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This course explores how to use the Ada language in real-world scenarios that extend be-
yond the complexity of lab exercises. The resulting solutions to these scenarios are idioms
and techniques, some common to various programming languages and some specific to
Ada. Multiple preliminary solutions to a given scenario (when they exist) are presented
and analyzed for strengths and weaknesses, leading to the final preferred solution and its
analysis. As a result, readers — especially those relatively new to the language — can learn
how experienced Ada developers apply the language in actual practice. Prior knowledge
of Ada is required, although explanations of the underlying semantics are provided when
appropriate.

This document was written by Patrick Rogers and reviewed by Gustavo A. Hoffmann, Steven
Baird, Richard Kenner, Robert A. Duff, and Tucker Taft.

O Note

The code examples in this course use an 80-column limit, which is a typical limit for Ada
code. Note that, on devices with a small screen size, some code examples might be
difficult to read.

O Note

Each code example from this book has an associated "code block metadata"”, which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.

You can find all code examples in a zip file, which you can download from the learn
website?. The directory structure in the zip file is based on the code block metadata.
For example, if you're searching for a code example with this metadata:

* Project: Courses.Intro_To_Ada.Imperative_Language.Greet
* MD5: cba89a34b87c9dfa71533d982d05e6ab
you will find it in this directory:

projects/Courses/Intro To Ada/Imperative Language/Greet/
cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

1. Unpack the zip file;

1 http://creativecommons.org/licenses/by-sa/4.0
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Go to target directory;
Start GNAT Studio on this directory;

Build (or compile) the project;

Ao BN

Run the application (if a main procedure is available in the project).

2 https://learn.adacore.com/zip/learning-ada_code.zip

2 CONTENTS:



CHAPTER
ONE

INTRODUCTION

This course describes how to implement selected programming idioms in the Ada language.

What is an idiom? Some would say that an idiom is a workaround for an expressive defi-
ciency in a programming language. That is not what we mean.

What we have in mind are answers to the question "In this situation, what is the most
elegant implementation approach?". Elegant software is comprehensible, efficient, concise,
reliable, and, as a result, maintainable, so elegance is an economically and technically
desirable characteristic.

Design patterns'? are intended to answer that question, and indeed some would equate
idioms with design patterns. But what we have in mind is more general in scope.

For example, Reference Counting® is a well-known approach to tracking and managing the
storage for objects and is conceptually independent of the programming language. How-
ever, reference counting is not a design pattern.

Likewise, Resource Acquisition Is Allocation (RAII)4, type punning?, interface inheritance®,
and implementation inheritance’ are not design patterns.

Those are the kinds of situations and implementations we focus upon.

That said, we may refer to a design pattern to illustrate an idiom's purpose and/or imple-
mentation. For example, in the idiom for controlling object creation and initialization, the
implementation approach happens to be the same as for expressing a Singleton®?.

In addition to language-independent situations, we also include implementations for situa-
tions specific to the Ada language. These idioms are best practices in situations that arise
given the extensive capabilities of the language.

For example, Ada directly supports tasks (threads) via a dedicated construct consisting of
local objects and a sequence of statements. Tasks can also be defined as types, and then
used to define components for other composite types. As a result, there is an idiom showing
how to associate a task type with an enclosing composite type so that the task components
have visibility to the enclosing object's other components.

In all the idioms we want to apply the fundamental principles of software engineering, es-
pecially those of abstraction and information hiding. Therefore, we include an idiom for
expressing abstractions as types, with compile-time visibility control over the representa-
tion. These are the well-known Abstract Data Types, something the Ada language directly
supports but using building blocks instead of a single construct. For that same reason we
include another idiom for defining abstractions that manage global data (Abstract Data
Machines). Most of the idioms' implementations will be defined using these abstraction
techniques as their starting point.

12 E,. Gamma, R. Helm, and others. Design Patterns: Elements of Reusable Object-Oriented Software. Reading,
MA, Addison-Wesley Publishing Company, 1995.

3 https://en.wikipedia.org/wiki/Reference_counting

4 https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

5 https://en.wikipedia.org/wiki/Type_punning

6 https://en.wikipedia.org/wiki/Subtyping

7 https://en.wikipedia.org/wiki/lmplementation_inheritance
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1.1 Assumptions

We assume the reader knows Ada to some degree, including some advanced topics. For
those lacking significant familiarity, we hope these implementations will at least give a
sense for how to apply the language. We direct such readers to the online Learn courses
dedicated to the Ada language itself®.

1.2 Definitions

For the sake of avoiding duplication in the idiom entries, the following terms are defined
here. Note that the Ada Language Manual includes a glossary in Section 1.3° (located in
Annex N prior to Ada 2022). Some of the following expand on the definitions found there.

1.2.1 Suppliers and Clients

Suppliers are software units that provide programming entities to other software units, the
users. These users are the clients of the supplied units. The concept is simple and intuitive,
but by defining these terms we can convey these roles quickly in the idioms' discussions.

For example, a unit that defines a type and associated operations would be a sup-
plier. Client units could use that type to declare objects, and/or apply the operations
to such objects. The language-defined package Ada.Text I0 is an example of a sup-
plier. Similarly, the unit that defines a library, such as a math library, is a supplier.
Callers to the math library routines are the clients. The generic package Ada.Numerics.
Generic Complex Elementary Functions, once instantiated, would be an example sup-
plier. (Arguably, the generic package itself would be a supplier to the client that instanti-
ates it, but instantiation is the only possibility in that narrow case. Only the routines in the
instances can be called.)

Bertrand Meyer's book on OOP!3 limits these terms specifically to the case of a type used
in an object declaration. Our definitions cover that case but others as well.

Units can be both suppliers and clients, because a given supplier's facility, i.e., the interface
and/or implementation, may be built upon the facilities defined by other suppliers.

1.2.2 Compile-time Visibility

In the definitions of supplier and client above, we gave an example in which a supplier's
type was used by clients to declare objects of the type. For the client to legally do so — that
is, for the compiler to accept this usage and process the code — the use of the supplier's
type has to satisfy the scope and visibility rules of the programming language.

Good implementations harness these visibility rules to adhere to the software engineering
principles of information hiding and abstraction, both of which require that nothing of the
implementation be made visible to clients unless necessary. Compiler enforcement ensures
rigorous adherence to those principles.

Therefore, modern languages provide some way to express this control. For example, in
Ada, a package can have both a public part and a private part. Clients have no compile-time
visibility to the private part, nor to the package body, as both parts contain implementation
artifacts. In class-oriented languages, parts of the class can be marked as public, private,
and protected (the details depend on the specific language).

The idioms Abstract Data Types (page 11) and Abstract Data Machines (page 17) are prime
examples used throughout the other idioms.

8 https://learn.adacore.com/courses/advanced-ada/index.html#advanced-ada-course-index
9 http://www.ada-auth.org/standards/22rm/htm|/RM-1-3.html
13 B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1997.
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The idioms explored in Fundamental Packages (page 7) are largely variations on expressing
this control in Ada.

More details on the topic are provided in those idioms.

1.2.3 Views

In Ada, a view of an entity defines what the developer can legally do with that entity. For
example, the declaration of an object defines a view of that object. The operations allowed
by that view are determined by the type used to declare the object: a signed integer type
would allow signed integer numeric operations, but not, say, bit-level operations, nor array
indexing, and so on. Furthermore, the view includes whether the object is a constant.

An entity can have more than one view, depending on where in the text of the source
code a view of that entity is considered. For example, let's say that the integer object
introduced above is in fact a variable. Within the scope of that variable, we can refer to it
by that name and update the value using assignment statements. However, if we pass that
variable as the argument to a procedure call, within that subprogram (for that call) the view
specifies a different name for the argument, i.e., the formal parameter name. Moreover, if
that formal parameter is a mode-in parameter, within that procedure body the view of the
actual parameter is as if it were a constant rather than a variable. No assignments via the
formal parameter name are allowed because the view at that point in the text — within that
procedure body — doesn't allow them, unlike the view available at the point of the call.

As another example, consider a tagged type named Parent, and a type derived from it
via type extension, named Child. It is common for a derived type to have either additional
components, or additional operations, or both. For a given object of the Child type, the view
via type Child allows the developer to refer to the extended components and/or operations.
But we can convert the Child object to a value of the Parent type using what is known
as a view conversion. With that Parent view of the Child object, we can only refer to
those components and operations defined for the Parent type. The compiler enforces this
temporary view.

For further details about view conversions, please refer to that specific section of the Ad-
vanced Ada course!,

Views are a fundamental concept in Ada. Understanding them will greatly facilitate under-
standing the rules of the language in general.

1.2.4 Partial and Full Views

Like objects, types also can have more than one view, again determined by the place in
the program text that a view is considered. These views can be used to apply information
hiding and abstraction.

The declaration of a private type defines a partial view of a type that reveals only some of
its properties: the type name, primarily, but in particular not the type's representation. For
example:

type Rotary Encoder is private;

Private type declarations must occur in the public part of a package declaration. Anything
declared there is compile-time visible to clients of the package so the type's name is visible,
and potentially some other properties as well. Clients can therefore declare objects of the
type name, for example, but must adhere to their partial view's effect on what is compile-
time visible.

The private type's full representation must be specified within the private part of that same
package declaration. For example:

10 https://learn.adacore.com/courses/advanced-ada/parts/data_types/types.html#adv-ada-view-conversion
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type Rotary Encoder is record ... end record;

Therefore, within that package private part and within the package body the full view is
available because full representation information is compile-time visible in those regions.
(Parts of child units have the full view as well.) This view is necessary in those two regions
of the package because the representation details are required in order to implement the
corresponding operations, among other possibilities.

Because the clients only have the partial view they do not have compile-time visibility to
the type's internal representation. Consequently, the compiler will not allow representation-
specific references or operations in client code. The resulting benefit is that clients are in-
dependent of the type's representation and, therefore, it can be changed without requiring
coding changes in the clients. Clients need only be recompiled in that case.

This application of information hiding has real-world cost benefits because changing client
code can be prohibitively expensive. That's one reason why the maintenance phase of a
project is by far the most expensive phase. Another reason is that maintenance is often a
euphemism for new development. Either way, change is involved.

As a result, when defining types, developers should use private types by default, only avoid-
ing them when they are not appropriate. Not using them should be an explicit design choice,
a line item in code reviews. Not defining a major abstraction as a private type should be
suspect, just as using a struct rather than a class in C++ should be suspect in that case.
(In C++ anything a struct contains is compile-time visible to clients by default.)

For further details about type views, please refer to that specific section of the Advanced
Ada coursell,

11 https://learn.adacore.com/courses/advanced-ada/parts/data_types/types.html#adv-ada-type-view
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CHAPTER
TWO

ESSENTIAL DESIGN IDIOMS FOR PACKAGES

2.1 Motivation

Packages, especially library packages, are modules, and as such are the fundamental build-
ing blocks of Ada programs. There is no language-prescribed way to use packages when
designing an application, the language just specifies what is legal. However, some legal
approaches are more advisable than others.

Specifically, packages should exhibit high cohesion and loose coupling'*. Cohesion is the
degree to which the declarations within a module are related to one another, in the context
of the problem being solved. Unrelated entities should not be declared in the same module.
This allows the reader to focus on one primary concept, which should be the subject of the
package. Coupling is the degree to which a module depends upon other modules. Loose
coupling enhances comprehension and maintenance because it allows readers and future
developers to examine and modify the module in relative isolation. Coupling and cohesion
are interrelated: higher cohesion tends to result in less coupling.

2.2 Implementation(s)

Three idioms for packages were envisioned when the language was first designed. They
were introduced and described in detail in the Rationale document for the initial language
design®> and were further developed in Grady Booch's book Software Engineering with
Ada'®, a foundational work on design with the (sequential part of the) language. Booch
added a fourth idiom, the Abstract Data Machine, to the three described by the Rationale.
These four idioms have proven themselves capable of producing packages that exhibit high
cohesion and loose coupling, resulting in more comprehensible and maintainable source
code.

These idioms pre-date later package facilities, such as private packages and hierarchical
packages. We describe idioms for those kinds of packages separately.

Two of the simpler idioms are described here. The other two, that are more commonly used,
are described in two separate, dedicated entries within this document.

Generic packages are not actually packages, but their instantiations are, so these design
idioms apply to generic packages as well.

Because these are idioms for modules, we differentiate them by what the package decla-
rations will contain. But as you will see, what they can contain is a reflection of the degree
of information hiding involved.

14 E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of a Discipline of Computer Program and
System Design. Prentice-Hall, 1979.

15 . Ichbiah, J. Barnes, and others. Rationale for the Design of the Ada Programming Language. 1986.

16 G. Booch. Software Engineering with Ada. Benjamin/Cummings Publishing Company, 1983.
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2.2.1 Named Collection of Declarations

In the first idiom, the package declaration can contain other declarations only for the fol-
lowing:

* Objects (constants and variables)
* Types
* Exceptions

The idea is to factor out common content required by multiple clients. Declaring common
content in one place and letting clients reference the one unit makes the most sense.

For example, the following package declares several physical constants used in a high-
fidelity aircraft simulator. These constants are utilized throughout the simulator code, so
they are declared in one place and then referenced as needed:

package Physical Constants is

: constant := 20 856 010.51; -- feet
: constant := 20 926 469.20; -- feet
: constant :=
2.0 * ((Polar_Radius + Equatorial Radius)/2.0);
: constant := 32.1740 4855 6430 4; -- feet/second**2

: constant = 0.002378; -- slugs/foot**3
: constant := 36089.0; -- feet
: constant = -56.5; -- degrees-C

end Physical Constants;

No information hiding is occurring when using this idiom.

2.2.1.1 Pros

Packages designed with this idiom will have high cohesion and low coupling.

The idiom also enhances maintainability because changes to the values, if necessary, need
only be made in one place, although in this particular example, we would hope that no such
changes will be made.

2.2.1.2 Cons

When a library package contains variable declarations, these variables comprise global
data. In this sense, global means potential visibility to multiple clients. Global data should
be avoided by default, because the effects of changes are potentially pervasive, throughout
the entire set of clients that have visibility to it. In effect the developer must understand
everything before changing anything. The introduction of new bugs is a common result. But
if, for some compelling reason, the design really called for global data, this idiom provides
the way to declare it. Note also that global constants are less problematic than variables
because they can't be changed.

2.2.2 Groups of Related Program Units

In this idiom, the package can contain all of the declarations allowed by the first idiom, but
also contains declarations for operations. These are usually subprograms but other kinds of
declarations are also allowed such as protected types and objects. Hence these packages
can contain:

* Objects (constants and variables)
* Types
* Exceptions

* Operations

8 Chapter 2. Essential Design Idioms for Packages
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Our intent is that the types declared in the package are used by the operations declared
in the package, typically in their formal parameters and/or function return types. In this
idiom, however, the types are not private.

For example:

package Linear_ Algebra is
type Vector is array (Positive range <>) of Real;
type Matrix is array (Positive range <>, Positive range <>) of Real;
function "+" (Left, Right : Vector) return Vector;
function "*" (Left, Right : Vector) return Matrix;

end Linear Algebra;

In this example, Vector and Matrix are the types under consideration. The type Real might
be declared here too, but it might be better declared in a Named Collection of Declarations
(page 8) package referenced in a with_clause. In any case, this package declares types and
subprograms that manipulate values of those types.

One might also declare variables in the package, but those should not be the central pur-
pose of the package. For example, perhaps we want to have a variable whose value is used
as the default for some formal parameters. Clients can change the default for subsequent
calls by first assigning a different value to the variable, unlike a hardcoded literal chosen
by the developer. It would look like this:

Default Debounce Time : Time Span := Milliseconds (75);
-- The default amount of time used to debounce an input pin.
-- This value is tunable.

procedure Await Active
(This : Discrete Input;
Debounce Time : Time Span := Default Debounce Time);

With this idiom, information hiding applies to the implementation of the visible subpro-
grams in the package body as well as any internal entities declared in the body and used
in implementing the visible subprograms.

As mentioned, these idioms apply to generic packages as well. For example, a more realistic
approach would be to make type Real be a generic formal type:

generic
type Real is digits <>;
package Linear_Algebra is
type Vector is array (Positive range <>) of Real;
type Matrix is array (Positive range <>, Positive range <>) of Real;
function "+" (Left, Right : Vector) return Vector;
function "*" (Left, Right : Vector) return Matrix;

end Linear Algebra;

2.2.2.1 Pros

The types and the associated operations are grouped together and are hence highly cohe-
sive. Such packages usually can be loosely coupled as well.

Clients have all the language-defined operations available that the type representations
provide. In the case of Vector and Matrix, clients have compile-time visibility to the fact
they are array types. Therefore, clients can manipulate Vector and Matrix values as ar-
rays: for example, they can create values via aggregates and use array indexing to access
specific components.

2.2. Implementation(s) 9
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2.2.2.2 Cons

Clients can write code that depends on the type's representation, and can be relied upon to
do so. Consequently, a change in the representation will potentially require redeveloping
the client code, which could be extensive and expensive. That is a serious disadvantage.

However, compile-time visibility to the type representations may be necessary to meet
client expectations. For example, engineers expect to use indexing with vectors and matri-
ces. As of Ada 2012, developers can specify the meaning of array indexing but the approach
is fairly heavy.

2.3 Notes

1. The rules for what these idiomatic packages contain are not meant to be iron-clad; hy-
brids are possible but should be considered initially suspect and reviewed accordingly.

10 Chapter 2. Essential Design Idioms for Packages



CHAPTER
THREE

ABSTRACT DATA TYPES

3.1 Motivation

In the Groups of Related Program Units (page 8) idiom, client compile-time visibility to the
type's representation is both an advantage and a disadvantage. Visibility to the represen-
tation makes available the expressiveness of low-level syntax, such as array indexing and
aggregates, but in so doing allows client source code to be dependent on the representa-
tion. In many cases, the resulting economic and engineering disadvantages of visibility on
the representation will outweigh the expressiveness advantages.

For the sake of illustration, let's create a stack type that can contain values of type Integer.
(We use type Integer purely for the sake of convenience.) Let's also say that any given
Stack object can contain at most a fixed number of values, and arbitrarily pick 100 for that
upper bound. The likely representation for the Stack type will require both an array for the
contained values and a stack pointer indicating the top of the stack. Hence this will be a
composite type, probably a record type. If we use the Groups of Related Program Units
(page 8) idiom the code might look like this:

package Integer_Stacks is
: constant := 100;
type Content is array (1 .. Capacity) of Integer;
type Stack is record
Values : Content;
Top : Integer range 0 .. Capacity := 0;
end record;
procedure Push (This : in out Stack; Item : in Integer);
procedure Pop (This : in out Stack; Item : out Integer);
function Empty (This : Stack) return Boolean;
end Integer Stacks;

With this design the compiler will allow client code to directly read and update the two
components within any Stack object. For example, given some Stack variable named X,
the client can read the value of X.Top, say to determine if X is empty. But by the same
token, the client code could change X.Top to some arbitrary value unrelated to the logical
top of the stack, completely violating stack semantics.

As a result, where would one look in the source code to find a bug in the handling of some
Stack object? It could be literally anywhere in all the client code that uses package Inte-
ger Stacks.

Similarly, changes to the internal representation of a type may become necessary as new
requirements are identified. At best, the client code will now fail to compile, making identifi-
cation of the problem areas simple. At worst, the client code will remain legal but no longer
functional. Perhaps an additional component was added that the original components now
rely upon, or the original components are used in new ways. Conceivably every client use
of Integer Stacks might need to be changed. Once we find them all we'll have to rewrite
them to address the changes in the representation. That's potentially very expensive, per-
haps prohibitively so. Worse, our fixes will likely introduce new bugs.

11
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These disadvantages argue for an alternative. That is the purpose of this next idiom, known
as the Abstract Data Type (ADT)'/,'8.

3.2 Implementation(s)

Abstraction is one of the central principles of software engineering because it is one of the
primary ways that humans manage complexity. The idea is to focus on the essentials, in
effect the what, while ignoring all the inessential implementation details, i.e., the how. For
example, when we drive a car and want to stop, we press the brake pedal. We don't also
think about how the pedal makes the car stop, just that it does so. That's an example of
abstraction. In the same way, we know that pressing the accelerator pedal increases the
speed of the car, that rotating the steering wheel changes the direction of travel, and so
on. If to control the car we had to think about how each part actually works — the brake
cylinder and brake pads, the fuel injectors, the spark plugs, the steering shaft, the tie rods,
and everything else — we'd certainly crash.

We use abstraction in programming for the same reason. In higher-level languages, an
array is an abstraction for the combination of a base address and offset. A file system is
composed of a number of layered abstractions, including files (at the top), then tracks, then
sectors, then blocks, and ultimately down to individual bytes. A data structure, such as a
stack, a queue, or a linked list, is an example of an abstraction, as is a valve, an air-lock, and
an engine when represented in software. Even procedures and functions are abstractions
for lower-level operations. Decomposing via abstractions allows us to manage complexity
because at any given layer we can focus on what is being done, rather than how.

Therefore, an abstract data type is a type that is abstract in the sense that!é:
* It is a higher level of abstraction than the built-in programming language types.

e It is functionally characterized entirely by the operations defined by the ADT itself,
along with the common basic operations such as assignment, object declarations, pa-
rameter passing, and so on. In particular, clients are not allowed to perform operations
that are determined by the type's internal representation. Ideally, this protection is
enforced by tools.

The ADT may also be abstract in the sense of object-oriented programming but that is an
unrelated issue.

In Ada we use private types to define abstract data types because private types make the
type's name, but not its representation, visible to clients. These types are composed using
syntactical building blocks: a package declaration, separated into two parts, containing
a type declared in two parts, and containing declarations for subprograms to manipulate
objects of the type via parameters. The compiler uses the building-blocks' compile-time
visibility rules to enforce the protections against representation-based operations. (We
assume the reader is familiar with private types, but this is such an important, central
facility in Ada that we will explain them in some detail anyway.)

Therefore, an ADT package declaration may contain any of the following:
* Constants (but probably not variables)
» A private type
e Ancillary Types
* Exceptions

* Operations

17 G. Booch. Software Engineering with Ada. Benjamin/Cummings Publishing Company, 1983.
18 B, Liskov and S. Zilles. Programming with Abstract Data Types. ACM SIGPLAN symposium on Very high level
languages, 1974.
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If possible, you should declare at most one private type per ADT package. This keeps things
simple and follows the "cohesive" principle. (Note that the limited-with construct directly
facilitates declaring mutually-dependent private types that are each declared in their own
dedicated packages). However, it's not unreasonable to declare more than one private type
in the same package, especially if one of the types is clearly the primary type and the other
private type is related to the first. For example, in defining an ADT for a maze, we could
declare a private type named Maze to be the primary abstraction. But mazes have positions
within them, and as clients have no business knowing how positions are represented, both
Maze and Position could reasonably be declared as private types in the same package.

You may use any form of private type with this idiom: basic private types,
tagged/abstract/limited private types, private type extensions, and so forth. What's im-
portant is that the representation occurs in the private part so that it's not compile-time
visible to clients.

The abstraction's operations consist of subprograms that each have one or more formal
parameters of the type. Clients will declare objects of the type and pass these objects as
formal parameters to manipulate those objects.

The operations are known as primitive operations because they have the compile-time
visibility to the private type's representation necessary to implement the required behavior.

Clients can create their own operations by calling the type's primitive operations, but
client's can't compile any operation that manipulates the internal representation.

Consider the following revision to the package Integer Stacks, now as an ADT:

package Integer Stacks is
type Stack is private;
procedure Push (This : in out Stack; Item : in Integer);
procedure Pop (This : in out Stack; Item : out Integer);
function Empty (This : Stack) return Boolean;
: constant := 100;
private
type Content is array (1 .. Capacity) of Integer;
type Stack is record
Values : Content;
Top : Integer range 0 .. Capacity := 0;
end record;
end Integer Stacks;

The package declaration now includes the private reserved word, about half-way down
by itself in the example above, thus dividing the package declaration into the public part
and the private part. The compiler only allows clients compile-time visibility to the pack-
age public part. No client code that references anything in the private part will compile
successfully.

The declaration for the type Stack now has two pieces, one in the package visible part and
one in the package private part. The visible piece introduces the type name and ends with
the keyword private to indicate that its representation is not provided to clients.

Client code can use the type name to declare objects because the name is visible. Likewise,
clients can declare their own subprograms with parameters of type Stack, or use type Stack
as the component type in a composite type declaration. Clients can use a private type in
any way that's consistent with the rest of the visible type declaration, except they can't see
anything representation-dependent.

The full type definition is in the package private part. Therefore, for any given object of
the type, the representation details — the two record components in this example — can't
be referenced in client code. Clients must instead only use the operations defined by the
package, passing the client objects as the actual parameters. Only the bodies of these
operations have compile-time visibility to the representation of the Stack parameters, so
only they can implement the functionality for those parameters.

3.2. Implementation(s) 13
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Because package-defined subprograms are the only code that can access the internals of
objects of the type, the designer's intended abstract operations are strictly enforced. They
are the only manipulations that a client can perform. As we mentioned, basic operations
such as assignment are allowed, unless the ADT is limited as well as private, but these basic
operations do not violate the abstraction.

You may, of course, also require other ancillary type declarations in the package, either for
the implementation or as types for additional parameters for the visible operations. The
array type Content is an example of the former case. When it is strictly an implementation
artifact, as in this case, it should be in the private part so that it's hidden from clients.

The ADT idiom extends the information hiding applied by the Groups of Related Program
Units (page 8) idiom to include the type's representation.

The compile-time lack of visibility to the representation means that clients no longer have
a way to construct ADT values from the constituent parts. For example, record aggregates
are no longer possible for clients using the Stack ADT. Likewise, clients no longer have
a way to read the individual constituent components. (Whether doing so is appropriate
will be addressed below.) Therefore, an ADT package may include constructor and selec-
tor/accessor subprograms. (The term constructor is only conceptually related to the same
term in some other languages, such as C++.)

For an example of an abstraction that includes constructors and selectors, imagine there is
no language-defined Complex number type. We could use the following ADT approach:

package Complex_Numbers is
type Complex Number is private;
--  function operating on Complex Number, eg "+" ...
-- constructors and selectors/accessors
function Make (Real Part, Imaginary Part : Float) return Complex Number;
function Real Part (This : Complex Number) return Float;
function Imaginary Part (This : Complex Number) return Float;
private
type Complex_Number is record
Real Part : Float;
Imaginary Part : Float;
end record;
end Complex Numbers;

In the above, the function Make is a constructor that replaces the use of aggregates for
constructing Complex_ Number values. Callers pass two floating-point values to be assigned
to the components of the resulting record type. In the Stack ADT, a constructor for Stack
objects wasn't required because any stack has a known initial state, i.e., empty, and the
component default initialization is sufficient to achieve that state. Complex numbers don't
have any predeterminable state so the constructor is required.

Likewise, functions Real Part and Imaginary Part are selector/accessor functions that
return the corresponding individual component values of an argument of type Com-
plex Number. They are needed because the mathematical definition of complex numbers
has those two parts, so clients can reasonably expect to be able to get such values from
a given object. (The function names need not be distinct from the component names, but
can be if desired.)

However, by default, selector/accessor functions are not included in the ADT idiom, and
especially not for every component of the representation. There are no getter operations
if you are familiar with that term.

There may be cases when what looks like an accessor function is provided, when in fact the
function computes the return value. Similarly, there may be functions that simply return the
value of a component but are part of the abstraction and happen to be implementable by
returning the value of a component. For example, a real stack's ADT package would include
a function indicating the extent of the object — that is, the number of values currently
contained. In our example implementation the Top component happens to indicate that

14 Chapter 3. Abstract Data Types
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value, in addition to indicating the current top of the stack. The body of the Extent function
can then be as follows:

function Extent (This : Stack) return Natural is (This.Top);

But a different representation might not have a Top component, in which case the function
would be implemented in some other way. (For example, we could have declared a subtype
of Natural, using Capacity as the upper bound, for the function result type.)

You should not include true getter functions that do not meet an abstraction-defined re-
quirement and exist purely to provide client access to the otherwise hidden representation
components included. Their usage makes the client code dependent on the representation,
just as if the client had direct access. For the same reason, by default there are no setter
procedures for the representation components. Both kinds of operations should be consid-
ered highly suspect. There's no point in hiding the representation if these operations will
make it available to clients, albeit indirectly.

3.3 Pros

The advantages of an ADT are due to the strong interface presented, with guaranteed
enforcement by the compiler rather than by reliance on clients' good behavior. The ADT
designer can rely on client adherence to the intended abstraction because client code that
violates the designer's abstraction by directly manipulating the internals of the type will
not compile; clients must call the designer's operations to manipulate the objects.

A package defining a strong interface will exhibit high cohesion, thereby aiding comprehen-
sion and consequently easing both development and maintenance.

