

Introduction to Ada:
Laboratories
Release 2025-12

Gustavo A. Hoffmann

Dec 27, 2025

CONTENTS:

1 Imperative language 3
1.1 Hello World . 3
1.2 Greetings . 3
1.3 Positive Or Negative . 4
1.4 Numbers . 5

2 Subprograms 7
2.1 Subtract procedure . 7
2.2 Subtract function . 8
2.3 Equality function . 9
2.4 States . 10
2.5 States #2 . 11
2.6 States #3 . 13
2.7 States #4 . 14

3 Modular Programming 17
3.1 Months . 17
3.2 Operations . 18

4 Strongly typed language 21
4.1 Colors . 21
4.2 Integers . 23
4.3 Temperatures . 27

5 Records 31
5.1 Directions . 31
5.2 Colors . 33
5.3 Inventory . 37

6 Arrays 41
6.1 Constrained Array . 41
6.2 Colors: Lookup-Table . 43
6.3 Unconstrained Array . 46
6.4 Product info . 49
6.5 String_10 . 52
6.6 List of Names . 54

7 More About Types 59
7.1 Aggregate Initialization . 59
7.2 Versioning . 61
7.3 Simple todo list . 63
7.4 Price list . 65

8 Privacy 71
8.1 Directions . 71

i

8.2 Limited Strings . 73
8.3 Bonus exercise . 77

8.3.1 Colors . 77
8.3.2 List of Names . 78
8.3.3 Price List . 78

9 Generics 79
9.1 Display Array . 79
9.2 Average of Array of Float . 81
9.3 Average of Array of Any Type . 83
9.4 Generic list . 86

10Exceptions 89
10.1 Uninitialized Value . 89
10.2 Numerical Exception . 90
10.3 Re-raising Exceptions . 92

11Tasking 95
11.1 Display Service . 95
11.2 Event Manager . 96
11.3 Generic Protected Queue . 98

12Design by contracts 101
12.1 Price Range . 101
12.2 Pythagorean Theorem: Predicate . 102
12.3 Pythagorean Theorem: Precondition . 104
12.4 Pythagorean Theorem: Postcondition . 106
12.5 Pythagorean Theorem: Type Invariant . 108
12.6 Primary Color . 110

13Object-oriented programming 115
13.1 Simple type extension . 115
13.2 Online Store . 117

14Standard library: Containers 123
14.1 Simple todo list . 123
14.2 List of unique integers . 125

15Standard library: Dates & Times 129
15.1 Holocene calendar . 129
15.2 List of events . 130

16Standard library: Strings 135
16.1 Concatenation . 135
16.2 List of events . 137

17Standard library: Numerics 141
17.1 Decibel Factor . 141
17.2 Root-Mean-Square . 143
17.3 Rotation . 145

18Solutions 151
18.1 Imperative Language . 151

18.1.1 Hello World . 151
18.1.2 Greetings . 151
18.1.3 Positive Or Negative . 151
18.1.4 Numbers . 152

18.2 Subprograms . 153
18.2.1 Subtract Procedure . 153
18.2.2 Subtract Function . 154

ii

18.2.3 Equality function . 155
18.2.4 States . 156
18.2.5 States #2 . 157
18.2.6 States #3 . 158
18.2.7 States #4 . 158

18.3 Modular Programming . 159
18.3.1 Months . 159
18.3.2 Operations . 161

18.4 Strongly typed language . 163
18.4.1 Colors . 163
18.4.2 Integers . 164
18.4.3 Temperatures . 167

18.5 Records . 170
18.5.1 Directions . 170
18.5.2 Colors . 171
18.5.3 Inventory . 174

18.6 Arrays . 176
18.6.1 Constrained Array . 176
18.6.2 Colors: Lookup-Table . 178
18.6.3 Unconstrained Array . 180
18.6.4 Product info . 182
18.6.5 String_10 . 185
18.6.6 List of Names . 186

18.7 More About Types . 189
18.7.1 Aggregate Initialization . 189
18.7.2 Versioning . 191
18.7.3 Simple todo list . 192
18.7.4 Price list . 194

18.8 Privacy . 196
18.8.1 Directions . 196
18.8.2 Limited Strings . 198

18.9 Generics . 201
18.9.1 Display Array . 201
18.9.2 Average of Array of Float . 202
18.9.3 Average of Array of Any Type . 204
18.9.4 Generic list . 206

18.10Exceptions . 208
18.10.1Uninitialized Value . 208
18.10.2Numerical Exception . 209
18.10.3Re-raising Exceptions . 211

18.11Tasking . 213
18.11.1Display Service . 213
18.11.2Event Manager . 214
18.11.3Generic Protected Queue . 216

18.12Design by contracts . 218
18.12.1Price Range . 218
18.12.2Pythagorean Theorem: Predicate . 219
18.12.3Pythagorean Theorem: Precondition . 221
18.12.4Pythagorean Theorem: Postcondition . 223
18.12.5Pythagorean Theorem: Type Invariant . 224
18.12.6Primary Colors . 226

18.13Object-oriented programming . 228
18.13.1Simple type extension . 228
18.13.2Online Store . 230

18.14Standard library: Containers . 233
18.14.1Simple todo list . 233
18.14.2List of unique integers . 234

18.15Standard library: Dates & Times . 236

iii

18.15.1Holocene calendar . 236
18.15.2List of events . 237

18.16Standard library: Strings . 239
18.16.1Concatenation . 239
18.16.2List of events . 241

18.17Standard library: Numerics . 244
18.17.1Decibel Factor . 244
18.17.2Root-Mean-Square . 245
18.17.3Rotation . 248

iv

Introduction to Ada: Laboratories

Copyright © 2019 – 2024, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

These labs contain exercises for the Introduction to Ada course.
This document was written by Gustavo A. Hoffmann and reviewed by Michael Frank.

Note

The code examples in this course use an 80-column limit, which is a typical limit for Ada
code. Note that, on devices with a small screen size, some code examples might be
difficult to read.

1 http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

Introduction to Ada: Laboratories

2 CONTENTS:

CHAPTER

ONE

IMPERATIVE LANGUAGE

For the exercises below (except for the first one), don't worry about the details of the Main
procedure. You should just focus on implementing the application in the subprogram spec-
ified by the exercise.

1.1 Hello World
Goal: create a "Hello World!" application.
Steps:
1. Complete the Main procedure.

Requirements:
1. The application must display the message "Hello World!".

Remarks:
1. The part that you have to modify is indicated by the -- Implement the application

here! comment in the source code.

Listing 1: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 begin
5 -- Implement the application here!
6 null;
7 end Main;

1.2 Greetings
Goal: create an application that greets a person.
Steps:
1. Complete the Greet procedure.

Requirements:
1. Given an input string <name>, procedure Greet must display the message "Hello
<name>!".
1. For example, if the name is "John", it displays the message "Hello John!".

Remarks:
1. You can use the concatenation operator (&).

3

Introduction to Ada: Laboratories

2. The part that you have to modify is indicated by the -- Implement the application
here! comment in the source code.

Listing 2: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Main is
5

6 procedure Greet (Name : String) is
7 begin
8 -- Implement the application here!
9 null;
10 end Greet;
11

12 begin
13 if Argument_Count < 1 then
14 Put_Line ("ERROR: missing arguments! Exiting...");
15 return;
16 elsif Argument_Count > 1 then
17 Put_Line ("Ignoring additional arguments...");
18 end if;
19

20 Greet (Argument (1));
21 end Main;

1.3 Positive Or Negative
Goal: create an application that classifies integer numbers.
Steps:
1. Complete the Classify_Number procedure.

Requirements:
1. Given an integer number X, procedure Classify_Number must classify X as positive,
negative or zero and display the result:
1. If X > 0, it displays Positive.
2. If X < 0, it displays Negative.
3. If X = 0, it displays Zero.

Listing 3: classify_number.ads
1 procedure Classify_Number (X : Integer);

Listing 4: classify_number.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Classify_Number (X : Integer) is
4 begin
5 -- Implement the application here!
6 null;
7 end Classify_Number;

4 Chapter 1. Imperative language

Introduction to Ada: Laboratories

Listing 5: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Classify_Number;
5

6 procedure Main is
7 A : Integer;
8 begin
9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 A := Integer'Value (Argument (1));
17

18 Classify_Number (A);
19 end Main;

1.4 Numbers
Goal: create an application that displays numbers in a specific order.
Steps:
1. Complete the Display_Numbers procedure.

Requirements:
1. Given two integer numbers, Display_Numbers displays all numbers in the range start-
ing with the smallest number.

Listing 6: display_numbers.ads
1 procedure Display_Numbers (A, B : Integer);

Listing 7: display_numbers.adb
1 procedure Display_Numbers (A, B : Integer) is
2 begin
3 -- Implement the application here!
4 null;
5 end Display_Numbers;

Listing 8: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_Numbers;
5

6 procedure Main is
7 A, B : Integer;
8 begin
9 if Argument_Count < 2 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;

(continues on next page)

1.4. Numbers 5

Introduction to Ada: Laboratories

(continued from previous page)
12 elsif Argument_Count > 2 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 A := Integer'Value (Argument (1));
17 B := Integer'Value (Argument (2));
18

19 Display_Numbers (A, B);
20 end Main;

6 Chapter 1. Imperative language

CHAPTER

TWO

SUBPROGRAMS

2.1 Subtract procedure
Goal: write a procedure that subtracts two numbers.
Steps:
1. Complete the procedure Subtract.

Requirements:
1. Subtract performs the operation A - B.

Listing 9: subtract.ads
1 -- Write the correct parameters for the procedure below.
2 procedure Subtract;

Listing 10: subtract.adb
1 procedure Subtract is
2 begin
3 -- Implement the procedure here.
4 null;
5 end Subtract;

Listing 11: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Subtract;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Sub_10_1_Chk,
9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Subtract (10, 1, Result);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Subtract (10, 100, Result);

(continues on next page)

7

Introduction to Ada: Laboratories

(continued from previous page)
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Subtract (0, 5, Result);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Subtract (0, -5, Result);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31

32 begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39

40 Check (Test_Case_Index'Value (Argument (1)));
41 end Main;

2.2 Subtract function
Goal: write a function that subtracts two numbers.
Steps:
1. Rewrite the Subtract procedure from the previous exercise as a function.

Requirements:
1. Subtract performs the operation A - B and returns the result.

Listing 12: subtract.ads
1 -- Write the correct signature for the function below.
2 -- Don't forget to replace the keyword "procedure" by "function."
3 procedure Subtract;

Listing 13: subtract.adb
1 procedure Subtract is
2 begin
3 -- Implement the function here!
4 null;
5 end Subtract;

Listing 14: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Subtract;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Sub_10_1_Chk,
9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);

(continues on next page)

8 Chapter 2. Subprograms

Introduction to Ada: Laboratories

(continued from previous page)
12

13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Result := Subtract (10, 1);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Result := Subtract (10, 100);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Result := Subtract (0, 5);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Result := Subtract (0, -5);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31

32 begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39

40 Check (Test_Case_Index'Value (Argument (1)));
41 end Main;

2.3 Equality function
Goal: write a function that compares two values and returns a flag.
Steps:
1. Complete the Is_Equal subprogram.

Requirements:
1. Is_Equal returns a flag as a Boolean value.
2. The flagmust indicate whether the values are equal (flag is True) or not (flag is False).

Listing 15: is_equal.ads
1 -- Write the correct signature for the function below.
2 -- Don't forget to replace the keyword "procedure" by "function."
3 procedure Is_Equal;

Listing 16: is_equal.adb
1 procedure Is_Equal is
2 begin
3 -- Implement the function here!
4 null;
5 end Is_Equal;

2.3. Equality function 9

Introduction to Ada: Laboratories

Listing 17: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Is_Equal;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Equal_Chk,
9 Inequal_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12

13 procedure Display_Equal (A, B : Integer;
14 Equal : Boolean) is
15 begin
16 Put (Integer'Image (A));
17 if Equal then
18 Put (" is equal to ");
19 else
20 Put (" isn't equal to ");
21 end if;
22 Put_Line (Integer'Image (B) & ".");
23 end Display_Equal;
24

25 Result : Boolean;
26 begin
27 case TC is
28 when Equal_Chk =>
29 for I in 0 .. 10 loop
30 Result := Is_Equal (I, I);
31 Display_Equal (I, I, Result);
32 end loop;
33 when Inequal_Chk =>
34 for I in 0 .. 10 loop
35 Result := Is_Equal (I, I - 1);
36 Display_Equal (I, I - 1, Result);
37 end loop;
38 end case;
39 end Check;
40

41 begin
42 if Argument_Count < 1 then
43 Put_Line ("ERROR: missing arguments! Exiting...");
44 return;
45 elsif Argument_Count > 1 then
46 Put_Line ("Ignoring additional arguments...");
47 end if;
48

49 Check (Test_Case_Index'Value (Argument (1)));
50 end Main;

2.4 States
Goal: write a procedure that displays the state of a machine.
Steps:
1. Complete the procedure Display_State.

10 Chapter 2. Subprograms

Introduction to Ada: Laboratories

Requirements:
1. The states can be set according to the following numbers:

Number State
0 Off
1 On: Simple Processing
2 On: Advanced Processing

2. The procedure Display_State receives the number corresponding to a state and dis-
plays the state (indicated by the table above) as a user message.

Remarks:
1. You can use a case statement to implement this procedure.

Listing 18: display_state.ads
1 procedure Display_State (State : Integer);

Listing 19: display_state.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Display_State (State : Integer) is
4 begin
5 null;
6 end Display_State;

Listing 20: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_State;
5

6 procedure Main is
7 State : Integer;
8 begin
9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 State := Integer'Value (Argument (1));
17

18 Display_State (State);
19 end Main;

2.5 States #2
Goal: write a function that returns the state of a machine.
Steps:
1. Implement the function Get_State.

Requirements:

2.5. States #2 11

Introduction to Ada: Laboratories

1. Implement same state machine as in the previous exercise.
2. Function Get_State must return the state as a string.

Remarks:
1. You can implement a function returning a string by simply using quotes in a return
statement. For example:

Listing 21: get_hello.ads
1 function Get_Hello return String;

Listing 22: get_hello.adb
1 function Get_Hello return String is
2 begin
3 return "Hello";
4 end Get_Hello;

Listing 23: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Get_Hello;
3

4 procedure Main is
5 S : constant String := Get_Hello;
6 begin
7 Put_Line (S);
8 end Main;

2. You can reuse your previous implementation and replace it by a case expression.
1. For values that do not correspond to a state, you can simply return an empty string
("").

Listing 24: get_state.ads
1 function Get_State (State : Integer) return String;

Listing 25: get_state.adb
1 function Get_State (State : Integer) return String is
2 begin
3 return "";
4 end Get_State;

Listing 26: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Get_State;
5

6 procedure Main is
7 State : Integer;
8 begin
9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");

(continues on next page)

12 Chapter 2. Subprograms

Introduction to Ada: Laboratories

(continued from previous page)
14 end if;
15

16 State := Integer'Value (Argument (1));
17

18 Put_Line (Get_State (State));
19 end Main;

2.6 States #3
Goal: implement an on/off indicator for a state machine.
Steps:
1. Implement the function Is_On.
2. Implement the procedure Display_On_Off.

Requirements:
1. Implement same state machine as in the previous exercise.
2. Function Is_On returns:

• True if the machine is on;
• otherwise, it returns False.

3. Procedure Display_On_Off displays the message
• "On" if the machine is on, or
• "Off" otherwise.

4. Is_On must be called in the implementation of Display_On_Off.
Remarks:
1. You can implement both subprograms using if expressions.

Listing 27: is_on.ads
1 function Is_On (State : Integer) return Boolean;

Listing 28: is_on.adb
1 function Is_On (State : Integer) return Boolean is
2 begin
3 return False;
4 end Is_On;

Listing 29: display_on_off.ads
1 procedure Display_On_Off (State : Integer);

Listing 30: display_on_off.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Is_On;
3

4 procedure Display_On_Off (State : Integer) is
5 begin
6 Put_Line ("");
7 end Display_On_Off;

2.6. States #3 13

Introduction to Ada: Laboratories

Listing 31: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_On_Off;
5 with Is_On;
6

7 procedure Main is
8 State : Integer;
9 begin
10 if Argument_Count < 1 then
11 Put_Line ("ERROR: missing arguments! Exiting...");
12 return;
13 elsif Argument_Count > 1 then
14 Put_Line ("Ignoring additional arguments...");
15 end if;
16

17 State := Integer'Value (Argument (1));
18

19 Display_On_Off (State);
20 Put_Line (Boolean'Image (Is_On (State)));
21 end Main;

2.7 States #4
Goal: implement a procedure to update the state of a machine.
Steps:
1. Implement the procedure Set_Next.

Requirements:
1. Implement the same state machine as in the previous exercise.
2. Procedure Set_Next updates the machine's state with the next one in a circular man-
ner:
• In general, after a call to Set_Next for an integer variable N (Set_Next (N)), the
new value of N must be the next number for that variable N (i.e., N := N'Old +
1).
– In other words, a call to Set_Next (N) has the same effect as N := N + 1.
– For example, after the statements N := 1; Set_Next (N);, we have that N
= 2.

• However, if the state is the last valid one for the machine (which, for this exercise,
it's 2), the next state must be the first valid one (in this case: 0).
– In other words, for N := 2; Set_Next (N);, we have that N = 0.

Remarks:
1. You can use an if expression to implement Set_Next.

Listing 32: set_next.ads
1 procedure Set_Next (State : in out Integer);

14 Chapter 2. Subprograms

Introduction to Ada: Laboratories

Listing 33: set_next.adb
1 procedure Set_Next (State : in out Integer) is
2 begin
3 null;
4 end Set_Next;

Listing 34: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Set_Next;
5

6 procedure Main is
7 State : Integer;
8 begin
9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 State := Integer'Value (Argument (1));
17

18 Set_Next (State);
19 Put_Line (Integer'Image (State));
20 end Main;

2.7. States #4 15

Introduction to Ada: Laboratories

16 Chapter 2. Subprograms

CHAPTER

THREE

MODULAR PROGRAMMING

3.1 Months
Goal: create a package to display the months of the year.
Steps:
1. Convert the Months procedure below to a package.
2. Create the specification and body of the Months package.

Requirements:
1. Months must contain the declaration of strings for each month of the year, which are
stored in three-character constants based on the month's name.
• For example, the string "January" is stored in the constant Jan. These strings
are then used by the Display_Months procedure, which is also part of the Months
package.

Remarks:
1. The goal of this exercise is to create the Months package.

1. In the code below, Months is declared as a procedure.
• Therefore, we need to convert it into a real package.

2. You have to modify the procedure declaration and implementation in the code
below, so that it becomes a package specification and a package body.

Listing 35: months.ads
1 -- Create specification for Months package, which includes
2 -- the declaration of the Display_Months procedure.
3 --
4 procedure Months;

Listing 36: months.adb
1 -- Create body of Months package, which includes
2 -- the implementation of the Display_Months procedure.
3 --
4 procedure Months is
5

6 procedure Display_Months is
7 begin
8 Put_Line ("Months:");
9 Put_Line ("- " & Jan);
10 Put_Line ("- " & Feb);
11 Put_Line ("- " & Mar);
12 Put_Line ("- " & Apr);

(continues on next page)

17

Introduction to Ada: Laboratories

(continued from previous page)
13 Put_Line ("- " & May);
14 Put_Line ("- " & Jun);
15 Put_Line ("- " & Jul);
16 Put_Line ("- " & Aug);
17 Put_Line ("- " & Sep);
18 Put_Line ("- " & Oct);
19 Put_Line ("- " & Nov);
20 Put_Line ("- " & Dec);
21 end Display_Months;
22

23 begin
24 null;
25 end Months;

Listing 37: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Months; use Months;
5

6 procedure Main is
7

8 type Test_Case_Index is
9 (Months_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Months_Chk =>
15 Display_Months;
16 end case;
17 end Check;
18

19 begin
20 if Argument_Count < 1 then
21 Put_Line ("ERROR: missing arguments! Exiting...");
22 return;
23 elsif Argument_Count > 1 then
24 Put_Line ("Ignoring additional arguments...");
25 end if;
26

27 Check (Test_Case_Index'Value (Argument (1)));
28 end Main;

3.2 Operations
Goal: create a package to perform basic mathematical operations.
Steps:
1. Implement the Operations package.

1. Declare and implement the Add function.
2. Declare and implement the Subtract function.
3. Declare and implement the Multiply: function.
4. Declare and implement the Divide function.

2. Implement the Operations.Test package

18 Chapter 3. Modular Programming

Introduction to Ada: Laboratories

1. Declare and implement the Display procedure.
Requirements:
1. Package Operations contains functions for each of the four basic mathematical oper-
ations for parameters of Integer type:
1. Function Add performs the addition of A and B and returns the result;
2. Function Subtract performs the subtraction of A and B and returns the result;
3. Function Multiply performs the multiplication of A and B and returns the result;
4. Function Divide performs the division of A and B and returns the result.

2. Package Operations.Test contains the test environment:
1. Procedure Displaymust use the functions from the parent (Operations) package
as indicated by the template in the code below.

Listing 38: operations.ads
1 package Operations is
2

3 -- Create specification for Operations package, including the
4 -- declaration of the functions mentioned above.
5 --
6

7 end Operations;

Listing 39: operations.adb
1 package body Operations is
2

3 -- Create body of Operations package.
4 --
5

6 end Operations;

Listing 40: operations-test.ads
1 package Operations.Test is
2

3 -- Create specification for Operations package, including the
4 -- declaration of the Display procedure:
5 --
6 -- procedure Display (A, B : Integer);
7 --
8

9 end Operations.Test;

Listing 41: operations-test.adb
1 package body Operations.Test is
2

3 -- Implement body of Operations.Test package.
4 --
5

6 procedure Display (A, B : Integer) is
7 A_Str : constant String := Integer'Image (A);
8 B_Str : constant String := Integer'Image (B);
9 begin
10 Put_Line ("Operations:");
11 Put_Line (A_Str & " + " & B_Str & " = "

(continues on next page)

3.2. Operations 19

Introduction to Ada: Laboratories

(continued from previous page)
12 & Integer'Image (Add (A, B))
13 & ",");
14 -- Use the line above as a template and add the rest of the
15 -- implementation for Subtract, Multiply and Divide.
16 end Display;
17

18 end Operations.Test;

Listing 42: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Operations;
5 with Operations.Test; use Operations.Test;
6

7 procedure Main is
8

9 type Test_Case_Index is
10 (Operations_Chk,
11 Operations_Display_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when Operations_Chk =>
17 Put_Line ("Add (100, 2) = "
18 & Integer'Image (Operations.Add (100, 2)));
19 Put_Line ("Subtract (100, 2) = "
20 & Integer'Image (Operations.Subtract (100, 2)));
21 Put_Line ("Multiply (100, 2) = "
22 & Integer'Image (Operations.Multiply (100, 2)));
23 Put_Line ("Divide (100, 2) = "
24 & Integer'Image (Operations.Divide (100, 2)));
25 when Operations_Display_Chk =>
26 Display (10, 5);
27 Display (1, 2);
28 end case;
29 end Check;
30

31 begin
32 if Argument_Count < 1 then
33 Put_Line ("ERROR: missing arguments! Exiting...");
34 return;
35 elsif Argument_Count > 1 then
36 Put_Line ("Ignoring additional arguments...");
37 end if;
38

39 Check (Test_Case_Index'Value (Argument (1)));
40 end Main;

20 Chapter 3. Modular Programming

CHAPTER

FOUR

STRONGLY TYPED LANGUAGE

4.1 Colors
Goal: create a package to represent HTML colors in hexadecimal form and its corresponding
names.
Steps:
1. Implement the Color_Types package.

1. Declare the HTML_Color enumeration.
2. Declare the Basic_HTML_Color enumeration.
3. Implement the To_Integer function.
4. Implement the To_HTML_Color function.

Requirements:
1. Enumeration HTML_Color has the following colors:

• Salmon
• Firebrick
• Red
• Darkred
• Lime
• Forestgreen
• Green
• Darkgreen
• Blue
• Mediumblue
• Darkblue

2. Enumeration Basic_HTML_Color has the following colors: Red, Green, Blue.
3. Function To_Integer converts from the HTML_Color type to the HTML color
code — as integer values in hexadecimal notation.
• You can find the HTML color codes in the table below.

4. Function To_HTML_Color converts from Basic_HTML_Color to HTML_Color.
5. This is the table to convert from an HTML color to a HTML color code in hex-
adecimal notation:

21

Introduction to Ada: Laboratories

Color HTML color code (hexa)
Salmon #FA8072
Firebrick #B22222
Red #FF0000
Darkred #8B0000
Lime #00FF00
Forestgreen #228B22
Green #008000
Darkgreen #006400
Blue #0000FF
Mediumblue #0000CD
Darkblue #00008B

Remarks:
1. In order to express the hexadecimal values above in Ada, use the following syntax:

16#<hex_value># (e.g.: 16#FFFFFF#).
2. For function To_Integer, you may use a case for this.

Listing 43: color_types.ads
1 package Color_Types is
2

3 -- Include type declaration for HTML_Color!
4 --
5 -- type HTML_Color is [...]
6 --
7

8 -- Include function declaration for:
9 -- function To_Integer (C : HTML_Color) return Integer;
10

11 -- Include type declaration for Basic_HTML_Color!
12 --
13 -- type Basic_HTML_Color is [...]
14 --
15

16 -- Include function declaration for:
17 -- - Basic_HTML_Color => HTML_Color
18 --
19 -- function To_HTML_Color [...];
20 --
21 end Color_Types;

Listing 44: color_types.adb
1 package body Color_Types is
2

3 -- Implement the conversion from HTML_Color to Integer here!
4 --
5 -- function To_Integer (C : HTML_Color) return Integer is
6 -- begin
7 -- -- Hint: use 'case' for the HTML colors;
8 -- -- use 16#...# for the hexadecimal values.
9 -- end To_Integer;
10

11 -- Implement the conversion from Basic_HTML_Color to HTML_Color here!
12 --
13 -- function To_HTML_Color [...] is

(continues on next page)

22 Chapter 4. Strongly typed language

Introduction to Ada: Laboratories

(continued from previous page)
14 --
15 end Color_Types;

Listing 45: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Integer_Text_IO;
4

5 with Color_Types; use Color_Types;
6

7 procedure Main is
8 type Test_Case_Index is
9 (HTML_Color_Range,
10 HTML_Color_To_Integer,
11 Basic_HTML_Color_To_HTML_Color);
12

13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when HTML_Color_Range =>
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I));
19 end loop;
20 when HTML_Color_To_Integer =>
21 for I in HTML_Color'Range loop
22 Ada.Integer_Text_IO.Put (Item => To_Integer (I),
23 Width => 6,
24 Base => 16);
25 New_Line;
26 end loop;
27 when Basic_HTML_Color_To_HTML_Color =>
28 for I in Basic_HTML_Color'Range loop
29 Put_Line (HTML_Color'Image (To_HTML_Color (I)));
30 end loop;
31 end case;
32 end Check;
33

34 begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41

42 Check (Test_Case_Index'Value (Argument (1)));
43 end Main;

4.2 Integers
Goal: implement a package with various integer types.
Steps:
1. Implement the Int_Types package.

1. Declare the integer type I_100.
2. Declare the modular type U_100.

4.2. Integers 23

Introduction to Ada: Laboratories

3. Implement the To_I_100 function to convert from the U_100 type.
4. Implement the To_U_100 function to convert from the I_100 type.
5. Declare the derived type D_50.
6. Declare the subtype S_50.
7. Implement the To_D_50 function to convert from the I_100 type.
8. Implement the To_S_50 function to convert from the I_100 type.
9. Implement the To_I_100 function to convert from the D_50 type.

Requirements:
1. Types I_100 and U_100 have values between 0 and 100.

1. Type I_100 is an integer type.
2. Type U_100 is a modular type.

2. Function To_I_100 converts from the U_100 type to the I_100 type.
3. Function To_U_100 converts from the I_100 type to the U_100 type.
4. Types D_50 and S_50 have values between 10 and 50 and use I_100 as a base type.

1. D_50 is a derived type.
2. S_50 is a subtype.

5. Function To_D_50 converts from the I_100 type to the D_50 type.
6. Function To_S_50 converts from the I_100 type to the S_50 type.
7. Functions To_D_50 and To_S_50 saturate the input values if they are out of range.

• If the input is less than 10 the output should be 10.
• If the input is greater than 50 the output should be 50.

8. Function To_I_100 converts from the D_50 type to the I_100 type.
Remarks:
1. For the implementation of functions To_D_50 and To_S_50, you may use the type at-
tributes D_50'First and D_50'Last:
1. D_50'First indicates the minimum value of the D_50 type.
2. D_50'Last indicates the maximum value of the D_50 type.
3. The same attributes are available for the S_50 type (S_50'First and S_50'Last).

2. We could have implemented a function To_I_100 as well to convert from S_50 to
I_100. However, we skip this here because explicit conversions are not needed for
subtypes.

Listing 46: int_types.ads
1 package Int_Types is
2

3 -- Include type declarations for I_100 and U_100!
4 --
5 -- type I_100 is [...]
6 -- type U_100 is [...]
7 --
8

9 function To_I_100 (V : U_100) return I_100;
10

11 function To_U_100 (V : I_100) return U_100;
(continues on next page)

24 Chapter 4. Strongly typed language

Introduction to Ada: Laboratories

(continued from previous page)
12

13 -- Include type declarations for D_50 and S_50!
14 --
15 -- [...] D_50 is [...]
16 -- [...] S_50 is [...]
17 --
18

19 function To_D_50 (V : I_100) return D_50;
20

21 function To_S_50 (V : I_100) return S_50;
22

23 function To_I_100 (V : D_50) return I_100;
24

25 end Int_Types;

Listing 47: int_types.adb
1 package body Int_Types is
2

3 function To_I_100 (V : U_100) return I_100 is
4 begin
5 -- Implement the conversion from U_100 to I_100 here!
6 --
7 null;
8 end To_I_100;
9

10 function To_U_100 (V : I_100) return U_100 is
11 begin
12 -- Implement the conversion from I_100 to U_100 here!
13 --
14 null;
15 end To_U_100;
16

17 function To_D_50 (V : I_100) return D_50 is
18 Min : constant I_100 := I_100 (D_50'First);
19 Max : constant I_100 := I_100 (D_50'Last);
20 begin
21 -- Implement the conversion from I_100 to D_50 here!
22 --
23 -- Hint: using the constants above simplifies the checks needed for
24 -- this function.
25 --
26 null;
27 end To_D_50;
28

29 function To_S_50 (V : I_100) return S_50 is
30 begin
31 -- Implement the conversion from I_100 to S_50 here!
32 --
33 -- Remark: don't forget to verify whether an explicit conversion like
34 -- S_50 (V) is needed.
35 --
36 null;
37 end To_S_50;
38

39 function To_I_100 (V : D_50) return I_100 is
40 begin
41 -- Implement the conversion from I_100 to D_50 here!
42 --
43 -- Remark: don't forget to verify whether an explicit conversion like
44 -- I_100 (V) is needed.

(continues on next page)

4.2. Integers 25

Introduction to Ada: Laboratories

(continued from previous page)
45 --
46 null;
47 end To_I_100;
48

49 end Int_Types;

Listing 48: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Int_Types; use Int_Types;
5

6 procedure Main is
7 package I_100_IO is new Ada.Text_IO.Integer_IO (I_100);
8 package U_100_IO is new Ada.Text_IO.Modular_IO (U_100);
9 package D_50_IO is new Ada.Text_IO.Integer_IO (D_50);
10

11 use I_100_IO;
12 use U_100_IO;
13 use D_50_IO;
14

15 type Test_Case_Index is
16 (I_100_Range,
17 U_100_Range,
18 U_100_Wraparound,
19 U_100_To_I_100,
20 I_100_To_U_100,
21 D_50_Range,
22 S_50_Range,
23 I_100_To_D_50,
24 I_100_To_S_50,
25 D_50_To_I_100,
26 S_50_To_I_100);
27

28 procedure Check (TC : Test_Case_Index) is
29 begin
30 I_100_IO.Default_Width := 1;
31 U_100_IO.Default_Width := 1;
32 D_50_IO.Default_Width := 1;
33

34 case TC is
35 when I_100_Range =>
36 Put (I_100'First);
37 New_Line;
38 Put (I_100'Last);
39 New_Line;
40 when U_100_Range =>
41 Put (U_100'First);
42 New_Line;
43 Put (U_100'Last);
44 New_Line;
45 when U_100_Wraparound =>
46 Put (U_100'First - 1);
47 New_Line;
48 Put (U_100'Last + 1);
49 New_Line;
50 when U_100_To_I_100 =>
51 for I in U_100'Range loop
52 I_100_IO.Put (To_I_100 (I));
53 New_Line;

(continues on next page)

26 Chapter 4. Strongly typed language

Introduction to Ada: Laboratories

(continued from previous page)
54 end loop;
55 when I_100_To_U_100 =>
56 for I in I_100'Range loop
57 Put (To_U_100 (I));
58 New_Line;
59 end loop;
60 when D_50_Range =>
61 Put (D_50'First);
62 New_Line;
63 Put (D_50'Last);
64 New_Line;
65 when S_50_Range =>
66 Put (S_50'First);
67 New_Line;
68 Put (S_50'Last);
69 New_Line;
70 when I_100_To_D_50 =>
71 for I in I_100'Range loop
72 Put (To_D_50 (I));
73 New_Line;
74 end loop;
75 when I_100_To_S_50 =>
76 for I in I_100'Range loop
77 Put (To_S_50 (I));
78 New_Line;
79 end loop;
80 when D_50_To_I_100 =>
81 for I in D_50'Range loop
82 Put (To_I_100 (I));
83 New_Line;
84 end loop;
85 when S_50_To_I_100 =>
86 for I in S_50'Range loop
87 Put (I);
88 New_Line;
89 end loop;
90 end case;
91 end Check;
92

93 begin
94 if Argument_Count < 1 then
95 Put_Line ("ERROR: missing arguments! Exiting...");
96 return;
97 elsif Argument_Count > 1 then
98 Put_Line ("Ignoring additional arguments...");
99 end if;
100

101 Check (Test_Case_Index'Value (Argument (1)));
102 end Main;

4.3 Temperatures
Goal: create a package to handle temperatures in Celsius and Kelvin.
Steps:
1. Implement the Temperature_Types package.

1. Declare the Celsius type.
2. Declare the Int_Celsius type.

4.3. Temperatures 27

Introduction to Ada: Laboratories

3. Implement the To_Celsius function.
4. Implement the To_Int_Celsius function.
5. Declare the Kelvin type.
6. Implement the To_Celsius function to convert from the Kelvin type.
7. Implement the To_Kelvin function.

Requirements:
1. The custom floating-point types declared in Temperature_Typesmust use a precision
of six digits.

2. Types Celsius and Int_Celsius are used for temperatures in Celsius:
1. Celsius is a floating-point type with a range between -273.15 and 5504.85.
2. Int_Celsius is an integer type with a range between -273 and 5505.

3. Functions To_Celsius and To_Int_Celsius are used for type conversion:
1. To_Celsius converts from Int_Celsius to Celsius type.
2. To_Int_Celsius converts from Celsius and Int_Celsius types:

4. Kelvin is a floating-point type for temperatures in Kelvin using a range between 0.0
and 5778.0.

5. The functions To_Celsius and To_Kelvin are used to convert between temperatures
in Kelvin and Celsius.
1. In order to convert temperatures in Celsius to Kelvin, you must use the formula

𝐾 = 𝐶 + 273.15, where:
• K is the temperature in Kelvin, and
• C is the temperature in Celsius.

Remarks:
1. When implementing the To_Celsius function for the Int_Celsius type:

1. You'll need to check for the minimum and maximum values of the input values
because of the slightly different ranges.

2. You may use variables of floating-point type (Float) for intermediate values.
2. For the implementation of the functions To_Celsius and To_Kelvin (used for con-
verting between Kelvin and Celsius), you may use a variable of floating-point type
(Float) for intermediate values.

Listing 49: temperature_types.ads
1 package Temperature_Types is
2

3 -- Include type declaration for Celsius!
4 --
5 -- Celsius is [...];
6 -- Int_Celsius is [...];
7 --
8

9 function To_Celsius (T : Int_Celsius) return Celsius;
10

11 function To_Int_Celsius (T : Celsius) return Int_Celsius;
12

13 -- Include type declaration for Kelvin!
14 --
15 -- type Kelvin is [...];

(continues on next page)

28 Chapter 4. Strongly typed language

Introduction to Ada: Laboratories

(continued from previous page)
16 --
17

18 -- Include function declarations for:
19 -- - Kelvin => Celsius
20 -- - Celsius => Kelvin
21 --
22 -- function To_Celsius [...];
23 -- function To_Kelvin [...];
24 --
25 end Temperature_Types;

Listing 50: temperature_types.adb
1 package body Temperature_Types is
2

3 function To_Celsius (T : Int_Celsius) return Celsius is
4 begin
5 null;
6 end To_Celsius;
7

8 function To_Int_Celsius (T : Celsius) return Int_Celsius is
9 begin
10 null;
11 end To_Int_Celsius;
12

13 -- Include function implementation for:
14 -- - Kelvin => Celsius
15 -- - Celsius => Kelvin
16 --
17 -- function To_Celsius [...] is
18 -- function To_Kelvin [...] is
19 --
20 end Temperature_Types;

Listing 51: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Temperature_Types; use Temperature_Types;
5

6 procedure Main is
7 package Celsius_IO is new Ada.Text_IO.Float_IO (Celsius);
8 package Kelvin_IO is new Ada.Text_IO.Float_IO (Kelvin);
9 package Int_Celsius_IO is new Ada.Text_IO.Integer_IO (Int_Celsius);
10

11 use Celsius_IO;
12 use Kelvin_IO;
13 use Int_Celsius_IO;
14

15 type Test_Case_Index is
16 (Celsius_Range,
17 Celsius_To_Int_Celsius,
18 Int_Celsius_To_Celsius,
19 Kelvin_To_Celsius,
20 Celsius_To_Kelvin);
21

22 procedure Check (TC : Test_Case_Index) is
23 begin
24 Celsius_IO.Default_Fore := 1;

(continues on next page)

4.3. Temperatures 29

Introduction to Ada: Laboratories

(continued from previous page)
25 Kelvin_IO.Default_Fore := 1;
26 Int_Celsius_IO.Default_Width := 1;
27

28 case TC is
29 when Celsius_Range =>
30 Put (Celsius'First);
31 New_Line;
32 Put (Celsius'Last);
33 New_Line;
34 when Celsius_To_Int_Celsius =>
35 Put (To_Int_Celsius (Celsius'First));
36 New_Line;
37 Put (To_Int_Celsius (0.0));
38 New_Line;
39 Put (To_Int_Celsius (Celsius'Last));
40 New_Line;
41 when Int_Celsius_To_Celsius =>
42 Put (To_Celsius (Int_Celsius'First));
43 New_Line;
44 Put (To_Celsius (0));
45 New_Line;
46 Put (To_Celsius (Int_Celsius'Last));
47 New_Line;
48 when Kelvin_To_Celsius =>
49 Put (To_Celsius (Kelvin'First));
50 New_Line;
51 Put (To_Celsius (0));
52 New_Line;
53 Put (To_Celsius (Kelvin'Last));
54 New_Line;
55 when Celsius_To_Kelvin =>
56 Put (To_Kelvin (Celsius'First));
57 New_Line;
58 Put (To_Kelvin (Celsius'Last));
59 New_Line;
60 end case;
61 end Check;
62

63 begin
64 if Argument_Count < 1 then
65 Put_Line ("ERROR: missing arguments! Exiting...");
66 return;
67 elsif Argument_Count > 1 then
68 Put_Line ("Ignoring additional arguments...");
69 end if;
70

71 Check (Test_Case_Index'Value (Argument (1)));
72 end Main;

30 Chapter 4. Strongly typed language

CHAPTER

FIVE

RECORDS

5.1 Directions
Goal: create a package that handles directions and geometric angles.
Steps:
1. Implement the Directions package.

1. Declare the Ext_Angle record.
2. Implement the Display procedure.
3. Implement the To_Ext_Angle function.

Requirements:
1. Record Ext_Angle stores information about the extended angle (see remark about

extended angles below).
2. Procedure Display displays information about the extended angle.

1. You should use the implementation that has been commented out (see code be-
low) as a starting point.

3. Function To_Ext_Angle converts a simple angle value to an extended angle
(Ext_Angle type).

Remarks:
1. We make use of the algorithm implemented in the Check_Direction procedure (chap-
ter on imperative language).

