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Introduction to Ada

Copyright © 2018 – 2024, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

This course will teach you the basics of the Ada programming language and is intended for
those who already have a basic understanding of programming techniques. You will learn
how to apply those techniques to programming in Ada.
This document was written by Raphaël Amiard and Gustavo A. Hoffmann, with review from
Richard Kenner.

Note

The code examples in this course use a 50-column limit, which greatly improves the
readability of the code on devices with a small screen size. This constraint, however,
leads to an unusual coding style. For instance, instead of calling Put_Line in a single
line, we have this:
Put_Line
(" is in the northeast quadrant");

or this:
Put_Line (" (X => "

& Integer'Image (P.X)
& ")");

Note that typical Ada code uses a limit of at least 79 columns. Therefore, please don't
take the coding style from this course as a reference!

Note

Each code example from this book has an associated "code block metadata", which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.
You can find all code examples in a zip file, which you can download from the learn
website2. The directory structure in the zip file is based on the code block metadata.
For example, if you're searching for a code example with this metadata:

• Project: Courses.Intro_To_Ada.Imperative_Language.Greet
• MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

1 http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1
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projects/Courses/Intro_To_Ada/Imperative_Language/Greet/
cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:
1. Unpack the zip file;
2. Go to target directory;
3. Start GNAT Studio on this directory;
4. Build (or compile) the project;
5. Run the application (if a main procedure is available in the project).

2 https://learn.adacore.com/zip/learning-ada_code.zip

2 CONTENTS:
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ONE

INTRODUCTION

1.1 History
In the 1970s the United States Department of Defense (DOD) suffered from an explosion
of the number of programming languages, with different projects using different and non-
standard dialects or language subsets / supersets. The DOD decided to solve this problem
by issuing a request for proposals for a common, modern programming language. The
winning proposal was one submitted by Jean Ichbiah from CII Honeywell-Bull.
The first Ada standard was issued in 1983; it was subsequently revised and enhanced in
1995, 2005 and 2012, with each revision bringing useful new features.
This tutorial will focus on Ada 2012 as a whole, rather than teaching different versions of
the language.

1.2 Ada today
Today, Ada is heavily used in embedded real-time systems, many of which are safety critical.
While Ada is and can be used as a general-purpose language, it will really shine in low-level
applications:

• Embedded systems with low memory requirements (no garbage collector allowed).
• Direct interfacing with hardware.
• Soft or hard real-time systems.
• Low-level systems programming.

Specific domains seeing Ada usage include Aerospace & Defense, civil aviation, rail, and
many others. These applications require a high degree of safety: a software defect is not
just an annoyance, but may have severe consequences. Ada provides safety features that
detect defects at an early stage — usually at compilation time or using static analysis tools.
Ada can also be used to create applications in a variety of other areas, such as:

• Video game programming3

• Real-time audio4

• Kernel modules5

This is a non-comprehensive list that hopefully sheds light on which kind of programming
Ada is good at.

3 https://github.com/AdaDoom3/AdaDoom3
4 http://www.electronicdesign.com/embedded-revolution/assessing-ada-language-audio-applications
5 http://www.nihamkin.com/tag/kernel.html

3
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In terms of modern languages, the closest in terms of targets and level of abstraction are
probably C++6 and Rust7.

1.3 Philosophy
Ada's philosophy is different from most other languages. Underlying Ada's design are prin-
ciples that include the following:

• Readability is more important than conciseness. Syntactically this shows through the
fact that keywords are preferred to symbols, that no keyword is an abbreviation, etc.

• Very strong typing. It is very easy to introduce new types in Ada, with the benefit of
preventing data usage errors.
– It is similar to many functional languages in that regard, except that the program-
mer has to be much more explicit about typing in Ada, because there is almost no
type inference.

• Explicit is better than implicit. Although this is a Python8 commandment, Ada takes it
way further than any language we know of:
– There is mostly no structural typing, and most types need to be explicitly named
by the programmer.

– As previously said, there is mostly no type inference.
– Semantics are very well defined, and undefined behavior is limited to an absolute
minimum.

– The programmer can generally give a lot of information about what their program
means to the compiler (and other programmers). This allows the compiler to be
extremely helpful (read: strict) with the programmer.

During this course, we will explain the individual language features that are building blocks
for that philosophy.

1.4 SPARK
While this class is solely about the Ada language, it is worth mentioning that another lan-
guage, extremely close to and interoperable with Ada, exists: the SPARK language.
SPARK is a subset of Ada, designed so that the code written in SPARK is amenable to auto-
matic proof. This provides a level of assurance with regard to the correctness of your code
that is much higher than with a regular programming language.
There is a dedicated course for the SPARK language but keep in mind that every time we
speak about the specification power of Ada during this course, it is power that you can lever-
age in SPARK to help proving the correctness of program properties ranging from absence
of run-time errors to compliance with formally specified functional requirements.

6 https://en.wikipedia.org/wiki/C%2B%2B
7 https://www.rust-lang.org/en-US/
8 https://www.python.org
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CHAPTER

TWO

IMPERATIVE LANGUAGE

Ada is a multi-paradigm language with support for object orientation and some elements of
functional programming, but its core is a simple, coherent procedural/imperative language
akin to C or Pascal.

In other languages

One important distinction between Ada and a language like C is that statements and
expressions are very clearly distinguished. In Ada, if you try to use an expression where
a statement is required then your program will fail to compile. This rule supports a useful
stylistic principle: expressions are intended to deliver values, not to have side effects.
It can also prevent some programming errors, such as mistakenly using the equality
operator = instead of the assignment operation := in an assignment statement.

2.1 Hello world
Here's a very simple imperative Ada program:

Listing 1: greet.adb
1 with Ada.Text_IO;
2

3 procedure Greet is
4 begin
5 -- Print "Hello, World!" to the screen
6 Ada.Text_IO.Put_Line ("Hello, World!");
7 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet
MD5: cba89a34b87c9dfa71533d982d05e6ab

Runtime output

Hello, World!

which we'll assume is in the source file greet.adb.
There are several noteworthy things in the above program:

• A subprogram in Ada can be either a procedure or a function. A procedure, as illus-
trated above, does not return a value when called.

• with is used to reference external modules that are needed in the procedure. This is
similar to import in various languages or roughly similar to #include in C and C++.
We'll see later how they work in detail. Here, we are requesting a standard library

5
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module, the Ada.Text_IO package, which contains a procedure to print text on the
screen: Put_Line.

• Greet is a procedure, and the main entry point for our first program. Unlike in C
or C++, it can be named anything you prefer. The builder will determine the entry
point. In our simple example, gprbuild, GNAT's builder, will use the file you passed
as parameter.

• Put_Line is a procedure, just like Greet, except it is declared in the Ada.Text_IO
module. It is the Ada equivalent of C's printf.

• Comments start with -- and go to the end of the line. There is no multi-line comment
syntax, that is, it is not possible to start a comment in one line and continue it in the
next line. The only way to create multiple lines of comments in Ada is by using -- on
each line. For example:

-- We start a comment in this line...
-- and we continue on the second line...

In other languages

Procedures are similar to functions in C or C++ that return void. We'll see later how to
declare functions in Ada.

Here is a minor variant of the "Hello, World" example:

Listing 2: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 begin
5 -- Print "Hello, World!" to the screen
6 Put_Line ("Hello, World!");
7 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_2
MD5: a58a1193207df44aa6edaa4fe1c14280

Runtime output

Hello, World!

This version utilizes an Ada feature known as a use clause, which has the form use package-
name. As illustrated by the call on Put_Line, the effect is that entities from the named
package can be referenced directly, without the package-name. prefix.

2.2 Imperative language - If/Then/Else
This section describes Ada's if statement and introduces several other fundamental lan-
guage facilities including integer I/O, data declarations, and subprogram parameter modes.
Ada's if statement is pretty unsurprising in form and function:

6 Chapter 2. Imperative language
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Listing 3: check_positive.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
3

4 procedure Check_Positive is
5 N : Integer;
6 begin
7 -- Put a String
8 Put ("Enter an integer value: ");
9

10 -- Read in an integer value
11 Get (N);
12

13 if N > 0 then
14 -- Put an Integer
15 Put (N);
16 Put_Line (" is a positive number");
17 end if;
18 end Check_Positive;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Positive
MD5: 2e8b4b2f3f258fd9e02c2d65846af101

The if statement minimally consists of the reserved word if, a condition (which must be
a Boolean value), the reserved word then and a non-empty sequence of statements (the
then part) which is executed if the condition evaluates to True, and a terminating end if.
This example declares an integer variable N, prompts the user for an integer, checks if the
value is positive and, if so, displays the integer's value followed by the string " is a positive
number". If the value is not positive, the procedure does not display any output.
The type Integer is a predefined signed type, and its range depends on the computer ar-
chitecture. On typical current processors Integer is 32-bit signed.
The example illustrates some of the basic functionality for integer input-output. The rel-
evant subprograms are in the predefined package Ada.Integer_Text_IO and include the
Get procedure (which reads in a number from the keyboard) and the Put procedure (which
displays an integer value).
Here's a slight variation on the example, which illustrates an if statement with an else
part:

Listing 4: check_positive.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
3

4 procedure Check_Positive is
5 N : Integer;
6 begin
7 -- Put a String
8 Put ("Enter an integer value: ");
9

10 -- Reads in an integer value
11 Get (N);
12

13 -- Put an Integer
14 Put (N);
15

(continues on next page)
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(continued from previous page)
16 if N > 0 then
17 Put_Line (" is a positive number");
18 else
19 Put_Line (" is not a positive number");
20 end if;
21 end Check_Positive;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Positive_2
MD5: 28fca0d7840d06d478e5933e8182d1db

In this example, if the input value is not positive then the program displays the value fol-
lowed by the String " is not a positive number".
Our final variation illustrates an if statement with elsif sections:

Listing 5: check_direction.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
3

4 procedure Check_Direction is
5 N : Integer;
6 begin
7 Put ("Enter an integer value: ");
8 Get (N);
9 Put (N);

10

11 if N = 0 or N = 360 then
12 Put_Line (" is due north");
13 elsif N in 1 .. 89 then
14 Put_Line (" is in the northeast quadrant");
15 elsif N = 90 then
16 Put_Line (" is due east");
17 elsif N in 91 .. 179 then
18 Put_Line (" is in the southeast quadrant");
19 elsif N = 180 then
20 Put_Line (" is due south");
21 elsif N in 181 .. 269 then
22 Put_Line (" is in the southwest quadrant");
23 elsif N = 270 then
24 Put_Line (" is due west");
25 elsif N in 271 .. 359 then
26 Put_Line (" is in the northwest quadrant");
27 else
28 Put_Line (" is not in the range 0..360");
29 end if;
30 end Check_Direction;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Direction
MD5: 7759d30c9bb0bfb88efdf12128f9c382

This example expects the user to input an integer between 0 and 360 inclusive, and displays
which quadrant or axis the value corresponds to. The in operator in Ada tests whether a
scalar value is within a specified range and returns a Boolean result. The effect of the
program should be self-explanatory; later we'll see an alternative and more efficient style
to accomplish the same effect, through a case statement.
Ada's elsif keyword differs from C or C++, where nested else .. if blocks would be

8 Chapter 2. Imperative language
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used instead. And another difference is the presence of the end if in Ada, which avoids
the problem known as the "dangling else".

2.3 Imperative language - Loops
Ada has three ways of specifying loops. They differ from the C / Java / Javascript for-loop,
however, with simpler syntax and semantics in line with Ada's philosophy.

2.3.1 For loops
The first kind of loop is the for loop, which allows iteration through a discrete range.

Listing 6: greet_5a.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet_5a is
4 begin
5 for I in 1 .. 5 loop
6 -- Put_Line is a procedure call
7 Put_Line ("Hello, World!"
8 & Integer'Image (I));
9 -- ^ Procedure parameter

10 end loop;
11 end Greet_5a;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_5a
MD5: 7f588b67947126f789333adfaaf1b638

Runtime output

Hello, World! 1
Hello, World! 2
Hello, World! 3
Hello, World! 4
Hello, World! 5

A few things to note:
• 1 .. 5 is a discrete range, from 1 to 5 inclusive.
• The loop parameter I (the name is arbitrary) in the body of the loop has a value within
this range.

• I is local to the loop, so you cannot refer to I outside the loop.
• Although the value of I is incremented at each iteration, from the program's perspec-
tive it is constant. An attempt to modify its value is illegal; the compiler would reject
the program.

• Integer'Image is a function that takes an Integer and converts it to a String. It is
an example of a language construct known as an attribute, indicated by the ' syntax,
which will be covered in more detail later.

• The & symbol is the concatenation operator for String values
• The end loop marks the end of the loop

The "step" of the loop is limited to 1 (forward direction) and -1 (backward). To iterate
backwards over a range, use the reverse keyword:

2.3. Imperative language - Loops 9
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Listing 7: greet_5a_reverse.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet_5a_Reverse is
4 begin
5 for I in reverse 1 .. 5 loop
6 Put_Line ("Hello, World!"
7 & Integer'Image (I));
8 end loop;
9 end Greet_5a_Reverse;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_5a_Reverse
MD5: a0d5dcfc471fb1a107477c934fa527c2

Runtime output

Hello, World! 5
Hello, World! 4
Hello, World! 3
Hello, World! 2
Hello, World! 1

The bounds of a for loop may be computed at run-time; they are evaluated once, before
the loop body is executed. If the value of the upper bound is less than the value of the
lower bound, then the loop is not executed at all. This is the case also for reverse loops.
Thus no output is produced in the following example:

Listing 8: greet_no_op.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet_No_Op is
4 begin
5 for I in reverse 5 .. 1 loop
6 Put_Line ("Hello, World!"
7 & Integer'Image (I));
8 end loop;
9 end Greet_No_Op;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_No_Op
MD5: 5070693fb0324d3e4e43a8c8c4f046e1

Build output

greet_no_op.adb:5:23: warning: loop range is null, loop will not execute [enabled␣
↪by default]

The for loop is more general than what we illustrated here; more on that later.

2.3.2 Bare loops
The simplest loop in Ada is the bare loop, which forms the foundation of the other kinds of
Ada loops.

10 Chapter 2. Imperative language
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Listing 9: greet_5b.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet_5b is
4 -- Variable declaration:
5 I : Integer := 1;
6 -- ^ Type
7 -- ^ Initial value
8 begin
9 loop

10 Put_Line ("Hello, World!"
11 & Integer'Image (I));
12

13 -- Exit statement:
14 exit when I = 5;
15 -- ^ Boolean condition
16

17 -- Assignment:
18 I := I + 1;
19 -- There is no I++ short form to
20 -- increment a variable
21 end loop;
22 end Greet_5b;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_5b
MD5: 5b218a64a07f64bd97774b574883c44a

Runtime output

Hello, World! 1
Hello, World! 2
Hello, World! 3
Hello, World! 4
Hello, World! 5

This example has the same effect as Greet_5a shown earlier.
It illustrates several concepts:

• We have declared a variable named I between the is and the begin. This constitutes
a declarative region. Ada clearly separates the declarative region from the statement
part of a subprogram. A declaration can appear in a declarative region but is not
allowed as a statement.

• The bare loop statement is introduced by the keyword loop on its own and, like every
kind of loop statement, is terminated by the combination of keywords end loop. On
its own, it is an infinite loop. You can break out of it with an exit statement.

• The syntax for assignment is :=, and the one for equality is =. There is no way to
confuse them, because as previously noted, in Ada, statements and expressions are
distinct, and expressions are not valid statements.

2.3.3 While loops
The last kind of loop in Ada is the while loop.

2.3. Imperative language - Loops 11
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Listing 10: greet_5c.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet_5c is
4 I : Integer := 1;
5 begin
6 -- Condition must be a Boolean value
7 -- (no Integers).
8 -- Operator "<=" returns a Boolean
9 while I <= 5 loop

10 Put_Line ("Hello, World!"
11 & Integer'Image (I));
12

13 I := I + 1;
14 end loop;
15 end Greet_5c;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_5c
MD5: 5d1d099477795b226db43736c2810274

Runtime output

Hello, World! 1
Hello, World! 2
Hello, World! 3
Hello, World! 4
Hello, World! 5

The condition is evaluated before each iteration. If the result is false, then the loop is
terminated.
This program has the same effect as the previous examples.

In other languages

Note that Ada has different semantics than C-based languages with respect to the con-
dition in a while loop. In Ada the condition has to be a Boolean value or the compiler
will reject the program; the condition is not an integer that is treated as either True or
False depending on whether it is non-zero or zero.

2.4 Imperative language - Case statement
Ada's case statement is similar to the C and C++ switch statement, but with some impor-
tant differences.
Here's an example, a variation of a program that was shown earlier with an if statement:

Listing 11: check_direction.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
3

4 procedure Check_Direction is
5 N : Integer;
6 begin

(continues on next page)
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(continued from previous page)
7 loop
8 Put ("Enter an integer value: ");
9 Get (N);

10 Put (N);
11

12 case N is
13 when 0 | 360 =>
14 Put_Line
15 (" is due north");
16 when 1 .. 89 =>
17 Put_Line
18 (" is in the northeast quadrant");
19 when 90 =>
20 Put_Line
21 (" is due east");
22 when 91 .. 179 =>
23 Put_Line
24 (" is in the southeast quadrant");
25 when 180 =>
26 Put_Line
27 (" is due south");
28 when 181 .. 269 =>
29 Put_Line
30 (" is in the southwest quadrant");
31 when 270 =>
32 Put_Line
33 (" is due west");
34 when 271 .. 359 =>
35 Put_Line
36 (" is in the northwest quadrant");
37 when others =>
38 Put_Line
39 (" Au revoir");
40 exit;
41 end case;
42 end loop;
43 end Check_Direction;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Direction_2
MD5: 1c758b76a2c3991cb4e2a0cf5e172ac3

This program repeatedly prompts for an integer value and then, if the value is in the range
0 .. 360, displays the associated quadrant or axis. If the value is an Integer outside this
range, the loop (and the program) terminate after outputting a farewell message.
The effect of the case statement is similar to the if statement in an earlier example, but the
case statement can be more efficient because it does not involve multiple range tests.
Notable points about Ada's case statement:

• The case expression (here the variable N) must be of a discrete type, i.e. either an
integer type or an enumeration type. Discrete types will be covered in more detail
later discrete types (page 43).

• Every possible value for the case expression needs to be covered by a unique branch
of the case statement. This will be checked at compile time.

• A branch can specify a single value, such as 0; a range of values, such as 1 .. 89; or
any combination of the two (separated by a |).

• As a special case, an optional final branch can specify others, which covers all values

2.4. Imperative language - Case statement 13
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not included in the earlier branches.
• Execution consists of the evaluation of the case expression and then a transfer of
control to the statement sequence in the unique branch that covers that value.

• When execution of the statements in the selected branch has completed, control re-
sumes after the end case. Unlike C, execution does not fall through to the next branch.
So Ada doesn't need (and doesn't have) a break statement.

2.5 Imperative language - Declarative regions
As mentioned earlier, Ada draws a clear syntactic separation between declarations, which
introduce names for entities that will be used in the program, and statements, which per-
form the processing. The areas in the program where declarations may appear are known
as declarative regions.
In any subprogram, the section between the is and the begin is a declarative region. You
can have variables, constants, types, inner subprograms, and other entities there.
We've briefly mentioned variable declarations in previous subsection. Let's look at a simple
example, where we declare an integer variable X in the declarative region and perform an
initialization and an addition on it:

Listing 12: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 X : Integer;
5 begin
6 X := 0;
7 Put_Line ("The initial value of X is "
8 & Integer'Image (X));
9

10 Put_Line ("Performing operation on X...");
11 X := X + 1;
12

13 Put_Line ("The value of X now is "
14 & Integer'Image (X));
15 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Variable_Declaration
MD5: cbb08d5e382fbfcc28e986bea80cd253

Runtime output

The initial value of X is 0
Performing operation on X...
The value of X now is 1

Let's look at an example of a nested procedure:

Listing 13: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 procedure Nested is
5 begin

(continues on next page)
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(continued from previous page)
6 Put_Line ("Hello World");
7 end Nested;
8 begin
9 Nested;

10 -- Call to Nested
11 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Nested_Procedure
MD5: 2e7fb267e31232196065febd5e35e6ef

Runtime output

Hello World

A declaration cannot appear as a statement. If you need to declare a local variable amidst
the statements, you can introduce a new declarative region with a block statement:

Listing 14: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 begin
5 loop
6 Put_Line ("Please enter your name: ");
7

8 declare
9 Name : String := Get_Line;

10 -- ^ Call to the
11 -- Get_Line function
12 begin
13 exit when Name = "";
14 Put_Line ("Hi " & Name & "!");
15 end;
16

17 -- Name is undefined here
18 end loop;
19

20 Put_Line ("Bye!");
21 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_6
MD5: a9c0c14a1b3e2ebe07cd88f442787e3a

Attention

The Get_Line function allows you to receive input from the user, and get the result as
a string. It is more or less equivalent to the scanf C function.
It returns a String, which, as we will see later, is an Unconstrained array type (page 74).
For now we simply note that, if you wish to declare a String variable and do not know
its size in advance, then you need to initialize the variable during its declaration.

2.5. Imperative language - Declarative regions 15
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2.6 Imperative language - conditional expressions
Ada 2012 introduced an expression analog for conditional statements (if and case).

2.6.1 If expressions
Here's an alternative version of an example we saw earlier; the if statement has been
replaced by an if expression:

Listing 15: check_positive.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
3

4 procedure Check_Positive is
5 N : Integer;
6 begin
7 Put ("Enter an integer value: ");
8 Get (N);
9 Put (N);

10

11 declare
12 S : constant String :=
13 (if N > 0
14 then " is a positive number"
15 else " is not a positive number");
16 begin
17 Put_Line (S);
18 end;
19 end Check_Positive;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Positive
MD5: 01f23463b14774f750dbb21f6c65ea09

The if expression evaluates to one of the two Strings depending on N, and assigns that
value to the local variable S.
Ada's if expressions are similar to if statements. However, there are a few differences
that stem from the fact that it is an expression:

• All branches' expressions must be of the same type
• It must be surrounded by parentheses if the surrounding expression does not already
contain them

• An else branch is mandatory unless the expression following then has a Boolean
value. In that case an else branch is optional and, if not present, defaults to else
True.

Here's another example:

Listing 16: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 begin
5 for I in 1 .. 10 loop
6 Put_Line (if I mod 2 = 0
7 then "Even"

(continues on next page)
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(continued from previous page)
8 else "Odd");
9 end loop;

10 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Even_Odd
MD5: c89c3233ab8822c828f7a7bba8fd3f1c

Runtime output

Odd
Even
Odd
Even
Odd
Even
Odd
Even
Odd
Even

This program produces 10 lines of output, alternating between "Odd" and "Even".

2.6.2 Case expressions
Analogous to if expressions, Ada also has case expressions. They work just as you would
expect.

Listing 17: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 begin
5 for I in 1 .. 10 loop
6 Put_Line
7 (case I is
8 when 1 | 3 | 5 | 7 | 9 => "Odd",
9 when 2 | 4 | 6 | 8 | 10 => "Even");

10 end loop;
11 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Case_Expression
MD5: 6ce40efc987c2665960b1f08d30d780d

Runtime output

Odd
Even
Odd
Even
Odd
Even
Odd
Even
Odd
Even
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This program has the same effect as the preceding example.
The syntax differs from case statements, with branches separated by commas.
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THREE

SUBPROGRAMS

3.1 Subprograms
So far, we have used procedures, mostly to have a main body of code to execute. Proce-
dures are one kind of subprogram.
There are two kinds of subprograms in Ada, functions and procedures. The distinction
between the two is that a function returns a value, and a procedure does not.
This example shows the declaration and definition of a function:

Listing 18: increment.ads
1 function Increment (I : Integer) return Integer;

Listing 19: increment.adb
1 -- We declare (but don't define) a function with
2 -- one parameter, returning an integer value
3

4 function Increment (I : Integer) return Integer is
5 -- We define the Increment function
6 begin
7 return I + 1;
8 end Increment;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment
MD5: 582fe283730a130cec071c455a0ce3d4

Subprograms in Ada can, of course, have parameters. One syntactically important note is
that a subprogram which has no parameters does not have a parameter section at all, for
example:

procedure Proc;

function Func return Integer;

Here's another variation on the previous example:

Listing 20: increment_by.ads
1 function Increment_By
2 (I : Integer := 0;
3 Incr : Integer := 1) return Integer;
4 -- ^ Default value for parameters

Code block metadata
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Project: Courses.Intro_To_Ada.Subprograms.Increment_By
MD5: 5728b915789beee0b5546ea7b36a1cc2

In this example, we see that parameters can have default values. When calling the subpro-
gram, you can then omit parameters if they have a default value. Unlike C/C++, a call to a
subprogram without parameters does not include parentheses.
This is the implementation of the function above:

Listing 21: increment_by.adb
1 function Increment_By
2 (I : Integer := 0;
3 Incr : Integer := 1) return Integer is
4 begin
5 return I + Incr;
6 end Increment_By;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment_By
MD5: 07c85e5c1272ea396bf4dbc0cefcdce7

In the GNAT toolchain

The Ada standard doesn't mandate in which file the specification or the implementation
of a subprogram must be stored. In other words, the standard doesn't require a specific
file structure or specific file name extensions. For example, we could save both the
specification and the implementation of the Increment function above in a file called
increment.txt. (We could even store the entire source code of a system in a single
file.) From the standard's perspective, this would be completely acceptable.
The GNAT toolchain, however, requires the following file naming scheme:

• files with the .ads extension contain the specification, while
• files with the .adb extension contain the implementation.

Therefore, in the GNAT toolchain, the specification of the Increment function must
be stored in the increment.ads file, while its implementation must be stored in the
increment.adb file. This rule always applies to packages, which we discuss later
(page 31). (Note, however, that it's possible to circumvent this rule.) For more de-
tails, you may refer to the Introduction to GNAT Toolchain course or the GPRbuild User’s
Guide9.

3.1.1 Subprogram calls
We can then call our subprogram this way:

Listing 22: show_increment.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Increment_By;
3

4 procedure Show_Increment is
5 A, B, C : Integer;
6 begin
7 C := Increment_By;

(continues on next page)
9 https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html
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(continued from previous page)
8 -- ^ Parameterless call,
9 -- value of I is 0

10 -- and Incr is 1
11

12 Put_Line ("Using defaults for Increment_By is "
13 & Integer'Image (C));
14

15 A := 10;
16 B := 3;
17 C := Increment_By (A, B);
18 -- ^ Regular parameter passing
19

20 Put_Line ("Increment of "
21 & Integer'Image (A)
22 & " with "
23 & Integer'Image (B)
24 & " is "
25 & Integer'Image (C));
26

27 A := 20;
28 B := 5;
29 C := Increment_By (I => A,
30 Incr => B);
31 -- ^ Named parameter passing
32

33 Put_Line ("Increment of "
34 & Integer'Image (A)
35 & " with "
36 & Integer'Image (B)
37 & " is "
38 & Integer'Image (C));
39 end Show_Increment;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment_By
MD5: dcb501c8c6815b03c6841fc8b80d6911

Runtime output

Using defaults for Increment_By is 1
Increment of 10 with 3 is 13
Increment of 20 with 5 is 25

Ada allows you to name the parameters when you pass them, whether they have a default
or not. There are some rules:

• Positional parameters come first.
• A positional parameter cannot follow a named parameter.

As a convention, people usually name parameters at the call site if the function's corre-
sponding parameters has a default value. However, it is also perfectly acceptable to name
every parameter if it makes the code clearer.

3.1.2 Nested subprograms
As briefly mentioned earlier, Ada allows you to declare one subprogram inside another.
This is useful for two reasons:
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• It lets you organize your programs in a cleaner fashion. If you need a subprogram only
as a "helper" for another subprogram, then the principle of localization indicates that
the helper subprogram should be declared nested.

• It allows you to share state easily in a controlled fashion, because the nested subpro-
grams have access to the parameters, as well as any local variables, declared in the
outer scope.

For the previous example, we canmove the duplicated code (call to Put_Line) to a separate
procedure. This is a shortened version with the nested Display_Result procedure.

Listing 23: show_increment.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Increment_By;
3

4 procedure Show_Increment is
5 A, B, C : Integer;
6

7 procedure Display_Result is
8 begin
9 Put_Line ("Increment of "

10 & Integer'Image (A)
11 & " with "
12 & Integer'Image (B)
13 & " is "
14 & Integer'Image (C));
15 end Display_Result;
16

17 begin
18 A := 10;
19 B := 3;
20 C := Increment_By (A, B);
21 Display_Result;
22 A := 20;
23 B := 5;
24 C := Increment_By (A, B);
25 Display_Result;
26 end Show_Increment;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment_By
MD5: 23ec8ae3080c042123a9e82ee6b3d9e3

Runtime output

Increment of 10 with 3 is 13
Increment of 20 with 5 is 25

3.1.3 Function calls
An important feature of function calls in Ada is that the return value at a call cannot be
ignored; that is, a function call cannot be used as a statement.
If you want to call a function and do not need its result, you will still need to explicitly store
it in a local variable.

Listing 24: quadruple.ads
1 function Quadruple (I : Integer)
2 return Integer;
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Listing 25: quadruple.adb
1 function Quadruple (I : Integer)
2 return Integer is
3

4 function Double (I : Integer)
5 return Integer is
6 begin
7 return I * 2;
8 end Double;
9

10 Res : Integer;
11 begin
12 Double (Double (I));
13 -- ERROR: cannot use call to function
14 -- "Double" as a statement
15

16 Res := Double (Double (I));
17 -- OK: return value of Double is
18 -- assigned to Res
19

20 return Res;
21 end Quadruple;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Quadruple
MD5: fd525bde1a883d4a3794730695af6469

Build output

quadruple.adb:12:04: error: cannot use call to function "Double" as a statement
quadruple.adb:12:04: error: return value of a function call cannot be ignored
gprbuild: *** compilation phase failed

A statement such as Double (Double (I)); is wrong because we're not assigning the
return value to a variable — we can correct this statement by writing Res := Double
(Double (I));.

In the GNAT toolchain

In GNAT, with all warnings activated, it becomes even harder to ignore the result of a
function, because unused variables will be flagged. For example, this code would not be
valid:
function Read_Int

(Stream : Network_Stream;
Result : out Integer) return Boolean;

procedure Main is
Stream : Network_Stream := Get_Stream;
My_Int : Integer;

-- Warning: in the line below, B is
-- never read.
B : Boolean := Read_Int (Stream, My_Int);

begin
null;

end Main;

You then have two solutions to silence this warning:
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• Either annotate the variable with pragma Unreferenced , e.g.:
B : Boolean := Read_Int (Stream, My_Int);
pragma Unreferenced (B);

• Or give the variable a name that contains any of the strings discard dummy ignore
junk unused (case insensitive)

3.2 Parameter modes
So far we have seen that Ada is a safety-focused language. There are many ways this is
realized, but two important points are:

• Ada makes the user specify as much as possible about the behavior expected for the
program, so that the compiler can warn or reject if there is an inconsistency.

• Ada provides a variety of techniques for achieving the generality and flexibility of point-
ers and dynamic memory management, but without the latter's drawbacks (such as
memory leakage and dangling references).

Parameter modes are a feature that helps achieve the two design goals above. A subpro-
gram parameter can be specified with a mode, which is one of the following:

in Parameter can only be read, not written
out Parameter can be written to, then read
in out Parameter can be both read and written

The default mode for parameters is in; so far, most of the examples have been using in
parameters.

Historically

Functions and procedures were originally more different in philosophy. Before Ada 2012,
functions could only take in parameters.

3.3 Subprogram calls

3.3.1 In parameters
The first mode for parameters is the one we have been implicitly using so far. Parameters
passed using this mode cannot be modified, so that the following program will cause an
error:

Listing 26: swap.adb
1 procedure Swap (A, B : Integer) is
2 Tmp : Integer;
3 begin
4 Tmp := A;
5

6 -- Error: assignment to "in" mode
7 -- parameter not allowed
8 A := B;
9

10 -- Error: assignment to "in" mode
(continues on next page)
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(continued from previous page)
11 -- parameter not allowed
12 B := Tmp;
13 end Swap;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Swap
MD5: 478ac23f878934aae820e4b9c056d939

Build output

swap.adb:8:04: error: assignment to "in" mode parameter not allowed
swap.adb:12:04: error: assignment to "in" mode parameter not allowed
gprbuild: *** compilation phase failed

The fact that in is the default mode is very important. It means that a parameter will not
be modified unless you explicitly specify a mode in which modification is allowed.

3.3.2 In out parameters
To correct our code above, we can use an in out parameter.

Listing 27: in_out_params.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure In_Out_Params is
4 procedure Swap (A, B : in out Integer) is
5 Tmp : Integer;
6 begin
7 Tmp := A;
8 A := B;
9 B := Tmp;

10 end Swap;
11

12 A : Integer := 12;
13 B : Integer := 44;
14 begin
15 Swap (A, B);
16

17 -- Prints 44
18 Put_Line (Integer'Image (A));
19 end In_Out_Params;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.In_Out_Params
MD5: 319358e479449c115cf2b3cbb4ff3a6b

Runtime output

44

An in out parameter will allow read and write access to the object passed as parameter,
so in the example above, we can see that A is modified after the call to Swap.

Attention
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While in out parameters look a bit like references in C++, or regular parameters in
Java that are passed by-reference, the Ada language standard does not mandate "by
reference" passing for in out parameters except for certain categories of types as will
be explained later.
In general, it is better to think of modes as higher level than by-value versus by-reference
semantics. For the compiler, it means that an array passed as an in parameter might
be passed by reference, because it is more efficient (which does not change anything
for the user since the parameter is not assignable). However, a parameter of a discrete
type will always be passed by copy, regardless of its mode (which is more efficient on
most architectures).

3.3.3 Out parameters
The out mode applies when the subprogram needs to write to a parameter that might be
uninitialized at the point of call. Reading the value of an out parameter is permitted, but
it should only be done after the subprogram has assigned a value to the parameter. Out
parameters behave a bit like return values for functions. When the subprogram returns,
the actual parameter (a variable) will have the value of the out parameter at the point of
return.

In other languages

Ada doesn't have a tuple construct and does not allow returning multiple values from
a subprogram (except by declaring a full-fledged record type). Hence, a way to return
multiple values from a subprogram is to use out parameters.

For example, a procedure reading integers from the network could have one of the following
specifications:

procedure Read_Int
(Stream : Network_Stream;
Success : out Boolean;
Result : out Integer);

function Read_Int
(Stream : Network_Stream;
Result : out Integer) return Boolean;

While reading an out variable before writing to it should, ideally, trigger an error, imposing
that as a rule would cause either inefficient run-time checks or complex compile-time rules.
So from the user's perspective an out parameter acts like an uninitialized variable when the
subprogram is invoked.

In the GNAT toolchain

GNAT will detect simple cases of incorrect use of out parameters. For example, the
compiler will emit a warning for the following program:

Listing 28: outp.adb
1 procedure Outp is
2 procedure Foo (A : out Integer) is
3 B : Integer := A;
4 -- ^ Warning on reference
5 -- to uninitialized A
6 begin
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7 A := B;
8 end Foo;
9 begin

10 null;
11 end Outp;

Code block metadata
Project: Courses.Intro_To_Ada.Subprograms.Out_Params
MD5: 36bdb4e541297d7fb0b075816cb6e73a

Build output
outp.adb:3:22: warning: "A" may be referenced before it has a value [enabled by␣

↪default]

3.3.4 Forward declaration of subprograms
As we saw earlier, a subprogram can be declared without being fully defined, This is possible
in general, and can be useful if you need subprograms to be mutually recursive, as in the
example below:

Listing 29: mutually_recursive_subprograms.adb
1 procedure Mutually_Recursive_Subprograms is
2 procedure Compute_A (V : Natural);
3 -- Forward declaration of Compute_A
4

5 procedure Compute_B (V : Natural) is
6 begin
7 if V > 5 then
8 Compute_A (V - 1);
9 -- Call to Compute_A

10 end if;
11 end Compute_B;
12

13 procedure Compute_A (V : Natural) is
14 begin
15 if V > 2 then
16 Compute_B (V - 1);
17 -- Call to Compute_B
18 end if;
19 end Compute_A;
20 begin
21 Compute_A (15);
22 end Mutually_Recursive_Subprograms;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Mutually_Recursive_Subprograms
MD5: 5ee030cdecc6c4aea8916cbb763e8526

3.4 Renaming
Subprograms can be renamed by using the renames keyword and declaring a new name
for a subprogram:

procedure New_Proc renames Original_Proc;
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This can be useful, for example, to improve the readability of your application when you're
using code from external sources that cannot be changed in your system. Let's look at an
example:

Listing 30: a_procedure_with_very_long_name_that_cannot_be_changed.ads
1 procedure A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed
2 (A_Message : String);

Listing 31: a_procedure_with_very_long_name_that_cannot_be_changed.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed
4 (A_Message : String) is
5 begin
6 Put_Line (A_Message);
7 end A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Proc_Renaming
MD5: 6d4952e9dee8ef69a9e3c3e185c635f1

As the wording in the name of procedure above implies, we cannot change its name. We
can, however, rename it to something like Show in our test application and use this shorter
name. Note that we also have to declare all parameters of the original subprogram — we
may rename them, too, in the declaration. For example:

Listing 32: show_renaming.adb
1 with A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;
2

3 procedure Show_Renaming is
4

5 procedure Show (S : String) renames
6 A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;
7

8 begin
9 Show ("Hello World!");

10 end Show_Renaming;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Proc_Renaming
MD5: 5b3b550f8a1cbeb7d9cfd3673f6d42b3

Runtime output

Hello World!

Note that the original name (A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed)
is still visible after the declaration of the Show procedure.
We may also rename subprograms from the standard library. For example, we may rename
Integer'Image to Img:

Listing 33: show_image_renaming.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Image_Renaming is
(continues on next page)
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(continued from previous page)
4

5 function Img (I : Integer) return String
6 renames Integer'Image;
7

8 begin
9 Put_Line (Img (2));

10 Put_Line (Img (3));
11 end Show_Image_Renaming;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Integer_Image_Renaming
MD5: 9843b9d5967679c4fe8bd83a5213829f

Runtime output

2
3

Renaming also allows us to introduce default expressions that were not available in the
original declaration. For example, we may specify "Hello World!" as the default for the
String parameter of the Show procedure:

with A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;

procedure Show_Renaming_Defaults is

procedure Show (S : String := "Hello World!")
renames

A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;

begin
Show;

end Show_Renaming_Defaults;
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FOUR

MODULAR PROGRAMMING

So far, our examples have been simple standalone subprograms. Ada is helpful in that
regard, since it allows arbitrary declarations in a declarative part. We were thus able to
declare our types and variables in the bodies of main procedures.
However, it is easy to see that this is not going to scale up for real-world applications. We
need a better way to structure our programs into modular and distinct units.
Ada encourages the separation of programs into multiple packages and sub-packages, pro-
viding many tools to a programmer on a quest for a perfectly organized code-base.

4.1 Packages
Here is an example of a package declaration in Ada:

Listing 34: week.ads
1 package Week is
2

3 Mon : constant String := "Monday";
4 Tue : constant String := "Tuesday";
5 Wed : constant String := "Wednesday";
6 Thu : constant String := "Thursday";
7 Fri : constant String := "Friday";
8 Sat : constant String := "Saturday";
9 Sun : constant String := "Sunday";

10

11 end Week;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Week
MD5: 0fa033dc8fe2b9741483de273354e7ee

And here is how you use it:

Listing 35: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Week;
3 -- References the Week package, and
4 -- adds a dependency from Main to Week
5

6 procedure Main is
7 begin
8 Put_Line ("First day of the week is "
9 & Week.Mon);

10 end Main;
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Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Week
MD5: 03e17a75620de6a397b1d3c5a3e22f6a

Runtime output

First day of the week is Monday

Packages let you make your code modular, separating your programs into semantically
significant units. Additionally the separation of a package's specification from its body
(which we will see below) can reduce compilation time.
While the with clause indicates a dependency, you can see in the example above that you
still need to prefix the referencing of entities from the Week package by the name of the
package. (If we had included a use Week clause, then such a prefix would not have been
necessary.)
Accessing entities from a package uses the dot notation, A.B, which is the same notation
as the one used to access record fields.
A with clause can only appear in the prelude of a compilation unit (i.e., before the reserved
word, such as procedure, that marks the beginning of the unit). It is not allowed anywhere
else. This rule is only needed for methodological reasons: the person reading your code
should be able to see immediately which units the code depends on.

In other languages

Packages look similar to, but are semantically very different from, header files in C/C++.
• The first andmost important distinction is that packages are a language-level mech-
anism. This is in contrast to a #include'd header file, which is a functionality of the
C preprocessor.

• An immediate consequence is that the with construct is a semantic inclusion mech-
anism, not a text inclusion mechanism. Hence, when you with a package, you are
saying to the compiler "I'm depending on this semantic unit", and not "include this
bunch of text in place here".

• The effect of a package thus does not vary depending on where it has been withed
from. Contrast this with C/C++, where the meaning of the included text depends
on the context in which the #include appears.
This allows compilation/recompilation to be more efficient. It also allows tools like
IDEs to have correct information about the semantics of a program. In turn, this
allows better tooling in general, and code that is more analyzable, even by humans.

An important benefit of Ada with clauses when compared to #include is that it is state-
less. The order of with and use clauses does not matter, and can be changed without
side effects.

In the GNAT toolchain

The Ada language standard does not mandate any particular relationship between
source files and packages; for example, in theory you can put all your code in one
file, or use your own file naming conventions. In practice, however, an implementa-
tion will have specific rules. With GNAT, each top-level compilation unit needs to go into
a separate file. In the example above, the Week package will be in an .ads file (for Ada
specification), and the Main procedure will be in an .adb file (for Ada body).
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4.2 Using a package
As we have seen above, the with clause indicates a dependency on another package.
However, every reference to an entity coming from the Week package had to be prefixed
by the full name of the package. It is possible to make every entity of a package visible
directly in the current scope, using the use clause.
In fact, we have been using the use clause since almost the beginning of this tutorial.

Listing 36: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 -- ^ Make every entity of the
3 -- Ada.Text_IO package
4 -- directly visible.
5 with Week;
6

7 procedure Main is
8 use Week;
9 -- Make every entity of the Week

10 -- package directly visible.
11 begin
12 Put_Line ("First day of the week is " & Mon);
13 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Week
MD5: ea54077d4ae165b28ae8facfe8ba2db7

Runtime output

First day of the week is Monday

As you can see in the example above:
• Put_Line is a subprogram that comes from the Ada.Text_IO package. We can refer-
ence it directly because we have used the package at the top of the Main unit.

• Unlike with clauses, a use clause can be placed either in the prelude, or in any declara-
tive region. In the latter case the use clause will have an effect in its containing lexical
scope.

4.3 Package body
In the simple example above, the Week package only has declarations and no body. That's
not a mistake: in a package specification, which is what is illustrated above, you cannot
declare bodies. Those have to be in the package body.

Listing 37: operations.ads
1 package Operations is
2

3 -- Declaration
4 function Increment_By
5 (I : Integer;
6 Incr : Integer := 0) return Integer;
7

8 function Get_Increment_Value return Integer;
9

10 end Operations;
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Listing 38: operations.adb
1 package body Operations is
2

3 Last_Increment : Integer := 1;
4

5 function Increment_By
6 (I : Integer;
7 Incr : Integer := 0) return Integer is
8 begin
9 if Incr /= 0 then

10 Last_Increment := Incr;
11 end if;
12

13 return I + Last_Increment;
14 end Increment_By;
15

16 function Get_Increment_Value return Integer is
17 begin
18 return Last_Increment;
19 end Get_Increment_Value;
20

21 end Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Operations
MD5: 2adfb64e825605c74fecf6c9d45c8437

Here we can see that the body of the Increment_By function has to be declared in the
body. Coincidentally, introducing a body allows us to put the Last_Increment variable in
the body, and make them inaccessible to the user of the Operations package, providing a
first form of encapsulation.
This works because entities declared in the body are only visible in the body.
This example shows how Last_Increment is used indirectly:

Listing 39: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Operations;
3

4 procedure Main is
5 use Operations;
6

7 I : Integer := 0;
8 R : Integer;
9

10 procedure Display_Update_Values is
11 Incr : constant Integer :=
12 Get_Increment_Value;
13 begin
14 Put_Line (Integer'Image (I)
15 & " incremented by "
16 & Integer'Image (Incr)
17 & " is "
18 & Integer'Image (R));
19 I := R;
20 end Display_Update_Values;
21 begin
22 R := Increment_By (I);

(continues on next page)
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(continued from previous page)
23 Display_Update_Values;
24 R := Increment_By (I);
25 Display_Update_Values;
26

27 R := Increment_By (I, 5);
28 Display_Update_Values;
29 R := Increment_By (I);
30 Display_Update_Values;
31

32 R := Increment_By (I, 10);
33 Display_Update_Values;
34 R := Increment_By (I);
35 Display_Update_Values;
36 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Operations
MD5: 76190b1261a9652cfb7986ecec191e37

Runtime output

0 incremented by 1 is 1
1 incremented by 1 is 2
2 incremented by 5 is 7
7 incremented by 5 is 12
12 incremented by 10 is 22
22 incremented by 10 is 32

4.4 Child packages
Packages can be used to create hierarchies. We achieve this by using child packages, which
extend the functionality of their parent package. One example of a child package that
we've been using so far is the Ada.Text_IO package. Here, the parent package is called
Ada, while the child package is called Text_IO. In the previous examples, we've been using
the Put_Line procedure from the Text_IO child package.

Important

Ada also supports nested packages. However, since they can be more complicated to
use, the recommendation is to use child packages instead. Nested packages will be
covered in the advanced course.