An ADT enhances maintainability because a bug in the ADT implementation must be in
the package that defines the ADT itself. The rest of the application need not be explored
because nothing elsewhere that accessed the representation would compile. (We ignore
child packages for the time-being.) The maintenance phase is the most expensive of the
project phases for correcting errors, so this is a significant benefit.

Although changes to the internal representation of an ADT may become necessary, the
scope of those changes is limited to the ADT package declaration and body because legal
client code cannot depend on the representation of a private type. Consequently, changes
to the type's representation can only require recompilation (and hence relinking) of client
code, but not rewriting.

A change in representation may have non-functional considerations that prompt a change
in client usage, such as performance changes, but it will not be a matter of the legality of
the client code. lllegal client usage of an ADT wouldn't have compiled successfully in the
first place.

The private type is the fundamental approach to creating abstractions in Ada, just as the use
of the public, private, and protected parts of classes is fundamental to creating abstractions
in class-oriented languages. Not every type can be private, as illustrated by the client
expectation for array indexing in Ada prior to Ada 2012. Not every type should be private,
for example those that are explicitly numeric. But the ADT should be the default design
idiom expression.

3.4 Cons

There is more source code text required in an ADT package compared to the idiom in which
the representation is not hidden (the Groups of Related Program Units (page 8)). The bulk of
the additional text is due to the functions and procedures required to provide the capabilities
that the low-level representation-based syntax might have provided, i.e., the constructor
and selector/accessor functions. We say might have provided because these additional
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operations are by no means necessarily included. In general, the additional text required
for private types is worth the protections afforded.

3.5 Relationship With Other Idioms

The package-oriented idioms described here and previously (page 7) are the foundational
program composition idioms because packages are the primary structuring unit in Ada.
That is especially true of the Abstract Data Type (page 11) idiom, which is the primary type
specification facility in Ada. We will describe additional package-oriented idioms, especially
regarding hierarchical packages, but those kinds of packages are optional.

The basic package is not optional in Ada for a program of any significant size or complexity.
(One could have a program consisting entirely of the main program, but either that program
is relatively simple and small or it is badly structured.) As a consequence, other idioms will
exist within packages designed using one of these idioms or some other package idiom.

3.6 Notes

1. With the package idioms that declare one or more types, especially the ADT idiom, the
principle of Separation of Concerns dictates that objects of the type used by clients be
declared by clients in client units, not in the same package that declares the type or

types.

2. The Ada Rationale document did not introduce the concept of Abstract Data Types.
The ADT concept had already been introduced and recognized as effective when the
first version of Ada was being designed®9¢ 12. 18 The Ada language requirements doc-
ument, Steelman'®, uses the term "Encapsulated Definitions" and describes the infor-
mation hiding to be provided. Steelman does not specify the implementation syntax
because requirements documents do not include such directives. The language de-
signers implemented those requirements via package private parts and private types.

3. The ADT is the conceptual foundation for the class construct's visibility control in some
class-oriented languages.

19 HOLWG. Department of Defense Requirements for High Order Computer Programming Language "STEELMAN".
Department of Defense, 1978.
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CHAPTER
FOUR

ABSTRACT DATA MACHINES

4.1 Motivation

In some systems, only one logical "instance" of an abstraction should exist in the software.
This requirement may stem from the functionality involved. For example, a subsystem-
level software logging facility should be unique at that level. Likewise, the function of a
hardware device may be such that only one instance should exist in both the system and
the software. A security device that validates users would be an example. Another reason
can be simple physical reality. There might be only one on-board or on-chip device of some
sort. Execution on that board or chip entails there being only one such device present.

How can the software representing the abstraction best implement this requirement?

The Abstract Data Type (ADT) Abstract Data Type (page 11) idiom is the primary abstraction
definition facility in Ada. Given an ADT that provides the required facility you could simply
declare a single object of the type. But how could you ensure that some other client,
perhaps in the future, doesn't declare another object of the type, either accidentally or
maliciously?

As a general statement about program design, if there is something that must not be al-
lowed, the ideal approach is to use the language rules to make it impossible. That's far
better than debugging. For example, we don't want clients to have compile-time access to
internal representation artifacts, so we leverage the language visibility rules to make such
access illegal. The compiler will then reject undesired references, rigorously.

The occasional need to control object creation is well-known, so much so that there is a
design pattern for creating an ADT in which only one instance can ever exist. Known as the
"singleton" pattern, the given programming language's rules are applied such that only the
ADT implementation can create objects of the type. Clients cannot do so. The implemen-
tation only creates one such object, so multiple object declarations are precluded.

Singletons can be expressed easily in Ada Controlling Object Initialization and Creation
(page 35) but there is an alternative in this specific situation.

This idiom entry describes the alternative, known as the Abstract Data Machine (ADM). The
Abstract Data Machine was introduced by Grady Booch?! as the Abstract State Machine, but
that name, though appropriate, encompasses more in computer science than we intend to
evoke.

4.2 Implementation(s)

The ADM is similar to the ADT idiom in that it presents an abstraction that doesn't already
exist in the programming language. Furthermore, like the ADT, operations are provided to
clients to manipulate the abstraction state, which is not otherwise compile-time visible to
client code.

21 G, Booch. Software Engineering with Ada. Benjamin/Cummings Publishing Company, 1983.
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Unlike the ADT, however, the ADM does not define the abstraction as a type. To understand
this difference, first recall that type declarations are descriptions for objects that will contain
data (the state). For example, our earlier Stack ADT was represented as a record containing
two components: an array to hold the values logically contained by the Stack and an integer
indicating the logical top of that array (the stack pointer). No data actually exists, i.e., is
allocated storage, until objects of the type are declared. Clients can declare as many objects
of type Stack as they require and each object has a distinct, independent copy of the data.

Continuing the Stack example, clients could choose to declare only one object of the Stack
type, in which case only one instance of the data described by the Stack type will exist:

Integer Stack : Stack;

But, other than convenience, there is no functional difference from the client declaring
individual variables of the representational component types directly, one for the array and
one for the stack pointer:

: constant := 100;
type Content is array (1 .. Capacity) of Integer;
Values : Content;
Top : Integer range 0 .. Capacity := 0;

or even this, using an anonymously-typed array:

: constant := 100;
Values : array (1 .. Capacity) of Integer;
Top : Integer range 0 .. Capacity := 0;

If there is to be only one logical stack, these two variables will suffice.

That's what the ADM does. The state variables are declared directly within a package, rather
than as components of a type. In that way the package, usually a library package, declares
the necessary state for a single abstraction instance. But, as an abstraction, those data
declarations must not be compile-time visible to clients. Therefore, the state is declared in
either the package private part or the package body. Doing so requires that visible opera-
tions be made available to clients, as with the ADT. Hence the combination of a package,
the encapsulated variables, and the operations is the one instance of the abstraction. That
combination is the fundamental concept for the ADM idiom.

Therefore, the package declaration's visible section contains only the following:
* Constants (but almost certainly not variables)
* Ancillary Types
» Exceptions
* Operations

The package declaration's private part and the package body may contain all the above, but
one or the other (or both) will contain variable declarations representing the abstraction's
state.

Consider the following ADM version of the package Integer Stacks, now renamed to In-
teger Stack for reasons we will discuss shortly. In this version we declare the state in the
package body.

package Integer Stack is
procedure Push (Item : in Integer);
procedure Pop (Item : out Integer);
function Empty return Boolean;
: constant := 100;
end Integer Stack;

(continues on next page)

18 Chapter 4. Abstract Data Machines



Ada In Practice

(continued from previous page)

package body Integer_Stack is
Values : array (1 .. Capacity) of Integer;

Top : Integer range 0 .. Capacity := 0;
procedure Push (Item : in Integer) is
begin

Top := Top + 1;
Values (Top) := Item;
end Push;
procedure Pop (Item : out Integer) is ... end Pop;
function Empty return Boolean is (Top = 0);
end Integer Stack;

Note how the procedure and function bodies directly access the local variables hidden in
the package body.

For those readers familiar with programming languages that can declare entities to be
"static," the effect is as if the two variables in the package body are static variables.

When using this idiom, there is only one stack (containing values of some type, in this case
type Integer). That's why we changed the name of the package from Integer Stacks, i.e.,
from the plural form to the singular. It may help to note that what is now the package name
was the name of the client's variable name when there was a Stack type involved.

As with the ADT idiom, clients of an ADM can only manipulate the encapsulated state via the
visible operations. The difference is that the state to be manipulated is no longer an object
passed as an argument to the operations. For illustration, consider the Push procedure.
The ADT version requires the client to pass the Stack object intended to contain the new
value (i.e., the actual parameter for the formal named This):

procedure Push (This : in out Stack; Item : in Integer);

In contrast, the ADM version has one less formal parameter, the value to be pushed:

procedure Push (Item : in Integer);

Here is a call to the ADM version of Push:

Integer Stack.Push (42);

That call places the value 42 in the (hidden) array Integer Stack.Values located within
the package body. Compare that to the ADT approach, in which objects of type Stack are
manipulated:

Answers : Stack;

Push (Answers, 42);

That call places the value 42 in the (hidden) array Answers.Values, i.e., within the Answers
variable. Clients can declare as many Stack objects as they require, each containing a
distinct copy of the state defined by the type. In the ADM version, there is only one stack
and therefore only one instance of the state variables. Hence the Stack formal parameter
is not required.

Rather than declare the abstraction state in the package body, we could just as easily
declare it in the package's private section:

package Integer Stack is
procedure Push (Item : in Integer);
procedure Pop (Item : out Integer);
function Empty return Boolean;

(continues on next page)
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(continued from previous page)
: constant := 100;

private
Values : array (1 .. Capacity) of Integer;
Top : Integer range 0 .. Capacity := 0;

end Integer Stack;

Doing so doesn't change anything from the client code point of view; just as clients have
no compile-time visibility to declarations in the package body, they have no compile-time
visibility to the items in the package private part. This placement also doesn't change the
fact that there is only one instance of the data. We've only changed where the data are
declared. (We will ignore the effect of child packages here.)

Because the two variables are implementation artifacts we don't declare them in the pack-
age's visible part.

Note that the private section wasn't otherwise required when we chose to declare the data
in the package body.

The ADM idiom applies information hiding to the internal state, like the ADT idiom, except
that the state is not in an object declared by the client. Also, like the Groups of Related
Program Units (page 8), the implementations of the visible subprograms are hidden in the
package body, along with any non-visible entities required for their implementation.

There are no constructor functions returning a value of the abstraction type because the
abstraction is not represented as a type. However, there could be one or more initialization
procedures, operating directly on the hidden state in the package private part or package
body. In the Stack ADM there is no need for them because of the abstraction-appropriate
default initial value, as is true of the ADT version.

The considerations regarding selectors/accessors are the same for the ADM as for the ADT
idiom, so they are not provided by default. Also like the ADT, so-called getters and setters
are highly suspect and not provided by the idiom by default.

As mentioned, the ADM idiom can be applied to hardware abstractions. For example, con-
sider a target that has a single on-board rotary switch for arbitrary use by system design-
ers. The switch value is available to the software via an 8-bit integer located at a dedicated
memory address, mapped like so:

Switch : Unsigned 8 with
Volatile,
Address => System.Storage Elements.To Address (16#FFCO 0801#);

Reading the value of the memory-mapped Switch variable provides the rotary switch's
current value.

However, on this target the memory at that address is read-only, and rightly so because
the only way to change the value is to physically rotate the switch. Writing to that address
has no effect whatsoever. Although doing so is a logical error no indication is provided by
the hardware, which is potentially confusing to developers. It certainly looks like a variable,
after all. Declaring it as a constant wouldn't suffice because the user could rotate the switch
during execution.

Furthermore, although mapped as a byte, the physical switch has only 16 total positions,
read as the values zero through fifteen. An unsigned byte has no such constraints.

The compiler will enforce the read-only view and the accessor operation can handle the
range constraint. The ADM is a reasonable choice because there is only one such physical
switch; a type doesn't bring any advantages in this case. The following illustrates the
approach:

with Interfaces; use Interfaces;
package Rotary Switch is

(continues on next page)
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(continued from previous page)
subtype Values is Unsigned 8 range 0 .. 15;
function State return Values;
end Rotary Switch;

Clients can then call the function Rotary Switch.State to get the switch's current value,
as a constrained subtype. The body will handle all the details.

with System.Storage Elements; use System.Storage Elements;
package body Rotary Switch is
Switch : Unsigned 8 with Volatile, Address => To Address (16#FFCO 0801#);
function State return Values is
begin
if Switch in Values then
return Switch;
else
raise Program Error;
end if;
end State;
end Rotary Switch;

The range check in the function body might be considered over-engineering because the
switch is a physical device that cannot have more than 16 values, but physical devices have
a habit of springing surprises. Note that attribute Valid?® would not be useful here because
there are no invalid bit patterns for an unsigned integer. If, on the other hand, we were
working with an enumeration type, for example, then 'Valid would be useful.

4.3 Pros

In terms of abstraction and information hiding, the ADM idiom provides the same advan-
tages as the ADT idiom: clients have no visibility to representation details and must use
the operations declared in the package to manipulate the state. The compiler enforces this
abstract view. The ADM also has the ADT benefit of knowing where any bugs could possibly
be located. If there is a bug in the behavior, it must be in the one package defining the
abstraction itself. No other code would have the compile-time visibility necessary.

In addition, less source code text is required to express the abstraction.

4.4 Cons

The disadvantage of the ADM is the lack of flexibility.

An ADM defines only one abstraction instance. If more than one becomes necessary, the
developer must copy-and-paste the entire package and then change the new package's
unit name. This approach doesn't scale well.

Furthermore, the ADM cannot be used to compose other types, e.g., as the component type
in an array or record type. The ADM cannot be used to define the formal parameter of a
client-defined subprogram, cannot be dynamically allocated, and so on.

But if one can know with certainty that only one thing is ever going to be represented, as
in the hardware rotary switch example, the ADM limitations are irrelevant.

20 https://learn.adacore.com/courses/advanced-ada/parts/data_types/types_representation.html#
adv-ada-valid-attribute
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CHAPTER
FIVE

PROGRAMMING BY EXTENSION

5.1 Motivation

When declaring entities in a package, developers should ensure that the client view —
the package visible part — contains no implementation artifacts. Doing so is important
conceptually, but also practically, because any declarations visible to clients inevitably will
be used by clients and, as a result, will become permanent fixtures because removal would
cause expensive changes in the client code.

The intended client API declarations must be in the package visible part, of course. The
question, then, is whether to declare implementation artifacts in the package private part
or in the package body. Those are the two parts of a package that do not make declarations
compile-time visible to client code.

Some of these entities must be declared in the package private part because they are
required in the declaration of some other entity appearing in that part. For example, when
using the ADT idiom (page 11), an ancillary type might be required for the completion of
the private type. That was the case with the ADT version (page 13) of the Integer Stacks
package, repeated here for convenience:

package Integer_Stacks is
type Stack is private;

: constant := 100;
private
type Content is array (1 .. Capacity) of Integer;
type Stack is record
Values : Content;
Top : Integer range 0 .. Capacity := 0;
end record;
end Integer Stacks;

The array type Content is required for the Stack record component because anonymously-
typed array components are illegal. Clients have no business using the type Content di-
rectly so although it would be legal to declare it in the public part, declaration in the private
part is more appropriate.

Likewise, a function called to provide the default initial value for a private type's component
must be declared prior to the reference. If the function is truly only part of the implemen-
tation, we should declare it in the package private part rather than the public part.

In contrast, there may be implementation-oriented entities that are referenced only in the
package body. They could be declared in the package body but could alternatively be
declared in the package declaration's private part. Those are the entities (declarations) in
question for this idiom.

For a concrete example, here is an elided ADM version of the stack abstraction (page 18),
with the stack state declared in the package body:
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package Integer Stack is
procedure Push (Item : in Integer);
procedure Pop (Item : out Integer);
function Empty return Boolean;
: constant := 100;
end Integer Stack;

package body Integer_Stack is
Values : array (1 .. Capacity) of Integer;

Top : Integer range 0 .. Capacity := 0;
procedure Push (Item : in Integer) is
begin

Top := Top + 1;
Values (Top) := Item;
end Push;
procedure Pop (Item : out Integer) is ...
function Empty return Boolean is ...
end Integer Stack;

We could add the private part to the package declaration and move the state of the ADM
(page 17) — the two variables in this case — up there without any other changes. The
subprogram bodies have the same visibility to the two variables either way. (There is no
requirement for the Content type because Values is not a record component; anonymously-
typed array objects are legal.) From the viewpoint of the language and the abstraction, the
location is purely up to the developer.

5.2 Implementation(s)

When you have a choice of placement, putting the state in either the package private part or
the package body is reasonable, but only one of the two is amenable to future requirements.

Specifically, placement in the private part of the package allows programming by exten-
sion?? via hierarchical child packages. Child packages can be written immediately after the
parent package but can also be written years later, thus accommodating changes due to
new requirements.

Programming by extension allows us to extend an existing package's facilities without hav-
ing to change the existing package at all. Avoiding source code changes to the existing
package is important because doing so might be very expensive. In certified systems, the
changed package would require re-certification, for example. Changes to the parent pack-
age are avoidable because child packages have compile-time visibility to the private part of
the ancestor package (actually the entire ancestor package hierarchy, any of which could
be useful). Thus, the extension in the child package can depend on declarations in the
existing parent package's private part.

Therefore, if the developer can know, with certainty, that no visibility beyond the one pack-
age will ever be appropriate, the declaration should go in the package body. Otherwise, it
should go in the package private part, just in case an extension becomes necessary later.

Using our ADM stack example, we could move the state from the package body to the
private part:

package Integer Stack is
procedure Push (Item : in Integer);
procedure Pop (Item : out Integer);
function Empty return Boolean;
: constant := 100;

(continues on next page)

23 |, Barnes. Programming In Ada 95. Addison-Wesley, 1998.
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(continued from previous page)

private
Values : array (1 .. Capacity) of Integer;
Top : Integer range 0 .. Capacity := 0;

end Integer Stack;

Note that the private part was not otherwise required by the language in this example.

With that change, a new child package could be created with extended functionality:

package Integer_Stack.Utils is
procedure Reset;
end Integer Stack. Utils;

package body Integer Stack.Utils is
procedure Reset is
begin
Top := 0;
end Reset;
end Integer Stack.Utils;

These child packages are not client code, they contain extensions to the existing abstrac-
tion. Hence they are part of what may be considered a subsystem consisting of the original
package and the new child package. The child package contains an extension of the ab-
straction defined by the parent package, so the child is directly related. Given that charac-
terization of child packages we can say that the parent package private part is not visible
to client code and, therefore, does not represent a leak of implementation details to clients.

5.3 Pros

We can extend an abstraction without changing the source code defining that abstraction,
thereby meeting new requirements without incurring potentially expensive redevelopment.

5.4 Cons

Clients could abuse the hierarchical package visibility rules by creating a child package that
doesn't really extend the existing package abstraction.

Abuse of the visibility rules allows child packages that can break the abstraction. For ex-
ample, if we only change the name of procedure Reset in package Integer Stack.Utils
to Lose All Contained Data then the routine has a rather different complexion.

Similarly, abuse of the visibility rules allows child packages that can indirectly leak state
from the parent package. For example:

package Integer Stack.Leaker is
function Current Top return Integer;
end Integer Stack.Leaker;

package body Integer_Stack.Leaker is
function Current Top return Integer is (Top);
end Integer Stack.lLeaker;

We could do that without even requiring a package body, using an expression function for
the completion:

package Integer_Stack.Leaker is
function Current Top return Integer;
(continues on next page)
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(continued from previous page)
private
function Current Top return Integer is (Top);
end Integer Stack.Leaker;

The function must be completed in the private part because that is where compile-time
visibility to the parent begins within a child package.

Code reviews are the only way to detect these abuses, although detection of potential cases
could be automated with an analysis tool such as Libadalang??.

5.5 Relationship With Other Idioms

We assume the use of the Abstract Data Type (page 11) or Abstract Data Machine (page 17)
idioms for the existing package abstraction, as well as for the child package.

5.6 Notes

This guideline will already be used when developing a subsystem (a set of related packages
in an overall hierarchy) as a structuring approach during initial development. The idiom
discussed here is yet another reason to use the private part, but in this case for the sake
of the future, rather than initial, development.

The very first version of Ada (Ada 83) did not have hierarchical library units so, typically,
anything not required in the private part was declared in the package body. Declaring them
in the private part would only clutter the code that had to be there, without any benefit.
The author's personal experience and anecdotal information confirms that after Ada 95
introduced hierarchical library units, some declarations in existing package bodies tended
to "percolate up" to the package declarations' private parts.

22 https://github.com/AdaCore/libadalang
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CHAPTER
SIX

CONSTRUCTOR FUNCTIONS FOR ABSTRACT DATA TYPES

6.1 Motivation

In languages supporting object-oriented programming (OOP), including Ada, constructors
are not inherited when one type is derived from another. That's appropriate because, in
general, they would be unable to fully construct values for the new type. The purpose
of this idiom is to explain how Ada defines constructors, how the language rules prevent
constructor inheritance, and how to design the constructor code in light of those rules.

Ada uses tagged types to fully support dynamic OOP. Therefore, in the following, a derived
type refers to a tagged type that is declared as a so-called type extension — a form of
inheritance — based on some existing parent tagged type. The extension consists of ad-
ditional components and/or additional or changed operations beyond those inherited from
the existing parent type.

This discussion assumes these tagged types are declared in packages designed using the
Abstract Data Type (page 11) (ADT) idiom. We strongly recommend the reader be comfort-
able with that idiom before proceeding.

As abstract data types, the parent type is a private type, and the derived type is a private
extension. A private extension is a type extension declaration that does not reveal the
components added, if any. The parent type could itself be an extended type, but the point
is that these types will all be private types one way or another. Declarations as private types
and private extensions are not required by the language for inheritance, but as argued in
the ADT idiom discussion, doing so is recommended in the strongest terms. OOP doesn't
change that, and in fact the encapsulation and information hiding that are characteristic of
the ADT idiom are foundational principles for OOP types.

For an example of a private extension, given a tagged type named Graphics.Shape one
can declare a new type named Circle via type extension:

type Circle is new Graphics.Shape with private;

This declaration will be in the public part of a package, but, as a private type extension,
the additional components are not compile-time visible to client code, conforming to ADT
requirements. That's what the reserved word private indicates in the type declaration.

Instead of a distinct constructor syntax, Ada uses regular functions to construct objects.
Specifically, so-called constructor functions are functions that return an object of the type.

type Circle is new Graphics.Shape with private;

function New Circle (Radius : Float) return Circle;

Like any function there may be formal parameters specified, but not necessarily.

Functions and procedures that manipulate objects of the private type are primitive opera-
tions for the type if they are declared in the same package as the type declaration itself.
For procedures, that means they have formal parameters of the type. For functions, that
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means they either have formal parameters of the type, or return a value of the type, or
both.

Declaration within the same package as the type itself provides the compile-time visibility
to the type's representation required to implement the subprograms.

Other operations might be declared in the same package too, but if they do not manipulate
or return values of the type they are not primitive operations for the type. (Their location
in that package is somewhat suspect and should be reviewed explicitly.)

Primitive operations, and only primitive operations, are inherited during type derivation.
If you think in terms of Abstract Data Types all these rules make sense.
Now, here's the rub.

Constructor functions require that same compile-time visibility so the intuitive approach
will be to declare them in the same package declaration as the type. As a result, they will
be primitive operations for that type.

However, that means that the constructor functions will be inherited, contrary to the expec-
tation for constructors. Therefore, Ada has rules specific to primitive constructor functions
that have the effect of preventing their inheritance.

The explanation and illustration for these rules first requires explanation of the word ab-
stract. We mentioned above that the package enclosing the type will be designed with the
Abstract Data Type (page 11) idiom. In that idiom abstract means that the type represents
an abstraction. (See that section for the details.)

The term abstract also has a meaning in OOP, one that is unrelated to an ADT. In OOP, an
abstract type is one that defines an interface but at most a partial implementation. As such,
the type can serve as the ancestor type for derived types but cannot be used to declare
objects. An abstract type in Ada includes the reserved word abstract in the declaration.
For example:

type Foo is abstract tagged private;

Similarly, subprograms can be abstract. These again define an interface, via the subpro-
gram formal parameters and result type, but are not callable units. In Ada these too include
the word abstract in their declarations, for example:

procedure Do Something (This : in out Foo) is abstract;

Now we can explain how Ada prevents constructor inheritance.

Whenever a tagged type is extended, all inherited constructor functions automatically be-
come abstract functions for the extended type, just as if they were explicitly declared ab-
stract.

However, only abstract types can legally have abstract primitive operations. Concrete types
may not, so that we can never dynamically dispatch to a subprogram without an actual
implementation.

Therefore, unless the extended child type is itself abstract, the type extension will be illegal.
The compiler will reject the declaration of the child type, thus preventing this inappropriate
constructor inheritance.

For an example, both to illustrate the code and the Ada rules, consider this simple package
declaration that presents the tagged private type Graphics.Shape:

package Graphics is
type Shape is tagged private;
function Make (X, Y : Float) return Shape;
private
(continues on next page)
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(continued from previous page)
type Shape is tagged record

X : Float := 0.0;
Y : Float := 0.0;
end record;

end Graphics;

Note in particular the primitive constructor function named Make that constructs a value of
type Shape.

Because type Shape is tagged, other types can extend it:

with Graphics;
package Geometry is
type Circle is new Graphics.Shape with private; -- a private extension

private
type Circle is new Graphics.Shape with record
Radius : Float;
end record;
end Geometry;

Type Circle automatically inherits the components and primitive operations defined by
type Shape, including the constructor function Make. No additional declarations are re-
quired in order to inherit these operations or components. The inherited operations are
now primitive operations for the new type.

Inherited primitive operations have an unchanged formal parameter and result-type profile,
except for the controlling parameter type name, so although Make now returns a Circle
object, the function still only has parameters for the Xand Y components. Hence this version
of Make could not set the Radius component in the returned Circle value to anything other
than some default.

Therefore, to prevent this inherited function from being available, two Ada rules come into
play. The first rule specifies that the implicit function is inherited as if declared explicitly
abstract:

function Make (X, Y : Float) return Circle is abstract;
-- as actually inherited, implicitly

Note the reserved word abstract in the implicit function declaration. This declaration
doesn't actually appear in the source code because all the inherited primitive operations
are implicitly declared.

Another rule specifies that only abstract types can have abstract primitive subprograms.
Type Circle is not abstract in this sense, therefore the combination of those two rules
makes the Circle type extension illegal. Package Geometry will not compile successfully.

Failing to compile is safe — it prevents clients from having a callable function that in general
cannot suffice — but requires an alternative so that sufficient constructor functions are
possible.

Therefore, a general design idiom is required for defining constructor functions for concrete
tagged Abstract Data Types.

6.2 Implementation(s)

The general approach uses functions for constructing objects but prevents these functions
from being inherited. The problem is thus circumvented entirely.

To prevent their being inherited, the implementation prevents the constructor functions
from being primitive operations. However, these functions require compile-time visibility
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to the parent type's representation in order to construct values of the type, as this typically
involves assigning values to components in the return object. The alternative approach
must supply the compile-time visibility that primitive operations have.

Therefore, the specific implementation is to declare constructor functions in a separate
package that is a child of the package declaring the tagged type. This takes advantage of
the hierarchical library units capability introduced in Ada 95.

Operations declared in a child package are not primitive operations for the type in the
parent package, so they are not inherited when that type is extended. Consequently they
do not become abstract.

In addition, the required visibility to the parent type's representation in the private part will
be available to the functions' implementations because the private part and body of a child
package have compile-time visibility to the parent package's private part.

In this idiom, any package declaring a tagged type, either directly or by type extension, will
have a constructors child package if constructors are required. For example:

package Graphics.Constructors is
function Make (X, Y : Float) return Shape;
end Graphics.Constructors;

and similarly, for Circle:

package Geometry.Constructors is
function Make (X, Y, R : Float) return Circle;
end Geometry.Constructors;

Each of these two package declarations will have a package body containing the body of the
corresponding function. In fact such packages can declare as many constructor functions
as required, overloaded or not.

Clients that want to use a constructor function will specify the constructor package in the
context clauses for their units, as usual. The constructor package body for an extended
type might very well do so itself, as shown below:

with Graphics.Constructors; use Graphics.Constructors;
package body Geometry.Constructors is
function Make (X, Y, R : Float) return Circle 1is
(Circle' (Make (X, Y) with Radius => R));
end Geometry.Constructors;

Of course, the name "Constructors" is not required for the child packages. It could be
"Ctors", for example (a name common in C++), or something else. But whatever the
choice, regularity enhances comprehension so the same child package name should be
used throughout.

6.3 Pros

The issue is sidestepped entirely, and as an additional benefit, the parent packages are
that much simpler because the constructor function declarations and bodies are no longer
present there. The constructors child packages themselves will be relatively simple since
they contain only the constructor functions and any ancillary code required to implement
them. Simpler code enhances comprehension and correctness.