2. For the sake of this exercise, we use the concept of extended angles. This includes
the actual geometric angle and the corresponding direction (North, South, Northwest,
and so on).

Listing 52: directions.ads
1 package Directions is
2

3 type Angle_Mod is mod 360;
4

5 type Direction is
6 (North,
7 Northeast,
8 East,
9 Southeast,
10 South,
11 Southwest,
12 West,
13 Northwest);
14

(continues on next page)

31

Introduction to Ada: Laboratories

(continued from previous page)
15 function To_Direction (N: Angle_Mod) return Direction;
16

17 -- Include type declaration for Ext_Angle record type:
18 --
19 -- NOTE: Use the Angle_Mod and Direction types declared above!
20 --
21 -- type Ext_Angle is [...]
22 --
23

24 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
25

26 procedure Display (N : Ext_Angle);
27

28 end Directions;

Listing 53: directions.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Directions is
4

5 procedure Display (N : Ext_Angle) is
6 begin
7 -- Uncomment the code below and fill the missing elements
8 --
9 -- Put_Line ("Angle: "
10 -- & Angle_Mod'Image (____)
11 -- & " => "
12 -- & Direction'Image (____)
13 -- & ".");
14 null;
15 end Display;
16

17 function To_Direction (N : Angle_Mod) return Direction is
18 begin
19 case N is
20 when 0 => return North;
21 when 1 .. 89 => return Northeast;
22 when 90 => return East;
23 when 91 .. 179 => return Southeast;
24 when 180 => return South;
25 when 181 .. 269 => return Southwest;
26 when 270 => return West;
27 when 271 .. 359 => return Northwest;
28 end case;
29 end To_Direction;
30

31 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
32 begin
33 -- Implement the conversion from Angle_Mod to Ext_Angle here!
34 --
35 -- Hint: you can use a return statement and an aggregate.
36 --
37 null;
38 end To_Ext_Angle;
39

40 end Directions;

32 Chapter 5. Records

Introduction to Ada: Laboratories

Listing 54: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Directions; use Directions;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Direction_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Display (To_Ext_Angle (0));
15 Display (To_Ext_Angle (30));
16 Display (To_Ext_Angle (45));
17 Display (To_Ext_Angle (90));
18 Display (To_Ext_Angle (91));
19 Display (To_Ext_Angle (120));
20 Display (To_Ext_Angle (180));
21 Display (To_Ext_Angle (250));
22 Display (To_Ext_Angle (270));
23 end case;
24 end Check;
25

26 begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33

34 Check (Test_Case_Index'Value (Argument (1)));
35 end Main;

5.2 Colors
Goal: create a package to represent HTML colors in RGB format using the hexadecimal
form.
Steps:
1. Implement the Color_Types package.

1. Declare the RGB record.
2. Implement the To_RGB function.
3. Implement the Image function for the RGB type.

Requirements:
1. The following table contains the HTML colors and the corresponding value in hexadec-
imal form for each color element:

5.2. Colors 33

Introduction to Ada: Laboratories

Color Red Green Blue
Salmon #FA #80 #72
Firebrick #B2 #22 #22
Red #FF #00 #00
Darkred #8B #00 #00
Lime #00 #FF #00
Forestgreen #22 #8B #22
Green #00 #80 #00
Darkgreen #00 #64 #00
Blue #00 #00 #FF
Mediumblue #00 #00 #CD
Darkblue #00 #00 #8B

2. The hexadecimal information of each HTML color can be mapped to three color ele-
ments: red, green and blue.
1. Each color element has a value between 0 and 255, or 00 and FF in hexadecimal.
2. For example, for the color salmon, the hexadecimal value of the color elements
are:
• red = FA,
• green = 80, and
• blue = 72.

3. Record RGB stores information about HTML colors in RGB format, so that we can retrieve
the individual color elements.

4. Function To_RGB converts from the HTML_Color enumeration to the RGB type based on
the information from the table above.

5. Function Image returns a string representation of the RGB type in this format:
• "(Red => 16#..#, Green => 16#...#, Blue => 16#...#)"

Remarks:
1. We use the exercise on HTML colors from the previous lab on Strongly typed language
(page 21) as a starting point.

Listing 55: color_types.ads
1 package Color_Types is
2

3 type HTML_Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 function To_Integer (C : HTML_Color) return Integer;
17

18 type Basic_HTML_Color is
19 (Red,

(continues on next page)

34 Chapter 5. Records

Introduction to Ada: Laboratories

(continued from previous page)
20 Green,
21 Blue);
22

23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24

25 subtype Int_Color is Integer range 0 .. 255;
26

27 -- Replace type declaration for RGB record below
28 --
29 -- - NOTE: Use the Int_Color type declared above!
30 --
31 -- type RGB is [...]
32 --
33 type RGB is null record;
34

35 function To_RGB (C : HTML_Color) return RGB;
36

37 function Image (C : RGB) return String;
38

39 end Color_Types;

Listing 56: color_types.adb
1 with Ada.Integer_Text_IO;
2

3 package body Color_Types is
4

5 function To_Integer (C : HTML_Color) return Integer is
6 begin
7 case C is
8 when Salmon => return 16#FA8072#;
9 when Firebrick => return 16#B22222#;
10 when Red => return 16#FF0000#;
11 when Darkred => return 16#8B0000#;
12 when Lime => return 16#00FF00#;
13 when Forestgreen => return 16#228B22#;
14 when Green => return 16#008000#;
15 when Darkgreen => return 16#006400#;
16 when Blue => return 16#0000FF#;
17 when Mediumblue => return 16#0000CD#;
18 when Darkblue => return 16#00008B#;
19 end case;
20

21 end To_Integer;
22

23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
24 begin
25 case C is
26 when Red => return Red;
27 when Green => return Green;
28 when Blue => return Blue;
29 end case;
30 end To_HTML_Color;
31

32 function To_RGB (C : HTML_Color) return RGB is
33 begin
34 -- Implement the conversion from HTML_Color to RGB here!
35 --
36 return (null record);
37 end To_RGB;
38

(continues on next page)

5.2. Colors 35

Introduction to Ada: Laboratories

(continued from previous page)
39 function Image (C : RGB) return String is
40 subtype Str_Range is Integer range 1 .. 10;
41 SR : String (Str_Range);
42 SG : String (Str_Range);
43 SB : String (Str_Range);
44 begin
45 -- Replace argument in the calls to Put below
46 -- with the missing elements (red, green, blue)
47 -- from the RGB record
48 --
49 Ada.Integer_Text_IO.Put (To => SR,
50 Item => 0, -- REPLACE!
51 Base => 16);
52 Ada.Integer_Text_IO.Put (To => SG,
53 Item => 0, -- REPLACE!
54 Base => 16);
55 Ada.Integer_Text_IO.Put (To => SB,
56 Item => 0, -- REPLACE!
57 Base => 16);
58 return ("(Red => " & SR
59 & ", Green => " & SG
60 & ", Blue => " & SB
61 &")");
62 end Image;
63

64 end Color_Types;

Listing 57: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Color_Types; use Color_Types;
5

6 procedure Main is
7 type Test_Case_Index is
8 (HTML_Color_To_RGB);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when HTML_Color_To_RGB =>
14 for I in HTML_Color'Range loop
15 Put_Line (HTML_Color'Image (I) & " => "
16 & Image (To_RGB (I)) & ".");
17 end loop;
18 end case;
19 end Check;
20

21 begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28

29 Check (Test_Case_Index'Value (Argument (1)));
30 end Main;

36 Chapter 5. Records

Introduction to Ada: Laboratories

5.3 Inventory
Goal: create a simplified inventory system for a store to enter items and keep track of
assets.
Steps:
1. Implement the Inventory_Pkg package.

1. Declare the Item record.
2. Implement the Init function.
3. Implement the Add procedure.

Requirements:
1. Record Item collects information about products from the store.

1. To keep it simple, this record only contains the name, quantity and price of each
item.

2. The record components are:
• Name of Item_Name type;
• Quantity of Natural type;
• Price of Float type.

2. Function Init returns an initialized item (of Item type).
1. Function Initmust also display the item name by calling the To_String function
for the Item_Name type.
• This is already implemented in the code below.

3. Procedure Add adds an item to the assets.
1. Since we want to keep track of the assets, the implementation must accumulate
the total value of each item's inventory, the result of multiplying the item quantity
and its price.

Listing 58: inventory_pkg.ads
1 package Inventory_Pkg is
2

3 type Item_Name is
4 (Ballpoint_Pen, Oil_Based_Pen_Marker, Feather_Quill_Pen);
5

6 function To_String (I : Item_Name) return String;
7

8 -- Replace type declaration for Item record:
9 --
10 type Item is null record;
11

12 function Init (Name : Item_Name;
13 Quantity : Natural;
14 Price : Float) return Item;
15

16 procedure Add (Assets : in out Float;
17 I : Item);
18

19 end Inventory_Pkg;

5.3. Inventory 37

Introduction to Ada: Laboratories

Listing 59: inventory_pkg.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Inventory_Pkg is
4

5 function To_String (I : Item_Name) return String is
6 begin
7 case I is
8 when Ballpoint_Pen => return "Ballpoint Pen";
9 when Oil_Based_Pen_Marker => return "Oil-based Pen Marker";
10 when Feather_Quill_Pen => return "Feather Quill Pen";
11 end case;
12 end To_String;
13

14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item is
17 begin
18 Put_Line ("Item: " & To_String (Name) & ".");
19

20 -- Replace return statement with the actual record initialization!
21 --
22 return (null record);
23 end Init;
24

25 procedure Add (Assets : in out Float;
26 I : Item) is
27 begin
28 -- Implement the function that adds an item to the inventory here!
29 --
30 null;
31 end Add;
32

33 end Inventory_Pkg;

Listing 60: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Inventory_Pkg; use Inventory_Pkg;
5

6 procedure Main is
7 -- Remark: the following line is not relevant.
8 F : array (1 .. 10) of Float := (others => 42.42);
9

10 type Test_Case_Index is
11 (Inventory_Chk);
12

13 procedure Display (Assets : Float) is
14 package F_IO is new Ada.Text_IO.Float_IO (Float);
15

16 use F_IO;
17 begin
18 Put ("Assets: $");
19 Put (Assets, 1, 2, 0);
20 Put (".");
21 New_Line;
22 end Display;
23

(continues on next page)

38 Chapter 5. Records

Introduction to Ada: Laboratories

(continued from previous page)
24 procedure Check (TC : Test_Case_Index) is
25 I : Item;
26 Assets : Float := 0.0;
27

28 -- Please ignore the following three lines!
29 pragma Warnings (Off, "default initialization");
30 for Assets'Address use F'Address;
31 pragma Warnings (On, "default initialization");
32 begin
33 case TC is
34 when Inventory_Chk =>
35 I := Init (Ballpoint_Pen, 185, 0.15);
36 Add (Assets, I);
37 Display (Assets);
38

39 I := Init (Oil_Based_Pen_Marker, 100, 9.0);
40 Add (Assets, I);
41 Display (Assets);
42

43 I := Init (Feather_Quill_Pen, 2, 40.0);
44 Add (Assets, I);
45 Display (Assets);
46 end case;
47 end Check;
48

49 begin
50 if Argument_Count < 1 then
51 Put_Line ("ERROR: missing arguments! Exiting...");
52 return;
53 elsif Argument_Count > 1 then
54 Put_Line ("Ignoring additional arguments...");
55 end if;
56

57 Check (Test_Case_Index'Value (Argument (1)));
58 end Main;

5.3. Inventory 39

Introduction to Ada: Laboratories

40 Chapter 5. Records

CHAPTER

SIX

ARRAYS

6.1 Constrained Array
Goal: declare a constrained array and implement operations on it.
Steps:
1. Implement the Constrained_Arrays package.

1. Declare the range type My_Index.
2. Declare the array type My_Array.
3. Declare and implement the Init function.
4. Declare and implement the Double procedure.
5. Declare and implement the First_Elem function.
6. Declare and implement the Last_Elem function.
7. Declare and implement the Length function.
8. Declare the object A of My_Array type.

Requirements:
1. Range type My_Index has a range from 1 to 10.
2. My_Array is a constrained array of Integer type.

1. It must make use of the My_Index type.
2. It is therefore limited to 10 elements.

3. Function Init returns an array where each element is initialized with the corresponding
index.

4. Procedure Double doubles the value of each element of an array.
5. Function First_Elem returns the first element of the array.
6. Function Last_Elem returns the last element of the array.
7. Function Length returns the length of the array.
8. Object A of My_Array type is initialized with:

1. the values 1 and 2 for the first two elements, and
2. 42 for all other elements.

41

Introduction to Ada: Laboratories

Listing 61: constrained_arrays.ads
1 package Constrained_Arrays is
2

3 -- Complete the type and subprogram declarations:
4 --
5 -- type My_Index is [...]
6 --
7 -- type My_Array is [...]
8 --
9 -- function Init ...
10 --
11 -- procedure Double ...
12 --
13 -- function First_Elem ...
14 --
15 -- function Last_Elem ...
16 --
17 -- function Length ...
18 --
19 -- A : ...
20

21 end Constrained_Arrays;

Listing 62: constrained_arrays.adb
1 package body Constrained_Arrays is
2

3 -- Create the implementation of the subprograms!
4 --
5

6 end Constrained_Arrays;

Listing 63: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Constrained_Arrays; use Constrained_Arrays;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Range_Chk,
9 Array_Range_Chk,
10 A_Obj_Chk,
11 Init_Chk,
12 Double_Chk,
13 First_Elem_Chk,
14 Last_Elem_Chk,
15 Length_Chk);
16

17 procedure Check (TC : Test_Case_Index) is
18 AA : My_Array;
19

20 procedure Display (A : My_Array) is
21 begin
22 for I in A'Range loop
23 Put_Line (Integer'Image (A (I)));
24 end loop;
25 end Display;
26

27 procedure Local_Init (A : in out My_Array) is
(continues on next page)

42 Chapter 6. Arrays

Introduction to Ada: Laboratories

(continued from previous page)
28 begin
29 A := (100, 90, 80, 10, 20, 30, 40, 60, 50, 70);
30 end Local_Init;
31 begin
32 case TC is
33 when Range_Chk =>
34 for I in My_Index loop
35 Put_Line (My_Index'Image (I));
36 end loop;
37 when Array_Range_Chk =>
38 for I in My_Array'Range loop
39 Put_Line (My_Index'Image (I));
40 end loop;
41 when A_Obj_Chk =>
42 Display (A);
43 when Init_Chk =>
44 AA := Init;
45 Display (AA);
46 when Double_Chk =>
47 Local_Init (AA);
48 Double (AA);
49 Display (AA);
50 when First_Elem_Chk =>
51 Local_Init (AA);
52 Put_Line (Integer'Image (First_Elem (AA)));
53 when Last_Elem_Chk =>
54 Local_Init (AA);
55 Put_Line (Integer'Image (Last_Elem (AA)));
56 when Length_Chk =>
57 Put_Line (Integer'Image (Length (AA)));
58 end case;
59 end Check;
60

61 begin
62 if Argument_Count < 1 then
63 Put_Line ("ERROR: missing arguments! Exiting...");
64 return;
65 elsif Argument_Count > 1 then
66 Put_Line ("Ignoring additional arguments...");
67 end if;
68

69 Check (Test_Case_Index'Value (Argument (1)));
70 end Main;

6.2 Colors: Lookup-Table
Goal: rewrite a package to represent HTML colors in RGB format using a lookup table.
Steps:
1. Implement the Color_Types package.

1. Declare the array type HTML_Color_RGB.
2. Declare the To_RGB_Lookup_Table object and initialize it.
3. Adapt the implementation of the To_RGB function.

Requirements:
1. Array type HTML_Color_RGB is used for the table.
2. The To_RGB_Lookup_Table object of HTML_Color_RGB type contains the lookup table.

6.2. Colors: Lookup-Table 43

Introduction to Ada: Laboratories

• This table must be implemented as an array of constant values.
3. The implementation of the To_RGB function must use the To_RGB_Lookup_Table ob-
ject.

Remarks:
1. This exercise is based on the HTML colors exercise from a previous lab (Records
(page 31)).

2. In the previous implementation, you could use a case statement to implement the
To_RGB function. Here, you must rewrite the function using a look-up table.
1. The implementation of the To_RGB function below includes the case statement as
commented-out code. You can use this as your starting point: you just need to
copy it and convert the case statement to an array declaration.

1. Don't use a case statement to implement the To_RGB function. Instead, write code
that accesses To_RGB_Lookup_Table to get the correct value.

3. The following table contains the HTML colors and the corresponding value in hexadec-
imal form for each color element:

Color Red Green Blue
Salmon #FA #80 #72
Firebrick #B2 #22 #22
Red #FF #00 #00
Darkred #8B #00 #00
Lime #00 #FF #00
Forestgreen #22 #8B #22
Green #00 #80 #00
Darkgreen #00 #64 #00
Blue #00 #00 #FF
Mediumblue #00 #00 #CD
Darkblue #00 #00 #8B

Listing 64: color_types.ads
1 package Color_Types is
2

3 type HTML_Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 subtype Int_Color is Integer range 0 .. 255;
17

18 type RGB is record
19 Red : Int_Color;
20 Green : Int_Color;
21 Blue : Int_Color;
22 end record;
23

(continues on next page)

44 Chapter 6. Arrays

Introduction to Ada: Laboratories

(continued from previous page)
24 function To_RGB (C : HTML_Color) return RGB;
25

26 function Image (C : RGB) return String;
27

28 -- Declare array type for lookup table here:
29 --
30 -- type HTML_Color_RGB is ...
31

32 -- Declare lookup table here:
33 --
34 -- To_RGB_Lookup_Table : ...
35

36 end Color_Types;

Listing 65: color_types.adb
1 with Ada.Integer_Text_IO;
2 package body Color_Types is
3

4 function To_RGB (C : HTML_Color) return RGB is
5 begin
6 -- Implement To_RGB using To_RGB_Lookup_Table
7 return (0, 0, 0);
8

9 -- Use the code below from the previous version of the To_RGB
10 -- function to declare the To_RGB_Lookup_Table:
11 --
12 -- case C is
13 -- when Salmon => return (16#FA#, 16#80#, 16#72#);
14 -- when Firebrick => return (16#B2#, 16#22#, 16#22#);
15 -- when Red => return (16#FF#, 16#00#, 16#00#);
16 -- when Darkred => return (16#8B#, 16#00#, 16#00#);
17 -- when Lime => return (16#00#, 16#FF#, 16#00#);
18 -- when Forestgreen => return (16#22#, 16#8B#, 16#22#);
19 -- when Green => return (16#00#, 16#80#, 16#00#);
20 -- when Darkgreen => return (16#00#, 16#64#, 16#00#);
21 -- when Blue => return (16#00#, 16#00#, 16#FF#);
22 -- when Mediumblue => return (16#00#, 16#00#, 16#CD#);
23 -- when Darkblue => return (16#00#, 16#00#, 16#8B#);
24 -- end case;
25

26 end To_RGB;
27

28 function Image (C : RGB) return String is
29 subtype Str_Range is Integer range 1 .. 10;
30 SR : String (Str_Range);
31 SG : String (Str_Range);
32 SB : String (Str_Range);
33 begin
34 Ada.Integer_Text_IO.Put (To => SR,
35 Item => C.Red,
36 Base => 16);
37 Ada.Integer_Text_IO.Put (To => SG,
38 Item => C.Green,
39 Base => 16);
40 Ada.Integer_Text_IO.Put (To => SB,
41 Item => C.Blue,
42 Base => 16);
43 return ("(Red => " & SR
44 & ", Green => " & SG
45 & ", Blue => " & SB

(continues on next page)

6.2. Colors: Lookup-Table 45

Introduction to Ada: Laboratories

(continued from previous page)
46 &")");
47 end Image;
48

49 end Color_Types;

Listing 66: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Color_Types; use Color_Types;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Color_Table_Chk,
9 HTML_Color_To_Integer_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Color_Table_Chk =>
15 Put_Line ("Size of HTML_Color_RGB: "
16 & Integer'Image (HTML_Color_RGB'Length));
17 Put_Line ("Firebrick: "
18 & Image (To_RGB_Lookup_Table (Firebrick)));
19 when HTML_Color_To_Integer_Chk =>
20 for I in HTML_Color'Range loop
21 Put_Line (HTML_Color'Image (I) & " => "
22 & Image (To_RGB (I)) & ".");
23 end loop;
24 end case;
25 end Check;
26

27 begin
28 if Argument_Count < 1 then
29 Put_Line ("ERROR: missing arguments! Exiting...");
30 return;
31 elsif Argument_Count > 1 then
32 Put_Line ("Ignoring additional arguments...");
33 end if;
34

35 Check (Test_Case_Index'Value (Argument (1)));
36 end Main;

6.3 Unconstrained Array
Goal: declare an unconstrained array and implement operations on it.
Steps:
1. Implement the Unconstrained_Arrays package.

1. Declare the My_Array type.
2. Declare and implement the Init procedure.
3. Declare and implement the Init function.
4. Declare and implement the Double procedure.
5. Declare and implement the Diff_Prev_Elem function.

46 Chapter 6. Arrays

Introduction to Ada: Laboratories

Requirements:
1. My_Array is an unconstrained array (with a Positive range) of Integer elements.
2. Procedure Init initializes each element with the index starting with the last one.

• For example, for an array of 3 elements where the index of the first element is 1
(My_Array (1 .. 3)), the values of these elements after a call to Init must be
(3, 2, 1).

3. Function Init returns an array based on the length L and start index I provided to the
Init function.
1. I indicates the index of the first element of the array.
2. L indicates the length of the array.
3. Both I and L must be positive.
4. This is its declaration: function Init (I, L : Positive) return My_Array;.
5. You must initialize the elements of the array in the same manner as for the Init
procedure described above.

4. Procedure Double doubles each element of an array.
5. Function Diff_Prev_Elem returns — for each element of an input array A — an array
with the difference between an element of array A and the previous element.
1. For the first element, the difference must be zero.
2. For example:

• INPUT: (2, 5, 15)

• RETURN of Diff_Prev_Elem: (0, 3, 10), where
– 0 is the constant difference for the first element;
– 5 - 2 = 3 is the difference between the second and the first elements of
the input array;

– 15 - 5 = 10 is the difference between the third and the second elements
of the input array.

Remarks:
1. For an array A, you can retrieve the index of the last element with the attribute 'Last.

1. For example: Y : Positive := A'Last;

2. This can be useful during the implementation of procedure Init.
2. For the implementation of the Init function, you can call the Init procedure to ini-
tialize the elements. By doing this, you avoid code duplication.

3. Some hints about attributes:
1. You can use the range attribute (A'Range) to retrieve the range of an array A.
2. You can also use the range attribute in the declaration of another array (e.g.: B :

My_Array (A'Range)).
3. Alternatively, you can use the A'First and A'Last attributes in an array decla-
ration.

Listing 67: unconstrained_arrays.ads
1 package Unconstrained_Arrays is
2

3 -- Complete the type and subprogram declarations:
(continues on next page)

6.3. Unconstrained Array 47

Introduction to Ada: Laboratories

(continued from previous page)
4 --
5 -- type My_Array is ...;
6 --
7 -- procedure Init ...;
8

9 function Init (I, L : Positive) return My_Array;
10

11 -- procedure Double ...;
12 --
13 -- function Diff_Prev_Elem ...;
14

15 end Unconstrained_Arrays;

Listing 68: unconstrained_arrays.adb
1 package body Unconstrained_Arrays is
2

3 -- Implement the subprograms:
4 --
5

6 -- procedure Init is...
7

8 -- function Init (L : Positive) return My_Array is...
9

10 -- procedure Double ... is...
11

12 -- function Diff_Prev_Elem ... is...
13

14 end Unconstrained_Arrays;

Listing 69: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Unconstrained_Arrays; use Unconstrained_Arrays;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Init_Chk,
9 Init_Proc_Chk,
10 Double_Chk,
11 Diff_Prev_Chk,
12 Diff_Prev_Single_Chk);
13

14 procedure Check (TC : Test_Case_Index) is
15 AA : My_Array (1 .. 5);
16 AB : My_Array (5 .. 9);
17

18 procedure Display (A : My_Array) is
19 begin
20 for I in A'Range loop
21 Put_Line (Integer'Image (A (I)));
22 end loop;
23 end Display;
24

25 procedure Local_Init (A : in out My_Array) is
26 begin
27 A := (1, 2, 5, 10, -10);
28 end Local_Init;

(continues on next page)

48 Chapter 6. Arrays

Introduction to Ada: Laboratories

(continued from previous page)
29

30 begin
31 case TC is
32 when Init_Chk =>
33 AA := Init (AA'First, AA'Length);
34 AB := Init (AB'First, AB'Length);
35 Display (AA);
36 Display (AB);
37 when Init_Proc_Chk =>
38 Init (AA);
39 Init (AB);
40 Display (AA);
41 Display (AB);
42 when Double_Chk =>
43 Local_Init (AB);
44 Double (AB);
45 Display (AB);
46 when Diff_Prev_Chk =>
47 Local_Init (AB);
48 AB := Diff_Prev_Elem (AB);
49 Display (AB);
50 when Diff_Prev_Single_Chk =>
51 declare
52 A1 : My_Array (1 .. 1) := (1 => 42);
53 begin
54 A1 := Diff_Prev_Elem (A1);
55 Display (A1);
56 end;
57 end case;
58 end Check;
59

60 begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67

68 Check (Test_Case_Index'Value (Argument (1)));
69 end Main;

6.4 Product info
Goal: create a system to keep track of quantities and prices of products.
Steps:
1. Implement the Product_Info_Pkg package.

1. Declare the array type Product_Infos.
2. Declare the array type Currency_Array.
3. Implement the Total procedure.
4. Implement the Total function returning an array of Currency_Array type.
5. Implement the Total function returning a single value of Currency type.

Requirements:
1. Quantity of an individual product is represented by the Quantity subtype.

6.4. Product info 49

Introduction to Ada: Laboratories

2. Price of an individual product is represented by the Currency subtype.
3. Record type Product_Info deals with information for various products.
4. Array type Product_Infos is used to represent a list of products.
5. Array type Currency_Array is used to represent a list of total values of individual
products (see more details below).

6. Procedure Total receives an input array of products.
1. It outputs an array with the total value of each product using the Currency_Array
type.

2. The total value of an individual product is calculated by multiplying the quantity
for this product by its price.

7. Function Total returns an array of Currency_Array type.
1. This function has the same purpose as the procedure Total.
2. The difference is that the function returns an array instead of providing this array
as an output parameter.

8. The second function Total returns a single value of Currency type.
1. This function receives an array of products.
2. It returns a single value corresponding to the total value for all products in the
system.

Remarks:
1. You can use Currency (Q) to convert from an element Q of Quantity type to the

Currency type.
1. As you might remember, Ada requires an explicit conversion in calculations where
variables of both integer and floating-point types are used.

2. In our case, the Quantity subtype is based on the Integer type and the Currency
subtype is based on the Float type, so a conversion is necessary in calculations
using those types.

Listing 70: product_info_pkg.ads
1 package Product_Info_Pkg is
2

3 subtype Quantity is Natural;
4

5 subtype Currency is Float;
6

7 type Product_Info is record
8 Units : Quantity;
9 Price : Currency;
10 end record;
11

12 -- Complete the type declarations:
13 --
14 -- type Product_Infos is ...
15 --
16 -- type Currency_Array is ...
17

18 procedure Total (P : Product_Infos;
19 Tot : out Currency_Array);
20

21 function Total (P : Product_Infos) return Currency_Array;
22

23 function Total (P : Product_Infos) return Currency;
(continues on next page)

50 Chapter 6. Arrays

Introduction to Ada: Laboratories

(continued from previous page)
24

25 end Product_Info_Pkg;

Listing 71: product_info_pkg.adb
1 package body Product_Info_Pkg is
2

3 -- Complete the subprogram implementations:
4 --
5

6 -- procedure Total (P : Product_Infos;
7 -- Tot : out Currency_Array) is ...
8

9 -- function Total (P : Product_Infos) return Currency_Array is ...
10

11 -- function Total (P : Product_Infos) return Currency is ...
12

13 end Product_Info_Pkg;

Listing 72: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Product_Info_Pkg; use Product_Info_Pkg;
5

6 procedure Main is
7 package Currency_IO is new Ada.Text_IO.Float_IO (Currency);
8

9 type Test_Case_Index is
10 (Total_Func_Chk,
11 Total_Proc_Chk,
12 Total_Value_Chk);
13

14 procedure Check (TC : Test_Case_Index) is
15 subtype Test_Range is Positive range 1 .. 5;
16

17 P : Product_Infos (Test_Range);
18 Tots : Currency_Array (Test_Range);
19 Tot : Currency;
20

21 procedure Display (Tots : Currency_Array) is
22 begin
23 for I in Tots'Range loop
24 Currency_IO.Put (Tots (I));
25 New_Line;
26 end loop;
27 end Display;
28

29 procedure Local_Init (P : in out Product_Infos) is
30 begin
31 P := ((1, 0.5),
32 (2, 10.0),
33 (5, 40.0),
34 (10, 10.0),
35 (10, 20.0));
36 end Local_Init;
37

38 begin
39 Currency_IO.Default_Fore := 1;

(continues on next page)

6.4. Product info 51

Introduction to Ada: Laboratories

(continued from previous page)
40 Currency_IO.Default_Aft := 2;
41 Currency_IO.Default_Exp := 0;
42

43 case TC is
44 when Total_Func_Chk =>
45 Local_Init (P);
46 Tots := Total (P);
47 Display (Tots);
48 when Total_Proc_Chk =>
49 Local_Init (P);
50 Total (P, Tots);
51 Display (Tots);
52 when Total_Value_Chk =>
53 Local_Init (P);
54 Tot := Total (P);
55 Currency_IO.Put (Tot);
56 New_Line;
57 end case;
58 end Check;
59

60 begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67

68 Check (Test_Case_Index'Value (Argument (1)));
69 end Main;

6.5 String_10
Goal: work with constrained string types.
Steps:
1. Implement the Strings_10 package.

1. Declare the String_10 type.
2. Implement the To_String_10 function.

Requirements:
1. The constrained string type String_10 is an array of ten characters.
2. Function To_String_10 returns constrained strings of String_10 type based on an
input parameter of String type.
• For strings that are more than 10 characters, omit everything after the 11th char-
acter.

• For strings that are fewer than 10 characters, pad the string with ' ' characters
until it is 10 characters.

Remarks:
1. Declaring String_10 as a subtype of String is the easiest way.

• You may declare it as a new type as well. However, this requires some adaptations
in the Main test procedure.

2. You can use Integer'Min to calculate the minimum of two integer values.

52 Chapter 6. Arrays

Introduction to Ada: Laboratories

Listing 73: strings_10.ads
1 package Strings_10 is
2

3 -- Complete the type and subprogram declarations:
4 --
5

6 -- subtype String_10 is ...;
7

8 -- Using "type String_10 is..." is possible, too. However, it
9 -- requires a custom Put_Line procedure that is called in Main:
10 -- procedure Put_Line (S : String_10);
11

12 -- function To_String_10 ...;
13

14 end Strings_10;

Listing 74: strings_10.adb
1 package body Strings_10 is
2

3 -- Complete the subprogram declaration and implementation:
4 --
5 -- function To_String_10 ... is
6

7 end Strings_10;

Listing 75: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Strings_10; use Strings_10;
5

6 procedure Main is
7 type Test_Case_Index is
8 (String_10_Long_Chk,
9 String_10_Short_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 SL : constant String := "And this is a long string just for testing...";
13 SS : constant String := "Hey!";
14 S_10 : String_10;
15

16 begin
17 case TC is
18 when String_10_Long_Chk =>
19 S_10 := To_String_10 (SL);
20 Put_Line (String (S_10));
21 when String_10_Short_Chk =>
22 S_10 := (others => ' ');
23 S_10 := To_String_10 (SS);
24 Put_Line (String (S_10));
25 end case;
26 end Check;
27

28 begin
29 if Argument_Count < 1 then
30 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then

(continues on next page)

6.5. String_10 53

Introduction to Ada: Laboratories

(continued from previous page)
33 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
34 end if;
35

36 Check (Test_Case_Index'Value (Argument (1)));
37 end Main;

6.6 List of Names
Goal: create a system for a list of names and ages.
Steps:
1. Implement the Names_Ages package.

1. Declare the People_Array array type.
2. Complete the declaration of the People record type with the People_A element
of People_Array type.

3. Implement the Add procedure.
4. Implement the Reset procedure.
5. Implement the Get function.
6. Implement the Update procedure.
7. Implement the Display procedure.

Requirements:
1. Each person is represented by the Person type, which is a record containing the name
and the age of that person.

2. People_Array is an unconstrained array of Person type with a positive range.
3. The Max_People constant is set to 10.
4. Record type People contains:

1. The People_A element of People_Array type.
2. This array must be constrained by the Max_People constant.

5. Procedure Add adds a person to the list.
1. By default, the age of this person is set to zero in this procedure.

6. Procedure Reset resets the list.
7. Function Get retrieves the age of a person from the list.
8. Procedure Update updates the age of a person in the list.
9. Procedure Display shows the complete list using the following format:

1. The first line must be LIST OF NAMES:. It is followed by the name and age of each
person in the next lines.

2. For each person on the list, the procedure must display the information in the
following format:

NAME: XXXX
AGE: YY

Remarks:

54 Chapter 6. Arrays

Introduction to Ada: Laboratories

1. In the implementation of procedure Add, you may use an index to indicate the last
valid position in the array — see Last_Valid in the code below.

2. In the implementation of procedure Display, you should use the Trim function from
the Ada.Strings.Fixed package to format the person's name — for example: Trim
(P.Name, Right).

3. You may need the Integer'Min (A, B) and the Integer'Max (A, B) functions to
get the minimum and maximum values in a comparison between two integer values
A and B.

4. Fixed-length strings can be initialized with whitespaces using the others syntax. For
example: S : String_10 := (others => ' ');

5. You may implement additional subprograms to deal with other types declared in the
Names_Ages package below, such as the Name_Type and the Person type.
1. For example, a function To_Name_Type to convert from String to Name_Typemight
be useful.

2. Take a moment to reflect on which additional subprograms could be useful as well.

Listing 76: names_ages.ads
1 package Names_Ages is
2

3 Max_People : constant Positive := 10;
4

5 subtype Name_Type is String (1 .. 50);
6

7 type Age_Type is new Natural;
8

9 type Person is record
10 Name : Name_Type;
11 Age : Age_Type;
12 end record;
13

14 -- Add type declaration for People_Array record:
15 --
16 -- type People_Array is ...;
17

18 -- Replace type declaration for People record. You may use the
19 -- following template:
20 --
21 -- type People is record
22 -- People_A : People_Array ...;
23 -- Last_Valid : Natural;
24 -- end record;
25 --
26 type People is null record;
27

28 procedure Reset (P : in out People);
29

30 procedure Add (P : in out People;
31 Name : String);
32

33 function Get (P : People;
34 Name : String) return Age_Type;
35

36 procedure Update (P : in out People;
37 Name : String;
38 Age : Age_Type);
39

40 procedure Display (P : People);
(continues on next page)

6.6. List of Names 55

Introduction to Ada: Laboratories

(continued from previous page)
41

42 end Names_Ages;

Listing 77: names_ages.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Strings; use Ada.Strings;
3 with Ada.Strings.Fixed; use Ada.Strings.Fixed;
4

5 package body Names_Ages is
6

7 procedure Reset (P : in out People) is
8 begin
9 null;
10 end Reset;
11

12 procedure Add (P : in out People;
13 Name : String) is
14 begin
15 null;
16 end Add;
17

18 function Get (P : People;
19 Name : String) return Age_Type is
20 begin
21 return 0;
22 end Get;
23

24 procedure Update (P : in out People;
25 Name : String;
26 Age : Age_Type) is
27 begin
28 null;
29 end Update;
30

31 procedure Display (P : People) is
32 begin
33 null;
34 end Display;
35

36 end Names_Ages;

Listing 78: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Names_Ages; use Names_Ages;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Names_Ages_Chk,
9 Get_Age_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 P : People;
13 begin
14 case TC is
15 when Names_Ages_Chk =>
16 Reset (P);

(continues on next page)

56 Chapter 6. Arrays

Introduction to Ada: Laboratories

(continued from previous page)
17 Add (P, "John");
18 Add (P, "Patricia");
19 Add (P, "Josh");
20 Display (P);
21 Update (P, "John", 18);
22 Update (P, "Patricia", 35);
23 Update (P, "Josh", 53);
24 Display (P);
25 when Get_Age_Chk =>
26 Reset (P);
27 Add (P, "Peter");
28 Update (P, "Peter", 45);
29 Put_Line ("Peter is "
30 & Age_Type'Image (Get (P, "Peter"))
31 & " years old.");
32 end case;
33 end Check;
34

35 begin
36 if Argument_Count < 1 then
37 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
38 return;
39 elsif Argument_Count > 1 then
40 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
41 end if;
42

43 Check (Test_Case_Index'Value (Argument (1)));
44 end Main;

6.6. List of Names 57

Introduction to Ada: Laboratories

58 Chapter 6. Arrays

CHAPTER

SEVEN

MORE ABOUT TYPES

7.1 Aggregate Initialization
Goal: initialize records and arrays using aggregates.
Steps:
1. Implement the Aggregates package.

1. Create the record type Rec.
2. Create the array type Int_Arr.
3. Implement the Init procedure that outputs a record of Rec type.
4. Implement the Init_Some procedure.
5. Implement the Init procedure that outputs an array of Int_Arr type.

Requirements:
1. Record type Rec has four components of Integer type. These are the components
with the corresponding default values:
• W = 10
• X = 11
• Y = 12
• Z = 13

2. Array type Int_Arr has 20 elements of Integer type (with indices ranging from 1 to
20).

3. The first Init procedure outputs a record of Rec type where:
1. X is initialized with 100,
2. Y is initialized with 200, and
3. the remaining elements use their default values.

4. Procedure Init_Some outputs an array of Int_Arr type where:
1. the first five elements are initialized with the value 99, and
2. the remaining elements are initialized with the value 100.

5. The second Init procedure outputs an array of Int_Arr type where:
1. all elements are initialized with the value 5.

59

Introduction to Ada: Laboratories

Listing 79: aggregates.ads
1 package Aggregates is
2

3 -- type Rec is ...;
4

5 -- type Int_Arr is ...;
6

7 procedure Init;
8

9 -- procedure Init_Some ...;
10

11 -- procedure Init ...;
12

13 end Aggregates;

Listing 80: aggregates.adb
1 package body Aggregates is
2

3 procedure Init is null;
4

5 end Aggregates;

Listing 81: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Aggregates; use Aggregates;
5

6 procedure Main is
7 -- Remark: the following line is not relevant.
8 F : array (1 .. 10) of Float := (others => 42.42)
9 with Unreferenced;
10

11 type Test_Case_Index is
12 (Default_Rec_Chk,
13 Init_Rec_Chk,
14 Init_Some_Arr_Chk,
15 Init_Arr_Chk);
16

17 procedure Check (TC : Test_Case_Index) is
18 A : Int_Arr;
19 R : Rec;
20 DR : constant Rec := (others => <>);
21 begin
22 case TC is
23 when Default_Rec_Chk =>
24 R := DR;
25 Put_Line ("Record Default:");
26 Put_Line ("W => " & Integer'Image (R.W));
27 Put_Line ("X => " & Integer'Image (R.X));
28 Put_Line ("Y => " & Integer'Image (R.Y));
29 Put_Line ("Z => " & Integer'Image (R.Z));
30 when Init_Rec_Chk =>
31 Init (R);
32 Put_Line ("Record Init:");
33 Put_Line ("W => " & Integer'Image (R.W));
34 Put_Line ("X => " & Integer'Image (R.X));
35 Put_Line ("Y => " & Integer'Image (R.Y));
36 Put_Line ("Z => " & Integer'Image (R.Z));

(continues on next page)

60 Chapter 7. More About Types

Introduction to Ada: Laboratories

(continued from previous page)
37 when Init_Some_Arr_Chk =>
38 Init_Some (A);
39 Put_Line ("Array Init_Some:");
40 for I in A'Range loop
41 Put_Line (Integer'Image (I) & " "
42 & Integer'Image (A (I)));
43 end loop;
44 when Init_Arr_Chk =>
45 Init (A);
46 Put_Line ("Array Init:");
47 for I in A'Range loop
48 Put_Line (Integer'Image (I) & " "
49 & Integer'Image (A (I)));
50 end loop;
51 end case;
52 end Check;
53

54 begin
55 if Argument_Count < 1 then
56 Put_Line ("ERROR: missing arguments! Exiting...");
57 return;
58 elsif Argument_Count > 1 then
59 Put_Line ("Ignoring additional arguments...");
60 end if;
61

62 Check (Test_Case_Index'Value (Argument (1)));
63 end Main;

7.2 Versioning
Goal: implement a simple package for source-code versioning.
Steps:
1. Implement the Versioning package.

1. Declare the record type Version.
2. Implement the Convert function that returns a string.
3. Implement the Convert function that returns a floating-point number.