Let's begin our discussion on child packages by taking our previous Week package:

Listing 40: week.ads
1 package Week is
2

3 Mon : constant String := "Monday";
4 Tue : constant String := "Tuesday";
5 Wed : constant String := "Wednesday";
6 Thu : constant String := "Thursday";
7 Fri : constant String := "Friday";
8 Sat : constant String := "Saturday";
9 Sun : constant String := "Sunday";

(continues on next page)
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10

11 end Week;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 0fa033dc8fe2b9741483de273354e7ee

If we want to create a child package for Week, we may write:

Listing 41: week-child.ads
1 package Week.Child is
2

3 function Get_First_Of_Week return String;
4

5 end Week.Child;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: a7db38e772cf6153b5eb95069517e833

Here, Week is the parent package and Child is the child package. This is the corresponding
package body of Week.Child:

Listing 42: week-child.adb
1 package body Week.Child is
2

3 function Get_First_Of_Week return String is
4 begin
5 return Mon;
6 end Get_First_Of_Week;
7

8 end Week.Child;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 04dad82685ad9f0231c3084266b0af83

In the implementation of the Get_First_Of_Week function, we can use the Mon string di-
rectly, even though it was declared in the parent package Week. We don't write with Week
here because all elements from the specification of the Week package — such as Mon, Tue
and so on — are visible in the child package Week.Child.
Now that we've completed the implementation of the Week.Child package, we can use
elements from this child package in a subprogram by simply writing with Week.Child.
Similarly, if we want to use these elements directly, we write use Week.Child in addition.
For example:

Listing 43: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Week.Child; use Week.Child;
3

4 procedure Main is
5 begin
6 Put_Line ("First day of the week is "

(continues on next page)
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7 & Get_First_Of_Week);
8 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: e2f5c6ad3a92da4cb04ee7ec12293df4

Runtime output

First day of the week is Monday

4.4.1 Child of a child package
So far, we've seen a two-level package hierarchy. But the hierarchy that we can potentially
create isn't limited to that. For instance, we could extend the hierarchy of the previous
source code example by declaring a Week.Child.Grandchild package. In this case, Week.
Child would be the parent of the Grandchild package. Let's consider this implementation:

Listing 44: week-child-grandchild.ads
1 package Week.Child.Grandchild is
2

3 function Get_Second_Of_Week return String;
4

5 end Week.Child.Grandchild;

Listing 45: week-child-grandchild.adb
1 package body Week.Child.Grandchild is
2

3 function Get_Second_Of_Week return String is
4 begin
5 return Tue;
6 end Get_Second_Of_Week;
7

8 end Week.Child.Grandchild;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 03ee5932a68212b2e501370212508ab1

We can use this new Grandchild package in our test application in the same way as before:
we can reuse the previous test application and adapt the with and use, and the function
call. This is the updated code:

Listing 46: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Week.Child.Grandchild;
4 use Week.Child.Grandchild;
5

6 procedure Main is
7 begin
8 Put_Line ("Second day of the week is "
9 & Get_Second_Of_Week);

10 end Main;
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Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 29ee409c8131bd9529c6bf6e366bb390

Runtime output

Second day of the week is Tuesday

Again, this isn't the limit for the package hierarchy. We could continue to extend
the hierarchy of the previous example by implementing a Week.Child.Grandchild.
Grand_grandchild package.

4.4.2 Multiple children
So far, we've seen a single child package of a parent package. However, a parent package
can also have multiple children. We could extend the example above and implement a
Week.Child_2 package. For example:

Listing 47: week-child_2.ads
1 package Week.Child_2 is
2

3 function Get_Last_Of_Week return String;
4

5 end Week.Child_2;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: bd3f63cacd142d9885600f4000b4573b

Here, Week is still the parent package of the Child package, but it's also the parent of the
Child_2 package. In the same way, Child_2 is obviously one of the child packages of Week.
This is the corresponding package body of Week.Child_2:

Listing 48: week-child_2.adb
1 package body Week.Child_2 is
2

3 function Get_Last_Of_Week return String is
4 begin
5 return Sun;
6 end Get_Last_Of_Week;
7

8 end Week.Child_2;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: c2c03e4cb1daff02dd6076c2956ef2aa

We can now reference both children in our test application:

Listing 49: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Week.Child; use Week.Child;
3 with Week.Child_2; use Week.Child_2;
4

5 procedure Main is
(continues on next page)
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6 begin
7 Put_Line ("First day of the week is "
8 & Get_First_Of_Week);
9 Put_Line ("Last day of the week is "

10 & Get_Last_Of_Week);
11 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 6a91f239fb2a2d8c702409c22467a424

Runtime output

First day of the week is Monday
Last day of the week is Sunday

4.4.3 Visibility
In the previous section, we've seen that elements declared in a parent package specification
are visible in the child package. This is, however, not the case for elements declared in the
package body of a parent package.
Let's consider the package Book and its child Additional_Operations:

Listing 50: book.ads
1 package Book is
2

3 Title : constant String :=
4 "Visible for my children";
5

6 function Get_Title return String;
7

8 function Get_Author return String;
9

10 end Book;

Listing 51: book-additional_operations.ads
1 package Book.Additional_Operations is
2

3 function Get_Extended_Title return String;
4

5 function Get_Extended_Author return String;
6

7 end Book.Additional_Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Visibility
MD5: a0d67cff9aeff288709391d16306df00

This is the body of both packages:

Listing 52: book.adb
1 package body Book is
2

3 Author : constant String :=
(continues on next page)

4.4. Child packages 39



Introduction to Ada

(continued from previous page)
4 "Author not visible for my children";
5

6 function Get_Title return String is
7 begin
8 return Title;
9 end Get_Title;

10

11 function Get_Author return String is
12 begin
13 return Author;
14 end Get_Author;
15

16 end Book;

Listing 53: book-additional_operations.adb
1 package body Book.Additional_Operations is
2

3 function Get_Extended_Title return String is
4 begin
5 return "Book Title: " & Title;
6 end Get_Extended_Title;
7

8 function Get_Extended_Author return String is
9 begin

10 -- "Author" string declared in the body
11 -- of the Book package is not visible
12 -- here. Therefore, we cannot write:
13 --
14 -- return "Book Author: " & Author;
15

16 return "Book Author: Unknown";
17 end Get_Extended_Author;
18

19 end Book.Additional_Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Visibility
MD5: 68b7490da12bafae0aa6fe0ab76c6b1c

In the implementation of the Get_Extended_Title, we're using the Title constant from the
parent package Book. However, as indicated in the comments of the Get_Extended_Author
function, the Author string — which we declared in the body of the Book package — isn't
visible in the Book.Additional_Operations package. Therefore, we cannot use it to im-
plement the Get_Extended_Author function.
We can, however, use the Get_Author function from Book in the implementation of the
Get_Extended_Author function to retrieve this string. Likewise, we can use this strategy
to implement the Get_Extended_Title function. This is the adapted code:

Listing 54: book-additional_operations.adb
1 package body Book.Additional_Operations is
2

3 function Get_Extended_Title return String is
4 begin
5 return "Book Title: " & Get_Title;
6 end Get_Extended_Title;
7

(continues on next page)
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8 function Get_Extended_Author return String is
9 begin

10 return "Book Author: " & Get_Author;
11 end Get_Extended_Author;
12

13 end Book.Additional_Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Visibility
MD5: b00c187cb54d3fcb9574726028c1efc6

This is a simple test application for the packages above:

Listing 55: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Book.Additional_Operations;
4 use Book.Additional_Operations;
5

6 procedure Main is
7 begin
8 Put_Line (Get_Extended_Title);
9 Put_Line (Get_Extended_Author);

10 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Visibility
MD5: bdc75987fe61e9401b400f8704890ebe

Runtime output

Book Title: Visible for my children
Book Author: Author not visible for my children

By declaring elements in the body of a package, we can implement encapsulation in Ada.
Those elements will only be visible in the package body, but nowhere else. This isn't,
however, the only way to achieve encapsulation in Ada: we'll discuss other approaches in
the Privacy (page 111) chapter.

4.5 Renaming
Previously, we've mentioned that subprograms can be renamed (page 27). We can re-
name packages, too. Again, we use the renames keyword for that. The following example
renames the Ada.Text_IO package as TIO:

Listing 56: main.adb
1 with Ada.Text_IO;
2

3 procedure Main is
4 package TIO renames Ada.Text_IO;
5 begin
6 TIO.Put_Line ("Hello");
7 end Main;

Code block metadata
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Project: Courses.Intro_To_Ada.Modular_Programming.Rename_Text_IO
MD5: 33652dd004ef33d95c168ab8893cd412

Runtime output

Hello

We can use renaming to improve the readability of our code by using shorter package
names. In the example above, we write TIO.Put_Line instead of the longer version (Ada.
Text_IO.Put_Line). This approach is especially useful when we don't use packages and
want to avoid that the code becomes too verbose.
Note we can also rename subprograms and objects inside packages. For instance, we could
have just renamed the Put_Line procedure in the source code example above:

Listing 57: main.adb
1 with Ada.Text_IO;
2

3 procedure Main is
4 procedure Say (Something : String)
5 renames Ada.Text_IO.Put_Line;
6 begin
7 Say ("Hello");
8 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Rename_Put_Line
MD5: f30174ff29eb01f33bc95f1787f9f1dc

Runtime output

Hello

In this example, we rename the Put_Line procedure to Say.

42 Chapter 4. Modular programming



CHAPTER

FIVE

STRONGLY TYPED LANGUAGE

Ada is a strongly typed language. It is interestingly modern in that respect: strong static
typing has been increasing in popularity in programming language design, owing to factors
such as the growth of statically typed functional programming, a big push from the research
community in the typing domain, and many practical languages with strong type systems.

5.1 What is a type?
In statically typed languages, a type is mainly (but not only) a compile time construct.
It is a construct to enforce invariants about the behavior of a program. Invariants are
unchangeable properties that hold for all variables of a given type. Enforcing them ensures,
for example, that variables of a data type never have invalid values.
A type is used to reason about the objects a program manipulates (an object is a variable
or a constant). The aim is to classify objects by what you can accomplish with them (i.e.,
the operations that are permitted), and this way you can reason about the correctness of
the objects' values.

5.2 Integers
A nice feature of Ada is that you can define your own integer types, based on the require-
ments of your program (i.e., the range of values that makes sense). In fact, the definitional
mechanism that Ada provides forms the semantic basis for the predefined integer types.
There is no "magical" built-in type in that regard, which is unlike most languages, and ar-
guably very elegant.

Listing 58: integer_type_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Integer_Type_Example is
4 -- Declare a signed integer type,
5 -- and give the bounds
6 type My_Int is range -1 .. 20;
7 -- ^ High bound
8 -- ^ Low bound
9

10 -- Like variables, type declarations can
11 -- only appear in declarative regions.
12 begin
13 for I in My_Int loop
14 Put_Line (My_Int'Image (I));
15 -- ^ 'Image attribute
16 -- converts a value
17 -- to a String.

(continues on next page)
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18 end loop;
19 end Integer_Type_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Integer_Type_Example
MD5: 1d82fa54b604944fdd8652cbf84f4ff2

Runtime output

-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

This example illustrates the declaration of a signed integer type, and several things we can
do with them.
Every type declaration in Ada starts with the type keyword (except for task types
(page 158)). After the type, we can see a range that looks a lot like the ranges that we
use in for loops, that defines the low and high bound of the type. Every integer in the
inclusive range of the bounds is a valid value for the type.

Ada integer types

In Ada, an integer type is not specified in terms of its machine representation, but rather
by its range. The compiler will then choose the most appropriate representation.

Another point to note in the above example is the My_Int'Image (I) expression. The
Name'Attribute (optional params) notation is used for what is called an attribute in
Ada. An attribute is a built-in operation on a type, a value, or some other program entity.
It is accessed by using a ' symbol (the ASCII apostrophe).
Ada has several types available as "built-ins"; Integer is one of them. Here is how Integer
might be defined for a typical processor:

type Integer is
range -(2 ** 31) .. +(2 ** 31 - 1);

** is the exponent operator, which means that the first valid value for Integer is -231, and
the last valid value is 231 - 1.
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Ada does not mandate the range of the built-in type Integer. An implementation for a
16-bit target would likely choose the range -215 through 215 - 1.

5.2.1 Operational semantics
Unlike some other languages, Ada requires that operations on integers should be checked
for overflow.

Listing 59: main.adb
1 procedure Main is
2 A : Integer := Integer'Last;
3 B : Integer;
4 begin
5 B := A + 5;
6 -- This operation will overflow, eg. it
7 -- will raise an exception at run time.
8 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Overflow_Check
MD5: bddd15b394f043442024899d12b982fb

Build output

main.adb:5:11: warning: value not in range of type "Standard.Integer" [enabled by␣
↪default]

main.adb:5:11: warning: Constraint_Error will be raised at run time [enabled by␣
↪default]

Runtime output

raised CONSTRAINT_ERROR : main.adb:5 overflow check failed

There are two types of overflow checks:
• Machine-level overflow, when the result of an operation exceeds the maximum value
(or is less than the minimum value) that can be represented in the storage reserved
for an object of the type, and

• Type-level overflow, when the result of an operation is outside the range defined for
the type.

Mainly for efficiency reasons, while machine-level overflow always results in an exception,
type-level overflows will only be checked at specific boundaries, like assignment:

Listing 60: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 type My_Int is range 1 .. 20;
5 A : My_Int := 12;
6 B : My_Int := 15;
7 M : My_Int := (A + B) / 2;
8 -- No overflow here, overflow checks
9 -- are done at specific boundaries.

10 begin
11 for I in 1 .. M loop
12 Put_Line ("Hello, World!");

(continues on next page)
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13 end loop;
14 -- Loop body executed 13 times
15 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Overflow_Check_2
MD5: d24283cbb42c0be5b5fa215eb16ad2e7

Runtime output

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

Type-level overflow will only be checked at specific points in the execution. The result,
as we see above, is that you might have an operation that overflows in an intermediate
computation, but no exception will be raised because the final result does not overflow.

5.3 Unsigned types
Ada also features unsigned Integer types. They're called modular types in Ada parlance.
The reason for this designation is due to their behavior in case of overflow: They simply
"wrap around", as if a modulo operation was applied.
For machine sized modular types, for example a modulus of 232, this mimics the most
common implementation behavior of unsigned types. However, an advantage of Ada is
that the modulus is more general:

Listing 61: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 type Mod_Int is mod 2 ** 5;
5 -- ^ Range is 0 .. 31
6

7 A : constant Mod_Int := 20;
8 B : constant Mod_Int := 15;
9

10 M : constant Mod_Int := A + B;
11 -- No overflow here,
12 -- M = (20 + 15) mod 32 = 3
13 begin
14 for I in 1 .. M loop
15 Put_Line ("Hello, World!");
16 end loop;
17 end Main;

Code block metadata
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Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Unsigned_Types
MD5: df4efee4eb29e7ea15a0cf961b600dd5

Runtime output

Hello, World!
Hello, World!
Hello, World!

Unlike in C/C++, since this wraparound behavior is guaranteed by the Ada specification,
you can rely on it to implement portable code. Also, being able to leverage the wrapping
on arbitrary bounds is very useful — the modulus does not need to be a power of 2 — to
implement certain algorithms and data structures, such as ring buffers10.

5.4 Enumerations
Enumeration types are another nicety of Ada's type system. Unlike C's enums, they are not
integers, and each new enumeration type is incompatible with other enumeration types.
Enumeration types are part of the bigger family of discrete types, which makes them usable
in certain situations that we will describe later but one context that we have already seen
is a case statement.

Listing 62: enumeration_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Enumeration_Example is
4 type Days is (Monday, Tuesday, Wednesday,
5 Thursday, Friday,
6 Saturday, Sunday);
7 -- An enumeration type
8 begin
9 for I in Days loop

10 case I is
11 when Saturday .. Sunday =>
12 Put_Line ("Week end!");
13

14 when Monday .. Friday =>
15 Put_Line ("Hello on "
16 & Days'Image (I));
17 -- 'Image attribute, works on
18 -- enums too
19 end case;
20 end loop;
21 end Enumeration_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Enumeration_Example
MD5: 45d6c83992af4fb6d5015d5f22cb7113

Runtime output

Hello on MONDAY
Hello on TUESDAY
Hello on WEDNESDAY
Hello on THURSDAY
Hello on FRIDAY

(continues on next page)
10 https://en.wikipedia.org/wiki/Circular_buffer

5.4. Enumerations 47

https://en.wikipedia.org/wiki/Circular_buffer


Introduction to Ada

(continued from previous page)
Week end!
Week end!

Enumeration types are powerful enough that, unlike in most languages, they're used to
define the standard Boolean type:

type Boolean is (False, True);

As mentioned previously, every "built-in" type in Ada is defined with facilities generally
available to the user.

5.5 Floating-point types

5.5.1 Basic properties
Like most languages, Ada supports floating-point types. The most commonly used floating-
point type is Float:

Listing 63: floating_point_demo.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Floating_Point_Demo is
4 A : constant Float := 2.5;
5 begin
6 Put_Line ("The value of A is "
7 & Float'Image (A));
8 end Floating_Point_Demo;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Floating_Point_Demo
MD5: 06998775497b68b742700138faecbb6a

Runtime output

The value of A is 2.50000E+00

The application will display 2.5 as the value of A.
The Ada language does not specify the precision (number of decimal digits in the mantissa)
for Float; on a typical 32-bit machine the precision will be 6.
All common operations that could be expected for floating-point types are available, includ-
ing absolute value and exponentiation. For example:

Listing 64: floating_point_operations.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Floating_Point_Operations is
4 A : Float := 2.5;
5 begin
6 A := abs (A - 4.5);
7 Put_Line ("The value of A is "
8 & Float'Image (A));
9

10 A := A ** 2 + 1.0;
11 Put_Line ("The value of A is "

(continues on next page)
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12 & Float'Image (A));
13 end Floating_Point_Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Floating_Point_Operations
MD5: c280e0f23e020aaee1a8777e7fb4c242

Runtime output

The value of A is 2.00000E+00
The value of A is 5.00000E+00

The value of A is 2.0 after the first operation and 5.0 after the second operation.
In addition to Float, an Ada implementationmay offer data types with higher precision such
as Long_Float and Long_Long_Float. Like Float, the standard does not indicate the exact
precision of these types: it only guarantees that the type Long_Float, for example, has at
least the precision of Float. In order to guarantee that a certain precision requirement is
met, we can define custom floating-point types, as we will see in the next section.

5.5.2 Precision of floating-point types
Ada allows the user to specify the precision for a floating-point type, expressed in terms
of decimal digits. Operations on these custom types will then have at least the specified
precision. The syntax for a simple floating-point type declaration is:

type T is digits <number_of_decimal_digits>;

The compiler will choose a floating-point representation that supports the required preci-
sion. For example:

Listing 65: custom_floating_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Custom_Floating_Types is
4 type T3 is digits 3;
5 type T15 is digits 15;
6 type T18 is digits 18;
7 begin
8 Put_Line ("T3 requires "
9 & Integer'Image (T3'Size)

10 & " bits");
11 Put_Line ("T15 requires "
12 & Integer'Image (T15'Size)
13 & " bits");
14 Put_Line ("T18 requires "
15 & Integer'Image (T18'Size)
16 & " bits");
17 end Custom_Floating_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Custom_Floating_Types
MD5: 3c23738f13e081038996c533da8fb723

Runtime output
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T3 requires 32 bits
T15 requires 64 bits
T18 requires 128 bits

In this example, the attribute 'Size is used to retrieve the number of bits used for the
specified data type. As we can see by running this example, the compiler allocates 32
bits for T3, 64 bits for T15 and 128 bits for T18. This includes both the mantissa and the
exponent.
The number of digits specified in the data type is also used in the format when displaying
floating-point variables. For example:

Listing 66: display_custom_floating_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Display_Custom_Floating_Types is
4 type T3 is digits 3;
5 type T18 is digits 18;
6

7 C1 : constant := 1.0e-4;
8

9 A : constant T3 := 1.0 + C1;
10 B : constant T18 := 1.0 + C1;
11 begin
12 Put_Line ("The value of A is "
13 & T3'Image (A));
14 Put_Line ("The value of B is "
15 & T18'Image (B));
16 end Display_Custom_Floating_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Display_Custom_Floating_Types
MD5: 58ec2660388a7f05e139f73e94303cf1

Runtime output

The value of A is 1.00E+00
The value of B is 1.00010000000000000E+00

As expected, the application will display the variables according to specified precision
(1.00E+00 and 1.00010000000000000E+00).

5.5.3 Range of floating-point types
In addition to the precision, a range can also be specified for a floating-point type. The
syntax is similar to the one used for integer data types — using the range keyword. This
simple example creates a new floating-point type based on the type Float, for a normalized
range between -1.0 and 1.0:

Listing 67: floating_point_range.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Floating_Point_Range is
4 type T_Norm is new Float range -1.0 .. 1.0;
5 A : T_Norm;
6 begin
7 A := 1.0;
8 Put_Line ("The value of A is "

(continues on next page)
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9 & T_Norm'Image (A));

10 end Floating_Point_Range;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Floating_Point_Range
MD5: b43d596682aa0fa11124a3a3d0596abc

Runtime output

The value of A is 1.00000E+00

The application is responsible for ensuring that variables of this type stay within this range;
otherwise an exception is raised. In this example, the exception Constraint_Error is
raised when assigning 2.0 to the variable A:

Listing 68: floating_point_range_exception.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Floating_Point_Range_Exception is
4 type T_Norm is new Float range -1.0 .. 1.0;
5 A : T_Norm;
6 begin
7 A := 2.0;
8 Put_Line ("The value of A is "
9 & T_Norm'Image (A));

10 end Floating_Point_Range_Exception;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Floating_Point_Range_
↪Exception

MD5: ecda66589ba28e453956dca159ea5f0d

Build output

floating_point_range_exception.adb:7:09: warning: value not in range of type "T_
↪Norm" defined at line 4 [enabled by default]

floating_point_range_exception.adb:7:09: warning: Constraint_Error will be raised␣
↪at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : floating_point_range_exception.adb:7 range check failed

Ranges can also be specified for custom floating-point types. For example:

Listing 69: custom_range_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Numerics; use Ada.Numerics;
3

4 procedure Custom_Range_Types is
5 type T6_Inv_Trig is
6 digits 6 range -Pi / 2.0 .. Pi / 2.0;
7 begin
8 null;
9 end Custom_Range_Types;

Code block metadata

5.5. Floating-point types 51



Introduction to Ada

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Custom_Range_Types
MD5: 7b62abc869290a30e351163f670059e0

In this example, we are defining a type called T6_Inv_Trig, which has a range from -π /
2 to π / 2 with a minimum precision of 6 digits. (Pi is defined in the predefined package
Ada.Numerics.)

5.6 Strong typing
As noted earlier, Ada is strongly typed. As a result, different types of the same family are
incompatible with each other; a value of one type cannot be assigned to a variable from
the other type. For example:

Listing 70: illegal_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Illegal_Example is
4 -- Declare two different floating point types
5 type Meters is new Float;
6 type Miles is new Float;
7

8 Dist_Imperial : Miles;
9

10 -- Declare a constant
11 Dist_Metric : constant Meters := 1000.0;
12 begin
13 -- Not correct: types mismatch
14 Dist_Imperial := Dist_Metric * 621.371e-6;
15 Put_Line (Miles'Image (Dist_Imperial));
16 end Illegal_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Imperial_Metric_Error
MD5: e28e341c5eda9b3b4cef691fa24b7f7e

Build output

illegal_example.adb:14:33: error: expected type "Miles" defined at line 6
illegal_example.adb:14:33: error: found type "Meters" defined at line 5
gprbuild: *** compilation phase failed

A consequence of these rules is that, in the general case, a "mixed mode" expression like
2 * 3.0 will trigger a compilation error. In a language like C or Python, such expressions
are made valid by implicit conversions. In Ada, such conversions must be made explicit:

Listing 71: conv.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Conv is
3 type Meters is new Float;
4 type Miles is new Float;
5 Dist_Imperial : Miles;
6 Dist_Metric : constant Meters := 1000.0;
7 begin
8 Dist_Imperial :=
9 Miles (Dist_Metric) * 621.371e-6;

10 -- ^^^^^^^^^^^^^^^^^
(continues on next page)
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11 -- Type conversion, from Meters to Miles
12 -- Now the code is correct
13

14 Put_Line (Miles'Image (Dist_Imperial));
15 end Conv;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Imperial_Metric
MD5: e455641e86227e80e5f920b5af6315d4

Runtime output

6.21371E-01

Of course, we probably do not want to write the conversion code every time we convert
from meters to miles. The idiomatic Ada way in that case would be to introduce conversion
functions along with the types.

Listing 72: conv.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Conv is
4 type Meters is new Float;
5 type Miles is new Float;
6

7 -- Function declaration, like procedure
8 -- but returns a value.
9 function To_Miles (M : Meters) return Miles is

10 -- ^ Return type
11 begin
12 return Miles (M) * 621.371e-6;
13 end To_Miles;
14

15 Dist_Imperial : Miles;
16 Dist_Metric : constant Meters := 1000.0;
17 begin
18 Dist_Imperial := To_Miles (Dist_Metric);
19 Put_Line (Miles'Image (Dist_Imperial));
20 end Conv;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Imperial_Metric_Func
MD5: 661737fa9f130ac3070210bbf6f08214

Runtime output

6.21371E-01

If you write a lot of numeric code, having to explicitly provide such conversions might seem
painful at first. However, this approach brings some advantages. Notably, you can rely on
the absence of implicit conversions, which will in turn prevent some subtle errors.

In other languages

In C, for example, the rules for implicit conversions may not always be com-
pletely obvious. In Ada, however, the code will always do exactly what it seems
to do. For example:
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int a = 3, b = 2;
float f = a / b;

This code will compile fine, but the result of f will be 1.0 instead of 1.5, be-
cause the compiler will generate an integer division (three divided by two)
that results in one. The software developer must be aware of data conversion
issues and use an appropriate casting:
int a = 3, b = 2;
float f = (float)a / b;

In the corrected example, the compiler will convert both variables to their cor-
responding floating-point representation before performing the division. This
will produce the expected result.
This example is very simple, and experienced C developers will probably notice
and correct it before it creates bigger problems. However, in more complex
applications where the type declaration is not always visible — e.g. when
referring to elements of a struct— this situation might not always be evident
and quickly lead to software defects that can be harder to find.
The Ada compiler, in contrast, will always reject code that mixes floating-point
and integer variables without explicit conversion. The following Ada code,
based on the erroneous example in C, will not compile:

Listing 73: main.adb
1 procedure Main is
2 A : Integer := 3;
3 B : Integer := 2;
4 F : Float;
5 begin
6 F := A / B;
7 end Main;

Code block metadata
Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Implicit_Cast
MD5: 38a8fcc6608c22e22940052ab8dd62f4

Build output
main.adb:6:11: error: expected type "Standard.Float"
main.adb:6:11: error: found type "Standard.Integer"
gprbuild: *** compilation phase failed

The offending line must be changed to F := Float (A) / Float (B); in
order to be accepted by the compiler.

You can use Ada's strong typing to help enforce invariants in your code, as in the example
above: Since Miles and Meters are two different types, you cannot mistakenly convert
an instance of one to an instance of the other.

5.7 Derived types
In Ada you can create new types based on existing ones. This is very useful: you get a type
that has the same properties as some existing type but is treated as a distinct type in the
interest of strong typing.
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Listing 74: main.adb
1 procedure Main is
2 -- ID card number type,
3 -- incompatible with Integer.
4 type Social_Security_Number is new Integer
5 range 0 .. 999_99_9999;
6 -- ^ Since a SSN has 9 digits
7 -- max., and cannot be
8 -- negative, we enforce
9 -- a validity constraint.

10

11 SSN : Social_Security_Number :=
12 555_55_5555;
13 -- ^ You can put underscores as
14 -- formatting in any number.
15

16 I : Integer;
17

18 -- The value -1 below will cause a
19 -- runtime error and a compile time
20 -- warning with GNAT.
21 Invalid : Social_Security_Number := -1;
22 begin
23 -- Illegal, they have different types:
24 I := SSN;
25

26 -- Likewise illegal:
27 SSN := I;
28

29 -- OK with explicit conversion:
30 I := Integer (SSN);
31

32 -- Likewise OK:
33 SSN := Social_Security_Number (I);
34 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Derived_Types
MD5: 63445601ddb5e52dceab095d3305623a

Build output

main.adb:21:40: warning: value not in range of type "Social_Security_Number"␣
↪defined at line 4 [enabled by default]

main.adb:21:40: warning: Constraint_Error will be raised at run time [enabled by␣
↪default]

main.adb:24:09: error: expected type "Standard.Integer"
main.adb:24:09: error: found type "Social_Security_Number" defined at line 4
main.adb:27:11: error: expected type "Social_Security_Number" defined at line 4
main.adb:27:11: error: found type "Standard.Integer"
gprbuild: *** compilation phase failed

The type Social_Security is said to be a derived type; its parent type is Integer.
As illustrated in this example, you can refine the valid range when defining a derived scalar
type (such as integer, floating-point and enumeration).
The syntax for enumerations uses the range <range> syntax:
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Listing 75: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 type Days is (Monday, Tuesday, Wednesday,
5 Thursday, Friday,
6 Saturday, Sunday);
7

8 type Weekend_Days is new
9 Days range Saturday .. Sunday;

10 -- New type, where only Saturday and Sunday
11 -- are valid literals.
12 begin
13 null;
14 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Days
MD5: 853b5c1576961c7c20d4306275122364

5.8 Subtypes
As we are starting to see, types may be used in Ada to enforce constraints on the valid
range of values. However, we sometimes want to enforce constraints on some values while
staying within a single type. This is where subtypes come into play. A subtype does not
introduce a new type.

Listing 76: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 type Days is (Monday, Tuesday, Wednesday,
5 Thursday, Friday,
6 Saturday, Sunday);
7

8 -- Declaration of a subtype
9 subtype Weekend_Days is

10 Days range Saturday .. Sunday;
11 -- ^ Constraint of the subtype
12

13 M : Days := Sunday;
14

15 S : Weekend_Days := M;
16 -- No error here, Days and Weekend_Days
17 -- are of the same type.
18 begin
19 for I in Days loop
20 case I is
21 -- Just like a type, a subtype can
22 -- be used as a range
23 when Weekend_Days =>
24 Put_Line ("Week end!");
25 when others =>
26 Put_Line ("Hello on "
27 & Days'Image (I));
28 end case;

(continues on next page)
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29 end loop;
30 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Days_Subtype
MD5: 8ee7127d152a8b2c9d0ac74d05fc2fc2

Runtime output

Hello on MONDAY
Hello on TUESDAY
Hello on WEDNESDAY
Hello on THURSDAY
Hello on FRIDAY
Week end!
Week end!

Several subtypes are predefined in the standard package in Ada, and are automatically
available to you:

subtype Natural is Integer range 0 .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

While subtypes of a type are statically compatible with each other, constraints are enforced
at run time: if you violate a subtype constraint, an exception will be raised.

Listing 77: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 type Days is (Monday, Tuesday, Wednesday,
5 Thursday, Friday,
6 Saturday, Sunday);
7

8 subtype Weekend_Days is
9 Days range Saturday .. Sunday;

10

11 Day : Days := Saturday;
12 Weekend : Weekend_Days;
13 begin
14 Weekend := Day;
15 -- ^ Correct: Same type, subtype
16 -- constraints are respected
17 Weekend := Monday;
18 -- ^ Wrong value for the subtype
19 -- Compiles, but exception at runtime
20 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Days_Subtype_Error
MD5: 84d42d276d26544f35edab5870459378

Build output

greet.adb:17:15: warning: value not in range of type "Weekend_Days" defined at␣
↪line 8 [enabled by default]

greet.adb:17:15: warning: Constraint_Error will be raised at run time [enabled by␣
↪default]
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Runtime output

raised CONSTRAINT_ERROR : greet.adb:17 range check failed

5.8.1 Subtypes as type aliases
Previously, we've seen that we can create new types by declaring e.g. type Miles is new
Float. We could also create type aliases, which generate alternative names — aliases —
for known types. Note that type aliases are sometimes called type synonyms.
We achieve this in Ada by using subtypes without new constraints. In this case, however,
we don't get all of the benefits of Ada's strong type checking. Let's rewrite an example
using type aliases:

Listing 78: undetected_imperial_metric_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Undetected_Imperial_Metric_Error is
4 -- Declare two type aliases
5 subtype Meters is Float;
6 subtype Miles is Float;
7

8 Dist_Imperial : Miles;
9

10 -- Declare a constant
11 Dist_Metric : constant Meters := 100.0;
12 begin
13 -- No conversion to Miles type required:
14 Dist_Imperial := (Dist_Metric * 1609.0)
15 / 1000.0;
16

17 -- Not correct, but undetected:
18 Dist_Imperial := Dist_Metric;
19

20 Put_Line (Miles'Image (Dist_Imperial));
21 end Undetected_Imperial_Metric_Error;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Undetected_Imperial_Metric_
↪Error

MD5: cdb8f949c69f3c480502b859dac298ee

Runtime output

1.00000E+02

In the example above, the fact that both Meters and Miles are subtypes of Float allows
us to mix variables of both types without type conversion. This, however, can lead to all
sorts of programming mistakes that we'd like to avoid, as we can see in the undetected
error highlighted in the code above. In that example, the error in the assignment of a value
in meters to a variable meant to store values in miles remains undetected because both
Meters and Miles are subtypes of Float. Therefore, the recommendation is to use strong
typing — via type X is new Y — for cases such as the one above.
There are, however, many situations where type aliases are useful. For example, in an
application that uses floating-point types in multiple contexts, we could use type aliases
to indicate additional meaning to the types or to avoid long variable names. For example,
instead of writing:
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Paid_Amount, Due_Amount : Float;

We could write:

subtype Amount is Float;

Paid, Due : Amount;

In other languages

In C, for example, we can use a typedef declaration to create a type alias. For example:
typedef float meters;

This corresponds to the declaration that we've seen above using subtypes. Other pro-
gramming languages include this concept in similar ways. For example:

• C++: using meters = float;

• Swift: typealias Meters = Double

• Kotlin: typealias Meters = Double

• Haskell: type Meters = Float

Note, however, that subtypes in Ada correspond to type aliases if, and only if, they don't
have new constraints. Thus, if we add a new constraint to a subtype declaration, we don't
have a type alias anymore. For example, the following declaration can't be considered a
type alias of Float:

subtype Meters is Float range 0.0 .. 1_000_000.0;

Let's look at another example:

subtype Degree_Celsius is Float;

subtype Liquid_Water_Temperature is
Degree_Celsius range 0.0 .. 100.0;

subtype Running_Water_Temperature is
Liquid_Water_Temperature;

In this example, Liquid_Water_Temperature isn't an alias of Degree_Celsius, since it adds
a new constraint that wasn't part of the declaration of the Degree_Celsius. However, we
do have two type aliases here:

• Degree_Celsius is an alias of Float;
• Running_Water_Temperature is an alias of Liquid_Water_Temperature, even if Liq-
uid_Water_Temperature itself has a constrained range.
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SIX

RECORDS

So far, all the types we have encountered have values that are not decomposable: each
instance represents a single piece of data. Now we are going to see our first class of com-
posite types: records.
Records allow composing a value out of instances of other types. Each of those instances
will be given a name. The pair consisting of a name and an instance of a specific type is
called a field, or a component.

6.1 Record type declaration
Here is an example of a simple record declaration:

type Date is record
-- The following declarations are
-- components of the record
Day : Integer range 1 .. 31;
Month : Months;
-- You can add custom constraints
-- on fields
Year : Integer range 1 .. 3000;

end record;

Fields look a lot like variable declarations, except that they are inside of a record definition.
And as with variable declarations, you can specify additional constraints when supplying
the subtype of the field.

type Date is record
Day : Integer range 1 .. 31;
Month : Months := January;
-- This component has a default value
Year : Integer range 1 .. 3000 := 2012;
-- ^^^^
-- Default value

end record;

Record components can have default values. When a variable having the record type is
declared, a field with a default initialization will be automatically set to this value. The
value can be any expression of the component type, and may be run-time computable.
In the remaining sections of this chapter, we see how to use record types. In addition to
that, we discuss more about records in another chapter (page 97).
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6.2 Aggregates
-- Positional components
Ada_Birthday : Date := (10, December, 1815);

-- Named components
Leap_Day_2020 : Date := (Day => 29,

Month => February,
Year => 2020);

-- ^ By name

Records have a convenient notation for expressing values, illustrated above. This notation
is called aggregate notation, and the literals are called aggregates. They can be used in
a variety of contexts that we will see throughout the course, one of which is to initialize
records.
An aggregate is a list of values separated by commas and enclosed in parentheses. It is
allowed in any context where a value of the record is expected.
Values for the components can be specified positionally, as in Ada_Birthday example, or
by name, as in Leap_Day_2020. A mixture of positional and named values is permitted, but
you cannot use a positional notation after a named one.

6.3 Component selection
To access components of a record instance, you use an operation that is called component
selection. This is achieved by using the dot notation. For example, if we declare a variable
Some_Day of the Date record type mentioned above, we can access the Year component
by writing Some_Day.Year.
Let's look at an example:

Listing 79: record_selection.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Record_Selection is
4

5 type Months is
6 (January, February, March, April,
7 May, June, July, August, September,
8 October, November, December);
9

10 type Date is record
11 Day : Integer range 1 .. 31;
12 Month : Months;
13 Year : Integer range 1 .. 3000 := 2032;
14 end record;
15

16 procedure Display_Date (D : Date) is
17 begin
18 Put_Line ("Day:" & Integer'Image (D.Day)
19 & ", Month: "
20 & Months'Image (D.Month)
21 & ", Year:"
22 & Integer'Image (D.Year));
23 end Display_Date;
24

25 Some_Day : Date := (1, January, 2000);
26

(continues on next page)
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27 begin
28 Display_Date (Some_Day);
29

30 Put_Line ("Changing year...");
31 Some_Day.Year := 2001;
32

33 Display_Date (Some_Day);
34 end Record_Selection;

Code block metadata

Project: Courses.Intro_To_Ada.Records.Record_Selection
MD5: 79602cf4d011ba7423d07772b13e2b5a

Runtime output

Day: 1, Month: JANUARY, Year: 2000
Changing year...
Day: 1, Month: JANUARY, Year: 2001

As you can see in this example, we can use the dot notation in the expression D.Year or
Some_Day.Year to access the information stored in that component, as well as to mod-
ify this information in assignments. To be more specific, when we use D.Year in the call
to Put_Line, we're retrieving the information stored in that component. When we write
Some_Day.Year := 2001, we're overwriting the information that was previously stored in
the Year component of Some_Day.

6.4 Renaming
In previous chapters, we've discussed subprogram (page 27) and package (page 41) re-
naming. We can rename record components as well. Instead of writing the full component
selection using the dot notation, we can declare an alias that allows us to access the same
component. This is useful to simplify the implementation of a subprogram, for example.
We can rename record components by using the renames keyword in a variable declaration.
For example:

Some_Day : Date;
Y : Integer renames Some_Day.Year;

Here, Y is an alias, so that every time we using Y, we are really using the Year component
of Some_Day.
Let's look at a complete example:

Listing 80: dates.ads
1 package Dates is
2

3 type Months is
4 (January, February, March, April,
5 May, June, July, August, September,
6 October, November, December);
7

8 type Date is record
9 Day : Integer range 1 .. 31;

10 Month : Months;
11 Year : Integer range 1 .. 3000 := 2032;
12 end record;

(continues on next page)

6.4. Renaming 63



Introduction to Ada

(continued from previous page)
13

14 procedure Increase_Month
15 (Some_Day : in out Date);
16

17 procedure Display_Month
18 (Some_Day : Date);
19

20 end Dates;

Listing 81: dates.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Dates is
4

5 procedure Increase_Month
6 (Some_Day : in out Date)
7 is
8 -- Renaming components from
9 -- the Date record

10 M : Months renames Some_Day.Month;
11 Y : Integer renames Some_Day.Year;
12

13 -- Renaming function (for Months
14 -- enumeration)
15 function Next (M : Months)
16 return Months
17 renames Months'Succ;
18 begin
19 if M = December then
20 M := January;
21 Y := Y + 1;
22 else
23 M := Next (M);
24 end if;
25 end Increase_Month;
26

27 procedure Display_Month
28 (Some_Day : Date)
29 is
30 -- Renaming components from
31 -- the Date record
32 M : Months renames Some_Day.Month;
33 Y : Integer renames Some_Day.Year;
34 begin
35 Put_Line ("Month: "
36 & Months'Image (M)
37 & ", Year:"
38 & Integer'Image (Y));
39 end Display_Month;
40

41 end Dates;

Listing 82: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Dates; use Dates;
3

4 procedure Main is
5 D : Date := (1, January, 2000);

(continues on next page)
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6 begin
7 Display_Month (D);
8

9 Put_Line ("Increasing month...");
10 Increase_Month (D);
11

12 Display_Month (D);
13 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Record_Component_Renaming
MD5: 905390bd02b8417039052218800975a3

Runtime output

Month: JANUARY, Year: 2000
Increasing month...
Month: FEBRUARY, Year: 2000

We apply renaming to two components of the Date record in the implementation of the In-
crease_Month procedure. Then, instead of directly using Some_Day.Month and Some_Day.
Year in the next operations, we simply use the renamed versions M and Y.
Note that, in the example above, we also rename Months'Succ—which is the function that
gives us the next month — to Next.
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SEVEN

ARRAYS

Arrays provide another fundamental family of composite types in Ada.

7.1 Array type declaration
Arrays in Ada are used to define contiguous collections of elements that can be selected by
indexing. Here's a simple example:

Listing 83: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 type My_Int is range 0 .. 1000;
5 type Index is range 1 .. 5;
6

7 type My_Int_Array is
8 array (Index) of My_Int;
9 -- ^ Type of elements

10 -- ^ Bounds of the array
11 Arr : My_Int_Array := (2, 3, 5, 7, 11);
12 -- ^ Array literal
13 -- (aggregate)
14

15 V : My_Int;
16 begin
17 for I in Index loop
18 V := Arr (I);
19 -- ^ Take the Ith element
20 Put (My_Int'Image (V));
21 end loop;
22 New_Line;
23 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Greet
MD5: ffdd2ba2322b0946dfcac3a55bce5270

Runtime output

2 3 5 7 11

The first point to note is that we specify the index type for the array, rather than its size.
Here we declared an integer type named Index ranging from 1 to 5, so each array instance
will have 5 elements, with the initial element at index 1 and the last element at index 5.
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Although this example used an integer type for the index, Ada is more general: any discrete
type is permitted to index an array, including Enum types (page 47). We will soon see what
that means.
Another point to note is that querying an element of the array at a given index uses the same
syntax as for function calls: that is, the array object followed by the index in parentheses.
Thus when you see an expression such as A (B), whether it is a function call or an array
subscript depends on what A refers to.
Finally, notice how we initialize the array with the (2, 3, 5, 7, 11) expression. This
is another kind of aggregate in Ada, and is in a sense a literal expression for an array, in
the same way that 3 is a literal expression for an integer. The notation is very powerful,
with a number of properties that we will introduce later. A detailed overview appears in the
notation of aggregate types (page 85).
Unrelated to arrays, the example also illustrated two procedures from Ada.Text_IO:

• Put, which displays a string without a terminating end of line
• New_Line, which outputs an end of line

Let's now delve into what it means to be able to use any discrete type to index into the
array.

In other languages

Semantically, an array object in Ada is the entire data structure, and not simply a handle
or pointer. Unlike C and C++, there is no implicit equivalence between an array and a
pointer to its initial element.

Listing 84: array_bounds_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Array_Bounds_Example is
4 type My_Int is range 0 .. 1000;
5

6 type Index is range 11 .. 15;
7 -- ^ Low bound can
8 -- be any value
9

10 type My_Int_Array is
11 array (Index) of My_Int;
12

13 Tab : constant My_Int_Array :=
14 (2, 3, 5, 7, 11);
15 begin
16 for I in Index loop
17 Put (My_Int'Image (Tab (I)));
18 end loop;
19 New_Line;
20 end Array_Bounds_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Array_Bounds_Example
MD5: e5fe9e7b83055f3ae23dd890e29c22de

Runtime output

2 3 5 7 11
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One effect is that the bounds of an array can be any values. In the first example we con-
structed an array type whose first index is 1, but in the example above we declare an array
type whose first index is 11.
That's perfectly fine in Ada, and moreover since we use the index type as a range to iterate
over the array indices, the code using the array does not need to change.
That leads us to an important consequence with regard to code dealing with arrays. Since
the bounds can vary, you should not assume / hard-code specific bounds when iterating /
using arrays. That means the code above is good, because it uses the index type, but a for
loop as shown below is bad practice even though it works correctly:

for I in 11 .. 15 loop
Tab (I) := Tab (I) * 2;

end loop;

Since you can use any discrete type to index an array, enumeration types are permitted.

Listing 85: month_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Month_Example is
4 type Month_Duration is range 1 .. 31;
5 type Month is (Jan, Feb, Mar, Apr,
6 May, Jun, Jul, Aug,
7 Sep, Oct, Nov, Dec);
8

9 type My_Int_Array is
10 array (Month) of Month_Duration;
11 -- ^ Can use an enumeration type
12 -- as the index
13

14 Tab : constant My_Int_Array :=
15 -- ^ constant is like a variable but
16 -- cannot be modified
17 (31, 28, 31, 30, 31, 30,
18 31, 31, 30, 31, 30, 31);
19 -- Maps months to number of days
20 -- (ignoring leap years)
21

22 Feb_Days : Month_Duration := Tab (Feb);
23 -- Number of days in February
24 begin
25 for M in Month loop
26 Put_Line
27 (Month'Image (M) & " has "
28 & Month_Duration'Image (Tab (M))
29 & " days.");
30 -- ^ Concatenation operator
31 end loop;
32 end Month_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Month_Example
MD5: 420bb8faa36d0efd3d071c76c2033d21

Runtime output

JAN has 31 days.
FEB has 28 days.
MAR has 31 days.

(continues on next page)
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APR has 30 days.
MAY has 31 days.
JUN has 30 days.
JUL has 31 days.
AUG has 31 days.
SEP has 30 days.
OCT has 31 days.
NOV has 30 days.
DEC has 31 days.

In the example above, we are:
• Creating an array type mapping months to month durations in days.
• Creating an array, and instantiating it with an aggregate mapping months to their
actual durations in days.