Having the constructors declared in separate packages applies the principle of Separation
of Concerns, between the code defining the type's semantics and the code for constructing
objects of the type. This principle also enhances comprehension.
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6.4 Cons

There will be a child package for each tagged type that requires constructors, hence more
packages and files (assuming one unit per file, which is desirable in itself, even if not re-
quired by the language).

Some developers might argue for having fewer files, presumably containing larger units.
In the author's experience larger units make comprehension, and therefore correctness,
unjustifiably difficult if smaller units are possible. Some units are unavoidably large and
complicated but often we can achieve relative simplicity.

For those developers, however, the constructor package could be declared instead as a
nested package located within the package defining the tagged type. Doing so would
achieve the same effect as using a child package because the contained functions would
not be primitive. Therefore, they would not inherited.

This alternative would reduce the number of files back to the minimum. However, the
defining package would be relatively more complicated because of this nested package.
Note that the nested package declaration would require a nested package body too.

In short, the alternative reduces the number of files at the cost of additional unit complexity.
(If the issue with the larger number of files is difficulty in locating individual entities of
interest, any decent IDE will make doing so trivial.)

The alternative also loses the distinction between clients that use objects of the type and
clients that create those objects, because, with the child package approach, the latter will
be the only clients that have context clauses for the constructor packages.

6.5 Relationship With Other Idioms

N/A

6.6 Notes

For those interested, in this section we provide a discussion of alternatives to the imple-
mentation presented, and why they are inadequate.

Changing the behavior of an inherited operation requires an explicit conforming subprogram
declaration and therefore a new subprogram body for that operation. This change is known
as overriding the inherited operation.

Package Geometry could declare a function with the additional parameters required to fully
construct a value of the new type. In this case the new constructor would include the
Radius parameter:

function Make (X, Y, Radius : Float) return Circle;
But such a function would not be overriding for the inherited version because the parameter

and result type profile would be different. This function Make would overload the inherited
function, not override it. The inherited function remains visible, as-is.

In fact, we could even have the compiler confirm that this is not an overriding function by
declaring it so:

not overriding function Make (X, Y, Radius : Float) return Circle;

In general, specifying that a subprogram is not overriding is less convenient than specifying
that it is overriding. We only do so in these examples to make everything explicit.
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Because that new function is not overriding, the inherited version remains implicitly ab-
stract and the type extension remains illegal. Developers could also override the inherited
function, which would make the code legal, but as we have said such a function cannot
properly construct values in general, and might be called accidentally. For example:

with Graphics;
package Geometry is
type Circle is new Graphics.Shape with private;

overriding function Make (X, Y : Float) return Circle;

not overriding function Make (X, Y, Radius : Float) return Circle;
-- overloading

private

end Geometry;

Although the overridden Make does not have a Radius parameter and could only assign
some default to that component, if that default is reasonable then the overridden function
could be called on purpose, i.e., not accidentally. That's not a general approach, however.

Alternatively, developers could use procedures as their constructors, with a mode-out pa-
rameter for the result. The procedure would not become implicitly abstract in type exten-
sions, unlike a function.

package Graphics is

type Shape is tagged private;

procedure Make (Value : out Shape; X, Y : in Float);
private

end Graphics;

And then the client extension would inherit the procedure:

with Graphics;
package Geometry is

type Circle is new Graphics.Shape with private;

-- procedure Make (Value : out Circle; X, Y : in Float); -- inherited
private

end Geometry;

However, although now legal, the inherited procedure would not suffice, lacking the re-
quired parameter for the Radius component.

Developers might then add an overloaded version with the additional parameter:

with Graphics;
package Geometry is
type Circle is new Graphics.Shape with private;

-- procedure Make (Value : out Circle; X, Y : in Float);
-- Inherited

not overriding procedure Make (Value : out Circle; X, Y, R : in Float);
-- not inherited
private

end Geometry;

But the same issues arise as with functions. Clients might accidentally call the wrong proce-
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dure, i.e., the inherited routine that doesn't have a parameter for the Radius. That routine
would not even mention the Radius component, much less assign a default value, so it
would have to be overridden in order to do so. This too is not a general approach.
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CHAPTER
SEVEN

CONTROLLING OBJECT INITIALIZATION AND CREATION

7.1 Motivation

Developers are responsible for ensuring that no uninitialized objects are read in Ada pro-
grams. Default initialization is a good way to meet this requirement because it is guaran-
teed to happen and requires no actions on the part of the client code. But of the many
kinds of types provided by Ada, only access types have a language-defined default initial
value. Fortunately, Ada supports user-defined default initialization for user-defined types.

Default initialization is conveniently expressed, especially because components of record
types can have default initial values. Record types are perhaps the most commonly used
non-numeric type in the language. Sometimes a given type was wrapped inside a record
type purely for the sake of default component initialization, e.g., numeric types. That wrap-
ping approach is less common than in earlier versions of the language, given the compara-
tively more recent aspect Default Value for scalar types, and Default Component Value
for scalar array components.

These facilities are often sufficient to express an abstraction's initial state. For example, we
can expect that container objects will be initially empty. Consider a bounded stack ADT. The
representation is likely a record type containing an array component and a Top component
indicating the index of the last array component used. We can default initialize objects to
the empty state simply by setting Top to zero in the record component's declaration:

type Content is array (Positive range <>) of Element;
type Stack (Capacity : Positive) is record

Values : Content (1 .. Capacity);

Top : Natural := 0;
end record;

For an unbounded container such as a simple binary tree, if the representation is an access
type, the automatic default value null initializes Tree objects to the empty state.

package Binary Trees is
type Tree is limited private;

private
type Leaf_and_Branch is record ...
type Tree is access Leaf _and Branch;

end Binary Trees;
In both cases, simply declaring an object in the client code is sufficient to ensure it is initially
empty.

However, not all abstractions have a meaningful default initial state. Default initialization
will not suffice to fully initialize objects in these cases, so explicit initialization is required.

An explicit procedure call could be used to set the initial state of an object (passed to a
mode-out parameter), but there is no guarantee that the call will occur and no way to force
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a client to make it.

In contrast, the declaration of the object is guaranteed to occur, and as part of the declara-
tion the object can be given an explicit initial value. The initial value can be specified by a
literal for the type, by the value of another object of that type, or by the value of that type
returned from a function call.

declare
X : Integer := Some Existing Integer Object;
: constant String := "Name? ";
: constant String := Response (Prompt);
begin
end;

The initial value can also specify constraints, if required. In the code above, the object
Prompt has a lower bound of Positive'First and an upper bound set to the length of the
literal. The specific bounds of Reply are determined by the function, and need not start at
Positive'First.

An object cannot be used before it is declared. Since this explicit initial value is part of the
declaration, the object cannot be read before it is initialized. That fact is the key to the
implementation approaches.

However, although the object declaration is guaranteed to occur, explicit initialization is
optional. But unlike a procedure call, we can force the initial value to be given. There are
two ways to force it, so there are two implementations presented.

In addition, a specific form of explicit initialization may be required because not all forms
of initialization are necessarily appropriate for a given abstraction. Imagine a type repre-
senting a thread lock, implemented in such a way that default initialization isn't an option.
Unless we prevent it, initialization by some other existing object will be possible:

declare
X : Thread Lock :=Y; -- Y 1s some other Thread Lock object
begin

end;

This would amount to a copy, which might not make sense. Imagine the lock type contains
a queue of pending callers...

More generally, if a type's representation includes access type components, initialization
by another object will create a shallow copy of the designated objects. That is typically
inappropriate.

Using an existing object for the initial value amounts to a complete copy of that other object,
perhaps more of a copy than required. For example, consider a bounded container type,
e.g., another stack, backed by an array and an index component named Top. At any time,
for any stack, the contained content is in the slice of the array from 1 up to Top. Any array
component at an index greater than Top has a junk value. Those components may never
even have been assigned during use. Now consider the declaration of a Stack object, A,
whose initial value is that of another existing Stack named B.

A : Stack := B;

The entire value of B is copied into A, so B.Top is copied to A.Top, which makes sense.
But likewise, the entire array in B will be copied to the array in A. For a stack with a large
backing array that might take a significant amount of time. If B is logically full then the time
required for the full array copy is unavoidable. But if only a few values are contained by B,
the hit could be avoided by only copying up to Top.

And of course, the initial value might require client-specific information.
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Calling a constructor function (page 27) for the initial value would be the right approach
in these cases, returning an object of the type. The function might even take an existing
object as a parameter, creating a new object with only the necessary parts copied.

Therefore, for some abstractions, not only do we need to guarantee explicit object initial-
ization, we may also need to restrict the form of initial value to a function call.

The other purpose of the idiom is controlling, for some type, whether object creation itself
is to be allowed by clients. As you will see, controlling object initialization can be used to
control object creation.

Preventing object creation is not typical but is not unknown. The singleton design pattern?*
is an example, in which a type is defined but corresponding object creation by clients is not
intended. Instead, the abstraction implementation creates a single object of the type. The
abstraction is a type, rather than an ADM (page 17), for the sake of potential extension via
inheritance. We will illustrate this design pattern and implementation using a real-world
hardware device.

7.2 Implementation(s)

There are two ways to force an explicit initial value as part of an object declaration. One is
a matter of legality at compile-time so it is enforced by the compiler. The other is enforced
by a run-time check.

Note that both approaches are type-specific, so when we say objects we mean objects
of a type that has been designed with one of these two idiom implementations. Neither
implementation applies to every object of every type used in the client code. (SPARK, a
formal language based closely on Ada, statically ensures all objects are initialized before
read.)

The ADT idiom (page 11) describes Ada building blocks that developers can use to compose
types with semantics that we require. We can declare a type to be private, for example, so
that the implementation is not compile-time visible to clients.

In addition to private types, we can decorate a type declaration with the reserved word
limited so that assignment is not allowed (among other things) for client objects of the
type. We can combine the two building blocks, creating a type that is both private and
limited.

Throughout this discussion we will assume that these designs are based on Abstract Data
Types (page 11), hence we assume the use of private types. That's a general, initial design
assumption but in this case private types are required by the two idiom implementations.
The types are not necessarily limited as well, but in one situation they will be limited too.
But in both implementations the primary types will be private types.

7.2.1 Compile-Time Legality

We can combine the private type and limited type building blocks with another, known as
unknown discriminants, to force explicit object initialization by clients, to control the form
of explicit initialization, and, when required, to control client object creation itself. Limited
and private types are fairly common building blocks, but unknown discriminants are less
common so we will first explain them, and then show how to utilize the combinations for
this idiom.

Discriminants are useful for our purpose because types with discriminants are indefinite
types (under certain circumstances). Indefinite types do not allow object declarations with-
out also specifying some sort of constraints for those objects. Unconstrained array types,
such as String, are good examples. We cannot simply declare an object of type String
without also specifying the array bounds, one way or another:

24 https://en.wikipedia.org/wiki/Singleton_pattern
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with Ada.Text IO0; use Ada.Text IO;
procedure Initialization Demo is
S1 : String (1 .. 11) := (others => ' ');

S2 : String := "Hello World";
S3 : String := S1;
begin

Put Line ('"' & S1 & '"');

Put Line ('"" & S2 & '"');

Put Line ('"" & S3 & '"');
end Initialization Demo;

In the code above, String objects S1, S2, and S3 all have the same constraints: a lower
bound of Positive'First and an upper bound of 11. S1 gives the bounds directly, whereas
S2 and S3 take their constraints from their initial values. A function that returned a String
value would suffice for the initial value too and would thus serve to specify the array bounds.
There are other ways to specify a constraint as well, but we can ignore them in this idiom
because the building blocks we'll use preclude them.

Types with discriminants are indefinite types unless the discriminants have default values.
That fact will not apply in this idiom because of the characteristics of the building blocks. You
will see why in a moment. The important idea is that we can leverage the object constraint
requirements of indefinite types to force explicit initialization on declarations.

Discriminants come in two flavors. So-called known discriminants are the most common.
These discriminants are known in the sense that they are compile-time visible to client
code. Clients then have everything needed for declaring objects of the corresponding type.
For example, here is the type declaration for a bounded stack ADT:

type Stack (Capacity : Positive) is private;

In the above, Capacity is the physical number of components in the array backing the
bounded implementation. Clients can, therefore, have different objects of the type with
different capacities:

Trays : Stack (Capacity => 10);
Operands : Stack (100);

The existence of Capacity is known to clients via the partial view, so the requirement for
the constraint is visible and can be expressed.

In contrast, types may have unknown discriminants in the client's view. The syntax reflects
their confidential nature:

type Foo (<>) is private;

The parentheses are required as usual, but the box symbol appears inside, instead of one
or more discriminant declarations. The box symbol always indicates not specified here so in
this case no discriminants are included in the view. There may or may not be discriminants
in the full view, but client's don't have compile-time visibility to that information because
the type is private.

Unknown discriminants can be specified for various kinds of types, not only private types.
See the Notes section (page 52) for the full list. That said, combining them with private
type declarations, or private type extension declarations, is the most common usage when
composing abstraction definitions. For example:

package P is

type Q (<>) is private;
private

type Q is range 0 .. 100;
end P;
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Clients of package P must use type Q as if Q requires discriminant constraints, even though
clients don't have compile-time visibility to whatever constraints are actually required, if
any. In the above, Q is just an integer type in the full view. No constraint is required to
create objects of type Q, but clients cannot take advantage of that fact because they only
have the partial view. Only the package private part, the package body, and child units
have the visibility required to treat Q as an integer type.

Q might actually be completed as an indefinite type, but the constraint required need not
be a discriminant constraint. In the following, objects of type Q require an array bounds
constraint:

package P is

type Q (<>) is private;
private

type Q is array (Positive range <>) of Integer;
end P;

Code with the full view must respect the index bounds requirement, but the semantics of
the partial view remain the same.

As illustrated, the consequence of combining indefinite types with private types is that,
when declaring objects, clients must express a constraint but cannot do so directly. The
constraints must instead be provided by the initial value. Hence, for these types, the initial
value is now a requirement that the compiler enforces on client object declarations.

But because the type is private, the initial value cannot be specified by a literal. Instead,
the initial value must be either an existing object of the type, or the result of a call to a
function that returns an object of the type.

Consider the following:

package P is

type Q (<>) is private;

function F return Q;
private

type Q is range 0 .. 100;
end P;

package body P is

function F return Q is (42);

-- since that is the answer to everything...
end P;

with P;
procedure Demo is
Objl : P.Q; -- not legal, requires initial value for constraint
0bj2 : P.Q 42; -- not legal, per client's partial view
0bj3 : P.Q P.F;
Obj4 : P.Q 0bj3;
begin
null;
end Demo;

The declaration for 0bj1 is illegal because no constraint is provided. Because P.Q is also
private, the declaration of 0bj2 is illegal because clients don't have the full view supporting
integer usage. But the initial value can be provided by a function result (0bj3), thereby
also specifying the required constraint. And an existing object can be used to give the
constraints to other objects during their declarations (0bj4). Explicit client initialization in
these two ways is required by the compiler for indefinite private types.

But as illustrated by the spin-lock example, initialization by an existing object is not always
appropriate. We can restrict the initial value to a function call result by making the type
limited as well as private and indefinite. Then only constructor functions can be used legally
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for the initial values, and the compiler will require them to be called during object declara-
tions (e.g., Obj3 above). That's what we'd do for the spin-lock type. We'd make the type
limited in the completion too, to prevent copying in any form, including the function result.
(The function result would then be built in place instead of copied.)

To recap, the primary purpose of the idiom, for a given type, is to ensure that clients initialize
objects of that type as part of the object declarations. In this first implementation we meet
the requirement by composing the type via building blocks that:

1. require a constraint to be given when declaring any object of the type, and

2. require an initial value to give that constraint, and

3. allow only objects and function call results as the initial values, and

4. when necessary, allow only function call results to be used for the initial values.

The compiler will reject declarations that do not adhere to these rules. Explicit initialization
in the client code is thus guaranteed.

For a concrete example, consider a closed loop process controller, specifically a
proportional-integral-derivative (PID) controller?>. A PID controller examines the differ-
ence between an intended value, such as the desired speed of your automobile, and the
current value (the actual speed). In response to that difference the controller increases or
decreases the throttle setting. This measurement and resulting control output response
happens iteratively at some rate. This is a sophisticated ADT, and explaining how a PID
controller actually works is beyond the scope of this document. There are numerous web
sites available that describe them in detail. What you should know for our purpose is that
they are used to control physical processes, such as your car's cruise control system, that
affect our lives directly. Ensuring proper initialization is part of ensuring correct use.

The PID controller must be explicitly initialized because there is no default initial state that
would allow subsequent safe use. Only a partial meaningful state can be defined by de-
fault. Specifically, a PID controller can be enabled and disabled by the user (the external
process control engineer) at arbitrary times. We can define default initialization such that
the objects are initially in the disabled state. When disabled, the output computation actu-
ally affects nothing, so starting from that state would be safe. However, there is nothing to
prevent the user from enabling the controller object without first configuring it. Configuring
the various parameters is essential for safe and predictable behavior.

To address that problem, we could add operation preconditions requiring the object to be
in some configured state, but that isn't always appropriate. Such a precondition would
just raise an exception, which isn't in the use-cases. (Statically proving prior configuration
in the client code would be a viable alternative, but that's also beyond the scope of this
document.)

Therefore, default initialization doesn't really suffice for this ADT. We need to force initial-
ization (configuration) during object creation so that enabling the ADT output will always
be safe. This idiom implementation does exactly that.

The following is a cut-down version of the package declaration using this idiom implemen-
tation, with some operations and record components elided for the sake of simplicity. In the
full version the unit is a generic package for the sake of not hard-coding the floating point
types. We use a regular package and type Float here for convenience. The full version is
here:

 AdaCore/Robotics_with_Ada/src/control_systems (GitHub)2°

package Process Control is

type PID Controller (<>) is tagged limited private;
(continues on next page)

25 https://en.wikipedia.org/wiki/Proportional-integral-derivative_controller
26 https://github.com/AdaCore/Robotics_with_Ada/blob/master/src/control_systems/
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(continued from previous page)

type Bounds is record
Min, Max : Float;

end record with
Predicate => Min < Max;

type Controller_Directions is (Direct, Reversed);
type Millisecond Units is mod 2**32;

subtype Positive_Milliseconds is
Millisecond Units range 1 .. Millisecond Units'lLast;

function Configured Controller
(Proportional Gain : Float;

Integral Gain : Float;

Derivative Gain : Float;

Invocation Period : Positive Milliseconds;

OQutput Limits : Bounds;

Direction : Controller Directions := Direct)

return PID Controller;

procedure Enable

(This : in out PID Controller;
Process Variable : Float; -- current input value from the process
Control Variable : Float); -- ~current output value

procedure Disable (This : in out PID Controller);

procedure Compute Output

(This : in out PID Controller;

Process Variable : Float; -- the input, Measured Value/Variable
Setpoint : Float;

Control Variable : in out Float); -- the output, Manipulated Variable

function Enabled (This : PID Controller) return Boolean;
private
type PID Controller is tagged limited record

Enabiéa : Boolean;
end record;

end Process Control;

As you can see, the PID controller type is indefinite limited private:

type PID Controller (<>) is tagged limited private;

It is also tagged, primarily for the sake of the distinguished receiver call syntax. We don't
really expect type extensions in this specific ADT, although nothing prevents them.

Therefore, the language requires an initial value when creating objects of the type, and
because the type is limited, a function must be used for that initial value. The compiler will
not compile the code containing the declaration otherwise. The only constructor function
provided is Configured Controller so itis guaranteed to be called. (A later child package
could add another constructor function (page 27). For that matter, we probably should have
declared this one in a child package. In any case one of them is guaranteed to be called.)
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Here is an example declaration taken from the steering control module for an RC car written
in Ada?’.

The PID controller, named Steering Computer, is declared within the body of a task Servo
that controls a motor, Steering Motor, in response to requested directions from the remote
control. Steering Motor is an instance of an ADT named Basic Motors, and is declared
elsewhere. The Servo task is declared within the body of a package that contains various
values referenced within the task, such as the various PID gain parameters, that are not
shown.

task body Servo is

Next Release : Time;

Target Angle : Float;

Current_Angle : Float := 0.0;

-- zero for call to Steering Computer.Enable
Steering Power : Float := 0.0;

-- zero for call to Steering Computer.Enable
Motor Power : NXT.Motors.Power Level;
Rotation Direction : NXT.Motors.Directions;
Steering Offset : Float;

Steering Computer : PID Controller :=
Configured Controller
(Proportional Gain => Kp,

Integral Gain = Ki,

Derivative Gain => Kd,

Invocation Period => System Configuration.Steering Control Period,
Output Limits => Power Level Limits,

Direction => (Closed Loop.Direct);

begin
Global Initialization.Critical Instant.Wait (Epoch => Next Release);
Initialize Steering Mechanism (Steering Offset);
Steering Computer.Enable (Process Variable => Current Angle,
Control Variable => Steering Power);
loop
Current_Angle := Current Motor Angle (Steering Motor) -
Steering Offset;
Target Angle := Float (Remote Control.Requested Steering Angle);
Limit (Target Angle, -Steering Offset, +Steering Offset);
Steering Computer.Compute Output
(Process Variable => Current_Angle,
Setpoint => Target Angle,
Control Variable => Steering Power);
Convert To Motor Values (Steering Power,
Motor_ Power,
Rotation Direction);
Steering Motor.Engage (Rotation Direction, Motor Power);

Next Release := Next Release + Period;
delay until Next Release;
end loop;
end Servo;

Because Steering Computer must be declared before it can be passed as a parameter, the
call to configure the object's state necessarily precedes any other operation (e.g., Enable).

7.2.2 Run-Time Checks

Ada 2022 adds another building block, Default Initial Condition (DIC), that can be
used as an alternative to the unknown discriminants used above. We must still have a
private type or private type extension, and the type may or may not be limited, but unknown
discriminants will not be involved. The compiler would not allow the combination, in fact.

27 https://blog.adacore.com/making-an-rc-car-with-ada-and-spark
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DIC is an aspect applied to a private type or private extension declaration. Developers use
it to specify a developer-defined Boolean condition that will be true at run-time after the
default initialization of an object of the type. Specifically, if Default Initial Condition
is specified for a type, a run-time check is emitted for each object declaration of that type
that uses default initialization. The check consists of the evaluation of the DIC expression.
The exception Assertion Error is raised if the check fails. You can think of this aspect
as specifying the effects of default initialization for the type, with a verification at run-time
when needed. No check is emitted for those declarations that use explicit initialization.

For example, the following is a partial definition of a Stack ADT. It is only a partial definition
primarily because Pop is not provided, but other operations would be included as well.
Moreover, a fully realistic version would be a generic package. We have used a subtype
named Element as a substitute for the generic formal type what would have had that name.
Note that there is a Default Initial Condition aspect specifying that any object of type
Stack is initially empty as a result of default initialization. The argument to the function call
is the corresponding type name, representing the current instance object, thus any object
of the type.

package Bounded Stacks is

subtype Element is Integer;
-- arbitrary substitute for generic formal type

type Stack (Capacity : Positive) is limited private with
Default Initial Condition => Empty (Stack);

procedure Push (This : in out Stack; Value : Element) with
Pre => not Full (This),
Post => not Empty (This);
function Full (This : Stack) return Boolean;
function Empty (This : Stack) return Boolean;
private
type Contents is array (Positive range <>) of Element;
type Stack (Capacity : Positive) is limited record
Content : Contents (1 .. Capacity);
Top : Natural :=0;

end record;

function Full (This : Stack) return Boolean 1is
(This.Top = This.Capacity);

function Empty (This : Stack) return Boolean is
(This.Top = 0);

end Bounded Stacks;
package body Bounded Stacks is
procedure Push (This : in out Stack; Value : Element) is
begin
This.Top := This.Top + 1;
This.Content (This.Top) := Value;
end Push;

end Bounded Stacks;

with Ada.Text I0; use Ada.Text IO;
(continues on next page)
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(continued from previous page)
with Bounded Stacks; use Bounded Stacks;

procedure Demo is
S : Stack (Capacity => 10);

begin

Push (S, 42);

Put Line ("Done");
end Demo;

The function Empty returns True when Top is zero, and zero is assigned to Top during default
initialization. Consequently, Assertion Error is not raised when Demo executes because
the object S was indeed default initialized to the empty state.

We said that when DIC is applied to a type, the run-time check is emitted for all object
declarations of that type that rely on default initialization. But suppose the type does not
define any default initialization. We can detect these uninitialized objects at run-time if we
set the DIC Boolean expression to indicate that there is no default initialization defined for
this type. The checks will then fail for those objects. That's the second implementation
approach to the initialization requirement.

Specifically, we can express the lack of default initialization by a DIC condition that is hard-
coded to the literal False. The evaluation during the check will then necessarily fail, raising
Assertion Error. Hence, for this type, explicit initialization is guaranteed in a program
that does not raise Assertion Error for this cause.

The following is an example of the DIC set to False:
package P is

type Q is limited private with
Default Initial Condition => False;

function F return Q;
private

type Q is range -1 .. 100;
end P;
package body P is

function F return Q is (42);
end P;
with Ada.Text I0; use Ada.Text I0;
with P; use P;
procedure Main is

: constant Q := F;

0bj2 : Q; -- triggers Assertion Error
begin

Put Line (Objl'Image);

Put Line (Obj2'Image);

Put Line ("Done");
end Main;

In the above, Assertion Error is raised by the elaboration of Obj2 because the DIC check
necessarily fails. There is no check on the declaration of Obj1l because it is initialized,
explicitly.
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To recap, we can ensure initialization for objects of the type by detecting, during elaboration
at run-time, any objects not explicitly initialized.

This approach is sufficient because when elaboration of an object declaration raises an ex-
ception, no use of that object is possible. That's guaranteed because the frame containing
that declarative part is immediately abandoned and the exception is propagated up to the
previous level. A local handler never can apply. But even if there is a matching handler in
the previous level, there's really nothing much to be done. Re-entering the frame contain-
ing the declaration will raise the exception all over again, necessarily. Thus the code will
have to be changed and recompiled, meeting the goal of the idiom.

We can illustrate this assurance using Storage Error. Consider the following program, in
which the main procedure calls an inner procedure P:

with Text IO; use Text IO;
procedure Main is

procedure P (Output : out Float) is
N : array (Positive) of Float; -- Storage Error is likely
begin
Put Line ("P's body assigns N's components and uses them");
-- The following indexes and component values are arbitrary
-- and used purely for illustration...
N := (others => 0.0);
-- other computations and assignments to N ...
Output := N (5);
exception
when Storage Error =>
OQutput := N (1);
end P;

X : Float;

begin

P (X);

Put Line (X'Image);

Put Line ("Done");
exception

when Storage Error =>

Put Line ("Main completes abnormally");

end Main;

When Main calls P, the elaboration of the declarative part of P almost certainly fails because
there is insufficient storage to allocate to the object P.N, hence Storage Error is raised.
(If your machine can handle the above, congratulations.) Even though procedure P has a
handler specifically for Storage Error, that handler never applies because the declarative
part is immediately abandoned. Instead, the exception is raised in the caller, where it can
be caught. This behavior is essential to ensure that problematic objects are not referenced
in the local handlers. In the above, the handler in P for Storage Error references the
object P.N to assign the P.Output parameter. If that assignment could happen — again, it
cannot — what would it mean, functionally? No one knows.

Handling Storage Error is a little tricky anyway. Does the OS give the program a chance
to execute a handler? If so, is there sufficient storage remaining to execute the exception
handler's statements? In any case you can see the problem that the declaration failure
semantics preclude.

Therefore, although the DIC approach is not enforced at compile-time, it is nevertheless
sufficient to ensure no uninitialized object of the type can be used.
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7.2.3 Preventing Object Creation by Clients

The other idiom requirement is the ability to control object creation itself. The implemen-
tation is trivially achieved using an indefinite limited private type: we can prevent client
object creation simply by not providing any constructor functions. Doing so removes any
means for initializing objects of the type, and since the type is indefinite there is then no
way for clients to declare objects at all. The compiler again enforces this implementation.

For a concrete example, we can apply the Singleton design pattern to represent the time
stamp counter (TSC?®) provided by x86 architectures. The TSC is a 64-bit hardware register
incremented once per clock cycle, starting from zero at power-up. We can use it to make
a timestamp abstraction. As explained by Wikipedia page??, some care is required when
using the register for that purpose on modern hardware, but it will suffice to illustrate the
idiom implementation. Note that the Singleton pattern is itself somewhat controversial in
the OOP community, but that's beyond the scope of this document.

Why use the Singleton pattern in this case? Ordinarily, clients of some ADT will reasonably
expect that the states of distinct objects are independent of each other. When using an
ADT to represent a single piece of hardware, however, this presumption of independence
will not hold because the device is shared by all the objects, unavoidably. The singleton
idiom prevents the resulting problems by precluding the existence of multiple objects in
the first place.