Requirements:
1. Record type Version has the following components of Natural type:

1. Major,
2. Minor, and
3. Maintenance.

2. The first Convert function returns a string containing the version number.
3. The second Convert function returns a floating-point value.

1. For this floating-point value:
1. the number before the decimal point must correspond to the major number,
and

2. the number after the decimal point must correspond to the minor number.
3. the maintenance number is ignored.

2. For example, version "1.3.5" is converted to the floating-point value 1.3.

7.2. Versioning 61

Introduction to Ada: Laboratories

3. An obvious limitation of this function is that it can only handle one-digit numbers
for the minor component.
• For example, we cannot convert version "1.10.0" to a reasonable value with
the approach described above. The result of the call Convert ((1, 10, 0))
is therefore unspecified.

• For the scope of this exercise, only version numbers with one-digit components
are checked.

Remarks:
1. We use overloading for the Convert functions.
2. For the function Convert that returns a string, you can make use of the Image_Trim
function, as indicated in the source-code below — see package body of Versioning.

Listing 82: versioning.ads
1 package Versioning is
2

3 -- type Version is record...
4

5 -- function Convert ...
6

7 -- function Convert
8

9 end Versioning;

Listing 83: versioning.adb
1 with Ada.Strings; use Ada.Strings;
2 with Ada.Strings.Fixed; use Ada.Strings.Fixed;
3

4 package body Versioning is
5

6 function Image_Trim (N : Natural) return String is
7 S_N : constant String := Trim (Natural'Image (N), Left);
8 begin
9 return S_N;
10 end Image_Trim;
11

12 -- function Convert ...
13 -- S_Major : constant String := Image_Trim (V.Major);
14 -- S_Minor : constant String := Image_Trim (V.Minor);
15 -- S_Maint : constant String := Image_Trim (V.Maintenance);
16 -- begin
17 -- end Convert;
18

19 -- function Convert ...
20 -- begin
21 -- end Convert;
22

23 end Versioning;

Listing 84: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Versioning; use Versioning;
5

6 procedure Main is
(continues on next page)

62 Chapter 7. More About Types

Introduction to Ada: Laboratories

(continued from previous page)
7 type Test_Case_Index is
8 (Ver_String_Chk,
9 Ver_Float_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 V : constant Version := (1, 3, 23);
13 begin
14 case TC is
15 when Ver_String_Chk =>
16 Put_Line (Convert (V));
17 when Ver_Float_Chk =>
18 Put_Line (Float'Image (Convert (V)));
19 end case;
20 end Check;
21

22 begin
23 if Argument_Count < 1 then
24 Put_Line ("ERROR: missing arguments! Exiting...");
25 return;
26 elsif Argument_Count > 1 then
27 Put_Line ("Ignoring additional arguments...");
28 end if;
29

30 Check (Test_Case_Index'Value (Argument (1)));
31 end Main;

7.3 Simple todo list
Goal: implement a simple to-do list system.
Steps:
1. Implement the Todo_Lists package.

1. Declare the Todo_Item type.
2. Declare the Todo_List type.
3. Implement the Add procedure.
4. Implement the Display procedure.

Requirements:
1. Todo_Item type is used to store a to-do item.

1. It should be implemented as an access type to strings.
2. Todo_Items type is an array of to-do items.

1. It should be implemented as an unconstrained array with positive range.
3. Todo_List type is the container for all to-do items.

1. This record type must have a discriminant for the maximum number of elements
of the list.

2. In order to store the to-do items, it must contain a component named Items of
Todo_Items type.

3. Don't forget to keep track of the last element added to the list!
• You should declare a Last component in the record.

4. Procedure Add adds items (of Todo_Item type) to the list (of Todo_List type).

7.3. Simple todo list 63

Introduction to Ada: Laboratories

1. This requires allocating a string for the access type.
2. An item can only be added to the list if the list isn't full yet — see next point for
details on error handling.

5. Since the number of items that can be stored on the list is limited, the list might
eventually become full in a call to Add.
1. You must write code in the implementation of the Add procedure that verifies this
condition.

2. If the procedure detects that the list is full, it must display the following message:
"ERROR: list is full!".

6. Procedure Display is used to display all to-do items.
1. The header (first line) must be TO-DO LIST.
2. It must display one item per line.

Remarks:
1. We use access types and unconstrained arrays in the implementation of the

Todo_Lists package.

Listing 85: todo_lists.ads
1 package Todo_Lists is
2

3 -- Replace by actual type declaration
4 type Todo_Item is null record;
5

6 -- Replace by actual type declaration
7 type Todo_Items is null record;
8

9 -- Replace by actual type declaration
10 type Todo_List is null record;
11

12 procedure Add (Todos : in out Todo_List;
13 Item : String);
14

15 procedure Display (Todos : Todo_List);
16

17 end Todo_Lists;

Listing 86: todo_lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Todo_Lists is
4

5 procedure Add (Todos : in out Todo_List;
6 Item : String) is
7 begin
8 Put_Line ("ERROR: list is full!");
9 end Add;
10

11 procedure Display (Todos : Todo_List) is
12 begin
13 null;
14 end Display;
15

16 end Todo_Lists;

64 Chapter 7. More About Types

Introduction to Ada: Laboratories

Listing 87: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Todo_Lists; use Todo_Lists;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Todo_List_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List (10);
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29

30 begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37

38 Check (Test_Case_Index'Value (Argument (1)));
39 end Main;

7.4 Price list
Goal: implement a list containing prices
Steps:
1. Implement the Price_Lists package.

1. Declare the Price_Type type.
2. Declare the Price_List record.
3. Implement the Reset procedure.
4. Implement the Add procedure.
5. Implement the Get function.
6. Implement the Display procedure.

Requirements:

7.4. Price list 65

Introduction to Ada: Laboratories

1. Price_Type is a decimal fixed-point data type with a delta of two digits (e.g. 0.01)
and twelve digits in total.

2. Price_List is a record type that contains the price list.
1. This record type must have a discriminant for the maximum number of elements
of the list.

3. Procedure Reset resets the list.
4. Procedure Add adds a price to the list.

1. You should keep track of the last element added to the list.
5. Function Get retrieves a price from the list using an index.

1. This function returns a record instance of Price_Result type.
2. Price_Result is a variant record containing:

1. the Boolean component Ok, and
2. the component Price (of Price_Type).

3. The returned value of Price_Result type is one of the following:
1. If the index specified in a call to Get contains a valid (initialized) price, then

• Ok is set to True, and
• the Price component contains the price for that index.

2. Otherwise:
• Ok is set to False, and
• the Price component is not available.

6. Procedure Display shows all prices from the list.
1. The header (first line) must be PRICE LIST.
2. The remaining lines contain one price per line.
3. For example:

• For the following code:

procedure Test is
L : Price_List (10);

begin
Reset (L);
Add (L, 1.45);
Add (L, 2.37);
Display (L);

end Test;

• The output is:

PRICE LIST
1.45
2.37

Remarks:
1. To implement the package, you'll use the following features of the Ada language:

1. decimal fixed-point types;
2. records with discriminants;
3. dynamically-sized record types;

66 Chapter 7. More About Types

Introduction to Ada: Laboratories

4. variant records.
2. For record type Price_List, you may use an unconstrained array as a component of
the record and use the discriminant in the component declaration.

Listing 88: price_lists.ads
1 package Price_Lists is
2

3 -- Replace by actual type declaration
4 type Price_Type is new Float;
5

6 -- Replace by actual type declaration
7 type Price_List is null record;
8

9 -- Replace by actual type declaration
10 type Price_Result is null record;
11

12 procedure Reset (Prices : in out Price_List);
13

14 procedure Add (Prices : in out Price_List;
15 Item : Price_Type);
16

17 function Get (Prices : Price_List;
18 Idx : Positive) return Price_Result;
19

20 procedure Display (Prices : Price_List);
21

22 end Price_Lists;

Listing 89: price_lists.adb
1 package body Price_Lists is
2

3 procedure Reset (Prices : in out Price_List) is
4 begin
5 null;
6 end Reset;
7

8 procedure Add (Prices : in out Price_List;
9 Item : Price_Type) is
10 begin
11 null;
12 end Add;
13

14 function Get (Prices : Price_List;
15 Idx : Positive) return Price_Result is
16 begin
17 null;
18 end Get;
19

20 procedure Display (Prices : Price_List) is
21 begin
22 null;
23 end Display;
24

25 end Price_Lists;

Listing 90: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;

(continues on next page)

7.4. Price list 67

Introduction to Ada: Laboratories

(continued from previous page)
3

4 with Price_Lists; use Price_Lists;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Price_Type_Chk,
9 Price_List_Chk,
10 Price_List_Get_Chk);
11

12 procedure Check (TC : Test_Case_Index) is
13 L : Price_List (10);
14

15 procedure Local_Init_List is
16 begin
17 Reset (L);
18 Add (L, 1.45);
19 Add (L, 2.37);
20 Add (L, 3.21);
21 Add (L, 4.14);
22 Add (L, 5.22);
23 Add (L, 6.69);
24 Add (L, 7.77);
25 Add (L, 8.14);
26 Add (L, 9.99);
27 Add (L, 10.01);
28 end Local_Init_List;
29

30 procedure Get_Display (Idx : Positive) is
31 R : constant Price_Result := Get (L, Idx);
32 begin
33 Put_Line ("Attempt Get # " & Positive'Image (Idx));
34 if R.Ok then
35 Put_Line ("Element # " & Positive'Image (Idx)
36 & " => " & Price_Type'Image (R.Price));
37 else
38 declare
39 begin
40 Put_Line ("Element # " & Positive'Image (Idx)
41 & " => " & Price_Type'Image (R.Price));
42 exception
43 when others =>
44 Put_Line ("Element not available (as expected)");
45 end;
46 end if;
47

48 end Get_Display;
49

50 begin
51 case TC is
52 when Price_Type_Chk =>
53 Put_Line ("The delta value of Price_Type is "
54 & Price_Type'Image (Price_Type'Delta) & ";");
55 Put_Line ("The minimum value of Price_Type is "
56 & Price_Type'Image (Price_Type'First) & ";");
57 Put_Line ("The maximum value of Price_Type is "
58 & Price_Type'Image (Price_Type'Last) & ";");
59 when Price_List_Chk =>
60 Local_Init_List;
61 Display (L);
62 when Price_List_Get_Chk =>
63 Local_Init_List;

(continues on next page)

68 Chapter 7. More About Types

Introduction to Ada: Laboratories

(continued from previous page)
64 Get_Display (5);
65 Get_Display (40);
66 end case;
67 end Check;
68

69 begin
70 if Argument_Count < 1 then
71 Put_Line ("ERROR: missing arguments! Exiting...");
72 return;
73 elsif Argument_Count > 1 then
74 Put_Line ("Ignoring additional arguments...");
75 end if;
76

77 Check (Test_Case_Index'Value (Argument (1)));
78 end Main;

7.4. Price list 69

Introduction to Ada: Laboratories

70 Chapter 7. More About Types

CHAPTER

EIGHT

PRIVACY

8.1 Directions
Goal: create a package that handles directions and geometric angles using a previous
implementation.
Steps:
1. Fix the implementation of the Test_Directions procedure.

Requirements:
1. The implementation of the Test_Directions procedure must compile correctly.

Remarks:
1. This exercise is based on the Directions exercise from the Records (page 31) labs.

1. In this version, however, Ext_Angle is a private type.
2. In the implementation of the Test_Directions procedure below, the Ada developer
tried to initialize All_Directions — an array of Ext_Angle type — with aggregates.
1. Since we now have a private type, the compiler complains about this initialization.

3. To fix the implementation of the Test_Directions procedure, you should use the ap-
propriate function from the Directions package.

4. The initialization of All_Directions in the code below contains a consistency error
where the angle doesn't match the assessed direction.
1. See if you can spot this error!
2. This kind of errors can happen when record components that have correlated in-
formation are initialized individually without consistency checks — using private
types helps to avoid the problem by requiring initialization routines that can en-
force consistency.

Listing 91: directions.ads
1 package Directions is
2

3 type Angle_Mod is mod 360;
4

5 type Direction is
6 (North,
7 Northwest,
8 West,
9 Southwest,
10 South,
11 Southeast,
12 East);
13

(continues on next page)

71

Introduction to Ada: Laboratories

(continued from previous page)
14 function To_Direction (N : Angle_Mod) return Direction;
15

16 type Ext_Angle is private;
17

18 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
19

20 procedure Display (N : Ext_Angle);
21

22 private
23

24 type Ext_Angle is record
25 Angle_Elem : Angle_Mod;
26 Direction_Elem : Direction;
27 end record;
28

29 end Directions;

Listing 92: directions.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Directions is
4

5 procedure Display (N : Ext_Angle) is
6 begin
7 Put_Line ("Angle: "
8 & Angle_Mod'Image (N.Angle_Elem)
9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13

14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return East;
18 when 1 .. 89 => return Northwest;
19 when 90 => return North;
20 when 91 .. 179 => return Northwest;
21 when 180 => return West;
22 when 181 .. 269 => return Southwest;
23 when 270 => return South;
24 when 271 .. 359 => return Southeast;
25 end case;
26 end To_Direction;
27

28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33

34 end Directions;

Listing 93: test_directions.adb
1 with Directions; use Directions;
2

3 procedure Test_Directions is
4 type Ext_Angle_Array is array (Positive range <>) of Ext_Angle;

(continues on next page)

72 Chapter 8. Privacy

Introduction to Ada: Laboratories

(continued from previous page)
5

6 All_Directions : constant Ext_Angle_Array (1 .. 6)
7 := ((0, East),
8 (45, Northwest),
9 (90, North),
10 (91, North),
11 (180, West),
12 (270, South));
13

14 begin
15 for I in All_Directions'Range loop
16 Display (All_Directions (I));
17 end loop;
18

19 end Test_Directions;

Listing 94: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Test_Directions;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Direction_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Test_Directions;
15 end case;
16 end Check;
17

18 begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25

26 Check (Test_Case_Index'Value (Argument (1)));
27 end Main;

8.2 Limited Strings
Goal: work with limited private types.
Steps:
1. Implement the Limited_Strings package.

1. Implement the Copy function.
2. Implement the = operator.

Requirements:
1. For both Copy and =, the two parameters may refer to strings with different lengths.

8.2. Limited Strings 73

Introduction to Ada: Laboratories

We'll limit the implementation to just take the minimum length:
1. In case of copying the string "Hello World" to a string with 5 characters, the copied
string is "Hello":

S1 : constant Lim_String := Init ("Hello World");
S2 : Lim_String := Init (5);

begin
Copy (From => S1, To => S2);
Put_Line (S2); -- This displays "Hello".

2. When comparing "Hello World" to "Hello", the = operator indicates that these
strings are equivalent:

S1 : constant Lim_String := Init ("Hello World");
S2 : constant Lim_String := Init ("Hello");

begin
if S1 = S2 then

-- True => This branch gets selected.

2. When copying from a short string to a longer string, the remaining characters of the
longer string must be initialized with underscores (_). For example:

S1 : constant Lim_String := Init ("Hello");
S2 : Lim_String := Init (10);

begin
Copy (From => S1, To => S2);
Put_Line (S2); -- This displays "Hello_____".

Remarks:
1. As we've discussed in the course:

1. Variables of limited types have the following limitations:
• they cannot be assigned to;
• they don't have an equality operator (=).

2. We can, however, define our own, custom subprograms to circumvent these limi-
tations:
• In order to copy instances of a limited type, we can define a custom Copy
procedure.

• In order to compare instances of a limited type, we can define an = operator.
2. You can use the Min_Last constant — which is already declared in the implementation
of these subprograms — in the code you write.

3. Some details about the Limited_Strings package:
1. The Lim_String type acts as a container for strings.

1. In the the private part, Lim_String is declared as an access type to a String.
2. There are two versions of the Init function that initializes an object of Lim_String
type:
1. The first one takes another string.
2. The second one receives the number of characters for a string container.

3. Procedure Put_Line displays object of Lim_String type.
4. The design and implementation of the Limited_Strings package is very simplis-
tic.
1. A good design would have better handling of access types, for example.

74 Chapter 8. Privacy

Introduction to Ada: Laboratories

Listing 95: limited_strings.ads
1 package Limited_Strings is
2

3 type Lim_String is limited private;
4

5 function Init (S : String) return Lim_String;
6

7 function Init (Max : Positive) return Lim_String;
8

9 procedure Put_Line (LS : Lim_String);
10

11 procedure Copy (From : Lim_String;
12 To : in out Lim_String);
13

14 function "=" (Ref, Dut : Lim_String) return Boolean;
15

16 private
17

18 type Lim_String is access String;
19

20 end Limited_Strings;

Listing 96: limited_strings.adb
1 with Ada.Text_IO;
2

3 package body Limited_Strings
4 is
5

6 function Init (S : String) return Lim_String is
7 LS : constant Lim_String := new String'(S);
8 begin
9 return Ls;
10 end Init;
11

12 function Init (Max : Positive) return Lim_String is
13 LS : constant Lim_String := new String (1 .. Max);
14 begin
15 LS.all := (others => '_');
16 return LS;
17 end Init;
18

19 procedure Put_Line (LS : Lim_String) is
20 begin
21 Ada.Text_IO.Put_Line (LS.all);
22 end Put_Line;
23

24 function Get_Min_Last (A, B : Lim_String) return Positive is
25 begin
26 return Positive'Min (A'Last, B'Last);
27 end Get_Min_Last;
28

29 procedure Copy (From : Lim_String;
30 To : in out Lim_String) is
31 Min_Last : constant Positive := Get_Min_Last (From, To);
32 begin
33 -- Complete the implementation!
34 null;
35 end;
36

(continues on next page)

8.2. Limited Strings 75

Introduction to Ada: Laboratories

(continued from previous page)
37 function "=" (Ref, Dut : Lim_String) return Boolean is
38 Min_Last : constant Positive := Get_Min_Last (Ref, Dut);
39 begin
40 -- Complete the implementation!
41 return True;
42 end;
43

44 end Limited_Strings;

Listing 97: check_lim_string.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Limited_Strings; use Limited_Strings;
4

5 procedure Check_Lim_String is
6 S : constant String := "----------";
7 S1 : constant Lim_String := Init ("Hello World");
8 S2 : constant Lim_String := Init (30);
9 S3 : Lim_String := Init (5);
10 S4 : Lim_String := Init (S & S & S);
11 begin
12 Put ("S1 => ");
13 Put_Line (S1);
14 Put ("S2 => ");
15 Put_Line (S2);
16

17 if S1 = S2 then
18 Put_Line ("S1 is equal to S2.");
19 else
20 Put_Line ("S1 isn't equal to S2.");
21 end if;
22

23 Copy (From => S1, To => S3);
24 Put ("S3 => ");
25 Put_Line (S3);
26

27 if S1 = S3 then
28 Put_Line ("S1 is equal to S3.");
29 else
30 Put_Line ("S1 isn't equal to S3.");
31 end if;
32

33 Copy (From => S1, To => S4);
34 Put ("S4 => ");
35 Put_Line (S4);
36

37 if S1 = S4 then
38 Put_Line ("S1 is equal to S4.");
39 else
40 Put_Line ("S1 isn't equal to S4.");
41 end if;
42 end Check_Lim_String;

Listing 98: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Check_Lim_String;
(continues on next page)

76 Chapter 8. Privacy

Introduction to Ada: Laboratories

(continued from previous page)
5

6 procedure Main is
7 type Test_Case_Index is
8 (Lim_String_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Lim_String_Chk =>
14 Check_Lim_String;
15 end case;
16 end Check;
17

18 begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25

26 Check (Test_Case_Index'Value (Argument (1)));
27 end Main;

8.3 Bonus exercise
In previous labs, we had many source-code snippets containing records that could be de-
clared private. The source-code for the exercise above (Directions) is an example: we've
modified the type declaration of Ext_Angle, so that the record is now private. Encapsulat-
ing the record components — by declaring record components in the private part — makes
the code safer. Also, because many of the code snippets weren't making use of record
components directly (but handling record types via the API instead), they continue to work
fine after these modifications.
This exercise doesn't contain any source-code. In fact, the goal here is to modify previous
labs, so that the record declarations are made private. You can look into those labs, modify
the type declarations, and recompile the code. The corresponding test-cases must still
pass.
If no other changes are needed apart from changes in the declaration, then that indicates
we have used good programming techniques in the original code. On the other hand, if
further changes are needed, then you should investigate why this is the case.
Also note that, in some cases, you can move support types into the private part of the
specification without affecting its compilation. This is the case, for example, for the Peo-
ple_Array type of the List of Names lab mentioned below. You should, in fact, keep only
relevant types and subprograms in the public part and move all support declarations to the
private part of the specification whenever possible.
Below, you find the selected labs that you can work on, including changes that you should
make. In case you don't have a working version of the source-code of previous labs, you
can look into the corresponding solutions.

8.3.1 Colors
Chapter: Records (page 31)
Steps:
1. Change declaration of RGB type to private.

8.3. Bonus exercise 77

Introduction to Ada: Laboratories

Requirements:
1. Implementation must compile correctly and test cases must pass.

8.3.2 List of Names
Chapter: Arrays (page 41)
Steps:
1. Change declaration of Person and People types to limited private.
2. Move type declaration of People_Array to private part.

Requirements:
1. Implementation must compile correctly and test cases must pass.

8.3.3 Price List
Chapter: More About Types (page 59)
Steps:
1. Change declaration of Price_List type to limited private.

Requirements:
1. Implementation must compile correctly and test cases must pass.

78 Chapter 8. Privacy

CHAPTER

NINE

GENERICS

9.1 Display Array
Goal: create a generic procedure that displays the elements of an array.
Steps:
1. Implement the generic procedure Display_Array.

Requirements:
1. Generic procedure Display_Array displays the elements of an array.

1. It uses the following scheme:
• First, it displays a header.
• Then, it displays the elements of the array.

2. When displaying the elements, it must:
• use one line per element, and
• include the corresponding index of the array.

3. This is the expected format:

<HEADER>
<index #1>: <element #1>
<index #2>: <element #2>
...

4. For example:
• For the following code:

procedure Test is
A : Int_Array (1 .. 2) := (1, 5);

begin
Display_Int_Array ("Elements of A", A);;

end Test;

• The output is:

Elements of A
1: 1
2: 5

2. These are the formal parameters of the procedure:
1. a range type T_Range for the the array;
2. a formal type T_Element for the elements of the array;

79

Introduction to Ada: Laboratories

• This type must be declared in such a way that it can be mapped to any type
in the instantiation — including record types.

3. an array type T_Array using the T_Range and T_Element types;
4. a function Image that converts a variable of T_Element type to a String.

Listing 99: display_array.ads
1 generic
2 procedure Display_Array (Header : String;
3 A : T_Array);

Listing 100: display_array.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Display_Array (Header : String;
4 A : T_Array) is
5 begin
6 null;
7 end Display_Array;

Listing 101: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_Array;
5

6 procedure Main is
7 type Test_Case_Index is (Int_Array_Chk,
8 Point_Array_Chk);
9

10 procedure Test_Int_Array is
11 type Int_Array is array (Positive range <>) of Integer;
12

13 procedure Display_Int_Array is new
14 Display_Array (T_Range => Positive,
15 T_Element => Integer,
16 T_Array => Int_Array,
17 Image => Integer'Image);
18

19 A : constant Int_Array (1 .. 5) := (1, 2, 5, 7, 10);
20 begin
21 Display_Int_Array ("Integers", A);
22 end Test_Int_Array;
23

24 procedure Test_Point_Array is
25 type Point is record
26 X : Float;
27 Y : Float;
28 end record;
29

30 type Point_Array is array (Natural range <>) of Point;
31

32 function Image (P : Point) return String is
33 begin
34 return "(" & Float'Image (P.X)
35 & ", " & Float'Image (P.Y) & ")";
36 end Image;
37

(continues on next page)

80 Chapter 9. Generics

Introduction to Ada: Laboratories

(continued from previous page)
38 procedure Display_Point_Array is new
39 Display_Array (T_Range => Natural,
40 T_Element => Point,
41 T_Array => Point_Array,
42 Image => Image);
43

44 A : constant Point_Array (0 .. 3) := ((1.0, 0.5), (2.0, -0.5),
45 (5.0, 2.0), (-0.5, 2.0));
46 begin
47 Display_Point_Array ("Points", A);
48 end Test_Point_Array;
49

50 procedure Check (TC : Test_Case_Index) is
51 begin
52 case TC is
53 when Int_Array_Chk =>
54 Test_Int_Array;
55 when Point_Array_Chk =>
56 Test_Point_Array;
57 end case;
58 end Check;
59

60 begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67

68 Check (Test_Case_Index'Value (Argument (1)));
69 end Main;

9.2 Average of Array of Float
Goal: create a generic function that calculates the average of an array of floating-point
elements.
Steps:
1. Declare and implement the generic function Average.

Requirements:
1. Generic function Average calculates the average of an array containing floating-point
values of arbitrary precision.

2. Generic function Average must contain the following formal parameters:
1. a range type T_Range for the array;
2. a formal type T_Element that can be mapped to floating-point types of arbitrary
precision;

3. an array type T_Array using T_Range and T_Element;
Remarks:
1. You should use the Float type for the accumulator.

9.2. Average of Array of Float 81

Introduction to Ada: Laboratories

Listing 102: average.ads
1 generic
2 function Average (A : T_Array) return T_Element;

Listing 103: average.adb
1 function Average (A : T_Array) return T_Element is
2 begin
3 return 0.0;
4 end Average;

Listing 104: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Average;
5

6 procedure Main is
7 type Test_Case_Index is (Float_Array_Chk,
8 Digits_7_Float_Array_Chk);
9

10 procedure Test_Float_Array is
11 type Float_Array is array (Positive range <>) of Float;
12

13 function Average_Float is new
14 Average (T_Range => Positive,
15 T_Element => Float,
16 T_Array => Float_Array);
17

18 A : constant Float_Array (1 .. 5) := (1.0, 3.0, 5.0, 7.5, -12.5);
19 begin
20 Put_Line ("Average: " & Float'Image (Average_Float (A)));
21 end Test_Float_Array;
22

23 procedure Test_Digits_7_Float_Array is
24 type Custom_Float is digits 7 range 0.0 .. 1.0;
25

26 type Float_Array is
27 array (Integer range <>) of Custom_Float;
28

29 function Average_Float is new
30 Average (T_Range => Integer,
31 T_Element => Custom_Float,
32 T_Array => Float_Array);
33

34 A : constant Float_Array (-1 .. 3) := (0.5, 0.0, 1.0, 0.6, 0.5);
35 begin
36 Put_Line ("Average: "
37 & Custom_Float'Image (Average_Float (A)));
38 end Test_Digits_7_Float_Array;
39

40 procedure Check (TC : Test_Case_Index) is
41 begin
42 case TC is
43 when Float_Array_Chk =>
44 Test_Float_Array;
45 when Digits_7_Float_Array_Chk =>
46 Test_Digits_7_Float_Array;
47 end case;

(continues on next page)

82 Chapter 9. Generics

Introduction to Ada: Laboratories

(continued from previous page)
48 end Check;
49

50 begin
51 if Argument_Count < 1 then
52 Put_Line ("ERROR: missing arguments! Exiting...");
53 return;
54 elsif Argument_Count > 1 then
55 Put_Line ("Ignoring additional arguments...");
56 end if;
57

58 Check (Test_Case_Index'Value (Argument (1)));
59 end Main;

9.3 Average of Array of Any Type
Goal: create a generic function that calculates the average of an array of elements of any
arbitrary type.
Steps:
1. Declare and implement the generic function Average.
2. Implement the test procedure Test_Item.

1. Declare the F_IO package.
2. Implement the Get_Total function for the Item type.
3. Implement the Get_Price function for the Item type.
4. Declare the Average_Total function.
5. Declare the Average_Price function.

Requirements:
1. Generic function Average calculates the average of an array containing elements of
any arbitrary type.

2. Generic function Average has the same formal parameters as in the previous exercise,
except for:
1. T_Element, which is now a formal type that can be mapped to any arbitrary type.
2. To_Float, which is an additional formal parameter.

• To_Float is a function that converts the arbitrary element of T_Element type
to the Float type.

3. Procedure Test_Item is used to test the generic Average procedure for a record type
(Item).
1. Record type Item contains the Quantity and Price components.

4. The following functions have to implemented to be used for the formal To_Float func-
tion parameter:
1. For the Decimal type, the function is pretty straightforward: it simply returns the
floating-point value converted from the decimal type.

2. For the Item type, two functions must be created to convert to floating-point type:
1. Get_Total, which returns the multiplication of the quantity and the price com-
ponents of the Item type;

2. Get_Price, which returns just the price.

9.3. Average of Array of Any Type 83

Introduction to Ada: Laboratories

5. The generic function Average must be instantiated as follows:
1. For the Item type, you must:

1. declare the Average_Total function (as an instance of Average) using the
Get_Total for the To_Float parameter;

2. declare the Average_Price function (as an instance of Average) using the
Get_Price for the To_Float parameter.

6. You must use the Put procedure from Ada.Text_IO.Float_IO.
1. The generic standard package Ada.Text_IO.Float_IO must be instantiated as

F_IO in the test procedures.
2. This is the specification of the Put procedure, as described in the appendix A.10.9
of the Ada Reference Manual:

procedure Put(Item : in Num;
Fore : in Field := Default_Fore;
Aft : in Field := Default_Aft;
Exp : in Field := Default_Exp);

3. This is the expected format when calling Put from Float_IO:

Function Fore Aft Exp
Test_Item 3 2 0

Remarks:
1. In this exercise, you'll abstract the Average function from the previous exercises a step
further.
1. In this case, the function shall be able to calculate the average of any arbitrary
type — including arrays containing elements of record types.

2. Since record types can be composed by many components of different types, we
need to provide a way to indicate which component (or components) of the record
will be used when calculating the average of the array.

3. This problem is solved by specifying a To_Float function as a formal parameter,
which converts the arbitrary element of T_Element type to the Float type.

4. In the implementation of the Average function, we use the To_Float function and
calculate the average using a floating-point variable.

Listing 105: average.ads
1 generic
2 function Average (A : T_Array) return Float;

Listing 106: average.adb
1 function Average (A : T_Array) return Float is
2 begin
3 null;
4 end Average;

Listing 107: test_item.ads
1 procedure Test_Item;

84 Chapter 9. Generics

Introduction to Ada: Laboratories

Listing 108: test_item.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Average;
4

5 procedure Test_Item is
6 type Amount is delta 0.01 digits 12;
7

8 type Item is record
9 Quantity : Natural;
10 Price : Amount;
11 end record;
12

13 type Item_Array is
14 array (Positive range <>) of Item;
15

16 A : constant Item_Array (1 .. 4)
17 := ((Quantity => 5, Price => 10.00),
18 (Quantity => 80, Price => 2.50),
19 (Quantity => 40, Price => 5.00),
20 (Quantity => 20, Price => 12.50));
21

22 begin
23 Put ("Average per item & quantity: ");
24 F_IO.Put (Average_Total (A));
25 New_Line;
26

27 Put ("Average price: ");
28 F_IO.Put (Average_Price (A));
29 New_Line;
30 end Test_Item;

Listing 109: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Test_Item;
5

6 procedure Main is
7 type Test_Case_Index is (Item_Array_Chk);
8

9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Item_Array_Chk =>
13 Test_Item;
14 end case;
15 end Check;
16

17 begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24

25 Check (Test_Case_Index'Value (Argument (1)));
26 end Main;

9.3. Average of Array of Any Type 85

Introduction to Ada: Laboratories

9.4 Generic list
Goal: create a system based on a generic list to add and displays elements.
Steps:
1. Declare and implement the generic package Gen_List.

1. Implement the Init procedure.
2. Implement the Add procedure.
3. Implement the Display procedure.

Requirements:
1. Generic package Gen_List must have the following subprograms:

1. Procedure Init initializes the list.
2. Procedure Add adds an item to the list.

1. This procedure must contain a Status output parameter that is set to False
when the list was full — i.e. if the procedure failed while trying to add the item;

3. Procedure Display displays the complete list.
1. This includes the name of the list and its elements — using one line per ele-
ment.

2. This is the expected format:

<NAME>
<element #1>
<element #2>
...

2. Generic package Gen_List has these formal parameters:
1. an arbitrary formal type Item;
2. an unconstrained array type Items of Item element with positive range;
3. the Name parameter containing the name of the list;

• This must be a formal input object of String type.
• It must be used in the Display procedure.

4. an actual array List_Array to store the list;
• This must be a formal in out object of Items type.

5. the variable Last to store the index of the last element;
• This must be a formal in out object of Natural type.

6. a procedure Put for the Item type.
• This procedure is used in the Display procedure to display individual elements
of the list.

3. The test procedure Test_Int is used to test a list of elements of Integer type.
4. For both test procedures, you must:

1. add missing type declarations;
2. declare and implement a Put procedure for individual elements of the list;
3. declare instances of the Gen_List package.

• For the Test_Int procedure, declare the Int_List package.

86 Chapter 9. Generics

Introduction to Ada: Laboratories

Remarks:
1. In previous labs, you've been implementing lists for a variety of types.

• The List of Names exercise from the Arrays (page 41) labs is an example.
• In this exercise, you have to abstract those implementations to create the generic
Gen_List package.

Listing 110: gen_list.ads
1 generic
2 package Gen_List is
3

4 procedure Init;
5

6 procedure Add (I : Item;
7 Status : out Boolean);
8

9 procedure Display;
10

11 end Gen_List;

Listing 111: gen_list.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Gen_List is
4

5 procedure Init is
6 begin
7 null;
8 end Init;
9

10 procedure Add (I : Item;
11 Status : out Boolean) is
12 begin
13 null;
14 end Add;
15

16 procedure Display is
17 begin
18 null;
19 end Display;
20

21 end Gen_List;

Listing 112: test_int.ads
1 procedure Test_Int;

Listing 113: test_int.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Gen_List;
4

5 procedure Test_Int is
6

7 type Integer_Array is array (Positive range <>) of Integer;
8

9 A : Integer_Array (1 .. 3);
(continues on next page)

9.4. Generic list 87

Introduction to Ada: Laboratories

(continued from previous page)
10 L : Natural;
11

12 Success : Boolean;
13

14 procedure Display_Add_Success (Success : Boolean) is
15 begin
16 if Success then
17 Put_Line ("Added item successfully!");
18 else
19 Put_Line ("Couldn't add item!");
20 end if;
21

22 end Display_Add_Success;
23

24 begin
25 Int_List.Init;
26

27 Int_List.Add (2, Success);
28 Display_Add_Success (Success);
29

30 Int_List.Add (5, Success);
31 Display_Add_Success (Success);
32

33 Int_List.Add (7, Success);
34 Display_Add_Success (Success);
35

36 Int_List.Add (8, Success);
37 Display_Add_Success (Success);
38

39 Int_List.Display;
40 end Test_Int;

Listing 114: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Test_Int;
5

6 procedure Main is
7 type Test_Case_Index is (Int_Chk);
8

9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Int_Chk =>
13 Test_Int;
14 end case;
15 end Check;
16

17 begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24

25 Check (Test_Case_Index'Value (Argument (1)));
26 end Main;

88 Chapter 9. Generics

CHAPTER

TEN

EXCEPTIONS

10.1 Uninitialized Value
Goal: implement an enumeration to avoid the use of uninitialized values.
Steps:
1. Implement the Options package.

1. Declare the Option enumeration type.
2. Declare the Uninitialized_Value exception.
3. Implement the Image function.

Requirements:
1. Enumeration Option contains:

1. the Uninitialized value, and
2. the actual options:

• Option_1,
• Option_2,
• Option_3.

2. Function Image returns a string for the Option type.
1. In case the argument to Image is Uninitialized, the function must raise the

Uninitialized_Value exception.
Remarks:
1. In this exercise, we employ exceptions as a mechanism to avoid the use of uninitialized
values for a certain type.

Listing 115: options.ads
1 package Options is
2

3 -- Declare the Option enumeration type!
4 type Option is null record;
5

6 function Image (O : Option) return String;
7

8 end Options;

89

Introduction to Ada: Laboratories

Listing 116: options.adb
1 package body Options is
2

3 function Image (O : Option) return String is
4 begin
5 return "";
6 end Image;
7

8 end Options;

Listing 117: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Exceptions; use Ada.Exceptions;
4

5 with Options; use Options;
6

7 procedure Main is
8 type Test_Case_Index is
9 (Options_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12

13 procedure Check (O : Option) is
14 begin
15 Put_Line (Image (O));
16 exception
17 when E : Uninitialized_Value =>
18 Put_Line (Exception_Message (E));
19 end Check;
20

21 begin
22 case TC is
23 when Options_Chk =>
24 for O in Option loop
25 Check (O);
26 end loop;
27 end case;
28 end Check;
29

30 begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37

38 Check (Test_Case_Index'Value (Argument (1)));
39 end Main;

10.2 Numerical Exception
Goal: handle numerical exceptions in a test procedure.
Steps:
1. Add exception handling to the Check_Exception procedure.

Requirements:

90 Chapter 10. Exceptions

Introduction to Ada: Laboratories

1. The test procedure Num_Exception_Test from the Tests package below must be used
in the implementation of Check_Exception.

2. The Check_Exception procedure must be extended to handle exceptions as follows:
1. If the exception raised by Num_Exception_Test is Constraint_Error, the proce-
dure must display the message "Constraint_Error detected!" to the user.

2. Otherwise, it must display the message associated with the exception.
Remarks:
1. You can use the Exception_Message function to retrieve the message associated with
an exception.

Listing 118: tests.ads
1 package Tests is
2

3 type Test_ID is (Test_1, Test_2);
4

5 Custom_Exception : exception;
6

7 procedure Num_Exception_Test (ID : Test_ID);
8

9 end Tests;

Listing 119: tests.adb
1 package body Tests is
2

3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
4

5 procedure Num_Exception_Test (ID : Test_ID) is
6 A, B, C : Integer;
7 begin
8 case ID is
9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17

18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19

20 end Tests;

Listing 120: check_exception.adb
1 with Tests; use Tests;
2

3 procedure Check_Exception (ID : Test_ID) is
4 begin
5 Num_Exception_Test (ID);
6 end Check_Exception;

Listing 121: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;

(continues on next page)

10.2. Numerical Exception 91

Introduction to Ada: Laboratories

(continued from previous page)
3 with Ada.Exceptions; use Ada.Exceptions;
4

5 with Tests; use Tests;
6 with Check_Exception;
7

8 procedure Main is
9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14

15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26

27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35

36 begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43

44 Check (Test_Case_Index'Value (Argument (1)));
45 end Main;

10.3 Re-raising Exceptions
Goal: make use of exception re-raising in a test procedure.
Steps:
1. Declare new exception: Another_Exception.
2. Add exception re-raise to the Check_Exception procedure.

Requirements:
1. Exception Another_Exception must be declared in the Tests package.
2. Procedure Check_Exception must be extended to re-raise any exception. When an
exception is detected, the procedure must:
1. display a user message (as implemented in the previous exercise), and then

92 Chapter 10. Exceptions

Introduction to Ada: Laboratories

2. Raise or re-raise exception depending on the exception that is being handled:
1. In case of Constraint_Error exception, re-raise the exception.
2. In all other cases, raise Another_Exception.

Remarks:
1. In this exercise, you should extend the implementation of the Check_Exception pro-
cedure from the previous exercise.
1. Naturally, you can use the code for the Check_Exception procedure from the
previous exercise as a starting point.

