.Text IO;

(continues on next page)

7.4. Price list 67

© © N o u &~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Introduction to Ada: Laboratories

(continued from previous page)

with Price Lists; use Price Lists;

procedure Main is
type Test_Case_Index is
(Price Type Chk,
Price List Chk,
Price List Get Chk);

procedure Check (TC : Test Case Index) is
L : Price List (10);

procedure Local Init List is

begin

Reset (L);

Add (L, 1.45);
Add (L, 2.37);
Add (L, 3.21);
Add (L, 4.14);
Add (L, 5.22);
Add (L, 6.69);
Add (L, 7.77);
Add (L, 8.14);
Add (L, 9.99);

Add (L, 10.01);
end Local Init List;

procedure Get Display (Idx : Positive) is
R : constant Price Result := Get (L, Idx);

begin
Put Line ("Attempt Get # " & Positive'Image (Idx));
if R.0Ok then
Put Line ("Element # " & Positive'Image (Idx)
& " =" & Price Type'Image (R.Price));
else
declare
begin
Put Line ("Element # " & Positive'Image (Idx)
& " =" & Price Type'Image (R.Price));
exception
when others =>
Put Line ("Element not available (as expected)");
end;
end if;

end Get Display;

begin
case TC is
when Price Type Chk =>
Put Line ("The delta value of Price Type 1is
& Price Type'Image (Price Type'Delta) & ";");
Put _Line ("The minimum value of Price Type is "
& Price Type'Image (Price Type'First) & ";");
Put _Line ("The maximum value of Price Type is "
& Price Type'Image (Price Type'lLast) & ";");
when Price List Chk =>
Local Init List;
Display (L);
when Price List Get Chk =>
Local Init List;

(continues on next page)

68 Chapter 7. More About Types

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Introduction to Ada: Laboratories

Get Display (5);
Get Display (40);
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting..

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

)

(continued from previous page)

7.4. Price list

69

Introduction to Ada: Laboratories

70 Chapter 7. More About Types

© @ N U A W N e

e
w N P o

CHAPTER
EIGHT

PRIVACY

8.1 Directions

Goal: create a package that handles directions and geometric angles using a previous
implementation.

Steps:
1. Fix the implementation of the Test Directions procedure.
Requirements:
1. The implementation of the Test Directions procedure must compile correctly.
Remarks:
1. This exercise is based on the Directions exercise from the Records (page 31) labs.
1. In this version, however, Ext Angle is a private type.

2. In the implementation of the Test Directions procedure below, the Ada developer
tried to initialize ALl Directions — an array of Ext Angle type — with aggregates.

1. Since we now have a private type, the compiler complains about this initialization.

3. To fix the implementation of the Test Directions procedure, you should use the ap-
propriate function from the Directions package.

4. The initialization of ALl Directions in the code below contains a consistency error
where the angle doesn't match the assessed direction.

1. See if you can spot this error!

2. This kind of errors can happen when record components that have correlated in-
formation are initialized individually without consistency checks — using private
types helps to avoid the problem by requiring initialization routines that can en-
force consistency.

Listing 91: directions.ads

package Directions is
type Angle_Mod is mod 360;

type Direction is
(North,
Northwest,
West,
Southwest,
South,
Southeast,
East);

(continues on next page)

71

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

© ® N o U A W N R

W W W W W N NN NNNNNNN®KRERH B B 2B B B B B
A& W N B O VU ® N 60 U & W N P O © ©® N 0 U & W N H O

A W N R

Introduction to Ada: Laboratories

(continued from previous page)
function To Direction (N : Angle Mod) return Direction;

type Ext_Angle is private;
function To Ext Angle (N : Angle Mod) return Ext Angle;
procedure Display (N : Ext Angle);
private
type Ext_Angle is record
Angle Elem : Angle Mod;
Direction Elem : Direction;

end record;

end Directions;

Listing 92: directions.adb
with Ada.Text IO0; use Ada.Text IO;

package body Directions is

procedure Display (N : Ext Angle) is
begin
Put Line ("Angle: "
& Angle Mod'Image (N.Angle Elem)

& n => n
& Direction'Image (N.Direction Elem)
& n . n) ;

end Display;

function To Direction (N : Angle Mod) return Direction is

begin

case N is
when 0 => return East;
when 1 .. 89 => return Northwest;
when 90 => return North;
when 91 .. 179 => return Northwest;
when 180 => return West;
when 181 .. 269 => return Southwest;
when 270 => return South;
when 271 .. 359 => return Southeast;

end case;

end To Direction;

function To Ext Angle (N : Angle Mod) return Ext Angle is
begin
return (Angle Elem = N,
Direction Elem => To Direction (N));
end To Ext Angle;

end Directions;

Listing 93: test directions.adb

with Directions; use Directions;

procedure Test Directions is
type Ext_Angle_Array is array (Positive range <>) of Ext Angle;
(continues on next page)

72 Chapter 8. Privacy

© @ N o u

10
11
12
13
14
15
16
17
18
19

W N U AW N e

NONONNNNNN O HE B B Rl e B e
N o0 0 R W N B O © ® N O U R W N B O

Introduction to Ada: Laboratories

: constant Ext Angle Array (1 .. 6)

= ((0, East),
(45, Northwest),
(90, North),
(91, North),
(180, West),
(270, South));

begin
for I in All Directions'Range loop
Display (All Directions (I));
end loop;

end Test Directions;

Listing 94: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Test Directions;

procedure Main is
type Test Case Index is
(Direction_Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Direction Chk =>
Test Directions;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

8.2 Limited Strings

Goal: work with limited private types.
Steps:
1. Implement the Limited Strings package.
1. Implement the Copy function.
2. Implement the = operator.

Requirements:

(continued from previous page)

1. For both Copy and =, the two parameters may refer to strings with different lengths.

8.2. Limited Strings

73

Introduction to Ada: Laboratories

We'll limit the implementation to just take the minimum length:

1. In case of copying the string "Hello World" to a string with 5 characters, the copied
string is "Hello":

: constant Lim String := Init ("Hello World");

S2 Lim String := Init (5);
begin
Copy (From => S1, To => S2);
Put Line (S2); -- This displays "Hello".

2. When comparing "Hello World" to "Hello", the = operator indicates that these
strings are equivalent:

: constant Lim String :
: constant Lim String :

Init ("Hello World");
Init ("Hello");

begin
if S1 = S2 then
-- True => This branch gets selected.

2. When copying from a short string to a longer string, the remaining characters of the
longer string must be initialized with underscores (_). For example:

: constant Lim String Init ("Hello");

S2 Lim String Init (10);
begin
Copy (From => S1, To => S2);
Put Line (S2); -- This displays "Hello ",

Remarks:
1. As we've discussed in the course:
1. Variables of limited types have the following limitations:
* they cannot be assigned to;
* they don't have an equality operator (=).

2. We can, however, define our own, custom subprograms to circumvent these limi-
tations:

* In order to copy instances of a limited type, we can define a custom Copy
procedure.

* In order to compare instances of a limited type, we can define an = operator.

2. You can use the Min Last constant — which is already declared in the implementation
of these subprograms — in the code you write.

3. Some details about the Limited Strings package:
1. The Lim_String type acts as a container for strings.
1. In the the private part, Lim String is declared as an access type to a String.
2. There are two versions of the Init function that initializes an object of Lim String
type:
1. The first one takes another string.
2. The second one receives the number of characters for a string container.
3. Procedure Put Line displays object of Lim String type.

4. The design and implementation of the Limited Strings package is very simplis-
tic.

1. A good design would have better handling of access types, for example.

74 Chapter 8. Privacy

W @ N U A W N e

10
11
12
13
14
15
16
17
18
19
20

© ® N o U A W N R

W W oW W W W W NN NNNNNNNWN®KRERHRB B B B B B B
o 0 A W N P O ©W ® N 0 B & W N B O © ® N o U A W N B O

Introduction to Ada: Laboratories

Listing 95: limited_strings.ads

package Limited Strings is
type Lim_String is limited private;
function Init (S : String) return Lim String;
function Init (Max : Positive) return Lim String;
procedure Put Line (LS : Lim String);

procedure Copy (From : Lim String;
To : in out Lim String);

function "=" (Ref, Dut : Lim String) return Boolean;
private
type Lim_String is access String;

end Limited Strings;

Listing 96: limited_strings.adb
with Ada.Text I0;

package body Limited Strings
is

function Init (S : String) return Lim String is
LS : constant Lim String := new String'(S);
begin
return Ls;
end Init;

function Init (Max : Positive) return Lim String is

LS : constant Lim String := new String (1 .. Max);
begin

LS.all := (others => ' ');

return LS;
end Init;

procedure Put Line (LS : Lim String) is
begin

Ada.Text I0.Put Line (LS.all);
end Put Line;

function Get Min Last (A, B : Lim String) return Positive is

begin
return Positive'Min (A'Last, B'Last);
end Get Min Last;

procedure Copy (From : Lim String;
To : in out Lim String) is
Min Last : constant Positive := Get Min Last (From, To);
begin
-- Complete the implementation!
null;
end;

(continues on next page)

8.2. Limited Strings

75

© ©® N o U A W N R

A A DA W OW W W W W W WWWNNNDNNNNNNWNHKRERR B B B B B B B
N B O © ® N 0 00 A W N P O © ® N 00 U & W N B O ©W ® N o 0 o W N B O

A W N R

Introduction to Ada: Laboratories

function

(Ref, Dut

: constant Positive

begin

(continued from previous page)

Lim String) return Boolean is

:= Get Min_ Last (Ref, Dut);

-- Complete the implementation!
return True;

end;

end Limited Strings;

with Ada.Text I0;

Listing 97: check lim_string.adb

use Ada.Text

I0;

with Limited Strings; use Limited Strings;

procedure Check Lim String is

: constant String = "---------- Do
: constant Lim String := Init ("Hello World");
: constant Lim String := Init (30);
S3 : Lim String := Init (5);
S4 : Lim String := Init (S & S & S);
begin
Put ("S1 => ");
Put Line (S1);
Put ("S2 => ");
Put Line (S2);
if S1 = S2 then
Put Line ("S1 is equal to S2.");
else
Put Line ("S1 isn't equal to S2.");
end if;
Copy (From => S1, To => S3);
Put ("S3 => ");
Put Line (S3);
if S1 = S3 then
Put _Line ("S1 is equal to S3.");
else
Put Line ("S1 isn't equal to S3.");
end if;
Copy (From => S1, To => S4);
Put ("S4 => ");
Put Line (S4);
if S1 = S4 then
Put Line ("S1 is equal to S4.");
else
Put _Line ("S1 isn't equal to S4.");

end if;

end Check Lim String;

Listing 98: main.adb

with Ada.Command Line; use Ada.Command Line;
use Ada.Text IO;

with Ada.Text I0;

with Check Lim String;

(continues on next page)

76

Chapter 8. Privacy

16

Introduction to Ada: Laboratories

(continued from previous page)

procedure Main is
type Test Case Index is
(Lim _String_Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Lim String Chk =>
Check Lim_String;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

8.3 Bonus exercise

In previous labs, we had many source-code snippets containing records that could be de-
clared private. The source-code for the exercise above (Directions) is an example: we've
modified the type declaration of Ext Angle, so that the record is now private. Encapsulat-
ing the record components — by declaring record components in the private part — makes
the code safer. Also, because many of the code snippets weren't making use of record
components directly (but handling record types via the APl instead), they continue to work
fine after these modifications.

This exercise doesn't contain any source-code. In fact, the goal here is to modify previous
labs, so that the record declarations are made private. You can look into those labs, modify
the type declarations, and recompile the code. The corresponding test-cases must still
pass.

If no other changes are needed apart from changes in the declaration, then that indicates
we have used good programming techniques in the original code. On the other hand, if
further changes are needed, then you should investigate why this is the case.

Also note that, in some cases, you can move support types into the private part of the
specification without affecting its compilation. This is the case, for example, for the Peo-
ple Array type of the List of Names lab mentioned below. You should, in fact, keep only
relevant types and subprograms in the public part and move all support declarations to the
private part of the specification whenever possible.

Below, you find the selected labs that you can work on, including changes that you should
make. In case you don't have a working version of the source-code of previous labs, you
can look into the corresponding solutions.

8.3.1 Colors
Chapter: Records (page 31)
Steps:
1. Change declaration of RGB type to private.

8.3. Bonus exercise 77

Introduction to Ada: Laboratories

Requirements:

1. Implementation must compile correctly and test cases must pass.

8.3.2 List of Names
Chapter: Arrays (page 41)
Steps:
1. Change declaration of Person and People types to limited private.
2. Move type declaration of People Array to private part.
Requirements:

1. Implementation must compile correctly and test cases must pass.

8.3.3 Price List

Chapter: More About Types (page 59)
Steps:

1. Change declaration of Price List type to limited private.
Requirements:

1. Implementation must compile correctly and test cases must pass.

78 Chapter 8. Privacy

CHAPTER
NINE

GENERICS

9.1 Display Array

Goal: create a generic procedure that displays the elements of an array.
Steps:
1. Implement the generic procedure Display Array.
Requirements:
1. Generic procedure Display Array displays the elements of an array.
1. It uses the following scheme:
* First, it displays a header.
* Then, it displays the elements of the array.
2. When displaying the elements, it must:
* use one line per element, and
* include the corresponding index of the array.
3. This is the expected format:

<HEADER>
<index #1>: <element #1>
<index #2>: <element #2>

4. For example:

* For the following code:

procedure Test is

A : Int Array (1 .. 2) := (1, 5);
begin

Display Int Array ("Elements of A", A);;
end Test;

* The output is:

Elements of A
1: 1
2: 5
2. These are the formal parameters of the procedure:
1. arange type T_Range for the the array;

2. aformal type T _Element for the elements of the array;

79

N o U A W N &

© L N U A W N e

W oW oW W W W WwWw NN NNNNNNNNRB B B B B B B B B
N o R W N R O © ©® N O U A WN B O O ® N O U~ W N O

Introduction to Ada: Laboratories

* This type must be declared in such a way that it can be mapped to any type
in the instantiation — including record types.

3. an array type T_Array using the T Range and T_Element types;

4. a function Image that converts a variable of T Element type to a String.

Listing 99: display_array.ads

generic
procedure Display Array (Header : String;
A : T Array);

Listing 100: display_array.adb
with Ada.Text IO; use Ada.Text IO;

procedure Display Array (Header : String;
A : T Array) is
begin
null;
end Display Array;

Listing 101: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Display Array;

procedure Main is
type Test_Case Index is (Int Array Chk,
Point_Array Chk);

procedure Test Int Array is
type Int_Array is array (Positive range <>) of Integer;

procedure Display Int Array is new
Display Array (T Range => Positive,
T Element => Integer,
T Array => Int Array,
Image => Integer'Image);

: constant Int Array (1 .. 5) := (1, 2, 5, 7, 10);
begin
Display Int Array ("Integers", A);
end Test Int Array;

procedure Test Point Array is
type Point is record
X : Float;
Y : Float;
end record;

type Point_Array is array (Natural range <>) of Point;

function Image (P : Point) return String is

begin
return "(" & Float'Image (P.X)
& ", " & Float'Image (P.Y) & ")";
end Image;

(continues on next page)

80 Chapter 9. Generics

38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Introduction to Ada: Laboratories

(continued from previous page)

procedure Display Point Array is new
Display Array (T _Range => Natural,
T Element => Point,
T Array => Point_Array,
Image => Image);

: constant Point Array (0 .. 3) := ((1.0,
(5.0,
begin

Display Point Array ("Points", A);

end Test Point Array;

procedure Check (TC : Test Case Index) is
begin
case TC is
when Int Array Chk =>
Test Int Array;
when Point Array Chk =>
Test Point Array;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

9.2 Average of Array of Float

Goal: create a generic function that calculates the average of an array of floating-point
elements.

Steps:
1. Declare and implement the generic function Average.
Requirements:

1. Generic function Average calculates the average of an array containing floating-point
values of arbitrary precision.

2. Generic function Average must contain the following formal parameters:
1. arange type T_Range for the array;

2. a formal type T _Element that can be mapped to floating-point types of arbitrary
precision;

3. an array type T_Array using T Range and T_Element;
Remarks:

1. You should use the Float type for the accumulator.

9.2. Average of Array of Float 81

A W oN e

© O N U A W N e

A A B A A A B B W W W W W W W W W WNNNNNNNNNWN®K®ERRHR B B B B B B
N o0 R W N R O OV ® N0 U R WN PR O W ® N o0 U A WN B O O ® N o U A W N B O

Introduction to Ada: Laboratories

Listing 102: average.ads

generic
function Average (A : T Array) return T _Element;

Listing 103: average.adb

function Average (A : T Array) return T Element is
begin

return 0.0;
end Average;

Listing 104: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Average;

procedure Main is
type Test_Case_Index is (Float Array Chk,
Digits 7 Float Array Chk);

procedure Test Float Array is
type Float_Array is array (Positive range <>) of Float;

function Average Float is new
Average (T _Range => Positive,
T Element => Float,
T Array => Float Array);

: constant Float Array (1 .. 5) := (1.0, 3.0, 5.0, 7.5, -12.5);
begin
Put Line ("Average: " & Float'Image (Average Float (A)));
end Test Float Array;

procedure Test Digits 7 Float Array is
type Custom Float is digits 7 range 0.0 .. 1.0;

type Float_Array is
array (Integer range <>) of Custom Float;

function Average Float is new
Average (T Range => Integer,
T Element => Custom Float,
T Array => Float Array);

: constant Float Array (-1 .. 3) := (0.5, 0.0, 1.0, 0.6, 0.5);
begin
Put Line ("Average:
& Custom Float'Image (Average Float (A)));
end Test Digits 7 Float Array;

procedure Check (TC : Test Case Index) is
begin
case TC is
when Float Array Chk =>
Test Float Array;
when Digits 7 Float Array Chk =>
Test Digits 7 Float Array;
end case;
(continues on next page)

82 Chapter 9. Generics

48
49
50
51
52
53
54
55
56
57
58
59

Introduction to Ada: Laboratories

(continued from previous page)
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

9.3 Average of Array of Any Type

Goal: create a generic function that calculates the average of an array of elements of any
arbitrary type.

Steps:
1. Declare and implement the generic function Average.
2. Implement the test procedure Test Item.
1. Declare the F_I0 package.
2. Implement the Get Total function for the Item type.
3. Implement the Get Price function for the Item type.
4. Declare the Average Total function.
5. Declare the Average Price function.
Requirements:

1. Generic function Average calculates the average of an array containing elements of
any arbitrary type.

2. Generic function Average has the same formal parameters as in the previous exercise,
except for:

1. T Element, which is now a formal type that can be mapped to any arbitrary type.
2. To _Float, which is an additional formal parameter.

* To Float is a function that converts the arbitrary element of T Element type
to the Float type.

3. Procedure Test Itemis used to test the generic Average procedure for a record type
(Item).

1. Record type Item contains the Quantity and Price components.

4. The following functions have to implemented to be used for the formal To _Float func-
tion parameter:

1. For the Decimal type, the function is pretty straightforward: it simply returns the
floating-point value converted from the decimal type.

2. Forthe Itemtype, two functions must be created to convert to floating-point type:

1. Get Total, which returns the multiplication of the quantity and the price com-
ponents of the Item type;

2. Get Price, which returns just the price.

9.3. Average of Array of Any Type 83

A W N R

Introduction to Ada: Laboratories

5. The generic function Average must be instantiated as follows:
1. For the Item type, you must:

1. declare the Average Total function (as an instance of Average) using the
Get Total for the To Float parameter;

2. declare the Average Price function (as an instance of Average) using the
Get Price for the To Float parameter.

6. You must use the Put procedure from Ada.Text IO.Float IO.

1. The generic standard package Ada.Text I0.Float I0 must be instantiated as
F IO in the test procedures.

2. This is the specification of the Put procedure, as described in the appendix A.10.9
of the Ada Reference Manual:

procedure Put(Item : in Num;
Fore : in Field :
Aft : in Field :
Exp : in Field :

Default Fore;
Default Aft;
Default Exp);

3. This is the expected format when calling Put from Float_I0:

Function Fore Aft Exp
Test Item 3 2 0

Remarks:

1. In this exercise, you'll abstract the Average function from the previous exercises a step
further.

1. In this case, the function shall be able to calculate the average of any arbitrary
type — including arrays containing elements of record types.

2. Since record types can be composed by many components of different types, we
need to provide a way to indicate which component (or components) of the record
will be used when calculating the average of the array.

3. This problem is solved by specifying a To Float function as a formal parameter,
which converts the arbitrary element of T Element type to the Float type.

4. In the implementation of the Average function, we use the To_Float function and
calculate the average using a floating-point variable.

Listing 105: average.ads

generic
function Average (A : T Array) return Float;

Listing 106: average.adb

function Average (A : T Array) return Float is
begin

null;
end Average;

Listing 107: test item.ads

procedure Test Item;

84 Chapter 9. Generics

© ©® N o U A W N R

WON N NN NNNNNNRB B B 2 2 BB e e e
S © ® N o U A W N B O © ©® N O 0~ W N B O

W @ N U A W N e

NONONNNNN B H B R el el B e
o U0 B W N B O © ® N O U A W N B O

Introduction to Ada: Laboratories

Listing 108: test_item.adb
with Ada.Text I0; use Ada.Text I0;

with Average;

procedure Test Item is
type Amount is delta 0.01 digits 12;

type Item is record
Quantity : Natural;
Price : Amount;
end record;

type Item_Array is
array (Positive range <>) of Item;

: constant Item Array (1 .. 4)

:= ((Quantity => 5, Price => 10.00),
(Quantity => 80, Price => 2.50),
(Quantity => 40, Price => 5.00),
(Quantity => 20, Price => 12.50));

begin
Put ("Average per item & quantity: ");
F I0.Put (Average Total (A));
New Line;

Put ("Average price: ");
F I0.Put (Average Price (A));
New Line;

end Test Item;

Listing 109: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Test Item;

procedure Main is
type Test_Case Index is (Item Array Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Item Array Chk =>
Test Item;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

9.3. Average of Array of Any Type

85

Introduction to Ada: Laboratories

9.4 Generic list

Goal: create a system based on a generic list to add and displays elements.
Steps:
1. Declare and implement the generic package Gen List.
1. Implement the Init procedure.
2. Implement the Add procedure.
3. Implement the Display procedure.
Requirements:
1. Generic package Gen List must have the following subprograms:
1. Procedure Init initializes the list.
2. Procedure Add adds an item to the list.

1. This procedure must contain a Status output parameter that is set to False
when the list was full — i.e. if the procedure failed while trying to add the item;

3. Procedure Display displays the complete list.

1. This includes the name of the list and its elements — using one line per ele-
ment.

2. This is the expected format:

<NAME>
<element #1>
<element #2>

2. Generic package Gen List has these formal parameters:
1. an arbitrary formal type Item;
2. an unconstrained array type Items of Item element with positive range;
3. the Name parameter containing the name of the list;
* This must be a formal input object of String type.
* It must be used in the Display procedure.
4. an actual array List Array to store the list;
e This must be a formal in out object of Items type.
5. the variable Last to store the index of the last element;

* This must be a formal in out object of Natural type.

o

a procedure Put for the Item type.

* This procedure is used in the Display procedure to display individual elements
of the list.

3. The test procedure Test Int is used to test a list of elements of Integer type.
4. For both test procedures, you must:
1. add missing type declarations;
2. declare and implement a Put procedure for individual elements of the list;
3. declare instances of the Gen List package.
* For the Test Int procedure, declare the Int List package.

86 Chapter 9. Generics

© @ N U A W N R

=
= o

© @ N U A W N e

[T N B T S R O T = T
P O © ® W o U A W N = O

© ©® N o U A W N K

Introduction to Ada: Laboratories

Remarks:
1. In previous labs, you've been implementing lists for a variety of types.
* The List of Names exercise from the Arrays (page 41) labs is an example.
* In this exercise, you have to abstract those implementations to create the generic
Gen List package.
Listing 110: gen_list.ads

generic
package Gen_List is

procedure Init;

procedure Add (I : Item;
Status : out Boolean);

procedure Display;

end Gen List;

Listing 111: gen_list.adb
with Ada.Text IO; use Ada.Text IO;

package body Gen List is

procedure Init is
begin

null;
end Init;

procedure Add (I : Item;
Status : out Boolean) is
begin
null;
end Add;

procedure Display is
begin

null;
end Display;

end Gen List;

Listing 112: test int.ads

procedure Test Int;

Listing 113: test int.adb
with Ada.Text IO; use Ada.Text IO;

with Gen List;
procedure Test Int is
type Integer_Array is array (Positive range <>) of Integer;

A : Integer Array (1 .. 3);
(continues on next page)

9.4. Generic list 87

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

© ©® N o U A W N R

NONONNNNN B B H R R el
o U B W N B O © ® N O 0 & W N B O

Introduction to Ada: Laboratories

(continued from previous page)

L : Natural;
Success : Boolean;

procedure Display Add Success (Success : Boolean) is
begin
if Success then
Put Line ("Added item successfully!");
else
Put Line ("Couldn't add item!");
end if;

end Display Add Success;

begin
Int List.Init;

Int List.Add (2, Success);
Display Add Success (Success);

Int List.Add (5, Success);
Display Add Success (Success);

Int List.Add (7, Success);
Display Add Success (Success);

Int List.Add (8, Success);
Display Add Success (Success);

Int List.Display;
end Test Int;

Listing 114: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Test Int;
procedure Main is
type Test_Case_Index is (Int Chk);
procedure Check (TC : Test Case Index) is
begin
case TC is
when Int Chk =>
Test Int;
end case;
end Check;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");
return;
elsif Argument Count > 1 then
Put Line ("Ignoring additional arguments...");
end if;
Check (Test Case Index'Value (Argument (1)));
end Main;

88 Chapter 9.

Generics

CHAPTER
TEN

EXCEPTIONS

10.1 Uninitialized Value

Goal: implement an enumeration to avoid the use of uninitialized values.
Steps:
1. Implement the Options package.
1. Declare the Option enumeration type.
2. Declare the Uninitialized Value exception.
3. Implement the Image function.
Requirements:
1. Enumeration Option contains:
1. the Uninitialized value, and
2. the actual options:
* Option 1,
* Option_2,
* Option 3.
2. Function Image returns a string for the Option type.

1. In case the argument to Image is Uninitialized, the function must raise the
Uninitialized Value exception.

Remarks:

1. In this exercise, we employ exceptions as a mechanism to avoid the use of uninitialized
values for a certain type.

Listing 115: options.ads

package Options is

-- Declare the Option enumeration type!
type Option is null record;

function Image (0 : Option) return String;

end Options;

89

© N O U A W N

© ©® N o U A W N R

10

12
13
14
15
16
17
18
19
20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Introduction to Ada: Laboratories

Listing 116: options.adb
package body Options is
function Image (0 : Option) return String is
begin

return "";
end Image;

end Options;

Listing 117: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text IO; use Ada.Text I0;
with Ada.Exceptions; use Ada.Exceptions;
with Options; use Options;

procedure Main is
type Test_Case_Index is
(Options_Chk);

procedure Check (TC : Test Case Index) is

procedure Check (0 : Option) is
begin
Put Line (Image (0));
exception
when E : Uninitialized Value =>
Put Line (Exception Message (E));

end Check;
begin
case TC is

when Options Chk =>
for 0 in Option loop
Check (0);
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

10.2 Numerical Exception

Goal: handle numerical exceptions in a test procedure.
Steps:
1. Add exception handling to the Check Exception procedure.

Requirements:

90 Chapter 10.

Exceptions

© @ N o U A W N R

© ©® N o U A W N R

I R T T <
S © ® N o 0 B W N B O

o U A W N P

Introduction to Ada: Laboratories

1. The test procedure Num Exception Test from the Tests package below must be used
in the implementation of Check Exception.

2. The Check Exception procedure must be extended to handle exceptions as follows:

1. If the exception raised by Num_Exception Test is Constraint Error, the proce-
dure must display the message "Constraint_Error detected!" to the user.