In this specific case, the time stamp counter hardware is read-only, so the lack of indepen-
dence is not an issue. Multiple objects would not be a problem. But many devices are not
read-only, so the singleton pattern is worth knowing.

First we'll define a singleton ADT representing the TSC register itself, then we will extend
that type to add convenience operations for measuring elapsed times. We'll use the design
approach of indefinite limited private types without any constructor functions in order to
ensure clients cannot create objects of the type. The type will also be tagged for the sake
of allowing type extensions. Adding the tagged characteristic doesn't change anything
regarding the idiom implementation.

with Interfaces;
package Timestamp is

type Cycle_Counter (<>) is tagged limited private;

type Cycle_Counter_ Reference is access all Cycle Counter;

function Counter return not null Cycle Counter Reference;

type Cycle_Count is new Interfaces.Unsigned 64;

function Sample (This : not null access Cycle Counter) return Cycle Count;
private

type Cycle_Counter is tagged limited null record;

function Read TimeStamp Counter return Cycle Count with

Import,
Convention => Intrinsic,
External Name => " rdtsc",
Inline;

-- This gcc builtin issues the machine instruction to read the time-stamp
-- counter, i.e., RDTSC, which returns a 64-bit count of the number of
-- system clock cycles since power-up.
(continues on next page)

28 https://en.wikipedia.org/wiki/Time_Stamp_Counter
29 https://en.wikipedia.org/wiki/Time_Stamp_Counter
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(continued from previous page)

function Sample (This : not null access Cycle Counter)
return Cycle Count is
(Read _TimeStamp Counter);
-- The formal parameter This is not referenced

end Timestamp;

Note also that the primitive function named Counter is not a constructor — it doesn't return
an object of the Cycle Counter type. As such, it cannot be used as an initial value for a
Cycle Counter object declaration. Clients cannot, therefore, create their own objects of
type Cycle Counter.

Instead, function Counter returns an access value designating an object of the type. Be-
cause clients cannot declare objects themselves the function is the only way to get an
object, albeit indirectly. Therefore, the function can control how many objects are created.
As you will see, the function only creates a single object of the type.

The type Cycle Counter is completed as a null record because the state is maintained in
the hardware register we're reading.

The function Sample reads the timestamp counter register by calling the
Read TimeStamp Counter function. That second function accesses the TSC register
by executing an assembly language instruction dedicated to that purpose. We could have
Sample issue that instruction instead, without declaring a separate function, but there
is no run-time cost (due to the inlining) and separating them emphasizes that one is a
member of the APl and the other is an implementation artifact. Note that Sample does not
actually reference the formal parameter This. The parameter exists just to make Sample
a primitive function. Assuming we don't have a use-clause for Timestamp, to call Sample
we could say:

TimeStamp.Counter.Sample

for example:

with Timestamp;
with Ada.Text IO0; use Ada.Text IO;

procedure Demo TimeStamp is
begin
for K in 1 .. 10 loop
Put Line (Timestamp.Counter.Sample'Image);
end loop;
end Demo TimeStamp;

The above calls the Timestamp.Counter function and then implicitly dereferences the re-
sulting access value to call the Sample function using the distinguished receiver syntax.
The resulting number is then converted to a String value and output to Standard Output.

We could have instead used positional call notation for the call to Sample:

Timestamp.Sample (Timestamp.Counter)

In that case we need the package name on the references, or we'd add a use-clause.

The package body is shown below. Only the function Counter has a body because Sample
is completed in the package declaration's private part and Read TimeStamp Counteris an
imported intrinsic, i.e., without a body.

package body Timestamp is

(continues on next page)
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The Instance : Cycle Counter Reference;

function Counter return not null Cycle Counter Reference is

begin
if The Instance = null then
The Instance := new Cycle Counter;
end if;

return The Instance;
end Counter;

end Timestamp;

Function Counter creates the single object that this singleton implementation creates. It
does so by lazily allocating an object dynamically. If Counter is never called (because some
subclass is used instead) then no object of type Cycle Counter is created. At most one
Cycle Counter object is ever created.

We could instead declare The Instance as a Cycle Counter object in the package body,
mark it as aliased, and return a corresponding access value designating it. But when objects
are large, declaring one that might never be used is wasteful. The indirection avoids that
wasted storage at the cost of an access object, which is small. On the other hand, now the
heap is involved.

Note that we could have declared The Instance in the private part of the package decla-
ration. Type extensions in child packages could then use it, if needed. Presumably we'd
make The Instance be of some access to class-wide type so that extensions could use it to
allocate objects of their specific type, otherwise extensions in child packages would have
no need for it. But that only saves the storage for an access object in the child packages, so
we leave the declaration in the parent package body. See the Programming by Extension
idiom (page 23) for a discussion of whether to declare an entity in the package private part
or the package body.

Next, we declare a type extension in a child package. The child package body will contain
its own object named The Instance, returning an access value designating the specific
extension type. The client API in the package declaration follows that of the parent type
Cycle Counter, but with additional primitives for working with samples.

package Timestamp.Sampling is
type Timestamp_Sampler is new Cycle Counter with private;
type Timestamp_Sampler_Reference is access all Timestamp Sampler;

function Counter return not null Timestamp Sampler Reference with Inline;
-- returns an access value designating the single instance

procedure Take First Sample (This : not null access Timestamp Sampler)
with Inline;

procedure Take Second Sample (This : not null access Timestamp Sampler)
with Inline;

function First Sample (This : not null access Timestamp Sampler)
return Cycle Count;
function Second Sample (This : not null access Timestamp Sampler)
return Cycle Count;
function Elapsed (This : not null access Timestamp Sampler)
return Cycle Count;
(continues on next page)
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private

type Timestamp_Sampler is new Cycle Counter with record
First : Cycle Count :
Second : Cycle Count :
end record;

= 0;
= 0;

end Timestamp.Sampling;
package body Timestamp.Sampling is
The Instance : Timestamp Sampler Reference;

function Counter return not null Timestamp Sampler Reference is

begin
if The Instance = null then
The Instance := new Timestamp Sampler;
end if;

return The Instance;
end Counter;

procedure Take First Sample (This : not null access Timestamp Sampler) is
begin

This.First := Sample (This);
end Take First Sample;

procedure Take Second Sample (This : not null access Timestamp Sampler) is
begin

This.Second := Sample (This);
end Take Second Sample;

function First Sample (This : not null access Timestamp Sampler)
return Cycle Count is
(This.First);

function Second Sample (This : not null access Timestamp Sampler)
return Cycle Count is
(This.Second);

(continues on next page)
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-- Elapsed --

function Elapsed (This : not null access Timestamp Sampler)
return Cycle Count is
(This.Second - This.First + 1);

end Timestamp.Sampling;

The inherited Sample function is called in the two procedures that take the two samples of
the timestamp register. The formal parameter This is passed to the calls, but as mentioned
earlier the argument is not referenced within Sample. All the formal parameter does is
participate in dispatching the calls to Sample, in this case meaning that the inherited version
of Sample is the one called because This is of the extended type.

But Sample is not overridden in this child package, therefore effectively we are calling the
parent version. Is Sample ever likely to be overridden? Arguably not, because it is so
directly dependent on the underlying hardware. Of course, some future type extension
may override Sample for some unforeseen reason — that's the point of making it possible,
after all. Presumably the overridden version would also call the parent version, otherwise
the timestamp counter would not be accessed. Because we can't say for certain that it will
never need to be overridden, we have made Sample a primitive function, thus overridable.

Suppose we came to the opposite conclusion, that Timestamp.Sample would never need
to be overridden. In that case we have some options worth exploring.

Clearly function Sample must be part of the client API, but that doesn't force it to be a
primitive function.

We could have declared Sample in Timestamp as a visible non-primitive operation, i.e.,
without a formal parameter or function result of the ADT type:

function Sample return Cycle Count with Inline;

As a non-primitive function it would be neither inherited nor overridable. But we'd still be
able to call it in client code.

Yet, as a non-primitive, this version looks like an implementation artifact, hence out of place
as part of the visible client API. It isn't illegal by any means, it just looks wrong.

Furthermore, if we are going to make Sample a non-primitive function, why not re-
move it and replace it with the other non-primitive function Read Timestamp Counter?
Or make the body of Sample call the imported intrinsic, and do away with function
Read Timestamp Counter? There is no clear winner here.

An attractive alternative would be to make Sample be a class-wide operation. To do so, we
make the formal parameter class-wide instead of removing it:

function Sample (This : not null access Cycle Counter'Class)
return Cycle Count
with Inline;

In the version above, the formal parameter type is now (anonymous) access to
Cycle Counter'Class, i.e., class-wide, so in this version Sample can be passed a value
designating an object of type Cycle Counter or any type derived from it. We don't want
to have a null access value passed so we add that to the parameter specification.

In this version the function is again not a primitive operation and so is neither inherited nor
overridable, but because it mentions type Cycle Counter it looks like a reasonable part of
an Abstract Data Type. As it happens this version of Sample also doesn't actually reference
the formal parameter, so it is somewhat unusual. Ordinarily in the body we'd expect the
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class-wide formal to be used in dynamic dispatching calls to primitive operations, but that's
not required by the language.

Ultimately whether to make Sample a primitive operation is a judgment call. We don't know
that Sample will never need to be overridden so we declare it as a primitive op.

With all that said, here is an example program using the child type. Because the timestamp
register is updated once per clock cycle, if we know the system clock frequency we can use
the counter to measure elapsed time. In the demo below we measure the accuracy of the
delay statement by delaying for a known time, with samples taken before and after the
delay statement. We can then compare the known delay time to the measured elapsed
time, printing the difference.

Note the constant Machine Cycles Per Second. Before you run the demo you will likely
need to change it in the source code to your machine's clock frequency.

with Timestamp.Sampling; use Timestamp.Sampling;
with Ada.Text I0; use Ada.Text IO;

procedure Demo Sampling Cycle Counter is

: constant Duration := 1.0;
-- arbitrary, change if desired
Elapsed Time : Duration;

: constant := 1 000 000 000;

: constant := 1.9 * GHz;
-- This is the system clock rate on the machine running this executable.
-- It corresponds to the rate at which the time stamp counter hardware 1is
-- incremented. Change it according to your target.

use type Timestamp.Cycle Count; -- for "<"
begin
Put Line ("Using" & Machine Cycles Per Second'Image
& " Hertz for system clock");

Put Line ("Delaying for" & Delay Interval'Image & " second(s) ...");
Counter.Take First Sample;
delay Delay Interval;

Counter.Take Second Sample;

Put Line ("First sample :" & Counter.First Sample'Image);
Put Line ("Second sample :" & Counter.Second Sample'Image);

if Counter.Second Sample < Counter.First Sample then
Put Line ("RDTSC counter wrapped around!?");

return;
end if;
Elapsed Time := Duration (Elapsed (Counter)) / Machine Cycles Per Second;
Put Line ("Elapsed count :" & Elapsed (Counter)'Image);
Put _Line ("Specified delay interval:" & Delay Interval'Image);
Put Line ("Measured delay interval :" & Elapsed Time'Image);

end Demo Sampling Cycle Counter;

In the above, Delay Interval is set to 1.0 so the program will delay for 1 second, with
samples taken from the TSC before and after. Delay statement semantics are such that at
least the amount of time requested is delayed, so some value slightly greater than 1 second
is expected. There will be overhead too, so an elapsed time slightly larger than requested
should be seen. The value of Delay Interval is arbitrary, change it to whatever you like.
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If you have set the Machine Cycles Per Second properly but still get elapsed measure-
ment values that are much larger than expected or don't make sense at all, it may be that
your machine does not support using the TSC3° this way reliably.

7.3 Pros

Ensuring explicit initialization is easily achieved. The abstraction should likely be a private
type anyway, and the syntax for the required additional building blocks is light: all are
just additional decorations on the declaration of the private type or private extension. The
compiler does the rest, either at compile-time itself or via a generated check verified at
run-time.

Likewise, ensuring that only the implementation can create objects of a type is straight-
forward. We take the same approach for ensuring initialization via function calls in object
declarations, but then don't provide any such functions. Only the implementation will have
the required visibility to create objects of the type, and can limit that number of objects to
one (or any other number). Client access to this hidden object must be indirect, but that is
not a heavy burden.

7.4 Cons

None.

7.5 Relationship With Other Idioms

The Abstract Data Type (page 11) is assumed, in the form of a private type.

7.6 Notes

Only certain types can have unknown discriminants. For completeness here is the list:
* A private type
* A private extension
* An incomplete type
* A generic formal private type
* A generic formal private type extension
* A generic formal derived type
* Descendants of the above

The types above will either have a corresponding completion or a generic actual parameter
to either define the discriminants or specify that there are none.

As we mentioned, Default Initial Condition is new in Ada 2022. The other implemen-
tation, based on indefinite private types, is supported by Ada 2022 but also by earlier ver-
sions of the language. However, if the type is also limited, Ada 2005 is the earliest version
allowing that implementation. Prior to that version an object of a limited type could not be
initialized in the object's declaration.

30 https://en.wikipedia.org/wiki/Time_Stamp_Counter
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CHAPTER
EIGHT

TYPE PUNNING

8.1 Motivation

When declaring an object, the type chosen by the developer is presumably one that meets
the operational requirements. Sometimes, however, the chosen type is not sufficient for
clients of that object. Normally that situation would indicate a design error, but not neces-
sarily.

Consider a device driver that receives external data, such as a network or serial 1/0 driver.
Typically the driver presents incoming data to clients as arrays of raw bytes. That's how the
data enter the receiving machine, so that's the most natural representation at the lowest
level of the device driver code. However, that representation is not likely sufficient for the
higher-level clients. These clients are not necessarily at the application level, they may be
lower than that, but they are clients because they use the data presented.

For example, the next level of the network processing code must interpret the byte arrays
in order to implement the network protocol. Interpreting the data requires reading headers
that are logically contained within slices of those bytes. These headers are naturally repre-
sented as record types containing multiple fields. How, then, can the developer apply such
record types? An array of bytes contains bytes, not headers.

Stated generally, on occasion a developer needs to manipulate or access the value of a
given object in a manner not supported by the object's type. The issue is that the compiler
will enforce the type model defined by the language, to some degree of rigor, potentially
resulting in the rejection of the alternative access and manipulation code. In such cases
the developer must circumvent this enforcement. That's the purpose of this idiom.

A common circumvention technique, across programming languages, is to apply multiple
distinct types to a single given object. Doing so makes available additional operations
or accesses not provided by the type used to declare the object in the first place. The
technique is known as type punning3! in the programming community because different
types are used for the same object in much the same way that a pun in natural languages
uses different meanings for words that sound the same when spoken.

Ada is accurately described as "a language with inherently reliable features, only compro-
mised via explicit escape hatches having well-defined and portable semantics when used
appropriately."3> The foundation for this reliability is static named typing with rigorous en-
forcement by the compiler.

Specifically, the Ada compiler checks that the operations and values applied to an object are
consistent with the one type specified when the objectis declared. Any usage not consistent
with that type is rejected by the compiler. Similarly, the Ada compiler also checks that
any type conversions involve only those types that the language defines as meaningfully
convertible.

31 https://en.wikipedia.org/wiki/Type_punning
35, Tucker  Taft. Post  in Internet  Relay Chat on Comp.Lang.Ada channel.
https://groups.google.com/g/comp.lang.ada/c/9WXgvv8Xjuw/m/|Myo9 P7nxAJ, 1993.
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By design, this strong typing model does not lend itself to circumvention (thankfully). That's
the point of Ada's escape hatches — they provide standard ways to circumvent these and
other checks. To maintain the integrity of the type model not many escape hatches exist.
The most commonly used of these, unchecked conversion, allows type conversion between
arbitrary types. Unchecked conversions remain explicit, but the compiler does not limit
them to the types defined as reasonable by the language.

8.2 Implementation(s)

There are two common approaches for expressing type punning in Ada. We show both in
the following subsections. The purpose in both approaches is to apply a different type,
thereby making available a different type-specific view of the storage.

8.2.1 Overlays

The first approach applies an alternative type to an existing object by declaring another
object at the same location in memory but with a different type. Given an existing object,
the developer:

1. declares (or reuses) an alternative type that provides the required operations and
values not provided by the existing object's type, and

2. declares another object of this alternative type, and

3. as part of the new object's declaration, specifies that this new object shares some or
all of the storage occupied by the existing object.

The result is a partial or complete storage overlay. Because there are now multiple dis-
tinct types involved, there are multiple views of that shared storage, each view providing
different operations and values. Thus, the shared storage can be legally manipulated in
distinct ways. As usual, the Ada compiler verifies that the usage corresponds to the type
view presented by the object name referenced.

For example, let's say that we have an existing object, and that a signed integer is most
appropriate for its type. On some occasions let's also say we need to access individual bits
within that existing object. Signed integer types don't support bit-level operations, unlike
unsigned integers, but we've said that a signed type is the best fit for the bulk of the usage.

One of the ways to enable bit access, then, is to apply another type that does have bit-level
operations. We could overlay the existing object with an unsigned integer type of the same
size, but let's take a different approach for the sake of illustration. Instead, we'll declare
an array type with components that can be represented as a single bit. The length of the
array type will reflect the number of bits used by the signed integer type so that the entire
object will be overlaid. (A record type would work too, with a component allocated to each
bit.)

The type Boolean will suffice for the array component type as long as we force the single-
bit representation. Boolean array components are likely to be represented as individual
bytes otherwise. Alternatively, we could just make up an integer type with range 0 .. 1
but that seems unnecessary, unless numeric values would make the code clearer. (Maybe
the requirements specify ones and zeros for the bit values.) In any case we'll need to force
single bits for the components.

Assuming values of type Integer require exactly 32 bits, the following code illustrates the
approach:

type Bits32 is array (0 .. 31) of Boolean with Component Size => 1;

X : aliased Integer;
Y : Bits32 with Address => X'Address;
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In the above, we use X'Address to query the starting address of object X. We use that
address to specify the location of the overlay object Y. As a result, X and Y start at the same
address.

We marked X as explicitly aliased because Integer is not a by-reference type. The Ad-
dress attribute is not required to provide a useful result otherwise. (Maybe the compiler
would have put X into a register, for example.) The compiler, seeing 'Address applied,
would probably do the right thing anyway, but this makes it certain.

Here is a simple main program that illustrates the approach.

Listing 1: main.adb
with Ada.Text I0; wuse Ada.Text IO0;

procedure Main is
X : aliased Integer := 42;

type Bits32 is array (0 .. 31) of Boolean
with Component Size => 1;

Y : Bits32 with Address => X'Address;

begin
X := Integer'First;
Put Line (X'Image);
for Bit in Bits32'Range loop
Put (if Y (Bit) then 'l' else '0');
end loop;
New Line;
end Main;

Object Y starts at the same address as X and has the same size, so all references to Xand Y
refer to the same storage. The source code can manipulate that memory as either a signed
integer or as an array of bits, including individual bit access, using the two object names.
The compiler will ensure that every reference via X is compatible with the integer view, and
every reference via Y is compatible with the array view.

In the above example, we've ignored the endianess issue. If you wanted to change the sign
bit, for example, or display the bits in the "correct" order, you'd need to handle that detail.

This expression of type-punning does not use an escape hatch but does achieve the effect.
(We don't include address clauses as an escape hatch because address clauses aren't ded-
icated to overlaying multiple objects of different types. On the other hand, even one Ada
object with an address specified overlays that object's view with the machine storage view
of that address...)

8.2.2 Unchecked Conversions on Address Values

The common implementation of type punning, across multiple languages, involves con-
verting the address of a given object into a pointer designating the alternative type to be
applied. Dereferencing the resulting pointer provides a different compile-time view of the
object. Thus, the operations defined by the alternative type are made applicable to the
object.

Expressing this approach in Ada requires unchecked conversion because, in Ada, address
values are semantically distinct from pointer values (access values). An access value might
be represented by an address value, but because architectures vary, that implementation
in not guaranteed. Therefore, the language does not define checked conversions between
addresses and access values. We need the escape hatch.
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Unchecked conversion requires instantiation of the generic function Ada.
Unchecked Conversion, including a context clause for that unit, making it a relatively
heavy mechanism. This heaviness is intentional, and the with_clause at the top of the
client unit makes it noticeable. Although ubiquitous use strongly suggests abuse of the
type model, in this case unchecked conversion is necessary. Nevertheless, we'd hide its
use within the body of some visible unit.

Let's start with a simple example. There is an accelerometer that provides three signed 16-
bit acceleration values, one for each axis. Accelerations can be both positive and negative
so the signed type is appropriate. These values are read from the device as two unsigned
bytes. The two bytes are read individually so two reads are required per acceleration value.
(This is an actual, real-world device.) Because the acceleration values are signed 16-bit
integers, we need to convert two unsigned bytes into a single signed 16-bit quantity. We
can use type punning, based on a pointer designating the 16-bit signed type, to achieve
that effect. There are certainly other ways to do this, but we're starting with something
simple for the sake of illustrating this idiom.

In the following fragment, type Acceleration is a signed 16-bit integer type already de-
clared elsewhere:

type Acceleration_Pointer is access all Acceleration
with Storage Size => 0;

function As Acceleration Pointer is new Ada.Unchecked Conversion
(Source => System.Address, Target => Acceleration Pointer);

The access type is general, not pool-specific, but that is optional. We tell the compiler to
reserve no storage for the access type because an allocation would be an error that we
want the compiler to catch. Whether or not the compiler actually reserves storage for an
individual access type is implementation-dependent, but this way we can be sure. In any
case the compiler will reject any allocations.

Given this access type declaration we can then instantiate Ada.Unchecked Conversion.
The resulting function name is a matter of style but is appropriate because the function
allows us to treat an address as a pointer to an Acceleration value. We aren't changing
the address value, we're only providing another view of that value, which is why the function
name is not To_Acceleration Pointer.

The following is the device driver routine for getting the scaled accelerations from the de-
vice. The type Three Axis Accelerometer is the device driver ADT (page 11), and type
Axes Accelerations is a record type containing the three axis values. The procedure gets
the raw acceleration values from the device and scales them per the current device sensi-
tivity, returning all three in the mode-out record parameter.

procedure Get Accelerations
(This : Three Axis Accelerometer;
Axes : out Axes Accelerations)
is

Buffer : array (0 .. 5) of UInt8 with Alignment => 2, Size => 48;
Scaled : Float;

type Acceleration_Pointer is access all Acceleration
with Storage Size => 0;

function As Acceleration Pointer is new Ada.Unchecked Conversion
(Source => System.Address, Target => Acceleration Pointer);

begin
This.Loc _I0 Read (Buffer (0), OUT X L);
This.Loc IO Read (Buffer (1), OUT X H);
This.Loc IO Read (Buffer (2), OUT_Y L);
(continues on next page)
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(continued from previous page)

This.Loc I0 Read (Buffer (3), OUT Y H);
This.Loc I0 Read (Buffer (4), OUT Z L);
This.Loc I0 Read (Buffer (5), OUT Z H);

Get_X : declare
Raw : Acceleration renames
As Acceleration Pointer (Buffer (0)'Address).all;

begin
Scaled := Float (Raw) * This.Sensitivity;
Axes.X := Acceleration (Scaled);

end Get X;

Get_Y : declare
Raw : Acceleration renames
As Acceleration Pointer (Buffer (2)'Address).all;

begin
Scaled := Float (Raw) * This.Sensitivity;
Axes.Y := Acceleration (Scaled);

end Get Y;

Get_Z : declare
Raw : Acceleration renames
As Acceleration Pointer (Buffer (4)'Address).all;

begin
Scaled := Float (Raw) * This.Sensitivity;
Axes.Z := Acceleration (Scaled);

end Get Z;

end Get Accelerations;

This procedure first reads the six bytes representing all three acceleration values into the
array Buffer. Procedure Loc I0 Read is defined by the driver ADT (page 11). The con-
stants OUT _n L and OUT _n_H, also defined by the driver, specify the low-order and high-
order bytes requested for the given n axis. Then the declare blocks do the actual scaling
and that's where the type punning is applied to the Buffer content.

In each block, the address of one of the bytes in the array is converted into an access value
designating a two-byte Acceleration value. The X acceleration is first in the buffer, so the
address of Buffer (0) is converted. Likewise, the address of Buffer (2) is converted
for the Y axis value, and for the Z value, Buffer (4) is converted. (We could have said
Buffer'Address instead of Buffer (0)'Address, they mean the same thing, but an explicit
index seemed more clear, given the need for the other indexes.)

But we want the designated axis acceleration value, not the access value, so we also deref-
erence the converted access value via .all, and rename the result for convenience. The
name is Raw because the value needs to be scaled. Each dereference reads two bytes, i.e.,
the bytes at indexes 0 and 1, or 2 and 3, or 4 and 5.

That's the way the device driver is written currently, but it could be simpler. Clients al-
ways get all three accelerations via this procedure, so we could have used unchecked con-
version to directly convert the entire array of six bytes into a value of the record type
Axes Accelerations containing the three 16-bit components. Type punning would not be
required in that case. (The components would still need scaling, of course.)

Note that to get individual values we can't just convert a slice of the array because that's
illegal: array slices cannot be converted. We'd need some other way to refer to a two-byte
pair within the array. Type punning would be an appropriate approach.

For that matter we could use type punning but have the record type be the designated
type returned from the address conversion, rather than a single axis value. Then we'd just
convert Buffer'Address and not need to specify array indexes as all. This would be the
same as converting the array to the record type, but with a level of indirection added.
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For the network packet example, we want to apply record type views to arbitrary sequences
within an array of raw bytes, so indexing will be required. Just as we indexed into the
accelerometer Buffer for the addresses of the individual 16-bit acceleration values, we
can index into the network packet array to get the starting addresses of the individual
headers. Regular record component access syntax can then be used. Reading the record
components reads the corresponding raw bytes in the array.

For a specific example, we can read the IP header in a packet's array of bytes using the
header's record type and an access type designating that record type:

: constant := 20;

-- IP packet header RFC 791.
type IP_Header is record

Version : UInt4;

Word Count : UInt4;
Type of Service : UIntS8;
Total Length : UIntle;
Identifier : UIntle;
Flags Offset : UIntl6;
Time To Live : UIntS8;
Protocol : Transport Protocol;
Checksum : UIntle;
Source : IP Address;
Destination : IP Address;

end record with
Alignment => 2,
Size => Min IP Header Length * 8;

for IP Header use record

Version at © range 4 .. 7;
Word Count at 0 range 0 .. 3;
Type of Service at 1 range 0 .. 7;
Total Length at 2 range 0 .. 15;
Identifier at 4 range 0 .. 15;
Flags Offset at 6 range 0 .. 15;
Time To Live at 8 range 0 .. 7;
Protocol at 9 range 0 .. 7;
Checksum at 10 range 0 .. 15;
Source at 12 range 0 .. 31;
Destination at 16 range 0 .. 31;
end record;

for IP Header'Bit Order use System.Low Order First;
for IP Header'Scalar Storage Order use System.Low Order First;

type IP_Header_Access is access all IP Header;
pragma No Strict Aliasing (IP_Header Access);

-- and so on, for the other kinds of headers...

Note that pragma No Strict Aliasing stopsthe compiler from doing some optimizations,
based on the assumption of a lack of aliasing, that could cause unexpected results in this
approach.

function As IP Header Access is new Ada.Unchecked Conversion
(Source => System.Address, Target => IP Header_ Access);

function As ARP Header Access is new Ada.Unchecked Conversion
(Source => System.Address, Target => ARP_Packet Access);

-- and so on, for the other kinds of headers...

We can then implement a function, visible to clients, for acquiring the access value from a
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given memory buffer's data:

function IP Hdr (This : Memory Buffer) return IP Header Access is
(As_IP Header Access (This.Packet.Data (IP_Pos)'Address));

In the function, Data is the packet's array of raw bytes, and IP_Pos is a constant specifying
the index into the array corresponding to the first byte of the IP header. As you can see,
this is the same approach as shown earlier for working with an array of bytes containing
acceleration values.

Similar functions support ARP3? headers, TCP33 headers, and so on.

8.3 Pros

Both approaches work and are fairly simple, although the first is simplest. The second ap-
proach, based on converting addresses to access values, is more flexible. That's because
the address to be converted can be changed at run-time, whereas the object overlay spec-
ifies the address exactly once during elaboration.

8.4 Cons

We're assuming access values are represented as addresses. There's no guarantee of that.
But on typical architectures it will likely work.

That said, not all types can support the address conversion approach. In particular, un-
constrained array types may not work correctly because of the existence of the additional
in-memory representation of the bounds. An access value designating such an object might
point at the bounds of the array whereas the address of the object would point to the first
element.

In either approach, the developer is responsible for the correctness of the address values
applied, either for the second object's declaration or for the pointer conversion. For exam-
ple, this includes the alternative type's alignment. Otherwise, all bets are off.

8.5 Relationship With Other Idioms

None.