Listing 122: tests.ads
1 package Tests is
2

3 type Test_ID is (Test_1, Test_2);
4

5 Custom_Exception : exception;
6

7 procedure Num_Exception_Test (ID : Test_ID);
8

9 end Tests;

Listing 123: tests.adb
1 package body Tests is
2

3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
4

5 procedure Num_Exception_Test (ID : Test_ID) is
6 A, B, C : Integer;
7 begin
8 case ID is
9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17

18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19

20 end Tests;

Listing 124: check_exception.ads
1 with Tests; use Tests;
2

3 procedure Check_Exception (ID : Test_ID);

Listing 125: check_exception.adb
1 procedure Check_Exception (ID : Test_ID) is
2 begin
3 Num_Exception_Test (ID);
4 end Check_Exception;

10.3. Re-raising Exceptions 93

Introduction to Ada: Laboratories

Listing 126: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Exceptions; use Ada.Exceptions;
4

5 with Tests; use Tests;
6 with Check_Exception;
7

8 procedure Main is
9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14

15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26

27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35

36 begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43

44 Check (Test_Case_Index'Value (Argument (1)));
45 end Main;

94 Chapter 10. Exceptions

CHAPTER

ELEVEN

TASKING

11.1 Display Service
Goal: create a simple service that displays messages to the user.
Steps:
1. Implement the Display_Services package.

1. Declare the task type Display_Service.
2. Implement the Display entry for strings.
3. Implement the Display entry for integers.

Requirements:
1. Task type Display_Service uses the Display entry to display messages to the user.
2. There are two versions of the Display entry:

1. One that receives messages as a string parameter.
2. One that receives messages as an Integer parameter.

3. When a message is received via a Display entry, it must be displayed immediately to
the user.

Listing 127: display_services.ads
1 package Display_Services is
2

3 end Display_Services;

Listing 128: display_services.adb
1 package body Display_Services is
2

3 end Display_Services;

Listing 129: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_Services; use Display_Services;
5

6 procedure Main is
7 type Test_Case_Index is (Display_Service_Chk);
8

9 procedure Check (TC : Test_Case_Index) is
10 Display : Display_Service;

(continues on next page)

95

Introduction to Ada: Laboratories

(continued from previous page)
11 begin
12 case TC is
13 when Display_Service_Chk =>
14 Display.Display ("Hello");
15 delay 0.5;
16 Display.Display ("Hello again");
17 delay 0.5;
18 Display.Display (55);
19 delay 0.5;
20 end case;
21 end Check;
22

23 begin
24 if Argument_Count < 1 then
25 Put_Line ("ERROR: missing arguments! Exiting...");
26 return;
27 elsif Argument_Count > 1 then
28 Put_Line ("Ignoring additional arguments...");
29 end if;
30

31 Check (Test_Case_Index'Value (Argument (1)));
32 end Main;

11.2 Event Manager
Goal: implement a simple event manager.
Steps:
1. Implement the Event_Managers package.

1. Declare the task type Event_Manager.
2. Implement the Start entry.
3. Implement the Event entry.

Requirements:
1. The event manager has a similar behavior as an alarm

1. The sole purpose of this event manager is to display the event ID at the correct
time.

2. After the event ID is displayed, the task must finish.
2. The event manager (Event_Manager type) must have two entries:

1. Start, which starts the event manager with an event ID;
2. Event, which delays the task until a certain time and then displays the event ID
as a user message.

3. The format of the user message displayed by the event manager is Event
#<event_id>.
1. You should use Natural'Image to display the ID (as indicated in the body of the

Event_Managers package below).
Remarks:
1. In the Start entry, you can use the Natural type for the ID.
2. In the Event entry, you should use the Time type from the Ada.Real_Time package
for the time parameter.

96 Chapter 11. Tasking

Introduction to Ada: Laboratories

3. Note that the test application below creates an array of event managers with different
delays.

Listing 130: event_managers.ads
1 package Event_Managers is
2

3 end Event_Managers;

Listing 131: event_managers.adb
1 package body Event_Managers is
2

3 -- Don't forget to display the event ID:
4 --
5 -- Put_Line ("Event #" & Natural'Image (Event_ID));
6

7 end Event_Managers;

Listing 132: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Event_Managers; use Event_Managers;
5 with Ada.Real_Time; use Ada.Real_Time;
6

7 procedure Main is
8 type Test_Case_Index is (Event_Manager_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 Ev_Mng : array (1 .. 5) of Event_Manager;
12 begin
13 case TC is
14 when Event_Manager_Chk =>
15 for I in Ev_Mng'Range loop
16 Ev_Mng (I).Start (I);
17 end loop;
18 Ev_Mng (1).Event (Clock + Seconds (5));
19 Ev_Mng (2).Event (Clock + Seconds (3));
20 Ev_Mng (3).Event (Clock + Seconds (1));
21 Ev_Mng (4).Event (Clock + Seconds (2));
22 Ev_Mng (5).Event (Clock + Seconds (4));
23 end case;
24 end Check;
25

26 begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33

34 Check (Test_Case_Index'Value (Argument (1)));
35 end Main;

11.2. Event Manager 97

Introduction to Ada: Laboratories

11.3 Generic Protected Queue
Goal: create a queue container using a protected type.
Steps:
1. Implement the generic package Gen_Queues.

1. Declare the protected type Queue.
2. Implement the Empty function.
3. Implement the Full function.
4. Implement the Push entry.
5. Implement the Pop entry.

Requirements:
1. These are the formal parameters for the generic package Gen_Queues:

1. a formal modular type;
• This modular type should be used by the Queue to declare an array that stores
the elements of the queue.

• The modulus of the modular type must correspond to the maximum number
of elements of the queue.

2. the data type of the elements of the queue.
• Select a formal parameter that allows you to store elements of any data type
in the queue.

2. These are the operations of the Queue type:
1. Function Empty indicates whether the queue is empty.
2. Function Full indicates whether the queue is full.
3. Entry Push stores an element in the queue.
4. Entry Pop removes an element from the queue and returns the element via output
parameter.

Remarks:
1. In this exercise, we create a queue container by declaring and implementing a pro-
tected type (Queue) as part of a generic package (Gen_Queues).

2. As a bonus exercise, you can analyze the body of the Queue_Tests package and un-
derstand how the Queue type is used there.
1. In particular, the procedure Concurrent_Test implements two tasks: T_Producer
and T_Consumer. They make use of the queue concurrently.

Listing 133: gen_queues.ads
1 package Gen_Queues is
2

3 end Gen_Queues;

Listing 134: gen_queues.adb
1 package body Gen_Queues is
2

3 end Gen_Queues;

98 Chapter 11. Tasking

Introduction to Ada: Laboratories

Listing 135: queue_tests.ads
1 package Queue_Tests is
2

3 procedure Simple_Test;
4

5 procedure Concurrent_Test;
6

7 end Queue_Tests;

Listing 136: queue_tests.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Gen_Queues;
4

5 package body Queue_Tests is
6

7 Max : constant := 10;
8 type Queue_Mod is mod Max;
9

10 procedure Simple_Test is
11 package Queues_Float is new Gen_Queues (Queue_Mod, Float);
12

13 Q_F : Queues_Float.Queue;
14 V : Float;
15 begin
16 V := 10.0;
17 while not Q_F.Full loop
18 Q_F.Push (V);
19 V := V + 1.5;
20 end loop;
21

22 while not Q_F.Empty loop
23 Q_F.Pop (V);
24 Put_Line ("Value from queue: " & Float'Image (V));
25 end loop;
26 end Simple_Test;
27

28 procedure Concurrent_Test is
29 package Queues_Integer is new Gen_Queues (Queue_Mod, Integer);
30

31 Q_I : Queues_Integer.Queue;
32

33 task T_Producer;
34 task T_Consumer;
35

36 task body T_Producer is
37 V : Integer := 100;
38 begin
39 for I in 1 .. 2 * Max loop
40 Q_I.Push (V);
41 V := V + 1;
42 end loop;
43 end T_Producer;
44

45 task body T_Consumer is
46 V : Integer;
47 begin
48 delay 1.5;
49

(continues on next page)

11.3. Generic Protected Queue 99

Introduction to Ada: Laboratories

(continued from previous page)
50 while not Q_I.Empty loop
51 Q_I.Pop (V);
52 Put_Line ("Value from queue: " & Integer'Image (V));
53 delay 0.2;
54 end loop;
55 end T_Consumer;
56 begin
57 null;
58 end Concurrent_Test;
59

60 end Queue_Tests;

Listing 137: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Queue_Tests; use Queue_Tests;
5

6 procedure Main is
7 type Test_Case_Index is (Simple_Queue_Chk,
8 Concurrent_Queue_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11

12 begin
13 case TC is
14 when Simple_Queue_Chk =>
15 Simple_Test;
16 when Concurrent_Queue_Chk =>
17 Concurrent_Test;
18 end case;
19 end Check;
20

21 begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28

29 Check (Test_Case_Index'Value (Argument (1)));
30 end Main;

100 Chapter 11. Tasking

CHAPTER

TWELVE

DESIGN BY CONTRACTS

12.1 Price Range
Goal: use predicates to indicate the correct range of prices.
Steps:
1. Complete the Prices package.

1. Rewrite the type declaration of Price.
Requirements:
1. Type Price must use a predicate instead of a range.

Remarks:
1. As discussed in the course, ranges are a form of contract.

1. For example, the subtype Price below indicates that a value of this subtype must
always be positive:

subtype Price is Amount range 0.0 .. Amount'Last;

2. Interestingly, you can replace ranges by predicates, which is the goal of this ex-
ercise.

Listing 138: prices.ads
1 package Prices is
2

3 type Amount is delta 10.0 ** (-2) digits 12;
4

5 subtype Price is Amount range 0.0 .. Amount'Last;
6

7 end Prices;

Listing 139: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Prices; use Prices;
6

7 procedure Main is
8

9 type Test_Case_Index is
10 (Price_Range_Chk);
11

12 procedure Check (TC : Test_Case_Index) is
(continues on next page)

101

Introduction to Ada: Laboratories

(continued from previous page)
13

14 procedure Check_Range (A : Amount) is
15 P : constant Price := A;
16 begin
17 Put_Line ("Price: " & Price'Image (P));
18 end Check_Range;
19

20 begin
21 case TC is
22 when Price_Range_Chk =>
23 Check_Range (-2.0);
24 end case;
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check;
31

32 begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39

40 Check (Test_Case_Index'Value (Argument (1)));
41 end Main;

12.2 Pythagorean Theorem: Predicate
Goal: use the Pythagorean theorem as a predicate.
Steps:
1. Complete the Triangles package.

1. Add a predicate to the Right_Triangle type.
Requirements:
1. The Right_Triangle type must use the Pythagorean theorem as a predicate to ensure
that its components are consistent.

Remarks:
1. As you probably remember, the Pythagoras' theorem2 states that the square of the
hypotenuse of a right triangle is equal to the sum of the squares of the other two
sides.

Listing 140: triangles.ads
1 package Triangles is
2

3 subtype Length is Integer;
4

5 type Right_Triangle is record
6 H : Length := 0;
7 -- Hypotenuse

(continues on next page)
2 https://en.wikipedia.org/wiki/Pythagorean_theorem

102 Chapter 12. Design by contracts

https://en.wikipedia.org/wiki/Pythagorean_theorem

Introduction to Ada: Laboratories

(continued from previous page)
8 C1, C2 : Length := 0;
9 -- Catheti / legs
10 end record;
11

12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));
14

15 end Triangles;

Listing 141: triangles-io.ads
1 package Triangles.IO is
2

3 function Image (T : Right_Triangle) return String;
4

5 end Triangles.IO;

Listing 142: triangles-io.adb
1 package body Triangles.IO is
2

3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8

9 end Triangles.IO;

Listing 143: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Triangles; use Triangles;
6 with Triangles.IO; use Triangles.IO;
7

8 procedure Main is
9

10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17

18 procedure Check (TC : Test_Case_Index) is
19

20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");

(continues on next page)

12.2. Pythagorean Theorem: Predicate 103

Introduction to Ada: Laboratories

(continued from previous page)
30 end Check_Triangle;
31

32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)));
52 end Main;

12.3 Pythagorean Theorem: Precondition
Goal: use the Pythagorean theorem as a precondition.
Steps:
1. Complete the Triangles package.

1. Add a precondition to the Init function.
Requirements:
1. The Init function must use the Pythagorean theorem as a precondition to ensure that
the input values are consistent.

Remarks:
1. In this exercise, you'll work again with the Right_Triangle type.

1. This time, your job is to use a precondition instead of a predicate.
2. The precondition is applied to the Init function, not to the Right_Triangle type.

Listing 144: triangles.ads
1 package Triangles is
2

3 subtype Length is Integer;
4

5 type Right_Triangle is record
6 H : Length := 0;
7 -- Hypotenuse
8 C1, C2 : Length := 0;
9 -- Catheti / legs
10 end record;
11

12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));

(continues on next page)

104 Chapter 12. Design by contracts

Introduction to Ada: Laboratories

(continued from previous page)
14

15 end Triangles;

Listing 145: triangles-io.ads
1 package Triangles.IO is
2

3 function Image (T : Right_Triangle) return String;
4

5 end Triangles.IO;

Listing 146: triangles-io.adb
1 package body Triangles.IO is
2

3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8

9 end Triangles.IO;

Listing 147: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Triangles; use Triangles;
6 with Triangles.IO; use Triangles.IO;
7

8 procedure Main is
9

10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17

18 procedure Check (TC : Test_Case_Index) is
19

20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31

32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);

(continues on next page)

12.3. Pythagorean Theorem: Precondition 105

Introduction to Ada: Laboratories

(continued from previous page)
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)));
52 end Main;

12.4 Pythagorean Theorem: Postcondition
Goal: use the Pythagorean theorem as a postcondition.
Steps:
1. Complete the Triangles package.

1. Add a postcondition to the Init function.
Requirements:
1. The Init function must use the Pythagorean theorem as a postcondition to ensure
that the returned object is consistent.

Remarks:
1. In this exercise, you'll work again with the Triangles package.

1. This time, your job is to apply a postcondition instead of a precondition to the Init
function.

Listing 148: triangles.ads
1 package Triangles is
2

3 subtype Length is Integer;
4

5 type Right_Triangle is record
6 H : Length := 0;
7 -- Hypotenuse
8 C1, C2 : Length := 0;
9 -- Catheti / legs
10 end record;
11

12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));
14

15 end Triangles;

106 Chapter 12. Design by contracts

Introduction to Ada: Laboratories

Listing 149: triangles-io.ads
1 package Triangles.IO is
2

3 function Image (T : Right_Triangle) return String;
4

5 end Triangles.IO;

Listing 150: triangles-io.adb
1 package body Triangles.IO is
2

3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8

9 end Triangles.IO;

Listing 151: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Triangles; use Triangles;
6 with Triangles.IO; use Triangles.IO;
7

8 procedure Main is
9

10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17

18 procedure Check (TC : Test_Case_Index) is
19

20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31

32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;

(continues on next page)

12.4. Pythagorean Theorem: Postcondition 107

Introduction to Ada: Laboratories

(continued from previous page)
41 end Check;
42

43 begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)));
52 end Main;

12.5 Pythagorean Theorem: Type Invariant
Goal: use the Pythagorean theorem as a type invariant.
Steps:
1. Complete the Triangles package.

1. Add a type invariant to the Right_Triangle type.
Requirements:
1. Right_Triangle is a private type.

1. It must use the Pythagorean theorem as a type invariant to ensure that its encap-
sulated components are consistent.

Remarks:
1. In this exercise, Right_Triangle is declared as a private type.

1. In this case, we use a type invariant for Right_Triangle to check the Pythagorean
theorem.

2. As a bonus, after completing the exercise, you may analyze the effect that default
values have on type invariants.
1. For example, the declaration of Right_Triangle uses zero as the default values
of the three triangle lengths.

2. If you replace those default values with Length'Last, you'll get different results.
3. Make sure you understand why this is happening.

Listing 152: triangles.ads
1 package Triangles is
2

3 subtype Length is Integer;
4

5 type Right_Triangle is private;
6

7 function Init (H, C1, C2 : Length) return Right_Triangle;
8

9 private
10

11 type Right_Triangle is record
12 H : Length := 0;
13 -- Hypotenuse
14 C1, C2 : Length := 0;

(continues on next page)

108 Chapter 12. Design by contracts

Introduction to Ada: Laboratories

(continued from previous page)
15 -- Catheti / legs
16 end record;
17

18 function Init (H, C1, C2 : Length) return Right_Triangle is
19 ((H, C1, C2));
20

21 end Triangles;

Listing 153: triangles-io.ads
1 package Triangles.IO is
2

3 function Image (T : Right_Triangle) return String;
4

5 end Triangles.IO;

Listing 154: triangles-io.adb
1 package body Triangles.IO is
2

3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8

9 end Triangles.IO;

Listing 155: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Triangles; use Triangles;
6 with Triangles.IO; use Triangles.IO;
7

8 procedure Main is
9

10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17

18 procedure Check (TC : Test_Case_Index) is
19

20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;

(continues on next page)

12.5. Pythagorean Theorem: Type Invariant 109

Introduction to Ada: Laboratories

(continued from previous page)
31

32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)));
52 end Main;

12.6 Primary Color
Goal: extend a package for HTML colors so that it can handle primary colors.
Steps:
1. Complete the Color_Types package.

1. Declare the HTML_RGB_Color subtype.
2. Implement the To_Int_Color function.

Requirements:
1. The HTML_Color type is an enumeration that contains a list of HTML colors.
2. The To_RGB_Lookup_Table array implements a lookup-table to convert the colors into
a hexadecimal value using RGB color components (i.e. Red, Green and Blue)

3. Function To_Int_Color extracts one of the RGB components of an HTML color and
returns its hexadecimal value.
1. The function has two parameters:

• First parameter is the HTML color (HTML_Color type).
• Second parameter indicates which RGB component is to be extracted from the
HTML color (HTML_RGB_Color subtype).

2. For example, if we call To_Int_Color (Salmon, Red), the function returns #FA,
• This is the hexadecimal value of the red component of the Salmon color.
• You can find further remarks below about this color as an example.

4. The HTML_RGB_Color subtype is limited to the primary RGB colors components (i.e.
Red, Green and Blue).
1. This subtype is used to select the RGB component in calls to To_Int_Color.
2. You must use a predicate in the type declaration.

Remarks:

110 Chapter 12. Design by contracts

Introduction to Ada: Laboratories

1. In this exercise, we reuse the code of the Colors: Lookup-Table exercise from the
Arrays (page 41) labs.

2. These are the hexadecimal values of the colors that we used in the original exercise:

Color Value
Salmon #FA8072
Firebrick #B22222
Red #FF0000
Darkred #8B0000
Lime #00FF00
Forestgreen #228B22
Green #008000
Darkgreen #006400
Blue #0000FF
Mediumblue #0000CD
Darkblue #00008B

3. You can extract the hexadecimal value of each primary color by splitting the values
from the table above into three hexadecimal values with two digits each.
• For example, the hexadecimal value of Salmon is #FA8072, where:

– the first part of this hexadecimal value (#FA) corresponds to the red compo-
nent,

– the second part (#80) corresponds to the green component, and
– the last part (#72) corresponds to the blue component.

Listing 156: color_types.ads
1 package Color_Types is
2

3 type HTML_Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 subtype Int_Color is Integer range 0 .. 255;
17

18 function Image (I : Int_Color) return String;
19

20 type RGB is record
21 Red : Int_Color;
22 Green : Int_Color;
23 Blue : Int_Color;
24 end record;
25

26 function To_RGB (C : HTML_Color) return RGB;
27

28 function Image (C : RGB) return String;
29

(continues on next page)

12.6. Primary Color 111

Introduction to Ada: Laboratories

(continued from previous page)
30 type HTML_Color_RGB_Array is array (HTML_Color) of RGB;
31

32 To_RGB_Lookup_Table : constant HTML_Color_RGB_Array
33 := (Salmon => (16#FA#, 16#80#, 16#72#),
34 Firebrick => (16#B2#, 16#22#, 16#22#),
35 Red => (16#FF#, 16#00#, 16#00#),
36 Darkred => (16#8B#, 16#00#, 16#00#),
37 Lime => (16#00#, 16#FF#, 16#00#),
38 Forestgreen => (16#22#, 16#8B#, 16#22#),
39 Green => (16#00#, 16#80#, 16#00#),
40 Darkgreen => (16#00#, 16#64#, 16#00#),
41 Blue => (16#00#, 16#00#, 16#FF#),
42 Mediumblue => (16#00#, 16#00#, 16#CD#),
43 Darkblue => (16#00#, 16#00#, 16#8B#));
44

45 subtype HTML_RGB_Color is HTML_Color;
46

47 function To_Int_Color (C : HTML_Color;
48 S : HTML_RGB_Color) return Int_Color;
49 -- Convert to hexadecimal value for the selected RGB component S
50

51 end Color_Types;

Listing 157: color_types.adb
1 with Ada.Integer_Text_IO;
2

3 package body Color_Types is
4

5 function To_RGB (C : HTML_Color) return RGB is
6 begin
7 return To_RGB_Lookup_Table (C);
8 end To_RGB;
9

10 function To_Int_Color (C : HTML_Color;
11 S : HTML_RGB_Color) return Int_Color is
12 begin
13 -- Implement function!
14 return 0;
15 end To_Int_Color;
16

17 function Image (I : Int_Color) return String is
18 subtype Str_Range is Integer range 1 .. 10;
19 S : String (Str_Range);
20 begin
21 Ada.Integer_Text_IO.Put (To => S,
22 Item => I,
23 Base => 16);
24 return S;
25 end Image;
26

27 function Image (C : RGB) return String is
28 begin
29 return ("(Red => " & Image (C.Red)
30 & ", Green => " & Image (C.Green)
31 & ", Blue => " & Image (C.Blue)
32 &")");
33 end Image;
34

35 end Color_Types;

112 Chapter 12. Design by contracts

Introduction to Ada: Laboratories

Listing 158: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Color_Types; use Color_Types;
5

6 procedure Main is
7 type Test_Case_Index is
8 (HTML_Color_Red_Chk,
9 HTML_Color_Green_Chk,
10 HTML_Color_Blue_Chk);
11

12 procedure Check (TC : Test_Case_Index) is
13

14 procedure Check_HTML_Colors (S : HTML_RGB_Color) is
15 begin
16 Put_Line ("Selected: " & HTML_RGB_Color'Image (S));
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I) & " => "
19 & Image (To_Int_Color (I, S)) & ".");
20 end loop;
21 end Check_HTML_Colors;
22

23 begin
24 case TC is
25 when HTML_Color_Red_Chk =>
26 Check_HTML_Colors (Red);
27 when HTML_Color_Green_Chk =>
28 Check_HTML_Colors (Green);
29 when HTML_Color_Blue_Chk =>
30 Check_HTML_Colors (Blue);
31 end case;
32 end Check;
33

34 begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41

42 Check (Test_Case_Index'Value (Argument (1)));
43 end Main;

12.6. Primary Color 113

Introduction to Ada: Laboratories

114 Chapter 12. Design by contracts

CHAPTER

THIRTEEN

OBJECT-ORIENTED PROGRAMMING

13.1 Simple type extension
Goal: work with type extensions using record types containing numeric components.
Steps:
1. Implement the Type_Extensions package.

1. Declare the record type T_Float.
2. Declare the record type T_Mixed
3. Implement the Init function for the T_Float type with a floating-point input pa-
rameter.

4. Implement the Init function for the T_Float type with an integer input parameter.
5. Implement the Image function for the T_Float type.
6. Implement the Init function for the T_Mixed type with a floating-point input pa-
rameter.

7. Implement the Init function for the T_Mixed type with an integer input parameter.
8. Implement the Image function for the T_Mixed type.

Requirements:
1. Record type T_Float contains the following component:

1. F, a floating-point type.
2. Record type T_Mixed is derived from the T_Float type.

1. T_Mixed extends T_Float with the following component:
1. I, an integer component.

2. Both components must be numerically synchronized:
• For example, if the floating-point component contains the value 2.0, the value
of the integer component must be 2.

• In order to simplify the implementation, you can simply use Integer (F) to
convert a floating-point variable F to integer.

3. Function Init returns an object of the corresponding type (T_Float or T_Mixed).
1. For each type, two versions of Init must be declared:

1. one with a floating-point input parameter,
2. another with an integer input parameter.

2. The parameter to Init is used to initialize the record components.
4. Function Image returns a string for the components of the record type.

115

Introduction to Ada: Laboratories

1. In case of the Image function for the T_Float type, the stringmust have the format
"{ F => <float value> }".
• For example, the call Image (T_Float'(Init (8.0)))) should return the
string "{ F => 8.00000E+00 }".

2. In case of the Image function for the T_Mixed type, the stringmust have the format
"{ F => <float value>, I => <integer value> }".
• For example, the call Image (T_Mixed'(Init (8.0)))) should return the
string "{ F => 8.00000E+00, I => 8 }".

Listing 159: type_extensions.ads
1 package Type_Extensions is
2

3 -- Create declaration of T_Float type!
4 type T_Float is null record;
5

6 -- function Init ...
7

8 -- function Image ...
9

10 -- Create declaration of T_Mixed type!
11 type T_Mixed is null record;
12

13 end Type_Extensions;

Listing 160: type_extensions.adb
1 package body Type_Extensions is
2

3 end Type_Extensions;

Listing 161: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Type_Extensions; use Type_Extensions;
5

6 procedure Main is
7

8 type Test_Case_Index is
9 (Type_Extension_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 F1, F2 : T_Float;
13 M1, M2 : T_Mixed;
14 begin
15 case TC is
16 when Type_Extension_Chk =>
17 F1 := Init (2.0);
18 F2 := Init (3);
19 M1 := Init (4.0);
20 M2 := Init (5);
21

22 if M2 in T_Float'Class then
23 Put_Line ("T_Mixed is in T_Float'Class as expected");
24 end if;
25

26 Put_Line ("F1: " & Image (F1));
(continues on next page)

116 Chapter 13. Object-oriented programming

Introduction to Ada: Laboratories

(continued from previous page)
27 Put_Line ("F2: " & Image (F2));
28 Put_Line ("M1: " & Image (M1));
29 Put_Line ("M2: " & Image (M2));
30 end case;
31 end Check;
32

33 begin
34 if Argument_Count < 1 then
35 Put_Line ("ERROR: missing arguments! Exiting...");
36 return;
37 elsif Argument_Count > 1 then
38 Put_Line ("Ignoring additional arguments...");
39 end if;
40

41 Check (Test_Case_Index'Value (Argument (1)));
42 end Main;

13.2 Online Store
Goal: create an online store for the members of an association.
Steps:
1. Implement the Online_Store package.

1. Declare the Member type.
2. Declare the Full_Member type.
3. Implement the Get_Status function for the Member type.
4. Implement the Get_Price function for the Member type.
5. Implement the Get_Status function for the Full_Member type.
6. Implement the Get_Price function for the Full_Member type.

2. Implement the Online_Store.Tests child package.
1. Implement the Simple_Test procedure.

Requirements:
1. Package Online_Store implements an online store application for the members of an
association.
1. In this association, members can have one of the following status:

• associate member, or
• full member.

2. Function Get_Price returns the correct price of an item.
1. Associate members must pay the full price when they buy items from the online
store.

2. Full members can get a discount.
1. The discount rate can be different for each full member — depending on fac-
tors that are irrelevant for this exercise.

3. Package Online_Store has following types:
1. Percentage type, which represents a percentage ranging from 0.0 to 1.0.
2. Member type for associate members containing following components:

13.2. Online Store 117

Introduction to Ada: Laboratories

• Start, which indicates the starting year of the membership.
– This information is common for both associate and full members.
– You can use the Year_Number type from the standard Ada.Calendar pack-
age for this component.

3. Full_Member type for full members.
1. This type must extend the Member type above.
2. It contains the following additional component:

• Discount, which indicates the discount rate that the full member gets in
the online store.
– This component must be of Percentage type.

4. For the Member and Full_Member types, you must implement the following functions:
1. Get_Status, which returns a string with the membership status.

• The string must be "Associate Member" or "Full Member", respectively.
2. Get_Price, which returns the adapted price of an item — indicating the actual
due amount.
• For example, for a full member with a 10% discount rate, the actual due
amount of an item with a price of 100.00 is 90.00.

• Associated members don't get a discount, so they always pay the full price.
5. Procedure Simple_Test (from the Online_Store.Tests package) is used for testing.

1. Based on a list of members that bought on the online store and the corresponding
full price of the item, Simple_Test must display information about each member
and the actual due amount after discounts.

2. Information about the members must be displayed in the following format:

Member # <number>
Status: <status>
Since: <year>
Due Amount: <value>

3. For this exercise, Simple_Test must use the following list:

Membership status Start (year) Discount Full Price
1 Associate 2010 N/A 250.00
2 Full 1998 10.0 % 160.00
3 Full 1987 20.0 % 400.00
4 Associate 2013 N/A 110.00

4. In order to pass the tests, the information displayed by a call to Simple_Testmust
conform to the format described above.
• You can find another example in the remarks below.

Remarks:
1. In previous labs, we could have implemented a simplified version of the system de-
scribed above by simply using an enumeration type to specify the membership status.
For example:

type Member_Status is (Associate_Member, Full_Member);

118 Chapter 13. Object-oriented programming

Introduction to Ada: Laboratories

1. In this case, the Get_Price function would then evaluate the membership
status and adapt the item price — assuming a fixed discount rate for all
full members. This could be the corresponding function declaration:

type Amount is delta 10.0**(-2) digits 10;

function Get_Price (M : Member_Status;
P : Amount) return Amount;

2. In this exercise, however, we'll use type extension to represent the mem-
bership status in our application.

2. For the procedure Simple_Test, let's consider the following list of members as an
example:

Membership status Start (year) Discount Full Price
1 Associate 2002 N/A 100.00
2 Full 2005 10.0 % 100.00

• For this list, the test procedure displays the following information (in this
exact format):

Member # 1
Status: Associate Member
Since: 2002
Due Amount: 100.00

Member # 2
Status: Full Member
Since: 2005
Due Amount: 90.00

• Here, although both members had the same full price (as indicated by the
last column), member #2 gets a reduced due amount of 90.00 because
of the full membership status.

Listing 162: online_store.ads
1 with Ada.Calendar; use Ada.Calendar;
2

3 package Online_Store is
4

5 type Amount is delta 10.0**(-2) digits 10;
6

7 subtype Percentage is Amount range 0.0 .. 1.0;
8

9 -- Create declaration of Member type!
10 --
11 -- You can use Year_Number from Ada.Calendar for the membership
12 -- starting year.
13 --
14 type Member is null record;
15

16 function Get_Status (M : Member) return String;
17

18 function Get_Price (M : Member;
19 P : Amount) return Amount;
20

21 -- Create declaration of Full_Member type!
22 --

(continues on next page)

13.2. Online Store 119

Introduction to Ada: Laboratories

(continued from previous page)
23 -- Use the Percentage type for storing the membership discount.
24 --
25 type Full_Member is null record;
26

27 function Get_Status (M : Full_Member) return String;
28

29 function Get_Price (M : Full_Member;
30 P : Amount) return Amount;
31

32 end Online_Store;

Listing 163: online_store.adb
1 package body Online_Store is
2

3 function Get_Status (M : Member) return String is
4 ("");
5

6 function Get_Status (M : Full_Member) return String is
7 ("");
8

9 function Get_Price (M : Member;
10 P : Amount) return Amount is (0.0);
11

12 function Get_Price (M : Full_Member;
13 P : Amount) return Amount is
14 (0.0);
15

16 end Online_Store;

Listing 164: online_store-tests.ads
1 package Online_Store.Tests is
2

3 procedure Simple_Test;
4

5 end Online_Store.Tests;

Listing 165: online_store-tests.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Online_Store.Tests is
4

5 procedure Simple_Test is
6 begin
7 null;
8 end Simple_Test;
9

10 end Online_Store.Tests;

Listing 166: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Online_Store; use Online_Store;
5 with Online_Store.Tests; use Online_Store.Tests;
6

7 procedure Main is
(continues on next page)

120 Chapter 13. Object-oriented programming

Introduction to Ada: Laboratories

(continued from previous page)
8

9 type Test_Case_Index is
10 (Type_Chk,
11 Unit_Test_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14

15 function Result_Image (Result : Boolean) return String is
16 (if Result then "OK" else "not OK");
17

18 begin
19 case TC is
20 when Type_Chk =>
21 declare
22 AM : constant Member := (Start => 2002);
23 FM : constant Full_Member := (Start => 1990,
24 Discount => 0.2);
25 begin
26 Put_Line ("Testing Status of Associate Member Type => "
27 & Result_Image (AM.Get_Status = "Associate Member"));
28 Put_Line ("Testing Status of Full Member Type => "
29 & Result_Image (FM.Get_Status = "Full Member"));
30 Put_Line ("Testing Discount of Associate Member Type => "
31 & Result_Image (AM.Get_Price (100.0) = 100.0));
32 Put_Line ("Testing Discount of Full Member Type => "
33 & Result_Image (FM.Get_Price (100.0) = 80.0));
34 end;
35 when Unit_Test_Chk =>
36 Simple_Test;
37 end case;
38 end Check;
39

40 begin
41 if Argument_Count < 1 then
42 Put_Line ("ERROR: missing arguments! Exiting...");
43 return;
44 elsif Argument_Count > 1 then
45 Put_Line ("Ignoring additional arguments...");
46 end if;
47

48 Check (Test_Case_Index'Value (Argument (1)));
49 end Main;

13.2. Online Store 121

Introduction to Ada: Laboratories

122 Chapter 13. Object-oriented programming

CHAPTER

FOURTEEN

STANDARD LIBRARY: CONTAINERS

14.1 Simple todo list
Goal: implement a simple to-do list system using vectors.
Steps:
1. Implement the Todo_Lists package.

1. Declare the Todo_Item type.
2. Declare the Todo_List type.
3. Implement the Add procedure.
4. Implement the Display procedure.

2. Todo_Item type is used to store to-do items.
1. It should be implemented as an access type to strings.

3. Todo_List type is the container for all to-do items.
1. It should be implemented as a vector.

4. Procedure Add adds items (of Todo_Item type) to the list (of Todo_List type).
1. This requires allocating a string for the access type.

5. Procedure Display is used to display all to-do items.
1. It must display one item per line.

Remarks:
1. This exercise is based on the Simple todo list exercise from the More About Types
(page 59).
1. Your goal is to rewrite that exercise using vectors instead of arrays.
2. You may reuse the code you've already implemented as a starting point.

Listing 167: todo_lists.ads
1 package Todo_Lists is
2

3 type Todo_Item is access String;
4

5 type Todo_List is null record;
6

7 procedure Add (Todos : in out Todo_List;
8 Item : String);
9

10 procedure Display (Todos : Todo_List);
(continues on next page)

123

Introduction to Ada: Laboratories

(continued from previous page)
11

12 end Todo_Lists;

Listing 168: todo_lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Todo_Lists is
4

5 procedure Add (Todos : in out Todo_List;
6 Item : String) is
7 begin
8 null;
9 end Add;
10

11 procedure Display (Todos : Todo_List) is
12 begin
13 Put_Line ("TO-DO LIST");
14 end Display;
15

16 end Todo_Lists;

Listing 169: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Todo_Lists; use Todo_Lists;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Todo_List_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List;
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29

30 begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;

(continues on next page)

124 Chapter 14. Standard library: Containers

Introduction to Ada: Laboratories

(continued from previous page)
37

38 Check (Test_Case_Index'Value (Argument (1)));
39 end Main;

14.2 List of unique integers
Goal: create function that removes duplicates from and orders a collection of elements.
Steps:
1. Implement package Ops.

1. Declare the Int_Array type.
2. Declare the Integer_Sets type.
3. Implement the Get_Unique function that returns a set.
4. Implement the Get_Unique function that returns an array of integer values.

Requirements:
1. The Int_Array type is an unconstrained array of positive range.
2. The Integer_Sets package is an instantiation of the Ordered_Sets package for the

Integer type.
3. The Get_Unique function must remove duplicates from an input array of integer values
and order the elements.
1. For example:

• if the input array contains (7, 7, 1)

• the function must return (1, 7).
2. You must implement this function by using sets from the Ordered_Sets package.
3. Get_Unique must be implemented in two versions:

• one version that returns a set — Set type from the Ordered_Sets package.
• one version that returns an array of integer values — Int_Array type.

Remarks:
1. Sets — as the one found in the generic Ordered_Sets package — are useful for quickly
and easily creating an algorithm that removes duplicates from a list of elements.

Listing 170: ops.ads
1 with Ada.Containers.Ordered_Sets;
2

3 package Ops is
4

5 -- type Int_Array is ...
6

7 -- package Integer_Sets is ...
8

9 subtype Int_Set is Integer_Sets.Set;
10

11 function Get_Unique (A : Int_Array) return Int_Set;
12

13 function Get_Unique (A : Int_Array) return Int_Array;
14

15 end Ops;

14.2. List of unique integers 125

Introduction to Ada: Laboratories

Listing 171: ops.adb
1 package body Ops is
2

3 function Get_Unique (A : Int_Array) return Int_Set is
4 begin
5 null;
6 end Get_Unique;
7

8 function Get_Unique (A : Int_Array) return Int_Array is
9 begin
10 null;
11 end Get_Unique;
12

13 end Ops;

Listing 172: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Ops; use Ops;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Get_Unique_Set_Chk,
9 Get_Unique_Array_Chk);
10

11 procedure Check (TC : Test_Case_Index;
12 A : Int_Array) is
13

14 procedure Display_Unique_Set (A : Int_Array) is
15 S : constant Int_Set := Get_Unique (A);
16 begin
17 for E of S loop
18 Put_Line (Integer'Image (E));
19 end loop;
20 end Display_Unique_Set;
21

22 procedure Display_Unique_Array (A : Int_Array) is
23 AU : constant Int_Array := Get_Unique (A);
24 begin
25 for E of AU loop
26 Put_Line (Integer'Image (E));
27 end loop;
28 end Display_Unique_Array;
29

30 begin
31 case TC is
32 when Get_Unique_Set_Chk => Display_Unique_Set (A);
33 when Get_Unique_Array_Chk => Display_Unique_Array (A);
34 end case;
35 end Check;
36

37 begin
38 if Argument_Count < 3 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 else
42 declare
43 A : Int_Array (1 .. Argument_Count - 1);

(continues on next page)

126 Chapter 14. Standard library: Containers

Introduction to Ada: Laboratories

(continued from previous page)
44 begin
45 for I in A'Range loop
46 A (I) := Integer'Value (Argument (1 + I));
47 end loop;
48 Check (Test_Case_Index'Value (Argument (1)), A);
49 end;
50 end if;
51 end Main;

14.2. List of unique integers 127

Introduction to Ada: Laboratories

128 Chapter 14. Standard library: Containers

CHAPTER

FIFTEEN

STANDARD LIBRARY: DATES & TIMES

15.1 Holocene calendar
Goal: create a function that returns the year in the Holocene calendar.
Steps:
1. Implement the To_Holocene_Year function.

Requirements:
1. The To_Holocene_Year extracts the year from a time object (Time type) and returns
the corresponding year for the Holocene calendar3.
1. For positive (AD) years, the Holocene year is calculated by adding 10,000 to the
year number.

Remarks:
1. In this exercise, we don't deal with BC years.
2. Note that the year component of the Time type from the Ada.Calendar package is
limited to years starting with 1901.

Listing 173: to_holocene_year.adb
1 with Ada.Calendar; use Ada.Calendar;
2

3 function To_Holocene_Year (T : Time) return Integer is
4 begin
5 return 0;
6 end To_Holocene_Year;

Listing 174: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Calendar; use Ada.Calendar;
4

5 with To_Holocene_Year;
6

7 procedure Main is
8 type Test_Case_Index is
9 (Holocene_Chk);
10

11 procedure Display_Holocene_Year (Y : Year_Number) is
12 HY : Integer;
13 begin
14 HY := To_Holocene_Year (Time_Of (Y, 1, 1));

(continues on next page)
3 https://en.wikipedia.org/wiki/Holocene_calendar

129

https://en.wikipedia.org/wiki/Holocene_calendar

Introduction to Ada: Laboratories

(continued from previous page)
15 Put_Line ("Year (Gregorian): " & Year_Number'Image (Y));
16 Put_Line ("Year (Holocene): " & Integer'Image (HY));
17 end Display_Holocene_Year;
18

19 procedure Check (TC : Test_Case_Index) is
20 begin
21 case TC is
22 when Holocene_Chk =>
23 Display_Holocene_Year (2012);
24 Display_Holocene_Year (2020);
25 end case;
26 end Check;
27

28 begin
29 if Argument_Count < 1 then
30 Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Put_Line ("Ignoring additional arguments...");
34 end if;
35

36 Check (Test_Case_Index'Value (Argument (1)));
37 end Main;

15.2 List of events
Goal: create a system to manage a list of events.
Steps:
1. Implement the Events package.

1. Declare the Event_Item type.
2. Declare the Event_Items type.

2. Implement the Events.Lists package.
1. Declare the Event_List type.
2. Implement the Add procedure.
3. Implement the Display procedure.