2. Otherwise, it must display the message associated with the exception.
Remarks:

1. You can use the Exception Message function to retrieve the message associated with
an exception.

Listing 118: tests.ads

package Tests is
type Test_ID is (Test 1, Test 2);
Custom Exception : exception;
procedure Num Exception Test (ID : Test ID);

end Tests;

Listing 119: tests.adb
package body Tests is

pragma Warnings (0ff, "variable ""C"" is assigned but never read");

procedure Num Exception Test (ID : Test ID) is
A, B, C : Integer;
begin
case ID is
when Test 1 =>

A := Integer'lLast;
B := Integer'lLast;
C := A + B;

when Test 2 =>
raise Custom Exception with "Custom Exception raised!";
end case;
end Num Exception Test;

pragma Warnings (On, "variable ""C"" is assigned but never read");

end Tests;

Listing 120: check _exception.adb

with Tests; use Tests;

procedure Check Exception (ID : Test ID) is
begin

Num_Exception Test (ID);
end Check Exception;

Listing 121: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

(continues on next page)

10.2. Numerical Exception 91

Introduction to Ada: Laboratories

(continued from previous page)
with Ada.Exceptions; use Ada.Exceptions;

3

4

s with Tests; use Tests;
¢ with Check Exception;
7
8
9

procedure Main is
type Test_Case_Index is

10 (Exception 1 Chk,

1 Exception 2 Chk);

12

13 procedure Check (TC : Test Case Index) is

14

15 procedure Check Handle Exception (ID : Test ID) is
16 begin

17 Check Exception (ID);

18 exception

19 when Constraint Error =>

20 Put Line ("Constraint Error"

21 & " (raised by Check Exception) detected!");
22 when E : others =>

23 Put Line (Exception Name (E)

24 & " (raised by Check Exception) detected!");
25 end Check Handle Exception;

26

27 begin

28 case TC is

29 when Exception 1 Chk =>

30 Check Handle Exception (Test 1);

31 when Exception 2 Chk =>

32 Check Handle Exception (Test 2);

33 end case;

34 end Check;

35

36 begin

37 if Argument Count < 1 then

38 Put Line ("ERROR: missing arguments! Exiting...");
39 return;

a0 elsif Argument Count > 1 then

a Put Line ("Ignoring additional arguments...");

42 end if;

43

a4 Check (Test Case Index'Value (Argument (1)));

4s end Main;

10.3 Re-raising Exceptions

Goal: make use of exception re-raising in a test procedure.
Steps:

1. Declare new exception: Another Exception.

2. Add exception re-raise to the Check Exception procedure.
Requirements:

1. Exception Another Exception must be declared in the Tests package.

2. Procedure Check Exception must be extended to re-raise any exception. When an
exception is detected, the procedure must:

1. display a user message (as implemented in the previous exercise), and then

92 Chapter 10. Exceptions

© ©® N o U A W N R

© ® N o U A W N e

I I N R
S © ® N o u B W N B O

2 W N =

Introduction to Ada: Laboratories

2. Raise or re-raise exception depending on the exception that is being handled:
1. In case of Constraint Error exception, re-raise the exception.
2. In all other cases, raise Another Exception.
Remarks:

1. In this exercise, you should extend the implementation of the Check Exception pro-
cedure from the previous exercise.

1. Naturally, you can use the code for the Check Exception procedure from the
previous exercise as a starting point.

Listing 122: tests.ads

package Tests is
type Test_ID is (Test 1, Test 2);
Custom Exception : exception;
procedure Num_Exception Test (ID : Test ID);

end Tests;

Listing 123: tests.adb
package body Tests is

pragma Warnings (0ff, "variable ""C"" is assigned but never read");

procedure Num Exception Test (ID : Test ID) is
A, B, C : Integer;
begin
case ID is
when Test 1 =>
A Integer'lLast;
B Integer'lLast;
C := A + B;
when Test 2 =>
raise Custom Exception with "Custom Exception raised!";
end case;
end Num Exception Test;

pragma Warnings (0On, "variable ""C"" is assigned but never read");

end Tests;

Listing 124: check exception.ads

with Tests; use Tests;

procedure Check Exception (ID : Test ID);

Listing 125: check _exception.adb

procedure Check Exception (ID : Test ID) is
begin

Num Exception Test (ID);
end Check Exception;

10.3. Re-raising Exceptions 93

© ©® N o U A W N R

AR A A DDA W W W W W W WW W WNNNDNNNNNNNREB B B B B B B B B
G F W N RBP O OV ® N O UK WN PR O O ® N O U A WNRL O LW ® N O A W N B O

Introduction to Ada: Laboratories

Listing 126: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0; use Ada.Text I0;
with Ada.Exceptions; use Ada.Exceptions;
with Tests; use Tests;

with Check Exception;

procedure Main is
type Test_Case Index is
(Exception_1 Chk,
Exception 2 Chk);

procedure Check (TC : Test Case Index) is

procedure Check Handle Exception (ID : Test ID) is
begin
Check Exception (ID);
exception
when Constraint Error =>
Put_Line ("Constraint Error"
& " (raised by Check Exception) detected!");
when E : others =>
Put Line (Exception Name (E)
& " (raised by Check Exception) detected!");
end Check Handle Exception;

begin
case TC is
when Exception 1 Chk =>
Check Handle Exception (Test 1);
when Exception 2 Chk =>
Check Handle Exception (Test 2);
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

924 Chapter 10. Exceptions

© ©® N o U A W N K

CHAPTER
ELEVEN

TASKING

11.1 Display Service

Goal: create a simple service that displays messages to the user.
Steps:
1. Implement the Display Services package.
1. Declare the task type Display Service.
2. Implement the Display entry for strings.
3. Implement the Display entry for integers.
Requirements:
1. Task type Display Service uses the Display entry to display messages to the user.
2. There are two versions of the Display entry:
1. One that receives messages as a string parameter.
2. One that receives messages as an Integer parameter.
3. When a message is received via a Display entry, it must be displayed immediately to
the user.
Listing 127: display_services.ads

package Display_Services is

end Display Services;

Listing 128: display_services.adb

package body Display Services is

end Display Services;

Listing 129: main.adb
with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Display Services; use Display Services;

procedure Main is
type Test_Case_Index is (Display Service Chk);

procedure Check (TC : Test Case Index) is
Display : Display_Service;
(continues on next page)

95

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Introduction to Ada: Laboratories

(continued from previous page)
begin
case TC is
when Display Service Chk =>
Display.Display ("Hello");
delay 0.5;
Display.Display ("Hello again");
delay 0.5;
Display.Display (55);
delay 0.5;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

11.2 Event Manager

Goal: implement a simple event manager.
Steps:
1. Implement the Event _Managers package.
1. Declare the task type Event Manager.
2. Implement the Start entry.
3. Implement the Event entry.
Requirements:
1. The event manager has a similar behavior as an alarm

1. The sole purpose of this event manager is to display the event ID at the correct
time.

2. After the event ID is displayed, the task must finish.
2. The event manager (Event Manager type) must have two entries:
1. Start, which starts the event manager with an event ID;

2. Event, which delays the task until a certain time and then displays the event ID
as a user message.

3. The format of the user message displayed by the event manager is Event
#<event id>.

1. You should use Natural'Image to display the ID (as indicated in the body of the
Event Managers package below).

Remarks:
1. In the Start entry, you can use the Natural type for the ID.

2. In the Event entry, you should use the Time type from the Ada.Real Time package
for the time parameter.

96 Chapter 11. Tasking

N o U A W N &

© ©® N o U A W N R

W W oW W W W NN NNNNNNNNREBR B B B B B B
G A W N P O © ® N 0O U & W N P O © ©® N 0 0 & W N H O

Introduction to Ada: Laboratories

3. Note that the test application below creates an array of event managers with different
delays.

Listing 130: event_managers.ads

package Event_Managers is

end Event Managers;

Listing 131: event_managers.adb

package body Event_Managers is
-- Don't forget to display the event ID:
-- Put Line ("Event #" & Natural'Image (Event ID));

end Event Managers;

Listing 132: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0; use Ada.Text IO;
with Event Managers; use Event Managers;
with Ada.Real Time; use Ada.Real Time;

procedure Main is
type Test Case Index is (Event Manager Chk);

procedure Check (TC : Test Case Index) is
Ev Mng : array (1 .. 5) of Event Manager;
begin
case TC is
when Event Manager Chk =>
for I in Ev_Mng'Range loop
Ev_Mng (I).Start (I);

end loop;
Ev_Mng (1).Event (Clock + Seconds (5));
Ev_Mng (2).Event (Clock + Seconds (3));
Ev_Mng (3).Event (Clock + Seconds (1));
Ev_Mng (4).Event (Clock + Seconds (2));
Ev Mng (5).Event (Clock + Seconds (4));
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

11.2. Event Manager 97

Introduction to Ada: Laboratories

11.3 Generic Protected Queue

Goal: create a queue container using a protected type.

Steps:

1. Implement the generic package Gen_ Queues.

1.
2.
3.
4.
5.

Declare the protected type Queue.
Implement the Empty function.
Implement the Full function.
Implement the Push entry.

Implement the Pop entry.

Requirements:

1. These are the formal parameters for the generic package Gen Queues:

1.

a formal modular type;

* This modular type should be used by the Queue to declare an array that stores
the elements of the queue.

* The modulus of the modular type must correspond to the maximum number
of elements of the queue.

2. the data type of the elements of the queue.

* Select a formal parameter that allows you to store elements of any data type
in the queue.

2. These are the operations of the Queue type:

1. Function Empty indicates whether the queue is empty.
2. Function Full indicates whether the queue is full.
3. Entry Push stores an element in the queue.
4. Entry Pop removes an element from the queue and returns the element via output
parameter.
Remarks:

1. In this exercise, we create a queue container by declaring and implementing a pro-
tected type (Queue) as part of a generic package (Gen_Queues).

2. As a bonus exercise, you can analyze the body of the Queue Tests package and un-
derstand how the Queue type is used there.

1.

In particular, the procedure Concurrent Test implements two tasks: T Producer
and T_Consumer. They make use of the queue concurrently.

Listing 133: gen_queues.ads

package Gen_Queues is

end Gen Queues;

Listing 134: gen_queues.adb

package body Gen _Queues is

end Gen Queues;

98

Chapter 11. Tasking

N o U A W N &

© ® N o U A W N R

A A A A B A A B D B W OW W W W W W W W WNNNNNNNNNWN®R®ER®RRB B B B B B B
© ® N o0 U A W N B O © ® N O U~ WN P O VW ® N o0 U A WN RO O ® N O U A W N B O

Introduction to Ada: Laboratories

Listing 135: queue_tests.ads

package Queue_Tests is
procedure Simple Test;
procedure Concurrent Test;

end Queue Tests;

Listing 136: queue_tests.adb
with Ada.Text IO0; use Ada.Text IO;

with Gen Queues;
package body Queue_Tests is

: constant := 10;
type Queue_Mod is mod Max;

procedure Simple Test is
package Queues_Float is new Gen_Queues (Queue Mod, Float);

Q F : Queues Float.Queue;
\" : Float;
begin

V := 10.0;

while not Q F.Full loop
Q F.Push (V);
V :=V + 1.5;

end loop;

while not Q F.Empty loop

Q_F.Pop (V);
Put Line ("Value from queue: " & Float'Image (V));
end loop;

end Simple Test;

procedure Concurrent Test is
package Queues_Integer is new Gen_Queues (Queue Mod, Integer);

Q T : Queues Integer.Queue;

task T Producer;
task T_Consumer;

task body T Producer is
V : Integer := 100;
begin
for I in 1 .. 2 * Max loop
Q I.Push (V);
V=V + 1;
end loop;
end T Producer;

task body T Consumer is
V : Integer;

begin
delay 1.5;

(continues on next page)

11.3. Generic Protected Queue

29

50
51
52
53
54
55
56
57
58
59
60

© ©® N o U A W N K

WON N NN NN NNNNKBB B B B B 2 B s
S © ® N o U A W N B O © ©® N O O & W N B O

Introduction to Ada: Laboratories

while not Q I.Empty loop
Q_I.Pop (V);
Put_Line ("Value from queue:
delay 0.2;
end loop;
end T Consumer;
begin
null;
end Concurrent Test;

end Queue Tests;

Listing 137: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Queue Tests; use Queue Tests;

procedure Main is
type Test_Case_Index is (Simple Queue Chk,
Concurrent Queue Chk);

procedure Check (TC : Test Case Index) is

begin
case TC is
when Simple Queue Chk =>
Simple Test;
when Concurrent Queue Chk =>
Concurrent Test;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

(continued from previous page)

& Integer'Image (V));

100

Chapter 11. Tasking

N o U A W N &

CHAPTER
TWELVE

DESIGN BY CONTRACTS

12.1 Price Range

Goal: use predicates to indicate the correct range of prices.
Steps:

1. Complete the Prices package.

1. Rewrite the type declaration of Price.

Requirements:

1. Type Price must use a predicate instead of a range.
Remarks:

1. As discussed in the course, ranges are a form of contract.

1. For example, the subtype Price below indicates that a value of this subtype must
always be positive:

subtype Price is Amount range 0.0 .. Amount'Last;

2. Interestingly, you can replace ranges by predicates, which is the goal of this ex-
ercise.

Listing 138: prices.ads

package Prices is
type Amount is delta 10.0 ** (-2) digits 12;
subtype Price is Amount range 0.0 .. Amount'lLast;

end Prices;

Listing 139: main.adb
with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO0;
with System.Assertions; use System.Assertions;
with Prices; use Prices;

procedure Main is

type Test Case Index is
(Price_Range_ Chk);

procedure Check (TC : Test Case Index) is
(continues on next page)

101

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

N o U A W N &

Introduction to Ada: Laboratories

(continued from previous page)

procedure Check Range (A : Amount) is
: constant Price := A;
begin
Put Line ("Price: " & Price'Image (P));
end Check Range;

begin
case TC is
when Price Range Chk =>
Check Range (-2.0);
end case;
exception
when Constraint Error =>
Put Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put Line ("Assert Failure detected (as expected).");
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

12.2 Pythagorean Theorem: Predicate

Goal: use the Pythagorean theorem as a predicate.
Steps:
1. Complete the Triangles package.
1. Add a predicate to the Right Triangle type.
Requirements:

1. TheRight Triangle type must use the Pythagorean theorem as a predicate to ensure
that its components are consistent.

Remarks:

1. As you probably remember, the Pythagoras' theorem? states that the square of the
hypotenuse of a right triangle is equal to the sum of the squares of the other two
sides.

Listing 140: triangles.ads

package Triangles is
subtype Length is Integer;

type Right_Triangle is record
H : Length := 0;
-- Hypotenuse
(continues on next page)

2 https://en.wikipedia.org/wiki/Pythagorean_theorem

102 Chapter 12. Design by contracts

https://en.wikipedia.org/wiki/Pythagorean_theorem

10
11
12
13
14
15

[N N

© @ N o U A W N e

© ©® N o U A W N R

NN NN NN NNNNRB B B B2 2 o2 e e e
© ® N o U B W N B O © ® N O U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)
Cl, C2 : Length := 0;
-- Catheti / legs
end record;

function Init (H, C1, C2 : Length) return Right Triangle is
((H, C1, C2));

end Triangles;

Listing 141: triangles-io.ads

package Triangles.IO is
function Image (T : Right Triangle) return String;

end Triangles.IO;

Listing 142: triangles-io.adb
package body Triangles.IO is

function Image (T : Right Triangle) return String is

(" (" & Length'Image (T.H)
& ", " & Length'Image (T.C1)
& ", " & Length'Image (T.C2)
& ")");

end Triangles.IO;

Listing 143: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with System.Assertions; use System.Assertions;

with Triangles; use Triangles;
with Triangles.IO; use Triangles.IO;

procedure Main is

type Test_Case_Index is
(Triangle 8 6 Pass Chk,
Triangle 8 6 Fail Chk,
Triangle 10 24 Pass_ Chk,
Triangle 10 24 Fail Chk,
Triangle 18 24 Pass Chk,
Triangle 18 24 Fail Chk);

procedure Check (TC : Test Case Index) is

procedure Check Triangle (H, Cl, C2 : Length) is
T : Right Triangle;
begin
T := Init (H, C1, C2);
Put Line (Image (T));
exception
when Constraint Error =>
Put Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put_Line ("Assert Failure detected (as expected).");
(continues on next page)

12.2. Pythagorean Theorem: Predicate 103

30
31

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

© @ N U A W N e

e e
w N P o

Introduction to Ada: Laboratories

(continued from previous page)
end Check Triangle;

begin
case TC is

when Triangle 8 6 Pass Chk => Check Triangle (10, 8, 6);
when Triangle 8 6 Fail Chk => Check Triangle (12, 8, 6);
when Triangle 10 24 Pass Chk => Check Triangle (26, 10, 24);
when Triangle 10 24 Fail Chk => Check Triangle (12, 10, 24);
when Triangle 18 24 Pass Chk => Check Triangle (30, 18, 24);
when Triangle 18 24 Fail Chk => Check Triangle (32, 18, 24);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

12.3 Pythagorean Theorem: Precondition

Goal: use the Pythagorean theorem as a precondition.
Steps:
1. Complete the Triangles package.
1. Add a precondition to the Init function.
Requirements:

1. The Init function must use the Pythagorean theorem as a precondition to ensure that
the input values are consistent.

Remarks:
1. In this exercise, you'll work again with the Right Triangle type.
1. This time, your job is to use a precondition instead of a predicate.

2. The precondition is applied to the Init function, not to the Right Triangle type.

Listing 144: triangles.ads

package Triangles is
subtype Length is Integer;

type Right_Triangle is record
H : Length := 0;
-- Hypotenuse
Cl, C2 : Length := 0;
-- Catheti / legs
end record;

function Init (H, C1, C2 : Length) return Right Triangle is
((H, C1, C2));
(continues on next page)

104 Chapter 12. Design by contracts

14

15

oA W N e

© @ N o U A W N R

© ©® N o U A W N R

=
S

11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35

Introduction to Ada: Laboratories

(continued from previous page)

end Triangles;

Listing 145: triangles-io.ads

package Triangles.IO is
function Image (T : Right Triangle) return String;

end Triangles.IO;

Listing 146: triangles-io.adb
package body Triangles.IO is

function Image (T : Right Triangle) return String is

(e & Length'Image (T.H)
& ", " & Length'Image (T.C1)
& ", " & Length'Image (T.C2)
& ")");

end Triangles.IO;

Listing 147: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text IO; use Ada.Text IO;
with System.Assertions; use System.Assertions;

with Triangles; use Triangles;
with Triangles.IO; use Triangles.IO;

procedure Main is

type Test_Case_Index is
(Triangle 8 6 Pass Chk,
Triangle 8 6 Fail Chk,
Triangle 10 24 Pass_ Chk,
Triangle 10 24 Fail Chk,
Triangle 18 24 Pass Chk,
Triangle 18 24 Fail Chk);

procedure Check (TC : Test Case Index) is

procedure Check Triangle (H, Cl, C2 : Length) is
T : Right Triangle;
begin
T := Init (H, C1, C2);
Put Line (Image (T));
exception
when Constraint Error =>
Put Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put_Line ("Assert Failure detected (as expected).");
end Check Triangle;

begin
case TC is
when Triangle 8 6 Pass Chk => Check Triangle (10, 8, 6);
when Triangle 8 6 Fail Chk => Check Triangle (12, 8, 6);
(continues on next page)

12.3. Pythagorean Theorem: Precondition 105

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

© ® N o U A W N R

e e < e
U A W N F O

Introduction to Ada: Laboratories

(continued from previous page)

when Triangle 10 24 Pass Chk => Check Triangle (26, 10, 24);
when Triangle 10 24 Fail Chk => Check Triangle (12, 10, 24);
when Triangle 18 24 Pass Chk => Check Triangle (30, 18, 24);
when Triangle 18 24 Fail Chk => Check Triangle (32, 18, 24);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

12.4 Pythagorean Theorem: Postcondition

Goal: use the Pythagorean theorem as a postcondition.
Steps:
1. Complete the Triangles package.
1. Add a postcondition to the Init function.

Requirements:

1. The Init function must use the Pythagorean theorem as a postcondition to ensure

that the returned object is consistent.
Remarks:

1. In this exercise, you'll work again with the Triangles package.

1. This time, your job is to apply a postcondition instead of a precondition to the Init

function.

Listing 148: triangles.ads

package Triangles is
subtype Length is Integer;

type Right_Triangle is record
H : Length := 0;
-- Hypotenuse
C1l, C2 : Length := 0;
-- Catheti / legs
end record;

function Init (H, C1, C2 : Length) return Right Triangle is
((H, C1, C2));

end Triangles;

106 Chapter 12. Design by contracts

[T N

© ©® N o U A W N R

W @ N U A W N e

AW W OW W W W W W W W N NNNNNNNNN®KRER®RB B B B B B B B
O © ®W N o U A W N P © © ® N 0 U & W N B O © ® N 60 00 2 W N = O

Introduction to Ada: Laboratories

Listing 149: triangles-io.ads

package Triangles.IO is
function Image (T : Right Triangle) return String;

end Triangles.IO;

Listing 150: triangles-io.adb
package body Triangles.IO is

function Image (T : Right Triangle) return String is

(- & Length'Image (T.H)
& ", " & Length'Image (T.C1)
& ", " & Length'Image (T.C2)

& "))

end Triangles.IO;

Listing 151: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with System.Assertions; use System.Assertions;

with Triangles; use Triangles;
with Triangles.IO; use Triangles.IO;

procedure Main is

type Test_Case Index is
(Triangle 8 6 Pass Chk,
Triangle 8 6 Fail Chk,
Triangle 10 24 Pass Chk,
Triangle 10 24 Fail Chk,
Triangle 18 24 Pass Chk,
Triangle 18 24 Fail Chk);

procedure Check (TC : Test Case Index) is

procedure Check Triangle (H, C1, C2 : Length) is
T : Right Triangle;
begin
T := Init (H, C1, C2);
Put Line (Image (T));
exception
when Constraint Error =>
Put_Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put Line ("Assert Failure detected (as expected).");
end Check Triangle;

begin

case TC is
when Triangle 8 6 Pass Chk => Check Triangle (10, 8, ©6);
when Triangle 8 6 Fail Chk => Check Triangle (12, 8, ©6);
when Triangle 10 24 Pass Chk => Check Triangle (26, 10, 24);
when Triangle 10 24 Fail Chk => Check Triangle (12, 10, 24);
when Triangle 18 24 Pass Chk => Check Triangle (30, 18, 24);
when Triangle 18 24 Fail Chk => Check Triangle (32, 18, 24);

end case;

(continues on next page)

12.4. Pythagorean Theorem: Postcondition

a1
42
43
44
45
46
47
48
49
50
51
52

© @ N U A W N e

i <
A W N B O

Introduction to Ada: Laboratories

(continued from previous page)
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

12.5 Pythagorean Theorem: Type Invariant

Goal: use the Pythagorean theorem as a type invariant.
Steps:
1. Complete the Triangles package.
1. Add a type invariant to the Right Triangle type.
Requirements:
1. Right Triangle is a private type.

1. It must use the Pythagorean theorem as a type invariant to ensure that its encap-
sulated components are consistent.

Remarks:
1. In this exercise, Right Triangle is declared as a private type.

1. Inthis case, we use a type invariant for Right Triangle to check the Pythagorean
theorem.

2. As a bonus, after completing the exercise, you may analyze the effect that default
values have on type invariants.

1. For example, the declaration of Right Triangle uses zero as the default values
of the three triangle lengths.

2. If you replace those default values with Length'Last, you'll get different results.

3. Make sure you understand why this is happening.

Listing 152: triangles.ads

package Triangles is
subtype Length is Integer;
type Right_Triangle is private;
function Init (H, Cl, C2 : Length) return Right Triangle;
private
type Right_Triangle is record
H : Length := 0;

-- Hypotenuse
Cl, C2 : Length :

0;
(continues on next page)

108 Chapter 12. Design by contracts

U oA W N e

© ©® N o U A~ W N R

©W N U A W N e

WON NN NN NNNNNR B B 2 2 B R e e e
S © ® N o U B W N BB O L ® N O U A~ W N B O

Introduction to Ada: Laboratories

(continued from previous page)

-- Catheti / legs
end record;

function Init (H, C1, C2 : Length) return Right Triangle is
((H, C1, C2));

end Triangles;

Listing 153: triangles-io.ads

package Triangles.IO is
function Image (T : Right Triangle) return String;

end Triangles.IO;

Listing 154: triangles-io.adb
package body Triangles.IO is

function Image (T : Right Triangle) return String is

(" & Length'Image (T.H)
& ", " & Length'Image (T.C1)
& ", " & Length'Image (T.C2)

& "))

end Triangles.IO;

Listing 155: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with System.Assertions; use System.Assertions;

with Triangles; use Triangles;
with Triangles.IO; use Triangles.IO;

procedure Main is

type Test_Case_Index is
(Triangle 8 6 Pass Chk,
Triangle 8 6 Fail Chk,
Triangle 10 24 Pass Chk,
Triangle 10 24 Fail Chk,
Triangle 18 24 Pass Chk,
Triangle 18 24 Fail Chk);

procedure Check (TC : Test Case Index) is

procedure Check Triangle (H, C1, C2 : Length) is
T : Right Triangle;
begin
T := Init (H, C1, C2);
Put Line (Image (T));
exception
when Constraint Error =>
Put_Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put Line ("Assert Failure detected (as expected).");
end Check Triangle;
(continues on next page)

12.5. Pythagorean Theorem: Type Invariant 109

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Introduction to Ada: Laboratories

(continued from previous page)

begin
case TC is

when Triangle 8 6 Pass Chk => Check Triangle (10, 8, ©6);
when Triangle 8 6 Fail Chk => Check Triangle (12, 8, 6);
when Triangle 10 24 Pass Chk => Check Triangle (26, 10, 24);
when Triangle 10 24 Fail Chk => Check Triangle (12, 10, 24);
when Triangle 18 24 Pass Chk => Check Triangle (30, 18, 24);
when Triangle 18 24 Fail Chk => Check Triangle (32, 18, 24);
end case;
end Check;
begin

if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

12.6 Primary Color

Goal: extend a package for HTML colors so that it can handle primary colors.
Steps:
1. Complete the Color_ Types package.
1. Declare the HTML _RGB_Color subtype.
2. Implement the To Int Color function.
Requirements:
1. The HTML Color type is an enumeration that contains a list of HTML colors.

2. The To RGB Lookup Table array implements a lookup-table to convert the colors into
a hexadecimal value using RGB color components (i.e. Red, Green and Blue)

3. Function To_Int Color extracts one of the RGB components of an HTML color and
returns its hexadecimal value.

1. The function has two parameters:
* First parameter is the HTML color (HTML _Color type).

* Second parameter indicates which RGB component is to be extracted from the
HTML color (HTML_RGB Color subtype).

2. For example, if we call To Int Color (Salmon, Red), the function returns #FA,
* This is the hexadecimal value of the red component of the Salmon color.
* You can find further remarks below about this color as an example.

4. The HTML RGB Color subtype is limited to the primary RGB colors components (i.e.
Red, Green and Blue).

1. This subtype is used to select the RGB component in calls to To_Int Color.
2. You must use a predicate in the type declaration.
Remarks:

110 Chapter 12. Design by contracts

© ® N o U A W N e

NN NN NN NNNNB B B 2R e e e e e
© ® N o U A W N B O © ® N O 0 A W N = O

Introduction to Ada: Laboratories

1. In this exercise, we reuse the code of the Colors: Lookup-Table exercise from the

Arrays (page 41) labs.

2. These are the hexadecimal values of the colors that we used in the original exercise:

Color Value

Salmon #FA8072
Firebrick #B22222
Red #FF0OO00
Darkred #8B0O0O0OO
Lime #O0OFFO0
Forestgreen #228B22
Green #008000
Darkgreen #006400
Blue #000OFF

Mediumblue #0000CD
Darkblue #00008B

3. You can extract the hexadecimal value of each primary color by splitting the values
from the table above into three hexadecimal values with two digits each.

* For example, the hexadecimal value of Salmon is #FA8072, where:

- the first part of this hexadecimal value (#FA) corresponds to the red compo-

nent,

- the second part (#80) corresponds to the green component, and

- the last part (#72) corresponds to the blue component.

Listing 156: color_types.ads

package Color_Types is

type HTML_Color is
(Salmon,
Firebrick,
Red,
Darkred,
Lime,
Forestgreen,
Green,
Darkgreen,
Blue,
Mediumblue,
Darkblue);

subtype Int_Color is Integer range 0 .. 255;
function Image (I : Int Color) return String;
type RGB is record

Red : Int Color;

Green : Int Color;

Blue : Int Color;
end record;

function To RGB (C : HTML Color) return RGB;

function Image (C : RGB) return String;

(continues on next page)

12.6. Primary Color

111

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© ® N o U A W N R

W W W W Ww W NN NNNNNNRNNERERBR B B B B B B B
G A W N P ©O © ® N O U & W N B O © ® N 0 0 &2 W N = O

Introduction to Ada: Laboratories

(continued from previous page)
type HTML_Color_RGB_Array is array (HTML Color) of RGB;

To RGB Lookup Table :

constant HTML Color RGB Array

:= (Salmon => (16#FA#, 16#80#, 16#72#),
Firebrick => (16#B2#, 16#22#, 16#22#),
Red => (16#FF#, 16#00#, 16#00#),
Darkred => (16#8B#, 16#00#, 16#00#),
Lime => (16#00#, 16#FF#, 16#00#),
Forestgreen => (16#22#, 16#8B#, 16#22#),
Green => (16#00#, 16#80#, 16#00#),
Darkgreen => (16#00#, 16#64#, 16#00#),
Blue => (16#00#, 16#00#, 16#FF#),
Mediumblue => (16#00#, 16#00#, 16#CD#),
Darkblue => (16#00#, 16#00#, 16#8B#));

subtype HTML_RGB_Color is HTML Color;

function To Int Color (C : HTML Color;
S : HTML RGB Color) return Int Color;
-- Convert to hexadecimal value for the selected RGB component S

end Color Types;

Listing 157: color_types.adb
with Ada.Integer Text IO;

package body Color Types is

function To RGB (C :
begin

return To RGB Lookup Table (C);
end To RGB;

HTML Color) return RGB 1is

function To Int Color (C : HTML Color;
S : HTML RGB Color) return Int Color is
begin
-- Implement function!
return 0;
end To Int Color;

function Image (I :
subtype Str_Range is Integer range 1 .
S : String (Str_Range);

Int Color) return String is
10;

begin
Ada.Integer Text IO0.Put (To = S,
Item => 1,
Base => 16);
return S;
end Image;

function Image (C : RGB) return String is
begin
return ("(Red => " & Image (C.Red)
& ", Green => " & Image (C.Green)
& ", Blue == " & Image (C.Blue)
&")");
end Image;

end Color Types;

112 Chapter 12. Design by contracts

© ©® N o U A W N R

AR DA A W W OW W W W WWWW N NNDNNNNNNNRB B B B B B B BB
W N B O © ® N 6 00 B W KN B O O ® N 060 U & W N P O © ©® N 0 U A W N R O

Introduction to Ada: Laboratories

Listing 158: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Color Types; use Color Types;

procedure Main is
type Test_Case_Index is
(HTML Color Red Chk,
HTML Color Green Chk,
HTML Color Blue Chk);

procedure Check (TC : Test Case Index) is

procedure Check HTML Colors (S : HTML RGB Color) 1is
begin

Put Line ("Selected: " & HTML_RGB_Color'Image (S));

for I in HTML Color'Range loop

Put Line (HTML Color'Image (I) & " => "
& Image (To Int Color (I, S)) & ".");

end loop;

end Check HTML Colors;

begin
case TC is
when HTML Color Red Chk =>
Check HTML Colors (Red);
when HTML Color Green Chk =>
Check HTML Colors (Green);
when HTML Color Blue Chk =>
Check HTML Colors (Blue);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

12.6. Primary Color

113

Introduction to Ada: Laboratories

114 Chapter 12. Design by contracts

CHAPTER
THIRTEEN

OBJECT-ORIENTED PROGRAMMING

13.1 Simple type extension

Goal: work with type extensions using record types containing numeric components.
Steps:
1. Implement the Type Extensions package.

=

. Declare the record type T_Float.
2. Declare the record type T _Mixed

3. Implement the Init function for the T Float type with a floating-point input pa-
rameter.

4. Implementthe Init functionforthe T Float type with anintegerinput parameter.
5. Implement the Image function for the T Float type.

6. Implement the Init function for the T_Mixed type with a floating-point input pa-
rameter.

7. Implementthe Init functionforthe T_Mixed type with an integer input parameter.
8. Implement the Image function for the T _Mixed type.
Requirements:

1. Record type T_Float contains the following component:
1. F, a floating-point type.

2. Record type T Mixed is derived from the T_Float type.
1. T Mixed extends T Float with the following component:

1. I, an integer component.

2. Both components must be numerically synchronized:

* For example, if the floating-point component contains the value 2.0, the value
of the integer component must be 2.

* In order to simplify the implementation, you can simply use Integer (F) to
convert a floating-point variable F to integer.