8.6 Notes

Generic package System.Address To Access Conversions is an obvious alternative to
our use of unchecked conversions between addresses and access values. The generic is
convenient: it provides the access type as well as functions for converting in both directions.
But it will require an instantiation for each designated type, so it offers no reduction in
the number of instantiations required over that of Ada.Unchecked Conversion. (For more
details on this generic package, please refer to the section on access and address3.)

Moreover, because that generic package is defined by the language, the naive user might
think it will work for all types. It might not. Unconstrained array types remain a potential
problem. For that reason, the GNAT implementation issues a warning in such cases.

32 https://en.wikipedia.org/wiki/Address_Resolution_Protocol

33 https://en.wikipedia.org/wiki/Transmission_Control_Protocol

34 https://learn.adacore.com/courses/advanced-ada/parts/resource_management/access_types.html#
adv-ada-access-address
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CHAPTER
NINE

USING BUILDING BLOCKS TO EXPRESS INHERITANCE
IDIOMS

9.1 Motivation

Betrand Meyer's magisterial book on OOP3¢ includes a taxonomy of inheritance idioms. Two
especially well-known entries in that taxonomy are Subtype Inheritance3® and Implemen-
tation Inheritance3’. The name of the first idiom is perhaps confusing from an Ada point of
view because Ada subtypes have a different meaning. In Ada terms we are talking about
derived types. A derived type is a new, distinct type based on (i.e., derived from) some
existing type. We will informally refer to the existing ancestor type as the parent type, and
the new type as the child type. The term Subtype in the idiom name refers to the child
type.

Subtype Inheritance is the most well-known idiom for inheritance because it's based on the
notion of a taxonomy, in which categories and disjoint subcategories are identified. For
example, we can say that dogs, cats, and dolphins are mammals, and that all mammals
are animals:

38 B, Meyer. Object-Oriented Software Construction. Prentice-Hall, 1997.
36 https://en.wikipedia.org/wiki/Subtyping
37 https://en.wikipedia.org/wiki/lnheritance_(object-oriented_programming)
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Animal

Mammal

Dog Cat Dolphin

By saying that the subcategories are disjoint we mean that, for example, dogs are neither
cats nor dolphins and cannot be treated as if they are.

In software, we use various constructs to represent the categories and subcategories and
use inheritance to organize them. As mentioned above, in Ada, we express that inheritance
via derived types representing the categories and subcategories. Ada's strong typing en-
sures they are treated as disjoint entities.

Although the derived child type is distinct from the parent type, the child is the same kind
as the parent type. Some authors use kind of as the name for the relationship between the
child and parent. Meyer uses the term js-a"@9¢ 61. 38 5 popular term that we will use too. For
example, a cat is a mammal, and also is an animal.

The fundamental difference between Subtype Inheritance (page 65) and Implementation
Inheritance (page 68) is whether clients have compile-time visibility to the is-a relationship
between the parent and child types. The relationship exists in both idioms but is only
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visible to clients in one. In Subtype Inheritance, clients do have compile-time visibility to
the relationship, while in Implementation Inheritance, clients don't have that visibility.

Consequently, with Subtype Inheritance, all of the inherited operations become part of
the child type's visible interface. In contrast, with Implementation Inheritance, none of
those parent capabilities are part of the visible interface: the inherited parent capabilities
are only available internally, to implement the child type's representation and its primitive
operations.

9.1.1 Building Blocks

Ada uses distinct building block constructs to compose types that have specific character-
istics and capabilities. In particular, Ada packages, with their control over compile-time
visibility, are modules. Private types are combined with packages to define abstract data
types (page 11) having hidden representations. Sets of related types are presented explic-
itly by class-wide types.

In addition, simple reserved words may be attached to a type declaration to refine or expand
the capabilities of the type. These type declarations include declarations for derived types,
providing considerable flexibility and expressive power for controlling the client's view of
the child and parent types.

For example, in Ada, full dynamic OOP capabilities require type declarations to be decorated
with the reserved word tagged. However, from its earliest days, Ada has also supported a
static form of inheritance, using types that are not tagged. The implementation we describe
below works with both forms of inheritance.

The developer also has a choice of whether the parent type and/or the child type is a private
type. Using private types is the default design choice, for the sake of designing in terms of
abstract data types, but is nevertheless optional.

In addition, a type can be both private and tagged. This possibility raises the question
of whether the type is visibly tagged, i.e., whether the client view of the type includes
the tagged characteristic, and hence the corresponding capabilities. Recall that a private
type is declared in two steps: the first part occurs in the visible part of the package and
introduces the type name to clients. The second part — the type completion — appears
in the package private part and specifies the type's actual representation. The question
arises because the first step, i.e., the declaration in the package's visible part, need not be
tagged, yet can be tagged in the completion in the package private part. For example:

package P is

type Foo is private; -- not visibly tagged for clients
-- operations on type Foo

private
type Foo is tagged record -- tagged completion

end record;
end P;

In the above, Foo is not visibly tagged except in the package private part and the package
body. As a consequence, the capabilities of tagged types are not available to clients using
type Foo. Clients cannot refer to Foo'Class, for example. (The opposite arrangement —
tagged in the visible client view but not actually tagged in the private view — is not legal,
because clients would be promised capabilities that are not actually available.)

When the parent type is tagged, the type derivation syntax for the child is a type extension
declaration that introduces the child type's name, specifies the parent type, and then ex-
tends the parent representation with child-specific record components, if any. For example:

type Child is new Parent with record ... end record;
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Even though the child type declaration does not include the reserved word tagged the child
will be a tagged type because the parent type is tagged. The compiler would not allow the
extension construct for a non-tagged parent type.

Just as a private type can be visibly tagged or not, a private type can be visibly derived or
not. When it is visibly derived, clients have a view of the private type that includes the fact
of the derivation from the parent type. Otherwise, clients have no view of the parent type.
Whether or not the child is visibly derived, the representation is not compile-time visible to
clients, as for any private type. For example, type Foo is not visibly derived in the following:

package P is
type Foo is tagged private; -- visibly tagged but not visibly derived

end P;

To be visibly derived, we declare the child type as a private type using a private extension.
A private extension is like a type extension, in that it introduces the child type name and
the parent type. But like any private type declaration, it does not specify the type's repre-
sentation. This is the first of the two steps for declaring a private type; hence it appears in
the package visible part. For example:

with ...
package P is
type Child is new Parent with private; -- visibly derived from Parent
private
type Child is new Parent with record ... end record;
end P;

The representation additions are not expressed until the private type's completion in the
package private part, using a type extension. The steps are the same two for any private
type: a declaration in the package visible part, with a completion in the package private
part. The difference is the client visibility to the parent type.

9.2 Implementation(s)

There are two implementations presented, one for each of the two inheritance idioms un-
der discussion. First, we will specify our building block choices, then show the two idiom
expressions in separate subsections.

* We use tagged types for the sake of providing full OOP capabilities. That is the most
common choice when inheritance is involved. The static form of inheritance has cases
in which it is useful, but those cases are very narrow in applicability.

* We assume that the parent type and the child type are both private types, i.e., ab-
stract data types, because that is the best practice. See the Abstract Data Type idiom
(page 11) for justification and details.

* To provide the most general capabilities, we assume the parent type is visibly tagged.

* We're going to declare the child type in a distinct, dedicated package, following the
ADT idiom (page 11). This package may or may not be a child of the parent package.
This implementation's approach does not require a child package's special compile-
time visibility, although a child package is often necessary for the sake of that visibility.

* Whether the child type is visibly derived will vary with the inheritance idiom (page 68)
implementation.

To avoid unnecessary code duplication, we use the same parent type, declared as a simple
tagged private type, in the examples for the two idiom implementations. The parent type
could itself be derived from some other tagged type, but that changes nothing conceptually
significant. We declare parent type in package P as follows:
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package P is
type Parent is tagged private; -- visibly tagged
-- primitive operations with type Parent as the
-- controlling formal parameter

private
type Parent is tagged record ... end record;

end P;

9.2.1 Subtype Inheritance

Recall that Subtype Inheritance requires clients to have compile-time visibility to the is-a
relationship between the child and parent types. We can satisfy that requirement if we
make the child visibly derived from the parent. Hence we declare the private type as a

private extension in the visible part of the package:

with P; use P;
package Q is
type Child is new Parent with private;

-- implicit, inherited primitive Parent operations declared here,

-- now for type Child

-- additional primitives for Child explicitly declared, if any

private

type Child is new Parent with record ... end record;

end Q;

The primitive operations from the parent type are implicitly declared immediately after the
private extension declaration. That means those operations are in the visible part of the
package, hence clients can invoke them. Any additional operations for the client interface
will be explicitly declared in the visible part as well, as will any overriding declarations for

those inherited operations that are to be changed.

For example, here is a basic bank account ADT (page 11) that we will use as the parent

type in a derivation:

Listing 2: bank.ads

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

with Ada.Containers.Doubly Linked Lists;
package Bank is

type Basic_Account is tagged private

with Type Invariant'Class => Consistent Balance (Basic Account);

function Consistent Balance (This : Basic Account) return Boolean;

type Currency is delta 0.01 digits 12;

procedure Deposit (This : in out Basic Account;
Amount : Currency) with
Pre'Class => Open (This) and Amount > 0.0,

Post'Class => Balance (This) = Balance (This)'Old + Amount;

procedure Withdraw (This : in out Basic_ Account;

Amount : Currency) with

Pre'Class => Open (This) and Funds Available (This, Amount),

Post'Class => Balance (This) = Balance (This)'Old - Amount;

function Balance (This : Basic Account) return Currency

with Pre'Class => Open (This);

(continues on next page)
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(continued from previous page)

procedure Report Transactions (This : Basic Account)
with Pre'Class => Open (This);

procedure Report (This : Basic Account)
with Pre'Class => Open (This);

function Open (This : Basic Account) return Boolean;

procedure Open
(This : in out Basic Account;
Name : String;
Initial Deposit : Currency)
with Pre'Class => not Open (This),
Post'Class => Open (This);

function Funds Available (This : Basic Account;
Amount : Currency) return Boolean is
(Amount > 0.0 and then Balance (This) >= Amount)
with Pre'Class => Open (This);

private

package Transactions is new
Ada.Containers.Doubly Linked_Lists (Element Type => Currency);

type Basic_Account is tagged record

Owner : Unbounded String;
Current Balance : Currency := 0.0;

Withdrawals : Transactions.List;
Deposits : Transactions.List;

end record;

function Total (This : Transactions.List) return Currency is
(This'Reduce ("+", 0.0));

end Bank;

We could then declare an interest-bearing bank account using Subtype Inheritance:

Listing 3: bank-interest_bearing.ads

package Bank.Interest_Bearing is
type Account is new Basic Account with private;
overriding
function Consistent Balance (This : Account) return Boolean;
function Minimum Balance (This : Account) return Currency;
overriding
procedure Open
(This : in out Account;
Name : String;
Initial Deposit : Currency)
with Pre => Initial Deposit >= Minimum Balance (This);
overriding
procedure Withdraw (This : in out Account; Amount : Currency);
(continues on next page)
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(continued from previous page)

function Penalties Accrued (This : Account) return Currency;
function Interest Accrued (This : Account) return Currency;

private

type Account is new Basic Account with record

Penalties : Transactions.List;
Interest Earned : Transactions.List;
Days Under Minimum : Natural := 0;

end record;

end Bank.Interest Bearing;

The new type Bank.Interest Bearing.Account inherits all the Basic Account operations
in the package visible part. They are, therefore, available to clients. Some of those inherited
operations are overridden so that their behavior can be changed. Additional operations
specific to the new type are also declared in the visible part so they are added to the client
API.

The package private part and the body of package Bank.Interest Bearing have visibility
to the private part of package Bank because the new package is a child of package Bank.
That makes the private function Bank.Total visible in the child package, along with the
components of the record type Basic Account.

Note that there is no language requirement that the actual parent type in the private type's
completion be the one named in the private extension declaration presented to clients. The
parent type in the completion must only be in the same derivation class — be the same
kind of type — so that it satisfies the is-a relationship stated to clients.

For example, we could start with a basic graphics shape:

package Graphics is
type Shape is tagged private;
-- operations for type Shape ...

end Graphics;
We could then declare a subcategory of Shape that allows translation in some 2-D space:

package Graphics.Translatable is
type Translatable_Shape is new Graphics.Shape with private;
procedure Translate (This : in out Translatable Shape; X, Y : in Float);

end Graphics.Translatable;

Given that, we could now declare another type visibly derived from Shape, but using Trans -
latable Shape as the actual parent type:

with Graphics;

private with Graphics.Translatable;

package Geometry is
type Circle is new Graphics.Shape with private;
-- operations for type Circle, inherited from Shape,
-- and any new ops added ...

private
use Graphics.Translatable;
type Circle is new Translatable Shape with record ... end record;

end Geometry;

In the type extension that completes type Circle in the package private part above, the
extended parent type is not the one presented to clients, i.e., Graphics.Shape. Instead,
the parent type is another type that is derived from type Shape. That substitution is legal
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and reasonable because Translatable Shape necessarily can do anything that Shape can
do. To understand why that is legal, it is helpful to imagine that there is a contract between
the package public part and the private part regarding type Circle. As long as Circle
can do everything promised to clients — i.e., inherited Shape operations — the contract
is fulfilled. Circle inherits Shape operations because Translatable Shape inherits those
operations. The fact that Circle can do more than is contractually required by the client
view is perfectly fine.

9.2.2 Implementation Inheritance

Recall that with Implementation Inheritance clients do not have compile-time visibility to
the is-a relationship between the parent and child types. We meet that requirement by not
making the child visibly derived from the parent. Therefore, we declare the child type as
a simple tagged private type and only mention the parent in the child type's completion in
the package private part:

with P; use P;
package Q is
type Child is tagged private;
-- explicitly declared primitives for Child
private
type Child is new Parent with record ...
-- Implicit, inherited primitive operations with type Child
-- as the controlling formal parameter
end Q;

The primitive operations from the parent type are implicitly declared immediately after
the type extension, but these declarations are now located in the package private part.
Therefore, the inherited primitive operations are not compile-time visible to clients. Hence
clients cannot invoke them. These operations are only visible (after the type completion)
in the package private part and the package body, for use with the implementation of the
explicitly declared primitive operations.

For example, we might use a controlled type in the implementation of a tagged private type.
These types have procedures Initialize and Finalize defined as primitive operations.
Both are called automatically by the compiler. Clients generally don't have any business
directly calling them so we usually use implementation inheritance with controlled types.
But if clients did have the need to call them we would use Subtype Inheritance instead, to
make them visible to clients.

For example, the following is a generic package providing an abstract data type for un-
bounded queues. As such, the Queue type uses dynamic allocation internally. This specific
version automatically reclaims the allocated storage when objects of the Queue type cease
to exist:

Listing 4: unbounded_sequential_queues.ads

with Ada.Finalization;
generic
type Element is private;
package Unbounded_Sequential_Queues is

type Queue is tagged limited private;

procedure Insert (Into : in out Queue; Item : Element) with
Post => not Empty (Into) and
Extent (Into) = Extent (Into)'Old + 1;
-- may propagate Storage Error

procedure Remove (From : in out Queue; Item : out Element) with
(continues on next page)

68 Chapter 9. Using Building Blocks to Express Inheritance Idioms



14
15
16
17
18
19
20
21

23

N
&

25

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

43
44

Ada In Practice

(continued from previous page)

Pre => not Empty (From),
Post => Extent (From) = Natural'Max (0, Extent (From)'Old - 1);

procedure Reset (This : in out Queue) with
Post => Empty (This) and Extent (This) = 0;

function Extent (This : Queue) return Natural;
function Empty (This : Queue) return Boolean;
private
type Node;
type Link is access Node;
type Node is record
Data : Element;
Next : Link;

end record;

type Queue is new Ada.Finalization.Limited Controlled with

record
Count : Natural := 0;
Rear : Link;

Front : Link;
end record;

overriding procedure Finalize (This : in out Queue) renames Reset;

end Unbounded Sequential Queues;

The basic operation of assignment usually does not make sense for an abstraction repre-
sented as a linked list, so we declare the private type as limited, in addition to tagged and
private, and then use the language-defined limited controlled type for the type extension
completion in the private part.

Procedures Initialize and Finalize are inherited immediately after the type extension.
Both are null procedures that do nothing. We can leave Initialize as-is because initial-
ization is already accomplished via the default values for the Queue components. On the
other hand, we want finalization to reclaim all allocated storage so we cannot leave Final-
ize as a null procedure. By overriding the procedure, we can change the implementation.
That change is usually accomplished by placing the corresponding procedure body in the
package body. However, in this case we have an existing procedure named Reset that is
part of the visible (client) APl. Reset does exactly what we want Finalize to do, so we
implement the overridden Finalize by saying that it is just another name for Reset. No
completion body for Finalize is then required or allowed. This approach has the same
semantics as if we explicitly wrote a body for Finalize that simply called Reset, but this is
more succinct. Clients can call Reset whenever they want, but the procedure will also be
called automatically, via Finalize, when any Queue object ceases to exist.

9.3 Pros

The two idioms are easily composed simply by controlling where in the enclosing package
the parent type is mentioned: either in the declaration of the private child type in the
package visible part or in the child type's completion in the package private type.
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9.4 Cons

Although the inheritance expressions are simple by themselves, the many ancillary design
choices can make the design effort seem more complicated than it really is.

9.5 Relationship With Other Idioms

We assume the Abstract Data Type idiom (page 11), so we are using private types through-
out. That includes the child type, and, as we saw, allows us to control the compile-time
visibility to the parent type.
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CHAPTER
TEN

PROVIDING COMPONENT ACCESS TO ENCLOSING
RECORD OBJECTS

10.1 Motivation

In some design situations we want to have a record component that is of a task or protected
type. That in itself is trivially accomplished because task types and protected types can be
used to declare record components. But there's more to this idiom.

We would want a task type or protected type record component when:

a) a task or protected object (PO) is required to implement part — but not all — of the
record type's functionality, and

b) each such task or PO is intended to implement its functionality only for the object
logically containing that specific task object or protected object. The record object
and contained task/PO object pair is a functional unit, independent of all other such
units.

This idiom applies to both enclosed task types and protected types, but for simplicity let's
assume the record component will be of a protected type.

As part of a functional unit, the PO component will almost certainly be required to reference
the other record components in the enclosing record object. That reference will allow the
PO to read and/or update those other components. Note that these record components
include discriminants, if any.

To be a functional unit, the record object referenced by a given PO in this relationship must
be the same record object at run-time that contains that specific PO instance. That will allow
the PO instance to implement the functionality for the specific record object containing that
PO instance.

Unless we arrange it, that back-reference from the protected object to the record object
isn't provided. Consider the following:

package Q is
protected type P is ... end P;
type R is record

Y : P;
end record;
end Q;

During execution, whenever an object of type Q.R is declared or allocated, at run-time we
will have two objects, instances of two distinct types — the record object and the protected
object. Let's say that a client declares an object 0bj of type R. There is only one reference
direction defined, from the record denoted by 0Obj to the component protected object de-
noted by 0bj.Y. This idiom, however, requires a reference in the opposite direction, from
Oby.Y to Obj.
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This may seem like an unrealistic situation, but it is not. An IO device type that involves
interrupt handling is just one real-world example, one that we will show in detail.

The idiom context is a type because there will often be multiple real-world entities being
represented in software. Representing these entities as multiple objects declared of a single
type is by far the most reasonable approach.

We assume the functional unit will be implemented as an Abstract Data Type (ADT)
(page 11). Strictly speaking, the ADT idiom is not required here, but that is the best ap-
proach for defining major types, for the good reasons given in that idiom entry. There's no
reason not to use an ADT in this case so we will.

10.2 Implementation(s)

As mentioned, the implementation approach applies to enclosed components of both task
types and protected types. We will continue the discussion in terms of protected types.

The implementation has two parts:

1. An access discriminant on the PO type, designating the enclosing record's type. That
part is straightforward.

2. A value given to that discriminant that designates the object of the enclosing record
type, i.e., the record object that contains that PO. That part requires a relatively ob-
scure language construct.

Given those two parts, the PO can then dereference its access discriminant to read or update
the other components in the same enclosing record object.

Consider the following (very artificial) package declaration illustrating these two parts:

package P is
type Device is tagged limited private;
private

protected type Controller (Encloser : not null access Device) is
-- Part 1

procedure Increment X;
end Controller;

type Device is tagged limited record
X : Integer; -- arbitrary type

C : Controller (Encloser => ...);
-- Part 2, not fully shown yet
end record;

end P;

The record type named Device contains a component named X, arbitrarily of type Integer,
and another component C that is of protected type Controller. Part #1 of the implemen-
tation is the access discriminant on the declaration of the protected type Controller:

protected type Controller (Encloser : not null access Device) is

Given a value for the discriminant Encloser, the code within the spec and body of type
Controller can then reference some Device object via that discriminant.

But not just any object of type Device will suffice. For Part #2, we must give the Encloser
discriminant a value that refers to the current instance of the record object containing this
same PO object. In the package declaration above, the value passed to Encloser is elided.
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The following is that code again, now showing just the declaration for Device, but also
including the construct that is actually passed. This is where the subtlety comes into play:

type Device is tagged limited record

C : Controller (Encloser => Device'Access);
end record;

The subtlety is the expression Device'Access. Within a type declaration, usage of the
type name denotes the current instance of that type. The current instance of a type is the
object of the type that is associated with the execution that evaluates the type name. For
example, during execution, when an object of type Device is elaborated, the name Device
refers to that object.

It isn't compiler-defined magic, the semantics are defined by the Ada standard so it is com-
pletely portable. (There are other cases for expressing the current instance of task types,
protected types, and generics.)

Therefore, within the declaration of type Device, the expression Device'Access provides
an access value designating the current instance of that type. This is exactly what we want
and is the crux of the idiom expression. With that discriminant value, the enclosed PO spec
and body can reference the other record components of the same object that contains the
PO.

To illustrate that, here is the package body for this trivial example. Note the value refer-
enced in the body of procedure Increment X:

package body P is
protected body Controller is

procedure Increment X is
begin

Encloser.X := Encloser.X + 1;
end Increment X;

end Controller;

end P;

Specifically, the body of procedure Increment X can use the access discriminant Encloser
to get to the current instance's X component. (We could express it as Encloser.all.X but
why bother. Implicit dereferencing is a wonderful thing.)

That's the implementation. Now for some necessary details.

Note that we declared type Device as a limited type, first in the visible part of the package:

type Device is tagged limited private;

and again in the type completion in the package private part:

type Device is tagged limited record ... end record;

We declare Device as a limited type because we want to preclude assignment statements
for client objects of the type. Assignment of the enclosing record object would leave the
PO Encloser discriminant designating the prior (right-hand side) enclosing object. If the PO
is written with the assumption that the enclosing object is always the one identified during
creation of the PO, that assumption will no longer hold. We didn't state it up-front, but that
is the assumption underlying the idiom as described, and in fact, only limited types may
have a component that uses the Access attribute in this way. Also note that any type that
includes a protected or task object is limited, so a type like Device will necessarily be limited
in any case.
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The type need not be tagged for this approach, but it must be limited in both its partial view
and its full view. More generally, a tagged type must be limited in both views if it is limited
in either view.

For the idiom implementation to be legal, the type's completion in the private part must not
merely be limited, but actually immutably limited, meaning that it is always truly limited.
There are various ways to make that happen (see AARM22 7.5 (8.1/3)° ) but the easiest
way to is to include the reserved word limited in the type definition within the full view, as
we did above. That is known as making the type explicitly limited. It turns out having a task
or protected component also makes it immutably limited, so this requirement is naturally
satisfied in this use case.

Why does the compiler require the type to be immutably limited?

Recall that a (non-tagged) private type need not be limited in both views. It can be limited
in the partial client view but non-limited in its full view:

package Q is
type T is limited private;
-- the partial view for clients in package visible part
private
type T is record -- the full view in the package private part
end record;
end Q;

Clients must treat type Q.T as if it is limited, but Q.T isn't really limited because the full
view defines reality. Clients simply have a more restricted view of the type than is really
the case.

Types that are immutably limited are necessarily limited in all views. That's important
because the current instance of the type given in type name'Access must be aliased for
"Access to be legal. But if the type's view could change between limited and not limited,
its current instance would be aliased in some contexts and not aliased in others. To prevent
that complexity, the language requires the type to be immutably limited so that the current
instance of the type will be aliased in every view. In practice, we're working with record
types and type extensions, so just make the full type definition explicitly limited and all will
be well:

package Q is
type T is limited private;

private
type T is limited record

end record;
end Q;

Then, as mentioned, you can choose whether the type will also be tagged.

10.3 Real-World Example

For a concrete, real-world example, suppose we have a serial IO device on an embedded
target board. The device can be either a UART or USART“?, For the sake of brevity let's
assume we have USARTs available.

Many boards have more than one USART resident, so it makes sense to represent them
in software as instances of an ADT. This example uses the USART ADT supported in the

39 http://www.ada-auth.org/standards/22aarm/htmi/AA-7-5.html
40 https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter
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Ada Drivers Library (ADL)*! that is named, imaginatively, USART. (We don't show package
STM32.USARTs, but you will see it referenced in the example's context clauses.) Each of
these USART devices can support either a polling implementation or an interrupt-driven
implementation. We will first define a basic USART ADT, and then extend that to a new one
that works with interrupts.

At the most basic level, to work with a given USART device we must combine it with some
other hardware, specifically the 10 pins that connect it to the outside world. That combina-
tion will be represented by a new ADT, the type Device defined in package Serial IO.

Any given Serial IO0.Device object will be associated permanently with one USART. There-
fore, type Device will have a discriminant named Transceiver designating that USART ob-
ject.

There are some low-level operations that a Serial I0.Device will implement, such as
initializing the hardware and setting the baud rate and so forth. We can also implement the
hardware-oriented input and output routines in this package because both are independent
of the polling or interrupt-driven designs.

Here's the resulting package declaration for the serial 10 device ADT. Parts of the package
are elided for simplicity (the full code is at the end of this idiom entry (page 79)):

with STM32; use STM32;

with STM32.GPIO; use STM32.GPIO;

with STM32.USARTs; use STM32.USARTs;

with HAL; -- the ADL's Hardware Abstraction Layer

package Serial_IO is
type Device (Transceiver : not null access USART) is tagged limited private;

procedure Initialize

(This : in out Device;
Tx Pin : GPIO Point;
Rx Pin : GPIO Point;
1))
procedure Configure (This : in out Device; Baud Rate : Baud Rates; ...);

procedure Put (This : in out Device; Data : HAL.UInt8) with Inline;
procedure Get (This : in out Device; Data : out HAL.UINnt8) with Inline;

private

type Device (Transceiver : not null access USART) is tagged limited record
Tx Pin : GPIO Point;
Rx Pin : GPIO Point;

end record;
end Serial IO0;
When called, procedure Initialize does the hardware setup required, such as enabling

power for the USART and pins. We can ignore those details for this discussion.

Given this basic Device type we can then use inheritance (type extension) to define distinct
types that support the polling and interrupt-driven facilities. These types will themselves
be ADTs. Let's focus on the new interrupt-driven ADT, named Serial Port. This type will
be declared in the child package Serial IO.Interrupt Driven.

When interrupts are used, each USART raises a USART-specific interrupt for sending and
receiving. Each interrupt occurrence is specific to one device. Therefore, the interrupt

41 https://github.com/AdaCore/Ada_Drivers_Library
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handler code is specific to each Serial Port object instance. We use protected objects
as interrupt handlers in (canonical) Ada, hence each Serial Port object will contain a
dedicated interrupt handling PO as a record component.

As a controller and handler for a USART's interrupts, the PO will require a way to access the
USART and pins being driven. Our idiom design provides that access.

Here is the client view of the ADT for the interrupt-driven implementation:

with Ada.Interrupts; use Ada.Interrupts;
with HAL;
with System; use System;

package Serial IO.Interrupt_Driven is

type Serial_Port
(Transceiver : not null access USART;
IRQ : Interrupt ID;
IRQ Priority : Interrupt Priority)

is new Serial I0.Device with private;

-- The procedures Initialize and Configure, among others, are
-- Implicitly declared here as operations inherited from
-- Serial I0.Device.

overriding
procedure Put (This : in out Serial Port; Data : HAL.UInt8)
with Inline;

overriding
procedure Get (This : in out Serial Port; Data : out HAL.UInt8)
with Inline;

private

end Serial IO.Interrupt Driven;

The declaration of type Serial Port uses Interface Inheritance (page 61) to extend
Serial I0.Device with both visible and hidden components. The three visible extension
components are the discriminants Transceiver, IRQ, and IRQ Priority. Transceiver will
designate the USART to drive (discussed in a moment). IRQ is the Interrupt ID indicating
the interrupt that the associated USART raises. IRQ Priority is the priority for that inter-
rupt. (/IRQ in a common abbreviation for Interrupt ReQuest.) These two interrupt-oriented
discriminants are used within the PO declaration to configure it for interrupt handling.