Requirements:
1. The Event_Item type (from the Events package) contains the description of an event.

1. This description shall be stored in an access-to-string type.
2. The Event_Items type stores a list of events.

1. This will be used later to represent multiple events for a specific date.
2. You shall use a vector for this type.

3. The Events.Lists package contains the subprograms that are used in the test appli-
cation.

4. The Event_List type (from the Events.Lists package) maps a list of events to a
specific date.
1. You must use the Event_Items type for the list of events.
2. You shall use the Time type from the Ada.Calendar package for the dates.

130 Chapter 15. Standard library: Dates & Times

Introduction to Ada: Laboratories

3. Since we expect the events to be ordered by the date, you shall use ordered maps
for the Event_List type.

5. Procedure Add adds an event into the list of events for a specific date.
6. Procedure Display must display all events for each date (ordered by date) using the
following format:

<event_date #1>
<description of item #1a>
<description of item #1b>

<event_date #2>
<description of item #2a>
<description of item #2b>

1. You should use the auxiliary Date_Image function — available in the body
of the Events.Lists package — to display the date in the YYYY-MM-DD
format.

Remarks:
1. Let's briefly illustrate the expected output of this system.

1. Consider the following example:

with Ada.Calendar;
with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;

with Events.Lists; use Events.Lists;

procedure Test is
EL : Event_List;

begin
EL.Add (Time_Of (2019, 4, 16),

"Item #2");
EL.Add (Time_Of (2019, 4, 15),

"Item #1");
EL.Add (Time_Of (2019, 4, 16),

"Item #3");
EL.Display;

end Test;

2. The expected output of the Test procedure must be:

EVENTS LIST
- 2019-04-15

- Item #1
- 2019-04-16

- Item #2
- Item #3

Listing 175: events.ads
1 package Events is
2

3 type Event_Item is null record;
4

5 type Event_Items is null record;
6

7 end Events;

15.2. List of events 131

Introduction to Ada: Laboratories

Listing 176: events-lists.ads
1 with Ada.Calendar; use Ada.Calendar;
2

3 package Events.Lists is
4

5 type Event_List is tagged private;
6

7 procedure Add (Events : in out Event_List;
8 Event_Time : Time;
9 Event : String);
10

11 procedure Display (Events : Event_List);
12

13 private
14

15 type Event_List is tagged null record;
16

17 end Events.Lists;

Listing 177: events-lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
3

4 package body Events.Lists is
5

6 procedure Add (Events : in out Event_List;
7 Event_Time : Time;
8 Event : String) is
9 begin
10 null;
11 end Add;
12

13 function Date_Image (T : Time) return String is
14 Date_Img : constant String := Image (T);
15 begin
16 return Date_Img (1 .. 10);
17 end;
18

19 procedure Display (Events : Event_List) is
20 T : Time;
21 begin
22 Put_Line ("EVENTS LIST");
23 -- You should use Date_Image (T) here!
24 end Display;
25

26 end Events.Lists;

Listing 178: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Calendar;
4 with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
5

6 with Events.Lists; use Events.Lists;
7

8 procedure Main is
9 type Test_Case_Index is
10 (Event_List_Chk);

(continues on next page)

132 Chapter 15. Standard library: Dates & Times

Introduction to Ada: Laboratories

(continued from previous page)
11

12 procedure Check (TC : Test_Case_Index) is
13 EL : Event_List;
14 begin
15 case TC is
16 when Event_List_Chk =>
17 EL.Add (Time_Of (2018, 2, 16),
18 "Final check");
19 EL.Add (Time_Of (2018, 2, 16),
20 "Release");
21 EL.Add (Time_Of (2018, 12, 3),
22 "Brother's birthday");
23 EL.Add (Time_Of (2018, 1, 1),
24 "New Year's Day");
25 EL.Display;
26 end case;
27 end Check;
28

29 begin
30 if Argument_Count < 1 then
31 Put_Line ("ERROR: missing arguments! Exiting...");
32 return;
33 elsif Argument_Count > 1 then
34 Put_Line ("Ignoring additional arguments...");
35 end if;
36

37 Check (Test_Case_Index'Value (Argument (1)));
38 end Main;

15.2. List of events 133

Introduction to Ada: Laboratories

134 Chapter 15. Standard library: Dates & Times

CHAPTER

SIXTEEN

STANDARD LIBRARY: STRINGS

16.1 Concatenation
Goal: implement functions to concatenate an array of unbounded strings.
Steps:
1. Implement the Str_Concat package.

1. Implement the Concat function for Unbounded_String.
2. Implement the Concat function for String.

Requirements:
1. The first Concat function receives an unconstrained array of unbounded strings and
returns the concatenation of those strings as an unbounded string.
1. The second Concat function has the same parameters, but returns a standard
string (String type).

2. Both Concat functions have the following parameters:
1. An unconstrained array of Unbounded_String strings (Unbounded_Strings type).
2. Trim_Str, a Boolean parameter indicating whether each unbounded string must
be trimmed.

3. Add_Whitespace, a Boolean parameter indicating whether a whitespace shall be
added between each unbounded string and the next one.
1. No whitespace shall be added after the last string of the array.

Remarks:
1. You can use the Trim function from the Ada.Strings.Unbounded package.

Listing 179: str_concat.ads
1 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
2

3 package Str_Concat is
4

5 type Unbounded_Strings is array (Positive range <>) of Unbounded_String;
6

7 function Concat (USA : Unbounded_Strings;
8 Trim_Str : Boolean;
9 Add_Whitespace : Boolean) return Unbounded_String;
10

11 function Concat (USA : Unbounded_Strings;
12 Trim_Str : Boolean;
13 Add_Whitespace : Boolean) return String;
14

15 end Str_Concat;

135

Introduction to Ada: Laboratories

Listing 180: str_concat.adb
1 with Ada.Strings; use Ada.Strings;
2

3 package body Str_Concat is
4

5 function Concat (USA : Unbounded_Strings;
6 Trim_Str : Boolean;
7 Add_Whitespace : Boolean) return Unbounded_String is
8 begin
9 return "";
10 end Concat;
11

12 function Concat (USA : Unbounded_Strings;
13 Trim_Str : Boolean;
14 Add_Whitespace : Boolean) return String is
15 begin
16 return "";
17 end Concat;
18

19 end Str_Concat;

Listing 181: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
4

5 with Str_Concat; use Str_Concat;
6

7 procedure Main is
8 type Test_Case_Index is
9 (Unbounded_Concat_No_Trim_No_WS_Chk,
10 Unbounded_Concat_Trim_No_WS_Chk,
11 String_Concat_Trim_WS_Chk,
12 Concat_Single_Element);
13

14 procedure Check (TC : Test_Case_Index) is
15 begin
16 case TC is
17 when Unbounded_Concat_No_Trim_No_WS_Chk =>
18 declare
19 S : constant Unbounded_Strings := (
20 To_Unbounded_String ("Hello"),
21 To_Unbounded_String (" World"),
22 To_Unbounded_String ("!"));
23 begin
24 Put_Line (To_String (Concat (S, False, False)));
25 end;
26 when Unbounded_Concat_Trim_No_WS_Chk =>
27 declare
28 S : constant Unbounded_Strings := (
29 To_Unbounded_String (" This "),
30 To_Unbounded_String (" _is_ "),
31 To_Unbounded_String (" a "),
32 To_Unbounded_String (" _check "));
33 begin
34 Put_Line (To_String (Concat (S, True, False)));
35 end;
36 when String_Concat_Trim_WS_Chk =>
37 declare

(continues on next page)

136 Chapter 16. Standard library: Strings

Introduction to Ada: Laboratories

(continued from previous page)
38 S : constant Unbounded_Strings := (
39 To_Unbounded_String (" This "),
40 To_Unbounded_String (" is a "),
41 To_Unbounded_String (" test. "));
42 begin
43 Put_Line (Concat (S, True, True));
44 end;
45 when Concat_Single_Element =>
46 declare
47 S : constant Unbounded_Strings := (
48 1 => To_Unbounded_String (" Hi "));
49 begin
50 Put_Line (Concat (S, True, True));
51 end;
52 end case;
53 end Check;
54

55 begin
56 if Argument_Count < 1 then
57 Put_Line ("ERROR: missing arguments! Exiting...");
58 return;
59 elsif Argument_Count > 1 then
60 Put_Line ("Ignoring additional arguments...");
61 end if;
62

63 Check (Test_Case_Index'Value (Argument (1)));
64 end Main;

16.2 List of events
Goal: create a system to manage a list of events.
Steps:
1. Implement the Events package.

1. Declare the Event_Item subtype.
2. Implement the Events.Lists package.

1. Adapt the Add procedure.
2. Adapt the Display procedure.

Requirements:
1. The Event_Item type (from the Events package) contains the description of an event.

1. This description is declared as a subtype of unbounded string.
2. Procedure Add adds an event into the list of events for a specific date.

1. The declaration of E needs to be adapted to use unbounded strings.
3. Procedure Display must display all events for each date (ordered by date) using the
following format:
1. The arguments to Put_Line need to be adapted to use unbounded strings.

Remarks:
1. We use the lab on the list of events from the previous chapter (Standard library: Dates

& Times (page 129)) as a starting point.

16.2. List of events 137

Introduction to Ada: Laboratories

Listing 182: events.ads
1 with Ada.Containers.Vectors;
2

3 package Events is
4

5 -- subtype Event_Item is
6

7 package Event_Item_Containers is new
8 Ada.Containers.Vectors
9 (Index_Type => Positive,
10 Element_Type => Event_Item);
11

12 subtype Event_Items is Event_Item_Containers.Vector;
13

14 end Events;

Listing 183: events-lists.ads
1 with Ada.Calendar; use Ada.Calendar;
2 with Ada.Containers.Ordered_Maps;
3

4 package Events.Lists is
5

6 type Event_List is tagged private;
7

8 procedure Add (Events : in out Event_List;
9 Event_Time : Time;
10 Event : String);
11

12 procedure Display (Events : Event_List);
13

14 private
15

16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21

22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23

24 end Events.Lists;

Listing 184: events-lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
3

4 package body Events.Lists is
5

6 procedure Add (Events : in out Event_List;
7 Event_Time : Time;
8 Event : String) is
9 use Event_Item_Containers;
10 E : constant Event_Item := new String'(Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);

(continues on next page)

138 Chapter 16. Standard library: Strings

Introduction to Ada: Laboratories

(continued from previous page)
16 end Add;
17

18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23

24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & I.all);
34 end loop;
35 end loop;
36 end Display;
37

38 end Events.Lists;

Listing 185: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Calendar;
4 with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
5 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
6

7 with Events;
8 with Events.Lists; use Events.Lists;
9

10 procedure Main is
11 type Test_Case_Index is
12 (Unbounded_String_Chk,
13 Event_List_Chk);
14

15 procedure Check (TC : Test_Case_Index) is
16 EL : Event_List;
17 begin
18 case TC is
19 when Unbounded_String_Chk =>
20 declare
21 S : constant Events.Event_Item := To_Unbounded_String ("Checked");
22 begin
23 Put_Line (To_String (S));
24 end;
25 when Event_List_Chk =>
26 EL.Add (Time_Of (2018, 2, 16),
27 "Final check");
28 EL.Add (Time_Of (2018, 2, 16),
29 "Release");
30 EL.Add (Time_Of (2018, 12, 3),
31 "Brother's birthday");
32 EL.Add (Time_Of (2018, 1, 1),
33 "New Year's Day");
34 EL.Display;
35 end case;

(continues on next page)

16.2. List of events 139

Introduction to Ada: Laboratories

(continued from previous page)
36 end Check;
37

38 begin
39 if Argument_Count < 1 then
40 Put_Line ("ERROR: missing arguments! Exiting...");
41 return;
42 elsif Argument_Count > 1 then
43 Put_Line ("Ignoring additional arguments...");
44 end if;
45

46 Check (Test_Case_Index'Value (Argument (1)));
47 end Main;

140 Chapter 16. Standard library: Strings

CHAPTER

SEVENTEEN

STANDARD LIBRARY: NUMERICS

17.1 Decibel Factor
Goal: implement functions to convert from Decibel values to factors and vice-versa.
Steps:
1. Implement the Decibels package.

1. Implement the To_Decibel function.
2. Implement the To_Factor function.

Requirements:
1. The subtypes Decibel and Factor are based on a floating-point type.
2. Function To_Decibel converts a multiplication factor (or ratio) to decibels.

• For the implementation, use 20 ∗ 𝑙𝑜𝑔10(𝐹), where F is the factor/ratio.
3. Function To_Factor converts a value in decibels to a multiplication factor (or ratio).

• For the implementation, use 10𝐷/20, where D is the value in Decibel.
Remarks:
1. The Decibel4 is used to express the ratio of two values on a logarithmic scale.

1. For example, an increase of 6 dB corresponds roughly to a multiplication by two
(or an increase by 100 % of the original value).

2. You can find the functions that you'll need for the calculation in the Ada.Numerics.
Elementary_Functions package.

Listing 186: decibels.ads
1 package Decibels is
2

3 subtype Decibel is Float;
4 subtype Factor is Float;
5

6 function To_Decibel (F : Factor) return Decibel;
7

8 function To_Factor (D : Decibel) return Factor;
9

10 end Decibels;

4 https://en.wikipedia.org/wiki/Decibel

141

https://en.wikipedia.org/wiki/Decibel

Introduction to Ada: Laboratories

Listing 187: decibels.adb
1 package body Decibels is
2

3 function To_Decibel (F : Factor) return Decibel is
4 begin
5 return 0.0;
6 end To_Decibel;
7

8 function To_Factor (D : Decibel) return Factor is
9 begin
10 return 0.0;
11 end To_Factor;
12

13 end Decibels;

Listing 188: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Decibels; use Decibels;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Db_Chk,
9 Factor_Chk);
10

11 procedure Check (TC : Test_Case_Index; V : Float) is
12

13 package F_IO is new Ada.Text_IO.Float_IO (Factor);
14 package D_IO is new Ada.Text_IO.Float_IO (Decibel);
15

16 procedure Put_Decibel_Cnvt (D : Decibel) is
17 F : constant Factor := To_Factor (D);
18 begin
19 D_IO.Put (D, 0, 2, 0);
20 Put (" dB => Factor of ");
21 F_IO.Put (F, 0, 2, 0);
22 New_Line;
23 end;
24

25 procedure Put_Factor_Cnvt (F : Factor) is
26 D : constant Decibel := To_Decibel (F);
27 begin
28 Put ("Factor of ");
29 F_IO.Put (F, 0, 2, 0);
30 Put (" => ");
31 D_IO.Put (D, 0, 2, 0);
32 Put_Line (" dB");
33 end;
34 begin
35 case TC is
36 when Db_Chk =>
37 Put_Decibel_Cnvt (Decibel (V));
38 when Factor_Chk =>
39 Put_Factor_Cnvt (Factor (V));
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 2 then

(continues on next page)

142 Chapter 17. Standard library: Numerics

Introduction to Ada: Laboratories

(continued from previous page)
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 2 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)), Float'Value (Argument (2)));
52 end Main;

17.2 Root-Mean-Square
Goal: implement a function to calculate the root-mean-square of a sequence of values.
Steps:
1. Implement the Signals package.

1. Implement the Rms function.
Requirements:
1. Subtype Sig_Value is based on a floating-point type.
2. Type Signal is an unconstrained array of Sig_Value elements.
3. Function Rms calculates the RMS of a sequence of values stored in an array of type

Signal.
1. See the remarks below for a description of the RMS calculation.

Remarks:
1. The root-mean-square5 (RMS) value is an important information associated with se-
quences of values.
1. It's used, for example, as a measurement for signal processing.
2. It is calculated by:

1. Creating a sequence 𝑆 with the square of each value of an input sequence 𝑆𝑖𝑛.
2. Calculating the mean value 𝑀 of the sequence 𝑆.
3. Calculating the square-root 𝑅 of 𝑀 .

3. You can optimize the algorithm above by combining steps #1 and #2 into a single
step.

Listing 189: signals.ads
1 package Signals is
2

3 subtype Sig_Value is Float;
4

5 type Signal is array (Natural range <>) of Sig_Value;
6

7 function Rms (S : Signal) return Sig_Value;
8

9 end Signals;

5 https://en.wikipedia.org/wiki/Root_mean_square

17.2. Root-Mean-Square 143

https://en.wikipedia.org/wiki/Root_mean_square

Introduction to Ada: Laboratories

Listing 190: signals.adb
1 with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
2

3 package body Signals is
4

5 function Rms (S : Signal) return Sig_Value is
6 begin
7 return 0.0;
8 end;
9

10 end Signals;

Listing 191: signals-std.ads
1 package Signals.Std is
2

3 Sample_Rate : Float := 8000.0;
4

5 function Generate_Sine (N : Positive; Freq : Float) return Signal;
6

7 function Generate_Square (N : Positive) return Signal;
8

9 function Generate_Triangular (N : Positive) return Signal;
10

11 end Signals.Std;

Listing 192: signals-std.adb
1 with Ada.Numerics; use Ada.Numerics;
2 with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
3

4 package body Signals.Std is
5

6 function Generate_Sine (N : Positive; Freq : Float) return Signal is
7 S : Signal (0 .. N - 1);
8 begin
9 for I in S'First .. S'Last loop
10 S (I) := 1.0 * Sin (2.0 * Pi * (Freq * Float (I) / Sample_Rate));
11 end loop;
12

13 return S;
14 end;
15

16 function Generate_Square (N : Positive) return Signal is
17 S : constant Signal (0 .. N - 1) := (others => 1.0);
18 begin
19 return S;
20 end;
21

22 function Generate_Triangular (N : Positive) return Signal is
23 S : Signal (0 .. N - 1);
24 S_Half : constant Natural := S'Last / 2;
25 begin
26 for I in S'First .. S_Half loop
27 S (I) := 1.0 * (Float (I) / Float (S_Half));
28 end loop;
29 for I in S_Half .. S'Last loop
30 S (I) := 1.0 - (1.0 * (Float (I - S_Half) / Float (S_Half)));
31 end loop;
32

(continues on next page)

144 Chapter 17. Standard library: Numerics

Introduction to Ada: Laboratories

(continued from previous page)
33 return S;
34 end;
35

36 end Signals.Std;

Listing 193: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Signals; use Signals;
5 with Signals.Std; use Signals.Std;
6

7 procedure Main is
8 type Test_Case_Index is
9 (Sine_Signal_Chk,
10 Square_Signal_Chk,
11 Triangular_Signal_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14 package Sig_IO is new Ada.Text_IO.Float_IO (Sig_Value);
15

16 N : constant Positive := 1024;
17 S_Si : constant Signal := Generate_Sine (N, 440.0);
18 S_Sq : constant Signal := Generate_Square (N);
19 S_Tr : constant Signal := Generate_Triangular (N + 1);
20 begin
21 case TC is
22 when Sine_Signal_Chk =>
23 Put ("RMS of Sine Signal: ");
24 Sig_IO.Put (Rms (S_Si), 0, 2, 0);
25 New_Line;
26 when Square_Signal_Chk =>
27 Put ("RMS of Square Signal: ");
28 Sig_IO.Put (Rms (S_Sq), 0, 2, 0);
29 New_Line;
30 when Triangular_Signal_Chk =>
31 Put ("RMS of Triangular Signal: ");
32 Sig_IO.Put (Rms (S_Tr), 0, 2, 0);
33 New_Line;
34 end case;
35 end Check;
36

37 begin
38 if Argument_Count < 1 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 elsif Argument_Count > 1 then
42 Put_Line ("Ignoring additional arguments...");
43 end if;
44

45 Check (Test_Case_Index'Value (Argument (1)));
46 end Main;

17.3 Rotation
Goal: use complex numbers to calculate the positions of an object in a circle after rotation.
Steps:

17.3. Rotation 145

Introduction to Ada: Laboratories

1. Implement the Rotation package.
1. Implement the Rotation function.

Requirements:
1. Type Complex_Points is an unconstrained array of complex values.
2. Function Rotation returns a list of positions (represented by the Complex_Points
type) when dividing a circle in N equal slices.
1. See the remarks below for a more detailed explanation.
2. You must use functions from Ada.Numerics.Complex_Types to implement Rota-

tion.
3. Subtype Angle is based on a floating-point type.
4. Type Angles is an unconstrained array of angles.
5. Function To_Angles returns a list of angles based on an input list of positions.

Remarks:
1. Complex numbers are particularly useful in computer graphics to simplify the calcula-
tion of rotations.
1. For example, let's assume you've drawn an object on your screen on position (1.0,
0.0).

2. Now, you want to move this object in a circular path — i.e. make it rotate around
position (0.0, 0.0) on your screen.
• You could use sine and cosine functions to calculate each position of the path.
• However, you could also calculate the positions using complex numbers.

2. In this exercise, you'll use complex numbers to calculate the positions of an object that
starts on zero degrees — on position (1.0, 0.0) — and rotates around (0.0, 0.0) for N
slices of a circle.
1. For example, if we divide the circle in four slices, the object's path will consist of
following points / positions:

Point #1: (1.0, 0.0)
Point #2: (0.0, 1.0)
Point #3: (-1.0, 0.0)
Point #4: (0.0, -1.0)
Point #5: (1.0, 0.0)

1. As expected, point #5 is equal to the starting point (point #1), since
the object rotates around (0.0, 0.0) and returns to the starting point.

2. We can also describe this path in terms of angles. The following list presents the
angles for the path on a four-sliced circle:

Point #1: 0.00 degrees
Point #2: 90.00 degrees
Point #3: 180.00 degrees
Point #4: -90.00 degrees (= 270 degrees)
Point #5: 0.00 degrees

1. To rotate a complex number simply multiply it by a unit vector whose
arg is the radian angle to be rotated: 𝑍 = 𝑒 2𝜋

𝑁

146 Chapter 17. Standard library: Numerics

Introduction to Ada: Laboratories

Listing 194: rotation.ads
1 with Ada.Numerics.Complex_Types;
2 use Ada.Numerics.Complex_Types;
3

4 package Rotation is
5

6 type Complex_Points is array (Positive range <>) of Complex;
7

8 function Rotation (N : Positive) return Complex_Points;
9

10 end Rotation;

Listing 195: rotation.adb
1 with Ada.Numerics; use Ada.Numerics;
2

3 package body Rotation is
4

5 function Rotation (N : Positive) return Complex_Points is
6 C : Complex_Points (1 .. 1) := (others => (0.0, 0.0));
7 begin
8 return C;
9 end;
10

11 end Rotation;

Listing 196: angles.ads
1 with Rotation; use Rotation;
2

3 package Angles is
4

5 subtype Angle is Float;
6

7 type Angles is array (Positive range <>) of Angle;
8

9 function To_Angles (C : Complex_Points) return Angles;
10

11 end Angles;

Listing 197: angles.adb
1 with Ada.Numerics; use Ada.Numerics;
2 with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
3

4 package body Angles is
5

6 function To_Angles (C : Complex_Points) return Angles is
7 begin
8 return A : Angles (C'Range) do
9 for I in A'Range loop
10 A (I) := Argument (C (I)) / Pi * 180.0;
11 end loop;
12 end return;
13 end To_Angles;
14

15 end Angles;

17.3. Rotation 147

Introduction to Ada: Laboratories

Listing 198: rotation-tests.ads
1 package Rotation.Tests is
2

3 procedure Test_Rotation (N : Positive);
4

5 procedure Test_Angles (N : Positive);
6

7 end Rotation.Tests;

Listing 199: rotation-tests.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Text_IO.Complex_IO;
3 with Ada.Numerics; use Ada.Numerics;
4

5 with Angles; use Angles;
6

7 package body Rotation.Tests is
8

9 package C_IO is new Ada.Text_IO.Complex_IO (Complex_Types);
10 package F_IO is new Ada.Text_IO.Float_IO (Float);
11

12 --
13 -- Adapt value due to floating-point inaccuracies
14 --
15

16 function Adapt (C : Complex) return Complex is
17 function Check_Zero (F : Float) return Float is
18 (if F <= 0.0 and F >= -0.01 then 0.0 else F);
19 begin
20 return C_Out : Complex := C do
21 C_Out.Re := Check_Zero (C_Out.Re);
22 C_Out.Im := Check_Zero (C_Out.Im);
23 end return;
24 end Adapt;
25

26 function Adapt (A : Angle) return Angle is
27 (if A <= -179.99 and A >= -180.01 then 180.0 else A);
28

29 procedure Test_Rotation (N : Positive) is
30 C : constant Complex_Points := Rotation (N);
31 begin
32 Put_Line ("---- Points for " & Positive'Image (N) & " slices ----");
33 for V of C loop
34 Put ("Point: ");
35 C_IO.Put (Adapt (V), 0, 1, 0);
36 New_Line;
37 end loop;
38 end Test_Rotation;
39

40 procedure Test_Angles (N : Positive) is
41 C : constant Complex_Points := Rotation (N);
42 A : constant Angles.Angles := To_Angles (C);
43 begin
44 Put_Line ("---- Angles for " & Positive'Image (N) & " slices ----");
45 for V of A loop
46 Put ("Angle: ");
47 F_IO.Put (Adapt (V), 0, 2, 0);
48 Put_Line (" degrees");
49 end loop;

(continues on next page)

148 Chapter 17. Standard library: Numerics

Introduction to Ada: Laboratories

(continued from previous page)
50 end Test_Angles;
51

52 end Rotation.Tests;

Listing 200: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Rotation.Tests; use Rotation.Tests;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Rotation_Chk,
9 Angles_Chk);
10

11 procedure Check (TC : Test_Case_Index; N : Positive) is
12 begin
13 case TC is
14 when Rotation_Chk =>
15 Test_Rotation (N);
16 when Angles_Chk =>
17 Test_Angles (N);
18 end case;
19 end Check;
20

21 begin
22 if Argument_Count < 2 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 2 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28

29 Check (Test_Case_Index'Value (Argument (1)), Positive'Value (Argument (2)));
30 end Main;

17.3. Rotation 149

Introduction to Ada: Laboratories

150 Chapter 17. Standard library: Numerics

CHAPTER

EIGHTEEN

SOLUTIONS

18.1 Imperative Language

18.1.1 Hello World

Listing 201: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 begin
5 Put_Line ("Hello World!");
6 end Main;

18.1.2 Greetings

Listing 202: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Main is
5

6 procedure Greet (Name : String) is
7 begin
8 Put_Line ("Hello " & Name & "!");
9 end Greet;
10

11 begin
12 if Argument_Count < 1 then
13 Put_Line ("ERROR: missing arguments! Exiting...");
14 return;
15 elsif Argument_Count > 1 then
16 Put_Line ("Ignoring additional arguments...");
17 end if;
18

19 Greet (Argument (1));
20 end Main;

18.1.3 Positive Or Negative

Listing 203: classify_number.ads
1 procedure Classify_Number (X : Integer);

151

Introduction to Ada: Laboratories

Listing 204: classify_number.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Classify_Number (X : Integer) is
4 begin
5 if X > 0 then
6 Put_Line ("Positive");
7 elsif X < 0 then
8 Put_Line ("Negative");
9 else
10 Put_Line ("Zero");
11 end if;
12 end Classify_Number;

Listing 205: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Classify_Number;
5

6 procedure Main is
7 A : Integer;
8 begin
9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 A := Integer'Value (Argument (1));
17

18 Classify_Number (A);
19 end Main;

18.1.4 Numbers

Listing 206: display_numbers.ads
1 procedure Display_Numbers (A, B : Integer);

Listing 207: display_numbers.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Display_Numbers (A, B : Integer) is
4 X, Y : Integer;
5 begin
6 if A <= B then
7 X := A;
8 Y := B;
9 else
10 X := B;
11 Y := A;
12 end if;
13

14 for I in X .. Y loop
(continues on next page)

152 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
15 Put_Line (Integer'Image (I));
16 end loop;
17 end Display_Numbers;

Listing 208: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_Numbers;
5

6 procedure Main is
7 A, B : Integer;
8 begin
9 if Argument_Count < 2 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 2 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 A := Integer'Value (Argument (1));
17 B := Integer'Value (Argument (2));
18

19 Display_Numbers (A, B);
20 end Main;

18.2 Subprograms

18.2.1 Subtract Procedure

Listing 209: subtract.ads
1 procedure Subtract (A, B : Integer;
2 Result : out Integer);

Listing 210: subtract.adb
1 procedure Subtract (A, B : Integer;
2 Result : out Integer) is
3 begin
4 Result := A - B;
5 end Subtract;

Listing 211: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Subtract;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Sub_10_1_Chk,
9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);

(continues on next page)

18.2. Subprograms 153

Introduction to Ada: Laboratories

(continued from previous page)
12

13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Subtract (10, 1, Result);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Subtract (10, 100, Result);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Subtract (0, 5, Result);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Subtract (0, -5, Result);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31

32 begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39

40 Check (Test_Case_Index'Value (Argument (1)));
41 end Main;

18.2.2 Subtract Function

Listing 212: subtract.ads
1 function Subtract (A, B : Integer) return Integer;

Listing 213: subtract.adb
1 function Subtract (A, B : Integer) return Integer is
2 begin
3 return A - B;
4 end Subtract;

Listing 214: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Subtract;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Sub_10_1_Chk,
9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
(continues on next page)

154 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Result := Subtract (10, 1);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Result := Subtract (10, 100);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Result := Subtract (0, 5);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Result := Subtract (0, -5);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31

32 begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39

40 Check (Test_Case_Index'Value (Argument (1)));
41 end Main;

18.2.3 Equality function

Listing 215: is_equal.ads
1 function Is_Equal (A, B : Integer) return Boolean;

Listing 216: is_equal.adb
1 function Is_Equal (A, B : Integer) return Boolean is
2 begin
3 return A = B;
4 end Is_Equal;

Listing 217: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Is_Equal;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Equal_Chk,
9 Inequal_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12

13 procedure Display_Equal (A, B : Integer;
14 Equal : Boolean) is
15 begin

(continues on next page)

18.2. Subprograms 155

Introduction to Ada: Laboratories

(continued from previous page)
16 Put (Integer'Image (A));
17 if Equal then
18 Put (" is equal to ");
19 else
20 Put (" isn't equal to ");
21 end if;
22 Put_Line (Integer'Image (B) & ".");
23 end Display_Equal;
24

25 Result : Boolean;
26 begin
27 case TC is
28 when Equal_Chk =>
29 for I in 0 .. 10 loop
30 Result := Is_Equal (I, I);
31 Display_Equal (I, I, Result);
32 end loop;
33 when Inequal_Chk =>
34 for I in 0 .. 10 loop
35 Result := Is_Equal (I, I - 1);
36 Display_Equal (I, I - 1, Result);
37 end loop;
38 end case;
39 end Check;
40

41 begin
42 if Argument_Count < 1 then
43 Put_Line ("ERROR: missing arguments! Exiting...");
44 return;
45 elsif Argument_Count > 1 then
46 Put_Line ("Ignoring additional arguments...");
47 end if;
48

49 Check (Test_Case_Index'Value (Argument (1)));
50 end Main;

18.2.4 States

Listing 218: display_state.ads
1 procedure Display_State (State : Integer);

Listing 219: display_state.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Display_State (State : Integer) is
4 begin
5 case State is
6 when 0 =>
7 Put_Line ("Off");
8 when 1 =>
9 Put_Line ("On: Simple Processing");
10 when 2 =>
11 Put_Line ("On: Advanced Processing");
12 when others =>
13 null;
14 end case;
15 end Display_State;

156 Chapter 18. Solutions

Introduction to Ada: Laboratories

Listing 220: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_State;
5

6 procedure Main is
7 State : Integer;
8 begin
9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 State := Integer'Value (Argument (1));
17

18 Display_State (State);
19 end Main;

18.2.5 States #2

Listing 221: get_state.ads
1 function Get_State (State : Integer) return String;

Listing 222: get_state.adb
1 function Get_State (State : Integer) return String is
2 begin
3 return (case State is
4 when 0 => "Off",
5 when 1 => "On: Simple Processing",
6 when 2 => "On: Advanced Processing",
7 when others => "");
8 end Get_State;

Listing 223: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Get_State;
5

6 procedure Main is
7 State : Integer;
8 begin
9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 State := Integer'Value (Argument (1));
17

18 Put_Line (Get_State (State));
19 end Main;

18.2. Subprograms 157

Introduction to Ada: Laboratories

18.2.6 States #3

Listing 224: is_on.ads
1 function Is_On (State : Integer) return Boolean;

Listing 225: is_on.adb
1 function Is_On (State : Integer) return Boolean is
2 begin
3 return not (State = 0);
4 end Is_On;

Listing 226: display_on_off.ads
1 procedure Display_On_Off (State : Integer);

Listing 227: display_on_off.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Is_On;
3

4 procedure Display_On_Off (State : Integer) is
5 begin
6 Put_Line (if Is_On (State) then "On" else "Off");
7 end Display_On_Off;

Listing 228: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_On_Off;
5 with Is_On;
6

7 procedure Main is
8 State : Integer;
9 begin
10 if Argument_Count < 1 then
11 Put_Line ("ERROR: missing arguments! Exiting...");
12 return;
13 elsif Argument_Count > 1 then
14 Put_Line ("Ignoring additional arguments...");
15 end if;
16

17 State := Integer'Value (Argument (1));
18

19 Display_On_Off (State);
20 Put_Line (Boolean'Image (Is_On (State)));
21 end Main;

18.2.7 States #4

Listing 229: set_next.ads
1 procedure Set_Next (State : in out Integer);

158 Chapter 18. Solutions

Introduction to Ada: Laboratories

Listing 230: set_next.adb
1 procedure Set_Next (State : in out Integer) is
2 begin
3 State := (if State < 2 then State + 1 else 0);
4 end Set_Next;

Listing 231: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Set_Next;
5

6 procedure Main is
7 State : Integer;
8 begin
9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15

16 State := Integer'Value (Argument (1));
17

18 Set_Next (State);
19 Put_Line (Integer'Image (State));
20 end Main;

18.3 Modular Programming

18.3.1 Months

Listing 232: months.ads
1 package Months is
2

3 Jan : constant String := "January";
4 Feb : constant String := "February";
5 Mar : constant String := "March";
6 Apr : constant String := "April";
7 May : constant String := "May";
8 Jun : constant String := "June";
9 Jul : constant String := "July";
10 Aug : constant String := "August";
11 Sep : constant String := "September";
12 Oct : constant String := "October";
13 Nov : constant String := "November";
14 Dec : constant String := "December";
15

16 procedure Display_Months;
17

18 end Months;

18.3. Modular Programming 159

Introduction to Ada: Laboratories

Listing 233: months.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Months is
4

5 procedure Display_Months is
6 begin
7 Put_Line ("Months:");
8 Put_Line ("- " & Jan);
9 Put_Line ("- " & Feb);
10 Put_Line ("- " & Mar);
11 Put_Line ("- " & Apr);
12 Put_Line ("- " & May);
13 Put_Line ("- " & Jun);
14 Put_Line ("- " & Jul);
15 Put_Line ("- " & Aug);
16 Put_Line ("- " & Sep);
17 Put_Line ("- " & Oct);
18 Put_Line ("- " & Nov);
19 Put_Line ("- " & Dec);
20 end Display_Months;
21

22 end Months;

Listing 234: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Months; use Months;
5

6 procedure Main is
7

8 type Test_Case_Index is
9 (Months_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Months_Chk =>
15 Display_Months;
16 end case;
17 end Check;
18

19 begin
20 if Argument_Count < 1 then
21 Put_Line ("ERROR: missing arguments! Exiting...");
22 return;
23 elsif Argument_Count > 1 then
24 Put_Line ("Ignoring additional arguments...");
25 end if;
26

27 Check (Test_Case_Index'Value (Argument (1)));
28 end Main;

160 Chapter 18. Solutions

Introduction to Ada: Laboratories

18.3.2 Operations

Listing 235: operations.ads
1 package Operations is
2

3 function Add (A, B : Integer) return Integer;
4

5 function Subtract (A, B : Integer) return Integer;
6

7 function Multiply (A, B : Integer) return Integer;
8

9 function Divide (A, B : Integer) return Integer;
10

11 end Operations;

Listing 236: operations.adb
1 package body Operations is
2

3 function Add (A, B : Integer) return Integer is
4 begin
5 return A + B;
6 end Add;
7

8 function Subtract (A, B : Integer) return Integer is
9 begin
10 return A - B;
11 end Subtract;
12

13 function Multiply (A, B : Integer) return Integer is
14 begin
15 return A * B;
16 end Multiply;
17

18 function Divide (A, B : Integer) return Integer is
19 begin
20 return A / B;
21 end Divide;
22

23 end Operations;

Listing 237: operations-test.ads
1 package Operations.Test is
2

3 procedure Display (A, B : Integer);
4

5 end Operations.Test;

Listing 238: operations-test.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Operations.Test is
4

5 procedure Display (A, B : Integer) is
6 A_Str : constant String := Integer'Image (A);
7 B_Str : constant String := Integer'Image (B);
8 begin
9 Put_Line ("Operations:");

(continues on next page)

18.3. Modular Programming 161

Introduction to Ada: Laboratories

(continued from previous page)
10 Put_Line (A_Str & " + " & B_Str & " = "
11 & Integer'Image (Add (A, B))
12 & ",");
13 Put_Line (A_Str & " - " & B_Str & " = "
14 & Integer'Image (Subtract (A, B))
15 & ",");
16 Put_Line (A_Str & " * " & B_Str & " = "
17 & Integer'Image (Multiply (A, B))
18 & ",");
19 Put_Line (A_Str & " / " & B_Str & " = "
20 & Integer'Image (Divide (A, B))
21 & ",");
22 end Display;
23

24 end Operations.Test;

Listing 239: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Operations;
5 with Operations.Test; use Operations.Test;
6

7 procedure Main is
8

9 type Test_Case_Index is
10 (Operations_Chk,
11 Operations_Display_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when Operations_Chk =>
17 Put_Line ("Add (100, 2) = "
18 & Integer'Image (Operations.Add (100, 2)));
19 Put_Line ("Subtract (100, 2) = "
20 & Integer'Image (Operations.Subtract (100, 2)));
21 Put_Line ("Multiply (100, 2) = "
22 & Integer'Image (Operations.Multiply (100, 2)));
23 Put_Line ("Divide (100, 2) = "
24 & Integer'Image (Operations.Divide (100, 2)));
25 when Operations_Display_Chk =>
26 Display (10, 5);
27 Display (1, 2);
28 end case;
29 end Check;
30

31 begin
32 if Argument_Count < 1 then
33 Put_Line ("ERROR: missing arguments! Exiting...");
34 return;
35 elsif Argument_Count > 1 then
36 Put_Line ("Ignoring additional arguments...");
37 end if;
38

39 Check (Test_Case_Index'Value (Argument (1)));
40 end Main;

162 Chapter 18. Solutions

Introduction to Ada: Laboratories

18.4 Strongly typed language

18.4.1 Colors

Listing 240: color_types.ads
1 package Color_Types is
2

3 type HTML_Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 function To_Integer (C : HTML_Color) return Integer;
17

18 type Basic_HTML_Color is
19 (Red,
20 Green,
21 Blue);
22

23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24

25 end Color_Types;

Listing 241: color_types.adb
1 package body Color_Types is
2

3 function To_Integer (C : HTML_Color) return Integer is
4 begin
5 case C is
6 when Salmon => return 16#FA8072#;
7 when Firebrick => return 16#B22222#;
8 when Red => return 16#FF0000#;
9 when Darkred => return 16#8B0000#;
10 when Lime => return 16#00FF00#;
11 when Forestgreen => return 16#228B22#;
12 when Green => return 16#008000#;
13 when Darkgreen => return 16#006400#;
14 when Blue => return 16#0000FF#;
15 when Mediumblue => return 16#0000CD#;
16 when Darkblue => return 16#00008B#;
17 end case;
18

19 end To_Integer;
20

21 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
22 begin
23 case C is
24 when Red => return Red;
25 when Green => return Green;
26 when Blue => return Blue;
27 end case;

(continues on next page)

18.4. Strongly typed language 163

Introduction to Ada: Laboratories

(continued from previous page)
28 end To_HTML_Color;
29

30 end Color_Types;

Listing 242: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Integer_Text_IO;
4