3. Function Init returns an object of the corresponding type (T _Float or T_Mixed).
1. For each type, two versions of Init must be declared:
1. one with a floating-point input parameter,
2. another with an integer input parameter.
2. The parameter to Init is used to initialize the record components.

4. Function Image returns a string for the components of the record type.

115

© ©® N o U A W N R

e
w N R~ O

©W N U A W N e

NONONNN NN B H B R e e e B B e
o U A& W N B O © ® N O U & W N B O

Introduction to Ada: Laboratories

1. In case of the Image function forthe T Float type, the string must have the format
"{ F => <float value> }".

* For example, the call Image (T Float'(Init (8.0)))) should return the
string "{ F => 8.00000E+00 }".

2. In case of the Image function forthe T Mixed type, the string must have the format
"{ F => <float value>, I => <integer value> }".

* For example, the call Image (T Mixed'(Init (8.0)))) should return the
string "{ F => 8.00000E+00, I => 8 }".

Listing 159: type_extensions.ads

package Type_Extensions is

-- Create declaration of T Float type!
type T_Float is null record;

-- function Init ...
-- function Image ...

-- Create declaration of T Mixed type!
type T_Mixed is null record;

end Type Extensions;

Listing 160: type_extensions.adb

package body Type Extensions is

end Type Extensions;

Listing 161: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Type Extensions; use Type Extensions;
procedure Main is

type Test_Case_Index is
(Type Extension Chk);

procedure Check (TC : Test Case Index) is
F1, F2 : T Float;
M1, M2 : T Mixed;

begin
case TC is
when Type Extension Chk =>
F1 := Init (2.0);
F2 := Init (3);
M1 := Init (4.0);
M2 := Init (5);

if M2 in T Float'Class then
Put Line ("T Mixed is in T Float'Class as expected");

Put Line ("F1: " & Image (F1l));
(continues on next page)

116 Chapter 13. Object-oriented programming

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Introduction to Ada: Laboratories

(continued from previous page)
Put Line ("F2: " & Image (F2));
Put Line ("M1: " & Image (M1));
Put Line ("M2: " & Image (M2));
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

13.2 Online Store

Goal: create an online store for the members of an association.
Steps:
1. Implement the Online Store package.
1. Declare the Member type.
Declare the Full Member type.
Implement the Get Status function for the Member type.

Implement the Get Price function for the Member type.

vk WwN

Implement the Get Status function for the Full Member type.
6. Implement the Get Price function for the Full Member type.
2. Implement the Online Store.Tests child package.
1. Implement the Simple Test procedure.
Requirements:

1. Package Online Store implements an online store application for the members of an
association.

1. In this association, members can have one of the following status:
* associate member, or
» full member.
2. Function Get_Price returns the correct price of an item.

1. Associate members must pay the full price when they buy items from the online
store.

2. Full members can get a discount.

1. The discount rate can be different for each full member — depending on fac-
tors that are irrelevant for this exercise.

3. Package Online_ Store has following types:
1. Percentage type, which represents a percentage ranging from 0.0 to 1.0.

2. Member type for associate members containing following components:

13.2. Online Store 117

Introduction to Ada: Laboratories

e Start, which indicates the starting year of the membership.
- This information is common for both associate and full members.

- You can use the Year Number type from the standard Ada.Calendar pack-
age for this component.

3. Full Member type for full members.
1. This type must extend the Member type above.
2. It contains the following additional component:

e Discount, which indicates the discount rate that the full member gets in
the online store.

- This component must be of Percentage type.
4. For the Member and Full Member types, you must implement the following functions:
1. Get Status, which returns a string with the membership status.
* The string must be "Associate Member" or "Full Member", respectively.

2. Get Price, which returns the adapted price of an item — indicating the actual
due amount.

* For example, for a full member with a 10% discount rate, the actual due
amount of an item with a price of 100.00 is 90.00.

* Associated members don't get a discount, so they always pay the full price.
5. Procedure Simple Test (from the Online Store.Tests package) is used for testing.

1. Based on a list of members that bought on the online store and the corresponding
full price of the item, Simple Test must display information about each member
and the actual due amount after discounts.

2. Information about the members must be displayed in the following format:

Member # <number>
Status: <status>
Since: <year>

Due Amount: <value>

3. For this exercise, Simple Test must use the following list:

Membership status Start (year) Discount Full Price
1 Associate 2010 N/A 250.00
2 Full 1998 10.0 % 160.00
3 Full 1987 20.0 % 400.00
4 Associate 2013 N/A 110.00

4. In order to pass the tests, the information displayed by a call to Simple Test must
conform to the format described above.

* You can find another example in the remarks below.

Remarks:

1. In previous labs, we could have implemented a simplified version of the system de-
scribed above by simply using an enumeration type to specify the membership status.
For example:

type Member_Status is (Associate Member, Full Member);

118 Chapter 13. Object-oriented programming

© ©® N o U A W N R

NONON B R R R R R E B e e
N B O © ® W o U A& W N = O

Introduction to Ada: Laboratories

1. In this case, the Get Price function would then evaluate the membership
status and adapt the item price — assuming a fixed discount rate for all
full members. This could be the corresponding function declaration:

type Amount is delta 10.0**(-2) digits 10;

function Get Price (M : Member Status;
P : Amount) return Amount;

2. In this exercise, however, we'll use type extension to represent the mem-
bership status in our application.

2. For the procedure Simple Test, let's consider the following list of members as an
example:

Membership status Start (year) Discount Full Price

1 Associate 2002 N/A 100.00
2 Full 2005 10.0 % 100.00

» For this list, the test procedure displays the following information (in this
exact format):

Member # 1

Status: Associate Member
Since: 2002

Due Amount: 100.00
Member # 2

Status: Full Member
Since: 2005

Due Amount: 90.00

* Here, although both members had the same full price (as indicated by the
last column), member #2 gets a reduced due amount of 90.00 because
of the full membership status.

Listing 162: online_store.ads

with Ada.Calendar; use Ada.Calendar;

package Online_Store is
type Amount is delta 10.0**(-2) digits 10;
subtype Percentage is Amount range 0.0 .. 1.0;

-- Create declaration of Member type!

-- You can use Year Number from Ada.Calendar for the membership
-- starting year.

type Member is null record;
function Get Status (M : Member) return String;

function Get Price (M : Member;
P : Amount) return Amount;

-- Create declaration of Full Member type!

(continues on next page)

13.2. Online Store 119

23
24
25
26
27
28
29
30
31
32

© ® N o U A W N R

e e < e
o U A W N R O

U A W N e

© ©® N o U A W N R

=
o

N o U A W N &

Introduction to Ada: Laboratories

(continued from previous page)
-- Use the Percentage type for storing the membership discount.

type Full Member is null record;
function Get Status (M : Full Member) return String;

function Get Price (M : Full Member;
P : Amount) return Amount;

end Online Store;

Listing 163: online_store.adb

package body Online_Store is

function Get Status (M : Member) return String is
(IIII);

function Get Status (M : Full Member) return String is
(IIII);

function Get Price (M : Member;
P : Amount) return Amount is (0.0);

function Get Price (M : Full Member;
P : Amount) return Amount is
(0.0);

end Online Store;

Listing 164: online_store-tests.ads

package Online_Store.Tests is
procedure Simple Test;

end Online Store.Tests;

Listing 165: online_store-tests.adb

with Ada.Text IO; use Ada.Text IO;
package body Online Store.Tests is
procedure Simple Test is
begin
null;
end Simple Test;

end Online Store.Tests;

Listing 166: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with Online Store; use Online Store;

with Online Store.Tests; use Online Store.Tests;

procedure Main is
(continues on next page)

120 Chapter 13. Object-oriented programming

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Introduction to Ada: Laboratories

(continued from previous page)

type Test_Case_Index is
(Type Chk,
Unit Test Chk);

procedure Check (TC : Test Case Index) is

function Result Image (Result : Boolean) return String is
(if Result then "OK" else "not OK");

begin
case TC is
when Type Chk =>
declare
AM : constant Member = (Start => 2002);
FM : constant Full Member := (Start => 1990,
Discount => 0.2);
begin
Put Line ("Testing Status of Associate Member Type => "
& Result Image (AM.Get Status = "Associate Member"));
Put_Line ("Testing Status of Full Member Type => "
& Result Image (FM.Get Status = "Full Member"));
Put_Line ("Testing Discount of Associate Member Type => "
& Result Image (AM.Get Price (100.0) = 100.0));
Put Line ("Testing Discount of Full Member Type => "
& Result Image (FM.Get Price (100.0) = 80.0));
end;

when Unit Test Chk =>
Simple Test;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

13.2. Online Store

121

Introduction to Ada: Laboratories

122 Chapter 13. Object-oriented programming

CHAPTER
FOURTEEN

STANDARD LIBRARY: CONTAINERS

14.1 Simple todo list

Goal: implement a simple to-do list system using vectors.
Steps:
1. Implement the Todo Lists package.
1. Declare the Todo Item type.
2. Declare the Todo List type.
3. Implement the Add procedure.
4. Implement the Display procedure.
2. Todo Item type is used to store to-do items.
1. It should be implemented as an access type to strings.
3. Todo List type is the container for all to-do items.
1. It should be implemented as a vector.
4. Procedure Add adds items (of Todo Item type) to the list (of Todo List type).
1. This requires allocating a string for the access type.
5. Procedure Display is used to display all to-do items.
1. It must display one item per line.
Remarks:

1. This exercise is based on the Simple todo list exercise from the More About Types
(page 59).

1. Your goal is to rewrite that exercise using vectors instead of arrays.

2. You may reuse the code you've already implemented as a starting point.

Listing 167: todo_lists.ads

package Todo_Lists is
type Todo Item is access String;
type Todo_List is null record;

procedure Add (Todos : in out Todo List;
Item : String);

© ©® N o U A W N R

procedure Display (Todos : Todo List);

=
o

(continues on next page)

123

11

12

© ©® N o U A W N R

e e
o 0 A W N H O

© ©® N o U A W N R

28

Introduction to Ada: Laboratories

end Todo Lists;

(continued from previous page)

Listing 168: todo_lists.adb
with Ada.Text IO0; use Ada.Text IO;

package body Todo Lists is

procedure Add (Todos
Item

begin
null;
end Add;

procedure Display (Todos

begin

: in out Todo List;
: String) is

: Todo List) is

Put Line ("TO-DO LIST");

end Display;

end Todo Lists;

with Ada.Command Line;

with Ada.Text I0;

with Todo Lists;

procedure Main is
type Test_Case_Index is
(Todo List Chk);

procedure Check (TC :
T : Todo List;

begin

case TC is

Listing 169: main.adb

use Ada.Command Line;
use Ada.Text IO;

use Todo Lists;

Test Case Index) is

when Todo List Chk =>

Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add

(T,

~ ~ ~

~

~ ~ ~

Py

-

SR i | i |

~

—

Display

end case;
end Check;

begin

"Buy milk");

"Buy tea");

"Buy present");

"Buy tickets");

"Pay electricity bill");
"Schedule dentist appointment");
"Call sister");

"Revise spreasheet");
"Edit entry page");
"Select new design");
"Create upgrade plan");
(T);

if Argument Count < 1 then

Put Line ("ERROR: missing arguments! Exiting...

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

(continues on next page)

124

Chapter 14.

Standard library: Containers

37
38
39

© ® N o U A W N R

e i T e
o A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

Check (Test Case Index'Value (Argument (1)));
end Main;

14.2 List of unique integers

Goal: create function that removes duplicates from and orders a collection of elements.
Steps:
1. Implement package Ops.
1. Declare the Int Array type.
2. Declare the Integer Sets type.
3. Implement the Get Unique function that returns a set.
4. Implement the Get Unique function that returns an array of integer values.
Requirements:
1. The Int_Array type is an unconstrained array of positive range.

2. The Integer Sets package is an instantiation of the Ordered Sets package for the
Integer type.

3. The Get Unique function must remove duplicates from an input array of integer values
and order the elements.

1. For example:
* if the input array contains (7, 7, 1)
e the function must return (1, 7).
2. You must implement this function by using sets from the Ordered Sets package.
3. Get Unique must be implemented in two versions:
* one version that returns a set — Set type from the Ordered Sets package.
» one version that returns an array of integer values — Int_Array type.
Remarks:
1. Sets — as the one found in the generic Ordered Sets package — are useful for quickly
and easily creating an algorithm that removes duplicates from a list of elements.
Listing 170: ops.ads

with Ada.Containers.Ordered Sets;
package Ops is
-- type Int Array is ...
-- package Integer Sets is ...
subtype Int Set is Integer Sets.Set;
function Get Unique (A : Int Array) return Int Set;
function Get Unique (A : Int Array) return Int Array;

end Ops;

14.2. List of unique integers 125

© ©® N o U A W N R

i =
w N B o

© ©® N o U A W N R

AR DA DA W OW W W W W W W WW N NNDNNNNNNNRB B B B B2 B B B B
W N B O © ® N 6 00 B W KN B O O ® N 060 U A W N P O © ©® N 0 1 & W N R O

Introduction to Ada: Laboratories

Listing 171: ops.adb
package body Ops is
function Get Unique (A : Int Array) return Int Set is
begin

null;
end Get Unique;

function Get Unique (A : Int Array) return Int Array is

begin
null;
end Get Unique;
end Ops;

Listing 172: main.adb
with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO0;
with Ops; use Ops;

procedure Main is
type Test_Case_Index is
(Get Unique Set Chk,
Get Unique Array Chk);

procedure Check (TC : Test Case Index;
A : Int Array) is

procedure Display Unique Set (A : Int Array) is
: constant Int Set := Get Unique (A);
begin
for E of S loop
Put Line (Integer'Image (E));
end loop;
end Display Unique Set;

procedure Display Unique Array (A : Int Array) is
: constant Int Array := Get Unique (A);
begin
for E of AU loop
Put _Line (Integer'Image (E));
end loop;
end Display Unique Array;

begin
case TC is
when Get Unique Set Chk => Display Unique Set (A);
when Get Unique Array Chk => Display Unique Array (A);
end case;
end Check;

begin
if Argument Count < 3 then
Put Line ("ERROR: missing arguments! Exiting...");
return;
else
declare
A : Int Array (1 .. Argument Count - 1);
(continues on next page)

126 Chapter 14. Standard library: Containers

a4
45
46
47
48
49
50
51

Introduction to Ada: Laboratories

begin
for I in A'Range loop
A (I) := Integer'Value (Argument (1 + I));
end loop;
Check (Test Case Index'Value (Argument (1)), A);
end;
end if;
end Main;

(continued from previous page)

14.2. List of unique integers

127

Introduction to Ada: Laboratories

128 Chapter 14. Standard library: Containers

o U A W N

© ©® N o U A W N R

CHAPTER
FIFTEEN

STANDARD LIBRARY: DATES & TIMES

15.1 Holocene calendar

Goal: create a function that returns the year in the Holocene calendar.
Steps:

1. Implement the To Holocene Year function.
Requirements:

1. The To Holocene Year extracts the year from a time object (Time type) and returns
the corresponding year for the Holocene calendar?.

1. For positive (AD) years, the Holocene year is calculated by adding 10,000 to the
year number.

Remarks:
1. In this exercise, we don't deal with BC years.
2. Note that the year component of the Time type from the Ada.Calendar package is
limited to years starting with 1901.
Listing 173: to_holocene_year.adb

with Ada.Calendar; use Ada.Calendar;
function To Holocene Year (T : Time) return Integer is
begin

return 0;
end To Holocene Year;

Listing 174: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Ada.Calendar; use Ada.Calendar;

with To Holocene Year;

procedure Main is
type Test Case Index is
(Holocene Chk);

procedure Display Holocene Year (Y : Year Number) is
HY : Integer;
begin
HY := To Holocene Year (Time Of (Y, 1, 1));
(continues on next page)

3 https://en.wikipedia.org/wiki/Holocene_calendar

129

https://en.wikipedia.org/wiki/Holocene_calendar

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Introduction to Ada: Laboratories

(continued from previous page)
Put Line ("Year (Gregorian): " & Year Number'Image (Y));
Put Line ("Year (Holocene): " & Integer'Image (HY));
end Display Holocene Year;

procedure Check (TC : Test Case Index) is
begin
case TC is
when Holocene Chk =>
Display Holocene Year (2012);
Display Holocene Year (2020);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

15.2 List of events

Goal: create a system to manage a list of events.
Steps:
1. Implement the Events package.
1. Declare the Event Item type.
2. Declare the Event Items type.
2. Implement the Events.Lists package.
1. Declare the Event List type.
2. Implement the Add procedure.
3. Implement the Display procedure.
Requirements:
1. The Event Itemtype (from the Events package) contains the description of an event.
1. This description shall be stored in an access-to-string type.
2. The Event Items type stores a list of events.
1. This will be used later to represent multiple events for a specific date.
2. You shall use a vector for this type.

3. The Events.Lists package contains the subprograms that are used in the test appli-
cation.

4. The Event List type (from the Events.Lists package) maps a list of events to a
specific date.

1. You must use the Event Items type for the list of events.

2. You shall use the Time type from the Ada.Calendar package for the dates.

130 Chapter 15. Standard library: Dates & Times

N o U A W N &

Introduction to Ada: Laboratories

3. Since we expect the events to be ordered by the date, you shall use ordered maps
for the Event List type.

5. Procedure Add adds an event into the list of events for a specific date.

6. Procedure Display must display all events for each date (ordered by date) using the
following format:

<event date #1>
<description of item #la>
<description of item #1b>
<event date #2>
<description of item #2a>
<description of item #2b>

1. You should use the auxiliary Date Image function — available in the body
of the Events.Lists package — to display the date in the YYYY-MM-DD
format.

Remarks:
1. Let's briefly illustrate the expected output of this system.

1. Consider the following example:

with Ada.Calendar;
with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;

with Events.Lists; use Events.Lists;

procedure Test is
EL : Event List;

begin
EL.Add (Time Of (2019, 4, 16),
"Item #2");
EL.Add (Time Of (2019, 4, 15),
"Item #1");
EL.Add (Time Of (2019, 4, 16),
"Ttem #3");
EL.Display;
end Test;

2. The expected output of the Test procedure must be:

EVENTS LIST

- 2019-04-15
- Item #1

- 2019-04-16
- Item #2
- Item #3

Listing 175: events.ads

package Events is
type Event_Item is null record;
type Event_Items is null record;

end Events;

15.2. List of events 131

© ©® N o U A W N R

R L i T
N o U A W N B O

© ©® N o U A W N K

NONON NN NN B B HE B B e el e e
o U B W N B O © ©® N O U & W N B O

W @ N U A W N e

-
o

Introduction to Ada: Laboratories

Listing 176: events-lists.ads

with Ada.Calendar; use Ada.Calendar;

package Events.Lists is
type Event_List is tagged

procedure Add (Events

Event Time :

Event
procedure Display (Events
private
type Event_List is tagged

end Events.Lists;

with Ada.Text I0;
with Ada.Calendar.Formatting;

package body Events.Lists is

procedure Add (Events

Event Time
Event
begin
null;
end Add;

function Date Image (T :

private;

in out Event List;
Time;
String);

Event List);

null record;

Listing 177: events-lists.adb

use Ada.Text IO0;
use Ada.Calendar.Formatting;

in out Event List;
: Time;
: String) 1is

Time) return String is

:= Image (T);

Date Img : constant String
begin

return Date Img (1 .. 10);
end;

procedure Display (Events
T : Time;
begin

Event List) is

Put Line ("EVENTS LIST");
-- You should use Date Image (T) here!

end Display;

end Events.lLists;

with Ada.Command Line;

with Ada.Text I0;

with Ada.Calendar;

with Ada.Calendar.Formatting;

with Events.Lists;
procedure Main is

type Test_Case_Index is
(Event List Chk);

Listing 178: main.adb

use Ada.Command Line;
use Ada.Text IO;

use Ada.Calendar.Formatting;

use Events.Lists;

(continues on next page)

132

Chapter 15. Standard library: Dates & Times

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Introduction to Ada: Laboratories

procedure Check (TC : Test Case Index) is
EL : Event List;
begin
case TC is
when Event List Chk =>
EL.Add (Time Of (2018, 2, 16),
"Final check");
EL.Add (Time Of (2018, 2, 16),
"Release");
EL.Add (Time Of (2018, 12, 3),
"Brother's birthday");
EL.Add (Time Of (2018, 1, 1),
"New Year's Day");
EL.Display;

end case;

end Check;

begin

if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");
return;

elsif Argument Count > 1 then
Put Line ("Ignoring additional arguments...");

end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

(continued from previous page)

15.2. List of events

133

Introduction to Ada: Laboratories

134 Chapter 15. Standard library: Dates & Times

© @ N U A W N e

—
o

11
12
13
14
15

CHAPTER
SIXTEEN

STANDARD LIBRARY: STRINGS

16.1 Concatenation

Goal: implement functions to concatenate an array of unbounded strings.
Steps:
1. Implement the Str Concat package.
1. Implement the Concat function for Unbounded String.
2. Implement the Concat function for String.
Requirements:

1. The first Concat function receives an unconstrained array of unbounded strings and
returns the concatenation of those strings as an unbounded string.

1. The second Concat function has the same parameters, but returns a standard
string (String type).

2. Both Concat functions have the following parameters:
1. An unconstrained array of Unbounded String strings (Unbounded Strings type).

2. Trim Str, a Boolean parameter indicating whether each unbounded string must
be trimmed.

3. Add Whitespace, a Boolean parameter indicating whether a whitespace shall be
added between each unbounded string and the next one.

1. No whitespace shall be added after the last string of the array.
Remarks:

1. You can use the Trim function from the Ada.Strings.Unbounded package.

Listing 179: str_concat.ads
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Str_Concat is
type Unbounded_Strings is array (Positive range <>) of Unbounded String;
function Concat (USA : Unbounded Strings;
Trim Str : Boolean;
Add Whitespace : Boolean) return Unbounded String;
function Concat (USA : Unbounded Strings;
Trim Str : Boolean;

Add Whitespace : Boolean) return String;

end Str_Concat;

135

© ©® N o U A W N R

e e L e <
© ©® N o U0 A W N H O

© ® N o U A W N R

W W W W W wWww N NNDNNNNNNRNNRERRBR B B B B B B B
N o R W N BP O © ® N O U B WN B O O ©® N o0 U~ W N H O

Introduction to Ada: Laboratories

Listing 180: str_concat.adb
with Ada.Strings; use Ada.Strings;

package body Str _Concat is

function Concat (USA : Unbounded Strings;
Trim Str : Boolean;
Add Whitespace : Boolean) return Unbounded String is
begin
return "";
end Concat;
function Concat (USA : Unbounded Strings;
Trim Str : Boolean;
Add Whitespace : Boolean) return String is
begin
return "";

end Concat;

end Str_Concat;

Listing 181: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO0;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

with Str_Concat; use Str_Concat;

procedure Main is
type Test_Case_Index is
(Unbounded Concat No Trim No WS Chk,
Unbounded Concat Trim No WS Chk,
String Concat Trim WS Chk,
Concat Single Element);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Unbounded Concat No Trim No WS Chk =>
declare
: constant Unbounded Strings := (
To _Unbounded String ("Hello"),
To Unbounded String (" World"),
To _Unbounded String ("!"));
begin
Put Line (To String (Concat (S, False, False)));
end;
when Unbounded Concat Trim No WS Chk =>
declare
: constant Unbounded Strings :
To Unbounded String (" This

= (
II),
To Unbounded String (" is "),
II)’

To _Unbounded String (" a

To Unbounded String (" check "));
begin

Put Line (To String (Concat (S, True, False)));
end;
when String Concat Trim WS Chk =>
declare
(continues on next page)

136 Chapter 16. Standard library: Strings

38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Introduction to Ada: Laboratories

(continued from previous page)
: constant Unbounded Strings := (
To_Unbounded String (" This "),
To Unbounded String (" is a "),
To_Unbounded String (" test. "));

begin

Put Line (Concat (S, True, True));
end;

when Concat Single Element =>
declare
: constant Unbounded Strings := (
1 => To_Unbounded String (" Hi "));

begin

Put Line (Concat (S, True, True));
end;

end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

16.2 List of events

Goal: create a system to manage a list of events.
Steps:
1. Implement the Events package.
1. Declare the Event Item subtype.
2. Implement the Events.Lists package.
1. Adapt the Add procedure.
2. Adapt the Display procedure.
Requirements:
1. The Event Itemtype (from the Events package) contains the description of an event.
1. This description is declared as a subtype of unbounded string.
2. Procedure Add adds an event into the list of events for a specific date.
1. The declaration of E needs to be adapted to use unbounded strings.

3. Procedure Display must display all events for each date (ordered by date) using the
following format:

1. The arguments to Put_Line need to be adapted to use unbounded strings.
Remarks:

1. We use the lab on the list of events from the previous chapter (Standard library: Dates
& Times (page 129)) as a starting point.

16.2. List of events 137

W @ N U A W N e

i <
> W N B O

© ® N o U A W N R

N NN NN B B R R HE e R e e
A W N P O © ® N O 00 A W N = O

©W @ N U A W N e

e e
U A W N B O

Introduction to Ada: Laboratories

Listing 182: events.ads
with Ada.Containers.Vectors;
package Events is
-- subtype Event Item 1is
package Event Item Containers is new
Ada.Containers.Vectors
(Index Type => Positive,
Element Type => Event Item);

subtype Event_Items is Event Item Containers.Vector;

end Events;

Listing 183: events-lists.ads

with Ada.Calendar; use Ada.Calendar;
with Ada.Containers.Ordered Maps;
package Events.Lists is
type Event List is tagged private;
procedure Add (Events : in out Event List;
Event Time : Time;
Event . String);
procedure Display (Events : Event List);
private

package Event_Time_Item_Containers is new
Ada.Containers.Ordered_Maps

(Key Type => Time,
Element Type => Event Items,
=" => Event Item Containers."=");

type Event_List is new Event Time Item Containers.Map with null record;

end Events.lLists;

Listing 184: events-lists.adb
with Ada.Text I0; use Ada.Text IO;

with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;

package body Events.Lists is

procedure Add (Events : in out Event List;
Event Time : Time;
Event : String) is
use Event Item Containers;
E : constant Event Item := new String' (Event);
begin

if not Events.Contains (Event Time) then
Events.Include (Event Time, Empty Vector);

end if;

Events (Event Time).Append (E);

(continues on next page)

138 Chapter 16.

Standard library: Strings

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

© ©® N o U A W N K

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Introduction to Ada: Laboratories

end Add;
function Date Image (T :
: constant String :=
begin
return Date Img (1 .. 10);
end;

procedure Display (Events :

(continued from previous page)

Time) return String is

Image (T);

Event List) is

use Event Time Item Containers;

T : Time;

begin
Put Line ("EVENTS LIST");
for C in Events.Iterate loop

T := Key (C);
Put Line ("- " & Date_Image (T));
for I of Events (C) loop
Put Line (" " & I.all);
end loop;
end loop;

end Display;

end Events.Lists;

Listing 185: main.adb

with
with
with
with
with

Ada.Command Line;
Ada.Text I0;
Ada.Calendar;
Ada.Calendar.Formatting;
Ada.Strings.Unbounded;

with
with

Events;
Events.Lists;

procedure Main is
type Test_Case Index is
(Unbounded_String Chk,
Event List Chk);

procedure Check (TC : Test Case
EL : Event List;
begin
case TC is
when Unbounded String Chk
declare
: constant Events.
begin
Put Line (To _String
end;

when Event List Chk =>
EL.Add (Time Of (2018,
"Final check");
EL.Add (Time Of (2018,
"Release");
EL.Add (Time Of (2018,

use Ada.Command Line;
use Ada.Text IO;

use Ada.Calendar.Formatting;
use Ada.Strings.Unbounded;

use Events.Lists;

Index) is

=>
Event Item := To _Unbounded String ("Checked");

(8));

2, 16),
2, 16),

12, 3),

"Brother's birthday");

EL.Add (Time Of (2018,

1, 1),

"New Year's Day");

EL.Display;
end case;

(continues on next page)

16.2. List of events

139

36
37
38
39
40
41
42
43
44
45
46
47

Introduction to Ada: Laboratories

(continued from previous page)
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

140 Chapter 16. Standard library: Strings

© ©® N o U A W N R

=
o

CHAPTER
SEVENTEEN

STANDARD LIBRARY: NUMERICS

17.1 Decibel Factor

Goal: implement functions to convert from Decibel values to factors and vice-versa.
Steps:
1. Implement the Decibels package.
1. Implement the To_Decibel function.
2. Implement the To_Factor function.
Requirements:
1. The subtypes Decibel and Factor are based on a floating-point type.
2. Function To_Decibel converts a multiplication factor (or ratio) to decibels.
* For the implementation, use 20 = log,,(F), where F is the factor/ratio.
3. Function To Factor converts a value in decibels to a multiplication factor (or ratio).
» For the implementation, use 10°/2°, where D is the value in Decibel.
Remarks:
1. The Decibel* is used to express the ratio of two values on a logarithmic scale.

1. For example, an increase of 6 dB corresponds roughly to a multiplication by two
(or an increase by 100 % of the original value).

2. You can find the functions that you'll need for the calculation in the Ada.Numerics.
Elementary Functions package.

Listing 186: decibels.ads

package Decibels is

subtype Decibel is Float;
subtype Factor is Float;

function To Decibel (F : Factor) return Decibel;
function To Factor (D : Decibel) return Factor;

end Decibels;

4 https://en.wikipedia.org/wiki/Decibel

141

https://en.wikipedia.org/wiki/Decibel

© @ N U A W N e

e
w N P o

© @ N U A W N e

AOA R A A W OW W W W W W W W W N NNDNNNNNNNEREBRB B B B B B B
2 W N B O O ® N 66 00 A W N P O © © N 0 00 & WNRLO © ® N 60 00 2 W N = O

Introduction to Ada: Laboratories

Listing 187: decibels.adb

package body Decibels is
function To Decibel (F : Factor) return Decibel is
begin
return 0.0;
end To Decibel;
function To Factor (D : Decibel) return Factor is
begin
return 0.0;
end To Factor;

end Decibels;

Listing 188: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Decibels; use Decibels;
procedure Main is
type Test_Case_Index is
(Db _Chk,
Factor Chk);

procedure Check (TC : Test Case Index; V :

Float) is

package F_IO is new Ada.Text_IO.Float_IO (Factor);
package D_IO is new Ada.Text_I0.Float_IO (Decibel);

procedure Put Decibel Cnvt (D : Decibel) is
: constant Factor := To Factor (D);
begin
D I0.Put (D, 0, 2, 0);

Put (" dB => Factor of ");
F I0.Put (F, 0, 2, 0);
New Line;

end;

procedure Put Factor Cnvt (F : Factor) is
: constant Decibel := To Decibel (F);
begin
Put ("Factor of ");
F TI0.Put (F, 0, 2, 0);
Put (" => ");
D I0.Put (D, 0, 2, 0);
Put Line (" dB");
end;
begin
case TC is
when Db _Chk =>
Put Decibel Cnvt (Decibel (V));
when Factor Chk =>
Put_Factor Cnvt (Factor (V));
end case;
end Check;

begin
if Argument Count < 2 then

(continues on next page)

142

Chapter 17.