• Iterating over the array, printing out the months, and the number of days for each.
Being able to use enumeration values as indices is very helpful in creating mappings such
as shown above one, and is an often used feature in Ada.

7.2 Indexing
We have already seen the syntax for selecting elements of an array. There are however a
few more points to note.
First, as is true in general in Ada, the indexing operation is strongly typed. If you use a
value of the wrong type to index the array, you will get a compile-time error.

Listing 86: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 type My_Int is range 0 .. 1000;
5

6 type My_Index is range 1 .. 5;
7 type Your_Index is range 1 .. 5;
8

9 type My_Int_Array is
10 array (My_Index) of My_Int;
11

12 Tab : My_Int_Array := (2, 3, 5, 7, 11);
13 begin
14 for I in Your_Index loop
15 Put (My_Int'Image (Tab (I)));
16 -- ^ Compile time error
17 end loop;
18 New_Line;
19 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Greet_2
MD5: 54543017e4ec69d24bf9e43d507b50e6

Build output
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greet.adb:15:31: error: expected type "My_Index" defined at line 6
greet.adb:15:31: error: found type "Your_Index" defined at line 7
gprbuild: *** compilation phase failed

Second, arrays in Ada are bounds checked. This means that if you try to access an element
outside of the bounds of the array, you will get a run-time error instead of accessing random
memory as in unsafe languages.

Listing 87: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 type My_Int is range 0 .. 1000;
5 type Index is range 1 .. 5;
6

7 type My_Int_Array is
8 array (Index) of My_Int;
9

10 Tab : My_Int_Array := (2, 3, 5, 7, 11);
11 begin
12 for I in Index range 2 .. 6 loop
13 Put (My_Int'Image (Tab (I)));
14 -- ^ Will raise an
15 -- exception when
16 -- I = 6
17 end loop;
18 New_Line;
19 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Greet_3
MD5: 0102674d089be838f1dfbf0791d99fce

Build output

greet.adb:12:30: warning: static value out of range of type "Index" defined at␣
↪line 5 [enabled by default]

greet.adb:12:30: warning: Constraint_Error will be raised at run time [enabled by␣
↪default]

greet.adb:12:30: warning: suspicious loop bound out of range of loop subtype␣
↪[enabled by default]

greet.adb:12:30: warning: loop executes zero times or raises Constraint_Error␣
↪[enabled by default]

Runtime output

raised CONSTRAINT_ERROR : greet.adb:12 range check failed

7.3 Simpler array declarations
In the previous examples, we have always explicitly created an index type for the array.
While this can be useful for typing and readability purposes, sometimes you simply want
to express a range of values. Ada allows you to do that, too.
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Listing 88: simple_array_bounds.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Simple_Array_Bounds is
4 type My_Int is range 0 .. 1000;
5

6 type My_Int_Array is
7 array (1 .. 5) of My_Int;
8 -- ^ Subtype of Integer
9

10 Tab : constant My_Int_Array :=
11 (2, 3, 5, 7, 11);
12 begin
13 for I in 1 .. 5 loop
14 -- ^ Subtype of Integer
15 Put (My_Int'Image (Tab (I)));
16 end loop;
17 New_Line;
18 end Simple_Array_Bounds;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Simple_Array_Bounds
MD5: c337a7fe0dacccc5f60f7b234aa96d39

Runtime output

2 3 5 7 11

This example defines the range of the array via the range syntax, which specifies an anony-
mous subtype of Integer and uses it to index the array.
This means that the type of the index is Integer. Similarly, when you use an anonymous
range in a for loop as in the example above, the type of the iteration variable is also Integer,
so you can use I to index Tab.
You can also use a named subtype for the bounds for an array.

7.4 Range attribute
We noted earlier that hard coding bounds when iterating over an array is a bad idea, and
showed how to use the array's index type/subtype to iterate over its range in a for loop.
That raises the question of how to write an iteration when the array has an anonymous
range for its bounds, since there is no name to refer to the range. Ada solves that via
several attributes of array objects:

Listing 89: range_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Range_Example is
4 type My_Int is range 0 .. 1000;
5

6 type My_Int_Array is
7 array (1 .. 5) of My_Int;
8

9 Tab : constant My_Int_Array :=
10 (2, 3, 5, 7, 11);
11 begin

(continues on next page)

72 Chapter 7. Arrays



Introduction to Ada

(continued from previous page)
12 for I in Tab'Range loop
13 -- ^ Gets the range of Tab
14 Put (My_Int'Image (Tab (I)));
15 end loop;
16 New_Line;
17 end Range_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Range_Example
MD5: 8b0d7bf346cb59999dfd12dbaaf3e2a6

Runtime output

2 3 5 7 11

If you want more fine grained control, you can use the separate attributes 'First and
'Last.

Listing 90: array_attributes_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Array_Attributes_Example is
4 type My_Int is range 0 .. 1000;
5

6 type My_Int_Array is
7 array (1 .. 5) of My_Int;
8

9 Tab : My_Int_Array :=
10 (2, 3, 5, 7, 11);
11 begin
12 for I in Tab'First .. Tab'Last - 1 loop
13 -- ^ Iterate on every index
14 -- except the last
15 Put (My_Int'Image (Tab (I)));
16 end loop;
17 New_Line;
18 end Array_Attributes_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Array_Attributes_Example
MD5: 95cc407c8aadd936e050fe3505e8fb46

Runtime output

2 3 5 7

The 'Range, 'First and 'Last attributes in these examples could also have been applied
to the array type name, and not just the array instances.
Although not illustrated in the above examples, another useful attribute for an array in-
stance A is A'Length, which is the number of elements that A contains.
It is legal and sometimes useful to have a "null array", which contains no elements. To get
this effect, define an index range whose upper bound is less than the lower bound.
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7.5 Unconstrained arrays
Let's now consider one of the most powerful aspects of Ada's array facility.
Every array type we have defined so far has a fixed size: every instance of this type will
have the same bounds and therefore the same number of elements and the same size.
However, Ada also allows you to declare array types whose bounds are not fixed: in that
case, the bounds will need to be provided when creating instances of the type.

Listing 91: unconstrained_array_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Unconstrained_Array_Example is
4 type Days is (Monday, Tuesday, Wednesday,
5 Thursday, Friday,
6 Saturday, Sunday);
7

8 type Workload_Type is
9 array (Days range <>) of Natural;

10 -- Indefinite array type
11 -- ^ Bounds are of type Days,
12 -- but not known
13

14 Workload : constant
15 Workload_Type (Monday .. Friday) :=
16 -- ^ Specify the bounds
17 -- when declaring
18 (Friday => 7, others => 8);
19 -- ^ Default value
20 -- ^ Specify element by name of index
21 begin
22 for I in Workload'Range loop
23 Put_Line (Integer'Image (Workload (I)));
24 end loop;
25 end Unconstrained_Array_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Unconstrained_Array_Example
MD5: c84910e9b424cfabbbbe018ba0a6de59

Runtime output

8
8
8
8
7

The fact that the bounds of the array are not known is indicated by the Days range <>
syntax. Given a discrete type Discrete_Type, if we use Discrete_Type for the index in an
array type then Discrete_Type serves as the type of the index and comprises the range
of index values for each array instance.
If we define the index as Discrete_Type range <> then Discrete_Type serves as the type
of the index, but different array instances may have different bounds from this type.
An array type that is defined with the Discrete_Type range <> syntax for its index is
referred to as an unconstrained array type, and, as illustrated above, the bounds need to
be provided when an instance is created.
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The above example also shows other forms of the aggregate syntax. You can specify asso-
ciations by name, by giving the value of the index on the left side of an arrow association.
1 => 2 thus means "assign value 2 to the element at index 1 in my array". others => 8
means "assign value 8 to every element that wasn't previously assigned in this aggregate".

Attention

The so-called "box" notation (<>) is commonly used as a wildcard or placeholder in Ada.
You will often see it when the meaning is "what is expected here can be anything".

In other languages

While unconstrained arrays in Ada might seem similar to variable length arrays in C,
they are in reality much more powerful, because they're truly first-class values in the
language. You can pass them as parameters to subprograms or return them from func-
tions, and they implicitly contain their bounds as part of their value. This means that it is
useless to pass the bounds or length of an array explicitly along with the array, because
they are accessible via the 'First, 'Last, 'Range and 'Length attributes explained
earlier.

Although different instances of the same unconstrained array type can have different
bounds, a specific instance has the same bounds throughout its lifetime. This allows Ada
to implement unconstrained arrays efficiently; instances can be stored on the stack and do
not require heap allocation as in languages like Java.

7.6 Predefined array type: String
A recurring theme in our introduction to Ada types has been the way important built-in
types like Boolean or Integer are defined through the same facilities that are available to
the user. This is also true for strings: The String type in Ada is a simple array.
Here is how the string type is defined in Ada:

type String is
array (Positive range <>) of Character;

The only built-in feature Ada adds to make strings more ergonomic is custom literals, as we
can see in the example below.

Hint

String literals are a syntactic sugar for aggregates, so that in the following example, A
and B have the same value.

Listing 92: string_literals.ads
1 package String_Literals is
2 -- Those two declarations are equivalent
3 A : String (1 .. 11) := "Hello World";
4 B : String (1 .. 11) :=
5 ('H', 'e', 'l', 'l', 'o', ' ',
6 'W', 'o', 'r', 'l', 'd');
7 end String_Literals;

Code block metadata
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Project: Courses.Intro_To_Ada.Arrays.String_Literals
MD5: 8e5871c8ead4ff8da643539857e23b30

Listing 93: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 Message : String (1 .. 11) := "dlroW olleH";
5 -- ^ Pre-defined array type.
6 -- Component type is Character
7 begin
8 for I in reverse Message'Range loop
9 -- ^ Iterate in reverse order

10 Put (Message (I));
11 end loop;
12 New_Line;
13 end Greet;

However, specifying the bounds of the object explicitly is a bit of a hassle; you have to
manually count the number of characters in the literal. Fortunately, Ada gives you an
easier way.
You can omit the bounds when creating an instance of an unconstrained array type if you
supply an initialization, since the bounds can be deduced from the initialization expression.

Listing 94: greet.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Greet is
4 Message : constant String := "dlroW olleH";
5 -- ^ Bounds are automatically
6 -- computed from
7 -- initialization value
8 begin
9 for I in reverse Message'Range loop

10 Put (Message (I));
11 end loop;
12 New_Line;
13 end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Greet_5
MD5: 21448a1007a07ec9d434880628625c3f

Runtime output

Hello World

Listing 95: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 type Integer_Array is
5 array (Natural range <>) of Integer;
6

7 My_Array : constant Integer_Array :=
(continues on next page)
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8 (1, 2, 3, 4);
9 -- ^^^^^^^^^^^^^^^^^^^^^

10 -- Bounds are automatically
11 -- computed from
12 -- initialization value
13 begin
14 null;
15 end Main;

Attention

As you can see above, the standard String type in Ada is an array. As such, it shares the
advantages and drawbacks of arrays: a String value is stack allocated, it is accessed
efficiently, and its bounds are immutable.
If you want something akin to C++'s std::string, you can use Unbounded Strings
(page 245) from Ada's standard library. This type is more like a mutable, automatically
managed string buffer to which you can add content.

7.7 Restrictions
A very important point about arrays: bounds have to be known when instances are created.
It is for example illegal to do the following.

declare
A : String;

begin
A := "World";

end;

Also, while you of course can change the values of elements in an array, you cannot change
the array's bounds (and therefore its size) after it has been initialized. So this is also illegal:

declare
A : String := "Hello";

begin
A := "World"; -- OK: Same size
A := "Hello World"; -- Not OK: Different size

end;

Also, while you can expect a warning for this kind of error in very simple cases like this one,
it is impossible for a compiler to know in the general case if you are assigning a value of
the correct length, so this violation will generally result in a run-time error.

Attention

While we will learn more about this later, it is important to know that arrays are
not the only types whose instances might be of unknown size at compile-time.
Such objects are said to be of an indefinite subtype, which means that the
subtype size is not known at compile time, but is dynamically computed (at
run time).
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Listing 96: indefinite_subtypes.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Indefinite_Subtypes is
4 function Get_Number return Integer is
5 begin
6 return Integer'Value (Get_Line);
7 end Get_Number;
8

9 A : String := "Hello";
10 -- Indefinite subtype
11

12 B : String (1 .. 5) := "Hello";
13 -- Definite subtype
14

15 C : String (1 .. Get_Number);
16 -- Indefinite subtype
17 -- (Get_Number's value is computed at
18 -- run-time)
19 begin
20 null;
21 end Indefinite_Subtypes;

Code block metadata
Project: Courses.Intro_To_Ada.Arrays.Indefinite_Subtypes
MD5: a24235838511a94879f74757421a28f0

Here, the 'Value attribute converts the string to an integer.

7.8 Returning unconstrained arrays
The return type of a function can be any type; a function can return a value whose size is
unknown at compile time. Likewise, the parameters can be of any type.
For example, this is a function that returns an unconstrained String:

Listing 97: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4

5 type Days is (Monday, Tuesday, Wednesday,
6 Thursday, Friday,
7 Saturday, Sunday);
8

9 function Get_Day_Name (Day : Days := Monday)
10 return String is
11 begin
12 return
13 (case Day is
14 when Monday => "Monday",
15 when Tuesday => "Tuesday",
16 when Wednesday => "Wednesday",
17 when Thursday => "Thursday",
18 when Friday => "Friday",
19 when Saturday => "Saturday",
20 when Sunday => "Sunday");
21 end Get_Day_Name;

(continues on next page)
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22

23 begin
24 Put_Line ("First day is "
25 & Get_Day_Name (Days'First));
26 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Day_Name_1
MD5: 0b7c567c723ded52d8e95c4ef46bcecc

Runtime output

First day is Monday

(This example is for illustrative purposes only. There is a built-in mechanism, the 'Image
attribute for scalar types, that returns the name (as a String) of any element of an enu-
meration type. For example Days'Image(Monday) is "MONDAY".)

In other languages

Returning variable size objects in languages lacking a garbage collector is a bit compli-
cated implementation-wise, which is why C and C++ don't allow it, preferring to depend
on explicit dynamic allocation / free from the user.
The problem is that explicit storagemanagement is unsafe as soon as you want to collect
unused memory. Ada's ability to return variable size objects will remove one use case for
dynamic allocation, and hence, remove one potential source of bugs from your programs.
Rust follows the C/C++ model, but with safe pointer semantics. However, dynamic al-
location is still used. Ada can benefit from a possible performance edge because it can
use any model.

7.9 Declaring arrays (2)
While we can have array types whose size and bounds are determined at run time, the
array's component type needs to be of a definite and constrained type.
Thus, if you need to declare, for example, an array of strings, the String subtype used as
component will need to have a fixed size.

Listing 98: show_days.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Days is
4 type Days is (Monday, Tuesday, Wednesday,
5 Thursday, Friday,
6 Saturday, Sunday);
7

8 subtype Day_Name is String (1 .. 2);
9 -- Subtype of string with known size

10

11 type Days_Name_Type is
12 array (Days) of Day_Name;
13 -- ^ Type of the index
14 -- ^ Type of the element.
15 -- Must be definite

(continues on next page)
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16

17 Names : constant Days_Name_Type :=
18 ("Mo", "Tu", "We", "Th", "Fr", "Sa", "Su");
19 -- Initial value given by aggregate
20 begin
21 for I in Names'Range loop
22 Put_Line (Names (I));
23 end loop;
24 end Show_Days;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Day_Name_2
MD5: bc66303091c084f66abde72ae59f55a9

Runtime output

Mo
Tu
We
Th
Fr
Sa
Su

7.10 Array slices
One last feature of Ada arrays that we're going to cover is array slices. It is possible to take
and use a slice of an array (a contiguous sequence of elements) as a name or a value.

Listing 99: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4 Buf : String := "Hello ...";
5

6 Full_Name : String := "John Smith";
7 begin
8 Buf (7 .. 9) := "Bob";
9 -- Careful! This works because the string

10 -- on the right side is the same length as
11 -- the replaced slice!
12

13 -- Prints "Hello Bob"
14 Put_Line (Buf);
15

16 -- Prints "Hi John"
17 Put_Line ("Hi " & Full_Name (1 .. 4));
18 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Slices
MD5: cdf582c6c9089658236f5c79b7be4c3f

Runtime output
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Hello Bob
Hi John

As we can see above, you can use a slice on the left side of an assignment, to replace only
part of an array.
A slice of an array is of the same type as the array, but has a different subtype, constrained
by the bounds of the slice.

Attention

Ada has multidimensional arrays11, which are not covered in this course. Slices will only
work on one dimensional arrays.

7.11 Renaming
So far, we've seen that the following elements can be renamed: subprograms (page 27),
packages (page 41), and record components (page 63). We can also rename objects by
using the renames keyword. This allows for creating alternative names for these objects.
Let's look at an example:

Listing 100: measurements.ads
1 package Measurements is
2

3 subtype Degree_Celsius is Float;
4

5 Current_Temperature : Degree_Celsius;
6

7 end Measurements;

Listing 101: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Measurements;
3

4 procedure Main is
5 subtype Degrees is
6 Measurements.Degree_Celsius;
7

8 T : Degrees
9 renames Measurements.Current_Temperature;

10 begin
11 T := 5.0;
12

13 Put_Line (Degrees'Image (T));
14 Put_Line (Degrees'Image
15 (Measurements.Current_Temperature));
16

17 T := T + 2.5;
18

19 Put_Line (Degrees'Image (T));
20 Put_Line (Degrees'Image
21 (Measurements.Current_Temperature));
22 end Main;

Code block metadata
11 http://www.ada-auth.org/standards/12rm/html/RM-3-6.html
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Project: Courses.Intro_To_Ada.Arrays.Variable_Renaming
MD5: 4426aeaa364cb5cf10ff40e1bccb9757

Runtime output

5.00000E+00
5.00000E+00
7.50000E+00
7.50000E+00

In the example above, we declare a variable T by renaming the Current_Temperature
object from the Measurements package. As you can see by running this example, both
Current_Temperature and its alternative name T have the same values:

• first, they show the value 5.0
• after the addition, they show the value 7.5.

This is because they are essentially referring to the same object, but with two different
names.
Note that, in the example above, we're using Degrees as an alias of Degree_Celsius. We
discussed this method earlier in the course (page 58).
Renaming can be useful for improving the readability of more complicated array indexing.
Instead of explicitly using indices every time we're accessing certain positions of the ar-
ray, we can create shorter names for these positions by renaming them. Let's look at the
following example:

Listing 102: colors.ads
1 package Colors is
2

3 type Color is (Black,
4 Red,
5 Green,
6 Blue,
7 White);
8

9 type Color_Array is
10 array (Positive range <>) of Color;
11

12 procedure Reverse_It (X : in out Color_Array);
13

14 end Colors;

Listing 103: colors.adb
1 package body Colors is
2

3 procedure Reverse_It (X : in out Color_Array)
4 is
5 begin
6 for I in X'First ..
7 (X'Last + X'First) / 2
8 loop
9 declare

10 Tmp : Color;
11 X_Left : Color
12 renames X (I);
13 X_Right : Color
14 renames X (X'Last + X'First - I);
15 begin

(continues on next page)
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16 Tmp := X_Left;
17 X_Left := X_Right;
18 X_Right := Tmp;
19 end;
20 end loop;
21 end Reverse_It;
22

23 end Colors;

Listing 104: test_reverse_colors.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Colors; use Colors;
4

5 procedure Test_Reverse_Colors is
6

7 My_Colors : Color_Array (1 .. 5) :=
8 (Black, Red, Green, Blue, White);
9

10 begin
11 for C of My_Colors loop
12 Put_Line ("My_Color: "
13 & Color'Image (C));
14 end loop;
15

16 New_Line;
17 Put_Line ("Reversing My_Color...");
18 New_Line;
19 Reverse_It (My_Colors);
20

21 for C of My_Colors loop
22 Put_Line ("My_Color: "
23 & Color'Image (C));
24 end loop;
25

26 end Test_Reverse_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Reverse_Colors
MD5: cd9fd7f64d1ec8967e340d57fd7afc0a

Runtime output

My_Color: BLACK
My_Color: RED
My_Color: GREEN
My_Color: BLUE
My_Color: WHITE

Reversing My_Color...

My_Color: WHITE
My_Color: BLUE
My_Color: GREEN
My_Color: RED
My_Color: BLACK

In the example above, package Colors implements the procedure Reverse_It by declaring
new names for two positions of the array. The actual implementation becomes easy to read:

7.11. Renaming 83



Introduction to Ada

begin
Tmp := X_Left;
X_Left := X_Right;
X_Right := Tmp;

end;

Compare this to the alternative version without renaming:

begin
Tmp := X (I);
X (I) := X (X'Last +

X'First - I);
X (X'Last + X'First - I) := Tmp;

end;
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MORE ABOUT TYPES

8.1 Aggregates: A primer
So far, we have talked about aggregates quite a bit and have seen a number of examples.
Now we will revisit this feature in some more detail.
An Ada aggregate is, in effect, a literal value for a composite type. It's a very powerful
notation that helps you to avoid writing procedural code for the initialization of your data
structures in many cases.
A basic rule when writing aggregates is that every component of the array or record has to
be specified, even components that have a default value.
This means that the following code is incorrect:

Listing 105: incorrect.ads
1 package Incorrect is
2 type Point is record
3 X, Y : Integer := 0;
4 end record;
5

6 Origin : Point := (X => 0);
7 end Incorrect;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Incorrect_Aggregate
MD5: 80a3475dece1c42cfb67b1d57b5bd464

Build output

incorrect.ads:6:22: error: no value supplied for component "Y"
gprbuild: *** compilation phase failed

There are a few shortcuts that you can use to make the notation more convenient:
• To specify the default value for a component, you can use the <> notation.
• You can use the | symbol to give several components the same value.
• You can use the others choice to refer to every component that has not yet been
specified, provided all those fields have the same type.

• You can use the range notation .. to refer to specify a contiguous sequence of indices
in an array.

However, note that as soon as you used a named association, all subsequent components
likewise need to be specified with named associations.
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Listing 106: points.ads
1 package Points is
2 type Point is record
3 X, Y : Integer := 0;
4 end record;
5

6 type Point_Array is
7 array (Positive range <>) of Point;
8

9 -- use the default values
10 Origin : Point := (X | Y => <>);
11

12 -- likewise, use the defaults
13 Origin_2 : Point := (others => <>);
14

15 Points_1 : Point_Array := ((1, 2), (3, 4));
16 Points_2 : Point_Array := (1 => (1, 2),
17 2 => (3, 4),
18 3 .. 20 => <>);
19 end Points;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Points
MD5: 48ea183a42f203325ed6190fbd8493d9

8.2 Overloading and qualified expressions
Ada has a general concept of name overloading, which we saw earlier in the section on
enumeration types (page 47).
Let's take a simple example: it is possible in Ada to have functions that have the same
name, but different types for their parameters.

Listing 107: pkg.ads
1 package Pkg is
2 function F (A : Integer) return Integer;
3 function F (A : Character) return Integer;
4 end Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Overloading
MD5: defae85228ee183b536af395d077e71e

This is a common concept in programming languages, called overloading12, or name over-
loading.
One of the novel aspects of Ada's overloading facility is the ability to resolve overloading
based on the return type of a function.

Listing 108: pkg.ads
1 package Pkg is
2 type SSID is new Integer;
3

(continues on next page)
12 https://en.wikipedia.org/wiki/Function_overloading
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(continued from previous page)
4 function Convert (Self : SSID)
5 return Integer;
6 function Convert (Self : SSID)
7 return String;
8 end Pkg;

Listing 109: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Pkg; use Pkg;
3

4 procedure Main is
5 S : String := Convert (123_145_299);
6 -- ^ Valid, will choose the
7 -- proper Convert
8 begin
9 Put_Line (S);

10 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Overloading
MD5: aa556b55ee89f9c5f8f7e138d84c27b8

Attention

Note that overload resolution based on the type is allowed for both functions and enu-
meration literals in Ada - which is why you can have multiple enumeration literals with
the same name. Semantically, an enumeration literal is treated like a function that has
no parameters.

However, sometimes an ambiguity makes it impossible to resolve which declaration of an
overloaded name a given occurrence of the name refers to. This is where a qualified ex-
pression becomes useful.

Listing 110: pkg.ads
1 package Pkg is
2 type SSID is new Integer;
3

4 function Convert (Self : SSID)
5 return Integer;
6 function Convert (Self : SSID)
7 return String;
8 function Convert (Self : Integer)
9 return String;

10 end Pkg;

Listing 111: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Pkg; use Pkg;
3

4 procedure Main is
5 S : String := Convert (123_145_299);
6 -- ^ Invalid, which convert
7 -- should we call?
8

(continues on next page)
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9 S2 : String := Convert (SSID'(123_145_299));

10 -- ^ We specify that the
11 -- type of the
12 -- expression is SSID.
13

14 -- We could also have declared a temporary
15

16 I : SSID := 123_145_299;
17

18 S3 : String := Convert (I);
19 begin
20 Put_Line (S);
21 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Overloading_Error
MD5: 722660d8b692cde65a1c2b7800dd78c4

Syntactically the target of a qualified expression can be either any expression in parenthe-
ses, or an aggregate:

Listing 112: qual_expr.ads
1 package Qual_Expr is
2 type Point is record
3 A, B : Integer;
4 end record;
5

6 P : Point := Point'(12, 15);
7

8 A : Integer := Integer'(12);
9 end Qual_Expr;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Qual_Expr
MD5: e71523eb441a28a4f6549d5f0418620a

This illustrates that qualified expressions are a convenient (and sometimes necessary) way
for the programmer to make the type of an expression explicit, for the compiler of course,
but also for other programmers.

Attention

While they look and feel similar, type conversions and qualified expressions are not the
same.
A qualified expression specifies the exact type that the target expression will be resolved
to, whereas a type conversion will try to convert the target and issue a run-time error if
the target value cannot be so converted.
Note that you can use a qualified expression to convert from one subtype to another,
with an exception raised if a constraint is violated.
X : Integer := Natural'(1);
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8.3 Character types
As noted earlier, each enumeration type is distinct and incompatible with every other enu-
meration type. However, what we did not mention previously is that character literals are
permitted as enumeration literals. This means that in addition to the language's strongly
typed character types, user-defined character types are also permitted:

Listing 113: character_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Character_Example is
4 type My_Char is ('a', 'b', 'c');
5 -- Our custom character type, an
6 -- enumeration type with 3 valid values.
7

8 C : Character;
9 -- ^ Built-in character type

10 -- (it's an enumeration type)
11

12 M : My_Char;
13 begin
14 C := '?';
15 -- ^ Character literal
16 -- (enumeration literal)
17

18 M := 'a';
19

20 C := 65;
21 -- ^ Invalid: 65 is not a
22 -- Character value
23

24 C := Character'Val (65);
25 -- Assign the character at
26 -- position 65 in the
27 -- enumeration (which is 'A')
28

29 M := C;
30 -- ^ Invalid: C is of type Character,
31 -- and M is a My_Char
32

33 M := 'd';
34 -- ^ Invalid: 'd' is not a valid
35 -- literal for type My_Char
36 end Character_Example;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Character_Example
MD5: e4c5a07dbe8745749056f8c110d69fa3

Build output

character_example.adb:20:09: error: expected type "Standard.Character"
character_example.adb:20:09: error: found type universal integer
character_example.adb:29:09: error: expected type "My_Char" defined at line 4
character_example.adb:29:09: error: found type "Standard.Character"
character_example.adb:33:09: error: character not defined for type "My_Char"␣

↪defined at line 4
gprbuild: *** compilation phase failed

In this example, we're using characters in the definition of My_Char.
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NINE

ACCESS TYPES (POINTERS)

9.1 Overview
Pointers are a potentially dangerous construct, which conflicts with Ada's underlying phi-
losophy.
There are two ways in which Ada helps shield programmers from the dangers of pointers:
1. One approach, which we have already seen, is to provide alternative features so that

the programmer does not need to use pointers. Parameter modes, arrays, and varying
size types are all constructs that can replace typical pointer usages in C.

2. Second, Ada has made pointers as safe and restricted as possible, but allows "escape
hatches" when the programmer explicitly requests them and presumably will be exer-
cising such features with appropriate care.

Here is how you declare a simple pointer type, or access type, in Ada:

Listing 114: dates.ads
1 package Dates is
2 type Months is
3 (January, February, March, April,
4 May, June, July, August, September,
5 October, November, December);
6

7 type Date is record
8 Day : Integer range 1 .. 31;
9 Month : Months;

10 Year : Integer;
11 end record;
12 end Dates;

Listing 115: access_types.ads
1 with Dates; use Dates;
2

3 package Access_Types is
4 -- Declare an access type
5 type Date_Acc is access Date;
6 -- ^ "Designated type"
7 -- ^ Date_Acc values
8 -- point to Date
9 -- objects

10

11 D : Date_Acc := null;
12 -- ^ Literal for
13 -- "access to nothing"

(continues on next page)
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14 -- ^ Access to date
15 end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: d3421918c48c221836bdf03b9e68bfb5

This illustrates how to:
• Declare an access type whose values point to ("designate") objects from a specific
type

• Declare a variable (access value) from this access type
• Give it a value of null

In line with Ada's strong typing philosophy, if you declare a second access type whose
designated type is Date, the two access types will be incompatible with each other:

Listing 116: access_types.ads
1 with Dates; use Dates;
2

3 package Access_Types is
4 -- Declare an access type
5 type Date_Acc is access Date;
6 type Date_Acc_2 is access Date;
7

8 D : Date_Acc := null;
9 D2 : Date_Acc_2 := D;

10 -- ^ Invalid! Different types
11 end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: af0dff5a26cb16f0fe15c84286557a44

Build output

access_types.ads:9:24: error: expected type "Date_Acc_2" defined at line 6
access_types.ads:9:24: error: found type "Date_Acc" defined at line 5
gprbuild: *** compilation phase failed

In other languages

In most other languages, pointer types are structurally, not nominally typed, like they
are in Ada, which means that two pointer types will be the same as long as they share
the same target type and accessibility rules.
Not so in Ada, which takes some time getting used to. A seemingly simple problem
is, if you want to have a canonical access to a type, where should it be declared? A
commonly used pattern is that if you need an access type to a specific type you "own",
you will declare it along with the type:
package Access_Types is

type Point is record
X, Y : Natural;

end record;

type Point_Access is access Point;
end Access_Types;
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9.2 Allocation (by type)
Once we have declared an access type, we need a way to give variables of the types a
meaningful value! You can allocate a value of an access type with the new keyword in Ada.

Listing 117: access_types.ads
1 with Dates; use Dates;
2

3 package Access_Types is
4 type Date_Acc is access Date;
5

6 D : Date_Acc := new Date;
7 -- ^ Allocate a new Date record
8 end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: e0be95b966e4aebaaf25db646d60c35c

If the type you want to allocate needs constraints, you can put them in the subtype indica-
tion, just as you would do in a variable declaration:

Listing 118: access_types.ads
1 with Dates; use Dates;
2

3 package Access_Types is
4 type String_Acc is access String;
5 -- ^
6 -- Access to unconstrained array type
7 Msg : String_Acc;
8 -- ^ Default value is null
9

10 Buffer : String_Acc :=
11 new String (1 .. 10);
12 -- ^ Constraint required
13 end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: 83cf7a1074ff1b739658508098aa8208

In some cases, though, allocating just by specifying the type is not ideal, so Ada also allows
you to initialize along with the allocation. This is done via the qualified expression syntax:

Listing 119: access_types.ads
1 with Dates; use Dates;
2

3 package Access_Types is
4 type Date_Acc is access Date;
5 type String_Acc is access String;
6

7 D : Date_Acc :=
8 new Date'(30, November, 2011);

(continues on next page)
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9 Msg : String_Acc := new String'("Hello");

10 end Access_Types;

9.3 Dereferencing
The last important piece of Ada's access type facility is how to get from an access value
to the object that is pointed to, that is, how to dereference the pointer. Dereferencing a
pointer uses the .all syntax in Ada, but is often not needed — in many cases, the access
value will be implicitly dereferenced for you:

Listing 120: access_types.ads
1 with Dates; use Dates;
2

3 package Access_Types is
4 type Date_Acc is access Date;
5

6 D : Date_Acc :=
7 new Date'(30, November, 2011);
8

9 Today : Date := D.all;
10 -- ^ Access value dereference
11 J : Integer := D.Day;
12 -- ^ Implicit dereference
13 -- for record and array
14 -- components
15 -- Equivalent to D.all.day
16 end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: 5cd1c259da04010b0dc1b43e9bd93b55

9.4 Other features
As you might know if you have used pointers in C or C++, we are still missing features that
are considered fundamental to the use of pointers, such as:

• Pointer arithmetic (being able to increment or decrement a pointer in order to point to
the next or previous object)

• Manual deallocation - what is called free or delete in C. This is a potentially unsafe
operation. To keepwithin the realm of safe Ada, you need to never deallocatemanually.

Those features exist in Ada, but are only available through specific standard library APIs.

Attention

The guideline in Ada is that most of the time you can avoid manual allocation, and you
should.
There are many ways to avoid manual allocation, some of which have been covered
(such as parameter modes). The language also provides library abstractions to avoid
pointers:
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1. One is the use of containers (page 201). Containers help users avoid pointers,
because container memory is automatically managed.

2. A container to note in this context is the Indefinite holder13. This container allows
you to store a value of an indefinite type such as String.

3. GNATCOLL has a library for smart pointers, called Refcount14 Those pointers' mem-
ory is automatically managed, so that when an allocated object has no more refer-
ences to it, the memory is automatically deallocated.

9.5 Mutually recursive types
The linked list is a common idiom in data structures; in Ada this would be most naturally
defined through two types, a record type and an access type, that are mutually dependent.
To declare mutually dependent types, you can use an incomplete type declaration:

Listing 121: simple_list.ads
1 package Simple_List is
2 type Node;
3 -- This is an incomplete type declaration,
4 -- which is completed in the same
5 -- declarative region.
6

7 type Node_Acc is access Node;
8

9 type Node is record
10 Content : Natural;
11 Prev, Next : Node_Acc;
12 end record;
13 end Simple_List;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Simple_List
MD5: 4929b89c1fc913da635fa02e48248271

In this example, the Node and Node_Acc types are mutually dependent.

13 http://www.ada-auth.org/standards/12rat/html/Rat12-8-5.html
14 https://github.com/AdaCore/gnatcoll-core/blob/master/src/gnatcoll-refcount.ads
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TEN

MORE ABOUT RECORDS

10.1 Dynamically sized record types
We have previously seen some simple examples of record types (page 61). Let's now look
at some of the more advanced properties of this fundamental language feature.
One point to note is that object size for a record type does not need to be known at compile
time. This is illustrated in the example below:

Listing 122: runtime_length.ads
1 package Runtime_Length is
2 function Compute_Max_Len return Natural;
3 end Runtime_Length;

Listing 123: var_size_record.ads
1 with Runtime_Length; use Runtime_Length;
2

3 package Var_Size_Record is
4 Max_Len : constant Natural :=
5 Compute_Max_Len;
6 -- ^ Not known at compile time
7

8 type Items_Array is
9 array (Positive range <>) of Integer;

10

11 type Growable_Stack is record
12 Items : Items_Array (1 .. Max_Len);
13 Len : Natural;
14 end record;
15 -- Growable_Stack is a definite type, but
16 -- size is not known at compile time.
17

18 G : Growable_Stack;
19 end Var_Size_Record;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Var_Size_Record
MD5: 6fb0b3f2b685a72ec694640ce378f77c

It is completely fine to determine the size of your records at run time, but note that all
objects of this type will have the same size.
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10.2 Records with discriminant
In the example above, the size of the Items field is determined once, at run-time, but every
Growable_Stack instance will be exactly the same size. But maybe that's not what you
want to do. We saw that arrays in general offer this flexibility: for an unconstrained array
type, different objects can have different sizes.
You can get analogous functionality for records, too, using a special kind of field that is
called a discriminant:

Listing 124: var_size_record_2.ads
1 package Var_Size_Record_2 is
2 type Items_Array is
3 array (Positive range <>) of Integer;
4

5 type Growable_Stack (Max_Len : Natural) is
6 record
7 -- ^ Discriminant. Cannot be
8 -- modified once
9 -- initialized.

10 Items : Items_Array (1 .. Max_Len);
11 Len : Natural := 0;
12 end record;
13 -- Growable_Stack is an indefinite type
14 -- (like an array)
15 end Var_Size_Record_2;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Var_Size_Record_2
MD5: 0c2ffe41b7553984e1ef48a50386559f

Discriminants, in their simple forms, are constant: You cannot modify them once you have
initialized the object. This intuitively makes sense since they determine the size of the
object.
Also, they make a type indefinite: Whether or not the discriminant is used to specify the size
of an object, a type with a discriminant will be indefinite if the discriminant is not declared
with an initialization:

Listing 125: test_discriminants.ads
1 package Test_Discriminants is
2 type Point (X, Y : Natural) is record
3 null;
4 end record;
5

6 P : Point;
7 -- ERROR: Point is indefinite, so you
8 -- need to specify the discriminants
9 -- or give a default value

10

11 P2 : Point (1, 2);
12 P3 : Point := (1, 2);
13 -- Those two declarations are equivalent.
14

15 end Test_Discriminants;

Code block metadata
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Project: Courses.Intro_To_Ada.More_About_Records.Test_Discriminants
MD5: c3ec81ccae0d4144fe952ad99482be81

Build output

test_discriminants.ads:6:08: error: unconstrained subtype not allowed (need␣
↪initialization)

test_discriminants.ads:6:08: error: provide initial value or explicit discriminant␣
↪values

test_discriminants.ads:6:08: error: or give default discriminant values for type
↪"Point"

gprbuild: *** compilation phase failed

This also means that, in the example above, you cannot declare an array of Point values,
because the size of a Point is not known.
As mentioned in the example above, we could provide a default value for the discriminants,
so that we could legally declare Point values without specifying the discriminants. For the
example above, this is how it would look:

Listing 126: test_discriminants.ads
1 package Test_Discriminants is
2 type Point (X, Y : Natural := 0) is record
3 null;
4 end record;
5

6 P : Point;
7 -- We can now simply declare a "Point"
8 -- without further ado. In this case,
9 -- we're using the default values (0)

10 -- for X and Y.
11

12 P2 : Point (1, 2);
13 P3 : Point := (1, 2);
14 -- We can still specify discriminants.
15

16 end Test_Discriminants;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Test_Discriminants
MD5: 259f6cdf7fa857cc006dac6d1daedd73

Also note that, even though the Point type now has default discriminants, we can still
specify discriminants, as we're doing in the declarations of P2 and P3.
In most other respects discriminants behave like regular fields: You have to specify their
values in aggregates, as seen above, and you can access their values via the dot notation.

Listing 127: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Var_Size_Record_2; use Var_Size_Record_2;
4

5 procedure Main is
6 procedure Print_Stack (G : Growable_Stack) is
7 begin
8 Put ("<Stack, items: [");
9 for I in G.Items'Range loop

10 exit when I > G.Len;
(continues on next page)
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11 Put (" " & Integer'Image (G.Items (I)));
12 end loop;
13 Put_Line ("]>");
14 end Print_Stack;
15

16 S : Growable_Stack :=
17 (Max_Len => 128,
18 Items => (1, 2, 3, 4, others => <>),
19 Len => 4);
20 begin
21 Print_Stack (S);
22 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Var_Size_Record_2
MD5: 4e8c102cd93dc5d8aa1b402589c5239b

Runtime output

<Stack, items: [ 1 2 3 4]>

Note

In the examples above, we used a discriminant to determine the size of an array, but it
is not limited to that, and could be used, for example, to determine the size of a nested
discriminated record.

10.3 Variant records
The examples of discriminants thus far have illustrated the declaration of records of varying
size, by having components whose size depends on the discriminant.
However, discriminants can also be used to obtain the functionality of what are sometimes
called "variant records": records that can contain different sets of fields.

Listing 128: variant_record.ads
1 package Variant_Record is
2 -- Forward declaration of Expr
3 type Expr;
4

5 -- Access to a Expr
6 type Expr_Access is access Expr;
7

8 type Expr_Kind_Type is (Bin_Op_Plus,
9 Bin_Op_Minus,

10 Num);
11 -- A regular enumeration type
12

13 type Expr (Kind : Expr_Kind_Type) is record
14 -- ^ The discriminant is an
15 -- enumeration value
16 case Kind is
17 when Bin_Op_Plus | Bin_Op_Minus =>
18 Left, Right : Expr_Access;
19 when Num =>

(continues on next page)
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20 Val : Integer;
21 end case;
22 -- Variant part. Only one, at the end of
23 -- the record definition, but can be
24 -- nested
25 end record;
26 end Variant_Record;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Variant_Record
MD5: af9c1edca3ed6b2d938249c7258806b1

The fields that are in a when branch will be only available when the value of the discriminant
is covered by the branch. In the example above, you will only be able to access the fields
Left and Right when the Kind is Bin_Op_Plus or Bin_Op_Minus.
If you try to access a field that is not valid for your record, a Constraint_Error will be
raised.

Listing 129: main.adb
1 with Variant_Record; use Variant_Record;
2

3 procedure Main is
4 E : Expr := (Num, 12);
5 begin
6 E.Left := new Expr'(Num, 15);
7 -- Will compile but fail at runtime
8 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Variant_Record
MD5: d157d5f96db0825b9376ba7fca9613ed

Build output

main.adb:6:05: warning: component not present in subtype of "Expr" defined at line␣
↪4 [enabled by default]

main.adb:6:05: warning: Constraint_Error will be raised at run time [enabled by␣
↪default]

Runtime output

raised CONSTRAINT_ERROR : main.adb:6 discriminant check failed

Here is how you could write an evaluator for expressions:

Listing 130: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Variant_Record; use Variant_Record;
4

5 procedure Main is
6 function Eval_Expr (E : Expr) return Integer is
7 (case E.Kind is
8 when Bin_Op_Plus =>
9 Eval_Expr (E.Left.all)

(continues on next page)
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10 + Eval_Expr (E.Right.all),
11 when Bin_Op_Minus =>
12 Eval_Expr (E.Left.all)
13 - Eval_Expr (E.Right.all),
14 when Num => E.Val);
15

16 E : Expr := (Bin_Op_Plus,
17 new Expr'(Bin_Op_Minus,
18 new Expr'(Num, 12),
19 new Expr'(Num, 15)),
20 new Expr'(Num, 3));
21 begin
22 Put_Line (Integer'Image (Eval_Expr (E)));
23 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Variant_Record
MD5: 807dbb921b44b3eaeaf1baf6ffe1afaa

Runtime output

0

In other languages

Ada's variant records are very similar to Sum types in functional languages such as
OCaml or Haskell. A major difference is that the discriminant is a separate field in Ada,
whereas the 'tag' of a Sum type is kind of built in, and only accessible with pattern
matching.
There are other differences (you can have several discriminants in a variant record in
Ada). Nevertheless, they allow the same kind of typemodeling as sum types in functional
languages.
Compared to C/C++ unions, Ada variant records are more powerful in what they allow,
and are also checked at run time, which makes them safer.
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ELEVEN

FIXED-POINT TYPES

In this chapter, we discuss fixed-point types, which can be classified in two categories:
decimal fixed-point types (page 103) and ordinary (binary) fixed-point types (page 107).
Afterward a brief overview of each category, we discuss some differences between fixed-
point and floating-point types (page 108).

11.1 Decimal fixed-point types
We have already seen how to specify floating-point types (page 48). However, in some
applications floating-point is not appropriate since, for example, the roundoff error from
binary arithmetic may be unacceptable or perhaps the hardware does not support floating-
point instructions. Ada provides a category of types, the decimal fixed-point types, that
allows the programmer to specify the required decimal precision (number of digits) as well
as the scaling factor (a power of ten) and, optionally, a range. In effect the values will be
represented as integers implicitly scaled by the specified power of 10. This is useful, for
example, for financial applications.
The syntax for a simple decimal fixed-point type is

type <type-name> is
delta <delta-value> digits <digits-value>;

In this case, the delta and the digits will be used by the compiler to derive a range.

11.1.1 Decimal delta
The delta determines the required decimal precision for the type. For example, if we want
to be able to use two digits after the decimal point, we would write delta 10.0 ** (-2)
— which is equivalent to delta 0.01. (You can use any of those definitions: both delta
10.0 ** (-2) and delta 0.01 are correct.)

Listing 131: decimal_fixed_point_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Decimal_Fixed_Point_Types is
4 type Decimal is
5 delta 10.0 ** (-1) digits 3;
6

7 -- Alternatively:
8 -- type Decimal is
9 -- delta 0.1 digits 3;

10 begin
11 Put_Line
12 ("The decimal precision of Decimal is "
13 & Decimal'Delta'Image);
14 end Decimal_Fixed_Point_Types;
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Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Decimal_Fixed_Point_Types
MD5: bcb69d188151413ee4f4a413d85bb0de

Runtime output

The decimal precision of Decimal is 1.00000000000000000E-01

In this example, we declare the Decimal type, which has a decimal precision of 0.1. We use
the 'Delta attribute to show the decimal precision of the type.

11.1.2 Decimal digits
Unsurprisingly, the digits part of the type declaration determines the number of digits
that a type is able to represent. For example, by writing digits 3, we're able to represent
values with three digits ranging from -999 to 999. For example:

Listing 132: decimal_fixed_point_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Decimal_Fixed_Point_Types is
4 type Decimal is
5 delta 10.0 ** (0) digits 3;
6 begin
7 Put_Line ("The minimum value of Decimal is "
8 & Decimal'First'Image);
9 Put_Line ("The maximum value of Decimal is "

10 & Decimal'Last'Image);
11 end Decimal_Fixed_Point_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Decimal_Fixed_Point_Types
MD5: 8b130008590ca44d7ff588aef1ad3270

Runtime output

The minimum value of Decimal is -999.0
The maximum value of Decimal is 999.0

In this example, we declare the Decimal type, which has a range from -999 to 999. We use
the 'First and 'Last attributes to show the first and last value of the range, respectively.

For further reading...