Clients will know which USART they are working with so they will be able to determine which
interrupt ID and priority to specify, presumably by consulting the board documentation.

Now let's examine the Serial Port type completion in the package's private part.

We've said we will use a PO interrupt handler as a component of the Serial Port record
type. This PO type, named I0 Manager, will include discriminants for the two interrupt-
specific values it requires as an interrupt handler. It will also have a discriminant providing
access to the enclosing Serial Port record type.

protected type IO _Manager

(IRQ : Interrupt ID;

IRQ Priority : Interrupt Priority;

Port : not null access Serial Port)
with

Interrupt Priority => IRQ Priority
is

entry Put (Datum : HAL.UInt8);
(continues on next page)
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entry Get (Datum : out HAL.UInt8);
private

procedure IRQ Handler with Attach Handler => IRQ;
end I0 Manager;

Note how the first two discriminants are used within the type declaration to give the pri-
ority of the PO and to attach the interrupt handler procedure IRQ Handler to the interrupt
indicated by IRQ. The Port discriminant will be the back-reference to the enclosing record
object.

We can then, finally, provide the Serial Port type completion, in which the record object
and protected object are connected whenever a Serial Port object is declared:

type Serial_Port

(Transceiver : not null access USART;

IRQ : Interrupt ID;

IRQ Priority : Interrupt Priority)
is new Serial I0.Device (Transceiver) with record

Controller : IO Manager (IRQ, IRQ Priority, Serial Port'Access);
end record;

The type completion repeats the declaration in the public part, up to the point where the
Serial Port.Transceiver discriminantis passed tothe Serial I0.Device.Transceiver
discriminant. Type Device must be constrained with a discriminant value here, so we just
pass the discriminant defined for Serial Port.

Why does Serial Port also have a Transceiver discriminant? Just as Serial I0.Device
is a complete wrapper for the combination of a USART and 10 pins, Serial Port is a stand-
alone wrapper for Serial I0.Device. Hence Serial Port also needs a discriminant des-
ignating a USART to be complete.

The full definition of type Serial Port contains the declaration of the component named
Controller, of the protected type I0 Manager. The two interrupt-oriented discriminants
from Serial Port are passed to the discriminants defined for this PO component. The third
I0 Manager discriminant value, Serial Port'Access, denotes the current instance of the
Serial Port type. Thus the idiom requirements are achieved.

Let's see that back-reference in use within the protected body.

As mentioned, there is one interrupt used for both sending and receiving, per USART. Strictly
speaking, the device itself does use two dedicated interrupts, one indicating that a 9-bit
value has been received, and one indicating that transmission for a single 9-bit value has
completed. But these two are signaled to the software on one interrupt line, and that is the
value indicated by IRQ.

Therefore, there is one interrupt handling protected procedure, named IRQ Handler. In
response to this interrupt, IRQ Handler determines which event has occurred by checking
one of the Transceiver status registers. The back-reference through Port makes that
possible. Other Transceiver routines are also called via Port, and Port.all is passed to
the Put and Get calls:

procedure IRQ Handler is
begin
-- check for data arrival
if Port.Transceiver.Status (Read Data Register Not Empty) and then
Port.Transceiver.Interrupt Enabled (Received Data Not Empty)
then -- handle reception
-- call the Serial I0.Device version:
Get (Serial IO0.Device (Port.all), Incoming);

(continues on next page)
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Await_Reception_Complete : loop
exit when not Port.Transceiver.Status (Read Data Register Not Empty);
end loop Await Reception Complete;
Port.Transceiver.Disable Interrupts (Received Data Not Empty);
Port.Transceiver.Clear Status (Read Data Register Not Empty);
Incoming Data Available := True;
end if;

-- check for transmission ready

if Port.Transceiver.Status (Transmission Complete Indicated) and then
Port.Transceiver.Interrupt Enabled (Transmission Complete)

then -- handle transmission
-- call the Serial I0.Device version:
Put (Serial I0.Device (Port.all), Outgoing);

Port.Transceiver.Disable Interrupts (Transmission Complete);
Port.Transceiver.Clear Status (Transmission Complete Indicated);
Transmission Pending := False;
end if;
end IRQ Handler;

In this example, although the PO only accesses the Transceiver component in the enclos-
ing record object, additional functionality might need to access more components, for this
example perhaps using some of the inherited 10 pin components.

10.4 Pros

The implementation is directly expressed, requiring only an access discriminant and the
current instance semantics of type name'Access.

Although the real-word example is complex — multiple discriminants are involved, and a
type extension — the implementation itself requires little text. Interrupt handling is rela-
tively complex in any language.

10.5 Cons

The record type must be truly a limited type, but that is not the severe limitation it was in
earlier versions of Ada. Note that although access discriminants are required, there is no
dynamic allocation involved.

10.6 Relationship With Other Idioms

This idiom is useful when we have a record type enclosing a PO or task object. If the Abstract
Data Machine (ADM) (page 17) would instead be appropriate, the necessary visibility can
be achieved without requiring this implementation approach because there would be no
enclosing record type. But as described in the ADM discussion, the ADT approach (page 11)
is usually superior.

10.7 Notes

As a wrapper abstraction for a USART, package Serial I0 is still more hardware-specific
than absolutely necessary, as reflected in the parameters' types for procedure Initialize
and the corresponding record component types. We could use the Hardware Abstraction
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Layer (HAL) to further isolate the hardware dependencies, but that doesn't affect the idiom
expression itself.

10.8 Full Source Code for Selected Units

We did not show some significant parts of the code discussed above, for the sake of not
obscuring the points being made. Doing so, however, means that the interested reader
cannot see how everything fits together and works, such as the actual 10 using interrupts.
The code below shows the relevant packages in their entirety. Note that the ADL STM32 hi-
erarchy packages and the HAL (Hardware Abstraction Layer) package are in the Ada Drivers
Library on GitHub?*2.

First, the basic Serial IO abstraction:

with STM32; use STM32;

with STM32.GPIO; use STM32.GPIO;
with STM32.USARTs; use STM32.USARTs;
with HAL;

package Serial IO is
type Device (Transceiver : not null access USART) is tagged limited private;

procedure Initializ

(This : in out Device;
Transceiver AF : GPIO Alternate Function;
Tx Pin : GPIO Point;

Rx_Pin : GPIO Point;

CTS Pin : GPIO Point;

RTS Pin : GPIO Point);

-- must be called before Configure

procedure Configure

(This : in out Device;
Baud Rate : Baud Rates;
Parity : Parities No Parity;

Data Bits : Word Lengths
End Bits : Stop Bits
Control : Flow Control

Word Length 8;
Stopbits 1;
No Flow Control);

procedure Set CTS (This : in out Device; Value : Boolean) with Inline;
procedure Set RTS (This : in out Device; Value : Boolean) with Inline;

procedure Put (This : in out Device; Data : HAL.UInt8) with Inline;
procedure Get (This : in out Device; Data : out HAL.UINnt8) with Inline;

private

type Device (Transceiver : not null access USART) is tagged limited record
Tx Pin : GPIO Point;
Rx Pin : GPIO Point;
CTS Pin : GPIO Point;
RTS Pin : GPIO Point;
end record;

end Serial IO0;

And the package body:

42 https://github.com/AdaCore/Ada_Drivers_Library

10.8. Full Source Code for Selected Units 79


https://github.com/AdaCore/Ada_Drivers_Library
https://github.com/AdaCore/Ada_Drivers_Library

Ada In Practice

with STM32.Device; use STM32.Device;

package body Serial IO is

procedure Initializ

(This : in out Device;

Transceiver AF : GPIO Alternate Function;

Tx Pin : GPIO Point;

Rx Pin : GPIO Point;

CTS Pin : GPIO Point;

RTS Pin : GPIO Point)
is

: constant GPIO Points := Rx Pin & Tx Pin;

begin

This.Tx Pin := Tx Pin;

This.Rx Pin := Rx Pin;

This.CTS Pin := CTS Pin;
This.RTS Pin := i

Enable Clock (This.Transceiver.all);
Enable Clock (IO Pins);

Configure IO

(IO Pins,

Config => (Mode AF,
AF => Transceiver AF,
AF Speed => Speed 50MHz,
AF Output Type => Push Pull,
Resistors => Pull Up));

Enable Clock (RTS Pin & CTS Pin);
Configure I0 (RTS Pin, Config => (Mode In, Resistors => Pull Up));

Configure IO
(CTS_Pin,
Config => (Mode Out,
Speed => Speed 50MHz,
Output Type => Push Pull,
Resistors => Pull Up));
end Initialize;

procedure Configure

(This : in out Device;
Baud Rate : Baud Rates;
Parity : Parities No Parity;

Data Bits : Word Lengths
End Bits : Stop Bits
Control : Flow Control
is
begin
This.Transceiver.Disable;

Word Length_ 8;
Stopbits 1;
No Flow Control)

(continues on next page)
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This.Transceiver.Set Baud Rate
This.Transceiver.Set Mode
This.Transceiver.Set Stop Bits
This.Transceiver.Set Word Length

This.Transceiver.Set Parity (Parity);

This.Transceiver.Set Flow Control (Control);

This.Transceiver.Enable;
end Configure;

procedure Set CTS (This
begin

This.CTS Pin.Drive (Value);
end Set CTS;

procedure Set RTS (This
begin

This.RTS Pin.Drive (Value);
end Set RTS;

procedure Put (This in out Device; Data :
begin

This.Transceiver.Transmit (HAL.UInt9 (Data));
end Put;
-- Get --

procedure Get (This in out Device; Data :
Received : HAL.UInt9;
begin

This.Transceiver.Receive (Received);
Data := HAL.UInt8 (Received);
end Get;

end Serial IO0;

Next, the interrupt-driven extension.

with Ada.Interrupts;
with HAL;
with System; use System;

use Ada.Interrupts;

package Serial IO.Interrupt Driven is
pragma Elaborate Body;

type Serial Port

(Transceiver not null access USART;

(Baud_Rate);
(Tx_Rx_Mode) ;
(End_Bits);

(Data Bits);

in out Device; Value :

in out Device; Value :

(continued from previous page)

Boolean) is

Boolean) is

HAL.UInt8) is

out HAL.UInt8) 1is

(continues on next page)
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IRQ : Interrupt ID;
IRQ Priority : Interrupt Priority)
is new Serial IO0.Device with private;
-- A serial port that uses interrupts for I/0. Extends the Device
-- abstraction that is itself a wrapper for the USARTs hardware.

-- The procedures Initialize and Configure, among others, are implicitly
-- declared here, as operations inherited from Serial I0.Device

overriding
procedure Put (This : in out Serial Port; Data : HAL.UInt8)
with Inline;
-- Non-blocking, ie the caller can return before the Data goes out,
-- but does block until the underlying UART is not doing any other
-- transmitting. Does no polling. Will not interfere with any other I/0
-- on the same device.

overriding
procedure Get (This : in out Serial Port; Data : out HAL.UInt8)
with Inline;
-- Blocks the caller until a character is available! Does no polling.
-- Will not interfere with any other I/0 on the same device.

private

-- The protected type defining the interrupt-based I/0 for sending and
-- receiving via the USART attached to the serial port designated by

-- Port. Each serial port object of the type defined by this package has
-- a component of this protected type.

protected type IO Manager

(IRQ : Interrupt ID;

IRQ Priority : Interrupt Priority;

Port : not null access Serial Port)
-- with

-- Interrupt Priority => IRQ Priority  -- compiler bug :-(
is

pragma Interrupt Priority (IRQ Priority);

entry Put (Datum : HAL.UInt8);

entry Get (Datum : out HAL.UInt8);
private

Outgoing : HAL.UIntS;
Incoming : HAL.UIntS8;

False;
False;

Incoming Data Available : Boolean :
Transmission_ Pending : Boolean :

procedure IRQ Handler with Attach Handler => IRQ;
end I0 Manager;

type Serial_Port

(Transceiver : not null access USART;
IRQ : Interrupt ID;
IRQ Priority : Interrupt Priority)
is
new Serial I0.Device (Transceiver) with
record

(continues on next page)
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Controller : I0 Manager (IRQ, IRQ Priority, Serial Port'Access);
-- Note that Serial Port'Access provides the Controller with a view
-- to the current instance's components, including the discriminant
-- components

end record;

end Serial IO0.Interrupt Driven;

And the package body:

with STM32.Device; use STM32.Device;

package body Serial IO.Interrupt_Driven is

overriding
procedure Put (This : in out Serial Port; Data : HAL.UInt8) is
begin

This.Controller.Put (Data);

end Put;

overriding
procedure Get (This : in out Serial Port; Data : out HAL.UInt8) is
begin

This.Transceiver.Enable Interrupts (Received Data Not Empty);
This.Controller.Get (Data);

end Get;

procedure IRQ Handler is
begin
-- check for data arrival
if Port.Transceiver.Status (Read Data Register Not Empty) and then
Port.Transceiver.Interrupt Enabled (Received Data Not Empty)
then -- handle reception
-- call the Serial I0.Device version:
Get (Serial I0.Device (Port.all), Incoming);

Await_Reception_Complete : loop
exit when not
Port.Transceiver.Status (Read Data Register Not Empty);

end loop Await Reception Complete;

Port.Transceiver.Disable Interrupts (Received Data Not Empty);
Port.Transceiver.Clear Status (Read Data Register Not Empty);
Incoming Data Available := True;

(continues on next page)
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end if;

-- check for transmission ready

if Port.Transceiver.Status (Transmission Complete Indicated) and then
Port.Transceiver.Interrupt Enabled (Transmission_ Complete)

then -- handle transmission
-- call the Serial I0.Device version:
Put (Serial I0.Device (Port.all), Outgoing);

Port.Transceiver.Disable Interrupts (Transmission Complete);
Port.Transceiver.Clear Status (Transmission Complete Indicated);
Transmission Pending := False;
end if;
end IRQ Handler;

entry Put (Datum : HAL.UInt8) when not Transmission Pending is
begin

Transmission Pending := True;

Outgoing := Datum;

Port.Transceiver.Enable Interrupts (Transmission Complete);
end Put;

entry Get (Datum : out HAL.UInt8) when Incoming Data Available is

begin
Datum := Incoming;
Incoming Data Available := False;
end Get;

end I0 Manager;

end Serial IO.Interrupt Driven;

84
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CHAPTER
ELEVEN

INTERRUPT HANDLING

11.1 Motivation

Recall that, in Ada, protected procedures are the standard interrupt-handling mechanism.
The canonical interrupt handling and management model is defined in the Systems Pro-
gramming Annex, section C.3 of the Reference Manual*3. We assume that this optional
annex is supported, and indeed effectively all compilers do support it. Likewise, we as-
sume that the Real-Time Annex, annex D**, is supported (which would require Annex C*°
to be supported anyway). Finally, we assume that either the Ravenscar or the Jorvik us-
age profile is applied. These two profiles define configurations of the two annexes that are
appropriate for typical embedded systems that handle interrupts.

The definition of a canonical model mitigates differences imposed by the target, but some
remain. For example, the number of different priority values, including interrupt priorities,
differs with the targets involved. The model supports blocking of those interrupts at a lower
priority than the currently executing interrupt handler, but the hardware might not support
that behavior, although many do. None of these variations affect the expression of the
idioms themselves.

The response to interrupts is often arranged in logical levels. The first level is the protected
procedure handler itself. In some cases, everything required to handle the interrupt is
performed there. However, some applications require more extensive, asynchronous pro-
cessing of the data produced by the first level interrupt handler. In this case a second-level
response can be defined, consisting of a task triggered by the first level. For example, the
interrupt handler could respond to the first arrival of a character on a USART*®, poll for the
remainder (or not), and then notify a task to perform analysis of the entire string received.

But even if no second-level interrupt processing is required, the interrupt handler may be
required to notify the application that the event has occurred. Because interrupts are asyn-
chronous, and logically concurrent with the application code, the association of an applica-
tion task to a given interrupt-driven event is convenient and common.

Hence a task is often involved. How the handler procedure notifies the task leads to a
couple of different idiom implementations. In both cases notification amounts to releasing
the previously suspended task for further execution.

In the following section we show how to express these three idioms: one for using protected
procedures alone, and two in which a protected procedure handler notifies a task.

43 http://www.ada-auth.org/standards/12rm/html/RM-C-3.html|

44 http://www.ada-auth.org/standards/12rm/html|/RM-D.html

45 http://www.ada-auth.org/standards/12rm/html|/RM-C.html

46 https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter
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11.2 Implementation(s)

11.2.1 First Level Handler Alone

In this approach the interrupt handler protected procedure does everything necessary and
does not require a second-level handler.

An interrupt handler that simply copies data from one location to another is a good example
of a necessary and sufficient first-level handler. The enclosing application assumes the
copying is occurring as required and needs no explicit notification. If the copying isn't
happening the failure will be obvious.

So, given that, why discuss such a scenario? Two reasons: to show how it is done in gen-
eral, and especially, to show how double-buffering can be implemented very elegantly with
interrupts.

For a concrete example, consider an audio streaming device that takes PCM samples from
Ethernet via incoming UDP packets and transfers them to an audio CODEC device*’ on
the target board. The CODEC output is physically connected to a high-quality amplifier
and speakers. No upper-level application thread requires notification of the copying: if the
transfer is working the audio output occurs, otherwise it does not.

In our implementation the CODEC device is fed from a buffer named Outgo-
ing PCM Samples. The buffer must always have new samples available when the CODEC
is ready for them, because delays or breaks would introduce audible artifacts. The timing is
determined by the sampling rate used by the audio source, prior to transmission. To match
that rate and to provide it efficiently, we use DMA to transfer the data from the buffer to the
CODEC. In addition, Outgoing PCM Samples is double-buffered to help ensure the samples
are always available upon demand.

However, the incoming UDP packets don't arrive at exact intervals. Because of this jitter in
the arrival times, we cannot directly insert the PCM samples from these incoming packets
into the Outgoing PCM Samples buffer. The delays would be audible. Therefore, we use a
jitter buffer to deal with the arrival time variations. This jitter buffer holds the PCM samples
as they arrive in the UDP packets, in sufficient amounts to de-couple the arrival time jitter
from the outgoing data. A jitter buffer can do much more than this, such as correcting the
order of arriving packets, but in this specific case the additional functionality is not required.

We use two DMA interrupts to copy data from the jitter buffer to the Outgoing PCM Samples
buffer. The rationale for using two interrupts, rather than one, is given momentarily. The
figure below illustrates the overall approach, with the jitter buffer on the left, the two inter-
rupt handlers in the middle, and the Outgoing PCM Samples buffer on the right.

47 https://en.wikipedia.org/wiki/Audio_codec
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Jitter_Buffer : array (Single_Buffer_Length * Num_To_Buffer)

of PCM_Sample; 2 * Single_Buffer_Length
0 1 v
576 Outgoing_PCM_Samples : Audio_Double_Buffer;
samples
o7 - IRQ: Half
Handler: Fill Xfer Complete
Upper Buffer Upper
1152
with 1 frame Buffer 576 samples
1728
Handler: Fill
Lower Buffer Lower
04 : 576 samples
with 1 frame Buffer P
IRQ: Xfer
2880 Complete
3456 Sampling
Frequency DMA Left
4031
CODEC
—)

Right

Each UDP packet contains 576 PCM samples, used as the single buffer length for the double-
buffered Outgoing PCM Samples and the Jitter Buffer.

The advantage of double-buffering is that the producer can be filling one buffer while the
consumer is removing data from the other. These directions switch when the current output
buffer becomes empty. The resultis a fast, continuous output stream. Many audio and video
devices use double-buffering for that reason.

To express double-buffering you could use two physically distinct array objects, switching
between them when the DMA controller signals that the current outgoing buffer is empty.
That would require keeping track of which buffer is being filled and which is being emptied.
There is an elegant, simpler alternative that uses two different DMA interrupts instead of
one. (The DMA device must support this approach directly.)

In this alternative, there is one physical array (Outgoing PCM Samples), containing twice
the number of components as a single physical buffer would contain. We can then use the
two interrupts to treat the one physical array as two logical buffers.

The two DMA interrupts are triggered as the DMA transfer consumes the content within
this single array. One interrupt is triggered when the transfer reaches the physical half-way
point in the array. The other interrupt is triggered when the transfer reaches the physical
end of the array. Therefore, because the array is twice the size of a single buffer, each
interrupt corresponds to one of the two logical buffers becoming empty.

Furthermore, the DMA device generating these interrupts is configured so that it does not
stop. After triggering the half transfer complete interrupt the DMA continues reading, now
from the second logical buffer. After triggering the transfer complete interrupt the DMA
device starts over at the beginning of the array, reading from the first logical buffer again.

Therefore, we have two distinct interrupt handlers, one for each of the two interrupts. When
the half transfer complete handler is invoked, the upper logical buffer is now empty, so the
handler for that half fills it. Likewise, the transfer complete interrupt handler fills the lower
logical buffer at the bottom half of the array. There's no need to keep track of which buffer
is being filled or emptied. It's all being emptied, and the handlers always fill the same upper
or lower halves of the array. As long as each handler completes filling their half before the
DMA transfer begins reading it, all is well.

Here's the declaration of the protected object containing the DMA interrupt handling code.

protected DMA Interrupt Controller with
Interrupt Priority => DMA Interrupt Priority
is
private
(continues on next page)
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procedure DMA IRQ Handler with
Attach Handler => STM32.Board.Audio Out DMA Interrupt;
end DMA Interrupt Controller;

A few points are worth highlighting.

First, DMA Interrupt Priority is an application-defined constant. The actual value isn't
important to this discussion. The handler procedure is attached to an interrupt that is
specific to the target board, so it is defined in the package STM32.Board in the Ada Drivers
Library. Each target board supported by the library has such a package, always with the
same package name. This particular STM32 board has dedicated audio DMA support, along
with the CODEC.

Second, there's nothing declared in the visible part of the PO. More to the point, everything
is declared in the optional private part. That placement is a matter of style, but it's good
style. No software client should ever call the protected procedure — only the hardware
should call it, via the runtime library — so we make it impossible for any client to call it
accidentally. That placement also informs the reader of our intent.

Third, we said there are two interrupts, but only one interrupt handler procedure is declared
and attached. There's nothing inherently wrong with one routine handling multiple inter-
rupts, although conceptually it is notideal. In this case it is necessary because on this target
both device interrupts arrive at the MCU on one external interrupt line. Therefore, the one
protected procedure handler handles both device interrupts, querying the DMA status flags
to see which interrupt is active. This approach is shown below. Note that there must be an
enclosing package, with multiple context clauses, but we do not show them so that we can
focus on the interrupt handler itself.

protected body DMA Interrupt Controller is

procedure DMA TIRQ Handler is
use STM32.Board; -- for the audio DMA
begin
if Status (Audio DMA,
Audio DMA Out Stream,
DMA.Half Transfer Complete Indicated)

-- The middle of the double-buffer array has been reached by the
-- DMA transfer, therefore the "upper half buffer" is empty.
Fill Logical Buffer (Outgoing PCM Samples,
Starting Index => Upper Buffer Start);

Clear Status (Audio DMA,

Audio DMA Out Stream,

DMA.Half Transfer Complete Indicated);

end if;

if Status (Audio DMA,
Audio DMA Out Stream,
DMA.Transfer Complete Indicated)
then
-- The bottom of the double-buffer array has been reached by the
-- DMA transfer, therefore the "lower half buffer" is empty.
Fill Logical Buffer (Outgoing PCM Samples,
Starting Index => Lower Buffer Start);
Clear Status (Audio DMA,
Audio DMA Out Stream,
DMA.Transfer Complete Indicated);
end if;
end DMA IRQ Handler;

end DMA Interrupt Controller;
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In both cases Fill Logical Buffer is called to insert samples from the jitter buffer into
one of the logical buffers. The difference is the value passed to the formal parame-
ter Starting Index. This is the array index at which filling should begin within Qutgo-
ing PCM Samples. Upper Buffer Start corresponds to OQutgoing PCM Samples'First,
and Lower Buffer Startis Outgoing PCM Samples'First + Single Buffer Length.

That's all the software has to do. Offloading work to the hardware, in this case the DMA
controller, is always a good idea, but that's especially true for less powerful targets, e.qg.,
microcontrollers. Note that the availability of the half transfer complete interrupt varies
across different DMA devices.

The implementation of Fill Logical Buffer is straightforward and need not be shown.
However, the procedure declares a local variable named Incoming PCM Samples that has
ramifications worth noting. In particular, the representation may require altering and re-
building the underlying Ada run-time library.

The object Incoming PCM Samples is declared within Fill Logical Buffer like so:

Incoming PCM Samples : Jitter Buffer.Sample Buffer Slice;

The alteration might be required because Fill Logical Buffer executes entirely in the
interrupt handler procedure's context. Hence the storage used by the procedure's execution
comes from the interrupt handler stack. Interrupt handlers typically do relatively little, and,
as a result, a relatively small stack allocation is typically defined for them. The storage for
Incoming PCM Samples might exceed that allocation.

Specifically, we said that Fill Logical Buffer fills an entire half of the double-buffer, i.e.,
it works in terms of Single Buffer Length. If Sample Buffer Slice is an actual array,
the required storage might be considerable.

The interrupt stack allocation is set by the run-time library source code in GNAT, as is com-
mon. You could increase the allocation and rebuild the run-time.

On the other hand, Sample Buffer Slice need not be an actual array. It could be a record
type containing a (read-only) pointer to the jitter buffer array and an index indicating where
in that array the slice to be transferred begins. That representation would obviously require
much less stack space, obviating the run-time library change and rebuild. Moreover, that
representation would allow Fill Logical Buffer to copy directly from the jitter buffer into
the final destination, i.e., Outgoing PCM Samples. If Incoming PCM Samples is an array,
we'd have to copy from the jitter buffer into Incoming PCM Samples, and then again from
there to Qutgoing PCM Samples. That's an extra copy operation we can avoid.

A related issue, perhaps requiring a run-time change, is the secondary stack allocation for
interrupt handlers. The secondary stack is a common approach to implementing calls to
functions that return values of unconstrained subtypes (usually, unconstrained array types,
such as String). Because the result size is not known at the point of the call, using the
primary call stack for holding the returned value is messy. The function's returned value
would follow the stack space used for the call itself. But on return, only the call space is
popped, leaving a hole in the stack because the value returned from the function remains
on the stack. Therefore, another separate stack is commonly used for these functions.
(GNAT does so.) The interrupt handler code could exhaust this allocation as well. The
allocation amount is also specified in the run-time library source code. But, as with the
situation above, the source code can be changed, in this case to avoid calling functions
with unconstrained result types. The trade-off is whether that change is more costly than
changing and rebuilding the run-time, as well as maintaining the change.

11.2.2 Task Notification Introduction

The first idiom implementation did not require notifying a task, but these next idiom im-
plementations will do so. As we mentioned earlier, how the interrupt handler achieves this
notification leads to two distinct idioms. Ultimately the difference between them is whether
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or not the interrupt handler must communicate with the task. In both cases the handler
synchronizes with the task because of the notification required.
11.2.3 Task Notification With Communication

In this implementation the interrupt handler releases a task but also communicates with
it when doing so. Therefore, a protected entry is used, and the entry parameters are the
communication medium. The approach is depicted in the figure below:

Protected Object

Interrupt Vectors

[ Entry Barrier]

IRQ

The interrupt handler stores data within the PO and only enables the entry barrier when
ready to either produce it or consume it via the entry parameters. The dashed lines in the
figure represent this data flow.

By coincidence, this is the notification approach used in the idiom entry Providing Compo-
nent Access to Enclosing Record Objects (page 71). In that implementation, client tasks call
two entries to Put and Get single characters, so the data stored in the PO consists of those
characters. We did not mention it there because we were focused on that other idiom, i.e.,
how to give visibility within a PO/task component to an enclosing record object.

Be sure to understand the code for the other idiom before exploring this one. We will repeat
elided parts of the code and only discuss the parts relevant for this current idiom. Because
we are focused now on the interrupt handling task notification, here is the full interrupt
handler PO type declaration — I0 Manager — within the elided package declaration:

package Serial_IO.Interrupt_Driven is

type Serial_Port ... is new Serial I0.Device with private;

overriding

procedure Put (This : in out Serial Port; Data : HAL.UInt8)
with Inline;

overriding

procedure Get (This : in out Serial Port; Data : out HAL.UInt8)
with Inline;

private

protected type IO Manager

(IRQ : Interrupt ID;
IRQ Priority : Interrupt Priority;
Port : not null access Serial Port)

(continues on next page)
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(continued from previous page)
with
Interrupt Priority => IRQ Priority
is
entry Put (Datum : HAL.UInt8);
entry Get (Datum : out HAL.UInt8);

private

Outgoing : HAL.UIntS8;
Incoming : HAL.UIntS8;

Incoming Data Available : Boolean
Transmission Pending : Boolean :

False;
False;

procedure IRQ Handler with Attach Handler => IRQ;

end I0 Manager;

end Serial IO.Interrupt Driven;

A protected object of type I0 Manager is given a discriminant value that designates the
enclosing Serial Port object because that Serial Port has the USART device required
to do the actual I/0. The other two discriminants are required for configuring the interrupt
handler and attaching it to the interrupt hardware.