5 with Color_Types; use Color_Types;
6

7 procedure Main is
8 type Test_Case_Index is
9 (HTML_Color_Range,
10 HTML_Color_To_Integer,
11 Basic_HTML_Color_To_HTML_Color);
12

13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when HTML_Color_Range =>
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I));
19 end loop;
20 when HTML_Color_To_Integer =>
21 for I in HTML_Color'Range loop
22 Ada.Integer_Text_IO.Put (Item => To_Integer (I),
23 Width => 1,
24 Base => 16);
25 New_Line;
26 end loop;
27 when Basic_HTML_Color_To_HTML_Color =>
28 for I in Basic_HTML_Color'Range loop
29 Put_Line (HTML_Color'Image (To_HTML_Color (I)));
30 end loop;
31 end case;
32 end Check;
33

34 begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41

42 Check (Test_Case_Index'Value (Argument (1)));
43 end Main;

18.4.2 Integers

Listing 243: int_types.ads
1 package Int_Types is
2

3 type I_100 is range 0 .. 100;
4

5 type U_100 is mod 101;
(continues on next page)

164 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
6

7 function To_I_100 (V : U_100) return I_100;
8

9 function To_U_100 (V : I_100) return U_100;
10

11 type D_50 is new I_100 range 10 .. 50;
12

13 subtype S_50 is I_100 range 10 .. 50;
14

15 function To_D_50 (V : I_100) return D_50;
16

17 function To_S_50 (V : I_100) return S_50;
18

19 function To_I_100 (V : D_50) return I_100;
20

21 end Int_Types;

Listing 244: int_types.adb
1 package body Int_Types is
2

3 function To_I_100 (V : U_100) return I_100 is
4 begin
5 return I_100 (V);
6 end To_I_100;
7

8 function To_U_100 (V : I_100) return U_100 is
9 begin
10 return U_100 (V);
11 end To_U_100;
12

13 function To_D_50 (V : I_100) return D_50 is
14 Min : constant I_100 := I_100 (D_50'First);
15 Max : constant I_100 := I_100 (D_50'Last);
16 begin
17 if V > Max then
18 return D_50'Last;
19 elsif V < Min then
20 return D_50'First;
21 else
22 return D_50 (V);
23 end if;
24 end To_D_50;
25

26 function To_S_50 (V : I_100) return S_50 is
27 begin
28 if V > S_50'Last then
29 return S_50'Last;
30 elsif V < S_50'First then
31 return S_50'First;
32 else
33 return V;
34 end if;
35 end To_S_50;
36

37 function To_I_100 (V : D_50) return I_100 is
38 begin
39 return I_100 (V);
40 end To_I_100;
41

42 end Int_Types;

18.4. Strongly typed language 165

Introduction to Ada: Laboratories

Listing 245: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Int_Types; use Int_Types;
5

6 procedure Main is
7 package I_100_IO is new Ada.Text_IO.Integer_IO (I_100);
8 package U_100_IO is new Ada.Text_IO.Modular_IO (U_100);
9 package D_50_IO is new Ada.Text_IO.Integer_IO (D_50);
10

11 use I_100_IO;
12 use U_100_IO;
13 use D_50_IO;
14

15 type Test_Case_Index is
16 (I_100_Range,
17 U_100_Range,
18 U_100_Wraparound,
19 U_100_To_I_100,
20 I_100_To_U_100,
21 D_50_Range,
22 S_50_Range,
23 I_100_To_D_50,
24 I_100_To_S_50,
25 D_50_To_I_100,
26 S_50_To_I_100);
27

28 procedure Check (TC : Test_Case_Index) is
29 begin
30 I_100_IO.Default_Width := 1;
31 U_100_IO.Default_Width := 1;
32 D_50_IO.Default_Width := 1;
33

34 case TC is
35 when I_100_Range =>
36 Put (I_100'First);
37 New_Line;
38 Put (I_100'Last);
39 New_Line;
40 when U_100_Range =>
41 Put (U_100'First);
42 New_Line;
43 Put (U_100'Last);
44 New_Line;
45 when U_100_Wraparound =>
46 Put (U_100'First - 1);
47 New_Line;
48 Put (U_100'Last + 1);
49 New_Line;
50 when U_100_To_I_100 =>
51 for I in U_100'Range loop
52 I_100_IO.Put (To_I_100 (I));
53 New_Line;
54 end loop;
55 when I_100_To_U_100 =>
56 for I in I_100'Range loop
57 Put (To_U_100 (I));
58 New_Line;
59 end loop;

(continues on next page)

166 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
60 when D_50_Range =>
61 Put (D_50'First);
62 New_Line;
63 Put (D_50'Last);
64 New_Line;
65 when S_50_Range =>
66 Put (S_50'First);
67 New_Line;
68 Put (S_50'Last);
69 New_Line;
70 when I_100_To_D_50 =>
71 for I in I_100'Range loop
72 Put (To_D_50 (I));
73 New_Line;
74 end loop;
75 when I_100_To_S_50 =>
76 for I in I_100'Range loop
77 Put (To_S_50 (I));
78 New_Line;
79 end loop;
80 when D_50_To_I_100 =>
81 for I in D_50'Range loop
82 Put (To_I_100 (I));
83 New_Line;
84 end loop;
85 when S_50_To_I_100 =>
86 for I in S_50'Range loop
87 Put (I);
88 New_Line;
89 end loop;
90 end case;
91 end Check;
92

93 begin
94 if Argument_Count < 1 then
95 Put_Line ("ERROR: missing arguments! Exiting...");
96 return;
97 elsif Argument_Count > 1 then
98 Put_Line ("Ignoring additional arguments...");
99 end if;
100

101 Check (Test_Case_Index'Value (Argument (1)));
102 end Main;

18.4.3 Temperatures

Listing 246: temperature_types.ads
1 package Temperature_Types is
2

3 type Celsius is digits 6 range -273.15 .. 5504.85;
4

5 type Int_Celsius is range -273 .. 5505;
6

7 function To_Celsius (T : Int_Celsius) return Celsius;
8

9 function To_Int_Celsius (T : Celsius) return Int_Celsius;
10

11 type Kelvin is digits 6 range 0.0 .. 5778.00;
12

(continues on next page)

18.4. Strongly typed language 167

Introduction to Ada: Laboratories

(continued from previous page)
13 function To_Celsius (T : Kelvin) return Celsius;
14

15 function To_Kelvin (T : Celsius) return Kelvin;
16

17 end Temperature_Types;

Listing 247: temperature_types.adb
1 package body Temperature_Types is
2

3 function To_Celsius (T : Int_Celsius) return Celsius is
4 Min : constant Float := Float (Celsius'First);
5 Max : constant Float := Float (Celsius'Last);
6

7 F : constant Float := Float (T);
8 begin
9 if F > Max then
10 return Celsius (Max);
11 elsif F < Min then
12 return Celsius (Min);
13 else
14 return Celsius (F);
15 end if;
16 end To_Celsius;
17

18 function To_Int_Celsius (T : Celsius) return Int_Celsius is
19 begin
20 return Int_Celsius (T);
21 end To_Int_Celsius;
22

23 function To_Celsius (T : Kelvin) return Celsius is
24 F : constant Float := Float (T);
25 begin
26 return Celsius (F - 273.15);
27 end To_Celsius;
28

29 function To_Kelvin (T : Celsius) return Kelvin is
30 F : constant Float := Float (T);
31 begin
32 return Kelvin (F + 273.15);
33 end To_Kelvin;
34

35 end Temperature_Types;

Listing 248: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Temperature_Types; use Temperature_Types;
5

6 procedure Main is
7 package Celsius_IO is new Ada.Text_IO.Float_IO (Celsius);
8 package Kelvin_IO is new Ada.Text_IO.Float_IO (Kelvin);
9 package Int_Celsius_IO is new Ada.Text_IO.Integer_IO (Int_Celsius);
10

11 use Celsius_IO;
12 use Kelvin_IO;
13 use Int_Celsius_IO;
14

(continues on next page)

168 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
15 type Test_Case_Index is
16 (Celsius_Range,
17 Celsius_To_Int_Celsius,
18 Int_Celsius_To_Celsius,
19 Kelvin_To_Celsius,
20 Celsius_To_Kelvin);
21

22 procedure Check (TC : Test_Case_Index) is
23 begin
24 Celsius_IO.Default_Fore := 1;
25 Kelvin_IO.Default_Fore := 1;
26 Int_Celsius_IO.Default_Width := 1;
27

28 case TC is
29 when Celsius_Range =>
30 Put (Celsius'First);
31 New_Line;
32 Put (Celsius'Last);
33 New_Line;
34 when Celsius_To_Int_Celsius =>
35 Put (To_Int_Celsius (Celsius'First));
36 New_Line;
37 Put (To_Int_Celsius (0.0));
38 New_Line;
39 Put (To_Int_Celsius (Celsius'Last));
40 New_Line;
41 when Int_Celsius_To_Celsius =>
42 Put (To_Celsius (Int_Celsius'First));
43 New_Line;
44 Put (To_Celsius (0));
45 New_Line;
46 Put (To_Celsius (Int_Celsius'Last));
47 New_Line;
48 when Kelvin_To_Celsius =>
49 Put (To_Celsius (Kelvin'First));
50 New_Line;
51 Put (To_Celsius (0));
52 New_Line;
53 Put (To_Celsius (Kelvin'Last));
54 New_Line;
55 when Celsius_To_Kelvin =>
56 Put (To_Kelvin (Celsius'First));
57 New_Line;
58 Put (To_Kelvin (Celsius'Last));
59 New_Line;
60 end case;
61 end Check;
62

63 begin
64 if Argument_Count < 1 then
65 Put_Line ("ERROR: missing arguments! Exiting...");
66 return;
67 elsif Argument_Count > 1 then
68 Put_Line ("Ignoring additional arguments...");
69 end if;
70

71 Check (Test_Case_Index'Value (Argument (1)));
72 end Main;

18.4. Strongly typed language 169

Introduction to Ada: Laboratories

18.5 Records

18.5.1 Directions

Listing 249: directions.ads
1 package Directions is
2

3 type Angle_Mod is mod 360;
4

5 type Direction is
6 (North,
7 Northeast,
8 East,
9 Southeast,
10 South,
11 Southwest,
12 West,
13 Northwest);
14

15 function To_Direction (N: Angle_Mod) return Direction;
16

17 type Ext_Angle is record
18 Angle_Elem : Angle_Mod;
19 Direction_Elem : Direction;
20 end record;
21

22 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
23

24 procedure Display (N : Ext_Angle);
25

26 end Directions;

Listing 250: directions.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Directions is
4

5 procedure Display (N : Ext_Angle) is
6 begin
7 Put_Line ("Angle: "
8 & Angle_Mod'Image (N.Angle_Elem)
9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13

14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return North;
18 when 1 .. 89 => return Northeast;
19 when 90 => return East;
20 when 91 .. 179 => return Southeast;
21 when 180 => return South;
22 when 181 .. 269 => return Southwest;
23 when 270 => return West;
24 when 271 .. 359 => return Northwest;
25 end case;
26 end To_Direction;

(continues on next page)

170 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
27

28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33

34 end Directions;

Listing 251: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Directions; use Directions;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Direction_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Display (To_Ext_Angle (0));
15 Display (To_Ext_Angle (30));
16 Display (To_Ext_Angle (45));
17 Display (To_Ext_Angle (90));
18 Display (To_Ext_Angle (91));
19 Display (To_Ext_Angle (120));
20 Display (To_Ext_Angle (180));
21 Display (To_Ext_Angle (250));
22 Display (To_Ext_Angle (270));
23 end case;
24 end Check;
25

26 begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33

34 Check (Test_Case_Index'Value (Argument (1)));
35 end Main;

18.5.2 Colors

Listing 252: color_types.ads
1 package Color_Types is
2

3 type HTML_Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,

(continues on next page)

18.5. Records 171

Introduction to Ada: Laboratories

(continued from previous page)
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 function To_Integer (C : HTML_Color) return Integer;
17

18 type Basic_HTML_Color is
19 (Red,
20 Green,
21 Blue);
22

23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24

25 subtype Int_Color is Integer range 0 .. 255;
26

27 type RGB is record
28 Red : Int_Color;
29 Green : Int_Color;
30 Blue : Int_Color;
31 end record;
32

33 function To_RGB (C : HTML_Color) return RGB;
34

35 function Image (C : RGB) return String;
36

37 end Color_Types;

Listing 253: color_types.adb
1 with Ada.Integer_Text_IO;
2

3 package body Color_Types is
4

5 function To_Integer (C : HTML_Color) return Integer is
6 begin
7 case C is
8 when Salmon => return 16#FA8072#;
9 when Firebrick => return 16#B22222#;
10 when Red => return 16#FF0000#;
11 when Darkred => return 16#8B0000#;
12 when Lime => return 16#00FF00#;
13 when Forestgreen => return 16#228B22#;
14 when Green => return 16#008000#;
15 when Darkgreen => return 16#006400#;
16 when Blue => return 16#0000FF#;
17 when Mediumblue => return 16#0000CD#;
18 when Darkblue => return 16#00008B#;
19 end case;
20

21 end To_Integer;
22

23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
24 begin
25 case C is
26 when Red => return Red;
27 when Green => return Green;
28 when Blue => return Blue;
29 end case;

(continues on next page)

172 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
30 end To_HTML_Color;
31

32 function To_RGB (C : HTML_Color) return RGB is
33 begin
34 case C is
35 when Salmon => return (16#FA#, 16#80#, 16#72#);
36 when Firebrick => return (16#B2#, 16#22#, 16#22#);
37 when Red => return (16#FF#, 16#00#, 16#00#);
38 when Darkred => return (16#8B#, 16#00#, 16#00#);
39 when Lime => return (16#00#, 16#FF#, 16#00#);
40 when Forestgreen => return (16#22#, 16#8B#, 16#22#);
41 when Green => return (16#00#, 16#80#, 16#00#);
42 when Darkgreen => return (16#00#, 16#64#, 16#00#);
43 when Blue => return (16#00#, 16#00#, 16#FF#);
44 when Mediumblue => return (16#00#, 16#00#, 16#CD#);
45 when Darkblue => return (16#00#, 16#00#, 16#8B#);
46 end case;
47

48 end To_RGB;
49

50 function Image (C : RGB) return String is
51 subtype Str_Range is Integer range 1 .. 10;
52 SR : String (Str_Range);
53 SG : String (Str_Range);
54 SB : String (Str_Range);
55 begin
56 Ada.Integer_Text_IO.Put (To => SR,
57 Item => C.Red,
58 Base => 16);
59 Ada.Integer_Text_IO.Put (To => SG,
60 Item => C.Green,
61 Base => 16);
62 Ada.Integer_Text_IO.Put (To => SB,
63 Item => C.Blue,
64 Base => 16);
65 return ("(Red => " & SR
66 & ", Green => " & SG
67 & ", Blue => " & SB
68 &")");
69 end Image;
70

71 end Color_Types;

Listing 254: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Color_Types; use Color_Types;
5

6 procedure Main is
7 type Test_Case_Index is
8 (HTML_Color_To_RGB);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when HTML_Color_To_RGB =>
14 for I in HTML_Color'Range loop
15 Put_Line (HTML_Color'Image (I) & " => "
16 & Image (To_RGB (I)) & ".");

(continues on next page)

18.5. Records 173

Introduction to Ada: Laboratories

(continued from previous page)
17 end loop;
18 end case;
19 end Check;
20

21 begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28

29 Check (Test_Case_Index'Value (Argument (1)));
30 end Main;

18.5.3 Inventory

Listing 255: inventory_pkg.ads
1 package Inventory_Pkg is
2

3 type Item_Name is
4 (Ballpoint_Pen, Oil_Based_Pen_Marker, Feather_Quill_Pen);
5

6 function To_String (I : Item_Name) return String;
7

8 type Item is record
9 Name : Item_Name;
10 Quantity : Natural;
11 Price : Float;
12 end record;
13

14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item;
17

18 procedure Add (Assets : in out Float;
19 I : Item);
20

21 end Inventory_Pkg;

Listing 256: inventory_pkg.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Inventory_Pkg is
4

5 function To_String (I : Item_Name) return String is
6 begin
7 case I is
8 when Ballpoint_Pen => return "Ballpoint Pen";
9 when Oil_Based_Pen_Marker => return "Oil-based Pen Marker";
10 when Feather_Quill_Pen => return "Feather Quill Pen";
11 end case;
12 end To_String;
13

14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item is

(continues on next page)

174 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
17 begin
18 Put_Line ("Item: " & To_String (Name) & ".");
19

20 return (Name => Name,
21 Quantity => Quantity,
22 Price => Price);
23 end Init;
24

25 procedure Add (Assets : in out Float;
26 I : Item) is
27 begin
28 Assets := Assets + Float (I.Quantity) * I.Price;
29 end Add;
30

31 end Inventory_Pkg;

Listing 257: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Inventory_Pkg; use Inventory_Pkg;
5

6 procedure Main is
7 -- Remark: the following line is not relevant.
8 F : array (1 .. 10) of Float := (others => 42.42);
9

10 type Test_Case_Index is
11 (Inventory_Chk);
12

13 procedure Display (Assets : Float) is
14 package F_IO is new Ada.Text_IO.Float_IO (Float);
15

16 use F_IO;
17 begin
18 Put ("Assets: $");
19 Put (Assets, 1, 2, 0);
20 Put (".");
21 New_Line;
22 end Display;
23

24 procedure Check (TC : Test_Case_Index) is
25 I : Item;
26 Assets : Float := 0.0;
27

28 -- Please ignore the following three lines!
29 pragma Warnings (Off, "default initialization");
30 for Assets'Address use F'Address;
31 pragma Warnings (On, "default initialization");
32 begin
33 case TC is
34 when Inventory_Chk =>
35 I := Init (Ballpoint_Pen, 185, 0.15);
36 Add (Assets, I);
37 Display (Assets);
38

39 I := Init (Oil_Based_Pen_Marker, 100, 9.0);
40 Add (Assets, I);
41 Display (Assets);
42

43 I := Init (Feather_Quill_Pen, 2, 40.0);
(continues on next page)

18.5. Records 175

Introduction to Ada: Laboratories

(continued from previous page)
44 Add (Assets, I);
45 Display (Assets);
46 end case;
47 end Check;
48

49 begin
50 if Argument_Count < 1 then
51 Put_Line ("ERROR: missing arguments! Exiting...");
52 return;
53 elsif Argument_Count > 1 then
54 Put_Line ("Ignoring additional arguments...");
55 end if;
56

57 Check (Test_Case_Index'Value (Argument (1)));
58 end Main;

18.6 Arrays

18.6.1 Constrained Array

Listing 258: constrained_arrays.ads
1 package Constrained_Arrays is
2

3 type My_Index is range 1 .. 10;
4

5 type My_Array is array (My_Index) of Integer;
6

7 function Init return My_Array;
8

9 procedure Double (A : in out My_Array);
10

11 function First_Elem (A : My_Array) return Integer;
12

13 function Last_Elem (A : My_Array) return Integer;
14

15 function Length (A : My_Array) return Integer;
16

17 A : My_Array := (1, 2, others => 42);
18

19 end Constrained_Arrays;

Listing 259: constrained_arrays.adb
1 package body Constrained_Arrays is
2

3 function Init return My_Array is
4 A : My_Array;
5 begin
6 for I in My_Array'Range loop
7 A (I) := Integer (I);
8 end loop;
9

10 return A;
11 end Init;
12

13 procedure Double (A : in out My_Array) is
14 begin

(continues on next page)

176 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
15 for I in A'Range loop
16 A (I) := A (I) * 2;
17 end loop;
18 end Double;
19

20 function First_Elem (A : My_Array) return Integer is
21 begin
22 return A (A'First);
23 end First_Elem;
24

25 function Last_Elem (A : My_Array) return Integer is
26 begin
27 return A (A'Last);
28 end Last_Elem;
29

30 function Length (A : My_Array) return Integer is
31 begin
32 return A'Length;
33 end Length;
34

35 end Constrained_Arrays;

Listing 260: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Constrained_Arrays; use Constrained_Arrays;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Range_Chk,
9 Array_Range_Chk,
10 A_Obj_Chk,
11 Init_Chk,
12 Double_Chk,
13 First_Elem_Chk,
14 Last_Elem_Chk,
15 Length_Chk);
16

17 procedure Check (TC : Test_Case_Index) is
18 AA : My_Array;
19

20 procedure Display (A : My_Array) is
21 begin
22 for I in A'Range loop
23 Put_Line (Integer'Image (A (I)));
24 end loop;
25 end Display;
26

27 procedure Local_Init (A : in out My_Array) is
28 begin
29 A := (100, 90, 80, 10, 20, 30, 40, 60, 50, 70);
30 end Local_Init;
31 begin
32 case TC is
33 when Range_Chk =>
34 for I in My_Index loop
35 Put_Line (My_Index'Image (I));
36 end loop;
37 when Array_Range_Chk =>

(continues on next page)

18.6. Arrays 177

Introduction to Ada: Laboratories

(continued from previous page)
38 for I in My_Array'Range loop
39 Put_Line (My_Index'Image (I));
40 end loop;
41 when A_Obj_Chk =>
42 Display (A);
43 when Init_Chk =>
44 AA := Init;
45 Display (AA);
46 when Double_Chk =>
47 Local_Init (AA);
48 Double (AA);
49 Display (AA);
50 when First_Elem_Chk =>
51 Local_Init (AA);
52 Put_Line (Integer'Image (First_Elem (AA)));
53 when Last_Elem_Chk =>
54 Local_Init (AA);
55 Put_Line (Integer'Image (Last_Elem (AA)));
56 when Length_Chk =>
57 Put_Line (Integer'Image (Length (AA)));
58 end case;
59 end Check;
60

61 begin
62 if Argument_Count < 1 then
63 Put_Line ("ERROR: missing arguments! Exiting...");
64 return;
65 elsif Argument_Count > 1 then
66 Put_Line ("Ignoring additional arguments...");
67 end if;
68

69 Check (Test_Case_Index'Value (Argument (1)));
70 end Main;

18.6.2 Colors: Lookup-Table

Listing 261: color_types.ads
1 package Color_Types is
2

3 type HTML_Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 subtype Int_Color is Integer range 0 .. 255;
17

18 type RGB is record
19 Red : Int_Color;
20 Green : Int_Color;
21 Blue : Int_Color;
22 end record;

(continues on next page)

178 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
23

24 function To_RGB (C : HTML_Color) return RGB;
25

26 function Image (C : RGB) return String;
27

28 type HTML_Color_RGB is array (HTML_Color) of RGB;
29

30 To_RGB_Lookup_Table : constant HTML_Color_RGB
31 := (Salmon => (16#FA#, 16#80#, 16#72#),
32 Firebrick => (16#B2#, 16#22#, 16#22#),
33 Red => (16#FF#, 16#00#, 16#00#),
34 Darkred => (16#8B#, 16#00#, 16#00#),
35 Lime => (16#00#, 16#FF#, 16#00#),
36 Forestgreen => (16#22#, 16#8B#, 16#22#),
37 Green => (16#00#, 16#80#, 16#00#),
38 Darkgreen => (16#00#, 16#64#, 16#00#),
39 Blue => (16#00#, 16#00#, 16#FF#),
40 Mediumblue => (16#00#, 16#00#, 16#CD#),
41 Darkblue => (16#00#, 16#00#, 16#8B#));
42

43 end Color_Types;

Listing 262: color_types.adb
1 with Ada.Integer_Text_IO;
2 package body Color_Types is
3

4 function To_RGB (C : HTML_Color) return RGB is
5 begin
6 return To_RGB_Lookup_Table (C);
7 end To_RGB;
8

9 function Image (C : RGB) return String is
10 subtype Str_Range is Integer range 1 .. 10;
11 SR : String (Str_Range);
12 SG : String (Str_Range);
13 SB : String (Str_Range);
14 begin
15 Ada.Integer_Text_IO.Put (To => SR,
16 Item => C.Red,
17 Base => 16);
18 Ada.Integer_Text_IO.Put (To => SG,
19 Item => C.Green,
20 Base => 16);
21 Ada.Integer_Text_IO.Put (To => SB,
22 Item => C.Blue,
23 Base => 16);
24 return ("(Red => " & SR
25 & ", Green => " & SG
26 & ", Blue => " & SB
27 &")");
28 end Image;
29

30 end Color_Types;

Listing 263: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

(continues on next page)

18.6. Arrays 179

Introduction to Ada: Laboratories

(continued from previous page)
4 with Color_Types; use Color_Types;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Color_Table_Chk,
9 HTML_Color_To_Integer_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Color_Table_Chk =>
15 Put_Line ("Size of HTML_Color_RGB: "
16 & Integer'Image (HTML_Color_RGB'Length));
17 Put_Line ("Firebrick: "
18 & Image (To_RGB_Lookup_Table (Firebrick)));
19 when HTML_Color_To_Integer_Chk =>
20 for I in HTML_Color'Range loop
21 Put_Line (HTML_Color'Image (I) & " => "
22 & Image (To_RGB (I)) & ".");
23 end loop;
24 end case;
25 end Check;
26

27 begin
28 if Argument_Count < 1 then
29 Put_Line ("ERROR: missing arguments! Exiting...");
30 return;
31 elsif Argument_Count > 1 then
32 Put_Line ("Ignoring additional arguments...");
33 end if;
34

35 Check (Test_Case_Index'Value (Argument (1)));
36 end Main;

18.6.3 Unconstrained Array

Listing 264: unconstrained_arrays.ads
1 package Unconstrained_Arrays is
2

3 type My_Array is array (Positive range <>) of Integer;
4

5 procedure Init (A : in out My_Array);
6

7 function Init (I, L : Positive) return My_Array;
8

9 procedure Double (A : in out My_Array);
10

11 function Diff_Prev_Elem (A : My_Array) return My_Array;
12

13 end Unconstrained_Arrays;

Listing 265: unconstrained_arrays.adb
1 package body Unconstrained_Arrays is
2

3 procedure Init (A : in out My_Array) is
4 Y : Natural := A'Last;
5 begin

(continues on next page)

180 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
6 for I in A'Range loop
7 A (I) := Y;
8 Y := Y - 1;
9 end loop;
10 end Init;
11

12 function Init (I, L : Positive) return My_Array is
13 A : My_Array (I .. I + L - 1);
14 begin
15 Init (A);
16 return A;
17 end Init;
18

19 procedure Double (A : in out My_Array) is
20 begin
21 for I in A'Range loop
22 A (I) := A (I) * 2;
23 end loop;
24 end Double;
25

26 function Diff_Prev_Elem (A : My_Array) return My_Array is
27 A_Out : My_Array (A'Range);
28 begin
29 A_Out (A'First) := 0;
30 for I in A'First + 1 .. A'Last loop
31 A_Out (I) := A (I) - A (I - 1);
32 end loop;
33

34 return A_Out;
35 end Diff_Prev_Elem;
36

37 end Unconstrained_Arrays;

Listing 266: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Unconstrained_Arrays; use Unconstrained_Arrays;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Init_Chk,
9 Init_Proc_Chk,
10 Double_Chk,
11 Diff_Prev_Chk,
12 Diff_Prev_Single_Chk);
13

14 procedure Check (TC : Test_Case_Index) is
15 AA : My_Array (1 .. 5);
16 AB : My_Array (5 .. 9);
17

18 procedure Display (A : My_Array) is
19 begin
20 for I in A'Range loop
21 Put_Line (Integer'Image (A (I)));
22 end loop;
23 end Display;
24

25 procedure Local_Init (A : in out My_Array) is
26 begin

(continues on next page)

18.6. Arrays 181

Introduction to Ada: Laboratories

(continued from previous page)
27 A := (1, 2, 5, 10, -10);
28 end Local_Init;
29

30 begin
31 case TC is
32 when Init_Chk =>
33 AA := Init (AA'First, AA'Length);
34 AB := Init (AB'First, AB'Length);
35 Display (AA);
36 Display (AB);
37 when Init_Proc_Chk =>
38 Init (AA);
39 Init (AB);
40 Display (AA);
41 Display (AB);
42 when Double_Chk =>
43 Local_Init (AB);
44 Double (AB);
45 Display (AB);
46 when Diff_Prev_Chk =>
47 Local_Init (AB);
48 AB := Diff_Prev_Elem (AB);
49 Display (AB);
50 when Diff_Prev_Single_Chk =>
51 declare
52 A1 : My_Array (1 .. 1) := (1 => 42);
53 begin
54 A1 := Diff_Prev_Elem (A1);
55 Display (A1);
56 end;
57 end case;
58 end Check;
59

60 begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67

68 Check (Test_Case_Index'Value (Argument (1)));
69 end Main;

18.6.4 Product info

Listing 267: product_info_pkg.ads
1 package Product_Info_Pkg is
2

3 subtype Quantity is Natural;
4

5 subtype Currency is Float;
6

7 type Product_Info is record
8 Units : Quantity;
9 Price : Currency;
10 end record;
11

12 type Product_Infos is array (Positive range <>) of Product_Info;
(continues on next page)

182 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
13

14 type Currency_Array is array (Positive range <>) of Currency;
15

16 procedure Total (P : Product_Infos;
17 Tot : out Currency_Array);
18

19 function Total (P : Product_Infos) return Currency_Array;
20

21 function Total (P : Product_Infos) return Currency;
22

23 end Product_Info_Pkg;

Listing 268: product_info_pkg.adb
1 package body Product_Info_Pkg is
2

3 -- Get total for single product
4 function Total (P : Product_Info) return Currency is
5 (Currency (P.Units) * P.Price);
6

7 procedure Total (P : Product_Infos;
8 Tot : out Currency_Array) is
9 begin
10 for I in P'Range loop
11 Tot (I) := Total (P (I));
12 end loop;
13 end Total;
14

15 function Total (P : Product_Infos) return Currency_Array
16 is
17 Tot : Currency_Array (P'Range);
18 begin
19 Total (P, Tot);
20 return Tot;
21 end Total;
22

23 function Total (P : Product_Infos) return Currency
24 is
25 Tot : Currency := 0.0;
26 begin
27 for I in P'Range loop
28 Tot := Tot + Total (P (I));
29 end loop;
30 return Tot;
31 end Total;
32

33 end Product_Info_Pkg;

Listing 269: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Product_Info_Pkg; use Product_Info_Pkg;
5

6 procedure Main is
7 package Currency_IO is new Ada.Text_IO.Float_IO (Currency);
8

9 type Test_Case_Index is
10 (Total_Func_Chk,

(continues on next page)

18.6. Arrays 183

Introduction to Ada: Laboratories

(continued from previous page)
11 Total_Proc_Chk,
12 Total_Value_Chk);
13

14 procedure Check (TC : Test_Case_Index) is
15 subtype Test_Range is Positive range 1 .. 5;
16

17 P : Product_Infos (Test_Range);
18 Tots : Currency_Array (Test_Range);
19 Tot : Currency;
20

21 procedure Display (Tots : Currency_Array) is
22 begin
23 for I in Tots'Range loop
24 Currency_IO.Put (Tots (I));
25 New_Line;
26 end loop;
27 end Display;
28

29 procedure Local_Init (P : in out Product_Infos) is
30 begin
31 P := ((1, 0.5),
32 (2, 10.0),
33 (5, 40.0),
34 (10, 10.0),
35 (10, 20.0));
36 end Local_Init;
37

38 begin
39 Currency_IO.Default_Fore := 1;
40 Currency_IO.Default_Aft := 2;
41 Currency_IO.Default_Exp := 0;
42

43 case TC is
44 when Total_Func_Chk =>
45 Local_Init (P);
46 Tots := Total (P);
47 Display (Tots);
48 when Total_Proc_Chk =>
49 Local_Init (P);
50 Total (P, Tots);
51 Display (Tots);
52 when Total_Value_Chk =>
53 Local_Init (P);
54 Tot := Total (P);
55 Currency_IO.Put (Tot);
56 New_Line;
57 end case;
58 end Check;
59

60 begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67

68 Check (Test_Case_Index'Value (Argument (1)));
69 end Main;

184 Chapter 18. Solutions

Introduction to Ada: Laboratories

18.6.5 String_10

Listing 270: strings_10.ads
1 package Strings_10 is
2

3 subtype String_10 is String (1 .. 10);
4

5 -- Using "type String_10 is..." is possible, too.
6

7 function To_String_10 (S : String) return String_10;
8

9 end Strings_10;

Listing 271: strings_10.adb
1 package body Strings_10 is
2

3 function To_String_10 (S : String) return String_10 is
4 S_Out : String_10;
5 begin
6 for I in String_10'First .. Integer'Min (String_10'Last, S'Last) loop
7 S_Out (I) := S (I);
8 end loop;
9

10 for I in Integer'Min (String_10'Last + 1, S'Last + 1) .. String_10'Last loop
11 S_Out (I) := ' ';
12 end loop;
13

14 return S_Out;
15 end To_String_10;
16

17 end Strings_10;

Listing 272: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Strings_10; use Strings_10;
5

6 procedure Main is
7 type Test_Case_Index is
8 (String_10_Long_Chk,
9 String_10_Short_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 SL : constant String := "And this is a long string just for testing...";
13 SS : constant String := "Hey!";
14 S_10 : String_10;
15

16 begin
17 case TC is
18 when String_10_Long_Chk =>
19 S_10 := To_String_10 (SL);
20 Put_Line (String (S_10));
21 when String_10_Short_Chk =>
22 S_10 := (others => ' ');
23 S_10 := To_String_10 (SS);
24 Put_Line (String (S_10));
25 end case;
26 end Check;

(continues on next page)

18.6. Arrays 185

Introduction to Ada: Laboratories

(continued from previous page)
27

28 begin
29 if Argument_Count < 1 then
30 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
34 end if;
35

36 Check (Test_Case_Index'Value (Argument (1)));
37 end Main;

18.6.6 List of Names

Listing 273: names_ages.ads
1 package Names_Ages is
2

3 Max_People : constant Positive := 10;
4

5 subtype Name_Type is String (1 .. 50);
6

7 type Age_Type is new Natural;
8

9 type Person is record
10 Name : Name_Type;
11 Age : Age_Type;
12 end record;
13

14 type People_Array is array (Positive range <>) of Person;
15

16 type People is record
17 People_A : People_Array (1 .. Max_People);
18 Last_Valid : Natural;
19 end record;
20

21 procedure Reset (P : in out People);
22

23 procedure Add (P : in out People;
24 Name : String);
25

26 function Get (P : People;
27 Name : String) return Age_Type;
28

29 procedure Update (P : in out People;
30 Name : String;
31 Age : Age_Type);
32

33 procedure Display (P : People);
34

35 end Names_Ages;

Listing 274: names_ages.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Strings; use Ada.Strings;
3 with Ada.Strings.Fixed; use Ada.Strings.Fixed;
4

5 package body Names_Ages is
(continues on next page)

186 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
6

7 function To_Name_Type (S : String) return Name_Type is
8 S_Out : Name_Type := (others => ' ');
9 begin
10 for I in 1 .. Integer'Min (S'Last, Name_Type'Last) loop
11 S_Out (I) := S (I);
12 end loop;
13

14 return S_Out;
15 end To_Name_Type;
16

17 procedure Init (P : in out Person;
18 Name : String) is
19 begin
20 P.Name := To_Name_Type (Name);
21 P.Age := 0;
22 end Init;
23

24 function Match (P : Person;
25 Name : String) return Boolean is
26 begin
27 return P.Name = To_Name_Type (Name);
28 end Match;
29

30 function Get (P : Person) return Age_Type is
31 begin
32 return P.Age;
33 end Get;
34

35 procedure Update (P : in out Person;
36 Age : Age_Type) is
37 begin
38 P.Age := Age;
39 end Update;
40

41 procedure Display (P : Person) is
42 begin
43 Put_Line ("NAME: " & Trim (P.Name, Right));
44 Put_Line ("AGE: " & Age_Type'Image (P.Age));
45 end Display;
46

47 procedure Reset (P : in out People) is
48 begin
49 P.Last_Valid := 0;
50 end Reset;
51

52 procedure Add (P : in out People;
53 Name : String) is
54 begin
55 P.Last_Valid := P.Last_Valid + 1;
56 Init (P.People_A (P.Last_Valid), Name);
57 end Add;
58

59 function Get (P : People;
60 Name : String) return Age_Type is
61 begin
62 for I in P.People_A'First .. P.Last_Valid loop
63 if Match (P.People_A (I), Name) then
64 return Get (P.People_A (I));
65 end if;
66 end loop;

(continues on next page)

18.6. Arrays 187

Introduction to Ada: Laboratories

(continued from previous page)
67

68 return 0;
69 end Get;
70

71 procedure Update (P : in out People;
72 Name : String;
73 Age : Age_Type) is
74 begin
75 for I in P.People_A'First .. P.Last_Valid loop
76 if Match (P.People_A (I), Name) then
77 Update (P.People_A (I), Age);
78 end if;
79 end loop;
80 end Update;
81

82 procedure Display (P : People) is
83 begin
84 Put_Line ("LIST OF NAMES:");
85 for I in P.People_A'First .. P.Last_Valid loop
86 Display (P.People_A (I));
87 end loop;
88 end Display;
89

90 end Names_Ages;

Listing 275: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Names_Ages; use Names_Ages;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Names_Ages_Chk,
9 Get_Age_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 P : People;
13 begin
14 case TC is
15 when Names_Ages_Chk =>
16 Reset (P);
17 Add (P, "John");
18 Add (P, "Patricia");
19 Add (P, "Josh");
20 Display (P);
21 Update (P, "John", 18);
22 Update (P, "Patricia", 35);
23 Update (P, "Josh", 53);
24 Display (P);
25 when Get_Age_Chk =>
26 Reset (P);
27 Add (P, "Peter");
28 Update (P, "Peter", 45);
29 Put_Line ("Peter is "
30 & Age_Type'Image (Get (P, "Peter"))
31 & " years old.");
32 end case;
33 end Check;
34

(continues on next page)

188 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
35 begin
36 if Argument_Count < 1 then
37 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
38 return;
39 elsif Argument_Count > 1 then
40 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
41 end if;
42

43 Check (Test_Case_Index'Value (Argument (1)));
44 end Main;

18.7 More About Types

18.7.1 Aggregate Initialization

Listing 276: aggregates.ads
1 package Aggregates is
2

3 type Rec is record
4 W : Integer := 10;
5 X : Integer := 11;
6 Y : Integer := 12;
7 Z : Integer := 13;
8 end record;
9

10 type Int_Arr is array (1 .. 20) of Integer;
11

12 procedure Init (R : out Rec);
13

14 procedure Init_Some (A : out Int_Arr);
15

16 procedure Init (A : out Int_Arr);
17

18 end Aggregates;

Listing 277: aggregates.adb
1 package body Aggregates is
2

3 procedure Init (R : out Rec) is
4 begin
5 R := (X => 100,
6 Y => 200,
7 others => <>);
8 end Init;
9

10 procedure Init_Some (A : out Int_Arr) is
11 begin
12 A := (1 .. 5 => 99,
13 others => 100);
14 end Init_Some;
15

16 procedure Init (A : out Int_Arr) is
17 begin
18 A := (others => 5);
19 end Init;
20

21 end Aggregates;

18.7. More About Types 189

Introduction to Ada: Laboratories

Listing 278: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Aggregates; use Aggregates;
5

6 procedure Main is
7 -- Remark: the following line is not relevant.
8 F : array (1 .. 10) of Float := (others => 42.42)
9 with Unreferenced;
10

11 type Test_Case_Index is
12 (Default_Rec_Chk,
13 Init_Rec_Chk,
14 Init_Some_Arr_Chk,
15 Init_Arr_Chk);
16

17 procedure Check (TC : Test_Case_Index) is
18 A : Int_Arr;
19 R : Rec;
20 DR : constant Rec := (others => <>);
21 begin
22 case TC is
23 when Default_Rec_Chk =>
24 R := DR;
25 Put_Line ("Record Default:");
26 Put_Line ("W => " & Integer'Image (R.W));
27 Put_Line ("X => " & Integer'Image (R.X));
28 Put_Line ("Y => " & Integer'Image (R.Y));
29 Put_Line ("Z => " & Integer'Image (R.Z));
30 when Init_Rec_Chk =>
31 Init (R);
32 Put_Line ("Record Init:");
33 Put_Line ("W => " & Integer'Image (R.W));
34 Put_Line ("X => " & Integer'Image (R.X));
35 Put_Line ("Y => " & Integer'Image (R.Y));
36 Put_Line ("Z => " & Integer'Image (R.Z));
37 when Init_Some_Arr_Chk =>
38 Init_Some (A);
39 Put_Line ("Array Init_Some:");
40 for I in A'Range loop
41 Put_Line (Integer'Image (I) & " "
42 & Integer'Image (A (I)));
43 end loop;
44 when Init_Arr_Chk =>
45 Init (A);
46 Put_Line ("Array Init:");
47 for I in A'Range loop
48 Put_Line (Integer'Image (I) & " "
49 & Integer'Image (A (I)));
50 end loop;
51 end case;
52 end Check;
53