Standard library: Numerics

45
46
47
48
49
50
51
52

© L N o U A W N e

Introduction to Ada: Laboratories

(continued from previous page)
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 2 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)), Float'Value (Argument (2)));
end Main;

17.2 Root-Mean-Square

Goal: implement a function to calculate the root-mean-square of a sequence of values.
Steps:
1. Implement the Signals package.
1. Implement the Rms function.
Requirements:
1. Subtype Sig Value is based on a floating-point type.
2. Type Signal is an unconstrained array of Sig Value elements.

3. Function Rms calculates the RMS of a sequence of values stored in an array of type
Signal.

1. See the remarks below for a description of the RMS calculation.
Remarks:

1. The root-mean-square® (RMS) value is an important information associated with se-
quences of values.

1. It's used, for example, as a measurement for signal processing.
2. Itis calculated by:
1. Creating a sequence S with the square of each value of an input sequence S,,,.
2. Calculating the mean value M of the sequence S.
3. Calculating the square-root R of M.
3. You can optimize the algorithm above by combining steps #1 and #2 into a single
step.

Listing 189: signals.ads

package Signals is
subtype Sig_Value is Float;
type Signal is array (Natural range <>) of Sig Value;
function Rms (S : Signal) return Sig Value;

end Signals;

5 https://en.wikipedia.org/wiki/Root_mean_square

17.2. Root-Mean-Square 143

https://en.wikipedia.org/wiki/Root_mean_square

© ©® N o U A W N R

=
o

© ® N o U A W N R

o
= o

© ©® N o U A W N R

W W oW NN NN NNNNNN®RERE B B B B B B B 9
N B © © ® N o U A W N B © © ® N 0 U A W N K~ O

Introduction to Ada: Laboratories

Listing 190: signals.adb

with Ada.Numerics.Elementary Functions; use Ada.Numerics.Elementary Functions;
package body Signals is

function Rms (S : Signal) return Sig Value is
begin

return 0.0;
end;

end Signals;

Listing 191: signals-std.ads
package Signals.Std is

Sample Rate : Float := 8000.0;

function Generate Sine (N : Positive; Freq : Float) return Signal;
function Generate Square (N : Positive) return Signal;

function Generate Triangular (N : Positive) return Signal;

end Signals.Std;

Listing 192: signals-std.adb

with Ada.Numerics; use Ada.Numerics;
with Ada.Numerics.Elementary Functions; use Ada.Numerics.Elementary Functions;

package body Signals.Std is

function Generate Sine (N : Positive; Freq : Float) return Signal is
S : Signal (0 .. N - 1);
begin
for I in S'First .. S'Last loop
S (I) := 1.0 * Sin (2.0 * Pi * (Freq * Float (I) / Sample Rate));
end loop;

return S;
end;

function Generate Square (N : Positive) return Signal is
: constant Signal (0 .. N - 1) := (others => 1.0);
begin
return S;
end;

function Generate Triangular (N : Positive) return Signal is
S : Signal (0 .. N - 1);
: constant Natural := S'Last / 2;
begin
for I in S'First .. S Half loop
S (I) := 1.0 * (Float (I) / Float (S Half));
end loop;
for I in S Half .. S'Last loop
S (I) :=1.0 - (1.0 * (Float (I - S Half) / Float (S Half)));
end loop;

(continues on next page)

144 Chapter 17. Standard library: Numerics

33
34
35
36

© ® N o U A W N e

A A B A B A DWW W W W W W W W WNNNDNNNNNNNRERBR B B B B B B B
o 00 B W N P O © ® N O 00 A W N B O W ® N 060 U & WN B O © ® N 6 U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

return S;
end;

end Signals.Std;

Listing 193: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO0;

with Signals; use Signals;

with Signals.Std; use Signals.Std;

procedure Main is
type Test_Case_Index is
(Sine Signal Chk,
Square Signal Chk,
Triangular Signal Chk);

procedure Check (TC : Test Case Index) is
package Sig_IO is new Ada.Text_IO.Float_IO (Sig Value);

: constant Positive := 1024;

: constant Signal Generate Sine (N, 440.0);

: constant Signal Generate Square (N);

: constant Signal Generate Triangular (N + 1);

begin
case TC is
when Sine Signal Chk =>
Put ("RMS of Sine Signal: ");
Sig I0.Put (Rms (S Si), 0, 2, 0);
New Line;
when Square Signal Chk =>
Put ("RMS of Square Signal: ");
Sig I0.Put (Rms (S Sq), 0, 2, 0);
New Line;
when Triangular Signal Chk =>
Put ("RMS of Triangular Signal: ");
Sig I0.Put (Rms (S Tr), 0, 2, 0);
New Line;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

17.3 Rotation

Goal: use complex numbers to calculate the positions of an object in a circle after rotation.

Steps:

17.3. Rotation 145

Introduction to Ada: Laboratories

1. Implement the Rotation package.
1. Implement the Rotation function.
Requirements:
1. Type Complex Points is an unconstrained array of complex values.

2. Function Rotation returns a list of positions (represented by the Complex Points
type) when dividing a circle in N equal slices.

1. See the remarks below for a more detailed explanation.

2. You must use functions from Ada.Numerics.Complex Types to implement Rota-
tion.

3. Subtype Angle is based on a floating-point type.

4. Type Angles is an unconstrained array of angles.

5. Function To Angles returns a list of angles based on an input list of positions.
Remarks:

1. Complex numbers are particularly useful in computer graphics to simplify the calcula-
tion of rotations.

1. For example, let's assume you've drawn an object on your screen on position (1.0,
0.0).

2. Now, you want to move this object in a circular path — i.e. make it rotate around
position (0.0, 0.0) on your screen.

* You could use sine and cosine functions to calculate each position of the path.
* However, you could also calculate the positions using complex numbers.

2. In this exercise, you'll use complex numbers to calculate the positions of an object that
starts on zero degrees — on position (1.0, 0.0) — and rotates around (0.0, 0.0) for N
slices of a circle.

1. For example, if we divide the circle in four slices, the object's path will consist of
following points / positions:

Point #1: (1.0, 0.0)
Point #2: (0.0, 1.0)
Point #3: (-1.0, 0.0)
Point #4: (0.0, -1.0)
Point #5: (1.0, 0.0)

1. As expected, point #5 is equal to the starting point (point #1), since
the object rotates around (0.0, 0.0) and returns to the starting point.

2. We can also describe this path in terms of angles. The following list presents the
angles for the path on a four-sliced circle:

Point #1: 0.00 degrees
Point #2: 90.00 degrees
Point #3: 180.00 degrees
Point #4: -90.00 degrees (= 270 degrees)
Point #5: 0.00 degrees

1. To rotate a complex number simply multiply it by a unit vector whose
arg is the radian angle to be rotated: Z = e~

146 Chapter 17. Standard library: Numerics

W @ N U A W N e

—
o

W @ N U A W N e

=
= o

© ® N o U A W N R

e
= o

© ©® N o U A W N R

e e i
o A W N B O

Introduction to Ada: Laboratories

Listing 194: rotation.ads

with Ada.Numerics.Complex Types;
use Ada.Numerics.Complex Types;

package Rotation is
type Complex_Points is array (Positive range <>) of Complex;
function Rotation (N : Positive) return Complex Points;

end Rotation;

Listing 195: rotation.adb

with Ada.Numerics; use Ada.Numerics;
package body Rotation is

function Rotation (N : Positive) return Complex Points is
C : Complex Points (1 .. 1) := (others => (0.0, 0.0));
begin
return C;
end;

end Rotation;

Listing 196: angles.ads

with Rotation; use Rotation;

package Angles is
subtype Angle is Float;
type Angles is array (Positive range <>) of Angle;
function To Angles (C : Complex Points) return Angles;

end Angles;

Listing 197: angles.adb

with Ada.Numerics; use Ada.Numerics;
with Ada.Numerics.Complex Types; use Ada.Numerics.Complex Types;

package body Angles is

function To Angles (C : Complex Points) return Angles is
begin
return A : Angles (C'Range) do
for I in A'Range loop
A (I) := Argument (C (I)) / Pi * 180.0;
end loop;
end return;
end To Angles;

end Angles;

17.3. Rotation

147

N o U A W N &

© ® N o U A W N R

A A A A B A A B DA B W W W W W W W W W WNNNNNNNNNWN®K®ER®RRB B B B B B B
© ® N o0 U B W N B O © ® N O U A W NP O VW ® N o0 U A WN RO O ® N o U A W N B O

Introduction to Ada: Laboratories

Listing 198: rotation-tests.ads

package Rotation.Tests is
procedure Test Rotation (N : Positive);
procedure Test Angles (N : Positive);

end Rotation.Tests;

Listing 199: rotation-tests.adb

with Ada.Text I0; use Ada.Text I0;
with Ada.Text IO0.Complex IO;

with Ada.Numerics; use Ada.Numerics;
with Angles; use Angles;

package body Rotation.Tests is

package C I0 is new Ada.Text IO0.Complex IO (Complex Types);
package F_IO0 is new Ada.Text_IO0.Float_IO (Float);

-- Adapt value due to floating-point inaccuracies

function Adapt (C : Complex) return Complex is
function Check Zero (F : Float) return Float is
(if F <= 0.0 and F >= -0.01 then 0.0 else F);
begin
return C OQut : Complex := C do

C OQut.Re := Check Zero (C OQut.Re);
C Out.Im := Check Zero (C Out.Im);
end return;
end Adapt;

function Adapt (A : Angle) return Angle is
(if A <= -179.99 and A >= -180.01 then 180.0 else A);

procedure Test Rotation (N : Positive) is

C : constant Complex Points := Rotation (N);
begin
Put Line ("---- Points for " & Positive'Image (N) & " slices ----");

for V of C loop
Put ("Point: ");
C I10.Put (Adapt (V), 0, 1, 0);
New Line;
end loop;
end Test Rotation;

procedure Test Angles (N : Positive) is
C : constant Complex Points Rotation (N);
A : constant Angles.Angles To Angles (C);
begin
Put Line ("---- Angles for " & Positive'Image (N) & " slices ----");
for V of A loop
Put ("Angle: ");
F I0.Put (Adapt (V), 0, 2, 0);
Put Line (" degrees");
end loop;

(continues on next page)

148 Chapter 17. Standard library: Numerics

50
51
52

© @ N U A W N e

WON NN NN NNNNNR B B B2 BB e e e e
S © ® N o U B W N B O L ® N O U A~ W N B O

Introduction to Ada: Laboratories

(continued from previous page)
end Test Angles;

end Rotation.Tests;

Listing 200: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Rotation.Tests; use Rotation.Tests;

procedure Main is
type Test Case Index is
(Rotation Chk,
Angles Chk);

procedure Check (TC : Test Case Index; N : Positive) is
begin
case TC is
when Rotation Chk =>
Test Rotation (N);
when Angles Chk =>
Test Angles (N);
end case;
end Check;

begin
if Argument Count < 2 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 2 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)), Positive'Value (Argument (2)));
end Main;

17.3. Rotation 149

Introduction to Ada: Laboratories

150 Chapter 17. Standard library: Numerics

o U A W N K

© ©® N o U A W N R

I R R T e <
S © ® N o U B W N B O

CHAPTER
EIGHTEEN

SOLUTIONS

18.1 Imperative Language

18.1.1 Hello World

Listing 201: main.adb
with Ada.Text I0; use Ada.Text IO;

procedure Main is
begin

Put Line ("Hello World!");
end Main;

18.1.2 Greetings

Listing 202: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

procedure Main is

procedure Greet (Name : String) is
begin

Put Line ("Hello " & Name & "!");
end Greet;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Greet (Argument (1));
end Main;

18.1.3 Positive Or Negative

Listing 203: classify_number.ads

procedure Classify Number (X : Integer);

151

© ©® N o U A W N R

=R e
N = O

©W N U A W N e

P~ e e O e <
© ® N o U A W N B O

© @ N U A W N e

i <
A W N B O

Introduction to Ada: Laboratories

Listing 204: classify_number.adb
with Ada.Text IO; use Ada.Text IO;

procedure Classify Number (X : Integer) is
begin
if X > 0 then
Put Line ("Positive");
elsif X < 0 then
Put_Line ("Negative");
else
Put Line ("Zero");
end if;
end Classify Number;

Listing 205: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Classify Number;

procedure Main is
A : Integer;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

A := Integer'Value (Argument (1));

Classify Number (A);
end Main;

18.1.4 Numbers

Listing 206: display_numbers.ads
procedure Display Numbers (A, B : Integer);

Listing 207: display_numbers.adb
with Ada.Text I0; use Ada.Text IO;

procedure Display Numbers (A, B : Integer) is
X, Y : Integer;
begin
if A <=
X
Y :
else
X
Y :
end if;

B then
A;
B;

nn
>

for I in X .. Y loop
(continues on next page)

152 Chapter 18. Solutions

15

17

©W @ N U A W N e

I S T R R < T T
S © ® N o U A W N = O

oA W N e

©W @ N U A W N e

=
= o

Introduction to Ada: Laboratories

(continued from previous page)
Put Line (Integer'Image (I));
end loop;
end Display Numbers;

Listing 208: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Display Numbers;

procedure Main is
A, B : Integer;
begin
if Argument Count < 2 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 2 then

Put_Line ("Ignoring additional arguments...");
end if;

Integer'Value (Argument (1));

A
B Integer'Value (Argument (2));

Display Numbers (A, B);
end Main;

18.2 Subprograms

18.2.1 Subtract Procedure

Listing 209: subtract.ads

procedure Subtract (A, B : Integer;
Result : out Integer);

Listing 210: subtract.adb

procedure Subtract (A, B . Integer;
Result : out Integer) is
begin
Result := A - B;
end Subtract;

Listing 211: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Subtract;

procedure Main is
type Test Case Index is
(Sub 10 1 Chk,
Sub 10 100 Chk,
Sub 0 5 Chk,
Sub 0 Minus 5 Chk);
(continues on next page)

18.2. Subprograms 153

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

A W N R

© @ N U A W N e

e e
w N P o

Introduction to Ada: Laboratories

procedure Check (TC : Test Case Index)
Result : Integer;

begin
case TC is

when Sub 10 1 Chk =>

Subtract (10, 1, Result);

Put Line ("Result: " & Integer'Im
when Sub 10 100 Chk =>

Subtract (10, 100, Result);

Put Line ("Result: " & Integer'Im
when Sub 0 5 Chk =>

Subtract (0, 5, Result);

Put Line ("Result: " & Integer'Im
when Sub 0 Minus 5 Chk =>

Subtract (0, -5, Result);
Put Line ("Result: " & Integer'Im
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments!
return;
elsif Argument Count > 1 then
Put_Line ("Ignoring additional argum
end if;

Check (Test Case Index'Value (Argument
end Main;

18.2.2 Subtract Function

(continued from previous page)
is
age (Result));
age (Result));
age (Result));
age (Result));
Exiting...");

ents...");

(1)));

Listing 212: subtract.ads

function Subtract (A, B : Integer) return

Integer;

Listing 213: subtract.adb

function Subtract (A, B :
begin

return A - B;
end Subtract;

Integer) return

Listing 214

use Ada.Command
use Ada.Text IO

with Ada.Command Line;
with Ada.Text I0;

with Subtract;

procedure Main is
type Test_Case_Index is
(Sub 10 1 Chk,
Sub 10 160 Chk,
Sub 0 5 Chk,

Sub 0 Minus 5 Chk);

procedure Check (TC : Test Case Index)

Integer is

: main.adb

_Line;

’

is
(continues on next page)

154

Chapter 18. Solutions

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

A w N e

© @ N U A W N e

e i e
U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

Result : Integer;
begin
case TC is
when Sub 10 1 Chk =>
Result := Subtract (10, 1);
Put Line ("Result: " & Integer'Image (Result));
when Sub 10 100 Chk =>
Result := Subtract (10, 100);
Put Line ("Result: " & Integer'Image (Result));
when Sub 0 5 Chk =>
Result := Subtract (0, 5);
Put Line ("Result: " & Integer'Image (Result));
when Sub 0 Minus 5 Chk =>
Result := Subtract (0, -5);
Put Line ("Result: " & Integer'Image (Result));
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.2.3 Equality function

Listing 215: is_equal.ads

function Is Equal (A, B : Integer) return Boolean;

Listing 216: is_equal.adb

function Is Equal (A, B : Integer) return Boolean is
begin

return A = B;
end Is Equal;

Listing 217: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Is Equal;

procedure Main is
type Test_Case_Index is
(Equal Chk,
Inequal Chk);

procedure Check (TC : Test Case Index) is

procedure Display Equal (A, B : Integer;
Equal : Boolean) is
begin
(continues on next page)

18.2. Subprograms 155

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

© ©® N o U A W N R

e e i
o A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

Put (Integer'Image (A));
if Equal then
Put (" is equal to ");
else
Put (" isn't equal to ");
end if;
Put Line (Integer'Image (B) & ".");
end Display Equal;

Result : Boolean;
begin
case TC is
when Equal Chk =>
for I in 0 .. 10 loop
Result := Is Equal (I, I);
Display Equal (I, I, Result);
end loop;
when Inequal Chk =>
for I in 0 .. 10 loop
Result := Is Equal (I, I - 1);
Display Equal (I, I - 1, Result);
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.2.4 States

Listing 218: display_state.ads
procedure Display State (State : Integer);

Listing 219: display_state.adb
with Ada.Text IO; use Ada.Text IO;

procedure Display State (State : Integer) is

begin
case State is
when 0 =>
Put Line ("Off");
when 1 =>
Put Line ("On: Simple Processing");
when 2 =>

Put Line ("On: Advanced Processing");
when others =>
null;
end case;
end Display State;

156 Chapter 18.

Solutions

© ©® N o U A W N R

e e L e <
© ©® N o 0 A W N H O

© N O U A W N R

© ©® N o U A W N R

11
12
13
14
15
16
17
18
19

Introduction to Ada

: Laboratories

Listing 220: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Display State;

procedure Main is
State : Integer;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

State := Integer'Value (Argument (1));

Display State (State);
end Main;

18.2.5 States #2

Listing 221: get state.ads

function Get State (State : Integer) return String;

Listing 222: get state.adb

function Get State (State : Integer) return String is
begin
return (case State 1is
when 0 => "Off",
when 1 => "On: Simple Processing",
when 2 => "On: Advanced Processing",
when others => "");
end Get State;

Listing 223: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Get State;

procedure Main is
State : Integer;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

State := Integer'Value (Argument (1));

Put Line (Get State (State));
end Main;

18.2. Subprograms

157

A W N R

N o U A W N &

© ©® N o U A W N R

I I N e < =
P O © ® W o U & W N = O

Introduction to Ada: Laboratories

18.2.6 States #3

Listing 224: is_on.ads

function Is On (State : Integer) return Boolean;

Listing 225: is_on.adb

function Is On (State : Integer) return Boolean is
begin

return not (State = 0);
end Is On;

Listing 226: display_on_off.ads
procedure Display On Off (State : Integer);

Listing 227: display_on_off.adb

with Ada.Text IO0; use Ada.Text IO;
with Is On;

procedure Display On Off (State : Integer) is
begin

Put Line (if Is On (State) then "On" else "Off");
end Display On Off;

Listing 228: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text IO; use Ada.Text I0;

with Display On Off;
with Is On;

procedure Main is
State : Integer;
begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

State := Integer'Value (Argument (1));
Display On Off (State);

Put Line (Boolean'Image (Is On (State)));
end Main;

18.2.7 States #4

Listing 229: set next.ads

procedure Set Next (State : in out Integer);

158 Chapter 18.

Solutions

A W N R

© ® N o U A W N R

I R R T
S © ® N o U B W N B O

© @ N U A W N e

S e N e e
N o U A W N B O

18

Introduction to Ada

: Laboratories

Listing 230: set_next.adb

procedure Set Next (State : in out Integer) is
begin
State := (if State < 2 then State + 1 else 0);

end Set Next;

Listing 231: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Set Next;
procedure Main is
State : Integer;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");
return;
elsif Argument Count > 1 then
Put Line ("Ignoring additional arguments...");
end if;
State := Integer'Value (Argument (1));
Set Next (State);
Put Line (Integer'Image (State));
end Main;
18.3 Modular Programming
18.3.1 Months
Listing 232: months.ads
package Months is
Jan : constant String := "January";
Feb : constant String := "February";
Mar : constant String := "March";
Apr : constant String := "April";
May : constant String := "May";
Jun : constant String := "June";
Jul : constant String := "July";
Aug : constant String := "August";
Sep : constant String := "September";
Oct : constant String := "October";
Nov : constant String := "November";
Dec : constant String := "December";

procedure Display Months;

end Months;

18.3. Modular Programming

159

© ©® N o U A W N R

NONON R R R B E R B B e
N B O © ® W o 0 A W N = O

© ©® N o U A W N R

N ONON NN NNNN B B B 2R e e e e
® N o U A W N B O © ® N o U~ W N H O

Introduction to Ada: Laboratories

Listing 233: months.adb
with Ada.Text IO; use Ada.Text IO;

package body Months is

procedure Display Months is

begin
Put Line ("Months:");
Put_Line ("- " & Jan);
Put Line ("- " & Feb);
Put Line ("- " & Mar);
Put _Line ("- " & Apr);
Put Line ("- " & May);
Put Line ("- " & Jun);
Put _Line ("- " & Jul);
Put Line ("- " & Aug);
Put _Line ("- " & Sep);
Put Line ("- " & Oct);
Put Line ("- " & Nov);
Put _Line ("- " & Dec);

end Display Months;

end Months;

Listing 234: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Months; use Months;
procedure Main is

type Test_Case_Index is
(Months_Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Months Chk =>
Display Months;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

160 Chapter 18.

Solutions

© ©® N o U A W N K

=
= o

©W N U A W N e

N ONONN B B R B E e e Bl e
W N B O © ® N O U A W N F O

U A W N e

© ©® N o U A W N K

Introduction to Ada: Laboratories

18.3.2 Operations

Listing 235: operations.ads

package Operations is
function Add (A, B : Integer) return Integer;
function Subtract (A, B : Integer) return Integer;
function Multiply (A, B : Integer) return Integer;
function Divide (A, B : Integer) return Integer;

end Operations;

Listing 236: operations.adb

package body Operations is

function Add (A, B : Integer) return Integer is
begin

return A + B;
end Add;

function Subtract (A, B : Integer) return Integer is
begin

return A - B;
end Subtract;

function Multiply (A, B : Integer) return Integer is
begin

return A * B;
end Multiply;

function Divide (A, B : Integer) return Integer is
begin

return A / B;
end Divide;

end Operations;

Listing 237: operations-test.ads

package Operations.Test is
procedure Display (A, B : Integer);

end Operations.Test;

Listing 238: operations-test.adb
with Ada.Text IO; use Ada.Text IO;

package body Operations.Test is

procedure Display (A, B : Integer) is
A Str : constant String := Integer'Image (A);
B Str : constant String := Integer'Image (B);
begin
Put Line ("Operations:");

(continues on next page)

18.3. Modular Programming

l61

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

W @ N U A W N e

AW W W W W W W W W W N NNDNNNNNNNR®BRBR B B B B B B B
O © ®W N o U A W N P ©O © ® N O U & W N B O © ® N 00 00 2 W N B O

Introduction to Ada: Laboratories

Put Line (A Str & " + " &
& Integer'Image
& "r");

Put Line (A Str & " - " &
& Integer'Image
& "r");

Put Line (A Str & " * " &
& Integer'Image
& "r");

Put Line (A Str & " / " &
& Integer'Image
& "r");

end Display;

end Operations.Test;

(continued from previous page)

B Str & " ="
(Add (A, B))

B Str& " ="
(Subtract (A, B))

B Str& " ="
(Multiply (A, B))

B Str & " !
(Divide (A, B))

Listing 239: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0;

with Operations;
with Operations.Test;

procedure Main is

type Test_Case_Index is
(Operations Chk,
Operations Display Chk);

procedure Check (TC :
begin
case TC is
when Operations Chk =>
Put Line

Put Line ("Subtract

& Integer!'

Put_Line ("Multiply

& Integer'
("Divide (le00, 2) ="
& Integer'

Put Line

("Add (100,
& Integer'

use Ada.Text IO0;

use Operations.Test;

Test Case Index) is

2) ="

Image (Operations.Add (100, 2)));
(100, 2) ="

Image (Operations.Subtract (100, 2)));
(100, 2) ="

Image (Operations.Multiply (100, 2)));

Image (Operations.Divide (100, 2)));

when Operations Display Chk =>

Display (10, 5);
Display (1, 2);
end case;
end Check;

begin
if Argument Count < 1 then

Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value
end Main;

(Argument (1)));

162

Chapter 18. Solutions

© ©® N o U A W N R

NONONNNN B B H B B e Bl e e
U 2 W N P O © ® N O 00 A W N = O

© ©® N o U A W N R

NONON N NNNN B B R R R e B e e
N o 0B W N B O L ©® N o O R~ W N B O

Introduction to Ada: Laboratories

18.4 Strongly typed language

18.4.1 Colors

Listing 240: color_types.ads

package Color_Types is

type HTML_Color is
(Salmon,
Firebrick,
Red,
Darkred,
Lime,
Forestgreen,
Green,
Darkgreen,
Blue,
Mediumblue,
Darkblue);
function To Integer (C : HTML Color) return Integer;
type Basic_HTML_Color is
(Red,
Green,
Blue);

function To HTML Color (C : Basic HTML Color) return HTML Color;

end Color Types;

Listing 241: color_types.adb
package body Color_Types is

function To Integer (C : HTML Color) return Integer is

begin

case C is
when Salmon => return 16#FA8072#;
when Firebrick => return 16#B22222#;
when Red => return 16#FFO0000#;
when Darkred => return 16#8B0000#;
when Lime => return 16#00FFO00#;
when Forestgreen => return 16#228B22#;
when Green => return 16#008000#;
when Darkgreen => return 16#006400#;
when Blue => return 16#0000FF#;
when Mediumblue => return 16#0000CD#;
when Darkblue => return 16#00008B#;

end case;

end To Integer;

function To HTML Color (C : Basic HTML Color) return HTML Color is

begin
case C is
when Red => return Red;
when Green => return Green;
when Blue => return Blue;
end case;

(continues on next page)

18.4. Strongly typed language

163

28
29
30

© @ N o U A W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[B N N

Introduction to Ada: Laboratories

(continued from previous page)
end To HTML Color;

end Color Types;

Listing 242: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Ada.Integer Text I0;

with Color Types; use Color Types;

procedure Main is
type Test_Case_Index is
(HTML_Color_Range,
HTML Color To Integer,
Basic HTML Color To HTML Color);

procedure Check (TC : Test Case Index) is
begin
case TC is
when HTML Color Range =>
for I in HTML Color'Range loop
Put Line (HTML Color'Image (I));
end loop;
when HTML Color To Integer =>
for I in HTML Color'Range loop
Ada.Integer Text I0.Put (Item => To Integer (I),
Width => 1,
Base => 16);
New Line;
end loop;
when Basic HTML Color To HTML Color =>
for I in Basic HTML Color'Range loop
Put Line (HTML Color'Image (To HTML Color (I)));
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.4.2 Integers
Listing 243: int_types.ads
package Int Types is
type I_100 is range 0 .. 100;

type U_100 is mod 101;
(continues on next page)

164 Chapter 18. Solutions

© © N o

10
11
12
13
14
15
16
17
18
19
20

© ® N o U A W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Introduction to Ada: Laboratories

function To I 100 (V :
function To U 100 (V :
type D 50 is new I 100 range 10 .. 50;
subtype S_50 is I 100 range 10 .. 50;
function To D 50 (V : I 100) return D 50;
function To S 50 (V : I 100) return S 50;
function To I 100 (V :

end Int Types;

U 100) return I 100;

I 100) return U _100;

D 50) return I _100;

(continued from previous page)

Listing 244: int_types.adb

package body Int_Types is

function To I 100 (V :
begin

return I_100 (V);
end To I 100;

function To U 100 (V :
begin

return U_100 (V);
end To U 100;

function To D 50 (V :
Min : constant I 100

begin
if V > Max then
return D 50'Last;
elsif V < Min then
return D 50'First;
else
return D 50 (V);
end if;
end To D 50;

function To S 50 (V :
begin
if V > S 50'Last then
return S 50'Last;
elsif V < S 50'First then
return S 50'First;
else
return V;
end if;
end To S 50;

function To I 100 (V :
begin

return I 100 (V);
end To I 100;

end Int Types;

U 100) return I 100 is

I 100) return U_100 is

I 100) return D 50 is
:= 1 100 (D 50'First);
Max : constant I 100 := I 100 (D 50'Last);

I 100) return S 50 is

D 50) return I 100 is

18.4. Strongly typed language

165

© ©® N o U A W N R

u U U LU LU U U A R A DA B A DN A DR DN W W W W W W W W W WNNNNNNNNNWN®KR®ER®HRR B B B B B
© ® N o 00 A W KN B O © ® N O 00 R W N RFEF O OV ® N O U s~ WN P O VW ® N o0 U A WN B O LV ® N o U A W N B O

Introduction to Ada: Laboratories

Listing 245: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Int Types; use Int Types;

procedure Main is

package I_100_I0 is new Ada.Text_IO.Integer IO (I 100);
package U_100_I0 is new Ada.Text_IO.Modular_IO (U 100

package D 50 I0 is new Ada.Text_IO.Integer IO

use I 100 IO;
use U 100 I0;
use D 50 IO;

type Test_Case Index is
(I 100 _Range,
U 100 Range,
U 100 Wraparound,
U 100 To I 100,
I 100 To U 100,
D 50 Range,
S 50 _Range,
I 100 To D 50,
I 160 To S 50,
D 50 To I 100,
S 50 To I 100);

procedure Check (TC : Test Case Index) is
begin

I 100 I0.Default Width := 1;
U 100 I0.Default Width := 1;
D 50 I0.Default Width := 1;

case TC is
when I 100 Range =>
Put (I 100'First);
New Line;
Put (I _100'Last);
New Line;
when U 100 Range =>
Put (U _100'First);
New Line;
Put (U_100'Last);
New Line;
when U 100 Wraparound =>
Put (U _100'First - 1);
New Line;
Put (U 100'Last + 1);
New Line;
when U 100 To I 100 =>
for I in U 100'Range loop
I 100 I0.Put (To I 100 (I));
New Line;
end loop;
when I 100 To U 100 =>
for I in I 100'Range loop
Put (To U 100 (I));
New Line;
end loop;