The two octets Outgoing and Incoming are the values sent and received via the interrupt
handler's manipulation of the USART. (A USART doesn't receive characters, as such, and
we're ignoring the fact that it may work with a 9-bit value instead.)

The two Boolean components Incoming Data Available and Transmission Pending are
used for the two barrier expressions. Their purpose is explained below.

The bodies of visible procedures Put and Get (shown below) call through to the interrupt
manager's protected entries, also named Put and Get. Those entries block the callers until
the interrupt manager is ready for them, via the entry barriers controlled by the interrupt
handler.

with STM32.Device; use STM32.Device;

package body Serial IO.Interrupt_Driven is

overriding
procedure Put (This : in out Serial Port; Data : HAL.UInt8) is
begin
This.Controller.Put (Data);
end Put;

overriding
procedure Get (This : in out Serial Port; Data : out HAL.UInt8) is

(continues on next page)
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(continued from previous page)
begin
This.Transceiver.Enable Interrupts (Received Data Not Empty);
This.Controller.Get (Data);
end Get;

procedure IRQ Handler is
begin
-- check for data arrival
if Port.Transceiver.Status (Read Data Register Not Empty) and then
Port.Transceiver.Interrupt Enabled (Received Data Not Empty)
then -- handle reception
Get (Serial I0.Device (Port.all), Incoming);
-- call the Serial I0.Device version!
Await_Reception_Complete : loop
exit when not
Port.Transceiver.Status (Read Data Register Not Empty);
end loop Await Reception Complete;
Port.Transceiver.Disable Interrupts (Received Data Not Empty);
Port.Transceiver.Clear Status (Read Data Register Not Empty);
Incoming Data Available := True;
end if;

-- check for transmission ready

if Port.Transceiver.Status (Transmission Complete Indicated) and then
Port.Transceiver.Interrupt Enabled (Transmission Complete)

then -- handle transmission
Put (Serial I0.Device (Port.all), Outgoing);
-- call the Serial I0.Device version!
Port.Transceiver.Disable Interrupts (Transmission Complete);
Port.Transceiver.Clear Status (Transmission Complete Indicated);
Transmission Pending := False;

end if;

end IRQ Handler;

entry Put (Datum : HAL.UInt8) when not Transmission Pending is
begin

Transmission Pending := True;

Outgoing := Datum;

Port.Transceiver.Enable Interrupts (Transmission Complete);
end Put;

entry Get (Datum : out HAL.UInt8) when Incoming Data Available is
begin

(continues on next page)
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(continued from previous page)

Datum := Incoming;
Incoming Data Available := False;
end Get;

end IO Manager;

end Serial IO0.Interrupt Driven;

Note how IRQ Handler checks for which interrupt is active, possibly both, does whatever is
necessary for that to be handled, and then sets the entry barriers accordingly. The barrier
expression Transmission Pending blocks Put callers until the current transmission, if any,
completes. The barrier Incoming Data Available blocks Get callers until a character has
been received and can be provided to the caller. The entry bodies copy the entry formal
parameters to/from the internally stored characters and likewise set the entry barriers.

Note too how the body of procedure Get first enables the received data available interrupt
before calling the entry. The body of the entry Put does something similar. They both work
in concert with the handler procedure to manage the interrupts as required.

Using protected entries is ideal for this case because, after all, that is exactly what they
are designed to do. Note that declaring multiple protected entries in a single protected
type/object requires the Jorvik usage profile to be applied.

11.2.4 Task Notification Without Communication

In this implementation, the interrupt handler procedure is not required to communicate
with the task. It only needs to synchronize with it, to release it.

Therefore, we can use a Suspension Object: a language-defined, thread-safe binary flag
type defined in package Ada.Synchronous Task Control. Objects of this type have two
values: True and False, with False as the default initial value. There are two primary
primitive operations: procedures Suspend Until True and Set True. Procedure Set True
does just what you think it does. Procedure Suspend Until True suspends the caller
(task) until the value of the specified argument becomes True, at which point the sus-
pended task is allowed to continue execution. (Of course, if it was already True when
Suspend Until True was called, the caller returns without suspending.) Critically, proce-
dure Suspend Until True also sets the argument back to False before returning. As a
result, those are the only two routines you're likely to need, although there are others.

The interrupt handler procedure in this approach simply calls Set True for a Suspen-
sion Object (an object of that type) visible to both the handler and the task. This ar-
rangement is illustrated by the following figure:

Set_True Susp(?nswn '
Interrupt Vectors Object Suspend_Until_True

Protected Object

_ya IRQ Handler Client Task
[

The language requires the run-time library implementation to allow calls to Set False and
Set True during any protected action, even one that has its ceiling priority in the Inter-
rupt Priority range, so this approach will work for interrupt handlers as well as tasks.
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For our example we implement a facility for sending and receiving messages over a serial
port, using interrupts. The design is similar to the implementation we just explored, and
thus to the Providing Component Access to Enclosing Record Objects (page 71) idiom. In
that implementation, however, only single characters were sent and received, whereas
messages will consist of one or more characters. Although there are differences, we assume
that you are familiar enough with that idiom's approach that we don't need to go into all the
details of the serial I/0, the USART, or the interrupt handler within a PO. We'll focus instead
of the differences due to this idiom.

In this version we want to notify a task when an entire message has been sent or received,
not just a single character. We'll define a message as a String that has a message-specified
logical terminator character, e.qg., the nul character. Transmission will cease when the ter-
minator character is encountered when sending a message object. Similarly, a message
is considered complete when the terminator character is received. (The terminator is not
stored in message content.)

In a sense the interrupt handler is again communicating with tasks, but not directly, so entry
parameters aren't applicable. Therefore, a Suspension Object component is appropriate.
But instead of one Suspension Object variable, each Message object will contain two:
one for notification of new content receipt, and one for notification of successful content
transmission.

For the sake of the Separation of Concerns principle, the type Message should be an ADT of
its own, in a dedicated package:

with Serial IO; use Serial IO;
with Ada.Synchronous Task Control; use Ada.Synchronous Task Control;

package Message_Buffers is
type Message (Physical Size : Positive) is tagged limited private;

function Content (This : Message) return String;

function Length (This : Message) return Natural;

procedure Set (This : in out Message; To : String) with
Pre => To'lLength <= This.Physical Size,
Post => Length (This) = To'Length and Content (This) = To;

function Terminator (This : Message) return Character;
procedure Await Transmission Complete (This : in out Message);
procedure Await Reception Complete (This : in out Message);
procedure Signal Transmission Complete (This : in out Message);
procedure Signal Reception Complete (This : in out Message);

private

type Message (Physical Size : Positive) is tagged limited record

Content : String (1 .. Physical Size);
Length : Natural := 0;

Reception Complete : Suspension Object;
Transmission Complete : Suspension Object;
Terminator : Character := ASCII.NUL;

end record;

end Message Buffers;

In essence, a Message object is just the usual variable length string abstraction with a
known terminator and ways to suspend and resume clients using them. Note the two Sus-
pension Object components.

In this example the tasks to be notified are application tasks rather than second-level inter-
rupt handlers. Client tasks can suspend themselves to await either transmission completion
or reception completion. The Message procedures simply call the appropriate routines for

924 Chapter 11. Interrupt Handling



Ada In Practice

the parameter's Suspension Object components:

procedure Await Transmission Complete (This : in out Message) is
begin

Suspend Until True (This.Transmission Complete);
end Await Transmission Complete;

and likewise:

procedure Await Reception_Complete (This : in out Message) is
begin

Suspend Until True (This.Reception Complete);
end Await Reception Complete;

The client task could look like the following, in this case the main program's environment
task:

procedure Demo Serial Port Nonblocking is

Incoming : aliased Message (Physical Size => 1024); -- arbitrary size
Outgoing : aliased Message (Physical Size => 1024); -- arbitrary size

procedure Send (This : String) is

begin
Set (Outgoing, To => This);
Start Sending (COM, Outgoing'Unchecked Access);
Outgoing.Await Transmission Complete;

end Send;

begin
Initialize Hardware (COM);
Configure (COM, Baud Rate => 115 200);

Incoming.Set Terminator (ASCII.CR);

Send ("Enter text, terminated by CR.");

loop
Start Receiving (COM, Incoming'Unchecked Access);
Incoming.Await Reception_Complete;
Send ("Received : " & Incoming.Content);

end loop;

end Demo Serial Port Nonblocking;

We don't show all the context clauses, for brevity, but one of the packages declares COM
as the serial port. This demo doesn't exploit the nonblocking aspect because it does not
perform any other actions before suspending itself after initiating sending and receiving.
But it could do so, while the I/O is happening, only later suspending to await completion of
the requested operation.

The interrupt handler procedure can signal both transmission and reception completion
using the two other procedures:

procedure Signal Transmission Complete (This : in out Message) is
begin

Set True (This.Transmission Complete);
end Signal Transmission Complete;

procedure Signal Reception Complete (This : in out Message) is
begin

Set True (This.Reception Complete);
end Signal Reception Complete;

In this version of the Serial 10 facility, the interrupt handler's enclosing protected type is
the type Serial Port itself, rather than a PO enclosed by a record type:
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protected type Serial Port

(Device : not null access Peripheral Descriptor;
IRQ : Interrupt ID;
IRQ Priority : Interrupt Priority)

with

Interrupt Priority => IRQ Priority
is

procedure Start Sending (Msg : not null access Message);
procedure Start Receiving (Msg : not null access Message);

private

Next Out : Positive;
Outgoing Msg : access Message;
Incoming Msg : access Message;

procedure Handle Transmission with Inline;
procedure Handle Reception with Inline;
procedure ISR with Attach Handler => IRQ;

end Serial Port;

Procedure ISR (Interrupt Service Routine) is the handler.

The two visible protected procedures, Start Sending and Start Receiving, are given
non-null arguments when called (indirectly) by client tasks. Each argument is an access
value designating a Message object declared by clients. The pointers are copied into the in-
ternal components, i.e., Outgoing Msg and Incoming Msg, for use by the interrupt handler
procedure.

As with the earlier idiom above, there are multiple device interrupts, but they are all deliv-
ered on one external interrupt line. The handler procedure checks the status flags to see
which interrupts are active and calls dedicated internal procedures accordingly. We don't
need to see this infrastructure code again, so we can focus instead on one, the internal
Handle Reception procedure. The routine for transmitting is similar.

procedure Handle Reception is
: constant Character :=
Character'Val (Current Input (Device.Transceiver.all));
begin
if Received Char /= Incoming Msg.Terminator then
Incoming Msg.Append (Received Char);
end if;
if Received Char = Incoming Msg.Terminator or else
Incoming Msg.Length = Incoming Msg.Physical Size
then -- reception complete
Lloop
-- wait for device to clear the status
exit when not Status (Device.Transceiver.all,
Read Data Register Not Empty);
end loop;
Disable Interrupts (Device.Transceiver.all,
Source => Received Data Not Empty);
Incoming Msg.Signal Reception Complete;
Incoming Msg := null;
end if;
end Handle Reception;

Note the call to Signal Reception Complete for the current Message object being re-
ceived, designated by Incoming Msg.

The alternative to a Suspension Object is a parameterless protected entry that a task calls
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to suspend itself. That certainly works in general, but we would need two entries, hence
Jorvik. But also, the Suspension Object approach can have a little better performance
because it does not have the functionality that a protected entry has.

Note that type Suspension Object might very well be implemented as a protected type.
On a uniprocessor target, protected object mutual exclusion can be implemented via pri-
orities, so it won't make much difference. (GNAT's bare-board run-times use that mutual
exclusion implementation approach, as well as the PO implementation of type Suspen-
sion Object.)

11.3 Pros

In all three idioms, the approach is directly expressed, meets the requirements, and hides
the implementation details. The implementations are efficient relative to their require-
ments, the only reasonable metric. In particular, Suspension Objects are expected to be
faster than protected entries, but only support synchronization, and only with one caller at
a time — there's no queue. Nor do they support communication. Protected entries have no
such restrictions and are reasonably efficient given their considerable additional capabili-
ties.

11.4 Cons

None.

11.5 Relationship With Other Idioms

The idiom showing how to connect a PO or task to an enclosing record object was illustrated
by an interrupt handler PO, but that idiom is not necessary. Indeed, we used a protected
type directly in the last implementation.

11.6 What About Priorities?

The idiom expressions do not determine the actual priorities assigned to the protected
objects containing the handler procedures, nor those of the notified tasks.

The language standard requires the priorities for interrupt handler POs to be in the range
defined by the subtype System.Interrupt Priority. Under the Ravenscar and Jorvik pro-
files they must also satisfy the Ceiling Priority Protocol requirements.

The target's interrupt hardware may dictate the specific handler priorities, or at least their
floor values. You may be able to control those hardware priorities via the target board
startup code.

But usually we have some freedom to choose, so what priorities should be assigned?

Often the values are arbitrary. However, a more rigorous approach may be required. A good
guideline is that if you need to do a timing (schedulability) analysis for the application tasks'
deadlines, you need to do it for the interrupt handlers' deadlines too. The same analyses
can be used, i.e., response-time analysis, and the same priority assignment schemes, i.e., a
shorter period gets a higher priority. (The interrupt period is the minimum interval between
the interrupt occurrences.)

In addition, ensuring interrupt handler deadlines are met is part of ensuring the tasks meet
their deadlines. That's because the interrupt handlers release the associated sporadic
(event-driven) tasks for execution. A sporadic task triggered by a device (say) usually
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will have a deadline no greater than the next occurrence of the sensor-generated interrupt,
that is, the interrupt period. The priority of the task will be set according to that period.

11.7 Notes

1. The traditional expression for an interrupt handler, i.e., a procedure, is allowed by

the language as a vendor-defined extension. However, there will likely be language-
oriented restrictions applied to those procedures, due to the context. That's true of
other languages as well.

2. You shouldn't assign interrupt handler (PO) priorities by semantic importance, just as

you shouldn't do so for task priorities. More important interrupt handlers shouldn't
necessarily be assigned more urgent priorities.
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CHAPTER
TWELVE

REDUCING OBJECT CODE FROM GENERIC PACKAGE
INSTANTIATIONS

12.1 Motivation

Generic unit instantiations are often, but not always, implemented by an Ada compiler as
a form of macro expansion. In this approach, the compiler produces separate, dedicated
object code for every instantiation. The macro expansion approach can produce better
run-time performance but can result in large total object code size for the executable when
there are many instances, especially when the generic packages instantiated contain a
lot of unit declarations. For example, the generic I/O packages contained within package
Ada.Text I0 are themselves relatively large.

The alternative compiler implementation approach is code-sharing, in which distinct in-
stantiations of a given generic unit are implemented with shared object code in a single
module.

Clearly, sharing the object code can reduce the total size, but code-sharing can be very
complicated to implement, depending on the generic unit itself. For a trivial example, con-
sider the following package:

generic
package P is

Error : exception;
end P;

The semantics of the language require that every instantiation of generic package P be a
distinct package, as if each instance was instead written explicitly as a non-generic package
(at the point of instantiation) with the instance name. As a result, each package instance
declares an exception, and these exceptions must be treated as distinct from each other. A
code-sharing implementation must maintain that distinction with one object code module.

In the example above, there are no generic formal parameters, nor other declarations within
the package declarative part besides the exception, because they are not necessary for that
example. However, generic formal parameters can be a problem for code-sharing too. For
example, consider this generic package:

generic
Formal Object : in out Integer;
package P is

end P;

This generic package has a generic formal object parameter with mode in out. (We chose
type Integer purely for convenience.) That specific mode can cause a similar problem as
seen in the exception example, because the mode allows the generic package to update
the generic actual object passed to it. The shared object code must keep track of which
object is updated during execution.
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Therefore, when writing the application source code that instantiates generic packages,
developers should do so in a manner that minimizes the amount of object code that might
result.

12.2 Implementation(s)

The application source code should be written in a manner that shares the instantiations
themselves, when possible, thereby reducing the number of instantiations that exist.

For example, let's say that several units in the application code require the ability to do
I/0 on some floating-point type. For simplicity, let’s say that this is a type named Real,
declared in a package named Common. Here is a declaration for an example package body
that requires the I/O capability:

with Ada.Text IO, Common;
package body Userl is
package Real_IO is new Ada.Text_IO.Float_IO (Common.Real);

end Userl;

That's certainly legal, and works, but we've said that several units require 1/O for type Real.
Let’s say there are in fact twenty such units. They all do something similar:

with Ada.Text IO, Common;
package body User20 is
package Real IO is new Ada.Text IO.Float IO (Common.Real);

end User20;

As a result, the application has twenty instantiations (at least) of Ada.Text IO.Float IO.
There will be instances named Userl.Real IO, User2.Real I0, and so on, up to User20.
Real I0. The fact that the local names are all Real IO is irrelevant.

If the compiler happens to use the macro-expansion implementation, that means the ap-
plication executable will have twenty copies of the object code defined by the generic
Float I0. For example, GNAT performs some internal restructuring to avoid this problem
for these specific language-defined generic units, but not for application-defined generics.

Instead, we can simply instantiate the generic at the library level:

with Ada.Text IO, Common;
package Real_IO is new Ada.Text_IO.Float_IO (Common.Real);

Because the instantiation occurred at the library level, the resulting instance is declared
at the library level, and can therefore be named in a "with_clause" like any other library
package.

with Real I0;
package body Userl is

end Userl;

Each client package can use the same instance via the with_clause, and there’s only one
instance so there’s only one copy of the object code.

12.3 Pros

The total object code size is reduced, compared to the alternative of many local instantia-
tions.
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12.4 Cons

What would otherwise be an implementation detail hidden from clients can now become
visible to them because a (public) library unit can be named in with_clause by any other
unit. As a result, this approach should not be used in all cases, not even as a default
design approach. Restricting the visibility of the instance may be more important than the
amount of object code it contributes. Hiding implementation artifacts allows more freedom
to change the implementation without requiring changes to client code.

12.5 Relationship With Other Idioms

None.

12.6 Notes

1. The reader should understand that this issue is not about the number of subprograms
within any given package, whether or not the package is a generic package. In the
past, some linkers included the entire object code for a given package (instance or
not), regardless of the number of subprograms actually used from that package in the
application code. That was an issue with reusable library code, for example packages
providing mathematical functions. Modern linkers can be told not to include those
subprograms not called by the application. For example, with gcc, the compiler can
be told to put each subprogram in a separate section, and then the linker can be told to
only include in the executable those sections actually referenced. (Data declarations
can be reduced that way as well.)
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CHAPTER
THIRTEEN

RESOURCE ACQUISITION IS INITIALIZATION (RAII)

13.1 Motivation

In order for the expected semantics to be obtained, some types require clients to follow
a specific protocol when calling the type's operations. Furthermore, failing to follow the
protocol can cause system-wide ill effects.

For example, concurrency abstractions such as mutexes provide the mutually exclusive
access necessary to prevent the race conditions that arise when competing concurrent
threads access shared resources. These mutex objects must be 1) both acquired and re-
leased, 2) by every thread accessing that shared resource, 3) at the right places in the
source code, and 4) in the proper order. Failure to acquire the mutex prior to accessing the
shared resource leads to race conditions, and failure to release it can lead to deadlocks.
Ensuring the mutex is released is complicated by the possibility of exceptions raised after
the lock is acquired.

Although concurrency is a prime example, the issue is general in nature. We will continue
with the concurrency context for the sake of discussion.

Like the classic monitor concept (°°,>1,2) on which they are based, Ada defines a protected
object (PO) as a concurrency construct that is higher-level and more robust than mutexes
and semaphores. Those advantages accrue because the bodies of the protected operations
are only responsible for implementing the functional requirements. The underlying run-
time library is responsible for implementing the mutually exclusive access, and also thread
management. As a result, the source code is much simpler and is robust even in the face
of exceptions.

(In the works cited above, Hoare's contribution®? was equally important, but Hansen's con-
tributions®?,! were reified in Concurrent Pascal*®, a concrete programming language.)

However, a protected object is not always appropriate. Consider an existing sequential
program that makes calls to visible procedures provided by a package:

package P is
procedure Operation 1;
procedure Operation 2;

end P;

Inside the package body are one or more state variables that are manipulated by the pro-
cedures (i.e., as in an Abstract Data Machine (page 17)):

50 p, B. Hansen. The Architecture of Concurrent Programs. Prentice-Hall, 1977.

51 p. B. Hansen. Operating System Principles. Prentice-Hall, 1973.

52 C, A. R. Hoare. Monitors: an operating system structuring concept. Comm. ACM, 17(10):549-557, 1974.
48 https://en.wikipedia.org/wiki/Concurrent_Pascal
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with Ada.Text I0; use Ada.Text I0;
package body P is
State : Integer := 0;

procedure Operation 1 is
begin
State := State + 1; -- for example...
Put_Line ("State is now " & State'Image);
end Operation 1;

procedure Operation 2 is
begin
State := State - 1; -- for example...
Put Line ("State is now " & State'Image);
end Operation 2;

end P;

This design is reasonable in a strictly sequential caller context. But if new application re-
quirements are such that multiple tasks will be calling these procedures asynchronously,
there is a problem. The package-level variable State will be subject to race conditions be-
cause it is (indirectly) shared among the calling tasks. Race conditions tend to be Heisen-
bugs because they are timing-dependent, so they can be exceedingly difficult to identify
and expensive to debug.

In response to the new requirements, we could declare a protected object within the pack-
age body and move the declaration of State into that PO. In addition, we would declare
two protected procedures corresponding to Operation 1 and Operations 2. The two new
protected procedure bodies would do what the original procedures did, including accessing
and updating State. The original procedures — still presented to clients — would now call
these new protected procedures:

with Ada.Text I0; use Ada.Text I0;
package body P is

protected Threadsafe is
procedure Operation 1;
procedure Operation 2;
private
State : Integer := 0;
end Threadsafe;

protected body Threadsafe is

procedure Operation 1 is
begin
State := State + 1; -- for example...
Put Line ("State is now " & State'Image);
end Operation 1;

procedure Operation 2 is
begin
State := State - 1; -- for example...
Put Line ("State is now " & State'Image);
end Operation 2;

(continues on next page)
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(continued from previous page)
end Threadsafe;

procedure Operation 1 is
begin

Threadsafe.Operation 1;
end Operation 1;

procedure Operation 2 is
begin

Threadsafe.Operation 2;
end Operation 2;

end P;

As a result, there can be no race conditions on State, and the source code is both simple
and robust.

We could put the PO in the package spec and then clients could call the protected object's
operations directly, but changing all the clients could be expensive.

However, this new design is not portable because the two Threadsafe protected procedure
bodies both call a potentially blocking operation, in this case Ada.Text I0.Put Line. Er-
roneous execution is the result. It might work as intended when executed, or it might do
something else, or, if detected, Program Error will be raised. On a run-time library built
on top of an operating system, it may work as intended because the OS may provide thread
locking mechanisms that the run-time library can use. In that case a blocking operation just
suspends the caller thread's execution temporarily without releasing the PO lock. Although
the blocking operation would allow some other caller task to be dispatched, no other caller
could acquire that same PO lock, so race conditions are prevented within that PO. When
the blocking operation returns, the protected procedure body can continue executing, still
holding the lock. However, on a run-time library that does not use locks for mutual exclu-
sion — it can use priorities, in particular — another caller to that same PO could access the
enclosed variables while the first caller is blocked, thus breaking the mutually exclusive
access guarantee.

Calling an I/O operation is not all that strange here, and those are not the only potentially
blocking operation defined by the language.

Note that moving the calls to Put_Line out of the PO procedure bodies, back to the regular
procedure bodies that call those PO procedures, would solve the portability problem but
would not work functionally. There would be no guarantee that, during execution, the call
to Put Line would immediately follow the execution of the protected procedure called im-
mediately before it in the source code. Hence the printed text might not reflect the current
value of the State variable.

As a conseguence, we must fall back to manually acquiring and releasing an explicit lock.
For example, we could declare a lock object at the package level, as shown below, and have
each operation acquire and release it:

with GNAT.Semaphores; use GNAT.Semaphores;
with Ada.Text I0; use Ada.Text I0;

package body P is
subtype Mutual_Exclusion is Binary Semaphore
(Initially Available => True,
Ceiling => Default Ceiling);

Lock : Mutual Exclusion;
(continues on next page)
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(continued from previous page)
State : Integer := 0;

procedure Operation 1 is

begin
Lock.Seize;
State := State + 1; -- for example...

Put _Line ("State is now" & State'Img);
Lock.Release;
exception
when others =>
Lock.Release;
raise;
end Operation 1;

procedure Operation 2 is

begin
Lock.Seize;
State := State - 1; -- for example...

Put _Line ("State is now" & State'Img);
Lock.Release;
exception
when others =>
Lock.Release;
raise;
end Operation 2;

end P;

The subtype Mutual Exclusionis justa binary semaphore with the discriminant set so that
any object of the subtype is initially available. You can assume it is a protected type with
classic binary semaphore semantics. See package GNAT.Semaphores for the details. The
ceiling discriminant isn't important here, but we must set them all if we set any of them.

This design works, but the resulting code is clearly more complex and less robust than the
PO approach.

13.2 Implementation

Our implementation uses an explicit global lock (a mutex), as above, but reintroduces au-
tomatic lock acquisition and release.

To achieve that automation, we leverage the language-defined object lifetime rules. These
rules specify that an object is initialized when it is created and finalized when it is about to
be destroyed. Initialization and finalization may be null operations, and thus absent from
the object code, but application developers can define explicit initialization and finalization
operations. When defined, these operations are called automatically by the underlying
implementation, during the object's lifetime.

We will use the object initialization operation to seize the global lock and the object finaliza-
tion operation to release it. The object lifetime rules will ensure that the lock's operations
are called at the necessary times, thereby providing the required mutually exclusive ac-
cess. In addition, the rules will ensure that the lock will be released even if an exception is
raised in the bracketed application code.

Developers may be familiar with this approach under the name Resource Acquisition Is
Initialization*®. Another name for this technique is Scope-Bound Resource Management
because of the initialization and finalization steps invoked upon scope entry and exit.

49 https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
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Therefore, we will create a new type with user-defined initialization and finalization oper-
ations. We name this new type Lock Manager because the type provides a wrapper for
locks, rather than being a lock directly. Object creation and destruction will invoke the
initialization and finalization routines, automatically.

Because they are wrappers for locks, each object of this type will reference a distinct lock
object so that the initialization and finalization operations can manipulate that lock object.
We use an access discriminant to designate that lock. By doing so, we decouple the new
type from the specific lock, and thus from the application code. Otherwise, the new facility
would not be reusable.

The resulting relationship between the global shared lock and the local object will be as
follows:

Lock : Mutual Exclusion;

procedure Op is

LM : Lock Manager (<pointer to Lock>)

-- <initialization automatically called for LM>
begin

-- ... sequence of statements for Op

-- <finalization called for LM>
end Op;

The language rules specify that a subprogram's local declarative part is elaborated prior
to the execution of that subprogram's sequence of statements. During that elaboration,
objects are created and initialized. The object creation for LM precedes the sequence of
statements in the procedure body for Op, so the designated lock will be acquired prior to
the shared resource use within that body.

Similarly, the rules specify that finalization occurs when an object is about to cease to exist,
in this case because the local object LM goes out of scope. That won't happen until the end
of the sequence of statements is reached for Op, in the normal case, so finalization will
ensure that the lock is released after any possible reference in Op's statement sequence.
The run-time will also invoke finalization in the face of exceptions because exceptions also
cause the scope to be exited.

To define the Lock Manager type, we declare it in a separate package as a tagged limited
private type with a discriminant designating a Mutual Exclusion object:

type Lock Manager (Lock : not null access Mutual Exclusion) is
tagged limited private;

We make it a limited type because copying doesn't make sense semantically for
Lock Manager objects.

In addition, during optimization the compiler is allowed to remove unreferenced objects of
non-limited types. As you saw above in procedure 0p, there will be no explicit references
to the object LM, so making the type limited prevents that unwanted optimization.

Only controlled types support user-defined initialization and finalization operations (as of
Ada 2022). Therefore, in the package private part the type is fully declared as a controlled
type derived from Ada.Finalization.Limited Controlled, as shown below. We hide the
fact that the type will be controlled because we don't intend Initialize and Finalize to
be called manually by clients.

type Lock _Manager (Lock : not null access Mutual Exclusion) is
new Ada.Finalization.Limited Controlled with null record;
No additional record components are required, beyond the access discriminant.

Immediately following the type declaration, we declare overriding versions of the inherited
procedures Initialize and Finalize:
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overriding procedure Initialize (This : in out Lock Manager);
overriding procedure Finalize (This : in out Lock Manager);

These are the operations called automatically by the implementation.