54 begin
55 if Argument_Count < 1 then
56 Put_Line ("ERROR: missing arguments! Exiting...");
57 return;
58 elsif Argument_Count > 1 then
59 Put_Line ("Ignoring additional arguments...");

(continues on next page)

190 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
60 end if;
61

62 Check (Test_Case_Index'Value (Argument (1)));
63 end Main;

18.7.2 Versioning

Listing 279: versioning.ads
1 package Versioning is
2

3 type Version is record
4 Major : Natural;
5 Minor : Natural;
6 Maintenance : Natural;
7 end record;
8

9 function Convert (V : Version) return String;
10

11 function Convert (V : Version) return Float;
12

13 end Versioning;

Listing 280: versioning.adb
1 with Ada.Strings; use Ada.Strings;
2 with Ada.Strings.Fixed; use Ada.Strings.Fixed;
3

4 package body Versioning is
5

6 function Image_Trim (N : Natural) return String is
7 S_N : constant String := Trim (Natural'Image (N), Left);
8 begin
9 return S_N;
10 end Image_Trim;
11

12 function Convert (V : Version) return String is
13 S_Major : constant String := Image_Trim (V.Major);
14 S_Minor : constant String := Image_Trim (V.Minor);
15 S_Maint : constant String := Image_Trim (V.Maintenance);
16 begin
17 return (S_Major & "." & S_Minor & "." & S_Maint);
18 end Convert;
19

20 function Convert (V : Version) return Float is
21 begin
22 return Float (V.Major) + (Float (V.Minor) / 10.0);
23 end Convert;
24

25 end Versioning;

Listing 281: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Versioning; use Versioning;
5

6 procedure Main is
(continues on next page)

18.7. More About Types 191

Introduction to Ada: Laboratories

(continued from previous page)
7 type Test_Case_Index is
8 (Ver_String_Chk,
9 Ver_Float_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 V : constant Version := (1, 3, 23);
13 begin
14 case TC is
15 when Ver_String_Chk =>
16 Put_Line (Convert (V));
17 when Ver_Float_Chk =>
18 Put_Line (Float'Image (Convert (V)));
19 end case;
20 end Check;
21

22 begin
23 if Argument_Count < 1 then
24 Put_Line ("ERROR: missing arguments! Exiting...");
25 return;
26 elsif Argument_Count > 1 then
27 Put_Line ("Ignoring additional arguments...");
28 end if;
29

30 Check (Test_Case_Index'Value (Argument (1)));
31 end Main;

18.7.3 Simple todo list

Listing 282: todo_lists.ads
1 package Todo_Lists is
2

3 type Todo_Item is access String;
4

5 type Todo_Items is array (Positive range <>) of Todo_Item;
6

7 type Todo_List (Max_Len : Natural) is record
8 Items : Todo_Items (1 .. Max_Len);
9 Last : Natural := 0;
10 end record;
11

12 procedure Add (Todos : in out Todo_List;
13 Item : String);
14

15 procedure Display (Todos : Todo_List);
16

17 end Todo_Lists;

Listing 283: todo_lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Todo_Lists is
4

5 procedure Add (Todos : in out Todo_List;
6 Item : String) is
7 begin
8 if Todos.Last < Todos.Items'Last then
9 Todos.Last := Todos.Last + 1;

(continues on next page)

192 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
10 Todos.Items (Todos.Last) := new String'(Item);
11 else
12 Put_Line ("ERROR: list is full!");
13 end if;
14 end Add;
15

16 procedure Display (Todos : Todo_List) is
17 begin
18 Put_Line ("TO-DO LIST");
19 for I in Todos.Items'First .. Todos.Last loop
20 Put_Line (Todos.Items (I).all);
21 end loop;
22 end Display;
23

24 end Todo_Lists;

Listing 284: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Todo_Lists; use Todo_Lists;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Todo_List_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List (10);
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29

30 begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37

38 Check (Test_Case_Index'Value (Argument (1)));
39 end Main;

18.7. More About Types 193

Introduction to Ada: Laboratories

18.7.4 Price list

Listing 285: price_lists.ads
1 package Price_Lists is
2

3 type Price_Type is delta 0.01 digits 12;
4

5 type Price_List_Array is array (Positive range <>) of Price_Type;
6

7 type Price_List (Max : Positive) is record
8 List : Price_List_Array (1 .. Max);
9 Last : Natural := 0;
10 end record;
11

12 type Price_Result (Ok : Boolean) is record
13 case Ok is
14 when False =>
15 null;
16 when True =>
17 Price : Price_Type;
18 end case;
19 end record;
20

21 procedure Reset (Prices : in out Price_List);
22

23 procedure Add (Prices : in out Price_List;
24 Item : Price_Type);
25

26 function Get (Prices : Price_List;
27 Idx : Positive) return Price_Result;
28

29 procedure Display (Prices : Price_List);
30

31 end Price_Lists;

Listing 286: price_lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Price_Lists is
4

5 procedure Reset (Prices : in out Price_List) is
6 begin
7 Prices.Last := 0;
8 end Reset;
9

10 procedure Add (Prices : in out Price_List;
11 Item : Price_Type) is
12 begin
13 if Prices.Last < Prices.List'Last then
14 Prices.Last := Prices.Last + 1;
15 Prices.List (Prices.Last) := Item;
16 else
17 Put_Line ("ERROR: list is full!");
18 end if;
19 end Add;
20

21 function Get (Prices : Price_List;
22 Idx : Positive) return Price_Result is
23 begin
24 if (Idx >= Prices.List'First and then

(continues on next page)

194 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
25 Idx <= Prices.Last) then
26 return Price_Result'(Ok => True,
27 Price => Prices.List (Idx));
28 else
29 return Price_Result'(Ok => False);
30 end if;
31 end Get;
32

33 procedure Display (Prices : Price_List) is
34 begin
35 Put_Line ("PRICE LIST");
36 for I in Prices.List'First .. Prices.Last loop
37 Put_Line (Price_Type'Image (Prices.List (I)));
38 end loop;
39 end Display;
40

41 end Price_Lists;

Listing 287: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Price_Lists; use Price_Lists;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Price_Type_Chk,
9 Price_List_Chk,
10 Price_List_Get_Chk);
11

12 procedure Check (TC : Test_Case_Index) is
13 L : Price_List (10);
14

15 procedure Local_Init_List is
16 begin
17 Reset (L);
18 Add (L, 1.45);
19 Add (L, 2.37);
20 Add (L, 3.21);
21 Add (L, 4.14);
22 Add (L, 5.22);
23 Add (L, 6.69);
24 Add (L, 7.77);
25 Add (L, 8.14);
26 Add (L, 9.99);
27 Add (L, 10.01);
28 end Local_Init_List;
29

30 procedure Get_Display (Idx : Positive) is
31 R : constant Price_Result := Get (L, Idx);
32 begin
33 Put_Line ("Attempt Get # " & Positive'Image (Idx));
34 if R.Ok then
35 Put_Line ("Element # " & Positive'Image (Idx)
36 & " => " & Price_Type'Image (R.Price));
37 else
38 declare
39 begin
40 Put_Line ("Element # " & Positive'Image (Idx)
41 & " => " & Price_Type'Image (R.Price));

(continues on next page)

18.7. More About Types 195

Introduction to Ada: Laboratories

(continued from previous page)
42 exception
43 when others =>
44 Put_Line ("Element not available (as expected)");
45 end;
46 end if;
47

48 end Get_Display;
49

50 begin
51 case TC is
52 when Price_Type_Chk =>
53 Put_Line ("The delta value of Price_Type is "
54 & Price_Type'Image (Price_Type'Delta) & ";");
55 Put_Line ("The minimum value of Price_Type is "
56 & Price_Type'Image (Price_Type'First) & ";");
57 Put_Line ("The maximum value of Price_Type is "
58 & Price_Type'Image (Price_Type'Last) & ";");
59 when Price_List_Chk =>
60 Local_Init_List;
61 Display (L);
62 when Price_List_Get_Chk =>
63 Local_Init_List;
64 Get_Display (5);
65 Get_Display (40);
66 end case;
67 end Check;
68

69 begin
70 if Argument_Count < 1 then
71 Put_Line ("ERROR: missing arguments! Exiting...");
72 return;
73 elsif Argument_Count > 1 then
74 Put_Line ("Ignoring additional arguments...");
75 end if;
76

77 Check (Test_Case_Index'Value (Argument (1)));
78 end Main;

18.8 Privacy

18.8.1 Directions

Listing 288: directions.ads
1 package Directions is
2

3 type Angle_Mod is mod 360;
4

5 type Direction is
6 (North,
7 Northwest,
8 West,
9 Southwest,
10 South,
11 Southeast,
12 East);
13

14 function To_Direction (N : Angle_Mod) return Direction;
15

(continues on next page)

196 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
16 type Ext_Angle is private;
17

18 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
19

20 procedure Display (N : Ext_Angle);
21

22 private
23

24 type Ext_Angle is record
25 Angle_Elem : Angle_Mod;
26 Direction_Elem : Direction;
27 end record;
28

29 end Directions;

Listing 289: directions.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Directions is
4

5 procedure Display (N : Ext_Angle) is
6 begin
7 Put_Line ("Angle: "
8 & Angle_Mod'Image (N.Angle_Elem)
9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13

14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return East;
18 when 1 .. 89 => return Northwest;
19 when 90 => return North;
20 when 91 .. 179 => return Northwest;
21 when 180 => return West;
22 when 181 .. 269 => return Southwest;
23 when 270 => return South;
24 when 271 .. 359 => return Southeast;
25 end case;
26 end To_Direction;
27

28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33

34 end Directions;

Listing 290: test_directions.adb
1 with Directions; use Directions;
2

3 procedure Test_Directions is
4 type Ext_Angle_Array is array (Positive range <>) of Ext_Angle;
5

6 All_Directions : constant Ext_Angle_Array (1 .. 6)
(continues on next page)

18.8. Privacy 197

Introduction to Ada: Laboratories

(continued from previous page)
7 := (To_Ext_Angle (0),
8 To_Ext_Angle (45),
9 To_Ext_Angle (90),
10 To_Ext_Angle (91),
11 To_Ext_Angle (180),
12 To_Ext_Angle (270));
13

14 begin
15 for I in All_Directions'Range loop
16 Display (All_Directions (I));
17 end loop;
18

19 end Test_Directions;

Listing 291: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Test_Directions;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Direction_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Test_Directions;
15 end case;
16 end Check;
17

18 begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25

26 Check (Test_Case_Index'Value (Argument (1)));
27 end Main;

18.8.2 Limited Strings

Listing 292: limited_strings.ads
1 package Limited_Strings is
2

3 type Lim_String is limited private;
4

5 function Init (S : String) return Lim_String;
6

7 function Init (Max : Positive) return Lim_String;
8

9 procedure Put_Line (LS : Lim_String);
10

11 procedure Copy (From : Lim_String;
(continues on next page)

198 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
12 To : in out Lim_String);
13

14 function "=" (Ref, Dut : Lim_String) return Boolean;
15

16 private
17

18 type Lim_String is access String;
19

20 end Limited_Strings;

Listing 293: limited_strings.adb
1 with Ada.Text_IO;
2

3 package body Limited_Strings
4 is
5

6 function Init (S : String) return Lim_String is
7 LS : constant Lim_String := new String'(S);
8 begin
9 return Ls;
10 end Init;
11

12 function Init (Max : Positive) return Lim_String is
13 LS : constant Lim_String := new String (1 .. Max);
14 begin
15 LS.all := (others => '_');
16 return LS;
17 end Init;
18

19 procedure Put_Line (LS : Lim_String) is
20 begin
21 Ada.Text_IO.Put_Line (LS.all);
22 end Put_Line;
23

24 function Get_Min_Last (A, B : Lim_String) return Positive is
25 begin
26 return Positive'Min (A'Last, B'Last);
27 end Get_Min_Last;
28

29 procedure Copy (From : Lim_String;
30 To : in out Lim_String) is
31 Min_Last : constant Positive := Get_Min_Last (From, To);
32 begin
33 To (To'First .. Min_Last) := From (To'First .. Min_Last);
34 To (Min_Last + 1 .. To'Last) := (others => '_');
35 end;
36

37 function "=" (Ref, Dut : Lim_String) return Boolean is
38 Min_Last : constant Positive := Get_Min_Last (Ref, Dut);
39 begin
40 for I in Dut'First .. Min_Last loop
41 if Dut (I) /= Ref (I) then
42 return False;
43 end if;
44 end loop;
45

46 return True;
47 end;
48

49 end Limited_Strings;

18.8. Privacy 199

Introduction to Ada: Laboratories

Listing 294: check_lim_string.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Limited_Strings; use Limited_Strings;
4

5 procedure Check_Lim_String is
6 S : constant String := "----------";
7 S1 : constant Lim_String := Init ("Hello World");
8 S2 : constant Lim_String := Init (30);
9 S3 : Lim_String := Init (5);
10 S4 : Lim_String := Init (S & S & S);
11 begin
12 Put ("S1 => ");
13 Put_Line (S1);
14 Put ("S2 => ");
15 Put_Line (S2);
16

17 if S1 = S2 then
18 Put_Line ("S1 is equal to S2.");
19 else
20 Put_Line ("S1 isn't equal to S2.");
21 end if;
22

23 Copy (From => S1, To => S3);
24 Put ("S3 => ");
25 Put_Line (S3);
26

27 if S1 = S3 then
28 Put_Line ("S1 is equal to S3.");
29 else
30 Put_Line ("S1 isn't equal to S3.");
31 end if;
32

33 Copy (From => S1, To => S4);
34 Put ("S4 => ");
35 Put_Line (S4);
36

37 if S1 = S4 then
38 Put_Line ("S1 is equal to S4.");
39 else
40 Put_Line ("S1 isn't equal to S4.");
41 end if;
42 end Check_Lim_String;

Listing 295: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Check_Lim_String;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Lim_String_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Lim_String_Chk =>
14 Check_Lim_String;

(continues on next page)

200 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
15 end case;
16 end Check;
17

18 begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25

26 Check (Test_Case_Index'Value (Argument (1)));
27 end Main;

18.9 Generics

18.9.1 Display Array

Listing 296: display_array.ads
1 generic
2 type T_Range is range <>;
3 type T_Element is private;
4 type T_Array is array (T_Range range <>) of T_Element;
5 with function Image (E : T_Element) return String;
6 procedure Display_Array (Header : String;
7 A : T_Array);

Listing 297: display_array.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Display_Array (Header : String;
4 A : T_Array) is
5 begin
6 Put_Line (Header);
7 for I in A'Range loop
8 Put_Line (T_Range'Image (I) & ": " & Image (A (I)));
9 end loop;
10 end Display_Array;

Listing 298: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_Array;
5

6 procedure Main is
7 type Test_Case_Index is (Int_Array_Chk,
8 Point_Array_Chk);
9

10 procedure Test_Int_Array is
11 type Int_Array is array (Positive range <>) of Integer;
12

13 procedure Display_Int_Array is new
14 Display_Array (T_Range => Positive,
15 T_Element => Integer,

(continues on next page)

18.9. Generics 201

Introduction to Ada: Laboratories

(continued from previous page)
16 T_Array => Int_Array,
17 Image => Integer'Image);
18

19 A : constant Int_Array (1 .. 5) := (1, 2, 5, 7, 10);
20 begin
21 Display_Int_Array ("Integers", A);
22 end Test_Int_Array;
23

24 procedure Test_Point_Array is
25 type Point is record
26 X : Float;
27 Y : Float;
28 end record;
29

30 type Point_Array is array (Natural range <>) of Point;
31

32 function Image (P : Point) return String is
33 begin
34 return "(" & Float'Image (P.X)
35 & ", " & Float'Image (P.Y) & ")";
36 end Image;
37

38 procedure Display_Point_Array is new
39 Display_Array (T_Range => Natural,
40 T_Element => Point,
41 T_Array => Point_Array,
42 Image => Image);
43

44 A : constant Point_Array (0 .. 3) := ((1.0, 0.5), (2.0, -0.5),
45 (5.0, 2.0), (-0.5, 2.0));
46 begin
47 Display_Point_Array ("Points", A);
48 end Test_Point_Array;
49

50 procedure Check (TC : Test_Case_Index) is
51 begin
52 case TC is
53 when Int_Array_Chk =>
54 Test_Int_Array;
55 when Point_Array_Chk =>
56 Test_Point_Array;
57 end case;
58 end Check;
59

60 begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67

68 Check (Test_Case_Index'Value (Argument (1)));
69 end Main;

18.9.2 Average of Array of Float

202 Chapter 18. Solutions

Introduction to Ada: Laboratories

Listing 299: average.ads
1 generic
2 type T_Range is range <>;
3 type T_Element is digits <>;
4 type T_Array is array (T_Range range <>) of T_Element;
5 function Average (A : T_Array) return T_Element;

Listing 300: average.adb
1 function Average (A : T_Array) return T_Element is
2 Acc : Float := 0.0;
3 begin
4 for I in A'Range loop
5 Acc := Acc + Float (A (I));
6 end loop;
7

8 return T_Element (Acc / Float (A'Length));
9 end Average;

Listing 301: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Average;
5

6 procedure Main is
7 type Test_Case_Index is (Float_Array_Chk,
8 Digits_7_Float_Array_Chk);
9

10 procedure Test_Float_Array is
11 type Float_Array is array (Positive range <>) of Float;
12

13 function Average_Float is new
14 Average (T_Range => Positive,
15 T_Element => Float,
16 T_Array => Float_Array);
17

18 A : constant Float_Array (1 .. 5) := (1.0, 3.0, 5.0, 7.5, -12.5);
19 begin
20 Put_Line ("Average: " & Float'Image (Average_Float (A)));
21 end Test_Float_Array;
22

23 procedure Test_Digits_7_Float_Array is
24 type Custom_Float is digits 7 range 0.0 .. 1.0;
25

26 type Float_Array is
27 array (Integer range <>) of Custom_Float;
28

29 function Average_Float is new
30 Average (T_Range => Integer,
31 T_Element => Custom_Float,
32 T_Array => Float_Array);
33

34 A : constant Float_Array (-1 .. 3) := (0.5, 0.0, 1.0, 0.6, 0.5);
35 begin
36 Put_Line ("Average: "
37 & Custom_Float'Image (Average_Float (A)));
38 end Test_Digits_7_Float_Array;
39

(continues on next page)

18.9. Generics 203

Introduction to Ada: Laboratories

(continued from previous page)
40 procedure Check (TC : Test_Case_Index) is
41 begin
42 case TC is
43 when Float_Array_Chk =>
44 Test_Float_Array;
45 when Digits_7_Float_Array_Chk =>
46 Test_Digits_7_Float_Array;
47 end case;
48 end Check;
49

50 begin
51 if Argument_Count < 1 then
52 Put_Line ("ERROR: missing arguments! Exiting...");
53 return;
54 elsif Argument_Count > 1 then
55 Put_Line ("Ignoring additional arguments...");
56 end if;
57

58 Check (Test_Case_Index'Value (Argument (1)));
59 end Main;

18.9.3 Average of Array of Any Type

Listing 302: average.ads
1 generic
2 type T_Range is range <>;
3 type T_Element is private;
4 type T_Array is array (T_Range range <>) of T_Element;
5 with function To_Float (E : T_Element) return Float is <>;
6 function Average (A : T_Array) return Float;

Listing 303: average.adb
1 function Average (A : T_Array) return Float is
2 Acc : Float := 0.0;
3 begin
4 for I in A'Range loop
5 Acc := Acc + To_Float (A (I));
6 end loop;
7

8 return Acc / Float (A'Length);
9 end Average;

Listing 304: test_item.ads
1 procedure Test_Item;

Listing 305: test_item.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Average;
4

5 procedure Test_Item is
6 package F_IO is new Ada.Text_IO.Float_IO (Float);
7

8 type Amount is delta 0.01 digits 12;
9

(continues on next page)

204 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
10 type Item is record
11 Quantity : Natural;
12 Price : Amount;
13 end record;
14

15 type Item_Array is
16 array (Positive range <>) of Item;
17

18 function Get_Total (I : Item) return Float is
19 (Float (I.Quantity) * Float (I.Price));
20

21 function Get_Price (I : Item) return Float is
22 (Float (I.Price));
23

24 function Average_Total is new
25 Average (T_Range => Positive,
26 T_Element => Item,
27 T_Array => Item_Array,
28 To_Float => Get_Total);
29

30 function Average_Price is new
31 Average (T_Range => Positive,
32 T_Element => Item,
33 T_Array => Item_Array,
34 To_Float => Get_Price);
35

36 A : constant Item_Array (1 .. 4)
37 := ((Quantity => 5, Price => 10.00),
38 (Quantity => 80, Price => 2.50),
39 (Quantity => 40, Price => 5.00),
40 (Quantity => 20, Price => 12.50));
41

42 begin
43 Put ("Average per item & quantity: ");
44 F_IO.Put (Average_Total (A), 3, 2, 0);
45 New_Line;
46

47 Put ("Average price: ");
48 F_IO.Put (Average_Price (A), 3, 2, 0);
49 New_Line;
50 end Test_Item;

Listing 306: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Test_Item;
5

6 procedure Main is
7 type Test_Case_Index is (Item_Array_Chk);
8

9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Item_Array_Chk =>
13 Test_Item;
14 end case;
15 end Check;
16

17 begin
(continues on next page)

18.9. Generics 205

Introduction to Ada: Laboratories

(continued from previous page)
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24

25 Check (Test_Case_Index'Value (Argument (1)));
26 end Main;

18.9.4 Generic list

Listing 307: gen_list.ads
1 generic
2 type Item is private;
3 type Items is array (Positive range <>) of Item;
4 Name : String;
5 List_Array : in out Items;
6 Last : in out Natural;
7 with procedure Put (I : Item) is <>;
8 package Gen_List is
9

10 procedure Init;
11

12 procedure Add (I : Item;
13 Status : out Boolean);
14

15 procedure Display;
16

17 end Gen_List;

Listing 308: gen_list.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Gen_List is
4

5 procedure Init is
6 begin
7 Last := List_Array'First - 1;
8 end Init;
9

10 procedure Add (I : Item;
11 Status : out Boolean) is
12 begin
13 Status := Last < List_Array'Last;
14

15 if Status then
16 Last := Last + 1;
17 List_Array (Last) := I;
18 end if;
19 end Add;
20

21 procedure Display is
22 begin
23 Put_Line (Name);
24 for I in List_Array'First .. Last loop
25 Put (List_Array (I));

(continues on next page)

206 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
26 New_Line;
27 end loop;
28 end Display;
29

30 end Gen_List;

Listing 309: test_int.ads
1 procedure Test_Int;

Listing 310: test_int.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Gen_List;
4

5 procedure Test_Int is
6

7 procedure Put (I : Integer) is
8 begin
9 Ada.Text_IO.Put (Integer'Image (I));
10 end Put;
11

12 type Integer_Array is array (Positive range <>) of Integer;
13

14 A : Integer_Array (1 .. 3);
15 L : Natural;
16

17 package Int_List is new
18 Gen_List (Item => Integer,
19 Items => Integer_Array,
20 Name => "List of integers",
21 List_Array => A,
22 Last => L);
23

24 Success : Boolean;
25

26 procedure Display_Add_Success (Success : Boolean) is
27 begin
28 if Success then
29 Put_Line ("Added item successfully!");
30 else
31 Put_Line ("Couldn't add item!");
32 end if;
33

34 end Display_Add_Success;
35

36 begin
37 Int_List.Init;
38

39 Int_List.Add (2, Success);
40 Display_Add_Success (Success);
41

42 Int_List.Add (5, Success);
43 Display_Add_Success (Success);
44

45 Int_List.Add (7, Success);
46 Display_Add_Success (Success);
47

48 Int_List.Add (8, Success);
(continues on next page)

18.9. Generics 207

Introduction to Ada: Laboratories

(continued from previous page)
49 Display_Add_Success (Success);
50

51 Int_List.Display;
52 end Test_Int;

Listing 311: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Test_Int;
5

6 procedure Main is
7 type Test_Case_Index is (Int_Chk);
8

9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Int_Chk =>
13 Test_Int;
14 end case;
15 end Check;
16

17 begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24

25 Check (Test_Case_Index'Value (Argument (1)));
26 end Main;

18.10 Exceptions

18.10.1 Uninitialized Value

Listing 312: options.ads
1 package Options is
2

3 type Option is (Uninitialized,
4 Option_1,
5 Option_2,
6 Option_3);
7

8 Uninitialized_Value : exception;
9

10 function Image (O : Option) return String;
11

12 end Options;

Listing 313: options.adb
1 package body Options is
2

3 function Image (O : Option) return String is
(continues on next page)

208 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
4 begin
5 case O is
6 when Uninitialized =>
7 raise Uninitialized_Value with "Uninitialized value detected!";
8 when others =>
9 return Option'Image (O);
10 end case;
11 end Image;
12

13 end Options;

Listing 314: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Exceptions; use Ada.Exceptions;
4

5 with Options; use Options;
6

7 procedure Main is
8 type Test_Case_Index is
9 (Options_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12

13 procedure Check (O : Option) is
14 begin
15 Put_Line (Image (O));
16 exception
17 when E : Uninitialized_Value =>
18 Put_Line (Exception_Message (E));
19 end Check;
20

21 begin
22 case TC is
23 when Options_Chk =>
24 for O in Option loop
25 Check (O);
26 end loop;
27 end case;
28 end Check;
29

30 begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37

38 Check (Test_Case_Index'Value (Argument (1)));
39 end Main;

18.10.2 Numerical Exception

Listing 315: tests.ads
1 package Tests is
2

(continues on next page)

18.10. Exceptions 209

Introduction to Ada: Laboratories

(continued from previous page)
3 type Test_ID is (Test_1, Test_2);
4

5 Custom_Exception : exception;
6

7 procedure Num_Exception_Test (ID : Test_ID);
8

9 end Tests;

Listing 316: tests.adb
1 package body Tests is
2

3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
4

5 procedure Num_Exception_Test (ID : Test_ID) is
6 A, B, C : Integer;
7 begin
8 case ID is
9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17

18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19

20 end Tests;

Listing 317: check_exception.adb
1 with Tests; use Tests;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4 with Ada.Exceptions; use Ada.Exceptions;
5

6 procedure Check_Exception (ID : Test_ID) is
7 begin
8 Num_Exception_Test (ID);
9 exception
10 when Constraint_Error =>
11 Put_Line ("Constraint_Error detected!");
12 when E : others =>
13 Put_Line (Exception_Message (E));
14 end Check_Exception;

Listing 318: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Exceptions; use Ada.Exceptions;
4

5 with Tests; use Tests;
6 with Check_Exception;
7

8 procedure Main is
9 type Test_Case_Index is
10 (Exception_1_Chk,

(continues on next page)

210 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
11 Exception_2_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14

15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26

27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35

36 begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43

44 Check (Test_Case_Index'Value (Argument (1)));
45 end Main;

18.10.3 Re-raising Exceptions

Listing 319: tests.ads
1 package Tests is
2

3 type Test_ID is (Test_1, Test_2);
4

5 Custom_Exception, Another_Exception : exception;
6

7 procedure Num_Exception_Test (ID : Test_ID);
8

9 end Tests;

Listing 320: tests.adb
1 package body Tests is
2

3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
4

5 procedure Num_Exception_Test (ID : Test_ID) is
6 A, B, C : Integer;
7 begin

(continues on next page)

18.10. Exceptions 211

Introduction to Ada: Laboratories

(continued from previous page)
8 case ID is
9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17

18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19

20 end Tests;

Listing 321: check_exception.ads
1 with Tests; use Tests;
2

3 procedure Check_Exception (ID : Test_ID);

Listing 322: check_exception.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Exceptions; use Ada.Exceptions;
3

4 procedure Check_Exception (ID : Test_ID) is
5 begin
6 Num_Exception_Test (ID);
7 exception
8 when Constraint_Error =>
9 Put_Line ("Constraint_Error detected!");
10 raise;
11 when E : others =>
12 Put_Line (Exception_Message (E));
13 raise Another_Exception;
14 end Check_Exception;

Listing 323: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Exceptions; use Ada.Exceptions;
4

5 with Tests; use Tests;
6 with Check_Exception;
7

8 procedure Main is
9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14

15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");

(continues on next page)

212 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26

27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35

36 begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43

44 Check (Test_Case_Index'Value (Argument (1)));
45 end Main;

18.11 Tasking

18.11.1 Display Service

Listing 324: display_services.ads
1 package Display_Services is
2

3 task type Display_Service is
4 entry Display (S : String);
5 entry Display (I : Integer);
6 end Display_Service;
7

8 end Display_Services;

Listing 325: display_services.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Display_Services is
4

5 task body Display_Service is
6 begin
7 loop
8 select
9 accept Display (S : String) do
10 Put_Line (S);
11 end Display;
12 or
13 accept Display (I : Integer) do
14 Put_Line (Integer'Image (I));
15 end Display;
16 or

(continues on next page)

18.11. Tasking 213

Introduction to Ada: Laboratories

(continued from previous page)
17 terminate;
18 end select;
19 end loop;
20 end Display_Service;
21

22 end Display_Services;

Listing 326: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Display_Services; use Display_Services;
5

6 procedure Main is
7 type Test_Case_Index is (Display_Service_Chk);
8

9 procedure Check (TC : Test_Case_Index) is
10 Display : Display_Service;
11 begin
12 case TC is
13 when Display_Service_Chk =>
14 Display.Display ("Hello");
15 delay 0.5;
16 Display.Display ("Hello again");
17 delay 0.5;
18 Display.Display (55);
19 delay 0.5;
20 end case;
21 end Check;
22

23 begin
24 if Argument_Count < 1 then
25 Put_Line ("ERROR: missing arguments! Exiting...");
26 return;
27 elsif Argument_Count > 1 then
28 Put_Line ("Ignoring additional arguments...");
29 end if;
30

31 Check (Test_Case_Index'Value (Argument (1)));
32 end Main;

18.11.2 Event Manager

Listing 327: event_managers.ads
1 with Ada.Real_Time; use Ada.Real_Time;
2

3 package Event_Managers is
4

5 task type Event_Manager is
6 entry Start (ID : Natural);
7 entry Event (T : Time);
8 end Event_Manager;
9

10 end Event_Managers;

214 Chapter 18. Solutions

Introduction to Ada: Laboratories

Listing 328: event_managers.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Event_Managers is
4

5 task body Event_Manager is
6 Event_ID : Natural := 0;
7 Event_Delay : Time;
8 begin
9 accept Start (ID : Natural) do
10 Event_ID := ID;
11 end Start;
12

13 accept Event (T : Time) do
14 Event_Delay := T;
15 end Event;
16

17 delay until Event_Delay;
18

19 Put_Line ("Event #" & Natural'Image (Event_ID));
20 end Event_Manager;
21

22 end Event_Managers;

Listing 329: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Event_Managers; use Event_Managers;
5 with Ada.Real_Time; use Ada.Real_Time;
6

7 procedure Main is
8 type Test_Case_Index is (Event_Manager_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 Ev_Mng : array (1 .. 5) of Event_Manager;
12 begin
13 case TC is
14 when Event_Manager_Chk =>
15 for I in Ev_Mng'Range loop
16 Ev_Mng (I).Start (I);
17 end loop;
18 Ev_Mng (1).Event (Clock + Seconds (5));
19 Ev_Mng (2).Event (Clock + Seconds (3));
20 Ev_Mng (3).Event (Clock + Seconds (1));
21 Ev_Mng (4).Event (Clock + Seconds (2));
22 Ev_Mng (5).Event (Clock + Seconds (4));
23 end case;
24 end Check;
25

26 begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33

34 Check (Test_Case_Index'Value (Argument (1)));
(continues on next page)

18.11. Tasking 215

Introduction to Ada: Laboratories

(continued from previous page)
35 end Main;

18.11.3 Generic Protected Queue

Listing 330: gen_queues.ads
1 generic
2 type Queue_Index is mod <>;
3 type T is private;
4 package Gen_Queues is
5

6 type Queue_Array is array (Queue_Index) of T;
7

8 protected type Queue is
9 function Empty return Boolean;
10 function Full return Boolean;
11 entry Push (V : T);
12 entry Pop (V : out T);
13 private
14 N : Natural := 0;
15 Idx : Queue_Index := Queue_Array'First;
16 A : Queue_Array;
17 end Queue;
18

19 end Gen_Queues;

Listing 331: gen_queues.adb
1 package body Gen_Queues is
2

3 protected body Queue is
4

5 function Empty return Boolean is
6 (N = 0);
7

8 function Full return Boolean is
9 (N = A'Length);
10

11 entry Push (V : T) when not Full is
12 begin
13 A (Idx) := V;
14

15 Idx := Idx + 1;
16 N := N + 1;
17 end Push;
18

19 entry Pop (V : out T) when not Empty is
20 begin
21 N := N - 1;
22

23 V := A (Idx - Queue_Index (N) - 1);
24 end Pop;
25

26 end Queue;
27

28 end Gen_Queues;

216 Chapter 18. Solutions

Introduction to Ada: Laboratories

Listing 332: queue_tests.ads
1 package Queue_Tests is
2

3 procedure Simple_Test;
4

5 procedure Concurrent_Test;
6

7 end Queue_Tests;

Listing 333: queue_tests.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Gen_Queues;
4

5 package body Queue_Tests is
6

7 Max : constant := 10;
8 type Queue_Mod is mod Max;
9

10 procedure Simple_Test is
11 package Queues_Float is new Gen_Queues (Queue_Mod, Float);
12

13 Q_F : Queues_Float.Queue;
14 V : Float;
15 begin
16 V := 10.0;
17 while not Q_F.Full loop
18 Q_F.Push (V);
19 V := V + 1.5;
20 end loop;
21

22 while not Q_F.Empty loop
23 Q_F.Pop (V);
24 Put_Line ("Value from queue: " & Float'Image (V));
25 end loop;
26 end Simple_Test;
27

28 procedure Concurrent_Test is
29 package Queues_Integer is new Gen_Queues (Queue_Mod, Integer);
30

31 Q_I : Queues_Integer.Queue;
32

33 task T_Producer;
34 task T_Consumer;
35

36 task body T_Producer is
37 V : Integer := 100;
38 begin
39 for I in 1 .. 2 * Max loop
40 Q_I.Push (V);
41 V := V + 1;
42 end loop;
43 end T_Producer;
44

45 task body T_Consumer is
46 V : Integer;
47 begin
48 delay 1.5;
49

(continues on next page)

18.11. Tasking 217

Introduction to Ada: Laboratories

(continued from previous page)
50 while not Q_I.Empty loop
51 Q_I.Pop (V);
52 Put_Line ("Value from queue: " & Integer'Image (V));
53 delay 0.2;
54 end loop;
55 end T_Consumer;
56 begin
57 null;
58 end Concurrent_Test;
59

60 end Queue_Tests;

Listing 334: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Queue_Tests; use Queue_Tests;
5

6 procedure Main is
7 type Test_Case_Index is (Simple_Queue_Chk,
8 Concurrent_Queue_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Simple_Queue_Chk =>
14 Simple_Test;
15 when Concurrent_Queue_Chk =>
16 Concurrent_Test;
17 end case;
18 end Check;
19

20 begin
21 if Argument_Count < 1 then
22 Put_Line ("ERROR: missing arguments! Exiting...");
23 return;
24 elsif Argument_Count > 1 then
25 Put_Line ("Ignoring additional arguments...");
26 end if;
27

28 Check (Test_Case_Index'Value (Argument (1)));
29 end Main;

18.12 Design by contracts

18.12.1 Price Range

Listing 335: prices.ads
1 package Prices is
2

3 type Amount is delta 10.0 ** (-2) digits 12;
4

5 -- subtype Price is Amount range 0.0 .. Amount'Last;
6

7 subtype Price is Amount
8 with Static_Predicate => Price >= 0.0;

(continues on next page)

218 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
9

10 end Prices;

Listing 336: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Prices; use Prices;
6

7 procedure Main is
8

9 type Test_Case_Index is
10 (Price_Range_Chk);
11

12 procedure Check (TC : Test_Case_Index) is
13

14 procedure Check_Range (A : Amount) is
15 P : constant Price := A;
16 begin
17 Put_Line ("Price: " & Price'Image (P));
18 end Check_Range;
19

20 begin
21 case TC is
22 when Price_Range_Chk =>
23 Check_Range (-2.0);
24 end case;
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check;
31

32 begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39

40 Check (Test_Case_Index'Value (Argument (1)));
41 end Main;

18.12.2 Pythagorean Theorem: Predicate

Listing 337: triangles.ads
1 package Triangles is
2

3 subtype Length is Integer;
4

5 type Right_Triangle is record
6 H : Length := 0;
7 -- Hypotenuse
8 C1, C2 : Length := 0;

(continues on next page)

18.12. Design by contracts 219

Introduction to Ada: Laboratories

(continued from previous page)
9 -- Catheti / legs
10 end record
11 with Dynamic_Predicate => H * H = C1 * C1 + C2 * C2;
12

13 function Init (H, C1, C2 : Length) return Right_Triangle is
14 ((H, C1, C2));
15

16 end Triangles;

Listing 338: triangles-io.ads
1 package Triangles.IO is
2

3 function Image (T : Right_Triangle) return String;
4

5 end Triangles.IO;

Listing 339: triangles-io.adb
1 package body Triangles.IO is
2

3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8

9 end Triangles.IO;

Listing 340: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Triangles; use Triangles;
6 with Triangles.IO; use Triangles.IO;
7

8 procedure Main is
9

10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17

18 procedure Check (TC : Test_Case_Index) is
19

20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");

(continues on next page)

220 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
30 end Check_Triangle;
31

32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)));
52 end Main;

18.12.3 Pythagorean Theorem: Precondition

Listing 341: triangles.ads
1 package Triangles is
2

3 subtype Length is Integer;
4

5 type Right_Triangle is record
6 H : Length := 0;
7 -- Hypotenuse
8 C1, C2 : Length := 0;
9 -- Catheti / legs
10 end record;
11

12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2))
14 with Pre => H * H = C1 * C1 + C2 * C2;
15

16 end Triangles;

Listing 342: triangles-io.ads
1 package Triangles.IO is
2

3 function Image (T : Right_Triangle) return String;
4

5 end Triangles.IO;

Listing 343: triangles-io.adb
1 package body Triangles.IO is
2

3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)

(continues on next page)

18.12. Design by contracts 221

Introduction to Ada: Laboratories

(continued from previous page)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8

9 end Triangles.IO;

Listing 344: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Triangles; use Triangles;
6 with Triangles.IO; use Triangles.IO;
7

8 procedure Main is
9

10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17

18 procedure Check (TC : Test_Case_Index) is
19

20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31

32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)));
52 end Main;

222 Chapter 18. Solutions

Introduction to Ada: Laboratories

18.12.4 Pythagorean Theorem: Postcondition

Listing 345: triangles.ads
1 package Triangles is
2

3 subtype Length is Integer;
4

5 type Right_Triangle is record
6 H : Length := 0;
7 -- Hypotenuse
8 C1, C2 : Length := 0;
9 -- Catheti / legs
10 end record;
11

12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2))
14 with Post => (Init'Result.H * Init'Result.H
15 = Init'Result.C1 * Init'Result.C1
16 + Init'Result.C2 * Init'Result.C2);
17

18 end Triangles;

Listing 346: triangles-io.ads
1 package Triangles.IO is
2

3 function Image (T : Right_Triangle) return String;
4

5 end Triangles.IO;

Listing 347: triangles-io.adb
1 package body Triangles.IO is
2

3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8

9 end Triangles.IO;

Listing 348: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Triangles; use Triangles;
6 with Triangles.IO; use Triangles.IO;
7

8 procedure Main is
9

10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);

(continues on next page)

18.12. Design by contracts 223

Introduction to Ada: Laboratories

(continued from previous page)
17

18 procedure Check (TC : Test_Case_Index) is
19

20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31

32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)));
52 end Main;

18.12.5 Pythagorean Theorem: Type Invariant

Listing 349: triangles.ads
1 package Triangles is
2

3 subtype Length is Integer;
4

5 type Right_Triangle is private
6 with Type_Invariant => Check (Right_Triangle);
7