(D_50)

) g
)

(continues on next page)

166

Chapter 18. Solutions

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
9
95
9
97
98
99

100

101

102

W N U A W N e

=R e
N = O

Introduction to Ada: Laboratories

(continued from previous page)
when D 50 Range =>
Put (D _50'First);
New Line;
Put (D 50'Last);
New Line;
when S 50 Range =>
Put (S _50'First);
New Line;
Put (S 50'Last);
New Line;
when I 100 To D 50 =>
for I in I 100'Range loop
Put (To D 50 (I));
New Line;
end loop;
when I 100 To S 50 =>
for I in I _100'Range loop
Put (To S 50 (I));
New Line;
end loop;
when D 50 To I 100 =>
for I in D 50'Range loop
Put (To I 100 (I));
New Line;
end loop;
when S 50 To I 100 =>
for I in S 50'Range loop

Put (I);
New Line;
end loop;
end case;
end Check;
begin

if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.4.3 Temperatures
Listing 246: temperature_types.ads
package Temperature Types is
type Celsius is digits 6 range -273.15 .. 5504.85;
type Int_Celsius is range -273 .. 5505;
function To Celsius (T : Int Celsius) return Celsius;
function To Int Celsius (T : Celsius) return Int Celsius;
type Kelvin is digits 6 range 0.0 .. 5778.00;

(continues on next page)

18.4. Strongly typed language 167

13
14
15
16
17

© ©® N o U A W N R

W W W W W W NN NNNNNNNNREBR B B B H B B B
G A W N P O © ® N 0O U & W N P O © ©® N 0 0l & W N H O

©W @ N U A W N e

i <
> W N B O

Introduction to Ada: Laboratories

(continued from previous page)
function To Celsius (T : Kelvin) return Celsius;

function To Kelvin (T : Celsius) return Kelvin;

end Temperature Types;

Listing 247: temperature_types.adb
package body Temperature_Types is
function To Celsius (T : Int Celsius) return Celsius is

Min : constant Float := Float (Celsius'First);
Max : constant Float := Float (Celsius'lLast);

F : constant Float :
begin
if F > Max then
return Celsius (Max);
elsif F < Min then
return Celsius (Min);
else
return Celsius (F);
end if;
end To Celsius;

Float (T);

function To Int Celsius (T : Celsius) return Int Celsius is
begin

return Int Celsius (T);
end To Int Celsius;

function To Celsius (T : Kelvin) return Celsius is
F : constant Float := Float (T);

begin
return Celsius (F - 273.15);

end To Celsius;

function To Kelvin (T : Celsius) return Kelvin is
F : constant Float := Float (T);

begin
return Kelvin (F + 273.15);

end To Kelvin;

end Temperature Types;

Listing 248: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Temperature Types; use Temperature Types;

procedure Main is
package Celsius IO is new Ada.Text IO.Float IO (Celsius);
package Kelvin_IO is new Ada.Text_IO.Float_IO (Kelvin);
package Int_Celsius_IO is new Ada.Text_IO.Integer_IO (Int Celsius);

use Celsius IO0;
use Kelvin I0;
use Int Celsius IO;

(continues on next page)

168 Chapter 18. Solutions

Introduction to Ada: Laboratories

type Test_Case_Index is
(Celsius Range,
Celsius To Int Celsius,
Int Celsius To Celsius,
Kelvin To Celsius,
Celsius To Kelvin);

procedure Check (TC : Test Case Index) is
begin

Celsius I0.Default Fore := 1;

Kelvin I0.Default Fore 1;

Int Celsius IO.Default Width := 1;

case TC is

when Celsius Range =>
Put (Celsius'First);
New Line;
Put (Celsius'lLast);
New Line;

when Celsius To Int Celsius =>
Put (To Int Celsius (Celsius'First));
New Line;
Put (To Int Celsius (0.0));
New Line;
Put (To_Int Celsius (Celsius'lLast));
New Line;

when Int Celsius To Celsius =>
Put (To Celsius (Int Celsius'First));
New Line;
Put (To Celsius (0));
New Line;
Put (To Celsius (Int Celsius'lLast));
New Line;

when Kelvin To Celsius =>
Put (To Celsius (Kelvin'First));
New Line;
Put (To_Celsius (0));
New Line;
Put (To Celsius (Kelvin'lLast));
New Line;

when Celsius To Kelvin =>
Put (To Kelvin (Celsius'First));
New Line;
Put (To Kelvin (Celsius'last));
New Line;

end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

(continued from previous page)

18.4. Strongly typed language

169

Introduction to Ada: Laboratories

18.5 Records

18.5.1 Directions

Listing 249: directions.ads

package Directions is
type Angle Mod is mod 360;

type Direction is
(North,
Northeast,
East,
Southeast,
South,
Southwest,
West,
Northwest);

© ©® N o U A W N R

L i < e
o A W N B O

function To Direction (N: Angle Mod) return Direction;

=
=Y

type Ext_Angle is record
Angle Elem : Angle Mod;
Direction Elem : Direction;
end record;

NN R e e
P O © ®

function To Ext Angle (N : Angle Mod) return Ext Angle;

NONN
A& w N

procedure Display (N : Ext Angle);

N
v

26 end Directions;

Listing 250: directions.adb

1 with Ada.Text IO0; use Ada.Text IO;

2

3 package body Directions is

4

5 procedure Display (N : Ext Angle) is

6 begin

7 Put _Line ("Angle: "

8 & Angle Mod'Image (N.Angle Elem)
9 &II = n

10 & Direction'Image (N.Direction_ Elem)
1 &II.II);

end Display;

-
A w N

function To Direction (N : Angle Mod) return Direction is

15 begin

16 case N is

17 when 0 => return North;

18 when 1 .. 89 => return Northeast;
19 when 90 => return East;

20 when 91 .. 179 => return Southeast;
21 when 180 => return South;

22 when 181 .. 269 => return Southwest;
23 when 270 => return West;

24 when 271 .. 359 => return Northwest;
25 end case;

end To Direction;

N
o

(continues on next page)

170 Chapter 18. Solutions

27
28
29
30
31

33
34

© ©® N o U A W N R

W W W W w W NN NNNNNNNNRERBR B B B B B B B
G A W N B O © ® N 0O U & W N P O © ©® N O 0 & W N - O

® N O U A W N &

Introduction to Ada: Laboratories

function To Ext Angle (N :

begin

return (Angle Elem =
Direction Elem =
end To Ext Angle;

end Directions;

with Ada.Command Line; use Ad

with Ada.Text I0;
with Directions;

procedure Main is

use Ad

use Di

type Test_Case_Index is
(Direction Chk);

procedure Check (TC : Test

begin
case TC is

when Direction_Chk =>

Display
Display
Display
Display
Display
Display
Display
Display
Display
end case;
end Check;

begin

(To_Ext _Angle
To Ext Angle
To Ext Angle
To Ext Angle
To Ext Angle
To Ext Angle
To Ext Angle
To Ext Angle

(
(
(
(
(
(
(
(To Ext Angle

if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

(continued from previous page)

Angle Mod) return Ext Angle is

> N,
> To _Direction (N));

Listing 251: main.adb

a.Command Line;
a.Text IO0;

rections;

Case Index) is

return;
elsif Argument Count > 1 then

Put _Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));

end Main;

18.5.2 Colors

L

package Color_Types is

type HTML_Color is

(Salmon,
Firebrick,
Red,
Darkred,
Lime,

isting 252: color_types.ads

(continues on next page)

18.5. Records

171

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

© ©® N o U A W N K

NN NN NN NNNNB B B B B2 o3 e e e e
© ® N o U B W N B O L ® N O U A W N B O

Introduction to Ada: Laboratories

Forestgreen,
Green,
Darkgreen,
Blue,
Mediumblue,
Darkblue);

function To Integer (C :
type Basic_HTML_Color is
(Red,
Green,

Blue);

function To HTML Color (C :

subtype Int_Color is Integer range 0 ..

type RGB is record

Red : Int _Color;
Green : Int Color;
Blue : Int Color;

end record;
function To RGB (C : HTML Color)
function Image (C :

end Color Types;

(continued from previous page)

HTML Color) return Integer;

Basic HTML Color) return HTML Color;

255;

return RGB;

RGB) return String;

Listing 253: color_types.adb

with Ada.Integer Text I0;
package body Color_Types is

function To Integer (C :

begin

case C is
when Salmon => return
when Firebrick => return
when Red => return
when Darkred => return
when Lime => return
when Forestgreen => return
when Green => return
when Darkgreen => return
when Blue => return
when Mediumblue => return
when Darkblue => return

end case;

end To Integer;

function To HTML Color (C :

Basic HTML Color) return

HTML Color) return Integer is

16#FA8072#;
16#B22222#;
16#FFO000#;
16#8B0O0O00#;
16#00FFOO#;
16#228B22#;
16#008000#;
16#006400#;
16#0000FF#;
16#0000CD#;
16#00008B#;

HTML Color is

begin
case C is
when Red => return Red;
when Green => return Green;
when Blue => return Blue;
end case;
(continues on next page)
172 Chapter 18. Solutions

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

©W @ N U A W N e

T e e
o U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)
end To HTML Color;

function To RGB (C : HTML Color) return RGB is

begin
case C 1is
when Salmon => return (16#FA#, 16#80#, 16#72#);
when Firebrick => return (16#B2#, 16#22#, 16#22#);
when Red => return (16#FF#, 16#00#, 16#00#);
when Darkred => return (16#8B#, 16#00#, 16#00#);
when Lime => return (16#00#, 16#FF#, 16#00#);
when Forestgreen => return (16#22#, 16#8B#, 16#22#);
when Green => return (16#00#, 16#80#, 16#00#);
when Darkgreen => return (16#00#, 16#64#, 16#00#);
when Blue => return (16#00#, 16#00#, 16#FF#);
when Mediumblue => return (16#00#, 16#00#, 16#CD#);
when Darkblue => return (16#00#, 16#00#, 16#8B#);
end case;
end To RGB;

function Image (C : RGB) return String is
subtype Str_Range is Integer range 1 .. 10;
SR : String (Str _Range);
SG : String (Str Range);
SB : String (Str_Range);

begin
Ada.Integer Text IO.Put (To => SR,
Item => C.Red,
Base => 16);
Ada.Integer Text IO.Put (To => SG,
Item => C.Green,
Base => 16);
Ada.Integer Text IO.Put (To => SB,
Item => C.Blue,
Base => 16);

return ("(Red => " & SR
& ", Green == " & SG
& ", Blue == " & SB
&II)II);
end Image;

end Color Types;

Listing 254: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Color Types; use Color Types;

procedure Main is
type Test_Case Index is
(HTML_Color_To_ RGB);

procedure Check (TC : Test Case Index) is
begin
case TC is
when HTML Color To RGB =>
for I in HTML Color'Range loop
Put Line (HTML Color'Image (I) & " => "
& Image (To RGB (I)) & ".");
(continues on next page)

18.5. Records 173

17
18
19
20
21
22
23
24
25
26
27
28
29
30

© ©® N o U A W N R

N N i e e O o < =
B O © ® N o U B W N H O

© ® N o U A W N R

e e e e
o 0 A W N R O

Introduction to Ada: Laboratories

(continued from previous page)

end loop;
end case;
end Check;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");
return;
elsif Argument Count > 1 then
Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.5.3 Inventory
Listing 255: inventory_pkg.ads
package Inventory_Pkg is

type Item_Name is
(Ballpoint Pen, 0il Based Pen Marker, Feather Quill Pen);

function To String (I : Item Name) return String;

type Item is record

Name : Item Name;
Quantity : Natural;
Price : Float;
end record;
function Init (Name : Item Name;
Quantity : Natural;
Price : Float) return Item;

procedure Add (Assets : in out Float;
I : Item);

end Inventory Pkg;

Listing 256: inventory_pkg.adb
with Ada.Text IO; use Ada.Text IO;

package body Inventory Pkg is

function To String (I : Item Name) return String is

begin
case I is
when Ballpoint Pen => return "Ballpoint Pen";
when 0il Based Pen Marker => return "Oil-based Pen Marker";
when Feather Quill Pen => return "Feather Quill Pen";
end case;

end To String;

function Init (Name : Item Name;
Quantity : Natural;
Price : Float) return Item is

(continues on next page)

174 Chapter 18. Solutions

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

W @ N U A W N e

A A A A W OW W W W W W W W W N NNNNNNIRNNN®K®ERB B B B B B B B
W N P O © ® N O 00 B W N P O ©W ® N 060 0 A& WN BB O W ® N O U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)
begin
Put Line ("Item: " & To_String (Name) & ".");

return (Name => Name,
Quantity => Quantity,
Price => Price);
end Init;

procedure Add (Assets : in out Float;

I : Item) is
begin
Assets := Assets + Float (I.Quantity) * I.Price;
end Add;

end Inventory Pkg;

Listing 257: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Inventory Pkg; use Inventory Pkg;

procedure Main is
-- Remark: the following line is not relevant.
F : array (1 .. 10) of Float := (others => 42.42);

type Test Case Index is
(Inventory Chk);

procedure Display (Assets : Float) is
package F_IO0 is new Ada.Text_I0.Float_IO (Float);

use F IO0;
begin
Put ("Assets: $");
Put (Assets, 1, 2, 0);
Put (".");
New Line;
end Display;

procedure Check (TC : Test Case Index) is
I 1 Item;
Assets : Float := 0.0;

-- Please ignore the following three lines!
pragma Warnings (O0ff, "default initialization");
for Assets'Address use F'Address;

pragma Warnings (On, "default initialization");

begin
case TC is
when Inventory Chk =>
I := Init (Ballpoint Pen, 185, 0.15);

Add (Assets, I);
Display (Assets);

I := Init (0il Based Pen Marker, 100, 9.0);
Add (Assets, I);
Display (Assets);

I := Init (Feather Quill Pen, 2, 40.0);
(continues on next page)

18.5. Records 175

a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58

© @ N U A W N e

e~ e e <
© ©® N o U B W N = O

© O N U A W N e

e e i
2 W N = O

Introduction to Ada: Laboratories

(continued from previous page)

Add (Assets, I);
Display (Assets);
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.6 Arrays

18.6.1 Constrained Array
Listing 258: constrained_arrays.ads
package Constrained_Arrays is
type My_Index is range 1 .. 10;
type My _Array is array (My Index) of Integer;
function Init return My Array;
procedure Double (A : in out My Array);
function First Elem (A : My Array) return Integer;
function Last Elem (A : My Array) return Integer;
function Length (A : My Array) return Integer;
A : My Array := (1, 2, others => 42);

end Constrained Arrays;

Listing 259: constrained_arrays.adb

package body Constrained Arrays is

function Init return My Array is
A : My Array;
begin
for I in My Array'Range loop
A (I) := Integer (I);
end loop;

return A;
end Init;

procedure Double (A : in out My Array) is
begin
(continues on next page)

176 Chapter 18. Solutions

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

©W @ N U A W N e

e e
U A W N B O

16

Introduction to Ada: Laboratories

for I in A'Range loop
A (I) := A (I) * 2;
end loop;
end Double;

function First Elem (A : My Array) return Integer is
begin

return A (A'First);
end First Elem;

function Last Elem (A : My Array) return Integer is
begin

return A (A'Last);
end Last Elem;

function Length (A : My Array) return Integer is
begin

return A'lLength;
end Length;

end Constrained Arrays;

Listing 260: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Constrained Arrays; use Constrained Arrays;

procedure Main is
type Test Case Index is
(Range_ Chk,
Array Range Chk,
A 0Obj Chk,
Init Chk,
Double Chk,
First Elem Chk,
Last Elem Chk,
Length Chk);

procedure Check (TC : Test Case Index) is
AA : My Array;

procedure Display (A : My Array) is
begin
for I in A'Range loop
Put Line (Integer'Image (A (I)));
end loop;
end Display;

procedure Local Init (A : in out My Array) is
begin

A := (100, 90, 80, 10, 20, 30, 40, 60, 50, 70);
end Local Init;

begin

case TC is
when Range Chk =>

for I in My Index loop

Put Line (My Index'Image (I));

end loop;

when Array Range Chk =>

(continued from previous page)

(continues on next page)

18.6. Arrays

177

38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

© ©® N o U A W N R

NONN R R R R R R E B e e
N B O © ® W o U A& W N = O

Introduction to Ada: Laboratories

for I in My Array'Range loop
Put Line (My Index'Image (I));

end loop;
when A Obj Chk =>

Display (A);
when Init Chk =>

AA := Init;

Display (AA);
when Double Chk =>

Local Init (AA);

Double (AA);

Display (AA);
when First Elem Chk =>

Local Init (AA);

Put Line (Integer'Image (First Elem (AA)));
when Last Elem Chk =>

Local Init (AA);

Put Line (Integer'Image (Last Elem (AA)));
when Length Chk =>

Put Line (Integer'Image (Length (AA)));
end case;

end Check;

begin
if Argument Count < 1 then

Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.6.2 Colors: Lookup-Table

Listing 261: color_types.ads

package Color_Types is

type HTML_Color is
(Salmon,
Firebrick,
Red,
Darkred,
Lime,
Forestgreen,
Green,
Darkgreen,
Blue,
Mediumblue,
Darkblue);

subtype Int_Color is Integer range 0 .. 255;

type RGB is record
Red : Int _Color;
Green : Int Color;
Blue : Int Color;
end record;

(continued from previous page)

(continues on next page)

178

Chapter 18. Solutions

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

W @ N U A W N e

WONON NN NNNNNNR B B 2 B B B e e e
S © ® N o U B W N B O © ® N O U A~ W N B O

Introduction to Ada: Laboratories

(continued from previous page)

function To RGB (C : HTML Color) return RGB;
function Image (C : RGB) return String;
type HTML_Color RGB is array (HTML Color) of RGB;

: constant HTML Color RGB

:= (Salmon => (16#FA#, 16#80#, 16#72#),
Firebrick => (16#B2#, 16#22#, 16#22#),
Red => (16#FF#, 16#00#, 16#00#),
Darkred => (16#8B#, 16#00#, 16#00#),
Lime => (16#00#, 16#FF#, 16#00#),
Forestgreen => (16#22#, 16#8B#, 16#22#),
Green => (16#00#, 16#80#, 16#00#),
Darkgreen => (16#00#, 16#64#, 106#00#),
Blue => (16#00#, 16#00#, 16#FF#),
Mediumblue => (16#00#, 16#00#, 16#CD#),
Darkblue => (16#00#, 16#00#, 16#8B#));

end Color Types;

Listing 262: color_types.adb

with Ada.Integer Text I0;
package body Color_Types is

function To RGB (C : HTML Color) return RGB is
begin

return To RGB Lookup Table (C);
end To RGB;

function Image (C : RGB) return String is
subtype Str_Range is Integer range 1 .. 10;
SR : String (Str _Range);
SG : String (Str_Range);
SB : String (Str Range);

begin
Ada.Integer Text I0.Put (To => SR,
Item => C.Red,
Base => 16);
Ada.Integer Text I0.Put (To => SG,
Item => C.Green,
Base => 16);
Ada.Integer Text IO0.Put (To => SB,
Item => C.Blue,
Base => 16);

return ("(Red == " & SR
& ", Green == " & SG
& ", Blue == " & SB
&")");
end Image;

end Color Types;

Listing 263: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

(continues on next page)

18.6. Arrays 179

© ©® N o U A

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

©W @ N U A W N e

e e
w N B o

[B N N

Introduction to Ada: Laboratories

(continued from previous page)
with Color Types; use Color Types;

procedure Main is
type Test_Case_Index is
(Color Table Chk,
HTML Color To Integer Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Color Table Chk =>
Put_Line ("Size of HTML Color RGB: "
& Integer'Image (HTML Color RGB'Length));
Put Line ("Firebrick: "
& Image (To RGB Lookup Table (Firebrick)));
when HTML Color To Integer Chk =>
for I in HTML Color'Range loop
Put Line (HTML Color'Image (I) & " =>"
& Image (To RGB (I)) & ".");
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.6.3 Unconstrained Array
Listing 264: unconstrained_arrays.ads
package Unconstrained Arrays is
type My _Array is array (Positive range <>) of Integer;
procedure Init (A : in out My Array);
function Init (I, L : Positive) return My Array;
procedure Double (A : in out My Array);
function Diff Prev Elem (A : My Array) return My Array;

end Unconstrained Arrays;

Listing 265: unconstrained_arrays.adb

package body Unconstrained Arrays is

procedure Init (A : in out My Array) is
Y : Natural := A'last;
begin
(continues on next page)

180 Chapter 18. Solutions

© © N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37

© ©® N o U A W N K

NONON NN NN B B B B R e el e e
o U B W N P O © ©® N O U & W N B O

Introduction to Ada: Laboratories

for I in A'Range loop

A (I) :=Y;
Y :=Y - 1;
end loop;
end Init;

function Init (I, L : Positive) return My Array is

A : My Array (I .. I +L - 1);
begin

Init (A);

return A;
end Init;

procedure Double (A : in out My Array) is
begin
for I in A'Range loop
A (I) :=A (I) * 2;
end loop;
end Double;

function Diff Prev Elem (A : My Array) return My Array is

A Out : My Array (A'Range);
begin
A Out (A'First) := 0;
for I in A'First + 1 .. A'Last loop
A Out (I) :=A(I)-A (I -1);
end loop;

return A Out;
end Diff Prev Elem;

end Unconstrained Arrays;

Listing 266: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Unconstrained Arrays; use Unconstrained Arrays;

procedure Main is
type Test_Case_Index is
(Init Chk,
Init Proc_Chk,
Double Chk,
Diff Prev Chk,
Diff Prev_Single Chk);

procedure Check (TC : Test Case Index) is
AA : My Array (1 .. 5);
AB : My Array (5 .. 9);

procedure Display (A : My Array) is
begin
for I in A'Range loop
Put Line (Integer'Image (A (I)));
end loop;
end Display;

procedure Local Init (A : in out My Array) is
begin

(continued from previous page)

(continues on next page)

18.6. Arrays

181

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

©W @ N U A W N e

N
N = O

Introduction to Ada: Laboratories

(continued from previous page)
A := (1, 2, 5, 10, -10);
end Local Init;

begin
case TC is
when Init Chk =>
AA := Init (AA'First, AA'Length);
AB := Init (AB'First, AB'Length);
Display (AA);
Display (AB);
when Init Proc Chk
Init (AA);
Init (AB);
Display (AA);
Display (AB);
when Double Chk =>
Local Init (AB);
Double (AB);
Display (AB);
when Diff Prev_Chk
Local Init (AB);
AB := Diff Prev_Elem (AB);
Display (AB);
when Diff Prev Single Chk =>
declare
Al : My Array (1 .. 1) := (1 => 42);
begin
Al := Diff Prev Elem (Al);
Display (Al);
end;
end case;
end Check;

1l
\

>

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.6.4 Product info
Listing 267: product_info_pkg.ads
package Product Info Pkg is
subtype Quantity is Natural;
subtype Currency is Float;
type Product_Info is record
Units : Quantity;
Price : Currency;

end record;

type Product_Infos is array (Positive range <>) of Product Info;
(continues on next page)

182 Chapter 18. Solutions

13
14
15
16
17
18
19
20
21
22
23

© ©® N o U A W N K

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

32
33

© ® N o U A W N R

=
o

Introduction to Ada: Laboratories

(continued from previous page)

type Currency_Array is array (Positive range <>) of Currency;

procedure Total (P : Product Infos;
Tot : out Currency Array);

function Total (P : Product Infos) return Currency Array;
function Total (P : Product Infos) return Currency;

end Product Info Pkg;

Listing 268: product_info_pkg.adb
package body Product_Info_Pkg is

-- Get total for single product
function Total (P : Product Info) return Currency is
(Currency (P.Units) * P.Price);

procedure Total (P : Product Infos;
Tot : out Currency Array) is
begin
for I in P'Range loop
Tot (I) := Total (P (I));
end loop;
end Total;

function Total (P : Product Infos) return Currency Array
is
Tot : Currency Array (P'Range);
begin
Total (P, Tot);
return Tot;
end Total;

function Total (P : Product Infos) return Currency
is

Tot : Currency := 0.0;
begin

for I in P'Range loop

Tot := Tot + Total (P (I));
end loop;
return Tot;

end Total;

end Product Info Pkg;

Listing 269: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Product Info Pkg; use Product Info Pkg;

procedure Main is
package Currency IO is new Ada.Text_IO.Float_IO (Currency);

type Test_Case Index is
(Total Func_Chk,

(continues on next page)

18.6. Arrays 183

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Introduction to Ada: Laboratories

Total Proc_Chk,
Total Value Chk);

procedure Check (TC : Test Case Index) is

subtype Test_Range is Positive range 1 .. 5;

P : Product Infos (Test Range);
Tots : Currency Array (Test Range);
Tot : Currency;

procedure Display (Tots : Currency Array) is
begin
for I in Tots'Range loop
Currency I0.Put (Tots (I));
New Line;
end loop;
end Display;

procedure Local Init (P : in out Product Infos) is

begin

New Line;
end case;
end Check;
begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");
return;
elsif Argument Count > 1 then
Put Line ("Ignoring additional arguments...");
end if;

begin
P := ((1, 0.5),
(2, 10.0),
(5, 40.0),
(10, 10.0),
(10, 20.0));
end Local Init;
Currency IO.Default Fore := 1;
Currency I0.Default Aft := 2;
Currency I0.Default Exp := 0;

case TC is

when Total Func_ Chk =>
Local Init (P);
Tots := Total (P);
Display (Tots);

when Total Proc_Chk =>
Local Init (P);
Total (P, Tots);
Display (Tots);

when Total Value Chk =>
Local Init (P);
Tot := Total (P);
Currency I0.Put (Tot);

Check (Test Case Index'Value (Argument (1)));
end Main;

(continued from previous page)

184

Chapter 18. Solutions

© ©® N o U A W N K

© ® N o U A W N R

R L i T
N o U A W N B O

© ©® N o U A W N K

NONON NN NN B B HE B B e el e e
o U0 B W N B O © ©® N O U & W N B O

Introduction to Ada: Laboratories

18.6.5 String 10

package Strings_10 is

Listing 270: strings_10.ads

subtype String_10 is String (1 .. 10);

-- Using "type String 10 is..." is possible, too.

function To String 10

end Strings 10;

(S : String) return String 10;

Listing 271: strings_10.adb

package body Strings_10 is

function To String 10
S OQut : String 10;
begin
for I in String 10'

(S : String) return String 10 is

First .. Integer'Min (String 10'Last, S'Last) loop

S Out (I) :=5S (I);

end loop;

for I in Integer'Min (String 10'Last + 1, S'lLast + 1) .. String 10'Last loop

S out (I) := ' ';

end loop;

return S _Out;
end To String 10;

end Strings 10;

with Ada.Command Line;
with Ada.Text I0;

with Strings 10;

procedure Main is

’

Listing 272: main.adb

use Ada.Command Line;
use Ada.Text IO;

use Strings 10;

type Test_Case_Index is

(String 10 Long Chk,

String 10 Short Chk);

procedure Check (TC :

: constant String
: constant String

S 10 : String 10;

begin
case TC is

Test Case Index) is
"And this is a long string just for testing...";
IIHey! II;

when String 10 Long Chk =>
S 10 := To String 10 (SL);
Put Line (String (S _10));
when String 10 Short Chk =>

S 10 := (others

= "'");

S 10 := To String 10 (SS);
Put Line (String (S 10));

end case;
end Check;

(continues on next page)

18.6. Arrays

185

27
28
29
30
31
32
33
34
35
36
37

© ©® N o U A W N K

W W oW W w W NN NNNNNNNNRERBR B B B B B B
G A W N B O © ® N 0O U & W N P O © ©® N 0 0 & W N - O

[B N

Introduction to Ada: Laboratories

(continued from previous page)

begin
if Argument Count < 1 then
Ada.Text I0.Put Line ("ERROR: missing arguments! Exiting...");
return;
elsif Argument Count > 1 then
Ada.Text I0.Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.6.6 List of Names
Listing 273: names_ages.ads
package Names_Ages is
Max People : constant Positive := 10;
subtype Name Type is String (1 .. 50);
type Age_Type is new Natural;

type Person is record

Name : Name_Type;
Age : Age Type;
end record;

type People Array is array (Positive range <>) of Person;

type People is record
People A : People Array (1 .. Max People);
Last Valid : Natural;

end record;

procedure Reset (P : in out People);

procedure Add (P : in out People;
Name : String);

function Get (P : People;
Name : String) return Age Type;

procedure Update (P : in out People;
Name : String;
Age : Age Type);

procedure Display (P : People);

end Names Ages;

Listing 274: names_ages.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Strings; use Ada.Strings;
with Ada.Strings.Fixed; use Ada.Strings.Fixed;

package body Names_Ages is
(continues on next page)

186 Chapter 18. Solutions

© © N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Introduction to Ada: Laboratories

(continued from previous page)

function To Name Type (S : String) return Name Type is
S Out : Name Type := (others => ' ');
begin
for I in 1 .. Integer'Min (S'Last, Name Type'lLast) loop
S OQut (I) :=S (I);
end loop;

return S Out;
end To Name Type;

procedure Init (P : in out Person;
Name : String) is

begin

P.Name := To Name Type (Name);

P.Age := 0;
end Init;
function Match (P : Person;

Name : String) return Boolean is

begin

return P.Name = To Name Type (Name);
end Match;
function Get (P : Person) return Age Type is
begin

return P.Age;
end Get;
procedure Update (P : in out Person;

Age : Age Type) is

begin

P.Age := Age;
end Update;
procedure Display (P : Person) is
begin

Put _Line ("NAME: " & Trim (P.Name, Right));

Put Line ("AGE: " & Age Type'Image (P.Age));

end Display;

procedure Reset (P : in out People) is

begin
P.Last Valid := 0;
end Reset;
procedure Add (P : in out People;
Name : String) is
begin

P.Last Valid := P.Last Valid + 1;
Init (P.People A (P.Last Valid), Name);

end Add;
function Get (P : People;

Name : String) return Age Type is
begin

for I in P.People A'First .. P.Last Valid loop
if Match (P.People A (I), Name) then
return Get (P.People A (I));
end if;
end loop;

(continues on next page)

18.6. Arrays 187

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

89
90

© @ N U A W N e

W W W W W N NN NNNNNNN®K®ER B B B B B B B B
A W N B O © ® N 60 O & W N B O © ® N 66 U A W N B O

Introduction to Ada: Laboratories

return 0;
end Get;
procedure Update (P : in out People;
Name : String;
Age : Age Type) is
begin

for I in P.People A'First .. P.Last Valid loop
if Match (P.People A (I), Name) then

Update
end if;
end loop;
end Update;

(P.People A (I), Age);

procedure Display (P : People) is

begin

Put Line ("LIST OF NAMES:");
for I in P.People A'First .. P.Last Valid loop
Display (P.People A (I));

end loop;
end Display;

end Names Ages;

Listing 275: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0;
with Names Ages;

procedure Main is

use Ada.Text IO0;

use Names Ages;

type Test Case Index is
(Names_Ages Chk,

Get Age Chk);

procedure Check

P : People;
begin
case TC is

(TC : Test Case Index) is

when Names Ages Chk =>

Reset (P);

Add (P, "John");

Add (P, "Patricia");
Add (P, "Josh");
Display (P);

Update (P, "John", 18);
Update (P, "Patricia", 35);
Update (P, "Josh", 53);
Display (P);

when Get Age Chk =>
Reset (P);
Add (P, "Peter");
Update (P, "Peter", 45);
Put Line ("Peter is "

end case;
end Check;

& Age Type'Image (Get (P, "Peter"))
& " years old.");

(continued from previous page)

(continues on next page)

188

Chapter 18. Solutions

35
36
37
38
39
40
a1
42
43
44

©W @ N U A W N e

e e e i
©® N o U A W N B O

© @ N U A W N R

I I N s T e o < T =
P O © ® N o U A W N ~ O

Introduction to Ada: Laboratories

(continued from previous page)
begin

if Argument Count < 1 then

Ada.Text IO0.Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Ada.Text I0.Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.7 More About Types

18.7.1 Aggregate Initialization

Listing 276: aggregates.ads

package Aggregates is

type Rec is record

W : Integer := 10;

X : Integer := 11;

Y : Integer := 12;

Z : Integer := 13;
end record;

type Int_Arr is array (1 .. 20) of Integer;
procedure Init (R : out Rec);

procedure Init Some (A : out Int Arr);
procedure Init (A : out Int Arr);

end Aggregates;

Listing 277: aggregates.adb
package body Aggregates is

procedure Init (R : out Rec) is

begin
R := (X => 100,
Y => 200,
others => <>);
end Init;

procedure Init Some (A : out Int Arr) is
begin
A:=(1..5=> 099,
others => 100);
end Init Some;

procedure Init (A : out Int Arr) is
begin

A := (others => 5);
end Init;

end Aggregates;

18.7. More About Types 189

© ©® N o U A W N R

U U U LU LU UL A R A DA B A DN A DR DA W W W W W W W W W WNNNNNNNNNWN®KR®ER®HR R B B B B B
© ® N o 00 A W N B O © ® N O 00 R W N R O OV ® N O U~ WN PR O VW ®® N o0 U A WN B O LV ® N o U A W N B O

Introduction to Ada: Laboratories

Listing 278: main.adb

use Ada.Command Line;
use Ada.Text IO0;

with Ada.Command Line;
with Ada.Text I0;
with Aggregates; use Aggregates;
procedure Main is
-- Remark: the following line is not relevant.