When running the application above, we see that the first and last values are -999.0 and
999.0, respectively — i.e. values with the decimal point. Strictly speaking, however, the
actual first and last values are -999 and 999 because we selected a delta of 1.0. The
decimal point (.0) we see in the application output (in the values -999.0 and 999.0) is
only there to indicate that this is not an integer value — however, it doesn't indicate an
extended decimal precision at all.
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Listing 133: decimal_fixed_point_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Decimal_Fixed_Point_Types is
4 type Decimal is
5 delta 10.0 ** (0) digits 3;
6

7 D : Decimal := 0.1;
8 -- ^^^
9 -- ERROR: value cannot be represented

10 -- by Decimal type.
11 begin
12 Put_Line (D'Image);
13 end Decimal_Fixed_Point_Types;

Code block metadata
Project: Courses.Intro_To_Ada.Fixed_Point_Types.Decimal_Fixed_Point_Type_

↪Precision_Error
MD5: d169d7796b61392baada9795ee8b8187

Build output
decimal_fixed_point_types.adb:7:19: error: value has extraneous low order digits
gprbuild: *** compilation phase failed

Assigning the value 0.1 to D is wrong because the Decimal type cannot represent this
value.
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For further reading...

The Decimal type above is similar to — but far from being equivalent to — the following
floating-point type declaration:

Listing 134: decimal_fixed_point_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Decimal_Fixed_Point_Types is
4 type Float_999 is
5 digits 3
6 range -999.0 .. 999.0;
7 begin
8 Put_Line ("The minimum value of Float_999 is "
9 & Float_999'First'Image);

10 Put_Line ("The maximum value of Float_999 is "
11 & Float_999'Last'Image);
12 end Decimal_Fixed_Point_Types;

Code block metadata
Project: Courses.Intro_To_Ada.Fixed_Point_Types.Floating_Point_Range_Equivalent
MD5: 49a6316e1c6846da75d5d9862b1f7ef8

Runtime output
The minimum value of Float_999 is -9.99000E+02
The maximum value of Float_999 is 9.99000E+02

The Float_999 type from this example has (roughly) the same range as the Decimal type
that we declared in the previous example: -999 to 999. However, there are substantial
differences between fixed-point and floating-point types (page 108), so we cannot say
that these type declarations are equivalent.

11.1.3 Decimal delta and digits
By combining those three digits (i.e. digits 3) with a decimal precision of two digits after
the decimal point (delta 10.0 ** (-2)), we get a range from -9.99 to 9.99. For example:

Listing 135: decimal_fixed_point_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Decimal_Fixed_Point_Types is
4 type Decimal is
5 delta 10.0 ** (-2) digits 3;
6 begin
7 Put_Line ("The minimum value of Decimal is "
8 & Decimal'First'Image);
9 Put_Line ("The maximum value of Decimal is "

10 & Decimal'Last'Image);
11 end Decimal_Fixed_Point_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Decimal_Fixed_Point_Types
MD5: 2f55fc3d0f7f77c5f17f750680933422

Runtime output
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The minimum value of Decimal is -9.99
The maximum value of Decimal is 9.99

In this example, we declare the Decimal type, which has a range from -9.99 to 9.99 (as
expected).

11.1.4 Requirements for the delta
Note that the delta expression for decimal fixed-point types must be a power of 10. Using
a different value for the power leads to compilation errors. For example:

Listing 136: decimal_fixed_point_type_error.ads
1 package Decimal_Fixed_Point_Type_Error is
2

3 type Decimal_Error_1 is
4 delta 2.0 ** (-1) digits 3;
5 -- ^^^^^^^^^^^
6 -- ERROR: not power of ten
7

8 type Decimal_Error_2 is
9 delta 0.125 digits 3;

10 -- ^^^^^
11 -- ERROR: not power of ten
12

13 end Decimal_Fixed_Point_Type_Error;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Decimal_Fixed_Point_Type_Error
MD5: f4541eb0256b3770c1b8a9fd4a6c02fe

Build output

decimal_fixed_point_type_error.ads:4:06: error: delta expression must be a power␣
↪of 10

decimal_fixed_point_type_error.ads:9:06: error: delta expression must be a power␣
↪of 10

gprbuild: *** compilation phase failed

In this example, the type declarations (of Decimal_Error_1 and Decimal_Error_2) are
wrong because the delta expression is not a power of 10.

11.2 Ordinary fixed-point types
Ordinary fixed-point types are similar to decimal fixed-point types in that the values are, in
effect, scaled integers. The difference between them is in the scale factor: for a decimal
fixed-point type, the scaling, given explicitly by the type's delta, is always a power of ten.
In contrast, for an ordinary fixed-point type, the delta isn't limited to power of 10 values,
but it can have any arbitrary base.

For further reading...

When representing ordinary fixed-point types on the machine, the compiler selects a
scaling factor derived from the value of delta specified in the type declaration. This
compiler-selected scaling factor is, by default, a power of two — even if the value pro-
vided for the delta isn't a power of two. Therefore, ordinary fixed-point types are some-
times called binary fixed-point types.
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The syntax for an ordinary fixed-point type is

type <type-name> is
delta <delta-value>
range <lower-bound> .. <upper-bound>;

For example, we can define an ordinary fixed-point type T_Inv_Trig for inverse trigono-
metric calculations:

Listing 137: custom_fixed_point_range.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Numerics; use Ada.Numerics;
3

4 procedure Custom_Fixed_Point_Range is
5 type T_Inv_Trig is
6 delta 0.0005
7 range -Pi / 2.0 .. Pi / 2.0;
8 begin
9 Put_Line ("Delta value of T_Inv_Trig: "

10 & T_Inv_Trig'Image
11 (T_Inv_Trig'Delta));
12 Put_Line ("Minimum value of T_Inv_Trig: "
13 & T_Inv_Trig'Image
14 (T_Inv_Trig'First));
15 Put_Line ("Maximum value of T_Inv_Trig: "
16 & T_Inv_Trig'Image
17 (T_Inv_Trig'Last));
18 end Custom_Fixed_Point_Range;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Custom_Fixed_Point_Range
MD5: 41b251e49ab887496ecd491431b7ffb0

Runtime output

Delta value of T_Inv_Trig: 0.0005
Minimum value of T_Inv_Trig: -1.5708
Maximum value of T_Inv_Trig: 1.5708

In this example, we are defining the T_Inv_Trig type with a range from -π/2 to π/2, and a
delta of 0.0005. Note that, in this case, the delta is neither a power of ten nor a power of
two. (In fact, this value corresponds to 2000.0 ** (-1).)

11.3 Fixed-point vs. floating-point types
The main difference between fixed-point and floating-point types is that fixed-point types
don't have an exponent. This has an impact on calculations using small values: while
they might still be representable with floating-point types, those small values might simply
disappear (i.e. become zero) in the fixed-point representation. Let's see an example where
we compare the decimal type Decimal to the floating-point type Float_32:

Listing 138: decimal_vs_floating_point_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Decimal_Vs_Floating_Point_Types is
4 type Decimal is
5 delta 10.0 ** (-2) digits 9;

(continues on next page)
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(continued from previous page)
6

7 type Float_32 is
8 digits 6
9 range -9999999.99 .. 9999999.99;

10

11 D : Decimal := 0.01;
12 F : Float_32 := 0.01;
13 begin
14 Put_Line ("D = " &
15 D'Image);
16 Put_Line ("F = " &
17 F'Image);
18

19 D := D / 2.0;
20 -- ^^^^^^^
21 -- Value becomes zero.
22

23 F := F / 2.0;
24 -- ^^^^^^^
25 -- Exponent is used to
26 -- represent smaller
27 -- value.
28

29 Put_Line ("D = " &
30 D'Image);
31 Put_Line ("F = " &
32 F'Image);
33 end Decimal_Vs_Floating_Point_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Decimal_Vs_Floating_Point_Types
MD5: dbbe2642fb64ae54c7634274e8ff6c79

Runtime output

D = 0.01
F = 1.00000E-02
D = 0.00
F = 5.00000E-03

Both types in this example have roughly the same size and range. However, the result of the
divide-by-two operation isn't the same: because of the exponent, F has the expected value
(0.005) after the operation. while the value of D is zero. The reason is that the resulting
value 0.005 cannot be represented by the decimal precision of the Decimal type. In the
case of F, however, the value can be represented due to a simple change in the exponent.
This lack of precision we just described might seem like a drawback for fixed-point types.
However, depending on the algorithm and its field of application, this is the exact behavior
that we might be looking for. As mentioned in the beginning of this chapter, financial ap-
plications benefit from decimal types, while using floating-point type for these applications
can lead to unpredictable (or undesirable) behavior.
Another major difference concerns the way fixed-point operations translate into machine
operations. In most cases, operations on fixed-point types are modeled in a processor by
using integer registers and instructions. Essentially, the compiler maps fixed-point types to
integer types, but it uses slightly different numeric rules. This fact can be an advantage for
specific embedded applications where a floating-point unit might be either non-existent or
its usage might have a higher associated cost in terms of CPU cycles or power consumption.
Therefore, for these specific applications, using fixed-point types could be considered as an
alternative.
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CHAPTER

TWELVE

PRIVACY

One of the main principles of modular programming, as well as object oriented program-
ming, is encapsulation15.
Encapsulation, briefly, is the concept that the implementer of a piece of software will dis-
tinguish between the code's public interface and its private implementation.
This is not only applicable to software libraries but wherever abstraction is used.
In Ada, the granularity of encapsulation is a bit different from most object-oriented lan-
guages, because privacy is generally specified at the package level.

12.1 Basic encapsulation

Listing 139: encapsulate.ads
1 package Encapsulate is
2 procedure Hello;
3

4 private
5

6 procedure Hello2;
7 -- Not visible from external units
8 end Encapsulate;

Listing 140: encapsulate.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Encapsulate is
4

5 procedure Hello is
6 begin
7 Put_Line ("Hello");
8 end Hello;
9

10 procedure Hello2 is
11 begin
12 Put_Line ("Hello #2");
13 end Hello2;
14

15 end Encapsulate;

15 https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
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Listing 141: main.adb
1 with Encapsulate;
2

3 procedure Main is
4 begin
5 Encapsulate.Hello;
6 Encapsulate.Hello2;
7 -- Invalid: Hello2 is not visible
8 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Encapsulate
MD5: cf56ee89481962d1e0a6d1e9ad888362

Build output

main.adb:6:15: error: "Hello2" is not a visible entity of "Encapsulate"
gprbuild: *** compilation phase failed

12.2 Abstract data types
With this high-level granularity, it might not seem obvious how to hide the implementation
details of a type. Here is how it can be done in Ada:

Listing 142: stacks.ads
1 package Stacks is
2 type Stack is private;
3 -- Declare a private type: You cannot depend
4 -- on its implementation. You can only assign
5 -- and test for equality.
6

7 procedure Push (S : in out Stack;
8 Val : Integer);
9 procedure Pop (S : in out Stack;

10 Val : out Integer);
11 private
12

13 subtype Stack_Index is
14 Natural range 1 .. 10;
15

16 type Content_Type is
17 array (Stack_Index) of Natural;
18

19 type Stack is record
20 Top : Stack_Index;
21 Content : Content_Type;
22 end record;
23 end Stacks;

Listing 143: stacks.adb
1 package body Stacks is
2

3 procedure Push (S : in out Stack;
4 Val : Integer) is
5 begin

(continues on next page)
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(continued from previous page)
6 -- Missing implementation!
7 null;
8 end Push;
9

10 procedure Pop (S : in out Stack;
11 Val : out Integer) is
12 begin
13 -- Dummy implementation!
14 Val := 0;
15 end Pop;
16

17 end Stacks;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Stacks
MD5: 364df7c6806af4a1bc957c2c2d53b2cc

In the above example, we define a stack type in the public part (known as the visible part
of the package spec in Ada), but the exact representation of that type is private.
Then, in the private part, we define the representation of that type. We can also declare
other types that will be used as helpers for our main public type. This is useful since declar-
ing helper types is common in Ada.
A few words about terminology:

• The Stack type as viewed from the public part is called the partial view of the type.
This is what clients have access to.

• The Stack type as viewed from the private part or the body of the package is called
the full view of the type. This is what implementers have access to.

From the point of view of the client (the with'ing unit), only the public (visible) part is im-
portant, and the private part could as well not exist. It makes it very easy to read linearly
the part of the package that is important for you.

-- No need to read the private part to use the package
package Stacks is

type Stack is private;

procedure Push (S : in out Stack;
Val : Integer);

procedure Pop (S : in out Stack;
Val : out Integer);

private
...

end Stacks;

Here is how the Stacks package would be used:

-- Example of use
with Stacks; use Stacks;

procedure Test_Stack is
S : Stack;
Res : Integer;

begin
Push (S, 5);
Push (S, 7);
Pop (S, Res);

end Test_Stack;

12.2. Abstract data types 113



Introduction to Ada

12.3 Limited types
Ada's limited type facility allows you to declare a type for which assignment and comparison
operations are not automatically provided.

Listing 144: stacks.ads
1 package Stacks is
2 type Stack is limited private;
3 -- Limited type. Cannot assign nor compare.
4

5 procedure Push (S : in out Stack;
6 Val : Integer);
7 procedure Pop (S : in out Stack;
8 Val : out Integer);
9 private

10 subtype Stack_Index is
11 Natural range 1 .. 10;
12

13 type Content_Type is
14 array (Stack_Index) of Natural;
15

16 type Stack is limited record
17 Top : Stack_Index;
18 Content : Content_Type;
19 end record;
20 end Stacks;

Listing 145: stacks.adb
1 package body Stacks is
2

3 procedure Push (S : in out Stack;
4 Val : Integer) is
5 begin
6 -- Missing implementation!
7 null;
8 end Push;
9

10 procedure Pop (S : in out Stack;
11 Val : out Integer) is
12 begin
13 -- Dummy implementation!
14 Val := 0;
15 end Pop;
16

17 end Stacks;
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Listing 146: main.adb
1 with Stacks; use Stacks;
2

3 procedure Main is
4 S, S2 : Stack;
5 begin
6 S := S2;
7 -- Illegal: S is limited.
8 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Limited_Stacks
MD5: 811343b46f20ac6af5e1bf26561f8d8d

Build output

main.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

This is useful because, for example, for some data types the built-in assignment operation
might be incorrect (for example when a deep copy is required).
Ada does allow you to overload the comparison operators = and /= for limited types (and
to override the built-in declarations for non-limited types).
Ada also allows you to implement special semantics for assignment via controlled types16.
However, in some cases assignment is simply inappropriate; one example is the File_Type
from the Ada.Text_IO package, which is declared as a limited type and thus attempts to
assign one file to another would be detected as illegal.

12.4 Child packages & privacy
We've seen previously (in the child packages section (page 35)) that packages can have
child packages. Privacy plays an important role in child packages. This section discusses
some of the privacy rules that apply to child packages.
Although the private part of a package P is meant to encapsulate information, certain parts
of a child package P.C can have access to this private part of P. In those cases, information
from the private part of P can then be used as if it were declared in the public part of its
specification. To be more specific, the body of P.C and the private part of the specification
of P.C have access to the private part of P. However, the public part of the specification of
P.C only has access to the public part of P's specification. The following table summarizes
this:

Part of a child package Access to the private part of its parent's specification
Specification: public part
Specification: private part ✓
Body ✓

The rest of this section shows examples of how this access to private information actually
works for child packages.
Let's first look at an example where the body of a child package P.C has access to the private
part of the specification of its parent P. We've seen, in a previous source-code example,
16 http://www.ada-auth.org/standards/12rm/html/RM-7-6.html
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that the Hello2 procedure declared in the private part of the Encapsulate package cannot
be used in the Main procedure, since it's not visible there. This limitation doesn't apply,
however, for parts of the child packages of the Encapsulate package. In fact, the body of
its child package Encapsulate.Child has access to the Hello2 procedure and can call it
there, as you can see in the implementation of the Hello3 procedure of the Child package:

Listing 147: encapsulate.ads
1 package Encapsulate is
2 procedure Hello;
3

4 private
5

6 procedure Hello2;
7 -- Not visible from external units
8 -- But visible in child packages
9 end Encapsulate;

Listing 148: encapsulate.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Encapsulate is
4

5 procedure Hello is
6 begin
7 Put_Line ("Hello");
8 end Hello;
9

10 procedure Hello2 is
11 begin
12 Put_Line ("Hello #2");
13 end Hello2;
14

15 end Encapsulate;

Listing 149: encapsulate-child.ads
1 package Encapsulate.Child is
2

3 procedure Hello3;
4

5 end Encapsulate.Child;

Listing 150: encapsulate-child.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Encapsulate.Child is
4

5 procedure Hello3 is
6 begin
7 -- Using private procedure Hello2
8 -- from the parent package
9 Hello2;

10 Put_Line ("Hello #3");
11 end Hello3;
12

13 end Encapsulate.Child;
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Listing 151: main.adb
1 with Encapsulate.Child;
2

3 procedure Main is
4 begin
5 Encapsulate.Child.Hello3;
6 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Encapsulate_Child
MD5: 1533f43eee8f8b4d14c9b2101f42f13a

Runtime output

Hello #2
Hello #3

The same mechanism applies to types declared in the private part of a parent package. For
instance, the body of a child package can access components of a record declared in the
private part of its parent package. Let's look at an example:

Listing 152: my_types.ads
1 package My_Types is
2

3 type Priv_Rec is private;
4

5 private
6

7 type Priv_Rec is record
8 Number : Integer := 42;
9 end record;

10

11 end My_Types;

Listing 153: my_types-ops.ads
1 package My_Types.Ops is
2

3 procedure Display (E : Priv_Rec);
4

5 end My_Types.Ops;

Listing 154: my_types-ops.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body My_Types.Ops is
4

5 procedure Display (E : Priv_Rec) is
6 begin
7 Put_Line ("Priv_Rec.Number: "
8 & Integer'Image (E.Number));
9 end Display;

10

11 end My_Types.Ops;
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Listing 155: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with My_Types; use My_Types;
4 with My_Types.Ops; use My_Types.Ops;
5

6 procedure Main is
7 E : Priv_Rec;
8 begin
9 Put_Line ("Presenting information:");

10

11 -- The following code would trigger a
12 -- compilation error here:
13 --
14 -- Put_Line ("Priv_Rec.Number: "
15 -- & Integer'Image (E.Number));
16

17 Display (E);
18 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Private_Type_Child
MD5: 9960611460bc1190b30949eca08fc02b

Runtime output

Presenting information:
Priv_Rec.Number: 42

In this example, we don't have access to the Number component of the record type Priv_Rec
in the Main procedure. You can see this in the call to Put_Line that has been commented-
out in the implementation of Main. Trying to access the Number component there would
trigger a compilation error. But we do have access to this component in the body of the
My_Types.Ops package, since it's a child package of the My_Types package. Therefore,
Ops's body has access to the declaration of the Priv_Rec type — which is in the private
part of its parent, the My_Types package. For this reason, the same call to Put_Line that
would trigger a compilation error in the Main procedure works fine in the Display procedure
of the My_Types.Ops package.
This kind of privacy rules for child packages allows for extending the functionality of a parent
package and, at the same time, retain its encapsulation.
As we mentioned previously, in addition to the package body, the private part of the speci-
fication of a child package P.C also has access to the private part of the specification of its
parent P. Let's look at an example where we declare an object of private type Priv_Rec in
the private part of the child package My_Types.Child and initialize the Number component
of the Priv_Rec record directly:

package My_Types.Child is

private

E : Priv_Rec := (Number => 99);

end My_Types.Ops;

As expected, we wouldn't be able to initialize this component if we moved this declaration
to the public (visible) part of the same child package:
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package My_Types.Child is

E : Priv_Rec := (Number => 99);

end My_Types.Ops;

The declaration above triggers a compilation error, since type Priv_Rec is private. Because
the public part of My_Types.Child is also visible outside the child package, Ada cannot
allow accessing private information in this part of the specification.

12.4. Child packages & privacy 119



Introduction to Ada

120 Chapter 12. Privacy



CHAPTER

THIRTEEN

GENERICS

13.1 Introduction
Generics are used for metaprogramming in Ada. They are useful for abstract algorithms
that share common properties with each other.
Either a subprogram or a package can be generic. A generic is declared by using the key-
word generic. For example:

Listing 156: operator.ads
1 generic
2 type T is private;
3 -- Declaration of formal types and objects
4 -- Below, we could use one of the following:
5 -- <procedure | function | package>
6 procedure Operator (Dummy : in out T);

Listing 157: operator.adb
1 procedure Operator (Dummy : in out T) is
2 begin
3 null;
4 end Operator;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Simple_Generic
MD5: 1321d437043dafdb725fad416e654318

13.2 Formal type declaration
Formal types are abstractions of a specific type. For example, we may want to create an
algorithm that works on any integer type, or even on any type at all, whether a numeric
type or not. The following example declares a formal type T for the Set procedure.

Listing 158: set.ads
1 generic
2 type T is private;
3 -- T is a formal type that indicates that
4 -- any type can be used, possibly a numeric
5 -- type or possibly even a record type.
6 procedure Set (Dummy : T);
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Listing 159: set.adb
1 procedure Set (Dummy : T) is
2 begin
3 null;
4 end Set;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Formal_Type_Declaration
MD5: 668156f66b2479c4932d18b5ad35deba

The declaration of T as private indicates that you can map any definite type to it. But you
can also restrict the declaration to allow only some types to be mapped to that formal type.
Here are some examples:

Formal Type Format
Any type type T is private;
Any discrete type type T is (<>);
Any floating-point type type T is digits <>;

13.3 Formal object declaration
Formal objects are similar to subprogram parameters. They can reference formal types
declared in the formal specification. For example:

Listing 160: set.ads
1 generic
2 type T is private;
3 X : in out T;
4 -- X can be used in the Set procedure
5 procedure Set (E : T);

Listing 161: set.adb
1 procedure Set (E : T) is
2 pragma Unreferenced (E, X);
3 begin
4 null;
5 end Set;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Formal_Object_Declaration
MD5: 1b88bc0e5b8f48a35394966e6af07ac0

Formal objects can be either input parameters or specified using the in out mode.

13.4 Generic body definition
We don't repeat the generic keyword for the body declaration of a generic subprogram
or package. Instead, we start with the actual declaration and use the generic types and
objects we declared. For example:
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Listing 162: set.ads
1 generic
2 type T is private;
3 X : in out T;
4 procedure Set (E : T);

Listing 163: set.adb
1 procedure Set (E : T) is
2 -- Body definition: "generic" keyword
3 -- is not used
4 begin
5 X := E;
6 end Set;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Generic_Body_Definition
MD5: de611ef77b528543fd6bad82c53857f7

13.5 Generic instantiation
Generic subprograms or packages can't be used directly. Instead, they need to be instan-
tiated, which we do using the new keyword, as shown in the following example:

Listing 164: set.ads
1 generic
2 type T is private;
3 X : in out T;
4 -- X can be used in the Set procedure
5 procedure Set (E : T);

Listing 165: set.adb
1 procedure Set (E : T) is
2 begin
3 X := E;
4 end Set;

Listing 166: show_generic_instantiation.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Set;
3

4 procedure Show_Generic_Instantiation is
5

6 Main : Integer := 0;
7 Current : Integer;
8

9 procedure Set_Main is new Set (T => Integer,
10 X => Main);
11 -- Here, we map the formal parameters to
12 -- actual types and objects.
13 --
14 -- The same approach can be used to
15 -- instantiate functions or packages, e.g.:

(continues on next page)
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16 --
17 -- function Get_Main is new ...
18 -- package Integer_Queue is new ...
19

20 begin
21 Current := 10;
22

23 Set_Main (Current);
24 Put_Line ("Value of Main is "
25 & Integer'Image (Main));
26 end Show_Generic_Instantiation;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Generic_Instantiation
MD5: 13dc0692252496d954240952561e1c05

Runtime output

Value of Main is 10

In the example above, we instantiate the procedure Set by mapping the formal parameters
T and X to actual existing elements, in this case the Integer type and the Main variable.

13.6 Generic packages
The previous examples focused on generic subprograms. In this section, we look at generic
packages. The syntax is similar to that used for generic subprograms: we start with the
generic keyword and continue with formal declarations. The only difference is that package
is specified instead of a subprogram keyword.
Here's an example:

Listing 167: element.ads
1 generic
2 type T is private;
3 package Element is
4

5 procedure Set (E : T);
6 procedure Reset;
7 function Get return T;
8 function Is_Valid return Boolean;
9

10 Invalid_Element : exception;
11

12 private
13 Value : T;
14 Valid : Boolean := False;
15 end Element;

Listing 168: element.adb
1 package body Element is
2

3 procedure Set (E : T) is
4 begin
5 Value := E;
6 Valid := True;

(continues on next page)
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7 end Set;
8

9 procedure Reset is
10 begin
11 Valid := False;
12 end Reset;
13

14 function Get return T is
15 begin
16 if not Valid then
17 raise Invalid_Element;
18 end if;
19 return Value;
20 end Get;
21

22 function Is_Valid return Boolean is (Valid);
23 end Element;

Listing 169: show_generic_package.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Element;
3

4 procedure Show_Generic_Package is
5

6 package I is new Element (T => Integer);
7

8 procedure Display_Initialized is
9 begin

10 if I.Is_Valid then
11 Put_Line ("Value is initialized");
12 else
13 Put_Line ("Value is not initialized");
14 end if;
15 end Display_Initialized;
16

17 begin
18 Display_Initialized;
19

20 Put_Line ("Initializing...");
21 I.Set (5);
22 Display_Initialized;
23 Put_Line ("Value is now set to "
24 & Integer'Image (I.Get));
25

26 Put_Line ("Resetting...");
27 I.Reset;
28 Display_Initialized;
29

30 end Show_Generic_Package;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Generic_Package
MD5: c5278a06c6d06f1f37353ee0ca6686ec

Runtime output

Value is not initialized
Initializing...
Value is initialized

(continues on next page)
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Value is now set to 5
Resetting...
Value is not initialized

In the example above, we created a simple container named Element, with just one single
element. This container tracks whether the element has been initialized or not.
After writing the package definition, we create the instance I of the Element. We use the
instance by calling the package subprograms (Set, Reset, and Get).

13.7 Formal subprograms
In addition to formal types and objects, we can also declare formal subprograms or pack-
ages. This course only describes formal subprograms; formal packages are discussed in
the advanced course.
We use the with keyword to declare a formal subprogram. In the example below, we declare
a formal function (Comparison) to be used by the generic procedure Check.

Listing 170: check.ads
1 generic
2 Description : String;
3 type T is private;
4 with function Comparison (X, Y : T)
5 return Boolean;
6 procedure Check (X, Y : T);

Listing 171: check.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Check (X, Y : T) is
4 Result : Boolean;
5 begin
6 Result := Comparison (X, Y);
7 if Result then
8 Put_Line
9 ("Comparison ("

10 & Description
11 & ") between arguments is OK!");
12 else
13 Put_Line
14 ("Comparison ("
15 & Description
16 & ") between arguments is not OK!");
17 end if;
18 end Check;

Listing 172: show_formal_subprogram.adb
1 with Check;
2

3 procedure Show_Formal_Subprogram is
4

5 A, B : Integer;
6

7 procedure Check_Is_Equal is new
8 Check (Description => "equality",

(continues on next page)
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9 T => Integer,

10 Comparison => Standard."=");
11 -- Here, we are mapping the standard
12 -- equality operator for Integer types to
13 -- the Comparison formal function
14 begin
15 A := 0;
16 B := 1;
17 Check_Is_Equal (A, B);
18 end Show_Formal_Subprogram;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Formal_Subprogram
MD5: 1c463a47e9ce56b5afbca1da6acd116d

Runtime output

Comparison (equality) between arguments is not OK!

13.8 Example: I/O instances
Ada offers generic I/O packages that can be instantiated for standard and derived types.
One example is the generic Float_IO package, which provides procedures such as Put and
Get. In fact, Float_Text_IO — available from the standard library — is an instance of the
Float_IO package, and it's defined as:

with Ada.Text_IO;

package Ada.Float_Text_IO is new Ada.Text_IO.Float_IO (Float);

You can use it directly with any object of floating-point type. For example:

Listing 173: show_float_text_io.adb
1 with Ada.Float_Text_IO;
2

3 procedure Show_Float_Text_IO is
4 X : constant Float := 2.5;
5

6 use Ada.Float_Text_IO;
7 begin
8 Put (X);
9 end Show_Float_Text_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Float_Text_IO
MD5: 7cc9b547ef301a2071e9fb65caa4631b

Runtime output

2.50000E+00

Instantiating generic I/O packages can be useful for derived types. For example, let's create
a new type Price that must be displayed with two decimal digits after the point, and no
exponent.
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Listing 174: show_float_io_inst.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Float_IO_Inst is
4

5 type Price is digits 3;
6

7 package Price_IO is new
8 Ada.Text_IO.Float_IO (Price);
9

10 P : Price;
11 begin
12 -- Set to zero => don't display exponent
13 Price_IO.Default_Exp := 0;
14

15 P := 2.5;
16 Price_IO.Put (P);
17 New_Line;
18

19 P := 5.75;
20 Price_IO.Put (P);
21 New_Line;
22 end Show_Float_IO_Inst;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Float_IO_Inst
MD5: 583c761421d7fdb812dd2a183b676bae

Runtime output

2.50
5.75

By adjusting Default_Exp from the Price_IO instance to remove the exponent, we can
control how variables of Price type are displayed. Just as a side note, we could also have
written:

-- [...]

type Price is new Float;

package Price_IO is new
Ada.Text_IO.Float_IO (Price);

begin
Price_IO.Default_Aft := 2;
Price_IO.Default_Exp := 0;

In this case, we're ajusting Default_Aft, too, to get two decimal digits after the point when
calling Put.
In addition to the generic Float_IO package, the following generic packages are available
from Ada.Text_IO:

• Enumeration_IO for enumeration types;
• Integer_IO for integer types;
• Modular_IO for modular types;
• Fixed_IO for fixed-point types;
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• Decimal_IO for decimal types.
In fact, we could rewrite the example above using decimal types:

Listing 175: show_decimal_io_inst.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Decimal_IO_Inst is
4

5 type Price is delta 10.0 ** (-2) digits 12;
6

7 package Price_IO is new
8 Ada.Text_IO.Decimal_IO (Price);
9

10 P : Price;
11 begin
12 Price_IO.Default_Exp := 0;
13

14 P := 2.5;
15 Price_IO.Put (P);
16 New_Line;
17

18 P := 5.75;
19 Price_IO.Put (P);
20 New_Line;
21 end Show_Decimal_IO_Inst;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Decimal_IO_Inst
MD5: f413570759dcb32cc166078b3cee1a16

Runtime output

2.50
5.75

13.9 Example: ADTs
An important application of generics is to model abstract data types (ADTs). In fact, Ada
includes a library with numerous ADTs using generics: Ada.Containers (described in the
containers section (page 201)).
A typical example of an ADT is a stack:

Listing 176: stacks.ads
1 generic
2 Max : Positive;
3 type T is private;
4 package Stacks is
5

6 type Stack is limited private;
7

8 Stack_Underflow, Stack_Overflow : exception;
9

10 function Is_Empty (S : Stack) return Boolean;
11

12 function Pop (S : in out Stack) return T;
13

(continues on next page)
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14 procedure Push (S : in out Stack;
15 V : T);
16

17 private
18

19 type Stack_Array is
20 array (Natural range <>) of T;
21

22 Min : constant := 1;
23

24 type Stack is record
25 Container : Stack_Array (Min .. Max);
26 Top : Natural := Min - 1;
27 end record;
28

29 end Stacks;

Listing 177: stacks.adb
1 package body Stacks is
2

3 function Is_Empty (S : Stack) return Boolean is
4 (S.Top < S.Container'First);
5

6 function Is_Full (S : Stack) return Boolean is
7 (S.Top >= S.Container'Last);
8

9 function Pop (S : in out Stack) return T is
10 begin
11 if Is_Empty (S) then
12 raise Stack_Underflow;
13 else
14 return X : T do
15 X := S.Container (S.Top);
16 S.Top := S.Top - 1;
17 end return;
18 end if;
19 end Pop;
20

21 procedure Push (S : in out Stack;
22 V : T) is
23 begin
24 if Is_Full (S) then
25 raise Stack_Overflow;
26 else
27 S.Top := S.Top + 1;
28 S.Container (S.Top) := V;
29 end if;
30 end Push;
31

32 end Stacks;

Listing 178: show_stack.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Stacks;
3

4 procedure Show_Stack is
5

6 package Integer_Stacks is new
(continues on next page)
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7 Stacks (Max => 10,
8 T => Integer);
9 use Integer_Stacks;

10

11 Values : Integer_Stacks.Stack;
12

13 begin
14 Push (Values, 10);
15 Push (Values, 20);
16

17 Put_Line ("Last value was "
18 & Integer'Image (Pop (Values)));
19 end Show_Stack;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Stack
MD5: ee112d395552c1a02d211b9e5425dc71

Runtime output

Last value was 20

In this example, we first create a generic stack package (Stacks) and then instantiate it to
create a stack of up to 10 integer values.

13.10 Example: Swap
Let's look at a simple procedure that swaps variables of type Color:

Listing 179: colors.ads
1 package Colors is
2 type Color is (Black, Red, Green,
3 Blue, White);
4

5 procedure Swap_Colors (X, Y : in out Color);
6 end Colors;

Listing 180: colors.adb
1 package body Colors is
2

3 procedure Swap_Colors (X, Y : in out Color) is
4 Tmp : constant Color := X;
5 begin
6 X := Y;
7 Y := Tmp;
8 end Swap_Colors;
9

10 end Colors;

Listing 181: test_non_generic_swap_colors.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Test_Non_Generic_Swap_Colors is
(continues on next page)
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5 A, B, C : Color;
6 begin
7 A := Blue;
8 B := White;
9 C := Red;

10

11 Put_Line ("Value of A is "
12 & Color'Image (A));
13 Put_Line ("Value of B is "
14 & Color'Image (B));
15 Put_Line ("Value of C is "
16 & Color'Image (C));
17

18 New_Line;
19 Put_Line ("Swapping A and C...");
20 New_Line;
21 Swap_Colors (A, C);
22

23 Put_Line ("Value of A is "
24 & Color'Image (A));
25 Put_Line ("Value of B is "
26 & Color'Image (B));
27 Put_Line ("Value of C is "
28 & Color'Image (C));
29 end Test_Non_Generic_Swap_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Non_Generic_Swap_Colors
MD5: 4d1cf826a1676c3750a8aabd484ac71f

Runtime output

Value of A is BLUE
Value of B is WHITE
Value of C is RED

Swapping A and C...

Value of A is RED
Value of B is WHITE
Value of C is BLUE

In this example, Swap_Colors can only be used for the Color type. However, this algorithm
can theoretically be used for any type, whether an enumeration type or a complex record
type with many elements. The algorithm itself is the same: it's only the type that differs.
If, for example, we want to swap variables of Integer type, we don't want to duplicate the
implementation. Therefore, such an algorithm is a perfect candidate for abstraction using
generics.
In the example below, we create a generic version of Swap_Colors and name it
Generic_Swap. This generic version can operate on any type due to the declaration of
formal type T.

Listing 182: generic_swap.ads
1 generic
2 type T is private;
3 procedure Generic_Swap (X, Y : in out T);
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Listing 183: generic_swap.adb
1 procedure Generic_Swap (X, Y : in out T) is
2 Tmp : constant T := X;
3 begin
4 X := Y;
5 Y := Tmp;
6 end Generic_Swap;

Listing 184: colors.ads
1 with Generic_Swap;
2

3 package Colors is
4

5 type Color is (Black, Red, Green,
6 Blue, White);
7

8 procedure Swap_Colors is new
9 Generic_Swap (T => Color);

10

11 end Colors;

Listing 185: test_swap_colors.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Test_Swap_Colors is
5 A, B, C : Color;
6 begin
7 A := Blue;
8 B := White;
9 C := Red;

10

11 Put_Line ("Value of A is "
12 & Color'Image (A));
13 Put_Line ("Value of B is "
14 & Color'Image (B));
15 Put_Line ("Value of C is "
16 & Color'Image (C));
17

18 New_Line;
19 Put_Line ("Swapping A and C...");
20 New_Line;
21 Swap_Colors (A, C);
22

23 Put_Line ("Value of A is "
24 & Color'Image (A));
25 Put_Line ("Value of B is "
26 & Color'Image (B));
27 Put_Line ("Value of C is "
28 & Color'Image (C));
29 end Test_Swap_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Swap_Colors
MD5: a5d94a40bd9d1c6736cc873f8b58e867

Runtime output
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Value of A is BLUE
Value of B is WHITE
Value of C is RED

Swapping A and C...

Value of A is RED
Value of B is WHITE
Value of C is BLUE

As we can see in the example, we can create the same Swap_Colors procedure as we had
in the non-generic version of the algorithm by declaring it as an instance of the generic
Generic_Swap procedure. We specify that the generic T type will be mapped to the Color
type by passing it as an argument to the Generic_Swap instantiation.

13.11 Example: Reversing
The previous example, with an algorithm to swap two values, is one of the simplest exam-
ples of using generics. Next we study an algorithm for reversing elements of an array. First,
let's start with a non-generic version of the algorithm, one that works specifically for the
Color type:

Listing 186: colors.ads
1 package Colors is
2

3 type Color is (Black, Red, Green,
4 Blue, White);
5

6 type Color_Array is
7 array (Integer range <>) of Color;
8

9 procedure Reverse_It (X : in out Color_Array);
10

11 end Colors;

Listing 187: colors.adb
1 package body Colors is
2

3 procedure Reverse_It (X : in out Color_Array)
4 is
5 begin
6 for I in X'First ..
7 (X'Last + X'First) / 2 loop
8 declare
9 Tmp : Color;

10 X_Left : Color
11 renames X (I);
12 X_Right : Color
13 renames X (X'Last + X'First - I);
14 begin
15 Tmp := X_Left;
16 X_Left := X_Right;
17 X_Right := Tmp;
18 end;
19 end loop;
20 end Reverse_It;
21

22 end Colors;
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Listing 188: test_non_generic_reverse_colors.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Test_Non_Generic_Reverse_Colors is
5

6 My_Colors : Color_Array (1 .. 5) :=
7 (Black, Red, Green, Blue, White);
8

9 begin
10 for C of My_Colors loop
11 Put_Line ("My_Color: " & Color'Image (C));
12 end loop;
13

14 New_Line;
15 Put_Line ("Reversing My_Color...");
16 New_Line;
17 Reverse_It (My_Colors);
18

19 for C of My_Colors loop
20 Put_Line ("My_Color: " & Color'Image (C));
21 end loop;
22

23 end Test_Non_Generic_Reverse_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Non_Generic_Reverse_Colors
MD5: 9b3a489d0bc0ecd79de6ba99fd7cd44f

Runtime output

My_Color: BLACK
My_Color: RED
My_Color: GREEN
My_Color: BLUE
My_Color: WHITE

Reversing My_Color...

My_Color: WHITE
My_Color: BLUE
My_Color: GREEN
My_Color: RED
My_Color: BLACK

The procedure Reverse_It takes an array of colors, starts by swapping the first and last
elements of the array, and continues doing that with successive elements until it reaches
the middle of array. At that point, the entire array has been reversed, as we see from the
output of the test program.
To abstract this procedure, we declare formal types for three components of the algorithm:

• the elements of the array (Color type in the example)
• the range used for the array (Integer range in the example)
• the actual array type (Color_Array type in the example)

This is a generic version of the algorithm:
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Listing 189: generic_reverse.ads
1 generic
2 type T is private;
3 type Index is range <>;
4 type Array_T is
5 array (Index range <>) of T;
6 procedure Generic_Reverse (X : in out Array_T);

Listing 190: generic_reverse.adb
1 procedure Generic_Reverse (X : in out Array_T) is
2 begin
3 for I in X'First ..
4 (X'Last + X'First) / 2 loop
5 declare
6 Tmp : T;
7 X_Left : T
8 renames X (I);
9 X_Right : T

10 renames X (X'Last + X'First - I);
11 begin
12 Tmp := X_Left;
13 X_Left := X_Right;
14 X_Right := Tmp;
15 end;
16 end loop;
17 end Generic_Reverse;

Listing 191: colors.ads
1 with Generic_Reverse;
2

3 package Colors is
4

5 type Color is (Black, Red, Green,
6 Blue, White);
7

8 type Color_Array is
9 array (Integer range <>) of Color;

10

11 procedure Reverse_It is new
12 Generic_Reverse (T => Color,
13 Index => Integer,
14 Array_T => Color_Array);
15

16 end Colors;

Listing 192: test_reverse_colors.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Test_Reverse_Colors is
5

6 My_Colors : Color_Array (1 .. 5) :=
7 (Black, Red, Green, Blue, White);
8

9 begin
10 for C of My_Colors loop

(continues on next page)
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11 Put_Line ("My_Color: "
12 & Color'Image (C));
13 end loop;
14

15 New_Line;
16 Put_Line ("Reversing My_Color...");
17 New_Line;
18 Reverse_It (My_Colors);
19

20 for C of My_Colors loop
21 Put_Line ("My_Color: "
22 & Color'Image (C));
23 end loop;
24

25 end Test_Reverse_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Reverse_Colors
MD5: 9ef175c517d7574b4b65b24ba0027f1f

Runtime output

My_Color: BLACK
My_Color: RED
My_Color: GREEN
My_Color: BLUE
My_Color: WHITE

Reversing My_Color...

My_Color: WHITE
My_Color: BLUE
My_Color: GREEN
My_Color: RED
My_Color: BLACK

As mentioned above, we're abstracting three components of the algorithm:
• the T type abstracts the elements of the array
• the Index type abstracts the range used for the array
• the Array_T type abstracts the array type and uses the formal declarations of the T
and Index types.

13.12 Example: Test application
In the previous example we've focused only on abstracting the reversing algorithm itself.
However, we could have decided to also abstract our small test application. This could be
useful if we, for example, decide to test other procedures that change elements of an array.
In order to do this, we again have to choose the elements to abstract. We therefore declare
the following formal parameters:

• S: the string containing the array name
• a function Image that converts an element of type T to a string
• a procedure Test that performs some operation on the array

Note that Image and Test are examples of formal subprograms and S is an example of a
formal object.
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Here is a version of the test application making use of the generic Perform_Test procedure:

Listing 193: generic_reverse.ads
1 generic
2 type T is private;
3 type Index is range <>;
4 type Array_T is
5 array (Index range <>) of T;
6 procedure Generic_Reverse (X : in out Array_T);

Listing 194: generic_reverse.adb
1 procedure Generic_Reverse (X : in out Array_T) is
2 begin
3 for I in X'First ..
4 (X'Last + X'First) / 2 loop
5 declare
6 Tmp : T;
7 X_Left : T
8 renames X (I);
9 X_Right : T

10 renames X (X'Last + X'First - I);
11 begin
12 Tmp := X_Left;
13 X_Left := X_Right;
14 X_Right := Tmp;
15 end;
16 end loop;
17 end Generic_Reverse;

Listing 195: perform_test.ads
1 generic
2 type T is private;
3 type Index is range <>;
4 type Array_T is
5 array (Index range <>) of T;
6 S : String;
7 with function Image (E : T)
8 return String is <>;
9 with procedure Test (X : in out Array_T);

10 procedure Perform_Test (X : in out Array_T);

Listing 196: perform_test.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Perform_Test (X : in out Array_T) is
4 begin
5 for C of X loop
6 Put_Line (S & ": " & Image (C));
7 end loop;
8

9 New_Line;
10 Put_Line ("Testing " & S & "...");
11 New_Line;
12 Test (X);
13

14 for C of X loop
15 Put_Line (S & ": " & Image (C));

(continues on next page)
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(continued from previous page)
16 end loop;
17 end Perform_Test;

Listing 197: colors.ads
1 with Generic_Reverse;
2

3 package Colors is
4

5 type Color is (Black, Red, Green,
6 Blue, White);
7

8 type Color_Array is
9 array (Integer range <>) of Color;

10

11 procedure Reverse_It is new
12 Generic_Reverse (T => Color,
13 Index => Integer,
14 Array_T => Color_Array);
15

16 end Colors;

Listing 198: test_reverse_colors.adb
1 with Colors; use Colors;
2 with Perform_Test;
3

4 procedure Test_Reverse_Colors is
5

6 procedure Perform_Test_Reverse_It is new
7 Perform_Test (T => Color,
8 Index => Integer,
9 Array_T => Color_Array,

10 S => "My_Color",
11 Image => Color'Image,
12 Test => Reverse_It);
13

14 My_Colors : Color_Array (1 .. 5) :=
15 (Black, Red, Green, Blue, White);
16

17 begin
18 Perform_Test_Reverse_It (My_Colors);
19 end Test_Reverse_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Reverse_Colors_2
MD5: 04640309f4f7e9f8bcff137d1a6f8733

Runtime output

My_Color: BLACK
My_Color: RED
My_Color: GREEN
My_Color: BLUE
My_Color: WHITE

Testing My_Color...

My_Color: WHITE
(continues on next page)
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My_Color: BLUE
My_Color: GREEN
My_Color: RED
My_Color: BLACK

In this example, we create the procedure Perform_Test_Reverse_It as an instance of the
generic procedure (Perform_Test). Note that:

• For the formal Image function, we use the 'Image attribute of the Color type
• For the formal Test procedure, we reference the Reverse_Array procedure from the
package.
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Ada uses exceptions for error handling. Unlike many other languages, Ada speaks about
raising, not throwing, an exception and handling, not catching, an exception.

14.1 Exception declaration
Ada exceptions are not types, but instead objects, which may be peculiar to you if you're
used to the way Java or Python support exceptions. Here's how you declare an exception:

Listing 199: exceptions.ads
1 package Exceptions is
2 My_Except : exception;
3 -- Like an object. *NOT* a type !
4 end Exceptions;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception
MD5: 6201faeca9b029c790023856d2c8c419

Even though they're objects, you're going to use each declared exception object as a "kind"
or "family" of exceptions. Ada does not require that a subprogram declare every exception
it can potentially raise.

14.2 Raising an exception
To raise an exception of our newly declared exception kind, do the following:

Listing 200: main.adb
1 with Exceptions; use Exceptions;
2

3 procedure Main is
4 begin
5 raise My_Except;
6 -- Execution of current control flow
7 -- abandoned; an exception of kind
8 -- "My_Except" will bubble up until it
9 -- is caught.