8 function Check (T : Right_Triangle) return Boolean;
9

10 function Init (H, C1, C2 : Length) return Right_Triangle;
11

12 private
13

14 type Right_Triangle is record
15 H : Length := 0;
16 -- Hypotenuse
17 C1, C2 : Length := 0;
18 -- Catheti / legs
19 end record;

(continues on next page)

224 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
20

21 function Init (H, C1, C2 : Length) return Right_Triangle is
22 ((H, C1, C2));
23

24 function Check (T : Right_Triangle) return Boolean is
25 (T.H * T.H = T.C1 * T.C1 + T.C2 * T.C2);
26

27 end Triangles;

Listing 350: triangles-io.ads
1 package Triangles.IO is
2

3 function Image (T : Right_Triangle) return String;
4

5 end Triangles.IO;

Listing 351: triangles-io.adb
1 package body Triangles.IO is
2

3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8

9 end Triangles.IO;

Listing 352: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with System.Assertions; use System.Assertions;
4

5 with Triangles; use Triangles;
6 with Triangles.IO; use Triangles.IO;
7

8 procedure Main is
9

10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17

18 procedure Check (TC : Test_Case_Index) is
19

20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");

(continues on next page)

18.12. Design by contracts 225

Introduction to Ada: Laboratories

(continued from previous page)
30 end Check_Triangle;
31

32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)));
52 end Main;

18.12.6 Primary Colors

Listing 353: color_types.ads
1 package Color_Types is
2

3 type HTML_Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 subtype Int_Color is Integer range 0 .. 255;
17

18 function Image (I : Int_Color) return String;
19

20 type RGB is record
21 Red : Int_Color;
22 Green : Int_Color;
23 Blue : Int_Color;
24 end record;
25

26 function To_RGB (C : HTML_Color) return RGB;
27

28 function Image (C : RGB) return String;
29

30 type HTML_Color_RGB_Array is array (HTML_Color) of RGB;
31

32 To_RGB_Lookup_Table : constant HTML_Color_RGB_Array
(continues on next page)

226 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
33 := (Salmon => (16#FA#, 16#80#, 16#72#),
34 Firebrick => (16#B2#, 16#22#, 16#22#),
35 Red => (16#FF#, 16#00#, 16#00#),
36 Darkred => (16#8B#, 16#00#, 16#00#),
37 Lime => (16#00#, 16#FF#, 16#00#),
38 Forestgreen => (16#22#, 16#8B#, 16#22#),
39 Green => (16#00#, 16#80#, 16#00#),
40 Darkgreen => (16#00#, 16#64#, 16#00#),
41 Blue => (16#00#, 16#00#, 16#FF#),
42 Mediumblue => (16#00#, 16#00#, 16#CD#),
43 Darkblue => (16#00#, 16#00#, 16#8B#));
44

45 subtype HTML_RGB_Color is HTML_Color
46 with Static_Predicate => HTML_RGB_Color in Red | Green | Blue;
47

48 function To_Int_Color (C : HTML_Color;
49 S : HTML_RGB_Color) return Int_Color;
50 -- Convert to hexadecimal value for the selected RGB component S
51

52 end Color_Types;

Listing 354: color_types.adb
1 with Ada.Integer_Text_IO;
2

3 package body Color_Types is
4

5 function To_RGB (C : HTML_Color) return RGB is
6 begin
7 return To_RGB_Lookup_Table (C);
8 end To_RGB;
9

10 function To_Int_Color (C : HTML_Color;
11 S : HTML_RGB_Color) return Int_Color is
12 C_RGB : constant RGB := To_RGB (C);
13 begin
14 case S is
15 when Red => return C_RGB.Red;
16 when Green => return C_RGB.Green;
17 when Blue => return C_RGB.Blue;
18 end case;
19 end To_Int_Color;
20

21 function Image (I : Int_Color) return String is
22 subtype Str_Range is Integer range 1 .. 10;
23 S : String (Str_Range);
24 begin
25 Ada.Integer_Text_IO.Put (To => S,
26 Item => I,
27 Base => 16);
28 return S;
29 end Image;
30

31 function Image (C : RGB) return String is
32 begin
33 return ("(Red => " & Image (C.Red)
34 & ", Green => " & Image (C.Green)
35 & ", Blue => " & Image (C.Blue)
36 &")");
37 end Image;
38

(continues on next page)

18.12. Design by contracts 227

Introduction to Ada: Laboratories

(continued from previous page)
39 end Color_Types;

Listing 355: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Color_Types; use Color_Types;
5

6 procedure Main is
7 type Test_Case_Index is
8 (HTML_Color_Red_Chk,
9 HTML_Color_Green_Chk,
10 HTML_Color_Blue_Chk);
11

12 procedure Check (TC : Test_Case_Index) is
13

14 procedure Check_HTML_Colors (S : HTML_RGB_Color) is
15 begin
16 Put_Line ("Selected: " & HTML_RGB_Color'Image (S));
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I) & " => "
19 & Image (To_Int_Color (I, S)) & ".");
20 end loop;
21 end Check_HTML_Colors;
22

23 begin
24 case TC is
25 when HTML_Color_Red_Chk =>
26 Check_HTML_Colors (Red);
27 when HTML_Color_Green_Chk =>
28 Check_HTML_Colors (Green);
29 when HTML_Color_Blue_Chk =>
30 Check_HTML_Colors (Blue);
31 end case;
32 end Check;
33

34 begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41

42 Check (Test_Case_Index'Value (Argument (1)));
43 end Main;

18.13 Object-oriented programming

18.13.1 Simple type extension

Listing 356: type_extensions.ads
1 package Type_Extensions is
2

3 type T_Float is tagged record
4 F : Float;

(continues on next page)

228 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
5 end record;
6

7 function Init (F : Float) return T_Float;
8

9 function Init (I : Integer) return T_Float;
10

11 function Image (T : T_Float) return String;
12

13 type T_Mixed is new T_Float with record
14 I : Integer;
15 end record;
16

17 function Init (F : Float) return T_Mixed;
18

19 function Init (I : Integer) return T_Mixed;
20

21 function Image (T : T_Mixed) return String;
22

23 end Type_Extensions;

Listing 357: type_extensions.adb
1 package body Type_Extensions is
2

3 function Init (F : Float) return T_Float is
4 begin
5 return ((F => F));
6 end Init;
7

8 function Init (I : Integer) return T_Float is
9 begin
10 return ((F => Float (I)));
11 end Init;
12

13 function Init (F : Float) return T_Mixed is
14 begin
15 return ((F => F,
16 I => Integer (F)));
17 end Init;
18

19 function Init (I : Integer) return T_Mixed is
20 begin
21 return ((F => Float (I),
22 I => I));
23 end Init;
24

25 function Image (T : T_Float) return String is
26 begin
27 return "{ F => " & Float'Image (T.F) & " }";
28 end Image;
29

30 function Image (T : T_Mixed) return String is
31 begin
32 return "{ F => " & Float'Image (T.F)
33 & ", I => " & Integer'Image (T.I) & " }";
34 end Image;
35

36 end Type_Extensions;

18.13. Object-oriented programming 229

Introduction to Ada: Laboratories

Listing 358: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Type_Extensions; use Type_Extensions;
5

6 procedure Main is
7

8 type Test_Case_Index is
9 (Type_Extension_Chk);
10

11 procedure Check (TC : Test_Case_Index) is
12 F1, F2 : T_Float;
13 M1, M2 : T_Mixed;
14 begin
15 case TC is
16 when Type_Extension_Chk =>
17 F1 := Init (2.0);
18 F2 := Init (3);
19 M1 := Init (4.0);
20 M2 := Init (5);
21

22 if M2 in T_Float'Class then
23 Put_Line ("T_Mixed is in T_Float'Class as expected");
24 end if;
25

26 Put_Line ("F1: " & Image (F1));
27 Put_Line ("F2: " & Image (F2));
28 Put_Line ("M1: " & Image (M1));
29 Put_Line ("M2: " & Image (M2));
30 end case;
31 end Check;
32

33 begin
34 if Argument_Count < 1 then
35 Put_Line ("ERROR: missing arguments! Exiting...");
36 return;
37 elsif Argument_Count > 1 then
38 Put_Line ("Ignoring additional arguments...");
39 end if;
40

41 Check (Test_Case_Index'Value (Argument (1)));
42 end Main;

18.13.2 Online Store

Listing 359: online_store.ads
1 with Ada.Calendar; use Ada.Calendar;
2

3 package Online_Store is
4

5 type Amount is delta 10.0**(-2) digits 10;
6

7 subtype Percentage is Amount range 0.0 .. 1.0;
8

9 type Member is tagged record
10 Start : Year_Number;
11 end record;

(continues on next page)

230 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
12

13 type Member_Access is access Member'Class;
14

15 function Get_Status (M : Member) return String;
16

17 function Get_Price (M : Member;
18 P : Amount) return Amount;
19

20 type Full_Member is new Member with record
21 Discount : Percentage;
22 end record;
23

24 function Get_Status (M : Full_Member) return String;
25

26 function Get_Price (M : Full_Member;
27 P : Amount) return Amount;
28

29 end Online_Store;

Listing 360: online_store.adb
1 package body Online_Store is
2

3 function Get_Status (M : Member) return String is
4 ("Associate Member");
5

6 function Get_Status (M : Full_Member) return String is
7 ("Full Member");
8

9 function Get_Price (M : Member;
10 P : Amount) return Amount is (P);
11

12 function Get_Price (M : Full_Member;
13 P : Amount) return Amount is
14 (P * (1.0 - M.Discount));
15

16 end Online_Store;

Listing 361: online_store-tests.ads
1 package Online_Store.Tests is
2

3 procedure Simple_Test;
4

5 end Online_Store.Tests;

Listing 362: online_store-tests.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Online_Store.Tests is
4

5 procedure Simple_Test is
6

7 type Member_Due_Amount is record
8 Member : Member_Access;
9 Due_Amount : Amount;
10 end record;
11

12 function Get_Price (MA : Member_Due_Amount) return Amount is
(continues on next page)

18.13. Object-oriented programming 231

Introduction to Ada: Laboratories

(continued from previous page)
13 begin
14 return MA.Member.Get_Price (MA.Due_Amount);
15 end Get_Price;
16

17 type Member_Due_Amounts is array (Positive range <>) of Member_Due_Amount;
18

19 DB : constant Member_Due_Amounts (1 .. 4)
20 := ((Member => new Member'(Start => 2010),
21 Due_Amount => 250.0),
22 (Member => new Full_Member'(Start => 1998,
23 Discount => 0.1),
24 Due_Amount => 160.0),
25 (Member => new Full_Member'(Start => 1987,
26 Discount => 0.2),
27 Due_Amount => 400.0),
28 (Member => new Member'(Start => 2013),
29 Due_Amount => 110.0));
30 begin
31 for I in DB'Range loop
32 Put_Line ("Member #" & Positive'Image (I));
33 Put_Line ("Status: " & DB (I).Member.Get_Status);
34 Put_Line ("Since: " & Year_Number'Image (DB (I).Member.Start));
35 Put_Line ("Due Amount: " & Amount'Image (Get_Price (DB (I))));
36 Put_Line ("--------");
37 end loop;
38 end Simple_Test;
39

40 end Online_Store.Tests;

Listing 363: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Online_Store; use Online_Store;
5 with Online_Store.Tests; use Online_Store.Tests;
6

7 procedure Main is
8

9 type Test_Case_Index is
10 (Type_Chk,
11 Unit_Test_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14

15 function Result_Image (Result : Boolean) return String is
16 (if Result then "OK" else "not OK");
17

18 begin
19 case TC is
20 when Type_Chk =>
21 declare
22 AM : constant Member := (Start => 2002);
23 FM : constant Full_Member := (Start => 1990,
24 Discount => 0.2);
25 begin
26 Put_Line ("Testing Status of Associate Member Type => "
27 & Result_Image (AM.Get_Status = "Associate Member"));
28 Put_Line ("Testing Status of Full Member Type => "
29 & Result_Image (FM.Get_Status = "Full Member"));
30 Put_Line ("Testing Discount of Associate Member Type => "

(continues on next page)

232 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
31 & Result_Image (AM.Get_Price (100.0) = 100.0));
32 Put_Line ("Testing Discount of Full Member Type => "
33 & Result_Image (FM.Get_Price (100.0) = 80.0));
34 end;
35 when Unit_Test_Chk =>
36 Simple_Test;
37 end case;
38 end Check;
39

40 begin
41 if Argument_Count < 1 then
42 Put_Line ("ERROR: missing arguments! Exiting...");
43 return;
44 elsif Argument_Count > 1 then
45 Put_Line ("Ignoring additional arguments...");
46 end if;
47

48 Check (Test_Case_Index'Value (Argument (1)));
49 end Main;

18.14 Standard library: Containers

18.14.1 Simple todo list

Listing 364: todo_lists.ads
1 with Ada.Containers.Vectors;
2

3 package Todo_Lists is
4

5 type Todo_Item is access String;
6

7 package Todo_List_Pkg is new Ada.Containers.Vectors
8 (Index_Type => Natural,
9 Element_Type => Todo_Item);
10

11 subtype Todo_List is Todo_List_Pkg.Vector;
12

13 procedure Add (Todos : in out Todo_List;
14 Item : String);
15

16 procedure Display (Todos : Todo_List);
17

18 end Todo_Lists;

Listing 365: todo_lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Todo_Lists is
4

5 procedure Add (Todos : in out Todo_List;
6 Item : String) is
7 begin
8 Todos.Append (new String'(Item));
9 end Add;
10

11 procedure Display (Todos : Todo_List) is
(continues on next page)

18.14. Standard library: Containers 233

Introduction to Ada: Laboratories

(continued from previous page)
12 begin
13 Put_Line ("TO-DO LIST");
14 for T of Todos loop
15 Put_Line (T.all);
16 end loop;
17 end Display;
18

19 end Todo_Lists;

Listing 366: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Todo_Lists; use Todo_Lists;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Todo_List_Chk);
9

10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List;
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29

30 begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37

38 Check (Test_Case_Index'Value (Argument (1)));
39 end Main;

18.14.2 List of unique integers

Listing 367: ops.ads
1 with Ada.Containers.Ordered_Sets;
2

3 package Ops is
4

(continues on next page)

234 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
5 type Int_Array is array (Positive range <>) of Integer;
6

7 package Integer_Sets is new Ada.Containers.Ordered_Sets
8 (Element_Type => Integer);
9

10 subtype Int_Set is Integer_Sets.Set;
11

12 function Get_Unique (A : Int_Array) return Int_Set;
13

14 function Get_Unique (A : Int_Array) return Int_Array;
15

16 end Ops;

Listing 368: ops.adb
1 package body Ops is
2

3 function Get_Unique (A : Int_Array) return Int_Set is
4 S : Int_Set;
5 begin
6 for E of A loop
7 S.Include (E);
8 end loop;
9

10 return S;
11 end Get_Unique;
12

13 function Get_Unique (A : Int_Array) return Int_Array is
14 S : constant Int_Set := Get_Unique (A);
15 AR : Int_Array (1 .. Positive (S.Length));
16 I : Positive := 1;
17 begin
18 for E of S loop
19 AR (I) := E;
20 I := I + 1;
21 end loop;
22

23 return AR;
24 end Get_Unique;
25

26 end Ops;

Listing 369: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Ops; use Ops;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Get_Unique_Set_Chk,
9 Get_Unique_Array_Chk);
10

11 procedure Check (TC : Test_Case_Index;
12 A : Int_Array) is
13

14 procedure Display_Unique_Set (A : Int_Array) is
15 S : constant Int_Set := Get_Unique (A);
16 begin

(continues on next page)

18.14. Standard library: Containers 235

Introduction to Ada: Laboratories

(continued from previous page)
17 for E of S loop
18 Put_Line (Integer'Image (E));
19 end loop;
20 end Display_Unique_Set;
21

22 procedure Display_Unique_Array (A : Int_Array) is
23 AU : constant Int_Array := Get_Unique (A);
24 begin
25 for E of AU loop
26 Put_Line (Integer'Image (E));
27 end loop;
28 end Display_Unique_Array;
29

30 begin
31 case TC is
32 when Get_Unique_Set_Chk => Display_Unique_Set (A);
33 when Get_Unique_Array_Chk => Display_Unique_Array (A);
34 end case;
35 end Check;
36

37 begin
38 if Argument_Count < 3 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 else
42 declare
43 A : Int_Array (1 .. Argument_Count - 1);
44 begin
45 for I in A'Range loop
46 A (I) := Integer'Value (Argument (1 + I));
47 end loop;
48 Check (Test_Case_Index'Value (Argument (1)), A);
49 end;
50 end if;
51 end Main;

18.15 Standard library: Dates & Times

18.15.1 Holocene calendar

Listing 370: to_holocene_year.adb
1 with Ada.Calendar; use Ada.Calendar;
2

3 function To_Holocene_Year (T : Time) return Integer is
4 begin
5 return Year (T) + 10_000;
6 end To_Holocene_Year;

Listing 371: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Calendar; use Ada.Calendar;
4

5 with To_Holocene_Year;
6

7 procedure Main is
(continues on next page)

236 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
8 type Test_Case_Index is
9 (Holocene_Chk);
10

11 procedure Display_Holocene_Year (Y : Year_Number) is
12 HY : Integer;
13 begin
14 HY := To_Holocene_Year (Time_Of (Y, 1, 1));
15 Put_Line ("Year (Gregorian): " & Year_Number'Image (Y));
16 Put_Line ("Year (Holocene): " & Integer'Image (HY));
17 end Display_Holocene_Year;
18

19 procedure Check (TC : Test_Case_Index) is
20 begin
21 case TC is
22 when Holocene_Chk =>
23 Display_Holocene_Year (2012);
24 Display_Holocene_Year (2020);
25 end case;
26 end Check;
27

28 begin
29 if Argument_Count < 1 then
30 Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Put_Line ("Ignoring additional arguments...");
34 end if;
35

36 Check (Test_Case_Index'Value (Argument (1)));
37 end Main;

18.15.2 List of events

Listing 372: events.ads
1 with Ada.Containers.Vectors;
2

3 package Events is
4

5 type Event_Item is access String;
6

7 package Event_Item_Containers is new
8 Ada.Containers.Vectors
9 (Index_Type => Positive,
10 Element_Type => Event_Item);
11

12 subtype Event_Items is Event_Item_Containers.Vector;
13

14 end Events;

Listing 373: events-lists.ads
1 with Ada.Calendar; use Ada.Calendar;
2 with Ada.Containers.Ordered_Maps;
3

4 package Events.Lists is
5

6 type Event_List is tagged private;
7

(continues on next page)

18.15. Standard library: Dates & Times 237

Introduction to Ada: Laboratories

(continued from previous page)
8 procedure Add (Events : in out Event_List;
9 Event_Time : Time;
10 Event : String);
11

12 procedure Display (Events : Event_List);
13

14 private
15

16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21

22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23

24 end Events.Lists;

Listing 374: events-lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
3

4 package body Events.Lists is
5

6 procedure Add (Events : in out Event_List;
7 Event_Time : Time;
8 Event : String) is
9 use Event_Item_Containers;
10 E : constant Event_Item := new String'(Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);
16 end Add;
17

18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23

24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & I.all);
34 end loop;
35 end loop;
36 end Display;
37

38 end Events.Lists;

238 Chapter 18. Solutions

Introduction to Ada: Laboratories

Listing 375: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Calendar;
4 with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
5

6 with Events.Lists; use Events.Lists;
7

8 procedure Main is
9 type Test_Case_Index is
10 (Event_List_Chk);
11

12 procedure Check (TC : Test_Case_Index) is
13 EL : Event_List;
14 begin
15 case TC is
16 when Event_List_Chk =>
17 EL.Add (Time_Of (2018, 2, 16),
18 "Final check");
19 EL.Add (Time_Of (2018, 2, 16),
20 "Release");
21 EL.Add (Time_Of (2018, 12, 3),
22 "Brother's birthday");
23 EL.Add (Time_Of (2018, 1, 1),
24 "New Year's Day");
25 EL.Display;
26 end case;
27 end Check;
28

29 begin
30 if Argument_Count < 1 then
31 Put_Line ("ERROR: missing arguments! Exiting...");
32 return;
33 elsif Argument_Count > 1 then
34 Put_Line ("Ignoring additional arguments...");
35 end if;
36

37 Check (Test_Case_Index'Value (Argument (1)));
38 end Main;

18.16 Standard library: Strings

18.16.1 Concatenation

Listing 376: str_concat.ads
1 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
2

3 package Str_Concat is
4

5 type Unbounded_Strings is array (Positive range <>) of Unbounded_String;
6

7 function Concat (USA : Unbounded_Strings;
8 Trim_Str : Boolean;
9 Add_Whitespace : Boolean) return Unbounded_String;
10

11 function Concat (USA : Unbounded_Strings;
12 Trim_Str : Boolean;

(continues on next page)

18.16. Standard library: Strings 239

Introduction to Ada: Laboratories

(continued from previous page)
13 Add_Whitespace : Boolean) return String;
14

15 end Str_Concat;

Listing 377: str_concat.adb
1 with Ada.Strings; use Ada.Strings;
2

3 package body Str_Concat is
4

5 function Concat (USA : Unbounded_Strings;
6 Trim_Str : Boolean;
7 Add_Whitespace : Boolean) return Unbounded_String is
8

9 function Retrieve (USA : Unbounded_Strings;
10 Trim_Str : Boolean;
11 Index : Positive) return Unbounded_String is
12 US_Internal : Unbounded_String := USA (Index);
13 begin
14 if Trim_Str then
15 US_Internal := Trim (US_Internal, Both);
16 end if;
17 return US_Internal;
18 end Retrieve;
19

20 US : Unbounded_String := To_Unbounded_String ("");
21 begin
22 for I in USA'First .. USA'Last - 1 loop
23 US := US & Retrieve (USA, Trim_Str, I);
24 if Add_Whitespace then
25 US := US & " ";
26 end if;
27 end loop;
28 US := US & Retrieve (USA, Trim_Str, USA'Last);
29

30 return US;
31 end Concat;
32

33 function Concat (USA : Unbounded_Strings;
34 Trim_Str : Boolean;
35 Add_Whitespace : Boolean) return String is
36 begin
37 return To_String (Concat (USA, Trim_Str, Add_Whitespace));
38 end Concat;
39

40 end Str_Concat;

Listing 378: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
4

5 with Str_Concat; use Str_Concat;
6

7 procedure Main is
8 type Test_Case_Index is
9 (Unbounded_Concat_No_Trim_No_WS_Chk,
10 Unbounded_Concat_Trim_No_WS_Chk,
11 String_Concat_Trim_WS_Chk,

(continues on next page)

240 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
12 Concat_Single_Element);
13

14 procedure Check (TC : Test_Case_Index) is
15 begin
16 case TC is
17 when Unbounded_Concat_No_Trim_No_WS_Chk =>
18 declare
19 S : constant Unbounded_Strings := (
20 To_Unbounded_String ("Hello"),
21 To_Unbounded_String (" World"),
22 To_Unbounded_String ("!"));
23 begin
24 Put_Line (To_String (Concat (S, False, False)));
25 end;
26 when Unbounded_Concat_Trim_No_WS_Chk =>
27 declare
28 S : constant Unbounded_Strings := (
29 To_Unbounded_String (" This "),
30 To_Unbounded_String (" _is_ "),
31 To_Unbounded_String (" a "),
32 To_Unbounded_String (" _check "));
33 begin
34 Put_Line (To_String (Concat (S, True, False)));
35 end;
36 when String_Concat_Trim_WS_Chk =>
37 declare
38 S : constant Unbounded_Strings := (
39 To_Unbounded_String (" This "),
40 To_Unbounded_String (" is a "),
41 To_Unbounded_String (" test. "));
42 begin
43 Put_Line (Concat (S, True, True));
44 end;
45 when Concat_Single_Element =>
46 declare
47 S : constant Unbounded_Strings := (
48 1 => To_Unbounded_String (" Hi "));
49 begin
50 Put_Line (Concat (S, True, True));
51 end;
52 end case;
53 end Check;
54

55 begin
56 if Argument_Count < 1 then
57 Put_Line ("ERROR: missing arguments! Exiting...");
58 return;
59 elsif Argument_Count > 1 then
60 Put_Line ("Ignoring additional arguments...");
61 end if;
62

63 Check (Test_Case_Index'Value (Argument (1)));
64 end Main;

18.16.2 List of events

Listing 379: events.ads
1 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
2 with Ada.Containers.Vectors;

(continues on next page)

18.16. Standard library: Strings 241

Introduction to Ada: Laboratories

(continued from previous page)
3

4 package Events is
5

6 subtype Event_Item is Unbounded_String;
7

8 package Event_Item_Containers is new
9 Ada.Containers.Vectors
10 (Index_Type => Positive,
11 Element_Type => Event_Item);
12

13 subtype Event_Items is Event_Item_Containers.Vector;
14

15 end Events;

Listing 380: events-lists.ads
1 with Ada.Calendar; use Ada.Calendar;
2 with Ada.Containers.Ordered_Maps;
3

4 package Events.Lists is
5

6 type Event_List is tagged private;
7

8 procedure Add (Events : in out Event_List;
9 Event_Time : Time;
10 Event : String);
11

12 procedure Display (Events : Event_List);
13

14 private
15

16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21

22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23

24 end Events.Lists;

Listing 381: events-lists.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
3

4 package body Events.Lists is
5

6 procedure Add (Events : in out Event_List;
7 Event_Time : Time;
8 Event : String) is
9 use Event_Item_Containers;
10 E : constant Event_Item := To_Unbounded_String (Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);
16 end Add;
17

(continues on next page)

242 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23

24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & To_String (I));
34 end loop;
35 end loop;
36 end Display;
37

38 end Events.Lists;

Listing 382: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Ada.Calendar;
4 with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
5 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
6

7 with Events;
8 with Events.Lists; use Events.Lists;
9

10 procedure Main is
11 type Test_Case_Index is
12 (Unbounded_String_Chk,
13 Event_List_Chk);
14

15 procedure Check (TC : Test_Case_Index) is
16 EL : Event_List;
17 begin
18 case TC is
19 when Unbounded_String_Chk =>
20 declare
21 S : constant Events.Event_Item := To_Unbounded_String ("Checked");
22 begin
23 Put_Line (To_String (S));
24 end;
25 when Event_List_Chk =>
26 EL.Add (Time_Of (2018, 2, 16),
27 "Final check");
28 EL.Add (Time_Of (2018, 2, 16),
29 "Release");
30 EL.Add (Time_Of (2018, 12, 3),
31 "Brother's birthday");
32 EL.Add (Time_Of (2018, 1, 1),
33 "New Year's Day");
34 EL.Display;
35 end case;
36 end Check;
37

(continues on next page)

18.16. Standard library: Strings 243

Introduction to Ada: Laboratories

(continued from previous page)
38 begin
39 if Argument_Count < 1 then
40 Put_Line ("ERROR: missing arguments! Exiting...");
41 return;
42 elsif Argument_Count > 1 then
43 Put_Line ("Ignoring additional arguments...");
44 end if;
45

46 Check (Test_Case_Index'Value (Argument (1)));
47 end Main;

18.17 Standard library: Numerics

18.17.1 Decibel Factor

Listing 383: decibels.ads
1 package Decibels is
2

3 subtype Decibel is Float;
4 subtype Factor is Float;
5

6 function To_Decibel (F : Factor) return Decibel;
7

8 function To_Factor (D : Decibel) return Factor;
9

10 end Decibels;

Listing 384: decibels.adb
1 with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
2

3 package body Decibels is
4

5 function To_Decibel (F : Factor) return Decibel is
6 begin
7 return 20.0 * Log (F, 10.0);
8 end To_Decibel;
9

10 function To_Factor (D : Decibel) return Factor is
11 begin
12 return 10.0 ** (D / 20.0);
13 end To_Factor;
14

15 end Decibels;

Listing 385: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Decibels; use Decibels;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Db_Chk,
9 Factor_Chk);
10

(continues on next page)

244 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
11 procedure Check (TC : Test_Case_Index; V : Float) is
12

13 package F_IO is new Ada.Text_IO.Float_IO (Factor);
14 package D_IO is new Ada.Text_IO.Float_IO (Decibel);
15

16 procedure Put_Decibel_Cnvt (D : Decibel) is
17 F : constant Factor := To_Factor (D);
18 begin
19 D_IO.Put (D, 0, 2, 0);
20 Put (" dB => Factor of ");
21 F_IO.Put (F, 0, 2, 0);
22 New_Line;
23 end;
24

25 procedure Put_Factor_Cnvt (F : Factor) is
26 D : constant Decibel := To_Decibel (F);
27 begin
28 Put ("Factor of ");
29 F_IO.Put (F, 0, 2, 0);
30 Put (" => ");
31 D_IO.Put (D, 0, 2, 0);
32 Put_Line (" dB");
33 end;
34 begin
35 case TC is
36 when Db_Chk =>
37 Put_Decibel_Cnvt (Decibel (V));
38 when Factor_Chk =>
39 Put_Factor_Cnvt (Factor (V));
40 end case;
41 end Check;
42

43 begin
44 if Argument_Count < 2 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 2 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50

51 Check (Test_Case_Index'Value (Argument (1)), Float'Value (Argument (2)));
52 end Main;

18.17.2 Root-Mean-Square

Listing 386: signals.ads
1 package Signals is
2

3 subtype Sig_Value is Float;
4

5 type Signal is array (Natural range <>) of Sig_Value;
6

7 function Rms (S : Signal) return Sig_Value;
8

9 end Signals;

18.17. Standard library: Numerics 245

Introduction to Ada: Laboratories

Listing 387: signals.adb
1 with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
2

3 package body Signals is
4

5 function Rms (S : Signal) return Sig_Value is
6 Acc : Float := 0.0;
7 begin
8 for V of S loop
9 Acc := Acc + V * V;
10 end loop;
11

12 return Sqrt (Acc / Float (S'Length));
13 end;
14

15 end Signals;

Listing 388: signals-std.ads
1 package Signals.Std is
2

3 Sample_Rate : Float := 8000.0;
4

5 function Generate_Sine (N : Positive; Freq : Float) return Signal;
6

7 function Generate_Square (N : Positive) return Signal;
8

9 function Generate_Triangular (N : Positive) return Signal;
10

11 end Signals.Std;

Listing 389: signals-std.adb
1 with Ada.Numerics; use Ada.Numerics;
2 with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
3

4 package body Signals.Std is
5

6 function Generate_Sine (N : Positive; Freq : Float) return Signal is
7 S : Signal (0 .. N - 1);
8 begin
9 for I in S'First .. S'Last loop
10 S (I) := 1.0 * Sin (2.0 * Pi * (Freq * Float (I) / Sample_Rate));
11 end loop;
12

13 return S;
14 end;
15

16 function Generate_Square (N : Positive) return Signal is
17 S : constant Signal (0 .. N - 1) := (others => 1.0);
18 begin
19 return S;
20 end;
21

22 function Generate_Triangular (N : Positive) return Signal is
23 S : Signal (0 .. N - 1);
24 S_Half : constant Natural := S'Last / 2;
25 begin
26 for I in S'First .. S_Half loop
27 S (I) := 1.0 * (Float (I) / Float (S_Half));

(continues on next page)

246 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
28 end loop;
29 for I in S_Half .. S'Last loop
30 S (I) := 1.0 - (1.0 * (Float (I - S_Half) / Float (S_Half)));
31 end loop;
32

33 return S;
34 end;
35

36 end Signals.Std;

Listing 390: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Signals; use Signals;
5 with Signals.Std; use Signals.Std;
6

7 procedure Main is
8 type Test_Case_Index is
9 (Sine_Signal_Chk,
10 Square_Signal_Chk,
11 Triangular_Signal_Chk);
12

13 procedure Check (TC : Test_Case_Index) is
14 package Sig_IO is new Ada.Text_IO.Float_IO (Sig_Value);
15

16 N : constant Positive := 1024;
17 S_Si : constant Signal := Generate_Sine (N, 440.0);
18 S_Sq : constant Signal := Generate_Square (N);
19 S_Tr : constant Signal := Generate_Triangular (N + 1);
20 begin
21 case TC is
22 when Sine_Signal_Chk =>
23 Put ("RMS of Sine Signal: ");
24 Sig_IO.Put (Rms (S_Si), 0, 2, 0);
25 New_Line;
26 when Square_Signal_Chk =>
27 Put ("RMS of Square Signal: ");
28 Sig_IO.Put (Rms (S_Sq), 0, 2, 0);
29 New_Line;
30 when Triangular_Signal_Chk =>
31 Put ("RMS of Triangular Signal: ");
32 Sig_IO.Put (Rms (S_Tr), 0, 2, 0);
33 New_Line;
34 end case;
35 end Check;
36

37 begin
38 if Argument_Count < 1 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 elsif Argument_Count > 1 then
42 Put_Line ("Ignoring additional arguments...");
43 end if;
44

45 Check (Test_Case_Index'Value (Argument (1)));
46 end Main;

18.17. Standard library: Numerics 247

Introduction to Ada: Laboratories

18.17.3 Rotation

Listing 391: rotation.ads
1 with Ada.Numerics.Complex_Types;
2 use Ada.Numerics.Complex_Types;
3

4 package Rotation is
5

6 type Complex_Points is array (Positive range <>) of Complex;
7

8 function Rotation (N : Positive) return Complex_Points;
9

10 end Rotation;

Listing 392: rotation.adb
1 with Ada.Numerics; use Ada.Numerics;
2

3 package body Rotation is
4

5 function Rotation (N : Positive) return Complex_Points is
6 C_Angle : constant Complex :=
7 Compose_From_Polar (1.0, 2.0 * Pi / Float (N));
8 begin
9 return C : Complex_Points (1 .. N + 1) do
10 C (1) := Compose_From_Cartesian (1.0, 0.0);
11

12 for I in C'First + 1 .. C'Last loop
13 C (I) := C (I - 1) * C_Angle;
14 end loop;
15 end return;
16 end;
17

18 end Rotation;

Listing 393: angles.ads
1 with Rotation; use Rotation;
2

3 package Angles is
4

5 subtype Angle is Float;
6

7 type Angles is array (Positive range <>) of Angle;
8

9 function To_Angles (C : Complex_Points) return Angles;
10

11 end Angles;

Listing 394: angles.adb
1 with Ada.Numerics; use Ada.Numerics;
2 with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
3

4 package body Angles is
5

6 function To_Angles (C : Complex_Points) return Angles is
7 begin
8 return A : Angles (C'Range) do
9 for I in A'Range loop

(continues on next page)

248 Chapter 18. Solutions

Introduction to Ada: Laboratories

(continued from previous page)
10 A (I) := Argument (C (I)) / Pi * 180.0;
11 end loop;
12 end return;
13 end To_Angles;
14

15 end Angles;

Listing 395: rotation-tests.ads
1 package Rotation.Tests is
2

3 procedure Test_Rotation (N : Positive);
4

5 procedure Test_Angles (N : Positive);
6

7 end Rotation.Tests;

Listing 396: rotation-tests.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Text_IO.Complex_IO;
3 with Ada.Numerics; use Ada.Numerics;
4

5 with Angles; use Angles;
6

7 package body Rotation.Tests is
8

9 package C_IO is new Ada.Text_IO.Complex_IO (Complex_Types);
10 package F_IO is new Ada.Text_IO.Float_IO (Float);
11

12 --
13 -- Adapt value due to floating-point inaccuracies
14 --
15

16 function Adapt (C : Complex) return Complex is
17 function Check_Zero (F : Float) return Float is
18 (if F <= 0.0 and F >= -0.01 then 0.0 else F);
19 begin
20 return C_Out : Complex := C do
21 C_Out.Re := Check_Zero (C_Out.Re);
22 C_Out.Im := Check_Zero (C_Out.Im);
23 end return;
24 end Adapt;
25

26 function Adapt (A : Angle) return Angle is
27 (if A <= -179.99 and A >= -180.01 then 180.0 else A);
28

29 procedure Test_Rotation (N : Positive) is
30 C : constant Complex_Points := Rotation (N);
31 begin
32 Put_Line ("---- Points for " & Positive'Image (N) & " slices ----");
33 for V of C loop
34 Put ("Point: ");
35 C_IO.Put (Adapt (V), 0, 1, 0);
36 New_Line;
37 end loop;
38 end Test_Rotation;
39

40 procedure Test_Angles (N : Positive) is
41 C : constant Complex_Points := Rotation (N);

(continues on next page)

18.17. Standard library: Numerics 249

Introduction to Ada: Laboratories

(continued from previous page)
42 A : constant Angles.Angles := To_Angles (C);
43 begin
44 Put_Line ("---- Angles for " & Positive'Image (N) & " slices ----");
45 for V of A loop
46 Put ("Angle: ");
47 F_IO.Put (Adapt (V), 0, 2, 0);
48 Put_Line (" degrees");
49 end loop;
50 end Test_Angles;
51

52 end Rotation.Tests;

Listing 397: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 with Rotation.Tests; use Rotation.Tests;
5

6 procedure Main is
7 type Test_Case_Index is
8 (Rotation_Chk,
9 Angles_Chk);
10

11 procedure Check (TC : Test_Case_Index; N : Positive) is
12 begin
13 case TC is
14 when Rotation_Chk =>
15 Test_Rotation (N);
16 when Angles_Chk =>
17 Test_Angles (N);
18 end case;
19 end Check;
20

21 begin
22 if Argument_Count < 2 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 2 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28

29 Check (Test_Case_Index'Value (Argument (1)), Positive'Value (Argument (2)));
30 end Main;

250 Chapter 18. Solutions

	Imperative language
	Hello World
	Greetings
	Positive Or Negative
	Numbers

	Subprograms
	Subtract procedure
	Subtract function
	Equality function
	States
	States #2
	States #3
	States #4

	Modular Programming
	Months
	Operations

	Strongly typed language
	Colors
	Integers
	Temperatures

	Records
	Directions
	Colors
	Inventory

	Arrays
	Constrained Array
	Colors: Lookup-Table
	Unconstrained Array
	Product info
	String_10
	List of Names

	More About Types
	Aggregate Initialization
	Versioning
	Simple todo list
	Price list

	Privacy
	Directions
	Limited Strings
	Bonus exercise
	Colors
	List of Names
	Price List

	Generics
	Display Array
	Average of Array of Float
	Average of Array of Any Type
	Generic list

	Exceptions
	Uninitialized Value
	Numerical Exception
	Re-raising Exceptions

	Tasking
	Display Service
	Event Manager
	Generic Protected Queue

	Design by contracts
	Price Range
	Pythagorean Theorem: Predicate
	Pythagorean Theorem: Precondition
	Pythagorean Theorem: Postcondition
	Pythagorean Theorem: Type Invariant
	Primary Color

	Object-oriented programming
	Simple type extension
	Online Store

	Standard library: Containers
	Simple todo list
	List of unique integers

	Standard library: Dates & Times
	Holocene calendar
	List of events

	Standard library: Strings
	Concatenation
	List of events

	Standard library: Numerics
	Decibel Factor
	Root-Mean-Square
	Rotation

	Solutions
	Imperative Language
	Hello World
	Greetings
	Positive Or Negative
	Numbers

	Subprograms
	Subtract Procedure
	Subtract Function
	Equality function
	States
	States #2
	States #3
	States #4

	Modular Programming
	Months
	Operations

	Strongly typed language
	Colors
	Integers
	Temperatures

	Records
	Directions
	Colors
	Inventory

	Arrays
	Constrained Array
	Colors: Lookup-Table
	Unconstrained Array
	Product info
	String_10
	List of Names

	More About Types
	Aggregate Initialization
	Versioning
	Simple todo list
	Price list

	Privacy
	Directions
	Limited Strings

	Generics
	Display Array
	Average of Array of Float
	Average of Array of Any Type
	Generic list

	Exceptions
	Uninitialized Value
	Numerical Exception
	Re-raising Exceptions

	Tasking
	Display Service
	Event Manager
	Generic Protected Queue

	Design by contracts
	Price Range
	Pythagorean Theorem: Predicate
	Pythagorean Theorem: Precondition
	Pythagorean Theorem: Postcondition
	Pythagorean Theorem: Type Invariant
	Primary Colors

	Object-oriented programming
	Simple type extension
	Online Store

	Standard library: Containers
	Simple todo list
	List of unique integers

	Standard library: Dates & Times
	Holocene calendar
	List of events

	Standard library: Strings
	Concatenation
	List of events

	Standard library: Numerics
	Decibel Factor
	Root-Mean-Square
	Rotation