F : array (1 .. 10) of Float :=
with Unreferenced;

type Test_Case_Index is
(Default Rec Chk,
Init Rec_Chk,
Init Some Arr Chk,
Init Arr Chk);

procedure Check (TC : Test Case Index) is
A : Int Arr;
R : Rec;
DR : constant Rec := (others => <>);
begin
case TC is
when Default Rec Chk =>
R := DR;
Put Line ("Record Default:");
Put Line ("W => " & Integer'Image (R.W))
Put Line ("X => " & Integer'Image (R.X))
Put Line ("Y => " & Integer'Image (R.Y))
Put _Line ("Z => " & Integer'Image (R.Z))

when Init Rec Chk =>

Init (R);
Put_Line ("Record Init:");
Put Line ("W => " & Integer'Image (R.W))
Put Line ("X => " & Integer'Image (R.X))
Put_Line ("Y => " & Integer'Image (R.Y))
Put Line ("Z => " & Integer'Image (R.Z))
when Init _Some_ Arr Chk =>
Init Some (A),
PutiLlne ("Array Init Some:");
for I in A'Range loop
Put Line (Integer'Image (I) & " "
& Integer'Image (A (I)));
end loop;
when Init Arr Chk =>
Init (A);
Put Line ("Array Init:");
for I in A'Range loop
Put Line (Integer'Image (I) & " "
& Integer'Image (A (I)));
end loop;
end case;
end Check;
begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting..."
return;
elsif Argument Count > 1 then
Put_Line ("Ignoring additional arguments...");

(others => 42.42)

);

(continues on next page)

190

Chapter 18. Solutions

63

© O N o U A W N e

NONONONNN B H B B e el e e
g B W N B O © ® N O U A W N B O

o U A W N B

Introduction to Ada: Laboratories

(continued from previous page)
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.7.2 Versioning

Listing 279: versioning.ads

package Versioning is

type Version is record
Major : Natural;
Minor : Natural;
Maintenance : Natural;
end record;

function Convert (V : Version) return String;
function Convert (V : Version) return Float;

end Versioning;

Listing 280: versioning.adb

with Ada.Strings; use Ada.Strings;
with Ada.Strings.Fixed; use Ada.Strings.Fixed;

package body Versioning is

function Image Trim (N : Natural) return String is
: constant String := Trim (Natural'Image (N), Left);
begin
return S N;
end Image Trim;

function Convert (V : Version) return String is
: constant String := Image Trim (V.Major);
: constant String := Image Trim (V.Minor);
: constant String := Image Trim (V.Maintenance);

begin
return (S Major & "." & S Minor & "." & S Maint);
end Convert;

function Convert (V : Version) return Float 1is
begin

return Float (V.Major) + (Float (V.Minor) / 10.0);
end Convert;

end Versioning;

Listing 281: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO0;

with Versioning; use Versioning;

procedure Main is
(continues on next page)

18.7. More About Types 191

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

© ® N o U A W N e

R L T
N o U A W N B O

© ©® N o U A W N R

Introduction to Ada: Laboratories

(continued from previous page)

type Test_Case_Index is
(Ver String Chk,
Ver Float Chk);

procedure Check (TC : Test Case Index) is
\ : constant Version := (1, 3, 23);
begin
case TC is
when Ver String Chk =>
Put Line (Convert (V));
when Ver Float Chk =>
Put Line (Float'Image (Convert (V)));
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.7.3 Simple todo list

Listing 282: todo_lists.ads

package Todo_Lists is
type Todo Item is access String;
type Todo_Items is array (Positive range <>) of Todo Item;

type Todo_List (Max Len : Natural) is record
Items : Todo Items (1 .. Max_Len);
Last : Natural := 0;

end record;

procedure Add (Todos : in out Todo List;
Item : String);

procedure Display (Todos : Todo List);

end Todo Lists;

Listing 283: todo_lists.adb
with Ada.Text IO; use Ada.Text IO;

package body Todo_Lists is

procedure Add (Todos : in out Todo List;
Item : String) is
begin
if Todos.Last < Todos.Items'lLast then
Todos.Last := Todos.Last + 1;

(continues on next page)

192 Chapter 18. Solutions

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

W @ N U A W N e

W oW oW W W W Ww W Ww W N NNDNNNNNNNRHER B B B B B B
© ® N 6 0 A W N B O © ® N 00 U & W N P O © ©® N O U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)
Todos.Items (Todos.Last) := new String' (Item);

else
Put Line ("ERROR: list is full!");
end if;
end Add;
procedure Display (Todos : Todo List) is
begin
Put Line ("TO-DO LIST");
for I in Todos.Items'First .. Todos.Last loop
Put Line (Todos.Items (I).all);
end loop;

end Display;

end Todo Lists;

Listing 284: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Todo Lists; use Todo Lists;

procedure Main is
type Test Case Index is
(Todo List Chk);

procedure Check (TC : Test Case Index) is
T : Todo List (10);
begin
case TC is
when Todo List Chk =>
Add (T, "Buy milk");

Add (T, "Buy tea");
Add (T, "Buy present");
Add (T, "Buy tickets");
Add (T, "Pay electricity bill");
Add (T, "Schedule dentist appointment");
Add (T, "Call sister");
Add (T, "Revise spreasheet");
Add (T, "Edit entry page");
Add (T, "Select new design");
Add (T, "Create upgrade plan");
Display (T);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.7. More About Types 193

© ©® N o U A W N K

W oW NN NN NNNNNNR B B B R R H e e e
P O © ® N o U A W N P O © ® N O U B W N~ O

© ©® N o U A W N K

NONONNN B B H O E R B R m e e
A& W N P O © ® N o 00 & W N ~ O

Introduction to Ada: Laboratories

18.7.4 Price list

Listing 285: price_lists.ads

package Price_Lists is
type Price_Type is delta 0.01 digits 12;
type Price_List_Array is array (Positive range <>) of Price Type;

type Price_List (Max : Positive) is record
List : Price List Array (1 .. Max);
Last : Natural := 0;

end record;

type Price_Result (0Ok : Boolean) is record
case 0Ok is
when False =>
null;
when True =>
Price : Price Type;
end case;
end record;

procedure Reset (Prices : in out Price List);

procedure Add (Prices : in out Price List;
Item : Price Type);

function Get (Prices : Price List;
Idx : Positive) return Price Result;

procedure Display (Prices : Price List);

end Price Lists;

Listing 286: price_lists.adb
with Ada.Text IO; use Ada.Text IO;

package body Price_Lists is

procedure Reset (Prices : in out Price List) is
begin

Prices.Last := 0;
end Reset;

procedure Add (Prices : in out Price List;
Item : Price Type) is
begin
if Prices.Last < Prices.List'Last then
Prices.Last := Prices.Last + 1;
Prices.List (Prices.Last) := Item;
else
Put Line ("ERROR: list is full!");
end if;
end Add;

function Get (Prices : Price List;
Idx : Positive) return Price Result is
begin
if (Idx >= Prices.List'First and then
(continues on next page)

194 Chapter 18. Solutions

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

© ©® N o U A W N K

AA W W OW W W W W W W W N NNNNNNNNNKRERP B B B B B B B B
P O © ® N o 0 A W N B O © ® N O U & W N B © © ® N 0 U A W N H O

Introduction to Ada: Laboratories

(continued from previous page)

Idx <= Prices.lLast) then
return Price Result'(0Ok => True,
Price => Prices.List (Idx));
else
return Price Result'(0Ok => False);
end if;
end Get;
procedure Display (Prices : Price List) is
begin
Put _Line ("PRICE LIST");
for I in Prices.List'First .. Prices.Last loop
Put Line (Price Type'Image (Prices.List (I)));
end loop;

end Display;

end Price Lists;

Listing 287: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Price Lists; use Price Lists;

procedure Main is

type Test_Case_Index is
(Price Type Chk,
Price List Chk,
Price List Get Chk);

procedure Check (TC : Test Case Index) is
L : Price List (10);

procedure Local Init List is

begin

Reset (L);

Add (L, 1.45);
Add (L, 2.37);
Add (L, 3.21);
Add (L, 4.14);
Add (L, 5.22);
Add (L, 6.69);
Add (L, 7.77);
Add (L, 8.14);
Add (L, 9.99);

Add (L, 10.01);
end Local Init List;

procedure Get Display (Idx : Positive) is
: constant Price Result := Get (L, Idx);

begin

Put Line ("Attempt Get # " & Positive'Image (Idx));
if R.0Ok then

Put Line ("Element # " & Positive'Image (Idx)

& " =" & Price Type'Image (R.Price));

else

declare

begin

Put Line ("Element # " & Positive'Image (Idx)
& " =" & Price Type'Image (R.Price));

(continues on next page)

18.7. More About Types 195

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

© ® N o U A W N R

e i < e
o A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

exception
when others =>
Put_Line ("Element not available (as expected)");
end;
end if;

end Get Display;

begin
case TC is
when Price Type Chk =>
Put Line ("The delta value of Price Type is
& Price Type'Image (Price Type'Delta) & ";");
Put Line ("The minimum value of Price Type is "
& Price Type'Image (Price Type'First) & ";");
Put Line ("The maximum value of Price Type is "
& Price Type'Image (Price Type'lLast) & ";");
when Price List Chk =>
Local Init List;
Display (L);
when Price List Get Chk =>
Local Init List;
Get Display (5);
Get Display (40);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.8 Privacy

18.8.1 Directions

Listing 288: directions.ads

package Directions is
type Angle Mod is mod 360;

type Direction is
(North,
Northwest,
West,
Southwest,
South,
Southeast,
East);

function To Direction (N : Angle Mod) return Direction;

(continues on next page)

196 Chapter 18. Solutions

16
17
18
19
20
21
22
23
24
25
26
27
28
29

© ©® N o U A W N K

W W W w W NN NNNNNNNNRERB B B B B B B B B
A W N B © © ® N 606 U & W N B © © ® N 0 U A W N K~ O

o U A W N R

Introduction to Ada: Laboratories

(continued from previous page)
type Ext_Angle is private;

function To Ext Angle (N : Angle Mod) return Ext Angle;
procedure Display (N : Ext Angle);
private
type Ext_Angle is record
Angle Elem : Angle Mod;
Direction Elem : Direction;

end record;

end Directions;

Listing 289: directions.adb
with Ada.Text IO; use Ada.Text IO;

package body Directions is

procedure Display (N : Ext Angle) is
begin
Put Line ("Angle: "
& Angle Mod'Image (N.Angle Elem)

& n => n
& Direction'Image (N.Direction_ Elem)
& n) n) ;

end Display;

function To Direction (N : Angle Mod) return Direction is

begin

case N is
when 0 => return East;
when 1 .. 89 => return Northwest;
when 90 => return North;
when 91 .. 179 => return Northwest;
when 180 => return West;
when 181 .. 269 => return Southwest;
when 270 => return South;
when 271 .. 359 => return Southeast;

end case;

end To Direction;

function To Ext Angle (N : Angle Mod) return Ext Angle is
begin
return (Angle Elem => N,
Direction Elem => To Direction (N));
end To Ext Angle;

end Directions;

Listing 290: test directions.adb

with Directions; use Directions;

procedure Test Directions is
type Ext_Angle_Array is array (Positive range <>) of Ext Angle;

constant Ext Angle Array (1 .. 6)
(continues on next page)

18.8. Privacy 197

10
11
12
13
14
15
16
17
18
19

© ® N o U A W N R

NONONN NN NN B B B B R el el
N o0 U A W N B O W ® N o U s W N H O

W N U A W N e

=
= o

Introduction to Ada: Laboratories

(continued from previous page)
:= (To_Ext Angle (0),
To Ext Angle (45),
To Ext Angle (90),
To Ext_Angle (91),
To Ext Angle (180),
To Ext Angle (270));

begin
for I in All Directions'Range loop
Display (All Directions (I));
end loop;

end Test Directions;

Listing 291: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO0;

with Test Directions;

procedure Main is
type Test_Case_Index is
(Direction Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Direction Chk =>
Test Directions;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.8.2 Limited Strings
Listing 292: limited_strings.ads
package Limited Strings is
type Lim_String is limited private;
function Init (S : String) return Lim String;
function Init (Max : Positive) return Lim String;
procedure Put Line (LS : Lim String);

procedure Copy (From : Lim String;
(continues on next page)

198 Chapter 18. Solutions

12
13

15
16
17
18
19
20

W N U A W N e

A A B A B B B B DA W W W W W W W W W WNNDNNNRNNNNNN®RER®B B B B B B B B
©® N o U0 B W N B O © ® N 6 00 A W KN B O W ® N 0 U & WN P O © ® N 60 U A W N R O

49

Introduction to Ada: Laboratories

(continued from previous page)
To : in out Lim String);

function "=" (Ref, Dut : Lim String) return Boolean;
private
type Lim_String is access String;

end Limited Strings;

Listing 293: limited_strings.adb
with Ada.Text I0;

package body Limited_Strings
is

function Init (S : String) return Lim String is
LS : constant Lim String := new String'(S);
begin
return Ls;
end Init;

function Init (Max : Positive) return Lim String is

LS : constant Lim String := new String (1 .. Max);
begin

LS.all := (others => ' ');

return LS;
end Init;

procedure Put Line (LS : Lim String) is
begin

Ada.Text I0.Put Line (LS.all);
end Put Line;

function Get Min Last (A, B : Lim String) return Positive is
begin

return Positive'Min (A'Last, B'Last);
end Get Min Last;

procedure Copy (From : Lim String;
To : in out Lim String) is
Min Last : constant Positive := Get Min Last (From, To);
begin

To (To'First .. Min_Last) From (To'First .. Min_Last);

To (Min Last + 1 .. To'lLast) (others => ' ');
end;
function "=" (Ref, Dut : Lim String) return Boolean is

Min Last : constant Positive := Get Min Last (Ref, Dut);
begin

for I in Dut'First .. Min_Last loop
if Dut (I) /= Ref (I) then
return False;
end if;
end loop;

return True;
end;

end Limited Strings;

18.8. Privacy 199

© ©® N o U A W N R

A A A W W W W W W W W W W N NNNNNNNNWN®KRERRHRB B 2B B B B B
N B O © ® W O 00 & W N P O © ® N 60 Bl & W N B O ©W ® N o U A W N B O

©W N U A W N e

i < i
A W N = O

Introduction to Ada: Laboratories

with Ada.Text I0;

with Limited Strings; use Limited Strings;

Listing 294: check lim_string.adb

use Ada.Text IO;

procedure Check Lim Str

: constant String :

ing is

: constant Lim Strin
: constant Lim Strin

S3 : Lim String
S4 : Lim String

begin

Put ("S1 => ");
Put Line (S1);
Put ("S2 => ");
Put Line (S2);

if S1 = S2 then
Put Line ("S1
else
Put Line ("S1
end if;

Copy (From => S1,
Put ("S3 =>");
Put Line (S3);

if S1 = S3 then
Put_Line ("S1
else
Put Line ("S1
end if;

Copy (From => S1,
Put ("S4 => ");
Put Line (S4);

if S1 = S4 then
Put _Line ("S1
else
Put_Line ("S1
end if;

g := Init ("Hello World");
g := Init (30);

Init (5);

Init (S &S & S);

is equal to S2.");

isn't equal to S2.");

To => S3);

is equal to S3.");

isn't equal to S3.");

To => S4);

is equal to S4.");

isn't equal to S4.");

end Check Lim String;

Listing 295: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0;

with Check Lim String;

procedure Main is
type Test_Case Index is
(Lim String Chk);

procedure Check (TC :

begin

case TC is
when Lim String Chk =>

Check Lim String;

use Ada.Text IO0;

Test Case Index) is

(continues on next page)

200

Chapter 18. Solutions

15
16
17
18
19
20
21
22
23
24
25
26
27

N o U A W N &

© ©® N o U A W N R

=
o

© ® N o U A W N R

L i < e
o A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.9 Generics

18.9.1 Display Array

Listing 296: display_array.ads

generic
type T_Range is range <>;
type T_Element is private;
type T_Array is array (T_Range range <>) of T _Element;
with function Image (E : T Element) return String;
procedure Display Array (Header : String;
A : T Array);

Listing 297: display_array.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Display Array (Header : String;

A : T Array) is
begin
Put Line (Header);
for I in A'Range loop
Put _Line (T _Range'Image (I) & ": " & Image (A (I)));

end loop;
end Display Array;

Listing 298: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Display Array;

procedure Main is
type Test_Case_Index is (Int Array Chk,
Point Array Chk);

procedure Test Int Array is
type Int_Array is array (Positive range <>) of Integer;

procedure Display Int Array is new
Display Array (T _Range => Positive,
T Element => Integer,
(continues on next page)

18.9. Generics 201

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Introduction to Ada: Laboratories

(continued from previous page)

T Array => Int Array,
Image => Integer'Image);

: constant Int Array (1 .. 5) := (1, 2, 5, 7, 10);
begin
Display Int Array ("Integers", A);
end Test Int Array;

procedure Test Point Array is
type Point is record
X : Float;
Y : Float;
end record;

type Point_Array is array (Natural range <>) of Point;

function Image (P : Point) return String is

begin
return "(" & Float'Image (P.X)
& ", " & Float'Image (P.Y) & ")";
end Image;

procedure Display Point Array is new
Display Array (T Range => Natural,
T Element => Point,
T Array => Point Array,
Image => Image);

: constant Point Array (0 .. 3) := ((1.0,
(5.0,
begin

Display Point Array ("Points", A);

end Test Point Array;

procedure Check (TC : Test Case Index) is
begin
case TC is
when Int Array Chk =>
Test Int Array;
when Point Array Chk =>
Test Point Array;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.9.2 Average of Array of Float

202 Chapter 18.

Solutions

oA W N e

W N U A W N R

© ©® N o U A W N K

W W W W W WwWwWwwWwNNNNNNNNNN-RERBRB B B H B B B
© ® N &6 0 A W N B O © ® N 0 U & W N P O © ©® N 0 0 A W N B O

Introduction to Ada: Laboratories

Listing 299: average.ads

generic

type T_Range is range <>;

type T_Element is digits <>;

type T_Array is array (T_Range range <>) of T _Element;
function Average (A : T Array) return T Element;

Listing 300: average.adb

function Average (A : T Array) return T Element is
Acc : Float := 0.0;
begin
for I in A'Range loop
Acc := Acc + Float (A (I));
end loop;

return T Element (Acc / Float (A'Length));
end Average;

Listing 301: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Average;

procedure Main is
type Test_Case_Index is (Float Array Chk,
Digits 7 Float Array Chk);

procedure Test Float Array is
type Float_Array is array (Positive range <>) of Float;

function Average Float is new
Average (T Range => Positive,
T Element => Float,
T Array => Float _Array);

: constant Float Array (1 .. 5) := (1.0, 3.0, 5.0, 7.5, -12.5);

begin
Put Line ("Average: " & Float'Image (Average Float (A)));
end Test Float Array;

procedure Test Digits 7 Float Array is
type Custom_Float is digits 7 range 0.0 .. 1.0;

type Float_Array is
array (Integer range <>) of Custom Float;

function Average Float is new
Average (T _Range => Integer,
T Element => Custom_Float,
T Array => Float Array);

: constant Float Array (-1 .. 3) := (0.5, 0.0, 1.0, 0.6, 0.5);
begin
Put Line ("Average: "
& Custom Float'Image (Average Float (A)));
end Test Digits 7 Float Array;

(continues on next page)

18.9. Generics

203

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

o U A W N B

© @ N U A W N R

© ©® N o U A W N R

Introduction to Ada: Laboratories

(continued from previous page)

procedure Check (TC : Test Case Index) is
begin
case TC is
when Float Array Chk =>
Test Float Array;
when Digits 7 Float Array Chk =>
Test Digits 7 Float Array;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.9.3 Average of Array of Any Type

Listing 302: average.ads

generic
type T_Range is range <>;
type T _Element is private;
type T_Array is array (T_Range range <>) of T Element;
with function To Float (E : T Element) return Float is <>;
function Average (A : T Array) return Float;

Listing 303: average.adb

function Average (A : T Array) return Float is
Acc : Float := 0.0;
begin
for I in A'Range loop
Acc := Acc + To Float (A (I));
end loop;

return Acc / Float (A'Length);
end Average;

Listing 304: test item.ads

procedure Test Item;

Listing 305: test_item.adb
with Ada.Text I0; use Ada.Text I0;

with Average;

procedure Test Item is
package F_I0 is new Ada.Text I0.Float IO (Float);

type Amount is delta 0.01 digits 12;

(continues on next page)

204 Chapter 18. Solutions

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

© ©® N o U A W N K

11
12
13
14
15
16

Introduction to Ada: Laboratories

type Item is record
Quantity : Natural;
Price : Amount;
end record;

type Item Array is
array (Positive range <>) of Item;

function Get Total (I : Item) return Float is
(Float (I.Quantity) * Float (I.Price));

function Get Price (I : Item) return Float is
(Float (I.Price));

function Average Total is new
Average (T Range => Positive,
T Element => Item,
T Array => Item Array,
To Float => Get Total);

function Average Price is new
Average (T Range => Positive,
T Element => Item,
T Array => Item Array,
To Float => Get Price);

constant Item Array (1 .. 4)
:= ((Quantity => 5, Price => 10.00),
(Quantity => 80, Price => 2.50)
(Quantity => 40, Price => 5.00)
(Quantity => 20, Price => 12.50)

);
begin

Put ("Average per item & quantity: ");
F I0.Put (Average Total (A), 3, 2, 0);

New Line;
Put ("Average price: M
F I0.Put (Average Price (A), 3, 2, 0);
New Line;

end Test Item;

Listing 306: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Test Item;

procedure Main is
type Test_Case_Index is (Item Array Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Item Array Chk =>
Test Item;
end case;
end Check;

begin

(continued from previous page)

(continues on next page)

18.9. Generics

205

18
19
20
21
22
23
24
25
26

© @ N U A W N e

A N e
N o U A W N B O

© ® N o U A W N e

N NN ONNNE H HE B R el e
g B W N B O © ® N O U A W N B O

Introduction to Ada: Laboratories

if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.9.4 Generic list

Listing 307: gen_list.ads

generic
type Item is private;
type Items is array (Positive range <>) of Item;

Name : String;
List Array : in out Items;
Last : in out Natural;

with procedure Put (I : Item) is <>;
package Gen_List is

procedure Init;

procedure Add (I : Item;
Status : out Boolean);

procedure Display;

end Gen List;

Listing 308: gen_list.adb
with Ada.Text IO0; use Ada.Text IO;

package body Gen List is

procedure Init is
begin

Last := List Array'First - 1;
end Init;

procedure Add (I : Item;
Status : out Boolean) is
begin
Status := Last < List Array'lLast;

if Status then
Last := Last + 1;
List Array (Last) := I;
end if;
end Add;

procedure Display is
begin
Put Line (Name);
for I in List Array'First .. Last loop
Put (List Array (I));

(continued from previous page)

(continues on next page)

206

Chapter 18. Solutions

26
27

29
30

© ©® N o U A W N R

A B A A B A B A DWW W W W W W W W WNNNDNNNNNNNREBR B B B B B B B
® N o 00 B W N PR O © ©® N O 00 & W N R O ©W ® N 0 U A WN RO VW ® N O U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)
New Line;
end loop;
end Display;

end Gen List;

Listing 309: test int.ads

procedure Test Int;

Listing 310: test_int.adb

with Ada.Text IO; use Ada.Text IO;
with Gen List;
procedure Test Int is
procedure Put (I : Integer) is
begin
Ada.Text I0.Put (Integer'Image (I));
end Put;
type Integer Array is array (Positive range <>) of Integer;
A : Integer Array (1 .. 3);
L : Natural;
package Int List is new
Gen_List (Item => Integer,
Items => Integer_Array,
Name => "List of integers",
List Array => A,
Last => L);
Success : Boolean;
procedure Display Add Success (Success : Boolean) is
begin
if Success then
Put Line ("Added item successfully!");
else
Put Line ("Couldn't add item!");
end if;
end Display Add Success;
begin

Int List.Init;

Int List.Add (2, Success);
Display Add Success (Success);

Int List.Add (5, Success);
Display Add Success (Success);

Int List.Add (7, Success);
Display Add Success (Success);

Int List.Add (8, Success);
(continues on next page)

18.9. Generics 207

49
50
51
52

© ® N o U A W N R

NONONONNNN B HE H B R e e e
o U B W N P O © ® N O U A W N B O

© ©® N o U A W N K

R
N B O

Introduction to Ada: Laboratories

(continued from previous page)
Display Add Success (Success);

Int List.Display;
end Test Int;

Listing 311: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Test Int;

procedure Main is
type Test_Case_Index is (Int Chk);

procedure Check (TC : Test Case Index) is

begin
case TC is
when Int Chk =>
Test Int;
end case;
end Check;
begin

if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.10 Exceptions

18.10.1 Uninitialized Value
Listing 312: options.ads
package Options is
type Option is (Uninitialized,
Option 1,
Option 2,
Option 3);
Uninitialized Value : exception;

function Image (0 : Option) return String;

end Options;

Listing 313: options.adb
package body Options is

function Image (0 : Option) return String is
(continues on next page)

208 Chapter 18. Solutions

© ® N o U A W N R

10

12
13
14
15
16
17
18
19
20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Introduction to Ada: Laboratories

(continued from previous page)
begin
case 0 is
when Uninitialized =>
raise Uninitialized Value with "Uninitialized value detected!";
when others =>
return Option'Image (0);
end case;
end Image;

end Options;

Listing 314: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0; use Ada.Text I0;
with Ada.Exceptions; use Ada.Exceptions;
with Options; use Options;

procedure Main is
type Test_Case_Index is
(Options_Chk);

procedure Check (TC : Test Case Index) is

procedure Check (0 : Option) is
begin
Put Line (Image (0));
exception
when E : Uninitialized Value =>
Put Line (Exception Message (E));

end Check;
begin
case TC is

when Options Chk =>
for 0 in Option loop
Check (0);
end loop;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.10.2 Numerical Exception

Listing 315: tests.ads

package Tests is

(continues on next page)

18.10. Exceptions 209

© © N o u &~ W

© ® N o U A W N R

I R T <
S © ® N o U B~ W N B O

© ©® N o U A W N R

e e
A W N = O

©W @ N U A W N e

-
o

Introduction to Ada: Laboratories

(continued from previous page)

type Test_ID is (Test 1, Test 2);

Custom Exception : exception;

procedure Num_Exception Test (ID : Test ID);
end Tests;

Listing 316: tests.adb
package body Tests is

pragma Warnings (0ff, "variable ""C"" is assigned but never read");

procedure Num Exception Test (ID : Test ID) is
A, B, C : Integer;
begin
case ID is
when Test 1 =>
A := Integer'lLast;
B := Integer'Last;
C := A + B;
when Test 2 =>
raise Custom Exception with "Custom Exception raised!";
end case;
end Num Exception Test;

pragma Warnings (0On, "variable ""C"" is assigned but never read");

end Tests;