10 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception
MD5: 24b40ae1509722adf51c3dd0d3ea4fbe
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Runtime output

raised EXCEPTIONS.MY_EXCEPT : main.adb:5

Here, the My_Except exception is raised. We can also specify a message:

Listing 201: main.adb
1 with Exceptions; use Exceptions;
2

3 procedure Main is
4 begin
5 raise My_Except with "My exception message";
6 -- Execution of current control flow
7 -- abandoned; an exception of kind
8 -- "My_Except" with associated string will
9 -- bubble up until it is caught.

10 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception
MD5: 279299c9703c3ed4e51fdd7c3a5e1392

Runtime output

raised EXCEPTIONS.MY_EXCEPT : My exception message

In this case, we see an additional message when the exception is displayed.

14.3 Handling an exception
Next, we address how to handle exceptions that were raised by us or libraries that we call.
The neat thing in Ada is that you can add an exception handler to any statement block as
follows:

Listing 202: open_file.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Exceptions; use Ada.Exceptions;
3

4 procedure Open_File is
5 File : File_Type;
6 begin
7 -- Block (sequence of statements)
8 begin
9 Open (File, In_File, "input.txt");

10 exception
11 when E : Name_Error =>
12 -- ^ Exception to be handled
13 Put ("Cannot open input file : ");
14 Put_Line (Exception_Message (E));
15 raise;
16 -- Reraise current occurence
17 end;
18 end Open_File;

Code block metadata
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Project: Courses.Intro_To_Ada.Exceptions.Show_Exception_Handling
MD5: 4ea1d5da684a6d7d7ee32908810e9c8f

Runtime output

Cannot open input file : input.txt: No such file or directory

raised ADA.IO_EXCEPTIONS.NAME_ERROR : input.txt: No such file or directory

In the example above, we're using the Exception_Message function from the Ada.
Exceptions package. This function returns the message associated with the exception
as a string.
You don't need to introduce a block just to handle an exception: you can add it to the
statements block of your current subprogram:

Listing 203: open_file.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Exceptions; use Ada.Exceptions;
3

4 procedure Open_File is
5 File : File_Type;
6 begin
7 Open (File, In_File, "input.txt");
8 -- Exception block can be added to any block
9 exception

10 when Name_Error =>
11 Put ("Cannot open input file");
12 end Open_File;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception_Message
MD5: 838e87ae416b3a717901cdc00eb71b40

Runtime output

Cannot open input file

Attention

Exception handlers have an important restriction that you need to be careful about:
Exceptions raised in the declarative section are not caught by the handlers of that block.
So for example, in the following code, the exception will not be caught.

Listing 204: be_careful.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Exceptions; use Ada.Exceptions;
3

4 procedure Be_Careful is
5 function Dangerous return Integer is
6 begin
7 raise Constraint_Error;
8 return 42;
9 end Dangerous;

10

11 begin
12 declare
13 A : Integer := Dangerous;
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14 begin
15 Put_Line (Integer'Image (A));
16 exception
17 when Constraint_Error =>
18 Put_Line ("error!");
19 end;
20 end Be_Careful;

Code block metadata
Project: Courses.Intro_To_Ada.Exceptions.Be_Careful
MD5: 6ea8a214bbbaca09d7444136d069e782

Runtime output

raised CONSTRAINT_ERROR : be_careful.adb:7 explicit raise

This is also the case for the top-level exception block that is part of the current subpro-
gram.

14.4 Predefined exceptions
Ada has a very small number of predefined exceptions:

• Constraint_Error is the main one you might see. It's raised:
– When bounds don't match or, in general, any violation of constraints.
– In case of overflow
– In case of null dereferences
– In case of division by 0

• Program_Error might appear, but probably less often. It's raised in more arcane situ-
ations, such as for order of elaboration issues and some cases of detectable erroneous
execution.

• Storage_Error will happen because of memory issues, such as:
– Not enough memory (allocator)
– Not enough stack

• Tasking_Error will happen with task related errors, such as any error happening dur-
ing task activation.

You should not reuse predefined exceptions. If you do then, it won't be obvious when one
is raised that it is because something went wrong in a built-in language operation.
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Tasks and protected objects allow the implementation of concurrency in Ada. The following
sections explain these concepts in more detail.

15.1 Tasks
A task can be thought as an application that runs concurrently with the main application.
In other programming languages, a task might be called a thread17, and tasking might be
called multithreading18.
Tasks may synchronize with the main application but may also process information com-
pletely independently from the main application. Here we show how this is accomplished.

15.1.1 Simple task
Tasks are declared using the keyword task. The task implementation is specified in a task
body block. For example:

Listing 205: show_simple_task.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Task is
4 task T;
5

6 task body T is
7 begin
8 Put_Line ("In task T");
9 end T;

10 begin
11 Put_Line ("In main");
12 end Show_Simple_Task;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Simple_Task
MD5: b17d9b35b4b2b53bc59776749e1be219

Runtime output

In task T
In main

17 https://en.wikipedia.org/wiki/Thread_(computing)
18 https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading

145

https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading


Introduction to Ada

Here, we're declaring and implementing the task T. As soon as the main application starts,
task T starts automatically — it's not necessary to manually start this task. By running the
application above, we can see that both calls to Put_Line are performed.
Note that:

• The main application is itself a task (the main or “environment” task).
– In this example, the subprogram Show_Simple_Task is the main task of the appli-
cation.

• Task T is a subtask.
– Each subtask has a master, which represents the program construct in which the
subtask is declared. In this case, the main subprogram Show_Simple_Task is T 's
master.

– The master construct is executed by some enclosing task, which we will refer to
as the "master task" of the subtask.

• The number of tasks is not limited to one: we could include a task T2 in the example
above.
– This task also starts automatically and runs concurrently with both task T and the
main task. For example:

Listing 206: show_simple_tasks.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Tasks is
4 task T;
5 task T2;
6

7 task body T is
8 begin
9 Put_Line ("In task T");

10 end T;
11

12 task body T2 is
13 begin
14 Put_Line ("In task T2");
15 end T2;
16

17 begin
18 Put_Line ("In main");
19 end Show_Simple_Tasks;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Multiple_Simple_Task
MD5: 5e24b797e742bec306ad498f4f40d2b4

Runtime output

In task T
In task T2
In main

15.1.2 Simple synchronization
As we've just seen, as soon as the master construct reaches its “begin”, its subtasks also
start automatically. The master continues its processing until it has nothing more to do. At
that point, however, it will not terminate. Instead, the master waits until its subtasks have
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finished before it allows itself to complete. In other words, this waiting process provides
synchronization between the master task and its subtasks. After this synchronization, the
master construct will complete. For example:

Listing 207: show_simple_sync.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Sync is
4 task T;
5 task body T is
6 begin
7 for I in 1 .. 10 loop
8 Put_Line ("hello");
9 end loop;

10 end T;
11 begin
12 null;
13 -- Will wait here until all tasks
14 -- have terminated
15 end Show_Simple_Sync;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Simple_Sync
MD5: 84afce465854f99f8cbe0b57714d8a5f

Runtime output

hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

The samemechanism is used for other subprograms that contain subtasks: the subprogram
execution will wait for its subtasks to finish. So this mechanism is not limited to the main
subprogram and also applies to any subprogram called by the main subprogram, directly
or indirectly.
Synchronization also occurs if we move the task to a separate package. In the example
below, we declare a task T in the package Simple_Sync_Pkg.

Listing 208: simple_sync_pkg.ads
1 package Simple_Sync_Pkg is
2 task T;
3 end Simple_Sync_Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Simple_Sync_Pkg
MD5: 2f9be044d04994240970f150e2293d5e

This is the corresponding package body:
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Listing 209: simple_sync_pkg.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Simple_Sync_Pkg is
4 task body T is
5 begin
6 for I in 1 .. 10 loop
7 Put_Line ("hello");
8 end loop;
9 end T;

10 end Simple_Sync_Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Simple_Sync_Pkg
MD5: b668451e4fb10e802f619889bcd743ff

Because the package is with'ed by the main procedure, the task T defined in the package
will become a subtask of the main task. For example:

Listing 210: test_simple_sync_pkg.adb
1 with Simple_Sync_Pkg;
2

3 procedure Test_Simple_Sync_Pkg is
4 begin
5 null;
6 -- Will wait here until all tasks
7 -- have terminated
8 end Test_Simple_Sync_Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Simple_Sync_Pkg
MD5: e51565b91767ce198496ef3e9c582ac8

Runtime output

hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

As soon as the main subprogram returns, the main task synchronizes with any subtasks
spawned by packages T from Simple_Sync_Pkg before finally terminating.

15.1.3 Delay
We can introduce a delay by using the keyword delay. This puts the current task to sleep
for the length of time (in seconds) specified in the delay statement. For example:
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Listing 211: show_delay.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Delay is
4

5 task T;
6

7 task body T is
8 begin
9 for I in 1 .. 5 loop

10 Put_Line ("hello from task T");
11 delay 1.0;
12 -- ^ Wait 1.0 seconds
13 end loop;
14 end T;
15 begin
16 delay 1.5;
17 Put_Line ("hello from main");
18 end Show_Delay;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Delay
MD5: 4a6e8039744301a128e8fb2dd27902a5

Runtime output

hello from task T
hello from task T
hello from main
hello from task T
hello from task T
hello from task T

In this example, we're making the task T wait one second after each time it displays the
"hello" message. In addition, the main task is waiting 1.5 seconds before displaying its own
"hello" message

15.1.4 Synchronization: rendezvous
The only type of synchronization we've seen so far is the one that happens automatically at
the end of a master construct with a subtask. You can also define custom synchronization
points using the keyword entry. An entry can be viewed as a special kind of subprogram,
which is called by another task using a similar syntax, as we will see later.
In the task body definition, you define which part of the task will accept the entries by using
the keyword accept. A task proceeds until it reaches an accept statement and then waits
for some other task to synchronize with it. Specifically,

• The task with the entry waits at that point (in the accept statement), ready to accept
a call to the corresponding entry from the master task.

• The other task calls the task entry, in a manner similar to a procedure call, to synchro-
nize with the entry.

This synchronization between tasks is called a rendezvous. Let's see an example:
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Listing 212: show_rendezvous.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Rendezvous is
4

5 task T is
6 entry Start;
7 end T;
8

9 task body T is
10 begin
11 accept Start;
12 -- ^ Waiting for somebody
13 -- to call the entry
14

15 Put_Line ("In T");
16 end T;
17

18 begin
19 Put_Line ("In Main");
20

21 -- Calling T's entry:
22 T.Start;
23 end Show_Rendezvous;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Rendezvous
MD5: 479eea7adc876ac359ad20ac6e3acf66

Runtime output

In Main
In T

In this example, we declare an entry Start for task T. In the task body, we implement this
entry using accept Start. When task T reaches this point, it waits for some other task to
call its entry. This synchronization occurs in the T.Start statement. After the rendezvous
completes, the main task and task T again run concurrently until they synchronize one final
time when the main subprogram Show_Rendezvous finishes.
An entry may be used to perform more than a simple task synchronization: it also may
perform multiple statements during the time both tasks are synchronized. We do this with
a do ... end block. For the previous example, we would simply write accept Start do
<statements>; end;. We use this kind of block in the next example.

15.1.5 Select loop
There's no limit to the number of times an entry can be accepted. We could even create an
infinite loop in the task and accept calls to the same entry over and over again. An infinite
loop, however, prevents the subtask from finishing, so it blocks its master task when it
reaches the end of its processing. Therefore, a loop containing accept statements in a task
body can be used in conjunction with a select ... or terminate statement. In simple
terms, this statement allows its master task to automatically terminate the subtask when
the master construct reaches its end. For example:

Listing 213: show_rendezvous_loop.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

(continues on next page)
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(continued from previous page)
3 procedure Show_Rendezvous_Loop is
4

5 task T is
6 entry Reset;
7 entry Increment;
8 end T;
9

10 task body T is
11 Cnt : Integer := 0;
12 begin
13 loop
14 select
15 accept Reset do
16 Cnt := 0;
17 end Reset;
18 Put_Line ("Reset");
19 or
20 accept Increment do
21 Cnt := Cnt + 1;
22 end Increment;
23 Put_Line ("In T's loop ("
24 & Integer'Image (Cnt)
25 & ")");
26 or
27 terminate;
28 end select;
29 end loop;
30 end T;
31

32 begin
33 Put_Line ("In Main");
34

35 for I in 1 .. 4 loop
36 -- Calling T's entry multiple times
37 T.Increment;
38 end loop;
39

40 T.Reset;
41 for I in 1 .. 4 loop
42 -- Calling T's entry multiple times
43 T.Increment;
44 end loop;
45

46 end Show_Rendezvous_Loop;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Rendezvous_Loop
MD5: 0542dbc029cffb9f794d761bab9f3a9d

Runtime output

In Main
In T's loop ( 1)
In T's loop ( 2)
In T's loop ( 3)
In T's loop ( 4)
Reset
In T's loop ( 1)
In T's loop ( 2)
In T's loop ( 3)

(continues on next page)
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In T's loop ( 4)

In this example, the task body implements an infinite loop that accepts calls to the Reset
and Increment entry. We make the following observations:

• The accept E do ... end block is used to increment a counter.
– As long as task T is performing the do ... end block, the main task waits for the
block to complete.

• The main task is calling the Increment entry multiple times in the loop from 1 .. 4.
It is also calling the Reset entry before the second loop.
– Because task T contains an infinite loop, it always accepts calls to the Reset and
Increment entries.

– When the master construct of the subtask (the Show_Rendezvous_Loop subpro-
gram) completes, it checks the status of the T task. Even though task T could
accept new calls to the Reset or Increment entries, the master construct is al-
lowed to terminate task T due to the or terminate part of the select statement.

15.1.6 Cycling tasks
In a previous example, we saw how to delay a task a specified time by using the delay
keyword. However, using delay statements in a loop is not enough to guarantee regular
intervals between those delay statements. For example, we may have a call to a compu-
tationally intensive procedure between executions of successive delay statements:

while True loop
delay 1.0;
-- ^ Wait 1.0 seconds
Computational_Intensive_App;

end loop;

In this case, we can't guarantee that exactly 10 seconds have elapsed after 10 calls
to the delay statement because a time drift may be introduced by the Computa-
tional_Intensive_App procedure. In many cases, this time drift is not relevant, so using
the delay keyword is good enough.
However, there are situations where a time drift isn't acceptable. In those cases, we need
to use the delay until statement, which accepts a precise time for the end of the delay,
allowing us to define a regular interval. This is useful, for example, in real-time applications.
We will soon see an example of how this time drift may be introduced and how the delay
until statement circumvents the problem. But before we do that, we look at a package
containing a procedure allowing us to measure the elapsed time (Show_Elapsed_Time) and
a dummy Computational_Intensive_App procedure which is simulated by using a simple
delay. This is the complete package:

Listing 214: delay_aux_pkg.ads
1 with Ada.Real_Time; use Ada.Real_Time;
2

3 package Delay_Aux_Pkg is
4

5 function Get_Start_Time return Time
6 with Inline;
7

8 procedure Show_Elapsed_Time
9 with Inline;

10

(continues on next page)
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(continued from previous page)
11 procedure Computational_Intensive_App;
12 private
13 Start_Time : Time := Clock;
14

15 function Get_Start_Time return Time is
16 (Start_Time);
17

18 end Delay_Aux_Pkg;

Listing 215: delay_aux_pkg.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Delay_Aux_Pkg is
4

5 procedure Show_Elapsed_Time is
6 Now_Time : Time;
7 Elapsed_Time : Time_Span;
8 begin
9 Now_Time := Clock;

10 Elapsed_Time := Now_Time - Start_Time;
11 Put_Line ("Elapsed time "
12 & Duration'Image
13 (To_Duration (Elapsed_Time))
14 & " seconds");
15 end Show_Elapsed_Time;
16

17 procedure Computational_Intensive_App is
18 begin
19 delay 0.5;
20 end Computational_Intensive_App;
21

22 end Delay_Aux_Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Time
MD5: 422a38c1afa0bbd659ec81de88479e0a

Using this auxiliary package, we're now ready to write our time-drifting application:

Listing 216: show_time_task.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Real_Time; use Ada.Real_Time;
3

4 with Delay_Aux_Pkg;
5

6 procedure Show_Time_Task is
7 package Aux renames Delay_Aux_Pkg;
8

9 task T;
10

11 task body T is
12 Cnt : Integer := 1;
13 begin
14 for I in 1 .. 5 loop
15 delay 1.0;
16

17 Aux.Show_Elapsed_Time;
18 Aux.Computational_Intensive_App;

(continues on next page)

15.1. Tasks 153



Introduction to Ada
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19

20 Put_Line ("Cycle # "
21 & Integer'Image (Cnt));
22 Cnt := Cnt + 1;
23 end loop;
24 Put_Line ("Finished time-drifting loop");
25 end T;
26

27 begin
28 null;
29 end Show_Time_Task;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Time
MD5: fe17c902fc127c0132677ea4005ff3f1

Runtime output

Elapsed time 1.000549316 seconds
Cycle # 1
Elapsed time 2.502470007 seconds
Cycle # 2
Elapsed time 4.003457739 seconds
Cycle # 3
Elapsed time 5.505746683 seconds
Cycle # 4
Elapsed time 7.006942816 seconds
Cycle # 5
Finished time-drifting loop

We can see by running the application that we already have a time difference of about
four seconds after three iterations of the loop due to the drift introduced by Computa-
tional_Intensive_App. Using the delay until statement, however, we're able to avoid
this time drift and have a regular interval of exactly one second:

Listing 217: show_time_task.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Real_Time; use Ada.Real_Time;
3

4 with Delay_Aux_Pkg;
5

6 procedure Show_Time_Task is
7 package Aux renames Delay_Aux_Pkg;
8

9 task T;
10

11 task body T is
12 Cycle : constant Time_Span :=
13 Milliseconds (1000);
14 Next : Time := Aux.Get_Start_Time
15 + Cycle;
16

17 Cnt : Integer := 1;
18 begin
19 for I in 1 .. 5 loop
20 delay until Next;
21

22 Aux.Show_Elapsed_Time;
23 Aux.Computational_Intensive_App;

(continues on next page)
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24

25 -- Calculate next execution time
26 -- using a cycle of one second
27 Next := Next + Cycle;
28

29 Put_Line ("Cycle # "
30 & Integer'Image (Cnt));
31 Cnt := Cnt + 1;
32 end loop;
33 Put_Line ("Finished cycling");
34 end T;
35

36 begin
37 null;
38 end Show_Time_Task;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Time
MD5: 1456c0feee6def8b370d994c0ab75a15

Runtime output

Elapsed time 1.001883847 seconds
Cycle # 1
Elapsed time 2.001327181 seconds
Cycle # 2
Elapsed time 3.000699340 seconds
Cycle # 3
Elapsed time 4.001981741 seconds
Cycle # 4
Elapsed time 5.001690838 seconds
Cycle # 5
Finished cycling

Now, as we can see by running the application, the delay until statement ensures that the
Computational_Intensive_App doesn't disturb the regular interval of one second between
iterations.

15.2 Protected objects
When multiple tasks are accessing shared data, corruption of that data may occur. For
example, data may be inconsistent if one task overwrites parts of the information that's
being read by another task at the same time. In order to avoid these kinds of problems and
ensure information is accessed in a coordinated way, we use protected objects.
Protected objects encapsulate data and provide access to that data by means of protected
operations, which may be subprograms or protected entries. Using protected objects en-
sures that data is not corrupted by race conditions or other concurrent access.

Important

Objects can be protected from concurrent access using Ada tasks. In fact, this was the
only way of protecting objects from concurrent access in Ada 83 (the first version of
the Ada language). However, the use of protected objects is much simpler than using
similar mechanisms implemented using only tasks. Therefore, you should use protected
objects when your main goal is only to protect data.
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15.2.1 Simple object
You declare a protected object with the protected keyword. The syntax is similar to that
used for packages: you can declare operations (e.g., procedures and functions) in the public
part and data in the private part. The corresponding implementation of the operations is
included in the protected body of the object. For example:

Listing 218: show_protected_objects.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Protected_Objects is
4

5 protected Obj is
6 -- Operations go here (only subprograms)
7 procedure Set (V : Integer);
8 function Get return Integer;
9 private

10 -- Data goes here
11 Local : Integer := 0;
12 end Obj;
13

14 protected body Obj is
15 -- procedures can modify the data
16 procedure Set (V : Integer) is
17 begin
18 Local := V;
19 end Set;
20

21 -- functions cannot modify the data
22 function Get return Integer is
23 begin
24 return Local;
25 end Get;
26 end Obj;
27

28 begin
29 Obj.Set (5);
30 Put_Line ("Number is: "
31 & Integer'Image (Obj.Get));
32 end Show_Protected_Objects;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Protected_Objects
MD5: dd97dd584ba2f13def3c04725d4e48a7

Runtime output

Number is: 5

In this example, we define two operations for Obj: Set and Get. The implementation of
these operations is in the Obj body. The syntax used for writing these operations is the same
as that for normal procedures and functions. The implementation of protected objects is
straightforward — we simply access and update Local in these subprograms. To call these
operations in the main application, we use prefixed notation, e.g., Obj.Get.
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15.2.2 Entries
In addition to protected procedures and functions, you can also define protected entry
points. Do this using the entry keyword. Protected entry points allow you to define barri-
ers using the when keyword. Barriers are conditions that must be fulfilled before the entry
can start performing its actual processing — we speak of releasing the barrier when the
condition is fulfilled.
The previous example used procedures and functions to define operations on the protected
objects. However, doing so permits reading protected information (via Obj.Get) before it's
set (via Obj.Set). To allow that to be a defined operation, we specified a default value (0).
Instead, by rewriting Obj.Get using an entry instead of a function, we implement a barrier,
ensuring no task can read the information before it's been set.
The following example implements the barrier for the Obj.Get operation. It also contains
two concurrent subprograms (main task and task T) that try to access the protected object.

Listing 219: show_protected_objects_entries.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Protected_Objects_Entries is
4

5 protected Obj is
6 procedure Set (V : Integer);
7 entry Get (V : out Integer);
8 private
9 Local : Integer;

10 Is_Set : Boolean := False;
11 end Obj;
12

13 protected body Obj is
14 procedure Set (V : Integer) is
15 begin
16 Local := V;
17 Is_Set := True;
18 end Set;
19

20 entry Get (V : out Integer)
21 when Is_Set is
22 -- Entry is blocked until the
23 -- condition is true. The barrier
24 -- is evaluated at call of entries
25 -- and at exits of procedures and
26 -- entries. The calling task sleeps
27 -- until the barrier is released.
28 begin
29 V := Local;
30 Is_Set := False;
31 end Get;
32 end Obj;
33

34 N : Integer := 0;
35

36 task T;
37

38 task body T is
39 begin
40 Put_Line
41 ("Task T will delay for 4 seconds...");
42 delay 4.0;
43

44 Put_Line
(continues on next page)
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45 ("Task T will set Obj...");
46 Obj.Set (5);
47

48 Put_Line
49 ("Task T has just set Obj...");
50 end T;
51 begin
52 Put_Line
53 ("Main application will get Obj...");
54 Obj.Get (N);
55

56 Put_Line
57 ("Main application has retrieved Obj...");
58 Put_Line
59 ("Number is: " & Integer'Image (N));
60

61 end Show_Protected_Objects_Entries;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Protected_Objects_Entries
MD5: c1134445a96700b871fb76c4d6342359

Runtime output

Task T will delay for 4 seconds...
Main application will get Obj...
Task T will set Obj...
Task T has just set Obj...
Main application has retrieved Obj...
Number is: 5

As we see by running it, the main application waits until the protected object is set (by the
call to Obj.Set in task T) before it reads the information (via Obj.Get). Because a 4-second
delay has been added in task T, the main application is also delayed by 4 seconds. Only
after this delay does task T set the object and release the barrier in Obj.Get so that the
main application can then resume processing (after the information is retrieved from the
protected object).

15.3 Task and protected types
In the previous examples, we defined single tasks and protected objects. We can, however,
generalize tasks and protected objects using type definitions. This allows us, for example,
to create multiple tasks based on just a single task type.

15.3.1 Task types
A task type is a generalization of a task. The declaration is similar to simple tasks: you
replace task with task type. The difference between simple tasks and task types is that
task types don't create actual tasks that automatically start. Instead, a task object decla-
ration is needed. This is exactly the way normal variables and types work: objects are only
created by variable definitions, not type definitions.
To illustrate this, we repeat our first example:
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Listing 220: show_simple_task.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Task is
4 task T;
5

6 task body T is
7 begin
8 Put_Line ("In task T");
9 end T;

10 begin
11 Put_Line ("In main");
12 end Show_Simple_Task;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Simple_Task
MD5: b17d9b35b4b2b53bc59776749e1be219

Runtime output

In task T
In main

We now rewrite it by replacing task T with task type TT. We declare a task (A_Task)
based on the task type TT after its definition:

Listing 221: show_simple_task_type.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Task_Type is
4 task type TT;
5

6 task body TT is
7 begin
8 Put_Line ("In task type TT");
9 end TT;

10

11 A_Task : TT;
12 begin
13 Put_Line ("In main");
14 end Show_Simple_Task_Type;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Simple_Task_Type
MD5: 24c26dcbba6f5c54f0a7d47c3c0da728

Runtime output

In task type TT
In main

We can extend this example and create an array of tasks. Since we're using the same
syntax as for variable declarations, we use a similar syntax for task types: array (<>) of
Task_Type. Also, we can pass information to the individual tasks by defining a Start entry.
Here's the updated example:
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Listing 222: show_task_type_array.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Task_Type_Array is
4 task type TT is
5 entry Start (N : Integer);
6 end TT;
7

8 task body TT is
9 Task_N : Integer;

10 begin
11 accept Start (N : Integer) do
12 Task_N := N;
13 end Start;
14 Put_Line ("In task T: "
15 & Integer'Image (Task_N));
16 end TT;
17

18 My_Tasks : array (1 .. 5) of TT;
19 begin
20 Put_Line ("In main");
21

22 for I in My_Tasks'Range loop
23 My_Tasks (I).Start (I);
24 end loop;
25 end Show_Task_Type_Array;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Task_Type_Array
MD5: bba072dfc52fb2bfbef6e7b9f8191464

Runtime output

In main
In task T: 1
In task T: 2
In task T: 3
In task T: 4
In task T: 5

In this example, we're declaring five tasks in the array My_Tasks. We pass the array index
to the individual tasks in the entry point (Start). After the synchronization between the
individual subtasks and the main task, each subtask calls Put_Line concurrently.

15.3.2 Protected types
A protected type is a generalization of a protected object. The declaration is similar to
that for protected objects: you replace protected with protected type. Like task types,
protected types require an object declaration to create actual objects. Again, this is sim-
ilar to variable declarations and allows for creating arrays (or other composite objects) of
protected objects.
We can reuse a previous example and rewrite it to use a protected type:

Listing 223: show_protected_object_type.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Protected_Object_Type is
(continues on next page)
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4

5 protected type P_Obj_Type is
6 procedure Set (V : Integer);
7 function Get return Integer;
8 private
9 Local : Integer := 0;

10 end P_Obj_Type;
11

12 protected body P_Obj_Type is
13 procedure Set (V : Integer) is
14 begin
15 Local := V;
16 end Set;
17

18 function Get return Integer is
19 begin
20 return Local;
21 end Get;
22 end P_Obj_Type;
23

24 Obj : P_Obj_Type;
25 begin
26 Obj.Set (5);
27 Put_Line ("Number is: "
28 & Integer'Image (Obj.Get));
29 end Show_Protected_Object_Type;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Protected_Object_Type
MD5: c50321e55afef0d72f263fee0669e55f

Runtime output

Number is: 5

In this example, instead of directly defining the protected object Obj, we first define a
protected type P_Obj_Type and then declare Obj as an object of that protected type. Note
that the main application hasn't changed: we still use Obj.Set and Obj.Get to access the
protected object, just like in the original example.
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CHAPTER

SIXTEEN

DESIGN BY CONTRACTS

Contracts are used in programming to codify expectations. Parameter modes of a subpro-
gram can be viewed as a simple form of contracts. When the specification of subprogram Op
declares a parameter using inmode, the caller of Op knows that the in argument won't be
changed by Op. In other words, the caller expects that Op doesn't modify the argument it's
providing, but just reads the information stored in the argument. Constraints and subtypes
are other examples of contracts. In general, these specifications improve the consistency
of the application.
Design-by-contract programming refers to techniques that include pre- and postconditions,
subtype predicates, and type invariants. We study those topics in this chapter.

16.1 Pre- and postconditions
Pre- and postconditions provide expectations regarding input and output parameters of
subprograms and return value of functions. If we say that certain requirements must bemet
before calling a subprogram Op, those are preconditions. Similarly, if certain requirements
must be met after a call to the subprogram Op, those are postconditions. We can think
of preconditions and postconditions as promises between the subprogram caller and the
callee: a precondition is a promise from the caller to the callee, and a postcondition is a
promise in the other direction.
Pre- and postconditions are specified using an aspect clause in the subprogram declara-
tion. A with Pre => <condition> clause specifies a precondition and a with Post =>
<condition> clause specifies a postcondition.
The following code shows an example of preconditions:

Listing 224: show_simple_precondition.adb
1 procedure Show_Simple_Precondition is
2

3 procedure DB_Entry (Name : String;
4 Age : Natural)
5 with Pre => Name'Length > 0
6 is
7 begin
8 -- Missing implementation
9 null;

10 end DB_Entry;
11 begin
12 DB_Entry ("John", 30);
13

14 -- Precondition will fail!
15 DB_Entry ("", 21);
16 end Show_Simple_Precondition;

Code block metadata
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Project: Courses.Intro_To_Ada.Contracts.Show_Simple_Precondition
MD5: 87b6e080555603111801a0fcd2469acd

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed precondition from show_simple_
↪precondition.adb:5

In this example, we want to prevent the name field in our database from containing an
empty string. We implement this requirement by using a precondition requiring that the
length of the string used for the Name parameter of the DB_Entry procedure is greater than
zero. If the DB_Entry procedure is called with an empty string for the Name parameter, the
call will fail because the precondition is not met.

In the GNAT toolchain

GNAT handles pre- and postconditions by generating runtime assertions for them. By
default, however, assertions aren't enabled. Therefore, in order to check pre- and post-
conditions at runtime, you need to enable assertions by using the -gnata switch.

Before we get to our next example, let's briefly discuss quantified expressions, which are
quite useful in concisely writing pre- and postconditions. Quantified expressions return a
Boolean value indicating whether elements of an array or container match the expected
condition. They have the form: (for all I in A'Range => <condition on A(I)>, where
A is an array and I is an index. Quantified expressions using for all check whether the
condition is true for every element. For example:

(for all I in A'Range => A (I) = 0)

This quantified expression is only true when all elements of the array A have a value of zero.
Another kind of quantified expressions uses for some. The form looks similar: (for some
I in A'Range => <condition on A(I)>. However, in this case the qualified expression
tests whether the condition is true only on some elements (hence the name) instead of all
elements.
We illustrate postconditions using the following example:

Listing 225: show_simple_postcondition.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Postcondition is
4

5 type Int_8 is range -2 ** 7 .. 2 ** 7 - 1;
6

7 type Int_8_Array is
8 array (Integer range <>) of Int_8;
9

10 function Square (A : Int_8) return Int_8 is
11 (A * A)
12 with Post => (if abs A in 0 | 1
13 then Square'Result = abs A
14 else Square'Result > A);
15

16 procedure Square (A : in out Int_8_Array)
17 with Post => (for all I in A'Range =>
18 A (I) = A'Old (I) *
19 A'Old (I))

(continues on next page)
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20 is
21 begin
22 for V of A loop
23 V := Square (V);
24 end loop;
25 end Square;
26

27 V : Int_8_Array := (-2, -1, 0, 1, 10, 11);
28 begin
29 for E of V loop
30 Put_Line ("Original: "
31 & Int_8'Image (E));
32 end loop;
33 New_Line;
34

35 Square (V);
36 for E of V loop
37 Put_Line ("Square: "
38 & Int_8'Image (E));
39 end loop;
40 end Show_Simple_Postcondition;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Simple_Postcondition
MD5: b9bae9fe09cefcbe6769ad9cd6739e2a

Runtime output

Original: -2
Original: -1
Original: 0
Original: 1
Original: 10
Original: 11

Square: 4
Square: 1
Square: 0
Square: 1
Square: 100
Square: 121

We declare a signed 8-bit type Int_8 and an array of that type (Int_8_Array). We want to
ensure each element of the array is squared after calling the procedure Square for an object
of the Int_8_Array type. We do this with a postcondition using a for all expression. This
postcondition also uses the 'Old attribute to refer to the original value of the parameter
(before the call).
We also want to ensure that the result of calls to the Square function for the Int_8 type are
greater than the input to that call. To do that, we write a postcondition using the 'Result
attribute of the function and comparing it to the input value.
We can use both pre- and postconditions in the declaration of a single subprogram. For
example:

Listing 226: show_simple_contract.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Contract is
(continues on next page)
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4

5 type Int_8 is range -2 ** 7 .. 2 ** 7 - 1;
6

7 function Square (A : Int_8) return Int_8 is
8 (A * A)
9 with

10 Pre => (Integer'Size >= Int_8'Size * 2
11 and Integer (A) *
12 Integer (A) <=
13 Integer (Int_8'Last)),
14 Post => (if abs A in 0 | 1
15 then Square'Result = abs A
16 else Square'Result > A);
17

18 V : Int_8;
19 begin
20 V := Square (11);
21 Put_Line ("Square of 11 is "
22 & Int_8'Image (V));
23

24 -- Precondition will fail...
25 V := Square (12);
26 Put_Line ("Square of 12 is "
27 & Int_8'Image (V));
28 end Show_Simple_Contract;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Simple_Contract
MD5: 1d928dd100704907c858562155f90ee2

Runtime output

Square of 11 is 121

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed precondition from show_simple_
↪contract.adb:10

In this example, we want to ensure that the input value of calls to the Square function for
the Int_8 type won't cause overflow in that function. We do this by converting the input
value to the Integer type, which is used for the temporary calculation, and check if the
result is in the appropriate range for the Int_8 type. We have the same postcondition in
this example as in the previous one.

16.2 Predicates
Predicates specify expectations regarding types. They're similar to pre- and postconditions,
but apply to types instead of subprograms. Their conditions are checked for each object of a
given type, which allows verifying that an object of type T is conformant to the requirements
of its type.
There are two kinds of predicates: static and dynamic. In simple terms, static predicates
are used to check objects at compile-time, while dynamic predicates are used for checks
at run time. Normally, static predicates are used for scalar types and dynamic predicates
for the more complex types.
Static and dynamic predicates are specified using the following clauses, respectively:

• with Static_Predicate => <property>

• with Dynamic_Predicate => <property>
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Let's use the following example to illustrate dynamic predicates:

Listing 227: show_dynamic_predicate_courses.adb
1 with Ada.Calendar; use Ada.Calendar;
2

3 with Ada.Containers.Vectors;
4

5 with Ada.Strings.Unbounded;
6 use Ada.Strings.Unbounded;
7

8 procedure Show_Dynamic_Predicate_Courses is
9

10 package Courses is
11 type Course_Container is private;
12

13 type Course is record
14 Name : Unbounded_String;
15 Start_Date : Time;
16 End_Date : Time;
17 end record
18 with Dynamic_Predicate =>
19 Course.Start_Date <= Course.End_Date;
20

21 procedure Add (CC : in out Course_Container;
22 C : Course);
23 private
24 package Course_Vectors is new
25 Ada.Containers.Vectors
26 (Index_Type => Natural,
27 Element_Type => Course);
28

29 type Course_Container is record
30 V : Course_Vectors.Vector;
31 end record;
32 end Courses;
33

34 package body Courses is
35 procedure Add (CC : in out Course_Container;
36 C : Course) is
37 begin
38 CC.V.Append (C);
39 end Add;
40 end Courses;
41

42 use Courses;
43

44 CC : Course_Container;
45 begin
46 Add (CC,
47 Course'(
48 Name =>
49 To_Unbounded_String
50 ("Intro to Photography"),
51 Start_Date =>
52 Time_Of (2018, 5, 1),
53 End_Date =>
54 Time_Of (2018, 5, 10)));
55

56 -- This should trigger an error in the
57 -- dynamic predicate check
58 Add (CC,
59 Course'(

(continues on next page)
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60 Name =>
61 To_Unbounded_String
62 ("Intro to Video Recording"),
63 Start_Date =>
64 Time_Of (2019, 5, 1),
65 End_Date =>
66 Time_Of (2018, 5, 10)));
67

68 end Show_Dynamic_Predicate_Courses;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Dynamic_Predicate_Courses
MD5: 8bd6539e72995fececfcdf9666ffd04f

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_dynamic_
↪predicate_courses.adb:59

In this example, the package Courses defines a type Course and a type Course_Container,
an object of which contains all courses. We want to ensure that the dates of each course
are consistent, specifically that the start date is no later than the end date. To enforce this
rule, we declare a dynamic predicate for the Course type that performs the check for each
object. The predicate uses the type name where a variable of that type would normally be
used: this is a reference to the instance of the object being tested.
Note that the example above makes use of unbounded strings and dates. Both types are
available in Ada's standard library. Please refer to the following sections for more informa-
tion about:

• the unbounded string type (Unbounded_String): Unbounded Strings (page 245) sec-
tion;

• dates and times: Dates & Times (page 229) section.
Static predicates, as mentioned above, are mostly used for scalar types and checked during
compilation. They're particularly useful for representing non-contiguous elements of an
enumeration. A classic example is a list of week days:

type Week is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

We can easily create a sub-list of work days in the week by specifying a subtype with a
range based on Week. For example:

subtype Work_Week is Week range Mon .. Fri;

Ranges in Ada can only be specified as contiguous lists: they don't allow us to pick specific
days. However, we may want to create a list containing just the first, middle and last day
of the work week. To do that, we use a static predicate:

subtype Check_Days is Work_Week
with Static_Predicate =>

Check_Days in Mon | Wed | Fri;

Let's look at a complete example:

168 Chapter 16. Design by contracts



Introduction to Ada

Listing 228: show_predicates.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Predicates is
4

5 type Week is (Mon, Tue, Wed, Thu,
6 Fri, Sat, Sun);
7

8 subtype Work_Week is Week range Mon .. Fri;
9

10 subtype Test_Days is Work_Week
11 with Static_Predicate =>
12 Test_Days in Mon | Wed | Fri;
13

14 type Tests_Week is array (Week) of Natural
15 with Dynamic_Predicate =>
16 (for all I in Tests_Week'Range =>
17 (case I is
18 when Test_Days =>
19 Tests_Week (I) > 0,
20 when others =>
21 Tests_Week (I) = 0));
22

23 Num_Tests : Tests_Week :=
24 (Mon => 3, Tue => 0,
25 Wed => 4, Thu => 0,
26 Fri => 2, Sat => 0,
27 Sun => 0);
28

29 procedure Display_Tests (N : Tests_Week) is
30 begin
31 for I in Test_Days loop
32 Put_Line ("# tests on "
33 & Test_Days'Image (I)
34 & " => "
35 & Integer'Image (N (I)));
36 end loop;
37 end Display_Tests;
38

39 begin
40 Display_Tests (Num_Tests);
41

42 -- Assigning non-conformant values to
43 -- individual elements of the Tests_Week
44 -- type does not trigger a predicate
45 -- check:
46 Num_Tests (Tue) := 2;
47

48 -- However, assignments with the "complete"
49 -- Tests_Week type trigger a predicate
50 -- check. For example:
51 --
52 -- Num_Tests := (others => 0);
53

54 -- Also, calling any subprogram with
55 -- parameters of Tests_Week type
56 -- triggers a predicate check. Therefore,
57 -- the following line will fail:
58 Display_Tests (Num_Tests);
59 end Show_Predicates;

Code block metadata
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Project: Courses.Intro_To_Ada.Contracts.Show_Predicates
MD5: 126c47033fc67fc8b6d7f6479205e752

Runtime output

# tests on MON => 3
# tests on WED => 4
# tests on FRI => 2

raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_
↪predicates.adb:58

Here we have an application that wants to perform tests only on three days of the work
week. These days are specified in the Test_Days subtype. We want to track the number
of tests that occur each day. We declare the type Tests_Week as an array, an object of
which will contain the number of tests done each day. According to our requirements,
these tests should happen only in the aforementioned three days; on other days, no tests
should be performed. This requirement is implemented with a dynamic predicate of the
type Tests_Week. Finally, the actual information about these tests is stored in the array
Num_Tests, which is an instance of the Tests_Week type.
The dynamic predicate of the Tests_Week type is verified during the initialization of
Num_Tests. If we have a non-conformant value there, the check will fail. However, as
we can see in our example, individual assignments to elements of the array do not trigger
a check. We can't check for consistency at this point because the initialization of the a
complex data structure (such as arrays or records) may not be performed with a single as-
signment. However, as soon as the object is passed as an argument to a subprogram, the
dynamic predicate is checked because the subprogram requires the object to be consistent.
This happens in the last call to Display_Tests in our example. Here, the predicate check
fails because the previous assignment has a non-conformant value.

16.3 Type invariants
Type invariants are another way of specifying expectations regarding types. While predi-
cates are used for non-private types, type invariants are used exclusively to define expec-
tations about private types. If a type T from a package P has a type invariant, the results
of operations on objects of type T are always consistent with that invariant.
Type invariants are specified with a with Type_Invariant => <property> clause. Like
predicates, the property defines a condition that allows us to check if an object of type T
is conformant to its requirements. In this sense, type invariants can be viewed as a sort of
predicate for private types. However, there are some differences in terms of checks. The
following table summarizes the differences:

Element Subprogram parameter checks Assignment checks
Predi-
cates

On all in and out parameters On assignments and ex-
plicit initializations

Type in-
variants

On out parameters returned from subprograms
declared in the same public scope

On all initializations

We could rewrite our previous example and replace dynamic predicates by type invariants.
It would look like this:
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Listing 229: show_type_invariant.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar; use Ada.Calendar;
3

4 with Ada.Containers.Vectors;
5

6 with Ada.Strings.Unbounded;
7 use Ada.Strings.Unbounded;
8

9 procedure Show_Type_Invariant is
10

11 package Courses is
12 type Course is private
13 with Type_Invariant => Check (Course);
14

15 type Course_Container is private;
16

17 procedure Add (CC : in out Course_Container;
18 C : Course);
19

20 function Init
21 (Name : String;
22 Start_Date, End_Date : Time)
23 return Course;
24

25 function Check (C : Course)
26 return Boolean;
27

28 private
29 type Course is record
30 Name : Unbounded_String;
31 Start_Date : Time;
32 End_Date : Time;
33 end record;
34

35 function Check (C : Course)
36 return Boolean is
37 (C.Start_Date <= C.End_Date);
38

39 package Course_Vectors is new
40 Ada.Containers.Vectors
41 (Index_Type => Natural,
42 Element_Type => Course);
43

44 type Course_Container is record
45 V : Course_Vectors.Vector;
46 end record;
47 end Courses;
48

49 package body Courses is
50 procedure Add (CC : in out Course_Container;
51 C : Course) is
52 begin
53 CC.V.Append (C);
54 end Add;
55

56 function Init
57 (Name : String;
58 Start_Date, End_Date : Time)
59 return Course is
60 begin
61 return

(continues on next page)
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62 Course'(Name =>
63 To_Unbounded_String (Name),
64 Start_Date => Start_Date,
65 End_Date => End_Date);
66 end Init;
67 end Courses;
68

69 use Courses;
70

71 CC : Course_Container;
72 begin
73 Add (CC,
74 Init (Name =>
75 "Intro to Photography",
76 Start_Date =>
77 Time_Of (2018, 5, 1),
78 End_Date =>
79 Time_Of (2018, 5, 10)));
80

81 -- This should trigger an error in the
82 -- type-invariant check
83 Add (CC,
84 Init (Name =>
85 "Intro to Video Recording",
86 Start_Date =>
87 Time_Of (2019, 5, 1),
88 End_Date =>
89 Time_Of (2018, 5, 10)));
90 end Show_Type_Invariant;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Type_Invariant
MD5: c6ef863da94285f927dd106645af8650

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed invariant from show_type_invariant.
↪adb:13

The major difference is that the Course type was a visible (public) type of the Courses
package in the previous example, but in this example is a private type.
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INTERFACING WITH C

Ada allows us to interface with code in many languages, including C and C++. This section
discusses how to interface with C.

17.1 Multi-language project
By default, when using gprbuild we only compile Ada source files. To compile C files as
well, we need to modify the project file used by gprbuild. We use the Languages entry, as
in the following example:

project Multilang is

for Languages use ("ada", "c");

for Source_Dirs use ("src");
for Main use ("main.adb");
for Object_Dir use "obj";

end Multilang;

17.2 Type convention
To interface with data types declared in a C application, you specify the Convention aspect
on the corresponding Ada type declaration. In the following example, we interface with the
C_Enum enumeration declared in a C source file:

Listing 230: show_c_enum.adb
1 procedure Show_C_Enum is
2

3 type C_Enum is (A, B, C)
4 with Convention => C;
5 -- Use C convention for C_Enum
6 begin
7 null;
8 end Show_C_Enum;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Enum
MD5: a14d7d981fd7d6d806cf3c55f35e19c8

To interface with C's built-in types, we use the Interfaces.C package, which contains most
of the type definitions we need. For example:
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Listing 231: show_c_struct.adb
1 with Interfaces.C; use Interfaces.C;
2

3 procedure Show_C_Struct is
4

5 type c_struct is record
6 a : int;
7 b : long;
8 c : unsigned;
9 d : double;

10 end record
11 with Convention => C;
12

13 begin
14 null;
15 end Show_C_Struct;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Struct
MD5: dda4d3f8e4ddf5c5138a990a9a8ac427

Here, we're interfacing with a C struct (C_Struct) and using the corresponding data types
in C (int, long, unsigned and double). This is the declaration in C:

Listing 232: c_struct.h
1 struct c_struct
2 {
3 int a;
4 long b;
5 unsigned c;
6 double d;
7 };

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Struct
MD5: 58709b6a9eea2606d7ec0aaca0a749ff

17.3 Foreign subprograms

17.3.1 Calling C subprograms in Ada
We use a similar approach when interfacing with subprograms written in C. Consider the
following declaration in the C header file:

Listing 233: my_func.h
1 int my_func (int a);

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Func
MD5: 37b9d7ba668f7ec83c2b27ee33637937

Here's the corresponding C definition:

174 Chapter 17. Interfacing with C



Introduction to Ada

Listing 234: my_func.c
1 #include "my_func.h"
2

3 int my_func (int a)
4 {
5 return a * 2;
6 }

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Func
MD5: 284b1639cb393fc14ed196d78429f3ba

We can interface this code in Ada using the Import aspect. For example:

Listing 235: show_c_func.adb
1 with Interfaces.C; use Interfaces.C;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Show_C_Func is
5

6 function my_func (a : int) return int
7 with
8 Import => True,
9 Convention => C;

10

11 -- Imports function 'my_func' from C.
12 -- You can now call it from Ada.
13

14 V : int;
15 begin
16 V := my_func (2);
17 Put_Line ("Result is " & int'Image (V));
18 end Show_C_Func;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Func
MD5: 6c5d85c1debdeaa642946eacf413dfd2

If you want, you can use a different subprogram name in the Ada code. For example, we
could call the C function Get_Value:

Listing 236: show_c_func.adb
1 with Interfaces.C; use Interfaces.C;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Show_C_Func is
5

6 function Get_Value (a : int) return int
7 with
8 Import => True,
9 Convention => C,

10 External_Name => "my_func";
11

12 -- Imports function 'my_func' from C and
13 -- renames it to 'Get_Value'
14

(continues on next page)
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15 V : int;
16 begin
17 V := Get_Value (2);
18 Put_Line ("Result is " & int'Image (V));
19 end Show_C_Func;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Func
MD5: 856b4d99dfaa6946fb4597f254fd2f97

17.3.2 Calling Ada subprograms in C
You can also call Ada subprograms from C applications. You do this with the Export aspect.
For example:

Listing 237: c_api.ads
1 with Interfaces.C; use Interfaces.C;
2

3 package C_API is
4

5 function My_Func (a : int) return int
6 with
7 Export => True,
8 Convention => C,
9 External_Name => "my_func";

10

11 end C_API;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Func
MD5: 00aa4ec29fc551e710900e2ee7d96bc9

This is the corresponding body that implements that function:

Listing 238: c_api.adb
1 package body C_API is
2

3 function My_Func (a : int) return int is
4 begin
5 return a * 2;
6 end My_Func;
7

8 end C_API;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Func
MD5: 2b999ab431bbc1ee223a654ad84b8248

On the C side, we do the same as we would if the function were written in C: simply declare
it using the extern keyword. For example:

Listing 239: main.c
1 #include <stdio.h>
2

(continues on next page)
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3 extern int my_func (int a);
4

5 int main (int argc, char **argv) {
6

7 int v = my_func(2);
8

9 printf("Result is %d\n", v);
10

11 return 0;
12 }

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Func
MD5: 69301036be9be16ed45895c2a86bc352

17.4 Foreign variables

17.4.1 Using C global variables in Ada
To use global variables from C code, we use the same method as subprograms: we specify
the Import and Convention aspects for each variable we want to import.
Let's reuse an example from the previous section. We'll add a global variable (func_cnt)
to count the number of times the function (my_func) is called:

Listing 240: test.h
1 extern int func_cnt;
2

3 int my_func (int a);

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Vars
MD5: 11ba8f7a72ce7058571994870a02b052

The variable is declared in the C file and incremented in my_func:

Listing 241: test.c
1 #include "test.h"
2

3 int func_cnt = 0;
4

5 int my_func (int a)
6 {
7 func_cnt++;
8

9 return a * 2;
10 }

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Vars
MD5: 23631537cb877a03d1243c94cb7b48e8

In the Ada application, we just reference the foreign variable:
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Listing 242: show_c_func.adb
1 with Interfaces.C; use Interfaces.C;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Show_C_Func is
5

6 function my_func (a : int) return int
7 with
8 Import => True,
9 Convention => C;

10

11 V : int;
12

13 func_cnt : int
14 with
15 Import => True,
16 Convention => C;
17 -- We can access the func_cnt variable
18 -- from test.c
19

20 begin
21 V := my_func (1);
22 V := my_func (2);
23 V := my_func (3);
24

25 Put_Line ("Result is "
26 & int'Image (V));
27

28 Put_Line ("Function was called "
29 & int'Image (func_cnt)
30 & " times");
31 end Show_C_Func;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Vars
MD5: cf64a9dfbc6be853ba19729fe55f0ba4

As we see by running the application, the value of the counter is the number of times
my_func was called.
We can use the External_Name aspect to give a different name for the variable in the Ada
application in the same way we do for subprograms.

17.4.2 Using Ada variables in C
You can also use variables declared in Ada files in C applications. In the same way as we
did for subprograms, you do this with the Export aspect.
Let's reuse a past example and add a counter, as in the previous example, but this time
have the counter incremented in Ada code:

Listing 243: c_api.ads
1 with Interfaces.C; use Interfaces.C;
2

3 package C_API is
4

5 func_cnt : int := 0
6 with

(continues on next page)
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7 Export => True,
8 Convention => C;
9

10 function My_Func (a : int) return int
11 with
12 Export => True,
13 Convention => C,
14 External_Name => "my_func";
15

16 end C_API;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Vars
MD5: fc118cddd797b669d2c68e57f90f69b2

The variable is then incremented in My_Func:

Listing 244: c_api.adb
1 package body C_API is
2

3 function My_Func (a : int) return int is
4 begin
5 func_cnt := func_cnt + 1;
6 return a * 2;
7 end My_Func;
8

9 end C_API;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Vars
MD5: adff5f3088da8b0dd853f1fb8b1e204f

In the C application, we just need to declare the variable and use it:

Listing 245: main.c
1 #include <stdio.h>
2

3 extern int my_func (int a);
4

5 extern int func_cnt;
6

7 int main (int argc, char **argv) {
8

9 int v;
10

11 v = my_func(1);
12 v = my_func(2);
13 v = my_func(3);
14

15 printf("Result is %d\n", v);
16

17 printf("Function was called %d times\n",
18 func_cnt);
19

20 return 0;
21 }

Code block metadata
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Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Vars
MD5: 07fb3fbadb8ed4c0543fbfd7b5ef5c57

Again, by running the application, we see that the value from the counter is the number of
times that my_func was called.

17.5 Generating bindings
In the examples above, we manually added aspects to our Ada code to correspond to the C
source-code we're interfacing with. This is called creating a binding. We can automate this
process by using the Ada spec dump compiler option: -fdump-ada-spec. We illustrate this
by revisiting our previous example.
This was our C header file:

Listing 246: test.h
1 extern int func_cnt;
2

3 int my_func (int a);

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds
MD5: 11ba8f7a72ce7058571994870a02b052

To create Ada bindings, we'll call the compiler like this:

gcc -c -fdump-ada-spec -C ./test.h

The result is an Ada spec file called test_h.ads:

Listing 247: test_h.ads
1 pragma Ada_2005;
2 pragma Style_Checks (Off);
3

4 with Interfaces.C; use Interfaces.C;
5

6 package test_h is
7

8 func_cnt : aliased int; -- ./test.h:3
9 pragma Import (C, func_cnt, "func_cnt");

10

11 function my_func (arg1 : int) return int; -- ./test.h:5
12 pragma Import (C, my_func, "my_func");
13

14 end test_h;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds
MD5: 8d18aeae72dba3a9ab4f9f3943fab839

Now we simply refer to this test_h package in our Ada application:

Listing 248: show_c_func.adb
1 with Interfaces.C; use Interfaces.C;
2 with Ada.Text_IO; use Ada.Text_IO;

(continues on next page)
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3 with test_h; use test_h;
4

5 procedure Show_C_Func is
6 V : int;
7 begin
8 V := my_func (1);
9 V := my_func (2);

10 V := my_func (3);
11

12 Put_Line ("Result is "
13 & int'Image (V));
14

15 Put_Line ("Function was called "
16 & int'Image (func_cnt)
17 & " times");
18 end Show_C_Func;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds
MD5: 8a07aae87b9f36c3fce84b75e8388933

You can specify the name of the parent unit for the bindings you're creating as the operand
to fdump-ada-spec:

gcc -c -fdump-ada-spec -fada-spec-parent=Ext_C_Code -C ./test.h

This creates the file ext_c_code-test_h.ads:

Listing 249: ext_c_code-test_h.ads
1 package Ext_C_Code.test_h is
2

3 -- automatic generated bindings...
4

5 end Ext_C_Code.test_h;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_2
MD5: 3bd4087edff145a70d2a6db8543859ad

17.5.1 Adapting bindings
The compiler does the best it can when creating bindings for a C header file. However,
sometimes it has to guess about the translation and the generated bindings don't always
match our expectations. For example, this can happen when creating bindings for functions
that have pointers as arguments. In this case, the compiler may use System.Address as
the type of one or more pointers. Although this approach works fine (as we'll see later),
this is usually not how a human would interpret the C header file. The following example
illustrates this issue.
Let's start with this C header file:

Listing 250: test.h
1 struct test;
2

3 struct test * test_create(void);
4

(continues on next page)
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5 void test_destroy(struct test *t);
6

7 void test_reset(struct test *t);
8

9 void test_set_name(struct test *t,
10 char *name);
11

12 void test_set_address(struct test *t,
13 char *address);
14

15 void test_display(const struct test *t);

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: af642d9ea995bf01f13f8ff41bb0f4f6

And the corresponding C implementation:

Listing 251: test.c
1 #include <stdlib.h>
2 #include <string.h>
3 #include <stdio.h>
4

5 #include "test.h"
6

7 struct test {
8 char name[80];
9 char address[120];

10 };
11

12 static size_t
13 strlcpy_stat(char *dst,
14 const char *src,
15 size_t dstsize)
16 {
17 size_t len = strlen(src);
18 if (dstsize) {
19 size_t bl = (len < dstsize-1 ?
20 len : dstsize-1);
21 ((char*)memcpy(dst, src, bl))[bl] = 0;
22 }
23 return len;
24 }
25

26 struct test * test_create(void)
27 {
28 return malloc (sizeof (struct test));
29 }
30

31 void test_destroy(struct test *t)
32 {
33 if (t != NULL) {
34 free(t);
35 }
36 }
37

38 void test_reset(struct test *t)
39 {
40 t->name[0] = '\0';

(continues on next page)
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41 t->address[0] = '\0';
42 }
43

44 void test_set_name(struct test *t,
45 char *name)
46 {
47 strlcpy_stat(t->name,
48 name,
49 sizeof(t->name));
50 }
51

52 void test_set_address(struct test *t,
53 char *address)
54 {
55 strlcpy_stat(t->address,
56 address,
57 sizeof(t->address));
58 }
59

60 void test_display(const struct test *t)
61 {
62 printf("Name: %s\n", t->name);
63 printf("Address: %s\n", t->address);
64 }

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 32652eb76ad92212609680d64e5687d3

Next, we'll create our bindings:

gcc -c -fdump-ada-spec -C ./test.h

This creates the following specification in test_h.ads:

Listing 252: test_h.ads
1 pragma Ada_2005;
2 pragma Style_Checks (Off);
3

4 with Interfaces.C; use Interfaces.C;
5 with System;
6 with Interfaces.C.Strings;
7

8 package test_h is
9

10 -- skipped empty struct test
11

12 function test_create return System.Address; -- ./test.h:5
13 pragma Import (C, test_create, "test_create");
14

15 procedure test_destroy (arg1 : System.Address); -- ./test.h:7
16 pragma Import (C, test_destroy, "test_destroy");
17

18 procedure test_reset (arg1 : System.Address); -- ./test.h:9
19 pragma Import (C, test_reset, "test_reset");
20

21 procedure test_set_name (arg1 : System.Address; arg2 : Interfaces.C.Strings.
↪chars_ptr); -- ./test.h:11

22 pragma Import (C, test_set_name, "test_set_name");
(continues on next page)
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23

24 procedure test_set_address (arg1 : System.Address; arg2 : Interfaces.C.Strings.
↪chars_ptr); -- ./test.h:13

25 pragma Import (C, test_set_address, "test_set_address");
26

27 procedure test_display (arg1 : System.Address); -- ./test.h:15
28 pragma Import (C, test_display, "test_display");
29

30 end test_h;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 3bf8f01b94fd28594e4121a6a36afdf7

As we can see, the binding generator completely ignores the declaration struct test and
all references to the test struct are replaced by addresses (System.Address). Neverthe-
less, these bindings are good enough to allow us to create a test application in Ada:

Listing 253: show_automatic_c_struct_bindings.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Interfaces.C;
4 use Interfaces.C;
5

6 with Interfaces.C.Strings;
7 use Interfaces.C.Strings;
8

9 with test_h; use test_h;
10

11 with System;
12

13 procedure Show_Automatic_C_Struct_Bindings is
14

15 Name : constant chars_ptr :=
16 New_String ("John Doe");
17 Address : constant chars_ptr :=
18 New_String ("Small Town");
19

20 T : System.Address := test_create;
21

22 begin
23 test_reset (T);
24 test_set_name (T, Name);
25 test_set_address (T, Address);
26

27 test_display (T);
28 test_destroy (T);
29 end Show_Automatic_C_Struct_Bindings;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 99d64fb14d9c869d140dd2fb7d3888d7

We can successfully bind our C code with Ada using the automatically-generated bindings,
but they aren't ideal. Instead, we would prefer Ada bindings that match our (human) inter-
pretation of the C header file. This requires manual analysis of the header file. The good
news is that we can use the automatic generated bindings as a starting point and adapt
them to our needs. For example, we can:
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1. Define a Test type based on System.Address and use it in all relevant functions.
2. Remove the test_ prefix in all operations on the Test type.

This is the resulting specification:

Listing 254: adapted_test_h.ads
1 with System;
2

3 with Interfaces.C; use Interfaces.C;
4 with Interfaces.C.Strings;
5

6 package adapted_test_h is
7

8 type Test is new System.Address;
9

10 function Create return Test;
11 pragma Import (C, Create, "test_create");
12

13 procedure Destroy (T : Test);
14 pragma Import (C, Destroy, "test_destroy");
15

16 procedure Reset (T : Test);
17 pragma Import (C, Reset, "test_reset");
18

19 procedure Set_Name (T : Test;
20 Name : Interfaces.C.Strings.chars_ptr); -- ./test.h:11
21 pragma Import (C, Set_Name, "test_set_name");
22

23 procedure Set_Address (T : Test;
24 Address : Interfaces.C.Strings.chars_ptr);
25 pragma Import (C, Set_Address, "test_set_address");
26

27 procedure Display (T : Test); -- ./test.h:15
28 pragma Import (C, Display, "test_display");
29

30 end adapted_test_h;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 5cc875e1b01af839141e5e623f6c5b7a

And this is the corresponding Ada body:

Listing 255: show_adapted_c_struct_bindings.adb
1 with Interfaces.C;
2 use Interfaces.C;
3

4 with Interfaces.C.Strings;
5 use Interfaces.C.Strings;
6

7 with adapted_test_h; use adapted_test_h;
8

9 with System;
10

11 procedure Show_Adapted_C_Struct_Bindings is
12

13 Name : constant chars_ptr :=
14 New_String ("John Doe");
15 Address : constant chars_ptr :=

(continues on next page)
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16 New_String ("Small Town");
17

18 T : Test := Create;
19

20 begin
21 Reset (T);
22 Set_Name (T, Name);
23 Set_Address (T, Address);
24

25 Display (T);
26 Destroy (T);
27 end Show_Adapted_C_Struct_Bindings;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 626d07b080fbbd2bf1d5f9140b64955c

Now we can use the Test type and its operations in a clean, readable way.
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OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) is a large and ill-defined concept in programming lan-
guages and one that tends to encompass many different meanings because different lan-
guages often implement their own vision of it, with similarities and differences from the
implementations in other languages.
However, onemodel mostly "won" the battle of what object-orientedmeans, if only by sheer
popularity. It's the model used in the Java programming language, which is very similar to
the one used by C++. Here are some defining characteristics:

• Type derivation and extension: Most object oriented languages allow the user to add
fields to derived types.

• Subtyping: Objects of a type derived from a base type can, in some instances, be
substituted for objects of the base type.

• Runtime polymorphism: Calling a subprogram, usually called a method, attached to
an object type can dispatch at runtime depending on the exact type of the object.

• Encapsulation: Objects can hide some of their data.
• Extensibility: People from the "outside" of your package, or even your whole library,
can derive from your object types and define their own behaviors.

Ada dates from before object-oriented programming was as popular as it is today. Some of
the mechanisms and concepts from the above list were in the earliest version of Ada even
before what we would call OOP was added:

• As we saw, encapsulation is not implemented at the type level in Ada, but instead at
the package level.

• Subtyping can be implemented using, well, subtypes, which have a full and permis-
sive static substitutability model. The substitution will fail at runtime if the dynamic
constraints of the subtype are not fulfilled.

• Runtime polymorphism can be implemented using variant records.
However, this lists leaves out type extensions, if you don't consider variant records, and
extensibility.
The 1995 revision of Ada added a feature filling the gaps, which allowed people to program
following the object-oriented paradigm in an easier fashion. This feature is called tagged
types.
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Note

It's possible to program in Ada without ever creating tagged types. If that's your prefered
style of programming or you have no specific use for tagged types, feel free to not use
them, as is the case for many features of Ada.
However, they can be the best way to express solutions to certain problems and they
may be the best way to solve your problem. If that's the case, read on!

18.1 Derived types
Before presenting tagged types, we should discuss a topic we have brushed on, but not
really covered, up to now:
You can create one or more new types from every type in Ada. Type derivation is built into
the language.

Listing 256: newtypes.ads
1 package Newtypes is
2 type Point is record
3 X, Y : Integer;
4 end record;
5

6 type New_Point is new Point;
7 end Newtypes;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Newtypes
MD5: 0d45096755b4bfb08ba8db19ecba3f57

Type derivation is useful to enforce strong typing because the type system treats the two
types as incompatible.
But the benefits are not limited to that: you can inherit things from the type you derive
from. You not only inherit the representation of the data, but you can also inherit behavior.
When you inherit a type you also inherit what are called primitive operations. A primitive
operation (or just a primitive) is a subprogram attached to a type. Ada defines primitives
as subprograms defined in the same scope as the type.

Attention

A subprogram will only become a primitive of the type if:
1. The subprogram is declared in the same scope as the type and
2. The type and the subprogram are declared in a package

Listing 257: primitives.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Primitives is
4 package Week is
5 type Days is (Monday, Tuesday, Wednesday,
6 Thursday, Friday,

(continues on next page)
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7 Saturday, Sunday);
8

9 -- Print_Day is a primitive
10 -- of the type Days
11 procedure Print_Day (D : Days);
12 end Week;
13

14 package body Week is
15 procedure Print_Day (D : Days) is
16 begin
17 Put_Line (Days'Image (D));
18 end Print_Day;
19 end Week;
20

21 use Week;
22 type Weekend_Days is new
23 Days range Saturday .. Sunday;
24

25 -- A procedure Print_Day is automatically
26 -- inherited here. It is as if the procedure
27 --
28 -- procedure Print_Day (D : Weekend_Days);
29 --
30 -- has been declared with the same body
31

32 Sat : Weekend_Days := Saturday;
33 begin
34 Print_Day (Sat);
35 end Primitives;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Primitives
MD5: eb1b0eb66f03a4a17bd9686ec4e12e2e

Runtime output

SATURDAY

This kind of inheritance can be very useful, and is not limited to record types (you can use
it on discrete types, as in the example above), but it's only superficially similar to object-
oriented inheritance:

• Records can't be extended using this mechanism alone. You also can't specify a new
representation for the new type: it will always have the same representation as the
base type.

• There's no facility for dynamic dispatch or polymorphism. Objects are of a fixed, static
type.

There are other differences, but it's not useful to list them all here. Just remember that this
is a kind of inheritance you can use if you only want to statically inherit behavior without
duplicating code or using composition, but a kind you can't use if you want any dynamic
features that are usually associated with OOP.

18.2 Tagged types
The 1995 revision of the Ada language introduced tagged types to fullfil the need for an
unified solution that allows programming in an object-oriented style similar to the one de-
scribed at the beginning of this chapter.
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Tagged types are very similar to normal records except that some functionality is added:
• Types have a tag, stored inside each object, that identifies the runtime type19 of that
object.

• Primitives can dispatch. A primitive on a tagged type is what you would call amethod
in Java or C++. If you derive a base type and override a primitive of it, you can often
call it on an object with the result that which primitive is called depends on the exact
runtime type of the object.

• Subtyping rules are introduced allowing a tagged type derived from a base type to be
statically compatible with the base type.

Let's see our first tagged type declarations:

Listing 258: p.ads
1 package P is
2 type My_Class is tagged null record;
3 -- Just like a regular record, but
4 -- with tagged qualifier
5

6 -- Methods are outside of the type
7 -- definition:
8

9 procedure Foo (Self : in out My_Class);
10 -- If you define a procedure taking a
11 -- My_Class argument in the same package,
12 -- it will be a method.
13

14 -- Here's how you derive a tagged type:
15

16 type Derived is new My_Class with record
17 A : Integer;
18 -- You can add fields in derived types.
19 end record;
20

21 overriding
22 procedure Foo (Self : in out Derived);
23 -- The "overriding" qualifier is optional,
24 -- but if it is present, it must be valid.
25 end P;

Listing 259: p.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body P is
4 procedure Foo (Self : in out My_Class) is
5 begin
6 Put_Line ("In My_Class.Foo");
7 end Foo;
8

9 procedure Foo (Self : in out Derived) is
10 begin
11 Put_Line ("In Derived.Foo, A = "
12 & Integer'Image (Self.A));
13 end Foo;
14 end P;

Code block metadata
19 https://en.wikipedia.org/wiki/Run-time_type_information

190 Chapter 18. Object-oriented programming

https://en.wikipedia.org/wiki/Run-time_type_information


Introduction to Ada

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: 45baaad66a1047358addb574d0fa00bc

18.3 Classwide types
To remain consistent with the rest of the language, a new notation needed to be introduced
to say "This object is of this type or any descendant derives tagged type".
In Ada, we call this the classwide type. It's used in OOP as soon as you need polymorphism.
For example, you can't do the following:

Listing 260: main.adb
1 with P; use P;
2

3 procedure Main is
4

5 O1 : My_Class;
6 -- Declaring an object of type My_Class
7

8 O2 : Derived := (A => 12);
9 -- Declaring an object of type Derived

10

11 O3 : My_Class := O2;
12 -- INVALID: Trying to assign a value
13 -- of type derived to a variable of
14 -- type My_Class.
15 begin
16 null;
17 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: c87ad8bb686cb1763740750846258357

Build output

main.adb:11:21: error: expected type "My_Class" defined at p.ads:2
main.adb:11:21: error: found type "Derived" defined at p.ads:16
gprbuild: *** compilation phase failed

This is because an object of a type T is exactly of the type T, whether T is tagged or not.
What you want to say as a programmer is "I want O3 to be able to hold an object of type
My_Class or any type descending from My_Class". Here's how you do that:

Listing 261: main.adb
1 with P; use P;
2

3 procedure Main is
4 O1 : My_Class;
5 -- Declare an object of type My_Class
6

7 O2 : Derived := (A => 12);
8 -- Declare an object of type Derived
9

10 O3 : My_Class'Class := O2;
11 -- Now valid: My_Class'Class designates
12 -- the classwide type for My_Class,

(continues on next page)
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13 -- which is the set of all types
14 -- descending from My_Class (including
15 -- My_Class).
16 begin
17 null;
18 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: 35412176a248015a26e507164ce526af

Attention

Because an object of a classwide type can be the size of any descendant of its base type,
it has an unknown size. It's therefore an indefinite type, with the expected restrictions:

• It can't be stored as a field/component of a record
• An object of a classwide type needs to be initialized immediately (you can't specify
the constraints of such a type in any way other than by initializing it).

18.4 Dispatching operations
We saw that you can override operations in types derived from another tagged type. The
eventual goal of OOP is to make a dispatching call: a call to a primitive (method) that
depends on the exact type of the object.
But, if you think carefully about it, a variable of type My_Class always contains an object
of exactly that type. If you want to have a variable that can contain a My_Class or any
derived type, it has to be of type My_Class'Class.
In other words, to make a dispatching call, you must first have an object that can be either
of a type or any type derived from this type, namely an object of a classwide type.

Listing 262: main.adb
1 with P; use P;
2

3 procedure Main is
4 O1 : My_Class;
5 -- Declare an object of type My_Class
6

7 O2 : Derived := (A => 12);
8 -- Declare an object of type Derived
9

10 O3 : My_Class'Class := O2;
11

12 O4 : My_Class'Class := O1;
13 begin
14 Foo (O1);
15 -- Non dispatching: Calls My_Class.Foo
16 Foo (O2);
17 -- Non dispatching: Calls Derived.Foo
18 Foo (O3);
19 -- Dispatching: Calls Derived.Foo
20 Foo (O4);

(continues on next page)
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21 -- Dispatching: Calls My_Class.Foo
22 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: 7631f823b0dd9e5474f6bb2dc35af2a2

Runtime output

In My_Class.Foo
In Derived.Foo, A = 12
In Derived.Foo, A = 12
In My_Class.Foo

Attention

You can convert an object of type Derived to an object of type My_Class. This is called
a view conversion in Ada parlance and is useful, for example, if you want to call a parent
method.
In that case, the object really is converted to a My_Class object, which means its tag is
changed. Since tagged objects are always passed by reference, you can use this kind of
conversion to modify the state of an object: changes to converted object will affect the
original one.

Listing 263: main.adb
1 with P; use P;
2

3 procedure Main is
4 O1 : Derived := (A => 12);
5 -- Declare an object of type Derived
6

7 O2 : My_Class := My_Class (O1);
8

9 O3 : My_Class'Class := O2;
10 begin
11 Foo (O1);
12 -- Non dispatching: Calls Derived.Foo
13 Foo (O2);
14 -- Non dispatching: Calls My_Class.Foo
15

16 Foo (O3);
17 -- Dispatching: Calls My_Class.Foo
18 end Main;

Code block metadata
Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: b92112b05201ff14789baca258fa0cbc

Runtime output
In Derived.Foo, A = 12
In My_Class.Foo
In My_Class.Foo
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18.5 Dot notation
You can also call primitives of tagged types with a notation that's more familiar to object ori-
ented programmers. Given the Foo primitive above, you can also write the above program
this way:

Listing 264: main.adb
1 with P; use P;
2

3 procedure Main is
4 O1 : My_Class;
5 -- Declare an object of type My_Class
6

7 O2 : Derived := (A => 12);
8 -- Declare an object of type Derived
9

10 O3 : My_Class'Class := O2;
11

12 O4 : My_Class'Class := O1;
13 begin
14 O1.Foo;
15 -- Non dispatching: Calls My_Class.Foo
16 O2.Foo;
17 -- Non dispatching: Calls Derived.Foo
18 O3.Foo;
19 -- Dispatching: Calls Derived.Foo
20 O4.Foo;
21 -- Dispatching: Calls My_Class.Foo
22 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: 9c6ebdfec9ceeb986d92eb90ec9ff59b

Runtime output

In My_Class.Foo
In Derived.Foo, A = 12
In Derived.Foo, A = 12
In My_Class.Foo

If the dispatching parameter of a primitive is the first parameter, which is the case in our
examples, you can call the primitive using the dot notation. Any remaining parameter are
passed normally:

Listing 265: main.adb
1 with P; use P;
2

3 procedure Main is
4 package Extend is
5 type D2 is new Derived with null record;
6

7 procedure Bar (Self : in out D2;
8 Val : Integer);
9 end Extend;

10

11 package body Extend is
12 procedure Bar (Self : in out D2;

(continues on next page)

194 Chapter 18. Object-oriented programming



Introduction to Ada

(continued from previous page)
13 Val : Integer) is
14 begin
15 Self.A := Self.A + Val;
16 end Bar;
17 end Extend;
18

19 use Extend;
20

21 Obj : D2 := (A => 15);
22 begin
23 Obj.Bar (2);
24 Obj.Foo;
25 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: fec4f5cc4213cc111708dcc276e870c2

Runtime output

In Derived.Foo, A = 17

18.6 Private & Limited
We've seen previously (in the Privacy (page 111) chapter) that types can be declared limited
or private. These encapsulation techniques can also be applied to tagged types, as we'll
see in this section.
This is an example of a tagged private type:

Listing 266: p.ads
1 package P is
2 type T is tagged private;
3 private
4 type T is tagged record
5 E : Integer;
6 end record;
7 end P;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Private_Types
MD5: 4cd4bcd1a54d5f6407a500558b5da417

This is an example of a tagged limited type:

Listing 267: p.ads
1 package P is
2 type T is tagged limited record
3 E : Integer;
4 end record;
5 end P;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Limited_Types
MD5: 13228777133aa6db97da1c29f732459c
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Naturally, you can combine both limited and private types and declare a tagged limited
private type:

Listing 268: p.ads
1 package P is
2 type T is tagged limited private;
3

4 procedure Init (A : in out T);
5 private
6 type T is tagged limited record
7 E : Integer;
8 end record;
9 end P;

Listing 269: p.adb
1 package body P is
2

3 procedure Init (A : in out T) is
4 begin
5 A.E := 0;
6 end Init;
7

8 end P;

Listing 270: main.adb
1 with P; use P;
2

3 procedure Main is
4 T1, T2 : T;
5 begin
6 T1.Init;
7 T2.Init;
8

9 -- The following line doesn't work
10 -- because type T is private:
11 --
12 -- T1.E := 0;
13

14 -- The following line doesn't work
15 -- because type T is limited:
16 --
17 -- T2 := T1;
18 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Limited_Private_
↪Types

MD5: 68240374505bcaf7aad4ebaed3b9127b

Note that the code in the Main procedure above presents two assignments that trigger
compilation errors because type T is limited private. In fact, you cannot:

• assign to T1.E directly because type T is private;
• assign T1 to T2 because type T is limited.

In this case, there's no distinction between tagged and non-tagged types: these compilation
errors would also occur for non-tagged types.
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18.7 Classwide access types
In this section, we'll discuss an useful pattern for object-oriented programming in Ada: class-
wide access type. Let's start with an example where we declare a tagged type T and a
derived type T_New:

Listing 271: p.ads
1 package P is
2 type T is tagged null record;
3

4 procedure Show (Dummy : T);
5

6 type T_New is new T with null record;
7

8 procedure Show (Dummy : T_New);
9 end P;

Listing 272: p.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body P is
4

5 procedure Show (Dummy : T) is
6 begin
7 Put_Line ("Using type "
8 & T'External_Tag);
9 end Show;

10

11 procedure Show (Dummy : T_New) is
12 begin
13 Put_Line ("Using type "
14 & T_New'External_Tag);
15 end Show;
16

17 end P;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Classwide_Error
MD5: fd5cb99925d3c88536546aa0be8104b7

Note that we're using null records for both types T and T_New. Although these types don't
actually have any component, we can still use them to demonstrate dispatching. Also note
that the example above makes use of the 'External_Tag attribute in the implementation
of the Show procedure to get a string for the corresponding tagged type.
As we've seen before, we must use a classwide type to create objects that can make dis-
patching calls. In other words, objects of type T'Class will dispatch. For example:

Listing 273: dispatching_example.adb
1 with P; use P;
2

3 procedure Dispatching_Example is
4 T2 : T_New;
5 T_Dispatch : constant T'Class := T2;
6 begin
7 T_Dispatch.Show;
8 end Dispatching_Example;
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Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Classwide_Error
MD5: f8957b31c9c62db23759baad7b867a57

Runtime output

Using type P.T_NEW

A more useful application is to declare an array of objects that can dispatch. For example,
we'd like to declare an array T_Arr, loop over this array and dispatch according to the actual
type of each individual element:

for I in T_Arr'Range loop
T_Arr (I).Show;
-- Call Show procedure according
-- to actual type of T_Arr (I)

end loop;

However, it's not possible to declare an array of type T'Class directly:

Listing 274: classwide_compilation_error.adb
1 with P; use P;
2

3 procedure Classwide_Compilation_Error is
4 T_Arr : array (1 .. 2) of T'Class;
5 -- ^
6 -- Compilation Error!
7 begin
8 for I in T_Arr'Range loop
9 T_Arr (I).Show;

10 end loop;
11 end Classwide_Compilation_Error;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Classwide_Error
MD5: e86f6c6ee35dced8f330bf6177d178fd

Build output

classwide_compilation_error.adb:4:32: error: unconstrained element type in array␣
↪declaration

gprbuild: *** compilation phase failed

In fact, it's impossible for the compiler to know which type would actually be used for each
element of the array. However, if we use dynamic allocation via access types, we can
allocate objects of different types for the individual elements of an array T_Arr. We do this
by using classwide access types, which have the following format:

type T_Class is access T'Class;

We can rewrite the previous example using the T_Class type. In this case, dynamically
allocated objects of this type will dispatch according to the actual type used during the
allocation. Also, let's introduce an Init procedure that won't be overridden for the derived
T_New type. This is the adapted code:

Listing 275: p.ads
1 package P is
2 type T is tagged record

(continues on next page)
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3 E : Integer;
4 end record;
5

6 type T_Class is access T'Class;
7

8 procedure Init (A : in out T);
9

10 procedure Show (Dummy : T);
11

12 type T_New is new T with null record;
13

14 procedure Show (Dummy : T_New);
15

16 end P;

Listing 276: p.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body P is
4

5 procedure Init (A : in out T) is
6 begin
7 Put_Line ("Initializing type T...");
8 A.E := 0;
9 end Init;

10

11 procedure Show (Dummy : T) is
12 begin
13 Put_Line ("Using type "
14 & T'External_Tag);
15 end Show;
16

17 procedure Show (Dummy : T_New) is
18 begin
19 Put_Line ("Using type "
20 & T_New'External_Tag);
21 end Show;
22

23 end P;

Listing 277: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with P; use P;
3

4 procedure Main is
5 T_Arr : array (1 .. 2) of T_Class;
6 begin
7 T_Arr (1) := new T;
8 T_Arr (2) := new T_New;
9

10 for I in T_Arr'Range loop
11 Put_Line ("Element # "
12 & Integer'Image (I));
13

14 T_Arr (I).Init;
15 T_Arr (I).Show;
16

17 Put_Line ("-----------");
(continues on next page)
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18 end loop;
19 end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Classwide_Access
MD5: 97c05a8f911d0a0e39c0cc90fae184a7

Runtime output

Element # 1
Initializing type T...
Using type P.T
-----------
Element # 2
Initializing type T...
Using type P.T_NEW
-----------

In this example, the first element (T_Arr (1)) is of type T, while the second element is
of type T_New. When running the example, the Init procedure of type T is called for both
elements of the T_Arr array, while the call to the Show procedure selects the corresponding
procedure according to the type of each element of T_Arr.
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NINETEEN

STANDARD LIBRARY: CONTAINERS

In previous chapters, we've used arrays as the standard way to group multiple objects of a
specific data type. In many cases, arrays are good enough for manipulating those objects.
However, there are situations that require more flexibility and more advanced operations.
For those cases, Ada provides support for containers — such as vectors and sets — in its
standard library.
We present an introduction to containers here. For a list of all containers available in Ada,
see Appendix B (page 269).

19.1 Vectors
In the following sections, we present a general overview of vectors, including instantiation,
initialization, and operations on vector elements and vectors.

19.1.1 Instantiation
Here's an example showing the instantiation and declaration of a vector V:

Listing 278: show_vector_inst.adb
1 with Ada.Containers.Vectors;
2

3 procedure Show_Vector_Inst is
4

5 package Integer_Vectors is new
6 Ada.Containers.Vectors
7 (Index_Type => Natural,
8 Element_Type => Integer);
9

10 V : Integer_Vectors.Vector;
11 begin
12 null;
13 end Show_Vector_Inst;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Inst
MD5: 8b737842d2784f25502990f21e1cf6de

Containers are based on generic packages, so we can't simply declare a vector as we would
declare an array of a specific type:

A : array (1 .. 10) of Integer;

Instead, we first need to instantiate one of those packages. We with the container pack-
age (Ada.Containers.Vectors in this case) and instantiate it to create an instance of the
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generic package for the desired type. Only then can we declare the vector using the type
from the instantiated package. This instantiation needs to be done for any container type
from the standard library.
In the instantiation of Integer_Vectors, we indicate that the vector contains elements of
Integer type by specifying it as the Element_Type. By setting Index_Type to Natural, we
specify that the allowed range includes all natural numbers. We could have used a more
restrictive range if desired.

19.1.2 Initialization
One way to initialize a vector is from a concatenation of elements. We use the & operator,
as shown in the following example:

Listing 279: show_vector_init.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Vectors;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Vector_Init is
7

8 package Integer_Vectors is new
9 Ada.Containers.Vectors

10 (Index_Type => Natural,
11 Element_Type => Integer);
12

13 use Integer_Vectors;
14

15 V : Vector := 20 & 10 & 0 & 13;
16 begin
17 Put_Line ("Vector has "
18 & Count_Type'Image (V.Length)
19 & " elements");
20 end Show_Vector_Init;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Init
MD5: 0087b0a15e0c88b27ac36c3b27159a17

Runtime output

Vector has 4 elements

We specify use Integer_Vectors, so we have direct access to the types and operations
from the instantiated package. Also, the example introduces another operation on the
vector: Length, which retrieves the number of elements in the vector. We can use the dot
notation because Vector is a tagged type, allowing us to write either V.Length or Length
(V).

19.1.3 Appending and prepending elements
You add elements to a vector using the Prepend and Append operations. As the names
suggest, these operations add elements to the beginning or end of a vector, respectively.
For example:
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Listing 280: show_vector_append.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Vectors;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Vector_Append is
7

8 package Integer_Vectors is new
9 Ada.Containers.Vectors

10 (Index_Type => Natural,
11 Element_Type => Integer);
12

13 use Integer_Vectors;
14

15 V : Vector;
16 begin
17 Put_Line ("Appending some elements "
18 & "to the vector...");
19 V.Append (20);
20 V.Append (10);
21 V.Append (0);
22 V.Append (13);
23 Put_Line ("Finished appending.");
24

25 Put_Line ("Prepending some elements"
26 & "to the vector...");
27 V.Prepend (30);
28 V.Prepend (40);
29 V.Prepend (100);
30 Put_Line ("Finished prepending.");
31

32 Put_Line ("Vector has "
33 & Count_Type'Image (V.Length)
34 & " elements");
35 end Show_Vector_Append;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Append
MD5: f88d393ba96a7950f58d9f1c0c74a021

Runtime output

Appending some elements to the vector...
Finished appending.
Prepending some elementsto the vector...
Finished prepending.
Vector has 7 elements

This example puts elements into the vector in the following sequence: (100, 40, 30, 20, 10,
0, 13).
The Reference Manual specifies that the worst-case complexity must be:

• O(log N) for the Append operation, and
• O(N log N) for the Prepend operation.
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19.1.4 Accessing first and last elements
We access the first and last elements of a vector using the First_Element and
Last_Element functions. For example:

Listing 281: show_vector_first_last_element.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Vectors;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Vector_First_Last_Element is
7

8 package Integer_Vectors is new
9 Ada.Containers.Vectors

10 (Index_Type => Natural,
11 Element_Type => Integer);
12

13 use Integer_Vectors;
14

15 function Img (I : Integer) return String
16 renames Integer'Image;
17 function Img (I : Count_Type) return String
18 renames Count_Type'Image;
19

20 V : Vector := 20 & 10 & 0 & 13;
21 begin
22 Put_Line ("Vector has "
23 & Img (V.Length)
24 & " elements");
25

26 -- Using V.First_Element to
27 -- retrieve first element
28 Put_Line ("First element is "
29 & Img (V.First_Element));
30

31 -- Using V.Last_Element to
32 -- retrieve last element
33 Put_Line ("Last element is "
34 & Img (V.Last_Element));
35 end Show_Vector_First_Last_Element;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_First_Last_Element
MD5: 602255760d0017ced6b4115c845cd48d

Runtime output

Vector has 4 elements
First element is 20
Last element is 13

You can swap elements by calling the procedure Swap and retrieving a reference (a cursor)
to the first and last elements of the vector by calling First and Last. A cursor allows us to
iterate over a container and process individual elements from it.
With these operations, we're able to write code to swap the first and last elements of a
vector:
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Listing 282: show_vector_first_last_element.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Vectors;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Vector_First_Last_Element is
7

8 package Integer_Vectors is new
9 Ada.Containers.Vectors

10 (Index_Type => Natural,
11 Element_Type => Integer);
12

13 use Integer_Vectors;
14

15 function Img (I : Integer) return String
16 renames Integer'Image;
17

18 V : Vector := 20 & 10 & 0 & 13;
19 begin
20 -- We use V.First and V.Last to retrieve
21 -- cursor for first and last elements.
22 -- We use V.Swap to swap elements.
23 V.Swap (V.First, V.Last);
24

25 Put_Line ("First element is now "
26 & Img (V.First_Element));
27 Put_Line ("Last element is now "
28 & Img (V.Last_Element));
29 end Show_Vector_First_Last_Element;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_First_Last_Element
MD5: 1a0c0bf28bb661b3f328473ac3c2eb54

Runtime output

First element is now 13
Last element is now 20

19.1.5 Iterating
The easiest way to iterate over a container is to use a for E of Our_Container loop. This
gives us a reference (E) to the element at the current position. We can then use E directly.
For example:

Listing 283: show_vector_iteration.adb
1 with Ada.Containers.Vectors;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Vector_Iteration is
6

7 package Integer_Vectors is new
8 Ada.Containers.Vectors
9 (Index_Type => Natural,

10 Element_Type => Integer);
(continues on next page)
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11

12 use Integer_Vectors;
13

14 function Img (I : Integer) return String
15 renames Integer'Image;
16

17 V : Vector := 20 & 10 & 0 & 13;
18 begin
19 Put_Line ("Vector elements are: ");
20

21 --
22 -- Using for ... of loop to iterate:
23 --
24 for E of V loop
25 Put_Line ("- " & Img (E));
26 end loop;
27

28 end Show_Vector_Iteration;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Iteration
MD5: 4fc9a939aa822097d3a937646d3e2910

Runtime output

Vector elements are:
- 20
- 10
- 0
- 13

This code displays each element from the vector V.
Because we're given a reference, we can display not only the value of an element but also
modify it. For example, we could easily write a loop to add one to each element of vector
V:

for E of V loop
E := E + 1;

end loop;

We can also use indices to access vector elements. The format is similar to a loop over array
elements: we use a for I in <range> loop. The range is provided by V.First_Index and
V.Last_Index. We can access the current element by using it as an array index: V (I).
For example:

Listing 284: show_vector_index_iteration.adb
1 with Ada.Containers.Vectors;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Vector_Index_Iteration is
6

7 package Integer_Vectors is new
8 Ada.Containers.Vectors
9 (Index_Type => Natural,

10 Element_Type => Integer);
11

12 use Integer_Vectors;
(continues on next page)
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13

14 V : Vector := 20 & 10 & 0 & 13;
15 begin
16 Put_Line ("Vector elements are: ");
17

18 --
19 -- Using indices in a "for I in ..." loop
20 -- to iterate:
21 --
22 for I in V.First_Index .. V.Last_Index loop
23 -- Displaying current index I
24 Put ("- ["
25 & Extended_Index'Image (I)
26 & "] ");
27

28 Put (Integer'Image (V (I)));
29

30 -- We could also use the V.Element (I)
31 -- function to retrieve the element at
32 -- the current index I
33

34 New_Line;
35 end loop;
36

37 end Show_Vector_Index_Iteration;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Index_Iteration
MD5: f5600bbcc53d6d6887a771b1505676e9

Runtime output

Vector elements are:
- [ 0] 20
- [ 1] 10
- [ 2] 0
- [ 3] 13

Here, in addition to displaying the vector elements, we're also displaying each index, I, just
like what we can do for array indices. Also, we can access the element by using either the
short form V (I) or the longer form V.Element (I) but not V.I.
As mentioned in the previous section, you can use cursors to iterate over containers. For
this, use the function Iterate, which retrieves a cursor for each position in the vector. The
corresponding loop has the format for C in V.Iterate loop. Like the previous example
using indices, you can again access the current element by using the cursor as an array
index: V (C). For example:

Listing 285: show_vector_cursor_iteration.adb
1 with Ada.Containers.Vectors;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Vector_Cursor_Iteration is
6

7 package Integer_Vectors is new
8 Ada.Containers.Vectors
9 (Index_Type => Natural,

10 Element_Type => Integer);
(continues on next page)
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11

12 use Integer_Vectors;
13

14 V : Vector := 20 & 10 & 0 & 13;
15 begin
16 Put_Line ("Vector elements are: ");
17

18 --
19 -- Use a cursor to iterate in a loop:
20 --
21 for C in V.Iterate loop
22 -- Using To_Index function to retrieve
23 -- the index for the cursor position
24 Put ("- ["
25 & Extended_Index'Image (To_Index (C))
26 & "] ");
27

28 Put (Integer'Image (V (C)));
29

30 -- We could use Element (C) to retrieve
31 -- the vector element for the cursor
32 -- position
33

34 New_Line;
35 end loop;
36

37 -- Alternatively, we could iterate with a
38 -- while-loop:
39 --
40 -- declare
41 -- C : Cursor := V.First;
42 -- begin
43 -- while C /= No_Element loop
44 -- some processing here...
45 --
46 -- C := Next (C);
47 -- end loop;
48 -- end;
49

50 end Show_Vector_Cursor_Iteration;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Cursor_Iteration
MD5: de789bbd2e1814aae3fb5213c99ac25c

Runtime output

Vector elements are:
- [ 0] 20
- [ 1] 10
- [ 2] 0
- [ 3] 13

Instead of accessing an element in the loop using V (C), we could also have used the longer
form Element (C). In this example, we're using the function To_Index to retrieve the index
corresponding to the current cursor.
As shown in the comments after the loop, we could also use a while ... loop to iterate
over the vector. In this case, we would start with a cursor for the first element (retrieved
by calling V.First) and then call Next (C) to retrieve a cursor for subsequent elements.
Next (C) returns No_Element when the cursor reaches the end of the vector.
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You can directly modify the elements using a reference. This is what it looks like when using
both indices and cursors:

-- Modify vector elements using index
for I in V.First_Index .. V.Last_Index loop

V (I) := V (I) + 1;
end loop;

-- Modify vector elements using cursor
for C in V.Iterate loop

V (C) := V (C) + 1;
end loop;

The Reference Manual requires that the worst-case complexity for accessing an element be
O(log N).
Another way of modifying elements of a vector is using a process procedure, which takes
an individual element and does some processing on it. You can call Update_Element and
pass both a cursor and an access to the process procedure. For example:

Listing 286: show_vector_update.adb
1 with Ada.Containers.Vectors;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Vector_Update is
6

7 package Integer_Vectors is new
8 Ada.Containers.Vectors
9 (Index_Type => Natural,

10 Element_Type => Integer);
11

12 use Integer_Vectors;
13

14 procedure Add_One (I : in out Integer) is
15 begin
16 I := I + 1;
17 end Add_One;
18

19 V : Vector := 20 & 10 & 12;
20 begin
21 --
22 -- Use V.Update_Element to process elements
23 --
24 for C in V.Iterate loop
25 V.Update_Element (C, Add_One'Access);
26 end loop;
27

28 end Show_Vector_Update;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Update
MD5: 5dcc3dd8020632a8ea2ce975ecd8f4da

19.1.6 Finding and changing elements
You can locate a specific element in a vector by retrieving its index. Find_Index retrieves
the index of the first element matching the value you're looking for. Alternatively, you can
use Find to retrieve a cursor referencing that element. For example:
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Listing 287: show_find_vector_element.adb
1 with Ada.Containers.Vectors;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Find_Vector_Element is
6

7 package Integer_Vectors is new
8 Ada.Containers.Vectors
9 (Index_Type => Natural,

10 Element_Type => Integer);
11

12 use Integer_Vectors;
13

14 V : Vector := 20 & 10 & 0 & 13;
15 Idx : Extended_Index;
16 C : Cursor;
17 begin
18 -- Using Find_Index to retrieve the index
19 -- of element with value 10
20 Idx := V.Find_Index (10);
21 Put_Line ("Index of element with value 10 is "
22 & Extended_Index'Image (Idx));
23

24 -- Using Find to retrieve the cursor for
25 -- the element with value 13
26 C := V.Find (13);
27 Idx := To_Index (C);
28 Put_Line ("Index of element with value 13 is "
29 & Extended_Index'Image (Idx));
30 end Show_Find_Vector_Element;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Find_Vector_Element
MD5: c3da01cd66c8705a7cbccae8390d5f81

Runtime output

Index of element with value 10 is 1
Index of element with value 13 is 3

As we saw in the previous section, we can directly access vector elements by using either
an index or cursor. However, an exception is raised if we try to access an element with an
invalid index or cursor, so we must check whether the index or cursor is valid before using
it to access an element. In our example, Find_Index or Find might not have found the
element in the vector. We check for this possibility by comparing the index to No_Index or
the cursor to No_Element. For example:

-- Modify vector element using index
if Idx /= No_Index then

V (Idx) := 11;
end if;

-- Modify vector element using cursor
if C /= No_Element then

V (C) := 14;
end if;

Instead of writing V (C) := 14, we could use the longer form V.Replace_Element (C,
14).
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19.1.7 Inserting elements
In the previous sections, we've seen examples of how to add elements to a vector:

• using the concatenation operator (&) at the vector declaration, or
• calling the Prepend and Append procedures.