Listing 317: check exception.adb

with Tests; use Tests;

with Ada.Text I0; use Ada.Text I0;
with Ada.Exceptions; use Ada.Exceptions;

procedure Check Exception (ID : Test ID) is
begin
Num Exception Test (ID);
exception
when Constraint Error =>
Put_Line ("Constraint Error detected!");
when E : others =>
Put Line (Exception Message (E));
end Check Exception;

Listing 318: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0; use Ada.Text I0;
with Ada.Exceptions; use Ada.Exceptions;
with Tests; use Tests;

with Check Exception;

procedure Main is
type Test_Case_Index is
(Exception_ 1 Chk,
(continues on next page)

210 Chapter 18. Solutions

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

© ©® N o U A W N K

N o U A W N &

Introduction to Ada: Laboratories

(continued from previous page)

Exception 2 Chk);
procedure Check (TC : Test Case Index) is

procedure Check Handle Exception (ID : Test ID) is
begin
Check Exception (ID);
exception
when Constraint Error =>
Put Line ("Constraint Error"
& " (raised by Check Exception) detected!");
when E : others =>
Put Line (Exception Name (E)
& " (raised by Check Exception) detected!");
end Check Handle Exception;

begin
case TC is
when Exception 1 Chk =>
Check Handle Exception (Test 1);
when Exception 2 Chk =>
Check Handle Exception (Test 2);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.10.3 Re-raising Exceptions
Listing 319: tests.ads
package Tests is
type Test_ID is (Test 1, Test 2);
Custom Exception, Another Exception : exception;
procedure Num Exception Test (ID : Test ID);

end Tests;

Listing 320: tests.adb
package body Tests is
pragma Warnings (0ff, "variable ""C"" is assigned but never read");
procedure Num Exception Test (ID : Test ID) is

A, B, C : Integer;
begin

(continues on next page)

18.10. Exceptions 211

10
11
12
13
14
15
16
17
18
19
20

© @ N o U A W N e

i <
A w N B O

© @ N o U A W N e

NN B R R R R B R e e e
P O © ® W o U A W N = O

Introduction to Ada: Laboratories

(continued from previous page)

case ID is
when Test 1 =>
A := Integer'lLast;
B := Integer'lLast;
C := A + B;
when Test 2 =>
raise Custom Exception with "Custom Exception raised!";
end case;
end Num Exception Test;

pragma Warnings (On, "variable ""C"" is assigned but never read");

end Tests;

Listing 321: check _exception.ads

with Tests; use Tests;

procedure Check Exception (ID : Test ID);

Listing 322: check_exception.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Exceptions; use Ada.Exceptions;

procedure Check Exception (ID : Test ID) is
begin
Num_Exception Test (ID);
exception
when Constraint Error =>
Put Line ("Constraint Error detected!");
raise;
when E : others =>
Put Line (Exception Message (E));
raise Another Exception;
end Check Exception;

Listing 323: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0; use Ada.Text I0;
with Ada.Exceptions; use Ada.Exceptions;
with Tests; use Tests;

with Check Exception;

procedure Main is
type Test Case Index is
(Exception_ 1 Chk,
Exception_2 Chk);

procedure Check (TC : Test Case Index) is

procedure Check Handle Exception (ID : Test ID) is
begin

Check Exception (ID);
exception

when Constraint Error =>

Put_Line ("Constraint Error"
& " (raised by Check Exception) detected!");
(continues on next page)

212 Chapter 18. Solutions

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

©® N O U A W N R

© ©® N o U A W N R

e i
o 0 A W N H O

Introduction to Ada: Laboratories

(continued from previous page)

when E : others =>
Put Line (Exception Name (E)
& " (raised by Check Exception) detected!");
end Check Handle Exception;

begin
case TC is
when Exception 1 Chk =>
Check Handle Exception (Test 1);
when Exception 2 Chk =>
Check Handle Exception (Test 2);
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put _Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.11 Tasking

18.11.1 Display Service

Listing 324: display_services.ads

package Display Services is

task type Display_Service is
entry Display (S : String);
entry Display (I : Integer);
end Display Service;

end Display Services;

Listing 325: display_services.adb
with Ada.Text IO; use Ada.Text IO;

package body Display_Services is

task body Display Service is
begin
loop
select
accept Display (S : String) do
Put Line (S);
end Display;
or
accept Display (I : Integer) do
Put Line (Integer'Image (I));
end Display;
or
(continues on next page)

18.11. Tasking 213

17
18
19

21
22

W @ N U A W N R

W W oWw NN NN NNNNNN®K®EBR B B B B B B B B
N B © © ® N 0 U & W N P O © ©® N O U & W N B O

© ® N o U A W N R

=
o

Introduction to Ada: Laboratories

(continued from previous page)

terminate;
end select;
end loop;
end Display Service;

end Display Services;

Listing 326: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Display Services; use Display Services;

procedure Main is
type Test Case Index is (Display Service Chk);

procedure Check (TC : Test Case Index) is
Display : Display Service;
begin
case TC is
when Display Service Chk =>
Display.Display ("Hello");
delay 0.5;
Display.Display ("Hello again");
delay 0.5;
Display.Display (55);
delay 0.5;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.11.2 Event Manager
Listing 327: event_managers.ads
with Ada.Real Time; use Ada.Real Time;
package Event Managers is
task type Event_Manager is
entry Start (ID : Natural);
entry Event (T : Time);

end Event Manager;

end Event Managers;

214 Chapter 18.

Solutions

© ©® N o U A W N R

NONN R R R B E R B B e
N B O © ® W o 00 A W N = O

© ©® N o U A W N R

W W W W w NN NNNNNNNN-REB B B B B B B B B
A W N B O VU ® N 60 U A W N P O © ©® N 0 U A W N H O

Introduction to Ada: Laboratories

Listing 328: event_managers.adb
with Ada.Text IO; use Ada.Text IO;

package body Event Managers is

task body Event Manager is

Event ID : Natural := 0;
Event Delay : Time;
begin

accept Start (ID : Natural) do
Event ID := ID;
end Start;

accept Event (T : Time) do
Event Delay := T;
end Event;

delay until Event Delay;

Put Line ("Event #" & Natural'Image (Event ID));
end Event Manager;

end Event Managers;

Listing 329: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0; use Ada.Text I0;
with Event Managers; use Event Managers;
with Ada.Real Time; use Ada.Real Time;

procedure Main is
type Test_Case_Index is (Event Manager Chk);

procedure Check (TC : Test Case Index) is
Ev Mng : array (1 .. 5) of Event Manager;
begin
case TC is
when Event Manager Chk =>
for I in Ev_Mng'Range loop
Ev_Mng (I).Start (I);
end loop;

Ev Mng (1).Event (Clock + Seconds (5));
Ev_Mng (2).Event (Clock + Seconds (3));
Ev_Mng (3).Event (Clock + Seconds (1));
Ev_Mng (4).Event (Clock + Seconds (2));
Ev_Mng (5).Event (Clock + Seconds (4));
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));

(continues on next page)

18.11. Tasking

35

© O N o U A W N e

e~ e e i < e
© ©® N o U A W N = O

© O N o U A W N e

N NN NN NNNN B B B R R e R H e e
©® N o0 U A W N P O © ® N O U A W N E O

Introduction to Ada: Laboratories

(continued from previous page)

end Main;

18.11.3 Generic Protected Queue

Listing 330: gen_queues.ads

generic
type Queue_Index is mod <>;
type T is private;

package Gen_Queues is

type Queue_Array is array (Queue Index) of T;

protected type Queue is
function Empty return Boolean;
function Full return Boolean;
entry Push (V : T);
entry Pop (V : out T);

private
N : Natural =0;
Idx : Queue Index := Queue Array'First;
A : Queue Array;

end Queue;

end Gen Queues;

Listing 331: gen_queues.adb

package body Gen_Queues is
protected body Queue is

function Empty return Boolean is
(N = 0);

function Full return Boolean 1is
(N = A'Length);

entry Push (V : T) when not Full is

begin
A (Idx) :=V;
Idx := Idx + 1;
N =N+ 1;
end Push;

entry Pop (V : out T) when not Empty is

begin
N :=N - 1;
V := A (Idx - Queue Index (N) - 1);
end Pop;
end Queue;

end Gen _Queues;

216 Chapter 18.

Solutions

N o U A W N &

© ® N o U A W N R

A A A A B A A B D B W OW W W W W W W W WNNNNNNNNNWN®R®ER®RRB B B B B B B
© ® N o0 U A W N B O © ® N O U~ WN P O VW ® N o0 U A WN RO O ® N O U A W N B O

Introduction to Ada: Laboratories

Listing 332: queue_tests.ads

package Queue_Tests is
procedure Simple Test;
procedure Concurrent Test;

end Queue Tests;

Listing 333: queue_tests.adb
with Ada.Text IO0; use Ada.Text IO;

with Gen Queues;
package body Queue_Tests is

: constant := 10;
type Queue_Mod is mod Max;

procedure Simple Test is
package Queues_Float is new Gen_Queues (Queue Mod, Float);

Q F : Queues Float.Queue;
\" : Float;
begin

V := 10.0;

while not Q F.Full loop
Q F.Push (V);
V :=V + 1.5;

end loop;

while not Q F.Empty loop

Q_F.Pop (V);
Put Line ("Value from queue: " & Float'Image (V));
end loop;

end Simple Test;

procedure Concurrent Test is
package Queues_Integer is new Gen_Queues (Queue Mod, Integer);

Q T : Queues Integer.Queue;

task T Producer;
task T_Consumer;

task body T Producer is
V : Integer := 100;
begin
for I in 1 .. 2 * Max loop
Q I.Push (V);
V=V + 1;
end loop;
end T Producer;

task body T Consumer is
V : Integer;

begin
delay 1.5;

(continues on next page)

18.11. Tasking

217

50
51
52
53
54
55
56
57
58
59
60

© ©® N o U A W N K

NN NN NN NNNNHB B B B B2 B o2 s e e
© ® N o U B W N B O L ® N O U A W N B O

©® N O U A W N R

Introduction to Ada: Laboratories

(continued from previous page)

while not Q I.Empty loop
Q_I.Pop (V);
Put_Line ("Value from queue:
delay 0.2;
end loop;
end T Consumer;
begin
null;
end Concurrent Test;

& Integer'Image (V));

end Queue Tests;

Listing 334: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Queue Tests; use Queue Tests;

procedure Main is
type Test_Case_Index is (Simple Queue Chk,
Concurrent Queue Chk);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Simple Queue Chk =>
Simple Test;
when Concurrent Queue Chk =>
Concurrent_Test;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.12 Design by contracts

18.12.1 Price Range
Listing 335: prices.ads
package Prices is
type Amount is delta 10.0 ** (-2) digits 12;
-- subtype Price is Amount range 0.0 .. Amount'Last;
subtype Price is Amount

with Static Predicate => Price >= 0.0;
(continues on next page)

218 Chapter 18. Solutions

10

© ©® N o U A W N R

AA W W OW W W W W W W W N NNNNNNNNNEKREREHB B B B B B B B
F ©O © ® N o 0 A& W N B O © ® N O U A W N B O © ® N 06 U A W N ~ O

® N O U A W N &

Introduction to Ada: Laboratories

(continued from previous page)

end Prices;

Listing 336: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with System.Assertions; use System.Assertions;

with Prices; use Prices;
procedure Main is

type Test_Case_Index is
(Price_Range_ Chk);

procedure Check (TC : Test Case Index) is

procedure Check Range (A : Amount) is
: constant Price := A;
begin
Put Line ("Price: " & Price'Image (P));
end Check Range;

begin
case TC is
when Price Range Chk =>
Check Range (-2.0);
end case;
exception
when Constraint Error =>

Put Line ("Constraint Error detected (NOT as expected).

when Assert Failure =>
Put Line ("Assert Failure detected (as expected).");
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put _Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.12.2 Pythagorean Theorem: Predicate

Listing 337: triangles.ads

package Triangles is
subtype Length is Integer;

type Right_Triangle is record
H : Length := 0;
-- Hypotenuse
Cl, C2 : Length :

0;

"),

(continues on next page)

18.12. Design by contracts

219

10
11
12
13
14
15
16

[N N

© @ N o U A W N e

© ©® N o U A W N R

NN NN NN NNNNRB B B B2 2 o2 e e e
© ® N o U B W N B O © ® N O U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

-- Catheti / legs
end record
with Dynamic Predicate == H * H = C1 * C1 + C2 * (C2;

function Init (H, C1, C2 : Length) return Right Triangle is
((H, C1, C2));

end Triangles;

Listing 338: triangles-io.ads

package Triangles.IO is
function Image (T : Right Triangle) return String;

end Triangles.IO;

Listing 339: triangles-io.adb
package body Triangles.IO is

function Image (T : Right Triangle) return String is

(" (" & Length'Image (T.H)
& ", " & Length'Image (T.C1)
& ", " & Length'Image (T.C2)
& ")");

end Triangles.IO;

Listing 340: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with System.Assertions; use System.Assertions;

with Triangles; use Triangles;
with Triangles.IO; use Triangles.IO;

procedure Main is

type Test_Case_Index is
(Triangle 8 6 Pass Chk,
Triangle 8 6 Fail Chk,
Triangle 10 24 Pass_ Chk,
Triangle 10 24 Fail Chk,
Triangle 18 24 Pass Chk,
Triangle 18 24 Fail Chk);

procedure Check (TC : Test Case Index) is

procedure Check Triangle (H, Cl, C2 : Length) is
T : Right Triangle;
begin
T := Init (H, C1, C2);
Put Line (Image (T));
exception
when Constraint Error =>
Put Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put_Line ("Assert Failure detected (as expected).");
(continues on next page)

220 Chapter 18. Solutions

30
31

33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50
51
52

© ©® N o U A W N K

e e i
o U0 A W N H O

oA W N e

A W N R

Introduction to Ada: Laboratories

(continued from previous page)
end Check Triangle;

begin
case TC is

when Triangle 8 6 Pass Chk => Check Triangle (10, 8, 6);
when Triangle 8 6 Fail Chk => Check Triangle (12, 8, 6);
when Triangle 10 24 Pass Chk => Check Triangle (26, 10, 24);
when Triangle 10 24 Fail Chk => Check Triangle (12, 10, 24);
when Triangle 18 24 Pass Chk => Check Triangle (30, 18, 24);
when Triangle 18 24 Fail Chk => Check Triangle (32, 18, 24);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.12.3 Pythagorean Theorem: Precondition

Listing 341: triangles.ads

package Triangles is
subtype Length is Integer;

type Right_Triangle is record
H : Length := 0;
-- Hypotenuse
Cl, C2 : Length := 0;
-- Catheti / legs
end record;

function Init (H, C1, C2 : Length) return Right Triangle is
((H, C1, C2))
with Pre => H * H = C1 * C1 + C2 * C2;

end Triangles;

Listing 342: triangles-io.ads

package Triangles.IO is
function Image (T : Right Triangle) return String;

end Triangles.IO;

Listing 343: triangles-io.adb
package body Triangles.IO is

function Image (T : Right Triangle) return String is
(" (" & Length'Image (T.H)
(continues on next page)

18.12. Design by contracts 221

© @ N o u

© ©® N o U A W N R

U U A A A DA B A BN A D DWW W W WW W W W WNNNNNNNNNWNHK®ERRRBRB B B B B B
N B O © ® N O U B W N P O © ® N 0 00 & W N R O © ©® N 60 0l & WN B O W ® N &6 0 o W N B O

Introduction to Ada: Laboratories

(continued from previous page)

& ", " & Length'Image (T.C1)
& ", " & Length'Image (T.C2)
& "))

end Triangles.IO;

Listing 344: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with System.Assertions; use System.Assertions;

with Triangles; use Triangles;
with Triangles.IO; use Triangles.IO;

procedure Main is

type Test_Case_Index is
(Triangle 8 6 Pass Chk,
Triangle 8 6 Fail Chk,
Triangle 10 24 Pass Chk,
Triangle 10 24 Fail Chk,
Triangle 18 24 Pass Chk,
Triangle 18 24 Fail Chk);

procedure Check (TC : Test Case Index) is

procedure Check Triangle (H, C1, C2 : Length) is
T : Right Triangle;
begin
T := Init (H, C1, C2);
Put Line (Image (T));
exception
when Constraint Error =>
Put Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put Line ("Assert Failure detected (as expected).");
end Check Triangle;

begin
case TC is
when Triangle 8 6 Pass Chk => Check Triangle (10, 8, 6);

)I
when Triangle 8 6 Fail Chk => Check Triangle (12, 8, 6);
when Triangle 10 24 Pass Chk => Check Triangle (26, 10, 24);
when Triangle 10 24 Fail Chk => Check Triangle (12, 10, 24);
when Triangle 18 24 Pass Chk => Check Triangle (30, 18, 24);
when Triangle 18 24 Fail Chk => Check Triangle (32, 18, 24);

end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

222 Chapter 18.

Solutions

© ©® N o U A W N K

10
11
12

14
15
16
17
18

U A W N e

© ©® N o U A W N K

© ® N o U A W N R

e i e e
o U A W N R O

Introduction to Ada: Laboratories

18.12.4 Pythago

package Triangles is
subtype Length is

type Right_Triangl

H : Length
-- Hypotenuse
C1, C2 : Length
-- Catheti / 1

end record;

function Init (H,
((H, C1, C2))
with Post => (

end Triangles;

package Triangles.IO

function Image (T :

end Triangles.IO;

rean Theorem: Postcondition

Listing 345: triangles.ads

Integer;

e is record
= 0;

= 0;
egs
Cl, C2 : Length) return Right Triangle is
Init'Result.H * Init'Result.H

= Init'Result.Cl * Init'Result.Cl
+ Init'Result.C2 * Init'Result.C2);

Listing 346: triangles-io.ads
is

Right Triangle) return String;

Listing 347: triangles-io.adb

package body Triangles.IO is

function Image (T :

(""" & Length
& ", " & Length
& ", " & Length
&")");

end Triangles.IO;

Right Triangle) return String is
‘Image (T.H)
'Image (T.Cl)
'Image (T.C2)

Listing 348: main.adb

with Ada.Command Line; use Ada.Command Line;

with Ada.Text I0;
with System.Assertion

with Triangles;
with Triangles.IO;

procedure Main is

use Ada.Text IO;
s; use System.Assertions;

use Triangles;
use Triangles.IO;

type Test_Case_Index is

(Triangle 8 6 Pa
Triangle 8 6 Fa

Triangle 10 24

Triangle 10 24

Triangle 18 24
Triangle 18 24

ss Chk,
il Chk,
Pass Chk,
Fail Chk,
Pass Chk,
Fail Chk);
(continues on next page)

18.12. Design by contracts 223

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

© ©® N o U A W N K

P e L <
© @ N o U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

procedure Check (TC : Test Case Index) is

procedure Check Triangle (H, C1, C2 : Length) is
T : Right Triangle;
begin
T := Init (H, C1, C2);
Put Line (Image (T));
exception
when Constraint Error =>
Put_Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put Line ("Assert Failure detected (as expected).");
end Check Triangle;

begin
case TC is
when Triangle 8 6 Pass Chk => Check Triangle (10, 8, 6)
when Triangle 8 6 Fail Chk => Check Triangle (12, 8, 6)
when Triangle 10 24 Pass Chk => Check Triangle (26, 10, 24)
when Triangle 10 24 Fail Chk => Check Triangle (12, 10, 24)
when Triangle 18 24 Pass Chk => Check Triangle (30, 18, 24)
when Triangle 18 24 Fail Chk => Check Triangle (32, 18, 24)
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.12.5 Pythagorean Theorem: Type Invariant

Listing 349: triangles.ads

package Triangles is
subtype Length is Integer;

type Right_Triangle is private
with Type Invariant => Check (Right Triangle);

function Check (T : Right Triangle) return Boolean;
function Init (H, C1, C2 : Length) return Right Triangle;
private

type Right_Triangle is record
H : Length := 0;
-- Hypotenuse
Cl, C2 : Length := 0;
-- Catheti / legs
end record;
(continues on next page)

224 Chapter 18. Solutions

20
21
22
23
24

26
27

[N N

© @ N o U A W N e

© ©® N o U A W N R

NN NN NN NNNNRB B B B2 2 o2 e e e
© ® N o U B W N B O © ® N O U A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

function Init (H, C1, C2 : Length) return Right Triangle is
((H, C1, C2));

function Check (T : Right Triangle) return Boolean is
(T.H*T.H=T.C1 * T.C1 + T.C2 * T.C2);

end Triangles;

Listing 350: triangles-io.ads

package Triangles.IO is
function Image (T : Right Triangle) return String;

end Triangles.IO;

Listing 351: triangles-io.adb
package body Triangles.IO is

function Image (T : Right Triangle) return String is

(" (" & Length'Image (T.H)
& ", " & Length'Image (T.C1)
& ", " & Length'Image (T.C2)
& ")");

end Triangles.IO;

Listing 352: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with System.Assertions; use System.Assertions;

with Triangles; use Triangles;
with Triangles.IO; use Triangles.IO;

procedure Main is

type Test_Case_Index is
(Triangle 8 6 Pass Chk,
Triangle 8 6 Fail Chk,
Triangle 10 24 Pass_ Chk,
Triangle 10 24 Fail Chk,
Triangle 18 24 Pass Chk,
Triangle 18 24 Fail Chk);

procedure Check (TC : Test Case Index) is

procedure Check Triangle (H, Cl, C2 : Length) is
T : Right Triangle;
begin
T := Init (H, C1, C2);
Put Line (Image (T));
exception
when Constraint Error =>
Put Line ("Constraint Error detected (NOT as expected).");
when Assert Failure =>
Put_Line ("Assert Failure detected (as expected).");
(continues on next page)

18.12. Design by contracts 225

30
31

33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50
51
52

© ® N o U A W N R

W W oW NN NN NNNNNNRB B B B B B B B B
N B O VU ® N o U A& W N P O © ® N 0 U & W N R O

Introduction to Ada: Laboratories

end Check Triangle;

begin
case TC is
when Triangle 8 6 Pass Chk
when Triangle 8 6 Fail Chk
when Triangle 10 24 Pass Chk
when Triangle 10 24 Fail Chk
when Triangle 18 24 Pass Chk
when Triangle 18 24 Fail Chk
end case;
end Check;

begin
if Argument Count < 1 then

Put Line ("ERROR: missing arguments! Exiting...");

=>
=>

=>
=>
=>

Check Triangle
Check Triangle
Check Triangle
Check Triangle
Check Triangle
Check Triangle

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));

end Main;

18.12.6 Primary Colors

Listing 353: color_types.ads

package Color_Types is

type HTML Color is
(Salmon,
Firebrick,
Red,
Darkred,
Lime,
Forestgreen,
Green,
Darkgreen,
Blue,
Mediumblue,
Darkblue);

subtype Int_Color is Integer range

0 ..

255;

function Image (I : Int Color) return String;

type RGB is record
Red : Int Color;
Green : Int Color;
Blue : Int Color;
end record;

function To RGB (C : HTML Color) return RGB;

function Image (C : RGB) return String;

type HTML_Color RGB Array is array (HTML Color) of RGB;

: constant HTML Color RGB Array

(continued from previous page)

18, 24);
18, 24);

(continues on next page)

226

Chapter 18. Solutions

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

© ©® N o U A W N K

W oW oW W W W WwWw W N NNDNNNNNNWNHK®ERR B B B B B B B
® N o 00 A W N P O © ® N O U & W N B O ©W ® N 60 U » W N B O

Introduction to Ada: Laboratories

(continued from previous page)

:= (Salmon => (16#FA#, 16#80#, 16#72#),
Firebrick => (16#B2#, 16#22#, 16#22#),
Red => (16#FF#, 16#00#, 16#00#),
Darkred => (16#8B#, 16#00#, 16#00#),
Lime => (16#00#, 16#FF#, 16#00#),
Forestgreen => (16#22#, 16#8B#, 16#22#),
Green => (16#00#, 16#80#, 16#00#),
Darkgreen => (16#00#, 16#64#, 16#00#),
Blue => (16#00#, 16#00#, 16#FF#),
Mediumblue => (16#00#, 16#00#, 16#CD#),
Darkblue => (16#00#, 16#00#, 16#8B#));

subtype HTML_RGB_Color is HTML Color
with Static Predicate => HTML RGB Color in Red | Green | Blue;

function To Int Color (C : HTML Color;
S : HTML RGB Color) return Int Color;
-- Convert to hexadecimal value for the selected RGB component S

end Color Types;

Listing 354: color_types.adb
with Ada.Integer Text I0;

package body Color_Types is

function To RGB (C :
begin

return To RGB Lookup Table (C);
end To RGB;

HTML Color) return RGB is

function To Int Color (C : HTML Color;
S : HTML RGB Color) return Int Color is

C RGB : constant RGB := To RGB (C);
begin
case S is
when Red => return C_RGB.Red;
when Green => return C_RGB.Green;
when Blue => return C RGB.Blue;
end case;

end To Int Color;

function Image (I :
subtype Str_Range is Integer range 1 ..
S : String (Str Range);

Int Color) return String is
10;

begin
Ada.Integer Text I0.Put (To = S,
Item =1,
Base => 16);
return S;
end Image;

function Image (C :
begin
return ("(Red => " & Image (C.Red)
& ", Green => " & Image (C.Green)
& ", Blue == " & Image (C.Blue)
&")");
end Image;

RGB) return String is

(continues on next page)

18.12. Design by contracts 227

39

© ® N o U A W N e

AR DA DA W OW W W W W W W WWNNNDNDNNNNNNRB B B B B2 B B B B
W N P O © ® N O 0 A W N P O ©W ® N o0 U A WN B O VW ® N O A W N B O

A W N R

Introduction to Ada: Laboratories

(continued from previous page)
end Color Types;

Listing 355: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Color Types; use Color Types;

procedure Main is
type Test_Case_Index is
(HTML_Color_Red_ Chk,
HTML Color Green Chk,
HTML Color Blue Chk);

procedure Check (TC : Test Case Index) is

procedure Check HTML Colors (S : HTML RGB Color) is
begin

Put Line ("Selected: " & HTML _RGB_Color'Image (S));

for I in HTML Color'Range loop

Put Line (HTML Color'Image (I) & " => "
& Image (To Int Color (I, S)) & ".");

end loop;

end Check HTML Colors;

begin
case TC is
when HTML Color Red Chk =>
Check HTML Colors (Red);
when HTML Color Green Chk =>
Check HTML Colors (Green);
when HTML Color Blue Chk =>
Check HTML Colors (Blue);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.13 Object-oriented programming

18.13.1 Simple type extension

Listing 356: type_extensions.ads

package Type_ Extensions is

type T_Float is tagged record
F : Float;
(continues on next page)

228 Chapter 18. Solutions

© @ N o u

10
11
12
13
14
15
16
17
18
19
20
21
22

N
w

© ® N o U A W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35

w
o

Introduction to Ada: Laboratories

end record;
function Init
function Init
function Image
type T Mixed i
I : Integer
end record;
function Init

function Init

function Image

function Init
begin

return ((F
end Init;

function Init
begin

return ((F
end Init;

function Init

begin
return ((F
I
end Init;

function Init

begin
return ((F
I
end Init;

function Image
begin

return "{ F
end Image;

function Image

begin
return "{ F
&", I =>
end Image;

(F : Float) return T Float;

(I : Integer) return T Float;
(T : T Float) return String;

s new T Float with record

(F : Float) return T_Mixed;

(I : Integer) return T Mixed;

(T : T Mixed) return String;

end Type Extensions;

Listing 357: type_extensions.adb

package body Type Extensions is

(F : Float) return T Float is

=> F));

(I : Integer) return T Float is

=> Float (I)));

(F : Float) return T Mixed is
=> F’
=> Integer (F)));
(I : Integer) return T Mixed is
=> Float (I),
= 1));

(T : T Float) return String is

=> " & Float'Image (T.F) & " }";

(T : T Mixed) return String is

=> " & Float'Image (T.F)
" & Integer'Image (T.I) & " }";

end Type Extensions;

(continued from previous page)

18.13. Object-oriented programming

229

31

W N U A W N e

=
= o

Introduction to Ada: Laboratories

Listing 358: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;

with Type Extensions; use Type Extensions;
procedure Main is

type Test_Case_Index is
(Type Extension_Chk);

procedure Check (TC : Test Case Index) is
F1, F2 : T Float;
M1, M2 : T Mixed;

begin
case TC is
when Type Extension Chk =>
F1 := Init (2.0);
F2 := Init (3);
M1l := Init (4.0);
M2 := Init (5);

if M2 in T Float'Class then
Put Line ("T Mixed is in T Float'Class as expected");

end if;
Put Line ("F1: " & Image (F1));
Put Line ("F2: " & Image (F2));
Put Line ("M1: " & Image (M1));
Put Line ("M2: " & Image (M2));
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.13.2 Online Store

Listing 359: online_store.ads

with Ada.Calendar; use Ada.Calendar;

package Online Store is
type Amount is delta 10.0**(-2) digits 10;
subtype Percentage is Amount range 0.0 .. 1.0;
type Member is tagged record

Start : Year Number;
end record;

(continues on next page)

230 Chapter 18. Solutions

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

W N U A W N &

T e s
o U A W N B O

[B N N N

© ® N o U A W N e

=R e
N = O

Introduction to Ada: Laboratories

(continued from previous page)

type Member_Access is access Member'Class;
function Get Status (M : Member) return String;

function Get Price (M : Member;
P : Amount) return Amount;

type Full Member is new Member with record
Discount : Percentage;
end record;

function Get Status (M : Full Member) return String;

function Get Price (M : Full Member;
P : Amount) return Amount;

end Online Store;

Listing 360: online_store.adb

package body Online Store is

function Get Status (M : Member) return String is
("Associate Member");

function Get Status (M : Full Member) return String is
("Full Member");

function Get Price (M : Member;
P : Amount) return Amount is (P);

function Get Price (M : Full Member;
P : Amount) return Amount is
(P * (1.0 - M.Discount));

end Online Store;

Listing 361: online_store-tests.ads

package Online Store.Tests is
procedure Simple Test;

end Online Store.Tests;

Listing 362: online_store-tests.adb
with Ada.Text IO0; use Ada.Text IO;
package body Online Store.Tests is
procedure Simple Test is
type Member_Due_Amount is record
Member : Member Access;
Due Amount : Amount;

end record;

function Get Price (MA : Member Due Amount) return Amount is
(continues on next page)

18.13. Object-oriented programming 231

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

© ©® N o U A W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Introduction to Ada: Laboratories

(continued from previous page)
begin
return MA.Member.Get Price (MA.Due_ Amount);
end Get Price;

type Member_Due_Amounts is array (Positive range <>) of Member Due Amount;

constant Member Due Amounts (1 .. 4)
:= ((Member => new Member'(Start => 2010),
Due Amount => 250.0),
(Member => new Full Member'(Start => 1998,