You may want to insert an element at a specific position, e.g. before a certain element in
the vector. You do this by calling Insert. For example:

Listing 288: show_vector_insert.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Vectors;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Vector_Insert is
7

8 package Integer_Vectors is new
9 Ada.Containers.Vectors

10 (Index_Type => Natural,
11 Element_Type => Integer);
12

13 use Integer_Vectors;
14

15 procedure Show_Elements (V : Vector) is
16 begin
17 New_Line;
18 Put_Line ("Vector has "
19 & Count_Type'Image (V.Length)
20 & " elements");
21

22 if not V.Is_Empty then
23 Put_Line ("Vector elements are: ");
24 for E of V loop
25 Put_Line ("- " & Integer'Image (E));
26 end loop;
27 end if;
28 end Show_Elements;
29

30 V : Vector := 20 & 10 & 12;
31 C : Cursor;
32 begin
33 Show_Elements (V);
34

35 New_Line;
36 Put_Line ("Adding element with value 9");
37 Put_Line (" (before 10)...");
38

39 --
40 -- Using V.Insert to insert the element
41 -- into the vector
42 --
43 C := V.Find (10);
44 if C /= No_Element then
45 V.Insert (C, 9);
46 end if;
47

48 Show_Elements (V);
49

50 end Show_Vector_Insert;
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Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Insert
MD5: af49f390388896c51ab97541036fbcaf

Runtime output

Vector has 3 elements
Vector elements are:
- 20
- 10
- 12

Adding element with value 9
(before 10)...

Vector has 4 elements
Vector elements are:
- 20
- 9
- 10
- 12

In this example, we're looking for an element with the value of 10. If we find it, we insert
an element with the value of 9 before it.

19.1.8 Removing elements
You can remove elements from a vector by passing either a valid index or cursor to the
Delete procedure. If we combine this with the functions Find_Index and Find from the
previous section, we can write a program that searches for a specific element and deletes
it, if found:

Listing 289: show_remove_vector_element.adb
1 with Ada.Containers.Vectors;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Remove_Vector_Element is
6 package Integer_Vectors is new
7 Ada.Containers.Vectors
8 (Index_Type => Natural,
9 Element_Type => Integer);

10

11 use Integer_Vectors;
12

13 V : Vector := 20 & 10 & 0 & 13 & 10 & 13;
14 Idx : Extended_Index;
15 C : Cursor;
16 begin
17 -- Use Find_Index to retrieve index of
18 -- the element with value 10
19 Idx := V.Find_Index (10);
20

21 -- Checking whether index is valid
22 if Idx /= No_Index then
23 -- Removing element using V.Delete
24 V.Delete (Idx);
25 end if;

(continues on next page)
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26

27 -- Use Find to retrieve cursor for
28 -- the element with value 13
29 C := V.Find (13);
30

31 -- Check whether index is valid
32 if C /= No_Element then
33 -- Remove element using V.Delete
34 V.Delete (C);
35 end if;
36

37 end Show_Remove_Vector_Element;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Remove_Vector_Element
MD5: 540d0dc5715e58926e9dc4600bd6ad5d

We can extend this approach to delete all elements matching a certain value. We just need
to keep searching for the element in a loop until we get an invalid index or cursor. For
example:

Listing 290: show_remove_vector_elements.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Vectors;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Remove_Vector_Elements is
7

8 package Integer_Vectors is new
9 Ada.Containers.Vectors

10 (Index_Type => Natural,
11 Element_Type => Integer);
12

13 use Integer_Vectors;
14

15 procedure Show_Elements (V : Vector) is
16 begin
17 New_Line;
18 Put_Line ("Vector has "
19 & Count_Type'Image (V.Length)
20 & " elements");
21

22 if not V.Is_Empty then
23 Put_Line ("Vector elements are: ");
24 for E of V loop
25 Put_Line ("- " & Integer'Image (E));
26 end loop;
27 end if;
28 end Show_Elements;
29

30 V : Vector := 20 & 10 & 0 & 13 & 10 & 14 & 13;
31 begin
32 Show_Elements (V);
33

34 --
35 -- Remove elements using an index
36 --
37 declare

(continues on next page)
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38 E : constant Integer := 10;
39 I : Extended_Index;
40 begin
41 New_Line;
42 Put_Line
43 ("Removing all elements with value of "
44 & Integer'Image (E) & "...");
45 loop
46 I := V.Find_Index (E);
47 exit when I = No_Index;
48 V.Delete (I);
49 end loop;
50 end;
51

52 --
53 -- Remove elements using a cursor
54 --
55 declare
56 E : constant Integer := 13;
57 C : Cursor;
58 begin
59 New_Line;
60 Put_Line
61 ("Removing all elements with value of "
62 & Integer'Image (E) & "...");
63 loop
64 C := V.Find (E);
65 exit when C = No_Element;
66 V.Delete (C);
67 end loop;
68 end;
69

70 Show_Elements (V);
71 end Show_Remove_Vector_Elements;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Remove_Vector_Elements
MD5: 6e364843b9638224bd9a36eb9d45e446

Runtime output

Vector has 7 elements
Vector elements are:
- 20
- 10
- 0
- 13
- 10
- 14
- 13

Removing all elements with value of 10...

Removing all elements with value of 13...

Vector has 3 elements
Vector elements are:
- 20
- 0

(continues on next page)
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- 14

In this example, we remove all elements with the value 10 from the vector by retrieving
their index. Likewise, we remove all elements with the value 13 by retrieving their cursor.

19.1.9 Other Operations
We've seen some operations on vector elements. Here, we'll see operations on the vector
as a whole. The most prominent is the concatenation of multiple vectors, but we'll also see
operations on vectors, such as sorting and sorted merging operations, that view the vector
as a sequence of elements and operate on the vector considering the element's relations
to each other.
We do vector concatenation using the & operator on vectors. Let's consider two vectors V1
and V2. We can concatenate them by doing V := V1 & V2. V contains the resulting vector.
The generic package Generic_Sorting is a child package of Ada.Containers.Vectors. It
contains sorting and merging operations. Because it's a generic package, you can't use it
directly, but have to instantiate it. In order to use these operations on a vector of integer
values (Integer_Vectors, in our example), you need to instantiate it directly as a child of
Integer_Vectors. The next example makes it clear how to do this.
After instantiating Generic_Sorting, we make all the operations available to us with the
use statement. We can then call Sort to sort the vector and Merge to merge one vector
into another.
The following example presents code that manipulates three vectors (V1, V2, V3) using the
concatenation, sorting and merging operations:

Listing 291: show_vector_ops.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Vectors;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Vector_Ops is
7

8 package Integer_Vectors is new
9 Ada.Containers.Vectors

10 (Index_Type => Natural,
11 Element_Type => Integer);
12

13 package Integer_Vectors_Sorting is
14 new Integer_Vectors.Generic_Sorting;
15

16 use Integer_Vectors;
17 use Integer_Vectors_Sorting;
18

19 procedure Show_Elements (V : Vector) is
20 begin
21 New_Line;
22 Put_Line ("Vector has "
23 & Count_Type'Image (V.Length)
24 & " elements");
25

26 if not V.Is_Empty then
27 Put_Line ("Vector elements are: ");
28 for E of V loop
29 Put_Line ("- " & Integer'Image (E));
30 end loop;

(continues on next page)
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31 end if;
32 end Show_Elements;
33

34 V, V1, V2, V3 : Vector;
35 begin
36 V1 := 10 & 12 & 18;
37 V2 := 11 & 13 & 19;
38 V3 := 15 & 19;
39

40 New_Line;
41 Put_Line ("---- V1 ----");
42 Show_Elements (V1);
43

44 New_Line;
45 Put_Line ("---- V2 ----");
46 Show_Elements (V2);
47

48 New_Line;
49 Put_Line ("---- V3 ----");
50 Show_Elements (V3);
51

52 New_Line;
53 Put_Line
54 ("Concatenating V1, V2 and V3 into V:");
55

56 V := V1 & V2 & V3;
57

58 Show_Elements (V);
59

60 New_Line;
61 Put_Line ("Sorting V:");
62

63 Sort (V);
64

65 Show_Elements (V);
66

67 New_Line;
68 Put_Line ("Merging V2 into V1:");
69

70 Merge (V1, V2);
71

72 Show_Elements (V1);
73

74 end Show_Vector_Ops;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Ops
MD5: 3301513e4e7fd2f28488966e5b24e448

Runtime output

---- V1 ----

Vector has 3 elements
Vector elements are:
- 10
- 12
- 18

(continues on next page)
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---- V2 ----

Vector has 3 elements
Vector elements are:
- 11
- 13
- 19

---- V3 ----

Vector has 2 elements
Vector elements are:
- 15
- 19

Concatenating V1, V2 and V3 into V:

Vector has 8 elements
Vector elements are:
- 10
- 12
- 18
- 11
- 13
- 19
- 15
- 19

Sorting V:

Vector has 8 elements
Vector elements are:
- 10
- 11
- 12
- 13
- 15
- 18
- 19
- 19

Merging V2 into V1:

Vector has 6 elements
Vector elements are:
- 10
- 11
- 12
- 13
- 18
- 19

The Reference Manual requires that the worst-case complexity of a call to Sort be O(N2)
and the average complexity be better than O(N2).

19.2 Sets
Sets are another class of containers. While vectors allow duplicated elements to be in-
serted, sets ensure that no duplicated elements exist.
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In the following sections, we'll see operations you can perform on sets. However, since
many of the operations on vectors are similar to the ones used for sets, we'll cover them
more quickly here. Please refer back to the section on vectors for a more detailed discus-
sion.

19.2.1 Initialization and iteration
To initialize a set, you can call the Insert procedure. However, if you do, you need to
ensure no duplicate elements are being inserted: if you try to insert a duplicate, you'll get
an exception. If you have less control over the elements to be inserted so that there may
be duplicates, you can use another option instead:

• a version of Insert that returns a Boolean value indicating whether the insertion was
successful;

• the Include procedure, which silently ignores any attempt to insert a duplicated ele-
ment.

To iterate over a set, you can use a for E of S loop, as you saw for vectors. This gives
you a reference to each element in the set.
Let's see an example:

Listing 292: show_set_init.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Ordered_Sets;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Set_Init is
7

8 package Integer_Sets is new
9 Ada.Containers.Ordered_Sets

10 (Element_Type => Integer);
11

12 use Integer_Sets;
13

14 S : Set;
15 -- Same as: S : Integer_Sets.Set;
16 C : Cursor;
17 Ins : Boolean;
18 begin
19 S.Insert (20);
20 S.Insert (10);
21 S.Insert (0);
22 S.Insert (13);
23

24 -- Calling S.Insert(0) now would raise
25 -- Constraint_Error because this element
26 -- is already in the set. We instead call a
27 -- version of Insert that doesn't raise an
28 -- exception but instead returns a Boolean
29 -- indicating the status
30

31 S.Insert (0, C, Ins);
32 if not Ins then
33 Put_Line
34 ("Error while inserting 0 into set");
35 end if;
36

37 -- We can also call S.Include instead
(continues on next page)
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38 -- If the element is already present,
39 -- the set remains unchanged
40 S.Include (0);
41 S.Include (13);
42 S.Include (14);
43

44 Put_Line ("Set has "
45 & Count_Type'Image (S.Length)
46 & " elements");
47

48 --
49 -- Iterate over set using for .. of loop
50 --
51 Put_Line ("Elements:");
52 for E of S loop
53 Put_Line ("- " & Integer'Image (E));
54 end loop;
55 end Show_Set_Init;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Set_Init
MD5: b87f6729fea278396347248b95a30cb6

Runtime output

Error while inserting 0 into set
Set has 5 elements
Elements:
- 0
- 10
- 13
- 14
- 20

19.2.2 Operations on elements
In this section, we briefly explore the following operations on sets:

• Delete and Exclude to remove elements;
• Contains and Find to verify the existence of elements.

To delete elements, you call the procedure Delete. However, analogously to the Insert
procedure above, Delete raises an exception if the element to be deleted isn't present in
the set. If you want to permit the case where an element might not exist, you can call
Exclude, which silently ignores any attempt to delete a non-existent element.
Contains returns a Boolean value indicating whether a value is contained in the set. Find
also looks for an element in a set, but returns a cursor to the element or No_Element if the
element doesn't exist. You can use either function to search for elements in a set.
Let's look at an example that makes use of these operations:

Listing 293: show_set_element_ops.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Ordered_Sets;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

(continues on next page)
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6 procedure Show_Set_Element_Ops is
7

8 package Integer_Sets is new
9 Ada.Containers.Ordered_Sets

10 (Element_Type => Integer);
11

12 use Integer_Sets;
13

14 procedure Show_Elements (S : Set) is
15 begin
16 New_Line;
17 Put_Line ("Set has "
18 & Count_Type'Image (S.Length)
19 & " elements");
20 Put_Line ("Elements:");
21 for E of S loop
22 Put_Line ("- " & Integer'Image (E));
23 end loop;
24 end Show_Elements;
25

26 S : Set;
27 begin
28 S.Insert (20);
29 S.Insert (10);
30 S.Insert (0);
31 S.Insert (13);
32

33 S.Delete (13);
34

35 -- Calling S.Delete (13) again raises
36 -- Constraint_Error because the element
37 -- is no longer present in the set, so
38 -- it can't be deleted. We can call
39 -- V.Exclude instead:
40 S.Exclude (13);
41

42 if S.Contains (20) then
43 Put_Line ("Found element 20 in set");
44 end if;
45

46 -- Alternatively, we could use S.Find
47 -- instead of S.Contains
48 if S.Find (0) /= No_Element then
49 Put_Line ("Found element 0 in set");
50 end if;
51

52 Show_Elements (S);
53 end Show_Set_Element_Ops;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Set_Element_Ops
MD5: 77fb2aaba4221e337b0f90dd1a49c556

Runtime output

Found element 20 in set
Found element 0 in set

Set has 3 elements
Elements:

(continues on next page)
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- 0
- 10
- 20

In addition to ordered sets used in the examples above, the standard library also offers
hashed sets. The Reference Manual requires the following average complexity of each
operation:

Operations Ordered_Sets Hashed_Sets

• Insert
• Include
• Replace
• Delete
• Exclude
• Find

O((log N)2) or better O(log N)

Subprogram using cursor O(1) O(1)

19.2.3 Other Operations
The previous sections mostly dealt with operations on individual elements of a set. But
Ada also provides typical set operations: union, intersection, difference and symmetric
difference. In contrast to some vector operations we've seen before (e.g. Merge), here
you can use built-in operators, such as -. The following table lists the operations and its
associated operator:

Set Operation Operator
Union or
Intersection and
Difference -
Symmetric difference xor

The following example makes use of these operators:

Listing 294: show_set_ops.adb
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Ordered_Sets;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Set_Ops is
7

8 package Integer_Sets is new
9 Ada.Containers.Ordered_Sets

10 (Element_Type => Integer);
11

12 use Integer_Sets;
13

14 procedure Show_Elements (S : Set) is
15 begin
16 Put_Line ("Elements:");
17 for E of S loop
18 Put_Line ("- " & Integer'Image (E));

(continues on next page)
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19 end loop;
20 end Show_Elements;
21

22 procedure Show_Op (S : Set;
23 Op_Name : String) is
24 begin
25 New_Line;
26 Put_Line (Op_Name
27 & "(set #1, set #2) has "
28 & Count_Type'Image (S.Length)
29 & " elements");
30 end Show_Op;
31

32 S1, S2, S3 : Set;
33 begin
34 S1.Insert (0);
35 S1.Insert (10);
36 S1.Insert (13);
37

38 S2.Insert (0);
39 S2.Insert (10);
40 S2.Insert (14);
41

42 S3.Insert (0);
43 S3.Insert (10);
44

45 New_Line;
46 Put_Line ("---- Set #1 ----");
47 Show_Elements (S1);
48

49 New_Line;
50 Put_Line ("---- Set #2 ----");
51 Show_Elements (S2);
52

53 New_Line;
54 Put_Line ("---- Set #3 ----");
55 Show_Elements (S3);
56

57 New_Line;
58 if S3.Is_Subset (S1) then
59 Put_Line ("S3 is a subset of S1");
60 else
61 Put_Line ("S3 is not a subset of S1");
62 end if;
63

64 S3 := S1 and S2;
65 Show_Op (S3, "Intersection");
66 Show_Elements (S3);
67

68 S3 := S1 or S2;
69 Show_Op (S3, "Union");
70 Show_Elements (S3);
71

72 S3 := S1 - S2;
73 Show_Op (S3, "Difference");
74 Show_Elements (S3);
75

76 S3 := S1 xor S2;
77 Show_Op (S3, "Symmetric difference");
78 Show_Elements (S3);
79

(continues on next page)
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80 end Show_Set_Ops;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Set_Ops
MD5: be9086591fc643e53facaf2ffea6c26d

Runtime output

---- Set #1 ----
Elements:
- 0
- 10
- 13

---- Set #2 ----
Elements:
- 0
- 10
- 14

---- Set #3 ----
Elements:
- 0
- 10

S3 is a subset of S1

Intersection(set #1, set #2) has 2 elements
Elements:
- 0
- 10

Union(set #1, set #2) has 4 elements
Elements:
- 0
- 10
- 13
- 14

Difference(set #1, set #2) has 1 elements
Elements:
- 13

Symmetric difference(set #1, set #2) has 2 elements
Elements:
- 13
- 14

19.3 Indefinite maps
The previous sections presented containers for elements of definite types. Although most
examples in those sections presented Integer types as element type of the containers,
containers can also be used with indefinite types, an example of which is the String type.
However, indefinite types require a different kind of containers designed specially for them.
We'll also be exploring a different class of containers: maps. They associate a key with a
specific value. An example of a map is the one-to-one association between a person and
their age. If we consider a person's name to be the key, the value is the person's age.
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19.3.1 Hashed maps
Hashed maps are maps that make use of a hash as a key. The hash itself is calculated by
a function you provide.

In other languages

Hashed maps are similar to dictionaries in Python and hashes in Perl. One of the main
differences is that these scripting languages allow using different types for the values
contained in a single map, while in Ada, both the type of key and value are specified in
the package instantiation and remains constant for that specific map. You can't have a
map where two elements are of different types or two keys are of different types. If you
want to use multiple types, you must create a different map for each and use only one
type in each map.

When instantiating a hashed map from Ada.Containers.Indefinite_Hashed_Maps, we
specify following elements:

• Key_Type: type of the key
• Element_Type: type of the element
• Hash: hash function for the Key_Type

• Equivalent_Keys: an equality operator (e.g. =) that indicates whether two keys are
to be considered equal.
– If the type specified in Key_Type has a standard operator, you can use it, which
you do by specifying that operator as the value of Equivalent_Keys.

In the next example, we'll use a string as a key type. We'll use the Hash function provided
by the standard library for strings (in the Ada.Strings package) and the standard equality
operator.
You add elements to a hashed map by calling Insert. If an element is already contained
in a map M, you can access it directly by using its key. For example, you can change the
value of an element by calling M ("My_Key") := 10. If the key is not found, an exception
is raised. To verify if a key is available, use the function Contains (as we've seen above in
the section on sets).
Let's see an example:

Listing 295: show_hashed_map.adb
1 with Ada.Containers.Indefinite_Hashed_Maps;
2 with Ada.Strings.Hash;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Hashed_Map is
7

8 package Integer_Hashed_Maps is new
9 Ada.Containers.Indefinite_Hashed_Maps

10 (Key_Type => String,
11 Element_Type => Integer,
12 Hash => Ada.Strings.Hash,
13 Equivalent_Keys => "=");
14

15 use Integer_Hashed_Maps;
16

17 M : Map;
18 -- Same as:

(continues on next page)
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19 --
20 -- M : Integer_Hashed_Maps.Map;
21 begin
22 M.Include ("Alice", 24);
23 M.Include ("John", 40);
24 M.Include ("Bob", 28);
25

26 if M.Contains ("Alice") then
27 Put_Line ("Alice's age is "
28 & Integer'Image (M ("Alice")));
29 end if;
30

31 -- Update Alice's age
32 -- Key must already exist in M.
33 -- Otherwise an exception is raised.
34 M ("Alice") := 25;
35

36 New_Line; Put_Line ("Name & Age:");
37 for C in M.Iterate loop
38 Put_Line (Key (C) & ": "
39 & Integer'Image (M (C)));
40 end loop;
41

42 end Show_Hashed_Map;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Hashed_Map
MD5: 6117775bd9ce2b1466f448b100117ded

Runtime output

Alice's age is 24

Name & Age:
John: 40
Bob: 28
Alice: 25

19.3.2 Ordered maps
Ordered maps share many features with hashed maps. The main differences are:

• A hash function isn't needed. Instead, you must provide an ordering function (< oper-
ator), which the ordered map will use to order elements and allow fast access, O(log
N), using a binary search.
– If the type specified in Key_Type has a standard < operator, you can use it in a
similar way as we did for Equivalent_Keys above for hashed maps.

Let's see an example:

Listing 296: show_ordered_map.adb
1 with Ada.Containers.Indefinite_Ordered_Maps;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Ordered_Map is
6

7 package Integer_Ordered_Maps is new
(continues on next page)
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8 Ada.Containers.Indefinite_Ordered_Maps
9 (Key_Type => String,

10 Element_Type => Integer);
11

12 use Integer_Ordered_Maps;
13

14 M : Map;
15 begin
16 M.Include ("Alice", 24);
17 M.Include ("John", 40);
18 M.Include ("Bob", 28);
19

20 if M.Contains ("Alice") then
21 Put_Line ("Alice's age is "
22 & Integer'Image (M ("Alice")));
23 end if;
24

25 -- Update Alice's age
26 -- Key must already exist in M
27 M ("Alice") := 25;
28

29 New_Line; Put_Line ("Name & Age:");
30 for C in M.Iterate loop
31 Put_Line (Key (C) & ": "
32 & Integer'Image (M (C)));
33 end loop;
34

35 end Show_Ordered_Map;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Ordered_Map
MD5: 3deb3c685e767cee271b06e87727b086

Runtime output

Alice's age is 24

Name & Age:
Alice: 25
Bob: 28
John: 40

You can see a great similarity between the examples above and from the previous section.
In fact, since both kinds of maps share many operations, we didn't need to make extensive
modifications when we changed our example to use ordered maps instead of hashed maps.
The main difference is seen when we run the examples: the output of a hashed map is
usually unordered, but the output of a ordered map is always ordered, as implied by its
name.

19.3.3 Complexity
Hashed maps are generally the fastest data structure available to you in Ada if you need to
associate heterogeneous keys to values and search for them quickly. In most cases, they
are slightly faster than ordered maps. So if you don't need ordering, use hashed maps.
The Reference Manual requires the following average complexity of operations:
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Operations Ordered_Maps Hashed_Maps

• Insert
• Include
• Replace
• Delete
• Exclude
• Find

O((log N)2) or better O(log N)

Subprogram using cursor O(1) O(1)
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STANDARD LIBRARY: DATES & TIMES

The standard library supports processing of dates and times using two approaches:
• Calendar approach, which is suitable for handling dates and times in general;
• Real-time approach, which is better suited for real-time applications that require en-
hanced precision — for example, by having access to an absolute clock and handling
time spans. Note that this approach only supports times, not dates.

The following sections present these two approaches.

20.1 Date and time handling
The Ada.Calendar package supports handling of dates and times. Let's look at a simple
example:

Listing 297: display_current_time.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar; use Ada.Calendar;
3

4 with Ada.Calendar.Formatting;
5 use Ada.Calendar.Formatting;
6

7 procedure Display_Current_Time is
8 Now : Time := Clock;
9 begin

10 Put_Line ("Current time: " & Image (Now));
11 end Display_Current_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Current_Time
MD5: 4a88069b33ecf80314b0164a472ff606

Runtime output

Current time: 2025-12-27 15:41:31

This example displays the current date and time, which is retrieved by a call to the Clock
function. We call the function Image from the Ada.Calendar.Formatting package to get
a String for the current date and time. We could instead retrieve each component using
the Split function. For example:

Listing 298: display_current_year.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar; use Ada.Calendar;

(continues on next page)
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3

4 procedure Display_Current_Year is
5 Now : Time := Clock;
6

7 Now_Year : Year_Number;
8 Now_Month : Month_Number;
9 Now_Day : Day_Number;

10 Now_Seconds : Day_Duration;
11 begin
12 Split (Now,
13 Now_Year,
14 Now_Month,
15 Now_Day,
16 Now_Seconds);
17

18 Put_Line ("Current year is: "
19 & Year_Number'Image (Now_Year));
20 Put_Line ("Current month is: "
21 & Month_Number'Image (Now_Month));
22 Put_Line ("Current day is: "
23 & Day_Number'Image (Now_Day));
24 end Display_Current_Year;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Current_Year
MD5: fdf298ee97f225261ce3839ebd833bbe

Runtime output

Current year is: 2025
Current month is: 12
Current day is: 27

Here, we're retrieving each element and displaying it separately.

20.1.1 Delaying using date
You can delay an application so that it restarts at a specific date and time. We saw some-
thing similar in the chapter on tasking. You do this using a delay until statement. For
example:

Listing 299: display_delay_next_specific_time.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar; use Ada.Calendar;
3

4 with Ada.Calendar.Formatting;
5 use Ada.Calendar.Formatting;
6

7 with Ada.Calendar.Time_Zones;
8 use Ada.Calendar.Time_Zones;
9

10 procedure Display_Delay_Next_Specific_Time is
11 TZ : Time_Offset := UTC_Time_Offset;
12 Next : Time :=
13 Ada.Calendar.Formatting.Time_Of
14 (Year => 2018,
15 Month => 5,
16 Day => 1,

(continues on next page)
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17 Hour => 15,
18 Minute => 0,
19 Second => 0,
20 Sub_Second => 0.0,
21 Leap_Second => False,
22 Time_Zone => TZ);
23

24 -- Next = 2018-05-01 15:00:00.00
25 -- (local time-zone)
26 begin
27 Put_Line ("Let's wait until...");
28 Put_Line (Image (Next, True, TZ));
29

30 delay until Next;
31

32 Put_Line ("Enough waiting!");
33 end Display_Delay_Next_Specific_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Delay_Next_Specific_Time
MD5: 36ec2bdce7c1e8d107fae54ef9852d3f

Runtime output

Let's wait until...
2018-05-01 15:00:00.00
Enough waiting!

In this example, we specify the date and time by initializing Next using a call to Time_Of,
a function taking the various components of a date (year, month, etc) and returning an
element of the Time type. Because the date specified is in the past, the delay until
statement won't produce any noticeable effect. However, if we passed a date in the future,
the program would wait until that specific date and time arrived.
Here we're converting the time to the local timezone. If we don't specify a timezone, Co-
ordinated Universal Time (abbreviated to UTC) is used by default. By retrieving the time
offset to UTC with a call to UTC_Time_Offset from the Ada.Calendar.Time_Zones package,
we can initialize TZ and use it in the call to Time_Of. This is all we need do to make the
information provided to Time_Of relative to the local time zone.
We could achieve a similar result by initializing Next with a String. We can do this with a
call to Value from the Ada.Calendar.Formatting package. This is the modified code:

Listing 300: display_delay_next_specific_time.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Calendar; use Ada.Calendar;
3

4 with Ada.Calendar.Formatting;
5 use Ada.Calendar.Formatting;
6

7 with Ada.Calendar.Time_Zones;
8 use Ada.Calendar.Time_Zones;
9

10 procedure Display_Delay_Next_Specific_Time is
11 TZ : Time_Offset := UTC_Time_Offset;
12 Next : Time :=
13 Ada.Calendar.Formatting.Value
14 ("2018-05-01 15:00:00.00", TZ);
15

(continues on next page)

20.1. Date and time handling 231



Introduction to Ada

(continued from previous page)
16 -- Next = 2018-05-01 15:00:00.00
17 -- (local time-zone)
18 begin
19 Put_Line ("Let's wait until...");
20 Put_Line (Image (Next, True, TZ));
21

22 delay until Next;
23

24 Put_Line ("Enough waiting!");
25 end Display_Delay_Next_Specific_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Delay_Next_Specific_Time
MD5: fdf6ad7fca303d4d7bd444c23e11c7bd

Runtime output

Let's wait until...
2018-05-01 15:00:00.00
Enough waiting!

In this example, we're again using TZ in the call to Value to adjust the input time to the
current time zone.
In the examples above, we were delaying to a specific date and time. Just like we saw in
the tasking chapter, we could instead specify the delay relative to the current time. For
example, we could delay by 5 seconds, using the current time:

Listing 301: display_delay_next.adb
1 with Ada.Calendar; use Ada.Calendar;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Display_Delay_Next is
5 D : Duration := 5.0;
6 -- ^ seconds
7 Now : Time := Clock;
8 Next : Time := Now + D;
9 -- ^ use duration to

10 -- specify next
11 -- point in time
12 begin
13 Put_Line ("Let's wait "
14 & Duration'Image (D)
15 & " seconds...");
16 delay until Next;
17 Put_Line ("Enough waiting!");
18 end Display_Delay_Next;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Delay_Next
MD5: 58360d93388c3fe027c3d9d67389efc7

Runtime output

Let's wait 5.000000000 seconds...
Enough waiting!

Here, we're specifying a duration of 5 seconds in D, adding it to the current time from Now,
and storing the sum in Next. We then use it in the delay until statement.
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20.2 Real-time
In addition to Ada.Calendar, the standard library also supports time operations for real-time
applications. These are included in the Ada.Real_Time package. This package also include
a Time type. However, in the Ada.Real_Time package, the Time type is used to represent
an absolute clock and handle a time span. This contrasts with the Ada.Calendar, which
uses the Time type to represent dates and times.
In the previous section, we used the Time type from the Ada.Calendar and the delay until
statement to delay an application by 5 seconds. We could have used the Ada.Real_Time
package instead. Let's modify that example:

Listing 302: display_delay_next_real_time.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Real_Time; use Ada.Real_Time;
3

4 procedure Display_Delay_Next_Real_Time is
5 D : Time_Span := Seconds (5);
6 Next : Time := Clock + D;
7 begin
8 Put_Line ("Let's wait "
9 & Duration'Image (To_Duration (D))

10 & " seconds...");
11 delay until Next;
12 Put_Line ("Enough waiting!");
13 end Display_Delay_Next_Real_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Delay_Next_Real_Time
MD5: a80e96c4ac7bd3ba7813f983b10cb038

Runtime output

Let's wait 5.000000000 seconds...
Enough waiting!

The main difference is that D is now a variable of type Time_Span, defined in the Ada.
Real_Time package. We call the function Seconds to initialize D, but could have gotten a
finer granularity by calling Nanoseconds instead. Also, we need to first convert D to the
Duration type using To_Duration before we can display it.

20.2.1 Benchmarking
One interesting application using the Ada.Real_Time package is benchmarking. We've
used that package before in a previous section when discussing tasking. Let's look at an
example of benchmarking:

Listing 303: display_benchmarking.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Real_Time; use Ada.Real_Time;
3

4 procedure Display_Benchmarking is
5

6 procedure Computational_Intensive_App is
7 begin
8 delay 5.0;
9 end Computational_Intensive_App;

(continues on next page)
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10

11 Start_Time, Stop_Time : Time;
12 Elapsed_Time : Time_Span;
13

14 begin
15 Start_Time := Clock;
16

17 Computational_Intensive_App;
18

19 Stop_Time := Clock;
20 Elapsed_Time := Stop_Time - Start_Time;
21

22 Put_Line ("Elapsed time: "
23 & Duration'Image
24 (To_Duration (Elapsed_Time))
25 & " seconds");
26 end Display_Benchmarking;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Benchmarking
MD5: 4b20940cb613d3f634be5224f409efeb

Runtime output

Elapsed time: 5.002554479 seconds

This example defines a dummy Computational_Intensive_App implemented using a sim-
ple delay statement. We initialize Start_Time and Stop_Time from the then-current clock
and calculate the elapsed time. By running this program, we see that the time is roughly 5
seconds, which is expected due to the delay statement.
A similar application is benchmarking of CPU time. We can implement this using the Exe-
cution_Time package. Let's modify the previous example to measure CPU time:

Listing 304: display_benchmarking_cpu_time.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Real_Time; use Ada.Real_Time;
3 with Ada.Execution_Time; use Ada.Execution_Time;
4

5 procedure Display_Benchmarking_CPU_Time is
6

7 procedure Computational_Intensive_App is
8 begin
9 delay 5.0;

10 end Computational_Intensive_App;
11

12 Start_Time, Stop_Time : CPU_Time;
13 Elapsed_Time : Time_Span;
14

15 begin
16 Start_Time := Clock;
17

18 Computational_Intensive_App;
19

20 Stop_Time := Clock;
21 Elapsed_Time := Stop_Time - Start_Time;
22

23 Put_Line ("CPU time: "
24 & Duration'Image
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25 (To_Duration (Elapsed_Time))
26 & " seconds");
27 end Display_Benchmarking_CPU_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Benchmarking_CPU_Time
MD5: ba83ddbd05db523479be5692c4134901

Runtime output

CPU time: 0.000050028 seconds

In this example, Start_Time and Stop_Time are of type CPU_Time instead of Time. How-
ever, we still call the Clock function to initialize both variables and calculate the elapsed
time in the same way as before. By running this program, we see that the CPU time is sig-
nificantly lower than the 5 seconds we've seen before. This is because the delay statement
doesn't require much CPU time. The results will be different if we change the implementa-
tion of Computational_Intensive_App to use a mathematical function in a long loop. For
example:

Listing 305: display_benchmarking_math.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Real_Time; use Ada.Real_Time;
3 with Ada.Execution_Time; use Ada.Execution_Time;
4

5 with Ada.Numerics.Generic_Elementary_Functions;
6

7 procedure Display_Benchmarking_Math is
8

9 procedure Computational_Intensive_App is
10 package Funcs is new
11 Ada.Numerics.Generic_Elementary_Functions
12 (Float_Type => Long_Long_Float);
13 use Funcs;
14

15 X : Long_Long_Float;
16 begin
17 for I in 0 .. 1_000_000 loop
18 X := Tan (Arctan
19 (Tan (Arctan
20 (Tan (Arctan
21 (Tan (Arctan
22 (Tan (Arctan
23 (Tan (Arctan
24 (0.577))))))))))));
25 end loop;
26 end Computational_Intensive_App;
27

28 procedure Benchm_Elapsed_Time is
29 Start_Time, Stop_Time : Time;
30 Elapsed_Time : Time_Span;
31

32 begin
33 Start_Time := Clock;
34

35 Computational_Intensive_App;
36

37 Stop_Time := Clock;
38 Elapsed_Time := Stop_Time - Start_Time;
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39

40 Put_Line ("Elapsed time: "
41 & Duration'Image
42 (To_Duration (Elapsed_Time))
43 & " seconds");
44 end Benchm_Elapsed_Time;
45

46 procedure Benchm_CPU_Time is
47 Start_Time, Stop_Time : CPU_Time;
48 Elapsed_Time : Time_Span;
49

50 begin
51 Start_Time := Clock;
52

53 Computational_Intensive_App;
54

55 Stop_Time := Clock;
56 Elapsed_Time := Stop_Time - Start_Time;
57

58 Put_Line ("CPU time: "
59 & Duration'Image
60 (To_Duration (Elapsed_Time))
61 & " seconds");
62 end Benchm_CPU_Time;
63 begin
64 Benchm_Elapsed_Time;
65 Benchm_CPU_Time;
66 end Display_Benchmarking_Math;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Benchmarking_Math
MD5: 06fe96bf03321c248dd1ed843648cf0b

Runtime output

Elapsed time: 0.574971306 seconds
CPU time: 0.574500344 seconds

Now that our dummy Computational_Intensive_App involves mathematical operations
requiring significant CPU time, the measured elapsed and CPU time are much closer to
each other than before.
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STANDARD LIBRARY: STRINGS

In previous chapters, we've seen source-code examples using the String type, which is a
fixed-length string type — essentialy, it's an array of characters. In many cases, this data
type is good enough to deal with textual information. However, there are situations that
require more advanced text processing. Ada offers alternative approaches for these cases:

• Bounded strings: similar to fixed-length strings, bounded strings have a maximum
length, which is set at its instantiation. However, bounded strings are not arrays of
characters. At any time, they can contain a string of varied length — provided this
length is below or equal to the maximum length.

• Unbounded strings: similar to bounded strings, unbounded strings can contain strings
of varied length. However, in addition to that, they don't require a maximum length
to be specified at the declaration of a string. In this sense, they are very flexible.

For further reading...

Although we don't specify a maximum length for unbounded strings, the limit is defined
by the Reference Manual20:

An object of type Unbounded_String represents a String whose low bound is
1 and whose length can vary conceptually between 0 and Natural'Last.

Therefore, the implicit maximum length is Natural'Last. In contrast, bounded strings
have an explicit maximum length that is specified when the Generic_Bounded_Length
package is instantiated (as we'll see later on (page 242)).
Another difference between bounded and unbounded strings is the strategy that is used
by the compiler to allocate memory for those strings. When using GNAT, bounded strings
are allocated on the stack, while unbounded strings are allocated on the heap.

The following sections present an overview of the different string types and common oper-
ations for string types.

21.1 String operations
Operations on standard (fixed-length) strings are available in the Ada.Strings.Fixed pack-
age. As mentioned previously, standard strings are arrays of elements of Character type
with a fixed-length. That's why this child package is called Fixed.
One of the simplest operations provided is counting the number of substrings available in
a string (Count) and finding their corresponding indices (Index). Let's look at an example:
20 http://www.ada-auth.org/standards/12rm/html/RM-A-4-5.html
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Listing 306: show_find_substring.adb
1 with Ada.Strings.Fixed; use Ada.Strings.Fixed;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Show_Find_Substring is
5

6 S : String := "Hello" & 3 * " World";
7 P : constant String := "World";
8 Idx : Natural;
9 Cnt : Natural;

10 begin
11 Cnt := Ada.Strings.Fixed.Count
12 (Source => S,
13 Pattern => P);
14

15 Put_Line ("String: " & S);
16 Put_Line ("Count for '" & P & "': "
17 & Natural'Image (Cnt));
18

19 Idx := 0;
20 for I in 1 .. Cnt loop
21 Idx := Index
22 (Source => S,
23 Pattern => P,
24 From => Idx + 1);
25

26 Put_Line ("Found instance of '"
27 & P & "' at position: "
28 & Natural'Image (Idx));
29 end loop;
30

31 end Show_Find_Substring;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Find_Substring
MD5: faa8373bf9aec9f9f5507cf55590b0c0

Runtime output

String: Hello World World World
Count for 'World': 3
Found instance of 'World' at position: 7
Found instance of 'World' at position: 13
Found instance of 'World' at position: 19

We initialize the string S using a multiplication. Writing "Hello" & 3 * " World" creates
the string Hello World World World. We then call the function Count to get the number
of instances of the word World in S. Next we call the function Index in a loop to find the
index of each instance of World in S.
That example looked for instances of a specific substring. In the next example, we retrieve
all the words in the string. We do this using Find_Token and specifying whitespaces as
separators. For example:

Listing 307: show_find_words.adb
1 with Ada.Strings; use Ada.Strings;
2 with Ada.Strings.Fixed; use Ada.Strings.Fixed;
3 with Ada.Strings.Maps; use Ada.Strings.Maps;
4 with Ada.Text_IO; use Ada.Text_IO;

(continues on next page)
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(continued from previous page)
5

6 procedure Show_Find_Words is
7

8 S : String := "Hello" & 3 * " World";
9 F : Positive;

10 L : Natural;
11 I : Natural := 1;
12

13 Whitespace : constant Character_Set :=
14 To_Set (' ');
15 begin
16 Put_Line ("String: " & S);
17 Put_Line ("String length: "
18 & Integer'Image (S'Length));
19

20 while I in S'Range loop
21 Find_Token
22 (Source => S,
23 Set => Whitespace,
24 From => I,
25 Test => Outside,
26 First => F,
27 Last => L);
28

29 exit when L = 0;
30

31 Put_Line ("Found word instance at position "
32 & Natural'Image (F)
33 & ": '" & S (F .. L) & "'");
34 -- & "-" & F'Img & "-" & L'Img
35

36 I := L + 1;
37 end loop;
38 end Show_Find_Words;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Find_Words
MD5: e622f489af5901e5d31f314efc3324d2

Runtime output

String: Hello World World World
String length: 23
Found word instance at position 1: 'Hello'
Found word instance at position 7: 'World'
Found word instance at position 13: 'World'
Found word instance at position 19: 'World'

We pass a set of characters to be used as delimitators to the procedure Find_Token. This
set is a member of the Character_Set type from the Ada.Strings.Maps package. We call
the To_Set function (from the same package) to initialize the set to Whitespace and then
call Find_Token to loop over each valid index and find the starting index of each word. We
pass Outside to the Test parameter of the Find_Token procedure to indicate that we're
looking for indices that are outside the Whitespace set, i.e. actual words. The First and
Last parameters of Find_Token are output parameters that indicate the valid range of the
substring. We use this information to display the string (S (F .. L)).
The operations we've looked at so far read strings, but don't modify them. We next discuss
operations that change the content of strings:
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Operation Description
Insert Insert substring in a string
Overwrite Overwrite a string with a substring
Delete Delete a substring
Trim Remove whitespaces from a string

All these operations are available both as functions or procedures. Functions create a new
string but procedures perform the operations in place. The procedure will raise an excep-
tion if the constraints of the string are not satisfied. For example, if we have a string S
containing 10 characters, inserting a string with two characters (e.g. "!!") into it produces
a string containing 12 characters. Since it has a fixed length, we can't increase its size. One
possible solution in this case is to specify that truncation should be applied while inserting
the substring. This keeps the length of S fixed. Let's see an example that makes use of
both function and procedure versions of Insert, Overwrite, and Delete:

Listing 308: show_adapted_strings.adb
1 with Ada.Strings; use Ada.Strings;
2 with Ada.Strings.Fixed; use Ada.Strings.Fixed;
3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Adapted_Strings is
6

7 S : String := "Hello World";
8 P : constant String := "World";
9 N : constant String := "Beautiful";

10

11 procedure Display_Adapted_String
12 (Source : String;
13 Before : Positive;
14 New_Item : String;
15 Pattern : String)
16 is
17 S_Ins_In : String := Source;
18 S_Ovr_In : String := Source;
19 S_Del_In : String := Source;
20

21 S_Ins : String :=
22 Insert (Source,
23 Before,
24 New_Item & " ");
25 S_Ovr : String :=
26 Overwrite (Source,
27 Before,
28 New_Item);
29 S_Del : String :=
30 Trim (Delete (Source,
31 Before,
32 Before +
33 Pattern'Length - 1),
34 Ada.Strings.Right);
35 begin
36 Insert (S_Ins_In,
37 Before,
38 New_Item,
39 Right);
40

41 Overwrite (S_Ovr_In,
42 Before,

(continues on next page)
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(continued from previous page)
43 New_Item,
44 Right);
45

46 Delete (S_Del_In,
47 Before,
48 Before + Pattern'Length - 1);
49

50 Put_Line ("Original: '"
51 & Source & "'");
52

53 Put_Line ("Insert: '"
54 & S_Ins & "'");
55 Put_Line ("Overwrite: '"
56 & S_Ovr & "'");
57 Put_Line ("Delete: '"
58 & S_Del & "'");
59

60 Put_Line ("Insert (in-place): '"
61 & S_Ins_In & "'");
62 Put_Line ("Overwrite (in-place): '"
63 & S_Ovr_In & "'");
64 Put_Line ("Delete (in-place): '"
65 & S_Del_In & "'");
66 end Display_Adapted_String;
67

68 Idx : Natural;
69 begin
70 Idx := Index
71 (Source => S,
72 Pattern => P);
73

74 if Idx > 0 then
75 Display_Adapted_String (S, Idx, N, P);
76 end if;
77 end Show_Adapted_Strings;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Adapted_Strings
MD5: b31b6bc94d8bdbec717c6b6b2534beb6

Runtime output

Original: 'Hello World'
Insert: 'Hello Beautiful World'
Overwrite: 'Hello Beautiful'
Delete: 'Hello'
Insert (in-place): 'Hello Beaut'
Overwrite (in-place): 'Hello Beaut'
Delete (in-place): 'Hello '

In this example, we look for the index of the substring World and perform operations on
this substring within the outer string. The procedure Display_Adapted_String uses both
versions of the operations. For the procedural version of Insert and Overwrite, we apply
truncation to the right side of the string (Right). For the Delete procedure, we specify
the range of the substring, which is replaced by whitespaces. For the function version of
Delete, we also call Trim which trims the trailing whitespace.
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21.2 Limitation of fixed-length strings
Using fixed-length strings is usually good enough for strings that are initialized when they
are declared. However, as seen in the previous section, procedural operations on strings
cause difficulties when done on fixed-length strings because fixed-length strings are arrays
of characters. The following example shows how cumbersome the initialization of fixed-
length strings can be when it's not performed in the declaration:

Listing 309: show_char_array.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Char_Array is
4 S : String (1 .. 15);
5 -- Strings are arrays of Character
6 begin
7 S := "Hello ";
8 -- Alternatively:
9 --

10 -- #1:
11 -- S (1 .. 5) := "Hello";
12 -- S (6 .. S'Last) := (others => ' ');
13 --
14 -- #2:
15 -- S := ('H', 'e', 'l', 'l', 'o',
16 -- others => ' ');
17

18 Put_Line ("String: " & S);
19 Put_Line ("String Length: "
20 & Integer'Image (S'Length));
21 end Show_Char_Array;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Char_Array
MD5: 9f3df03c9c5336184139cf2a22f2cb7e

Runtime output

String: Hello
String Length: 15

In this case, we can't simply write S := "Hello" because the resulting array of characters
for the Hello constant has a different length than the S string. Therefore, we need to
include trailing whitespaces to match the length of S. As shown in the example, we could
use an exact range for the initialization ( S (1 .. 5)) or use an explicit array of individual
characters.
When strings are initialized or manipulated at run-time, it's usually better to use bounded
or unbounded strings. An important feature of these types is that they aren't arrays, so the
difficulties presented above don't apply. Let's start with bounded strings.