Discount => 0.1),

Due Amount => 160.0),

(Member => new Full Member'(Start => 1987,
Discount => 0.2),

Due Amount => 400.0),

(Member => new Member' (Start => 2013),

Due_Amount => 110.0));

begin
for I in DB'Range loop
Put Line ("Member #" & Positive'Image (I));

Put Line ("Status: " & DB (I).Member.Get Status);
Put Line ("Since: " & Year_Number'Image (DB (I).Member.Start));
Put Line ("Due Amount: " & Amount'Image (Get Price (DB (I))));
Put Line ("-------- B H

end loop;

end Simple Test;

end Online Store.Tests;

Listing 363: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text I0;
with Online Store; use Online Store;

with Online Store.Tests; use Online Store.Tests;
procedure Main is
type Test_Case Index is
(Type_ Chk,
Unit Test Chk);

procedure Check (TC : Test Case Index) is

function Result Image (Result : Boolean) return String is
(if Result then "0K" else "not OK");

begin
case TC is
when Type Chk =>
declare
: constant Member = (Start => 2002);
: constant Full Member := (Start => 1990,
Discount => 0.2);
begin

Put_Line ("Testing Status of Associate Member Type => "
& Result Image (AM.Get Status = "Associate Member"));
Put Line ("Testing Status of Full Member Type => "
& Result Image (FM.Get Status = "Full Member"));
Put Line ("Testing Discount of Associate Member Type => "
(continues on next page)

232 Chapter 18. Solutions

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

© ©® N o U A W N R

e L e <
® N o U A W N F O

© O N U A W N e

=
= o

Introduction to Ada: Laboratories

(continued from previous page)

& Result Image (AM.Get Price (100.0) = 100.0));
Put Line ("Testing Discount of Full Member Type => "
& Result Image (FM.Get Price (100.0) = 80.0));
end;
when Unit Test Chk =>
Simple Test;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.14 Standard library: Containers

18.14.1 Simple todo list
Listing 364: todo_lists.ads
with Ada.Containers.Vectors;
package Todo Lists is
type Todo Item is access String;
package Todo_List Pkg is new Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Todo Item);

subtype Todo_List is Todo List Pkg.Vector;

procedure Add (Todos : in out Todo List;
Item : String);

procedure Display (Todos : Todo List);

end Todo Lists;

Listing 365: todo_lists.adb
with Ada.Text IO0; use Ada.Text IO;

package body Todo Lists is

procedure Add (Todos : in out Todo List;

Item : String) is
begin
Todos.Append (new String' (Item));
end Add;

procedure Display (Todos : Todo List) is
(continues on next page)

18.14. Standard library: Containers 233

13
14
15
16

18
19

© ©® N o U A W N R

A W N e

Introduction to Ada: Laboratories

(continued from previous page)
begin
Put Line ("TO-DO LIST");
for T of Todos loop
Put Line (T.all);
end loop;
end Display;

end Todo Lists;

Listing 366: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Todo Lists; use Todo Lists;

procedure Main is
type Test_Case_Index is
(Todo List Chk);

procedure Check (TC : Test Case Index) is
T : Todo List;
begin
case TC is
when Todo List Chk =>
Add (T, "Buy milk");

Add (T, "Buy tea");
Add (T, "Buy present");
Add (T, "Buy tickets");
Add (T, "Pay electricity bill");
Add (T, "Schedule dentist appointment");
Add (T, "Call sister");
Add (T, "Revise spreasheet");
Add (T, "Edit entry page");
Add (T, "Select new design");
Add (T, "Create upgrade plan");
Display (T);
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.14.2 List of unique integers

Listing 367: ops.ads
with Ada.Containers.Ordered Sets;

package Ops is

(continues on next page)

234 Chapter 18. Solutions

© @ N o u

10
11
12
13
14
15
16

©W N U A W N e

NONONNNNN B E B R e e e B B e
o U & W N B O © ® N O U & W N B O

© ® N o U A W N e

e e e e
o U0 A W N B O

Introduction to Ada: Laboratories

(continued from previous page)

type Int_Array is array (Positive range <>) of Integer;
package Integer Sets is new Ada.Containers.Ordered Sets
(Element Type => Integer);
subtype Int Set is Integer Sets.Set;
function Get Unique (A : Int Array) return Int Set;
function Get Unique (A : Int Array) return Int Array;
end Ops;
Listing 368: ops.adb
package body Ops is
function Get Unique (A : Int Array) return Int Set is
S : Int Set;
begin
for E of A loop
S.Include (E);
end loop;
return S;

end Get Unique;

function Get Unique (A : Int Array) return Int Array is
S : constant Int Set := Get Unique (A);
AR : Int Array (1 .. Positive (S.Length));
I : Positive := 1;
begin
for E of S loop
AR (I) := E;
I =1+ 1;
end loop;

return AR;
end Get Unique;

end Ops;

Listing 369: main.adb
with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with Ops; use Ops;

procedure Main is
type Test_Case_Index is
(Get Unique Set Chk,
Get Unique Array Chk);

procedure Check (TC : Test Case Index;
A : Int Array) is

procedure Display Unique Set (A : Int Array) is
S : constant Int Set := Get Unique (A);
begin
(continues on next page)

18.14. Standard library: Containers 235

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

o U A W N =

N o U A W N &

Introduction to Ada: Laboratories

(continued from previous page)

for E of S loop
Put Line (Integer'Image (E));
end loop;
end Display Unique Set;

procedure Display Unique Array (A : Int Array) is
: constant Int Array := Get Unique (A);
begin
for E of AU loop
Put Line (Integer'Image (E));
end loop;
end Display Unique Array;

begin
case TC is
when Get Unique Set Chk => Display Unique Set (A);
when Get Unique Array Chk => Display Unique Array (A);
end case;
end Check;

begin
if Argument Count < 3 then
Put_Line ("ERROR: missing arguments! Exiting...");
return;
else
declare
A : Int Array (1 .. Argument Count - 1);
begin
for I in A'Range loop
A (I) := Integer'Value (Argument (1 + I));
end loop;
Check (Test Case Index'Value (Argument (1)), A);
end;
end if;
end Main;

18.15 Standard library: Dates & Times

18.15.1 Holocene calendar

Listing 370: to_holocene_year.adb

with Ada.Calendar; use Ada.Calendar;
function To Holocene Year (T : Time) return Integer is
begin

return Year (T) + 10 000;
end To Holocene Year;

Listing 371: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with Ada.Calendar; use Ada.Calendar;

with To Holocene Year;

procedure Main is
(continues on next page)

236 Chapter 18. Solutions

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

©W @ N U A W N e

i <
> W N B O

N o U A W N &

Introduction to Ada: Laboratories

(continued from previous page)

type Test_Case_Index is
(Holocene Chk);

procedure Display Holocene Year (Y : Year Number) is
HY : Integer;

begin
HY := To Holocene Year (Time Of (Y, 1, 1));
Put _Line ("Year (Gregorian): " & Year Number'Image (Y));
Put Line ("Year (Holocene): " & Integer'Image (HY));

end Display Holocene Year;

procedure Check (TC : Test Case Index) is
begin
case TC is
when Holocene Chk =>
Display Holocene Year (2012);
Display Holocene Year (2020);
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.15.2 List of events
Listing 372: events.ads
with Ada.Containers.Vectors;
package Events is
type Event_Item is access String;
package Event Item Containers is new
Ada.Containers.Vectors
(Index Type => Positive,
Element Type => Event Item);

subtype Event_Items is Event Item Containers.Vector;

end Events;

Listing 373: events-lists.ads

with Ada.Calendar; use Ada.Calendar;
with Ada.Containers.Ordered Maps;

package Events.Lists is
type Event List is tagged private;

(continues on next page)

18.15. Standard library: Dates & Times 237

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

© ©® N o U A W N K

W oW oW W W W WwWw W N NNDNNNNNNWN®K®ERR B B B B B B B
® N o 00 A W N P O © ® N O U & W N B O ©W ® N 6 U » W N B O

Introduction to Ada: Laboratories

(continued from previous page)

procedure Add (Events : in out Event List;
Event Time : Time;
Event : String);

procedure Display (Events : Event List);
private

package Event Time Item_ Containers is new
Ada.Containers.Ordered_Maps

(Key Type => Time,
Element Type => Event Items,
=t => Event Item Containers."=");

type Event_List is new Event Time Item Containers.Map with null record;

end Events.Lists;

Listing 374: events-lists.adb

with Ada.Text I0; use Ada.Text IO0;
with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;

package body Events.Lists is

procedure Add (Events : in out Event List;
Event Time : Time;
Event : String) 1is
use Event Item Containers;
E : constant Event Item := new String' (Event);
begin

if not Events.Contains (Event Time) then
Events.Include (Event Time, Empty Vector);
end if;
Events (Event Time).Append (E);
end Add;

function Date Image (T : Time) return String is
Date Img : constant String := Image (T);
begin
return Date Img (1 .. 10);
end;

procedure Display (Events : Event List) is
use Event Time Item Containers;
T : Time;
begin
Put_Line ("EVENTS LIST");
for C in Events.Iterate loop

T := Key (C);
Put Line ("- " & Date Image (T));
for I of Events (C) loop
Put _Line (" - " & I.all);
end loop;
end loop;

end Display;

end Events.lLists;

238 Chapter 18.

Solutions

© ©® N o U A W N R

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

W @ N U A W N e

R e
N = O

Introduction to Ada: Laboratories

Listing 375: main.adb

with Ada.Command Line;

with Ada.Text I0;

with Ada.Calendar;

with Ada.Calendar.Formatting;

with Events.Lists;

procedure Main is
type Test_Case Index is
(Event List Chk);

procedure Check (TC :
EL : Event List;
begin
case TC is
when Event List Chk =>

use Ada.Command Line;
use Ada.Text IO0;

use Ada.Calendar.Formatting;

use Events.Lists;

Test Case Index) is

EL.Add (Time Of (2018, 2, 16),

"Final check");

EL.Add (Time Of (2018, 2, 16),

"Release");

EL.Add (Time Of (2018, 12, 3),
"Brother's birthday");

EL.Add (Time Of (2018, 1, 1),
"New Year's Day");

EL.Display;
end case;
end Check;

begin
if Argument Count < 1 then

Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));

end Main;

18.16 Standard library: Strings

18.16.1 Concatenation

Listing 376: str_concat.ads

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

package Str_Concat is

type Unbounded_Strings is array (Positive range <>) of Unbounded String;

function Concat (USA
Trim Str

function Concat (USA

Trim Str

: Unbounded Strings;
: Boolean;
Add Whitespace :

Boolean) return Unbounded String;

: Unbounded Strings;
: Boolean;

(continues on next page)

18.16. Standard library: Strings

239

13
14
15

© @ N U A W N e

AW W W W W W W W W W N NNDNNNNNNNB®BRR B B B B B B B
O © ® N o U A W N P ©O © ® N O U & W N B O © ® N 60 0 2 W N B O

©W @ N U A W N e

=
= o

Introduction to Ada: Laboratories

(continued from previous page)
Add Whitespace : Boolean) return String;

end Str Concat;

Listing 377: str_concat.adb
with Ada.Strings; use Ada.Strings;
package body Str_Concat is
function Concat (USA : Unbounded Strings;

Trim Str : Boolean;
Add Whitespace : Boolean) return Unbounded String is

function Retrieve (USA : Unbounded Strings;
Trim Str : Boolean;
Index : Positive) return Unbounded String is
US Internal : Unbounded String := USA (Index);
begin

if Trim Str then
US Internal := Trim (US Internal, Both);
end if;
return US Internal;
end Retrieve;

US : Unbounded String := To_Unbounded String ("");
begin

for I in USA'First .. USA'Last - 1 loop

US := US & Retrieve (USA, Trim Str, I);

if Add Whitespace then

Us :=us & " ";

end if;
end loop;
US := US & Retrieve (USA, Trim Str, USA'Last);

return US;
end Concat;

function Concat (USA : Unbounded Strings;
Trim Str : Boolean;
Add Whitespace : Boolean) return String is
begin
return To String (Concat (USA, Trim Str, Add Whitespace));
end Concat;

end Str Concat;

Listing 378: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

with Str_Concat; use Str_Concat;

procedure Main is
type Test_Case_Index is
(Unbounded Concat No Trim No WS Chk,
Unbounded Concat Trim No WS Chk,
String Concat Trim WS Chk,

(continues on next page)

240 Chapter 18. Solutions

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Introduction to Ada: Laboratories

(continued from previous page)
Concat_Single Element);

procedure Check (TC : Test Case Index) is
begin
case TC is
when Unbounded Concat No Trim No WS Chk =>
declare
: constant Unbounded Strings := (
To Unbounded String ("Hello"),
To _Unbounded String (" World"),
To _Unbounded String ("!"));
begin
Put Line (To String (Concat (S, False, False)));
end;
when Unbounded Concat Trim No WS Chk =>
declare
: constant Unbounded Strings :
To Unbounded String (" This

= (
")
To _Unbounded String (" is "),
II)’

To Unbounded String (" a
To Unbounded String (" check "));
begin
Put Line (To String (Concat (S, True, False)));
end;
when String Concat Trim WS Chk =>
declare
: constant Unbounded Strings := (
To_Unbounded String (" This "),
To Unbounded String (" is a "),
To Unbounded String (" test. "));
begin
Put Line (Concat (S, True, True));
end;
when Concat Single Element =>
declare
: constant Unbounded Strings := (
1 => To_Unbounded String (" Hi "));
begin
Put Line (Concat (S, True, True));
end;
end case;
end Check;

begin
if Argument Count < 1 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.16.2 List of events

Listing 379: events.ads

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Containers.Vectors;
(continues on next page)

18.16. Standard library: Strings 241

© © N o u &~ W

10
11
12
13
14
15

© ® N o U A W N R

N NN NN B B BB R e R e e e
A W N P O © ® N O 00 A W N = O

©W @ N U A W N &

S N e e
N o u A W N B O

Introduction to Ada: Laboratories

package Events is
subtype Event_Item is Unbounded String;
package Event Item Containers is new
Ada.Containers.Vectors
(Index Type => Positive,
Element Type => Event Item);
subtype Event_Items is Event Item Containers.Vector;

end Events;

Listing 380: events-lists.ads

with Ada.Calendar; use Ada.Calendar;
with Ada.Containers.Ordered Maps;
package Events.Lists is
type Event List is tagged private;
procedure Add (Events : in out Event List;
Event Time : Time;
Event . String);
procedure Display (Events : Event List);
private

package Event_Time_Item_Containers is new
Ada.Containers.Ordered_Maps

(Key Type => Time,
Element Type => Event Items,
=" => Event Item Containers."=");

(continued from previous page)

type Event_List is new Event Time Item Containers.Map with null record;

end Events.lLists;

Listing 381: events-lists.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;

package body Events.Lists is

procedure Add (Events : in out Event List;
Event Time : Time;
Event : String) is

use Event Item Containers;

E : constant Event Item := To Unbounded String (Event);

begin
if not Events.Contains (Event Time) then
Events.Include (Event Time, Empty Vector);
end if;
Events (Event Time).Append (E);
end Add;

(continues on next page)

242

Chapter 18. Solutions

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38

W @ N U A W N e

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Introduction to Ada: Laboratories

function Date Image (T :

: constant String :=
begin
return Date Img (1 .. 10);
end;

procedure Display (Events :

(continued from previous page)

Time) return String is

Image (T);

Event List) is

use Event Time Item Containers;

T : Time;

begin
Put _Line ("EVENTS LIST");
for C in Events.Iterate loop

T := Key (C);
Put Line ("- " & Date Image (T));
for I of Events (C) loop
Put Line (" " & To_String (I));
end loop;
end loop;

end Display;

end Events.lLists;

Listing 382: main.adb

with
with
with
with
with

Ada.Command Line;
Ada.Text I0;
Ada.Calendar;
Ada.Calendar.Formatting;
Ada.Strings.Unbounded;

with
with

Events;
Events.Lists;

procedure Main is
type Test_Case_Index is
(Unbounded String Chk,
Event List Chk);

procedure Check (TC : Test Case
EL : Event List;
begin
case TC is
when Unbounded String Chk
declare
. constant Events.
begin
Put Line (To String
end;

when Event List Chk =>
EL.Add (Time Of (2018,
"Final check");
EL.Add (Time Of (2018,
"Release");
EL.Add (Time Of (2018,

use Ada.Command Line;
use Ada.Text IO;

use Ada.Calendar.Formatting;
use Ada.Strings.Unbounded;

use Events.Lists;

Index) 1is

>
Event Item := To_Unbounded String ("Checked");

(S));

2, 16),
2, 16),

12, 3),

"Brother's birthday");

EL.Add (Time Of (2018,

1’ 1)’

"New Year's Day");

EL.Display;
end case;
end Check;

(continues on next page)

18.16. Standard library: Strings

243

38
39
40
a1
42
43
44
45
46
47

© ©® N o U A W N R

=
o

© ©® N o U A W N R

L i e
o A W N B O

©W @ N U A W N e

-
o

Introduction to Ada: Laboratories

begin

if Argument Count < 1 then

Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.17 Standard library: Numerics

18.17.1 Decibel Factor

package Decibels is

Listing 383: decibels.ads

subtype Decibel is Float;
subtype Factor

is Float;

function To Decibel (F : Factor) return Decibel;

function To Factor (D : Decibel) return Factor;

end Decibels;

Listing 384: decibels.adb

(continued from previous page)

with Ada.Numerics.Elementary Functions; use Ada.Numerics.Elementary Functions;

package body Decibels is

function To Decibel (F : Factor) return Decibel is
begin
return 20.0 * Log (F, 10.0);
end To Decibel;

function To Factor (D : Decibel) return Factor is
begin
return 10.0 ** (D / 20.0);
end To Factor;

end Decibels;

Listing 385: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0;

with Decibels;

procedure Main is
type Test Case Index is

(Db_Chk,
Factor Chk);

use Ada.Text IO0;

use Decibels;

(continues on next page)

244

Chapter 18. Solutions

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

W @ N U A W N e

Introduction to Ada: Laboratories

(continued from previous page)

procedure Check (TC : Test Case Index; V : Float) is

package F_I0 is new Ada.Text IO.Float IO (Factor);
package D_IO is new Ada.Text_IO.Float_IO (Decibel);

procedure Put Decibel Cnvt (D : Decibel) is
: constant Factor := To Factor (D);

begin

D I0.Put (D, 0, 2, 0);

Put (" dB => Factor of ");

F I0.Put (F, 0, 2, 0);

New Line;
end;

procedure Put Factor Cnvt (F : Factor) is
: constant Decibel := To Decibel (F);
begin
Put ("Factor of ");
F_I0.Put (F, 0, 2, 0);
Put (" => ");
D I0.Put (D, 0, 2, 0);
Put Line (" dB");
end;
begin
case TC is
when Db _Chk =>
Put Decibel Cnvt (Decibel (V));
when Factor Chk =>
Put_Factor Cnvt (Factor (V));
end case;
end Check;

begin
if Argument Count < 2 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 2 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)), Float'Value (Argument (2)));
end Main;

18.17.2 Root-Mean-Square
Listing 386: signals.ads
package Signals is
subtype Sig Value is Float;
type Signal is array (Natural range <>) of Sig Value;
function Rms (S : Signal) return Sig Value;

end Signals;

18.17. Standard library: Numerics

245

© ©® N o U A W N R

L i < e
o A W N B O

©W @ N U A W N e

=
= o

© ® N o U A W N R

NONON NN N NN B B B B R e el e
N o0 U A W N B O LW ® N o U~ W N H O

Introduction to Ada: Laboratories

Listing 387: signals.adb

with Ada.Numerics.Elementary Functions; use Ada.Numerics.Elementary Functions;
package body Signals is

function Rms (S : Signal) return Sig Value is
Acc : Float := 0.0;
begin
for V of S loop
Acc := Acc + V * V;
end loop;

return Sqrt (Acc / Float (S'Length));
end;

end Signals;

Listing 388: signals-std.ads
package Signals.Std is

Sample Rate : Float := 8000.0;

function Generate Sine (N : Positive; Freqg : Float) return Signal;
function Generate Square (N : Positive) return Signal;

function Generate Triangular (N : Positive) return Signal;

end Signals.Std;

Listing 389: signals-std.adb

with Ada.Numerics; use Ada.Numerics;
with Ada.Numerics.Elementary Functions; use Ada.Numerics.Elementary Functions;

package body Signals.Std is

function Generate Sine (N : Positive; Freq : Float) return Signal is
S : Signal (0 .. N - 1);
begin
for I in S'First .. S'Last loop
S (I) := 1.0 * Sin (2.0 * Pi * (Freq * Float (I) / Sample Rate));
end loop;

return S;
end;

function Generate Square (N : Positive) return Signal is
: constant Signal (0 .. N - 1) := (others => 1.0);
begin
return S;
end;

function Generate Triangular (N : Positive) return Signal is
S : Signal (0 .. N - 1);
: constant Natural := S'lLast / 2;
begin
for I in S'First .. S _Half loop
S (I) := 1.0 * (Float (I) / Float (S Half));

(continues on next page)

246 Chapter 18. Solutions

28
29
30
31
32
33
34
35
36

W N U A W N e

A A B A B B DA W W W W W W W W WWNNNNNRNNNNNN®RER®RB B B B B B B B
o 0 B W N B O © ® W 66 00 & W N B O ©W ® N 60 U & W N P O © ® N 0 U A W N R O

Introduction to Ada: Laboratories

(continued from previous page)

end loop;
for I in S Half .. S'Last loop

S (I) :=1.0 - (1.0 * (Float (I - S Half) / Float (S Half)));
end loop;

return S;
end;

end Signals.Std;

Listing 390: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;

with Signals; use Signals;

with Signals.Std; use Signals.Std;

procedure Main is
type Test_Case_Index is
(Sine Signal Chk,
Square_Signal Chk,
Triangular Signal Chk);

procedure Check (TC : Test Case Index) is
package Sig IO is new Ada.Text_IO.Float_IO (Sig Value);

: constant Positive := 1024;

: constant Signal Generate Sine (N, 440.0);

: constant Signal Generate Square (N);

: constant Signal Generate Triangular (N + 1);

begin
case TC is
when Sine Signal Chk =>
Put ("RMS of Sine Signal: ");
Sig I0.Put (Rms (S _Si), 0, 2, 0);
New Line;
when Square Signal Chk =>
Put ("RMS of Square Signal: ");
Sig I0.Put (Rms (S Sq), 0, 2, 0);
New Line;
when Triangular_Signal Chk =>
Put ("RMS of Triangular Signal: ");
Sig I0.Put (Rms (S Tr), 0, 2, 0);
New Line;
end case;
end Check;

begin
if Argument Count < 1 then
Put_Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 1 then

Put_Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)));
end Main;

18.17. Standard library: Numerics 247

© ©® N o U A W N K

=
o

© ©® N o U A W N K

T L e <
® N o U A W N F O

© ® N o U A W N R

o
= o

© ©® N o U A W N K

Introduction to Ada: Laboratories

18.17.3 Rotation

Listing 391: rotation.ads

with Ada.Numerics.Complex Types;
use Ada.Numerics.Complex Types;

package Rotation is
type Complex_Points is array (Positive range <>) of Complex;
function Rotation (N : Positive) return Complex Points;

end Rotation;

Listing 392: rotation.adb

with Ada.Numerics; use Ada.Numerics;
package body Rotation is

function Rotation (N : Positive) return Complex Points is
: constant Complex :=
Compose _From Polar (1.0, 2.0 * Pi / Float (N));
begin
return C : Complex Points (1 .. N + 1) do
C (1) := Compose From Cartesian (1.0, 0.0);
for I in C'First + 1 .. C'Last loop
C (I) :=C (I - 1) * C_Angle;
end loop;
end return;
end;

end Rotation;

Listing 393: angles.ads

with Rotation; use Rotation;

package Angles is
subtype Angle is Float;
type Angles is array (Positive range <>) of Angle;
function To Angles (C : Complex Points) return Angles;

end Angles;

Listing 394: angles.adb

with Ada.Numerics; use Ada.Numerics;
with Ada.Numerics.Complex Types; use Ada.Numerics.Complex Types;

package body Angles is

function To Angles (C : Complex Points) return Angles is
begin
return A : Angles (C'Range) do
for I in A'Range loop
(continues on next page)

248 Chapter 18. Solutions

10
11
12

14
15

N o U A W N e

© @ N U A W N e

ADA W OW W W W W W W WW N NNDNNNNNNNRB R B B B H B B
H O © ® N 6 O A W N B © © ® N 60 U & W N PR O © @@ N 0 Ul & W N B O

Introduction to Ada: Laboratories

(continued from previous page)
A (I) := Argument (C (I)) / Pi * 180.0;
end loop;
end return;
end To Angles;

end Angles;

Listing 395: rotation-tests.ads

package Rotation.Tests is
procedure Test Rotation (N : Positive);
procedure Test Angles (N : Positive);

end Rotation.Tests;

Listing 396: rotation-tests.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Text IO0.Complex IO;

with Ada.Numerics; use Ada.Numerics;
with Angles; use Angles;

package body Rotation.Tests is

package C_IO0 is new Ada.Text_IO.Complex_IO (Complex Types);
package F_I0 is new Ada.Text I0.Float IO (Float);

-- Adapt value due to floating-point inaccuracies

function Adapt (C : Complex) return Complex is
function Check Zero (F : Float) return Float is
(if F <= 0.0 and F >= -0.01 then 0.0 else F);
begin
return C Out : Complex := C do

C Out.Re := Check Zero (C Out.Re);
C Out.Im := Check Zero (C Out.Im);
end return;
end Adapt;

function Adapt (A : Angle) return Angle is
(if A <= -179.99 and A >= -180.01 then 180.0 else A);

procedure Test Rotation (N : Positive) is

C : constant Complex Points := Rotation (N);
begin
Put Line ("---- Points for " & Positive'Image (N) & " slices ----");

for V of C loop
Put ("Point: ");
C _I0.Put (Adapt (V), 0, 1, 0);
New Line;
end loop;
end Test Rotation;

procedure Test Angles (N : Positive) is
C : constant Complex Points := Rotation (N);
(continues on next page)

18.17. Standard library: Numerics 249

42
43
44
45
46
47
48
49
50
51
52

© ©® N o U A W N R

WON N NN NN NNNNKHBB B B B B 2 B s
S © ® N o U A W N B O © ©® N O U0 & W N B O

Introduction to Ada: Laboratories

: constant Angles.Angles := To Angles (C);
begin

(continued from previous page)

Put Line ("---- Angles for " & Positive'Image (N) & " slices ----");

for V of A loop
Put ("Angle: ");
F I0.Put (Adapt (V), 0, 2, 0);
Put Line (" degrees");
end loop;
end Test Angles;

end Rotation.Tests;

Listing 397: main.adb

with Ada.Command Line; use Ada.Command Line;
with Ada.Text I0; use Ada.Text IO;
with Rotation.Tests; use Rotation.Tests;

procedure Main is
type Test_Case_Index is
(Rotation Chk,
Angles Chk);

procedure Check (TC : Test Case Index; N : Positive) is
begin
case TC is
when Rotation Chk =>
Test Rotation (N);
when Angles Chk =>
Test Angles (N);
end case;
end Check;

begin
if Argument Count < 2 then
Put Line ("ERROR: missing arguments! Exiting...");

return;
elsif Argument Count > 2 then

Put Line ("Ignoring additional arguments...");
end if;

Check (Test Case Index'Value (Argument (1)), Positive'Value (Argument (2)));

end Main;

250

Chapter 18. Solutions

	Imperative language
	Hello World
	Greetings
	Positive Or Negative
	Numbers

	Subprograms
	Subtract procedure
	Subtract function
	Equality function
	States
	States #2
	States #3
	States #4

	Modular Programming
	Months
	Operations

	Strongly typed language
	Colors
	Integers
	Temperatures

	Records
	Directions
	Colors
	Inventory

	Arrays
	Constrained Array
	Colors: Lookup-Table
	Unconstrained Array
	Product info
	String_10
	List of Names

	More About Types
	Aggregate Initialization
	Versioning
	Simple todo list
	Price list

	Privacy
	Directions
	Limited Strings
	Bonus exercise
	Colors
	List of Names
	Price List

	Generics
	Display Array
	Average of Array of Float
	Average of Array of Any Type
	Generic list

	Exceptions
	Uninitialized Value
	Numerical Exception
	Re-raising Exceptions

	Tasking
	Display Service
	Event Manager
	Generic Protected Queue

	Design by contracts
	Price Range
	Pythagorean Theorem: Predicate
	Pythagorean Theorem: Precondition
	Pythagorean Theorem: Postcondition
	Pythagorean Theorem: Type Invariant
	Primary Color

	Object-oriented programming
	Simple type extension
	Online Store

	Standard library: Containers
	Simple todo list
	List of unique integers

	Standard library: Dates & Times
	Holocene calendar
	List of events

	Standard library: Strings
	Concatenation
	List of events

	Standard library: Numerics
	Decibel Factor
	Root-Mean-Square
	Rotation

	Solutions
	Imperative Language
	Hello World
	Greetings
	Positive Or Negative
	Numbers

	Subprograms
	Subtract Procedure
	Subtract Function
	Equality function
	States
	States #2
	States #3
	States #4

	Modular Programming
	Months
	Operations

	Strongly typed language
	Colors
	Integers
	Temperatures

	Records
	Directions
	Colors
	Inventory

	Arrays
	Constrained Array
	Colors: Lookup-Table
	Unconstrained Array
	Product info
	String_10
	List of Names

	More About Types
	Aggregate Initialization
	Versioning
	Simple todo list
	Price list

	Privacy
	Directions
	Limited Strings

	Generics
	Display Array
	Average of Array of Float
	Average of Array of Any Type
	Generic list

	Exceptions
	Uninitialized Value
	Numerical Exception
	Re-raising Exceptions

	Tasking
	Display Service
	Event Manager
	Generic Protected Queue

	Design by contracts
	Price Range
	Pythagorean Theorem: Predicate
	Pythagorean Theorem: Precondition
	Pythagorean Theorem: Postcondition
	Pythagorean Theorem: Type Invariant
	Primary Colors

	Object-oriented programming
	Simple type extension
	Online Store

	Standard library: Containers
	Simple todo list
	List of unique integers

	Standard library: Dates & Times
	Holocene calendar
	List of events

	Standard library: Strings
	Concatenation
	List of events

	Standard library: Numerics
	Decibel Factor
	Root-Mean-Square
	Rotation