21.3 Bounded strings
Bounded strings are defined in the Ada.Strings.Bounded.Generic_Bounded_Length pack-
age. Because this is a generic package, you need to instantiate it and set the maximum
length of the bounded string. You can then declare bounded strings of the Bounded_String
type.
Both bounded and fixed-length strings have a maximum length that they can hold. How-
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ever, bounded strings are not arrays, so initializing them at run-time is much easier. For
example:

Listing 310: show_bounded_string.adb
1 with Ada.Strings; use Ada.Strings;
2 with Ada.Strings.Bounded;
3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Bounded_String is
6 package B_Str is new
7 Ada.Strings.Bounded.Generic_Bounded_Length
8 (Max => 15);
9 use B_Str;

10

11 S1, S2 : Bounded_String;
12

13 procedure Display_String_Info
14 (S : Bounded_String)
15 is
16 begin
17 Put_Line ("String: " & To_String (S));
18 Put_Line ("String Length: "
19 & Integer'Image (Length (S)));
20 -- String:
21 -- S'Length => ok
22 -- Bounded_String:
23 -- S'Length => compilation error:
24 -- bounded strings are
25 -- not arrays!
26

27 Put_Line ("Max. Length: "
28 & Integer'Image (Max_Length));
29 end Display_String_Info;
30

31 begin
32 S1 := To_Bounded_String ("Hello");
33 Display_String_Info (S1);
34

35 S2 := To_Bounded_String ("Hello World");
36 Display_String_Info (S2);
37

38 S1 := To_Bounded_String
39 ("Something longer to say here...",
40 Right);
41 Display_String_Info (S1);
42 end Show_Bounded_String;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Bounded_String
MD5: a51fdeacfd43923145ee92bf5c72ecd6

Runtime output

String: Hello
String Length: 5
Max. Length: 15
String: Hello World
String Length: 11
Max. Length: 15
String: Something longe

(continues on next page)
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(continued from previous page)
String Length: 15
Max. Length: 15

By using bounded strings, we can easily assign to S1 and S2 multiple times during execu-
tion. We use the To_Bounded_String and To_String functions to convert, in the respective
direction, between fixed-length and bounded strings. A call to To_Bounded_String raises
an exception if the length of the input string is greater than the maximum capacity of the
bounded string. To avoid this, we can use the truncation parameter (Right in our example).
Bounded strings are not arrays, so we can't use the 'Length attribute as we did for fixed-
length strings. Instead, we call the Length function, which returns the length of the bounded
string. The Max_Length constant represents themaximum length of the bounded string that
we set when we instantiated the package.
After initializing a bounded string, we can manipulate it. For example, we can append
a string to a bounded string using Append or concatenate bounded strings using the &
operator. Like so:

Listing 311: show_bounded_string_op.adb
1 with Ada.Strings; use Ada.Strings;
2 with Ada.Strings.Bounded;
3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Bounded_String_Op is
6 package B_Str is new
7 Ada.Strings.Bounded.Generic_Bounded_Length
8 (Max => 30);
9 use B_Str;

10

11 S1, S2 : Bounded_String;
12 begin
13 S1 := To_Bounded_String ("Hello");
14 -- Alternatively:
15 --
16 -- A := Null_Bounded_String & "Hello";
17

18 Append (S1, " World");
19 -- Alternatively:
20 -- Append (A, " World", Right);
21

22 Put_Line ("String: " & To_String (S1));
23

24 S2 := To_Bounded_String ("Hello!");
25 S1 := S1 & " " & S2;
26 Put_Line ("String: " & To_String (S1));
27 end Show_Bounded_String_Op;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Bounded_String_Op
MD5: c7c6a840c314a9cd9f75aac082a63159

Runtime output

String: Hello World
String: Hello World Hello!

We can initialize a bounded string with an empty string using the Null_Bounded_String
constant. Also, we can use the Append procedure and specify the truncation mode like we
do with the To_Bounded_String function.
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21.4 Unbounded strings
Unbounded strings are defined in the Ada.Strings.Unbounded package. This is not a
generic package, so we don't need to instantiate it before using the Unbounded_String
type. As you may recall from the previous section, bounded strings require a package
instantiation.
Unbounded strings are similar to bounded strings. The main difference is that they can
hold strings of any size and adjust according to the input string: if we assign, e.g., a 10-
character string to an unbounded string and later assign a 50-character string, internal
operations in the container ensure that memory is allocated to store the new string. In
most cases, developers don't need to worry about these operations. Also, no truncation is
necessary.
Initialization of unbounded strings is very similar to bounded strings. Let's look at an ex-
ample:

Listing 312: show_unbounded_string.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Strings; use Ada.Strings;
3

4 with Ada.Strings.Unbounded;
5 use Ada.Strings.Unbounded;
6

7 procedure Show_Unbounded_String is
8 S1, S2 : Unbounded_String;
9

10 procedure Display_String_Info
11 (S : Unbounded_String)
12 is
13 begin
14 Put_Line ("String: " & To_String (S));
15 Put_Line ("String Length: "
16 & Integer'Image (Length (S)));
17 end Display_String_Info;
18 begin
19 S1 := To_Unbounded_String ("Hello");
20 -- Alternatively:
21 --
22 -- A := Null_Unbounded_String & "Hello";
23

24 Display_String_Info (S1);
25

26 S2 := To_Unbounded_String ("Hello World");
27 Display_String_Info (S2);
28

29 S1 := To_Unbounded_String
30 ("Something longer to say here...");
31 Display_String_Info (S1);
32 end Show_Unbounded_String;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Unbounded_String
MD5: 904402992c96eb393b875d1b7cf49c1b

Runtime output

String: Hello
String Length: 5
String: Hello World

(continues on next page)
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(continued from previous page)
String Length: 11
String: Something longer to say here...
String Length: 31

Like bounded strings, we can assign to S1 and S2 multiple times during execution and use
the To_Unbounded_String and To_String functions to convert back-and-forth between
fixed-length strings and unbounded strings. However, in this case, truncation is not needed.
And, just like for bounded strings, you can use the Append procedure and the & operator for
unbounded strings. For example:

Listing 313: show_unbounded_string_op.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Strings.Unbounded;
4 use Ada.Strings.Unbounded;
5

6 procedure Show_Unbounded_String_Op is
7 S1, S2 : Unbounded_String :=
8 Null_Unbounded_String;
9 begin

10 S1 := S1 & "Hello";
11 S2 := S2 & "Hello!";
12

13 Append (S1, " World");
14 Put_Line ("String: " & To_String (S1));
15

16 S1 := S1 & " " & S2;
17 Put_Line ("String: " & To_String (S1));
18 end Show_Unbounded_String_Op;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Unbounded_String_Op
MD5: 806e24a6dd0bc87e76f73a22e42ba390

Runtime output

String: Hello World
String: Hello World Hello!

In this example, we're concatenating the unbounded S1 and S2 strings with the "Hello"
and "Hello!" strings, respectively. Also, we're using the Append procedure, just like we did
with bounded strings.
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TWENTYTWO

STANDARD LIBRARY: FILES AND STREAMS

Ada provides different approaches for file input/output (I/O):
• Text I/O, which supports file I/O in text format, including the display of information on
the console.

• Sequential I/O, which supports file I/O in binary format written in a sequential fashion
for a specific data type.

• Direct I/O, which supports file I/O in binary format for a specific data type, but also
supporting access to any position of a file.

• Stream I/O, which supports I/O of information for multiple data types, including objects
of unbounded types, using files in binary format.

This table presents a summary of the features we've just seen:

File I/O option Format Random access Data types
Text I/O text string type
Sequential I/O binary single type
Direct I/O binary ✓ single type
Stream I/O binary ✓ multiple types

In the following sections, we discuss details about these I/O approaches.

22.1 Text I/O
In most parts of this course, we used the Put_Line procedure to display information on the
console. However, this procedure also accepts a File_Type parameter. For example, you
can select between standard output and standard error by setting this parameter explicitly:

Listing 314: show_std_text_out.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Std_Text_Out is
4 begin
5 Put_Line (Standard_Output, "Hello World #1");
6 Put_Line (Standard_Error, "Hello World #2");
7 end Show_Std_Text_Out;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Std_Text_Out
MD5: 4d75bd2906226897244e3d2a611c9725

Runtime output
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Hello World #1
Hello World #2

You can also use this parameter to write information to any text file. To create a new file for
writing, use the Create procedure, which initializes a File_Type element that you can later
pass to Put_Line (instead of, e.g., Standard_Output). After you finish writing information,
you can close the file by calling the Close procedure.
You use a similar method to read information from a text file. However, when opening the
file, you must specify that it's an input file (In_File) instead of an output file. Also, instead
of calling the Put_Line procedure, you call the Get_Line function to read information from
the file.
Let's see an example that writes information into a new text file and then reads it back from
the same file:

Listing 315: show_simple_text_file_io.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Text_File_IO is
4 F : File_Type;
5 File_Name : constant String := "simple.txt";
6 begin
7 Create (F, Out_File, File_Name);
8 Put_Line (F, "Hello World #1");
9 Put_Line (F, "Hello World #2");

10 Put_Line (F, "Hello World #3");
11 Close (F);
12

13 Open (F, In_File, File_Name);
14 while not End_Of_File (F) loop
15 Put_Line (Get_Line (F));
16 end loop;
17 Close (F);
18 end Show_Simple_Text_File_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Simple_Text_File_IO
MD5: 7461e946eef18c93219fa4ce3afbb1ea

Runtime output

Hello World #1
Hello World #2
Hello World #3

In addition to the Create and Close procedures, the standard library also includes a Reset
procedure, which, as the name implies, resets (erases) all the information from the file. For
example:

Listing 316: show_text_file_reset.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Text_File_Reset is
4 F : File_Type;
5 File_Name : constant String := "simple.txt";
6 begin
7 Create (F, Out_File, File_Name);
8 Put_Line (F, "Hello World #1");

(continues on next page)
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(continued from previous page)
9 Reset (F);

10 Put_Line (F, "Hello World #2");
11 Close (F);
12

13 Open (F, In_File, File_Name);
14 while not End_Of_File (F) loop
15 Put_Line (Get_Line (F));
16 end loop;
17 Close (F);
18 end Show_Text_File_Reset;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Text_File_Reset
MD5: 5e5498f03b2c829513af062c5959fc93

Runtime output

Hello World #2

By running this program, we notice that, although we've written the first string ("Hello
World #1") to the file, it has been erased because of the call to Reset.
In addition to opening a file for reading or writing, you can also open an existing file and
append to it. Do this by calling the Open procedure with the Append_File option.
When calling the Open procedure, an exception is raised if the specified file isn't found.
Therefore, you should handle exceptions in that context. The following example deletes a
file and then tries to open the same file for reading:

Listing 317: show_text_file_input_except.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Text_File_Input_Except is
4 F : File_Type;
5 File_Name : constant String := "simple.txt";
6 begin
7 -- Open output file and delete it
8 Create (F, Out_File, File_Name);
9 Delete (F);

10

11 -- Try to open deleted file
12 Open (F, In_File, File_Name);
13 Close (F);
14 exception
15 when Name_Error =>
16 Put_Line ("File does not exist");
17 when others =>
18 Put_Line
19 ("Error while processing input file");
20 end Show_Text_File_Input_Except;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Text_File_Input_Except
MD5: c8d257091831c48d10b6e70e34b4261b

Runtime output

File does not exist
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In this example, we create the file by calling Create and then delete it by calling Delete.
After the call to Delete, we can no longer use the File_Type element. After deleting the
file, we try to open the non-existent file, which raises a Name_Error exception.

22.2 Sequential I/O
The previous section presented details about text file I/O. Here, we discuss doing file I/O in
binary format. The first package we'll explore is the Ada.Sequential_IO package. Because
this package is a generic package, you need to instantiate it for the data type you want to
use for file I/O. Once you've done that, you can use the same procedures we've seen in the
previous section: Create, Open, Close, Reset and Delete. However, instead of calling the
Get_Line and Put_Line procedures, you'd call the Read and Write procedures.
In the following example, we instantiate the Ada.Sequential_IO package for floating-point
types:

Listing 318: show_seq_float_io.adb
1 with Ada.Text_IO;
2 with Ada.Sequential_IO;
3

4 procedure Show_Seq_Float_IO is
5 package Float_IO is
6 new Ada.Sequential_IO (Float);
7 use Float_IO;
8

9 F : Float_IO.File_Type;
10 File_Name : constant String :=
11 "float_file.bin";
12 begin
13 Create (F, Out_File, File_Name);
14 Write (F, 1.5);
15 Write (F, 2.4);
16 Write (F, 6.7);
17 Close (F);
18

19 declare
20 Value : Float;
21 begin
22 Open (F, In_File, File_Name);
23 while not End_Of_File (F) loop
24 Read (F, Value);
25 Ada.Text_IO.Put_Line
26 (Float'Image (Value));
27 end loop;
28 Close (F);
29 end;
30 end Show_Seq_Float_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Seq_Float_IO
MD5: 27aa5daf92cba5df23fdc55c3578aa34

Runtime output

1.50000E+00
2.40000E+00
6.70000E+00

We use the same approach to read and write complex information. The following example
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uses a record that includes a Boolean and a floating-point value:

Listing 319: show_seq_rec_io.adb
1 with Ada.Text_IO;
2 with Ada.Sequential_IO;
3

4 procedure Show_Seq_Rec_IO is
5 type Num_Info is record
6 Valid : Boolean := False;
7 Value : Float;
8 end record;
9

10 procedure Put_Line (N : Num_Info) is
11 begin
12 if N.Valid then
13 Ada.Text_IO.Put_Line
14 ("(ok, "
15 & Float'Image (N.Value) & ")");
16 else
17 Ada.Text_IO.Put_Line
18 ("(not ok, -----------)");
19 end if;
20 end Put_Line;
21

22 package Num_Info_IO is new
23 Ada.Sequential_IO (Num_Info);
24 use Num_Info_IO;
25

26 F : Num_Info_IO.File_Type;
27 File_Name : constant String :=
28 "float_file.bin";
29 begin
30 Create (F, Out_File, File_Name);
31 Write (F, (True, 1.5));
32 Write (F, (False, 2.4));
33 Write (F, (True, 6.7));
34 Close (F);
35

36 declare
37 Value : Num_Info;
38 begin
39 Open (F, In_File, File_Name);
40 while not End_Of_File (F) loop
41 Read (F, Value);
42 Put_Line (Value);
43 end loop;
44 Close (F);
45 end;
46 end Show_Seq_Rec_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Seq_Rec_IO
MD5: a88b1428cc50745dce0509087e74adb7

Runtime output

(ok, 1.50000E+00)
(not ok, -----------)
(ok, 6.70000E+00)

As the example shows, we can use the same approach we used for floating-point types to
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perform file I/O for this record. Once we instantiate the Ada.Sequential_IO package for
the record type, file I/O operations are performed the same way.

22.3 Direct I/O
Direct I/O is available in the Ada.Direct_IO package. This mechanism is similar to the
sequential I/O approach just presented, but allows us to access any position in the file. The
package instantiation and most operations are very similar to sequential I/O. To rewrite
the Show_Seq_Float_IO application presented in the previous section to use the Ada.
Direct_IO package, we just need to replace the instances of the Ada.Sequential_IO pack-
age by the Ada.Direct_IO package. This is the new source code:

Listing 320: show_dir_float_io.adb
1 with Ada.Text_IO;
2 with Ada.Direct_IO;
3

4 procedure Show_Dir_Float_IO is
5 package Float_IO is new Ada.Direct_IO (Float);
6 use Float_IO;
7

8 F : Float_IO.File_Type;
9 File_Name : constant String :=

10 "float_file.bin";
11 begin
12 Create (F, Out_File, File_Name);
13 Write (F, 1.5);
14 Write (F, 2.4);
15 Write (F, 6.7);
16 Close (F);
17

18 declare
19 Value : Float;
20 begin
21 Open (F, In_File, File_Name);
22 while not End_Of_File (F) loop
23 Read (F, Value);
24 Ada.Text_IO.Put_Line
25 (Float'Image (Value));
26 end loop;
27 Close (F);
28 end;
29 end Show_Dir_Float_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Dir_Float_IO
MD5: e4e5855976de44f53a821eb90dcbb206

Runtime output

1.50000E+00
2.40000E+00
6.70000E+00

Unlike sequential I/O, direct I/O allows you to access any position in the file. However, it
doesn't offer an option to append information to a file. Instead, it provides an Inout_File
mode allowing reading and writing to a file via the same File_Type element.
To access any position in the file, call the Set_Index procedure to set the new position /
index. You can use the Index function to retrieve the current index. Let's see an example:
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Listing 321: show_dir_float_in_out_file.adb
1 with Ada.Text_IO;
2 with Ada.Direct_IO;
3

4 procedure Show_Dir_Float_In_Out_File is
5 package Float_IO is new Ada.Direct_IO (Float);
6 use Float_IO;
7

8 F : Float_IO.File_Type;
9 File_Name : constant String :=

10 "float_file.bin";
11 begin
12 -- Open file for input / output
13 Create (F, Inout_File, File_Name);
14 Write (F, 1.5);
15 Write (F, 2.4);
16 Write (F, 6.7);
17

18 -- Set index to previous position
19 -- and overwrite value
20 Set_Index (F, Index (F) - 1);
21 Write (F, 7.7);
22

23 declare
24 Value : Float;
25 begin
26 -- Set index to start of file
27 Set_Index (F, 1);
28

29 while not End_Of_File (F) loop
30 Read (F, Value);
31 Ada.Text_IO.Put_Line
32 (Float'Image (Value));
33 end loop;
34 Close (F);
35 end;
36 end Show_Dir_Float_In_Out_File;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Dir_Float_In_Out_File
MD5: 17b83a16ab8fa30f07cf8a0bd54078a1

Runtime output

1.50000E+00
2.40000E+00
7.70000E+00

By running this example, we see that the file contains 7.7, rather than the previous 6.7 that
we wrote. We overwrote the value by changing the index to the previous position before
doing another write.
In this example we used the Inout_File mode. Using that mode, we just changed the
index back to the initial position before reading from the file (Set_Index (F, 1)) instead
of closing the file and reopening it for reading.
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22.4 Stream I/O
All the previous approaches for file I/O in binary format (sequential and direct I/O) are spe-
cific for a single data type (the one we instantiate themwith). You can use these approaches
to write objects of a single data type that may be an array or record (potentially with many
fields), but if you need to create and process files that include different data types, or any
objects of an unbounded type, these approaches are not sufficient. Instead, you should use
stream I/O.
Stream I/O shares some similarities with the previous approaches. We still use the Create,
Open and Close procedures. However, instead of accessing the file directly via a File_Type
element, you use a Stream_Access element. To read and write information, you use the
'Read or 'Write attributes of the data types you're reading or writing.
Let's look at a version of the Show_Dir_Float_IO procedure from the previous section that
makes use of stream I/O instead of direct I/O:

Listing 322: show_float_stream.adb
1 with Ada.Text_IO;
2

3 with Ada.Streams.Stream_IO;
4 use Ada.Streams.Stream_IO;
5

6 procedure Show_Float_Stream is
7 F : File_Type;
8 S : Stream_Access;
9 File_Name : constant String :=

10 "float_file.bin";
11 begin
12 Create (F, Out_File, File_Name);
13 S := Stream (F);
14

15 Float'Write (S, 1.5);
16 Float'Write (S, 2.4);
17 Float'Write (S, 6.7);
18

19 Close (F);
20

21 declare
22 Value : Float;
23 begin
24 Open (F, In_File, File_Name);
25 S := Stream (F);
26

27 while not End_Of_File (F) loop
28 Float'Read (S, Value);
29 Ada.Text_IO.Put_Line
30 (Float'Image (Value));
31 end loop;
32 Close (F);
33 end;
34 end Show_Float_Stream;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Float_Stream
MD5: 34ccf04b0821074a332019ac0e38bb3e

Runtime output
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1.50000E+00
2.40000E+00
6.70000E+00

After the call to Create, we retrieve the corresponding Stream_Access element by calling
the Stream function. We then use this stream to write information to the file via the 'Write
attribute of the Float type. After closing the file and reopening it for reading, we again
retrieve the corresponding Stream_Access element and processed to read information from
the file via the 'Read attribute of the Float type.
You can use streams to create and process files containing different data types within the
same file. You can also read and write unbounded data types such as strings. However,
when using unbounded data types you must call the 'Input and 'Output attributes of the
unbounded data type: these attributes write information about bounds or discriminants in
addition to the object's actual data.
The following example shows file I/O thatmixes both strings of different lengths and floating-
point values:

Listing 323: show_string_stream.adb
1 with Ada.Text_IO;
2

3 with Ada.Streams.Stream_IO;
4 use Ada.Streams.Stream_IO;
5

6 procedure Show_String_Stream is
7 F : File_Type;
8 S : Stream_Access;
9 File_Name : constant String :=

10 "float_file.bin";
11

12 procedure Output (S : Stream_Access;
13 FV : Float;
14 SV : String) is
15 begin
16 String'Output (S, SV);
17 Float'Output (S, FV);
18 end Output;
19

20 procedure Input_Display (S : Stream_Access) is
21 SV : String := String'Input (S);
22 FV : Float := Float'Input (S);
23 begin
24 Ada.Text_IO.Put_Line (Float'Image (FV)
25 & " --- " & SV);
26 end Input_Display;
27

28 begin
29 Create (F, Out_File, File_Name);
30 S := Stream (F);
31

32 Output (S, 1.5, "Hi!!");
33 Output (S, 2.4, "Hello world!");
34 Output (S, 6.7, "Something longer here...");
35

36 Close (F);
37

38 Open (F, In_File, File_Name);
39 S := Stream (F);
40

41 while not End_Of_File (F) loop
(continues on next page)
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42 Input_Display (S);
43 end loop;
44 Close (F);
45

46 end Show_String_Stream;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_String_Stream
MD5: 3ae8276ada5f24cab49994e368e0fa34

Runtime output

1.50000E+00 --- Hi!!
2.40000E+00 --- Hello world!
6.70000E+00 --- Something longer here...

When you use Stream I/O, no information is written into the file indicating the type of the
data that you wrote. If a file contains data from different types, you must reference types
in the same order when reading a file as when you wrote it. If not, the information you get
will be corrupted. Unfortunately, strong data typing doesn't help you in this case. Writing
simple procedures for file I/O (as in the example above) may help ensuring that the file
format is consistent.
Like direct I/O, stream I/O support also allows you to access any location in the file. However,
when doing so, you need to be extremely careful that the position of the new index is
consistent with the data types you're expecting.
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STANDARD LIBRARY: NUMERICS

The standard library provides support for common numeric operations on floating-point
types as well as on complex types and matrices. In the sections below, we present a brief
introduction to these numeric operations.

23.1 Elementary Functions
The Ada.Numerics.Elementary_Functions package provides common operations for
floating-point types, such as square root, logarithm, and the trigonometric functions (e.g.,
sin, cos). For example:

Listing 324: show_elem_math.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Numerics; use Ada.Numerics;
3

4 with Ada.Numerics.Elementary_Functions;
5 use Ada.Numerics.Elementary_Functions;
6

7 procedure Show_Elem_Math is
8 X : Float;
9 begin

10 X := 2.0;
11 Put_Line ("Square root of "
12 & Float'Image (X)
13 & " is "
14 & Float'Image (Sqrt (X)));
15

16 X := e;
17 Put_Line ("Natural log of "
18 & Float'Image (X)
19 & " is "
20 & Float'Image (Log (X)));
21

22 X := 10.0 ** 6.0;
23 Put_Line ("Log_10 of "
24 & Float'Image (X)
25 & " is "
26 & Float'Image (Log (X, 10.0)));
27

28 X := 2.0 ** 8.0;
29 Put_Line ("Log_2 of "
30 & Float'Image (X)
31 & " is "
32 & Float'Image (Log (X, 2.0)));
33

34 X := Pi;
(continues on next page)

257



Introduction to Ada

(continued from previous page)
35 Put_Line ("Cos of "
36 & Float'Image (X)
37 & " is "
38 & Float'Image (Cos (X)));
39

40 X := -1.0;
41 Put_Line ("Arccos of "
42 & Float'Image (X)
43 & " is "
44 & Float'Image (Arccos (X)));
45 end Show_Elem_Math;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Elem_Math
MD5: 17511d7e17cd98d4b6e49ad302d6dcb6

Runtime output

Square root of 2.00000E+00 is 1.41421E+00
Natural log of 2.71828E+00 is 1.00000E+00
Log_10 of 1.00000E+06 is 6.00000E+00
Log_2 of 2.56000E+02 is 8.00000E+00
Cos of 3.14159E+00 is -1.00000E+00
Arccos of -1.00000E+00 is 3.14159E+00

Here we use the standard e and Pi constants from the Ada.Numerics package.
The Ada.Numerics.Elementary_Functions package provides operations for the Float
type. Similar packages are available for Long_Float and Long_Long_Float types.
For example, the Ada.Numerics.Long_Elementary_Functions package offers the
same set of operations for the Long_Float type. In addition, the Ada.Numerics.
Generic_Elementary_Functions package is a generic version of the package that you
can instantiate for custom floating-point types. In fact, the Elementary_Functions pack-
age can be defined as follows:

package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Float);

23.2 Random Number Generation
The Ada.Numerics.Float_Random package provides a simple random number generator
for the range between 0.0 and 1.0. To use it, declare a generator G, which you pass to
Random. For example:

Listing 325: show_float_random_num.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Numerics.Float_Random;
4 use Ada.Numerics.Float_Random;
5

6 procedure Show_Float_Random_Num is
7 G : Generator;
8 X : Uniformly_Distributed;
9 begin

10 Reset (G);
11

(continues on next page)

258 Chapter 23. Standard library: Numerics



Introduction to Ada

(continued from previous page)
12 Put_Line ("Some random numbers between "
13 & Float'Image
14 (Uniformly_Distributed'First)
15 & " and "
16 & Float'Image
17 (Uniformly_Distributed'Last)
18 & ":");
19 for I in 1 .. 15 loop
20 X := Random (G);
21 Put_Line (Float'Image (X));
22 end loop;
23 end Show_Float_Random_Num;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Float_Random_Num
MD5: cf38ab00e27bad4309010e678113dd36

Runtime output

Some random numbers between 0.00000E+00 and 1.00000E+00:
9.80034E-01
2.85511E-01
6.52899E-01
2.38608E-02
2.95568E-02
9.90054E-01
8.09696E-01
1.17431E-02
3.45056E-01
5.46639E-01
8.32065E-01
6.83566E-01
4.59634E-01
7.73473E-01
7.50087E-01

The standard library also includes a random number generator for discrete numbers, which
is part of the Ada.Numerics.Discrete_Random package. Since it's a generic package, you
have to instantiate it for the desired discrete type. This allows you to specify a range for
the generator. In the following example, we create an application that displays random
integers between 1 and 10:

Listing 326: show_discrete_random_num.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Numerics.Discrete_Random;
3

4 procedure Show_Discrete_Random_Num is
5

6 subtype Random_Range is Integer range 1 .. 10;
7

8 package R is new
9 Ada.Numerics.Discrete_Random (Random_Range);

10 use R;
11

12 G : Generator;
13 X : Random_Range;
14 begin
15 Reset (G);
16

(continues on next page)
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17 Put_Line ("Some random numbers between "
18 & Integer'Image (Random_Range'First)
19 & " and "
20 & Integer'Image (Random_Range'Last)
21 & ":");
22

23 for I in 1 .. 15 loop
24 X := Random (G);
25 Put_Line (Integer'Image (X));
26 end loop;
27 end Show_Discrete_Random_Num;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Discrete_Random_Num
MD5: 892f6525477f9a2c56f88885de011fba

Runtime output

Some random numbers between 1 and 10:
4
4
10
8
8
2
2
2
4
5
7
2
1
8
5

Here, package R is instantiated with the Random_Range type, which has a constrained range
between 1 and 10. This allows us to control the range used for the random numbers.
We could easily modify the application to display random integers between 0 and 20 by
changing the specification of the Random_Range type. We can also use floating-point or
fixed-point types.

23.3 Complex Types
The Ada.Numerics.Complex_Types package provides support for complex number
types and the Ada.Numerics.Complex_Elementary_Functions package provides sup-
port for common operations on complex number types, similar to the Ada.Numerics.
Elementary_Functions package. Finally, you can use the Ada.Text_IO.Complex_IO pack-
age to perform I/O operations on complex numbers. In the following example, we declare
variables of the Complex type and initialize them using an aggregate:

Listing 327: show_elem_math.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Numerics; use Ada.Numerics;
3

4 with Ada.Numerics.Complex_Types;
5 use Ada.Numerics.Complex_Types;

(continues on next page)
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6

7 with Ada.Numerics.Complex_Elementary_Functions;
8 use Ada.Numerics.Complex_Elementary_Functions;
9

10 with Ada.Text_IO.Complex_IO;
11

12 procedure Show_Elem_Math is
13

14 package C_IO is new
15 Ada.Text_IO.Complex_IO (Complex_Types);
16 use C_IO;
17

18 X, Y : Complex;
19 R, Th : Float;
20 begin
21 X := (2.0, -1.0);
22 Y := (3.0, 4.0);
23

24 Put (X);
25 Put (" * ");
26 Put (Y);
27 Put (" is ");
28 Put (X * Y);
29 New_Line;
30 New_Line;
31

32 R := 3.0;
33 Th := Pi / 2.0;
34 X := Compose_From_Polar (R, Th);
35 -- Alternatively:
36 -- X := R * Exp ((0.0, Th));
37 -- X := R * e ** Complex'(0.0, Th);
38

39 Put ("Polar form: "
40 & Float'Image (R) & " * e**(i * "
41 & Float'Image (Th) & ")");
42 New_Line;
43

44 Put ("Modulus of ");
45 Put (X);
46 Put (" is ");
47 Put (Float'Image (abs X));
48 New_Line;
49

50 Put ("Argument of ");
51 Put (X);
52 Put (" is ");
53 Put (Float'Image (Argument (X)));
54 New_Line;
55 New_Line;
56

57 Put ("Sqrt of ");
58 Put (X);
59 Put (" is ");
60 Put (Sqrt (X));
61 New_Line;
62 end Show_Elem_Math;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Elem_Math
(continues on next page)

23.3. Complex Types 261



Introduction to Ada

(continued from previous page)
MD5: 73dfc0021c804fa1c5727e272546f172

Runtime output

( 2.00000E+00,-1.00000E+00) * ( 3.00000E+00, 4.00000E+00) is ( 1.00000E+01, 5.
↪00000E+00)

Polar form: 3.00000E+00 * e**(i * 1.57080E+00)
Modulus of (-1.31134E-07, 3.00000E+00) is 3.00000E+00
Argument of (-1.31134E-07, 3.00000E+00) is 1.57080E+00

Sqrt of (-1.31134E-07, 3.00000E+00) is ( 1.22474E+00, 1.22474E+00)

As we can see from this example, all the common operators, such as * and +, are available
for complex types. You also have typical operations on complex numbers, such as Argument
and Exp. In addition to initializing complex numbers in the cartesian form using aggregates,
you can do so from the polar form by calling the Compose_From_Polar function.
The Ada.Numerics.Complex_Types and Ada.Numerics.Complex_Elementary_Functions
packages provide operations for the Float type. Similar packages are avail-
able for Long_Float and Long_Long_Float types. In addition, the Ada.Numerics.
Generic_Complex_Types and Ada.Numerics.Generic_Complex_Elementary_Functions
packages are generic versions that you can instantiate for custom or pre-defined floating-
point types. For example:

with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Generic_Complex_Elementary_Functions;
with Ada.Text_IO.Complex_IO;

procedure Show_Elem_Math is

package Complex_Types is new
Ada.Numerics.Generic_Complex_Types (Float);

use Complex_Types;

package Elementary_Functions is new
Ada.Numerics.Generic_Complex_Elementary_Functions

(Complex_Types);
use Elementary_Functions;

package C_IO is new Ada.Text_IO.Complex_IO
(Complex_Types);

use C_IO;

X, Y : Complex;
R, Th : Float;

23.4 Vector and Matrix Manipulation
The Ada.Numerics.Real_Arrays package provides support for vectors and matrices. It
includes common matrix operations such as inverse, determinant, eigenvalues in addition
to simpler operators such as matrix addition and multiplication. You can declare vectors
and matrices using the Real_Vector and Real_Matrix types, respectively.
The following example uses some of the operations from the Ada.Numerics.Real_Arrays
package:
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Listing 328: show_matrix.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Numerics.Real_Arrays;
4 use Ada.Numerics.Real_Arrays;
5

6 procedure Show_Matrix is
7

8 procedure Put_Vector (V : Real_Vector) is
9 begin

10 Put (" (");
11 for I in V'Range loop
12 Put (Float'Image (V (I)) & " ");
13 end loop;
14 Put_Line (")");
15 end Put_Vector;
16

17 procedure Put_Matrix (M : Real_Matrix) is
18 begin
19 for I in M'Range (1) loop
20 Put (" (");
21 for J in M'Range (2) loop
22 Put (Float'Image (M (I, J)) & " ");
23 end loop;
24 Put_Line (")");
25 end loop;
26 end Put_Matrix;
27

28 V1 : Real_Vector := (1.0, 3.0);
29 V2 : Real_Vector := (75.0, 11.0);
30

31 M1 : Real_Matrix :=
32 ((1.0, 5.0, 1.0),
33 (2.0, 2.0, 1.0));
34 M2 : Real_Matrix :=
35 ((31.0, 11.0, 10.0),
36 (34.0, 16.0, 11.0),
37 (32.0, 12.0, 10.0),
38 (31.0, 13.0, 10.0));
39 M3 : Real_Matrix := ((1.0, 2.0),
40 (2.0, 3.0));
41 begin
42 Put_Line ("V1");
43 Put_Vector (V1);
44 Put_Line ("V2");
45 Put_Vector (V2);
46 Put_Line ("V1 * V2 =");
47 Put_Line (" "
48 & Float'Image (V1 * V2));
49 Put_Line ("V1 * V2 =");
50 Put_Matrix (V1 * V2);
51 New_Line;
52

53 Put_Line ("M1");
54 Put_Matrix (M1);
55 Put_Line ("M2");
56 Put_Matrix (M2);
57 Put_Line ("M2 * Transpose(M1) =");
58 Put_Matrix (M2 * Transpose (M1));
59 New_Line;
60

(continues on next page)
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61 Put_Line ("M3");
62 Put_Matrix (M3);
63 Put_Line ("Inverse (M3) =");
64 Put_Matrix (Inverse (M3));
65 Put_Line ("abs Inverse (M3) =");
66 Put_Matrix (abs Inverse (M3));
67 Put_Line ("Determinant (M3) =");
68 Put_Line (" "
69 & Float'Image (Determinant (M3)));
70 Put_Line ("Solve (M3, V1) =");
71 Put_Vector (Solve (M3, V1));
72 Put_Line ("Eigenvalues (M3) =");
73 Put_Vector (Eigenvalues (M3));
74 New_Line;
75 end Show_Matrix;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Matrix
MD5: c9df45a742a42bd47e03fbf2d0282238

Runtime output

V1
( 1.00000E+00 3.00000E+00 )

V2
( 7.50000E+01 1.10000E+01 )

V1 * V2 =
1.08000E+02

V1 * V2 =
( 7.50000E+01 1.10000E+01 )
( 2.25000E+02 3.30000E+01 )

M1
( 1.00000E+00 5.00000E+00 1.00000E+00 )
( 2.00000E+00 2.00000E+00 1.00000E+00 )

M2
( 3.10000E+01 1.10000E+01 1.00000E+01 )
( 3.40000E+01 1.60000E+01 1.10000E+01 )
( 3.20000E+01 1.20000E+01 1.00000E+01 )
( 3.10000E+01 1.30000E+01 1.00000E+01 )

M2 * Transpose(M1) =
( 9.60000E+01 9.40000E+01 )
( 1.25000E+02 1.11000E+02 )
( 1.02000E+02 9.80000E+01 )
( 1.06000E+02 9.80000E+01 )

M3
( 1.00000E+00 2.00000E+00 )
( 2.00000E+00 3.00000E+00 )

Inverse (M3) =
(-3.00000E+00 2.00000E+00 )
( 2.00000E+00 -1.00000E+00 )

abs Inverse (M3) =
( 3.00000E+00 2.00000E+00 )
( 2.00000E+00 1.00000E+00 )

Determinant (M3) =
-1.00000E+00

Solve (M3, V1) =
( 3.00000E+00 -1.00000E+00 )

Eigenvalues (M3) =
(continues on next page)
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( 4.23607E+00 -2.36068E-01 )

Matrix dimensions are automatically determined from the aggregate used for initialization
when you don't specify them. You can, however, also use explicit ranges. For example:

M1 : Real_Matrix (1 .. 2, 1 .. 3) :=
((1.0, 5.0, 1.0),
(2.0, 2.0, 1.0));

The Ada.Numerics.Real_Arrays package implements operations for the Float type. Sim-
ilar packages are available for Long_Float and Long_Long_Float types. In addition, the
Ada.Numerics.Generic_Real_Arrays package is a generic version that you can instantiate
with custom floating-point types. For example, the Real_Arrays package can be defined
as follows:

package Real_Arrays is new
Ada.Numerics.Generic_Real_Arrays (Float);
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24.1 Appendix A: Generic Formal Types
The following tables contain examples of available formal types for generics:

Formal type Actual type
Incomplete type
Format: type T;

Any type

Discrete type
Format: type T is (<>);

Any integer, modular or enumeration type

Range type
Format: type T is range <>;

Any signed integer type

Modular type
Format: type T is mod <>;

Any modular type

Floating-point type
Format: type T is digits <>;

Any floating-point type

Binary fixed-point type
Format: type T is delta <>;

Any binary fixed-point type

Decimal fixed-point type
Format: type T is delta <> digits <>;

Any decimal fixed-point type

Definite nonlimited private type
Format: type T is private;

Any nonlimited, definite type

Nonlimited Private type with discriminant
Format: type T (D : DT) is private;

Any nonlimited type with discriminant

Access type
Format: type A is access T;

Any access type for type T

Definite derived type
Format: type T is new B;

Any concrete type derived from base type
B

Limited private type
Format: type T is limited private;

Any definite type, limited or not

Incomplete tagged type
Format: type T is tagged;

Any concrete, definite, tagged type

Definite tagged private type
Format: type T is tagged private;

Any concrete, definite, tagged type

Definite tagged limited private type
Format: type T is tagged limited pri-
vate;

Any concrete definite tagged type, limited
or not

Definite abstract tagged private type
Format: type T is abstract tagged
private;

Any nonlimited, definite tagged type, ab-
stract or concrete

continues on next page
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Table 1 – continued from previous page
Formal type Actual type
Definite abstract tagged limited private
type
Format: type T is abstract tagged
limited private;

Any definite tagged type, limited or not, ab-
stract or concrete

Definite derived tagged type
Format: type T is new B with private;

Any concrete tagged type derived from
base type B

Definite abstract derived tagged type
Format: type T is abstract new B with
private;

Any tagged type derived from base type B
abstract or concrete

Array type
Format: type A is array (R) of T;

Any array type with range R containing el-
ements of type T

Interface type
Format: type T is interface;

Any interface type T

Limited interface type
Format: type T is limited interface;

Any limited interface type T

Task interface type
Format: type T is task interface;

Any task interface type T

Synchronized interface type
Format: type T is synchronized in-
terface;

Any synchronized interface type T

Protected interface type
Format: type T is protected inter-
face;

Any protected interface type T

Derived interface type
Format: type T is new B and I with
private;

Any type T derived from base type B and
interface I

Derived type with multiple interfaces
Format: type T is new B and I1 and
I2 with private;

Any type T derived from base type B and
interfaces I1 and I2

Abstract derived interface type
Format: type T is abstract new B and
I with private;

Any type T derived from abstract base type
B and interface I

Limited derived interface type
Format: type T is limited new B and
I with private;

Any type T derived from limited base type
B and limited interface I

Abstract limited derived interface type
Format: type T is abstract limited
new B and I with private;

Any type T derived from abstract limited
base type B and limited interface I

Synchronized interface type
Format: type T is synchronized new
SI with private;

Any type T derived from synchronized in-
terface SI

Abstract synchronized interface type
Format: type T is abstract synchro-
nized new SI with private;

Any type T derived from synchronized in-
terface SI

24.1.1 Indefinite version
Many of the examples above can be used for formal indefinite types:
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Formal type Actual type
Indefinite incomplete type
Format: type T (<>);

Any type

Indefinite nonlimited private type
Format: type T (<>) is private;

Any nonlimited type indefinite or def-
inite

Indefinite limited private type
Format: type T (<>) is limited private;

Any type, limited or not, indefinite or
definite

Incomplete indefinite tagged private type
Format: type T (<>) is tagged;

Any concrete tagged type, indefinite
or definite

Indefinite tagged private type
Format: type T (<>) is tagged private;

Any concrete, nonlimited tagged
type, indefinite or definite

Indefinite tagged limited private type
Format: type T (<>) is tagged limited pri-
vate;

Any concrete tagged type, limited or
not, indefinite or definite

Indefinite abstract tagged private type
Format: type T (<>) is abstract tagged
private;

Any nonlimited tagged type, indefi-
nite or definite, abstract or concrete

Indefinite abstract tagged limited private type
Format: type T (<>) is abstract tagged
limited private;

Any tagged type, limited or not, in-
definite or definite abstract or con-
crete

Indefinite derived tagged type
Format: type T (<>) is new B with private;

Any tagged type derived from base
type B, indefinite or definite

Indefinite abstract derived tagged type
Format: type T (<>) is abstract new B with
private;

Any tagged type derived from base
type B, indefinite or definite abstract
or concrete

The same examples could also contain discriminants. In this case, (<>) is replaced by a
list of discriminants, e.g.: (D: DT).

24.2 Appendix B: Containers
The following table shows all containers available in Ada, including their versions (standard,
bounded, unbounded, indefinite):

Cate-
gory

Container Std Bounded Un-
bounded

Indefi-
nite

Vector Vectors Y Y Y
List Doubly Linked Lists Y Y Y
Map Hashed Maps Y Y Y
Map Ordered Maps Y Y Y
Set Hashed Sets Y Y Y
Set Ordered Sets Y Y Y
Tree Multiway Trees Y Y Y
Generic Holders Y
Queue Synchronized Queue Interfaces Y
Queue Synchronized Queues Y Y
Queue Priority Queues Y Y

Note

To get the correct container name, replace the whitespace by _ in the names above. (For
example, Hashed Maps becomes Hashed_Maps.)
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The following table presents the prefixing applied to the container name that depends on
its version. As indicated in the table, the standard version does not have a prefix associated
with it.

Version Naming prefix
Std
Bounded Bounded_
Unbounded Unbounded_
Indefinite Indefinite_
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