The full package spec is as follows:

with Ada.Finalization;
with GNAT.Semaphores; use GNAT.Semaphores;

package Lock_Managers is

subtype Mutual_Exclusion is Binary Semaphore
(Initially Available => True,
Ceiling => Default Ceiling);

type Lock_Manager (Lock : not null access Mutual Exclusion) is
tagged limited private;

private

type Lock_Manager (Lock : not null access Mutual Exclusion) is
new Ada.Finalization.Limited Controlled with null record;

overriding procedure Initialize (This : in out Lock Manager);
overriding procedure Finalize (This : in out Lock Manager);

end Lock Managers;

The fact that there are no visible primitive operations tells the reader that this is a somewhat
different ADT (page 11). The most useful thing a client can do with such a type is to declare
objects, but that's exactly what we want.

Each overridden procedure simply references the lock designated by the formal parameter's
Lock discriminant:

package body Lock Managers is

overriding procedure Initialize (This : in out Lock Manager) is
begin

This.Lock.Seize;
end Initialize;

overriding procedure Finalize (This : in out Lock Manager) is
begin

This.Lock.Release;
end Finalize;

end Lock Managers;

The resulting user code is almost unchanged from the original sequential code:

with Ada.Text I0; use Ada.Text I0;
with Lock Managers; use Lock Managers;
(continues on next page)
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(continued from previous page)

package body P is
State : Integer := 0;
Lock : aliased Mutual Exclusion;

procedure Operation 1 is

LM : Lock Manager (Lock'Access) with Unreferenced;
begin

State := State + 1; -- for example...

Put Line ("State is now" & State'Img);
end Operation 1;

procedure Operation 2 is

LM : Lock Manager (Lock'Access) with Unreferenced;
begin

State := State - 1; -- for example...

Put Line ("State is now" & State'Img);
end Operation 2;

end P;

The aspect Unreferenced tells the compiler that no references in the source code are ex-
pected. That has two effects during compilation. First, warnings about the lack of refer-
ences in the source code are disabled. Ordinarily we'd want those warnings because an
unreferenced object usually indicates a coding error. That warning would be noise for ob-
jects of this type. But by the same token, the compiler will issue a warning if some explicit
reference is present, perhaps added much later in the project lifetime.

13.3 Pros

Race conditions are precluded, the client code is simpler than direct manual calls, and the
code is robust, especially concerning exceptions. These advantages are significant, given
the cost in engineering time to debug the errors this design prevents.

13.4 Cons

The lock is global, so all calls go through it. Hence all calls are sequential, even if some could
run concurrently. In the above example that's exactly as required, but in other situations it
might be unnecessarily limiting.

Compared to the manual call approach, the run-time cost for keeping track of objects to be
finalized could be non-trivial. That's likely true in any language.

13.5 Relationship With Other Idioms

None.

13.6 Notes

* The name for a similar type in the C++ Boost library is Scoped Lock, as is the Ada
type in the GNAT library package GNATColl.Locks. | used Scope Lock in AdaCore's
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Gem #70°3,

* | didn't invent the name Scope Lock or the Ada implementation, but | don't recall
where | first saw it many years ago. My apologies to that author.

* | consider the name Lock Manager or something similar to be better, since objects of

the type are wrappers for locks, not locks themselves. Indeed, in C++4 2011 the name
is Lock guard.

53 P, Rogers. Gem #70: The Scope Locks Idiom. https://www.adacore.com/gems/gem-70, 2009.
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CHAPTER
FOURTEEN

USING STREAMS FOR API FLEXIBILITY

14.1 Motivation

Software interfaces for hardware devices usually support only primitive data types. Com-
munications devices such as serial /O ports and network adapters are good examples. Their
device drivers provide an API for sending and receiving individual 8-bit or 9-bit numeric
quantities, or sequences of these. Software clients — either the application, or higher-level
layers of device interfaces — may want to send and receive more complex data types. If
so, how can the device driver support them?

We certainly don't want the clients to do unchecked conversions everywhere. That's error-
prone, it prevents the compiler from checking the usage, and makes clients responsible for
what should be an internal implementation detail.

This is a general issue, not specific to communications hardware, but we will discuss it in
that context because of the familiarity of such devices.

The traditional approach is for the device driver's I/O routines to have two parameters for
this purpose: an address and a length. The address indicates the first byte of the client
value to be sent or received, and the length indicates how many bytes are involved. Values
of any type can be sent or received using this interface, but it's a very unsafe / unrobust
approach. Developers could pass the wrong starting address, or specify the wrong length,
thus potentially transmitting only part of the intended value or including part of some wholly
unrelated object. Moreover, developers could pass the address and length of some object
that is not of the type expected on the other end of the connection. After all, Ada allows us
to take the address of just about anything. The effect on the receiver would be difficult to
predict. These mistakes are very expensive to locate, and the compiler cannot help.

We need a type-safe approach for sending and receiving higher-level types so that the
compiler can catch our mistakes. After all, preventing coding errors is much cheaper than
fixing them later.

14.2 Implementation

We will explore the possibilities wusing a concrete USART (Universal Syn-
chronous/Asynchronous Receiver Transmitter)>* defined in the Ada Drivers Library (ADL)>>.
A USART is the physical communications device underlying what is commonly referred to
as a serial port. That name reflects the fact that the device transmits and receives data
serially, as opposed to in parallel.

The ADL provides packages representing specific microcontrollers as well as their on-chip
peripherals, including USARTSs, timers, DMA controllers, and so forth. Each kind of peripheral
is represented by a dedicated Abstract Data Type (ADT) (page 11). The following is the
elided ADT declaration for USARTs on STM32 microcontrollers:

54 https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter
55 https://github.com/AdaCore/Ada_Drivers_Library
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package STM32.USARTs is

type USART is ... private;

procedure Receive (This : USART; Data : out UInt9);
procedure Transmit (This : in out USART; Data : UInt9);

function Tx Ready (This : USART) return Boolean;
function Rx Ready (This : USART) return Boolean;

private

end STM32.USARTs;

Note the formal parameter data type for both Receive and Transmit, i.e., a single 9-bit
unsigned numeric value. Although a client might actually want to send and receive such
values directly, that's probably not the case.

Our implementation is structured as a package hierarchy rooted at package Serial IO.
(This implementation is part of an example in the ADL — see Note #1 (page 120) be-
low.) This root package declares a record type and routines that are common to any im-
plementation. The type, named Peripheral Descriptor, contains a component named
Transceiver that will designate the actual on-chip USART device being driven. The other
record components are required for connecting that device to the external world.

Type Peripheral Descriptor is hardware-specific and is therefore not defined as an ADT.
Instead, the package uses the Groups of Related Program Units (page 8) idiom.

with STM32; use STM32;
with STM32.GPIO; use STM32.GPIO;
with STM32.USARTs; use STM32.USARTs;

package Serial IO is

type Peripheral_Descriptor is record

Transceiver : not null access USART;
Transceiver AF : GPIO Alternate Function;
Tx_Pin : GPIO Point;
Rx_Pin : GPIO Point;

end record;

procedure Initialize Hardware (Device : Peripheral Descriptor);
-- enable clocks, configure GPIO pins, etc.

procedure Configure

(Device : access USART;

Baud Rate : Baud Rates;

Parity : Parities = No Parity;
Data Bits : Word Lengths := Word Length 8;
End Bits : Stop Bits = Stopbits 1;

Control : Flow Control No Flow Control);

end Serial IO0;

Procedure Configure is a convenience routine, provided because a specific sequence of
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driver calls is required in order to set the individual parameters.
Clients will call these procedures directly to set up the STM32 on-chip USART device.

Our implementation will consist of an ADT named Serial Port, and a means for sending
and receiving values of higher-level types via Serial Port objects. Type Serial Port will
be a wrapper for the device driver's USART type. Therefore, the type Serial Port will have
an access discriminant designating a USART:

type Serial_Port (Device : not null access USART) is ...

Using this Device discriminant a Serial Port object can reference the wrapped physical
USART in order to send and receive values via that hardware device.

With that introduction in place, we can consider the possible approaches to sending and
receiving values of higher-level types via Serial Port objects.

The canonical Ada approach consists of a generic package with a generic formal parameter
type. That formal type represents a client-specific type to be sent or received. Clients
instantiate the generic for every client-defined type necessary.

The generic package would look like the following:

generic
type Client_Data (<>) is limited private;
package Client_ IO is

procedure Send
(This : in out Serial Port;
Outgoing : Client Data);

procedure Receive
(This : in out Serial Port;
Incoming : out Client Data);

end Client IO;

In the procedure bodies, the values of the Incoming or Outgoing parameters would be
converted to or from bytes as necessary and sent or received via the USART designated by
This.Device.

This approach supports as many client-level types as required, including limited types. It
is type-safe so the compiler can catch errors in the type(s) being sent and received. In
addition, the low-level implementation details, such as unchecked conversions, are hidden
inside the generic package body.

Moreover, the approach is independent of other design considerations, such as whether
callers wait for completion of the invoked I/O operation. The bodies of the generic proce-
dures can be implemented to provide the expected behavior.

However, this approach is somewhat heavy because the generic package must be instan-
tiated for every client type to be supported. If there are many such types, there will be
many instantiations. Not only is that more lines of source code, but also more object code
because most Ada implementations do not support code-sharing for generic instantiations.
But that said, the need for a given client to send and receive values of many different types
is not typical.

However, there is a more concise approach possible, for both the driver and client source
code. This alternative approach leverages the flexibility of streams and stream attributes.
Using streams allows the wrapper to support an unlimited number of distinct client types,
with no additional source code required per type.

Recall that the stream attributes are callable routines whose first parameter is an access
value designating some stream object. The formal parameter type is access-to-class-wide,
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so any stream object is allowed. For example, the notional specification for the 'Output
attribute looks like this, for some subtype S of type T:

procedure S'Output
(Stream : not null access Ada.Streams.Root Stream Type'Class;
Item :in T);

Therefore, the fundamental approach will be to declare the Serial Port ADT as a stream
type. Clients can then send and receive values simply by invoking the stream attributes,
passing (access to) Serial Port objects as the first parameter to the invocations.

The Serial Port ADT will be defined in package Serial I0.Streaming. Given that, a
client can declare a Serial Port object like so:

with STM32.Device;
with Serial I0.Streaming; use Serial I0;

package Peripherals_Streaming is
-- the USART selection is arbitrary but the AF number and the

-- pins must be those required by that USART
: constant Serial IO.Peripheral Descriptor :=

(Transceiver => STM32.Device.USART 1'Access,
Transceiver AF => STM32.Device.GPIO AF USART1 7,
Tx Pin => STM32.Device.PB6,

Rx_Pin => STM32.Device.PB7);

COM : aliased Streaming.Serial Port (Peripheral.Transceiver);

end Peripherals Streaming;

In the above, Peripheral is an object that describes a specific USART on the SMT32 Discov-
ery Board microcontroller, along with the values necessary to connect that specific USART
to the external environment. The Peripheral variable will be passed to a call to Initial-
ize Hardware. Similarly, COM is an object that wraps the USART designated by Periph-
eral.

Because Serial Port will be a stream type (it will be in the derivation class rooted at
Root Stream Type), COM will be a streaming object that we can pass to invocations of the
stream attributes. For example, to send a String value via COM we could write:

String'Output (COM'Access, "Hello World");

To send an Integer value:

Integer'Write (COM'Access, 42);

To receive an Integer value into the Integer object X:

Integer'Read (COM'Access, X);

That's all clients must do to send and receive values via the USART wrapped by COM. They
could do the same for floating-point types, record types, and so on. Objects of any type
with the streaming attributes defined can be sent or received, and in any order.

To make Serial Port a stream type, the declaration visibly extends Ada.Streams.
Root Stream Type:

type Serial_Port (Device : not null access USART) is
new Ada.Streams.Root Stream Type with private;

This is Interface Inheritance (page 61) so that clients can treat Serial Port as a stream
type. The private extension hides implementation details that we'll describe momentarily.
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As a concrete extension of Root Stream Type we must declare overridings for procedures
Read and Write:

overriding
procedure Read
(This : in out Serial Port;
Buffer : out Ada.Streams.Stream Element Array;
Last : out Ada.Streams.Stream Element Offset);
overriding
procedure Write
(This : in out Serial Port;

Buffer : Ada.Streams.Stream Element Array);

Stream Element Array is an unconstrained array type with Stream Element as the array
component. Stream Element is an unsigned numeric type corresponding to a machine
storage element, e.g., a byte.

Procedure Write inserts these array components into the designated stream. Procedure
Read consumes the array components from the stream and includes a parameter indicating
the index of the last component assigned.

These two procedures are called by the various stream attributes' implementations, not by
clients. For example, consider again the call to 'Output:

String'Output (COM'Access, "Hello World");

The call dispatches to our overriding of procedure Write because the first parameter des-
ignates our specific stream object.

For both procedures the array components hold the serialized representation of the value
read from, or to be written to, the stream. For procedure Write, the array contains
the stream-oriented representation of the client value, e.qg., the "Hello World!" passed to
String'Output. For procedure Read, the array contains the value consumed from the
stream that will be converted into the client type, e.g., type Integer for a call to Inte-
ger'Read, and loaded into the client variable.

Note that the two procedures are only responsible for reading or writing the array compo-
nents from/to the specified stream. Conversions between the types in the clients' attribute
invocations and type Stream Element Array are not their responsibility. That metamor-
phosis is handled automatically by the language-defined attributes' implementations. It's
a nice separation of concerns.

Here then is the full package declaration for the Serial Port ADT:

with Ada.Streams;
with Ada.Real Time; use Ada.Real Time;

package Serial_IO.Streaming is
pragma Elaborate Body;

type Serial_Port (Device : not null access USART) is
new Ada.Streams.Root Stream Type with private;

procedure Set Read Timeout

(This : in out Serial Port;

Wait : Time Span);
-- Stream attributes that call Read (below) can either wait
-- indefinitely or can be set to return any current values
-- received after a given interval. If the value Time Span Last
-- 1s passed to Wait, the effect is essentially to wait forever,
-- 1.e., blocking. That is also the effect if this routine is
-- never called.

(continues on next page)
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(continued from previous page)

overriding
procedure Read
(This : in out Serial Port;
Buffer : out Ada.Streams.Stream Element Array;
Last : out Ada.Streams.Stream Element Offset);
overriding
procedure Write
(This : in out Serial Port;

Buffer : Ada.Streams.Stream Element Array);
private

type Serial Port (Device : access USART) is
new Ada.Streams.Root Stream Type with record
Timeout : Time Span := Time Span_Last;
end record;

procedure Await Send Ready (This : access USART) with Inline;

procedure Await Data Available
(This : access USART;
Timeout : Time Span := Time Span Last;
Timed Out : out Boolean)

with Inline;

use Ada.Streams;

function Last Index
(First : Stream Element Offset;
Count : Long Integer)
return Stream Element Offset
with Inline;

end Serial I0.Streaming;

Prior to procedures Read and Write, the package declares a procedure for controlling a
timeout associated with a Serial Port stream. This timeout controls how long procedure
Read should wait for input to be available in the stream. The default is to wait for what
amounts to forever. Note that the timeout applies both to the case of some input received,
and none received.

In the package private part we see that the type extension contains the record component
named Timeout, with the initial value providing the default. That's the only other record
component required, besides the discriminant.

Additional implementation-oriented routines are also declared there, rather than in the
package body, for the sake of any child packages that might be declared in the future.
Note in particular the two that await I/O completion, as this is a blocking implementation.

Here is the package body:

with HAL;

package body Serial IO0.Streaming is

(continues on next page)
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procedure Set Read Timeout
(This : in out Serial Port;
Wait : Time Span)

is

begin
This.Timeout := Wait;

end Set Read Timeout;

procedure Await Send Ready (This : access USART) is
begin
loop
exit when This.Tx Ready;
end loop;
end Await Send Ready;

procedure Await Data Available

(This : access USART;
Timeout : Time Span := Time Span Last;
Timed Out : out Boolean)
is
Deadline : constant Time := Clock + Timeout;
begin
Timed Out := True;

while Clock < Deadline loop
if This.Rx Ready then
Timed Out := False;
exit;
end if;
end loop;
end Await Data Available;

function Last Index
(First : Stream Element Offset;
Count : Long Integer)
return Stream Element Offset
is
begin
if First = Stream Element Offset'First and then Count = 0 then
-- although we intend to return First - 1, we cannot

raise Constraint Error; -- per AI95-227
else

return First + Stream Element Offset (Count) - 1;
end if;

end Last Index;

(continues on next page)

14.2. Implementation 117



Ada In Practice

(continued from previous page)

overriding
procedure Read
(This : in out Serial Port;
Buffer : out Ada.Streams.Stream Element Array;
Last : out Ada.Streams.Stream Element Offset)
is
Raw : HAL.UInt9;
Timed Out : Boolean;
Count : Long_Integer := 0;
begin

Receiving : for K in Buffer'Range loop
Await Data Available (This.Device, This.Timeout, Timed Out);
exit Receiving when Timed Out;
This.Device.Receive (Raw);
Buffer (K) := Stream Element (Raw);
Count := Count + 1;

end loop Receiving;

Last := Last Index (Buffer'First, Count);

end Read;

overriding
procedure Write
(This : in out Serial Port;
Buffer : Ada.Streams.Stream Element Array)
is
begin
for Next of Buffer loop
Await Send Ready (This.Device);
This.Device.Transmit (HAL.UInt9 (Next));
end loop;
end Write;

end Serial I0.Streaming;

Procedure Read polls the wrapped USART device, continually, until a byte becomes available
or the timeout is reached. Procedure Await Data Available performs this timed polling.
Polling without relinquishing the processor is extremely questionable on a main CPU, butin a
device driver on a dedicated microcontroller it is not necessarily a poor choice. But if polling
is a problem, there is nothing preventing a non-blocking, interrupt-based implementation
with a stream-based client API.

The function Last Index is a convenience function called by procedure Read. It is used to
compute Read. Last, the index of the last array component assigned in Read.Buffer. The
function result is Buffer'First - 1 when no components are assigned, except when that
would be less than the lowest possible array index value.

Here is a demonstration procedure to be run on the STM32 F4 Discovery Board:

with Last Chance Handler; pragma Unreferenced (Last Chance Handler);
with Serial IO;
with Peripherals Streaming; use Peripherals Streaming;

procedure Demo Serial Port Streaming is
begin
Serial I0.Initialize Hardware (Peripheral);
Serial I0.Configure (COM.Device, Baud Rate => 115 200);
-- This baud rate selection is entirely arbitrary. Note that you may
(continues on next page)
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(continued from previous page)
-- have to alter the settings of your host serial port to match this
-- baud rate, or just change the above to match whatever the host
-- serial port has set already. An application such as TerraTerm
-- or RealTerm is helpful.

loop
declare
-- await the next msg from the serial port
: constant String := String'Input (COM'Access);
begin
-- echo the received msg content
String'Output (COM'Access, "You sent '" & Incoming & "'");
end;
end loop;
end Demo Serial Port Streaming;

The specific USART on the STM32 F4 Discovery Board must be connected to a serial port
on the host computer. With that connection in place the embedded ARM board and the
host computer can communicate over the two serial ports. This demonstration iteratively
receives a string sent from the host, prepends some text, and sends that back, in effect
echoing the host sender's text.

The stream attributes String'Output and String'Input write and read the bounds as
well as the characters. As a consequence, you will need to use a program on the host
that handles those bounds. A good way to do that is to use a host program that also uses
streams to send and receive String values. Note that the ADL serial port examples include
a host application that you can build and run for this purpose.

14.3 Pros

The stream-based approach has all the advantages of the generic-based approach without
requiring generic instantiations. There is no limit to the number and kinds of client types
supported, including limited types if they have the attributes defined. It is type-safe by
default, because the compiler will verify that the type used to invoke a stream attribute is
the same type as the value involved. In addition, the low-level implementation details are
hidden inside the package body.

Furthermore, the approach is independent of other design considerations, such as whether
callers wait for completion of the invoked 1/O operation.

Because it is maximally flexible and concise, we consider it the best implementation for
this idiom. The generic-based approach remains a good one, however.

14.4 Cons

Limited types do not support the stream 1/O attributes by default, but developers can define
them. Note that this is not a problem for the generic-based approach, because we declared
the generic formal type as limited and wouldn't need to do anything within the generic
that would contradict that. The client's generic actual type can then be either a limited
type or not.

When multiple types are being sent and received, the sender and receiver must be coor-
dinated so that the next value consumed from the stream is of the type expected by the
receiver. For example, the next value in the stream might have been written by the sender
as a floating-point value, via Float'Write (...). The receiver must use Float'Read(..
.) to consume that value from the stream. Arguably, this is not really a con because it's
true for any stream when multiple types are involved. Even if we used the generic-based
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approach, developers could instantiate the generic multiple times with different types and
send their values via the same port. With streams this approach is as type-safe as it can
be. However, see Note #2 (page 120) below for a possible mitigation.

14.

5 Relationship With Other Idioms

As stated above, we use Interface Inheritance (page 61) to visibly extend the root stream
type.

14.

1.

6 Notes

You can find the streams-based approach, and others, in the serial ports
example in the ADL, for an STM32 F4 Discovery Board, found in
Ada_Drivers_Library/examples/STM32F4 DISCO/*°¢.  You can build and run them
using the GNAT project file named serial _ports f4disco.gpr®’ located in that directory.
See the Ada Drivers_Library/examples/shared/serial_ports/README.md>2 file for how
to run them, including the special cable required for connecting the target board to
the host computer. Note that a non-blocking, interrupt-drive approach is included
there, although it is not stream-based.

. In the Cons section (page 119) above, we mentioned the coordination issue that

arises when values of multiple types are inserted and retrieved from a given
stream. A possible alternative would be to send and receive only tagged types
in a given class hierarchy. The receiver could then use the language-defined
Generic Dispatching Constructor to dynamically dispatch to constructors for the
values received from the stream. Thus, the receiver would not need to know in ad-
vance what specific types of values are incoming.

56 https://github.com/AdaCore/Ada_Drivers_Library/tree/master/examples/STM32F4_DISCO

57 https://github.com/AdaCore/Ada_Drivers_Library/blob/master/examples/STM32F4_DISCO/serial_ports_
f4disco.gpr

58 https://github.com/AdaCore/Ada_Drivers_Library/tree/master/examples/shared

120

Chapter 14. Using Streams for API Flexibility


https://github.com/AdaCore/Ada_Drivers_Library/tree/master/examples/STM32F4_DISCO
https://github.com/AdaCore/Ada_Drivers_Library/blob/master/examples/STM32F4_DISCO/serial_ports_f4disco.gpr
https://github.com/AdaCore/Ada_Drivers_Library/tree/master/examples/shared

CHAPTER
FIFTEEN

DEALING WITH SILENT TASK TERMINATION

15.1 Motivation

A task completes abnormally when an exception is raised in its sequence of statements and
is not handled. Even if the task body has a matching exception handler and it executes, the
task still completes after the handler executes, although this time it completes normally.
Similarly, if a task is aborted the task completes, again abnormally.

Whatever the cause, once completed a task will (eventually) terminate, and it does this
silently — there is no notification or logging of the termination to the external environment.
A vendor could support notification via their run-time library>?, but the language standard
does not require it and most vendors — if not all — do not.

Nevertheless, applications may require some sort of notification of the event that caused
the termination. Assuming the developer is responsible for implementing it, how can the
requirement best be met?

15.2 Implementation

For unhandled exceptions, the simplest approach to silent termination is to define the an-
nouncement or logging response as an exception handler located in the task body exception
handler part:

with Ada.Exceptions; use Ada.Exceptions;

with Ada.Text I0; use Ada.Text I0;
task body Worker is
begin
exception
when Error : others => -- last wishes

Put Line ("Task Worker terminated due to " & Exception_Name (Error));
end Worker;

A handler at this level expresses the task's last wishes prior to completion, in this case print-
ing the names of the task and the active exception to Standard Output. (We could print
the associated exception message too, if desired.) The others choice covers all excep-
tions not previously covered, so in the above it covers all exceptions. Specific exceptions
also could be covered, but the others choice should be included (at the end) to ensure no
exception occurrence can be missed.

You'll probably want this sort of handler for every application task if you want it for any
of them. That's somewhat inconvenient if there are many tasks in the application, but
feasible. Possible mitigation includes the use of a task type. In that case you need only
define the handler once, in the task type's body. You could even declare such a task type

59 The Verdix Ada Development System did so.
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inside a generic package, with generic formal subprograms for the normal processing and
the exception handler's processing. That would make the task type reusable. But that's a
bit heavy, and it can be awkward. See the Notes (page 133) section below for details.

Alternatively, we could prevent unhandled exceptions from causing termination in the first
place. We can do that by preventing task completion, via some additional constructs that
prevent reaching the end of the task's sequence of statements. We will show these con-
structs incrementally for the sake of clarity.

Before we do, note that many tasks are intended to run until power is removed, so they
have an infinite loop at the outer level as illustrated in the code below. For the sake of
clarity and realism, we name the loop Normal and call some procedures to show the typical
structure, along with the last wishes handler:

task body Worker is
begin
Initialize State;
Normal : loop
Do Actual Work;
end loop Normal;
exception
when Error : others => -- last wishes
Put Line ("Task Worker terminated due to " &
Exception Name (Error));
end Worker;

In the above, the procedures' names indicate what is done at that point in the code. The
steps performed may or may not be done by actual procedure calls.

Strictly speaking, the optional exception handler part of the task body is the very end of the
task's sequence of statements (the handled sequence of statements). We want to prevent
the thread of control reaching that end — which would happen if any handler there ever
executed — because the task would then complete.

Therefore, we first wrap the existing code inside a block statement. The task body's excep-
tion handler section becomes part of the block statement rather than at the top level of the
task:

task body Worker is
begin
begin
Initialize State;
Normal : loop
Do Actual Work;
end loop Normal;
exception
when Error : others => -- last wishes
Put Line ("Task Worker terminated due to " &
Exception Name (Error));
end;
end Worker;

Now any exception raised within Initialize State and Do _Actual Work will be caught
in the block statement's handler, not the final part of the task's sequence of statements.
Nothing else changes, semantically. The task will still complete because the block state-
ment exits after the handler executes, and so far there's nothing after that block statement.
We need to make one more addition.

The second (and final) addition prevents reaching the end of the sequence of statements
after a handler executes, and hence the task from completing. This is accomplished by
wrapping the new block statement inside a new loop statement. We name this outermost
loop Recovery:
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task body Worker is

begin
Recovery : loop
begin
Initialize State;
Normal : loop
Do Actual Work;
end loop Normal;
exception
when Error : others =>
Put Line (Exception Name (Error) & " handled in task Worker");
end;
end loop Recovery;
end Worker;

When the block exits after the exception handler prints the announcement, normal exe-
cution resumes and the end of the Recovery loop is reached. The thread of control then
continues at the top of the loop. Of course, absent an unhandled exception reaching this
level, the Normal loop is never exited in the first place.

These two additions ensure that — with one caveat — Worker never terminates due to an
unhandled exception raised during execution of the task's sequence of statements.

Note that an exception raised during elaboration of the task body's declarative part is not
handled by the approach, or any other approach at this level, because the exception is
propagated immediately to the master of the task. Such a task never reaches the handled
sequence of statements in the first place.

The caveat concerns the language-defined exception Storage Error. This exception re-
quires special consideration because the reasons for raising it include exhausting the stor-
age required for execution itself.

There are a couple of scenarios to consider.

The first scenario is task activation, i.e., creation. Initial task activation involves execution
(in the tasking part of the run-time library) before the sequence of steps is reached. Hence
task activation for the Worker task could fail due to an insufficient initial storage allocation.
But because that failure happens before the block statement is entered it doesn't really
apply to the caveat above.

The second scenario involves execution within the task's actual sequence of statements.
Therefore it does apply to the caveat above. Here's why.

When called, the execution of a given subprogram requires a representation in storage,
often known as a frame. Because subprogram calls and their returns can be seen as a
series of stack pushes and pops, the representation for execution is typically via a stack
of these frames. Calls cause stack frame pushes, creating new frames on the stack, and
returns cause stack pops, reclaiming the frames. On exit, execution returns to the caller, so
the previous top of the stack is now the active frame. Representation as a stack of frames
works well so it is very common. (Functions returning values of unconstrained types are
problematic because the size of the result isn't known at the point of the call, so the required
frame size isn't known when the push occurs. Solutions vary, but that's a topic for another
day.)

Now, suppose the task's sequence of statements includes a long series of subprogram calls,
in which one subprogram calls another, and that one calls another, and so on, and none of
these calls has yet returned. Eventually, of course, the dynamic call chain will end because
the calls will return, at least in normal code. But let's suppose that the call chain is long
and the most recent call has not yet returned to the caller.

In that case it is possible for one more call to exhaust the storage available for that task's
execution. You can easily construct such a chain by calling an infinitely recursive procedure
or function:

15.2. Implementation 123



Ada In Practice

procedure P;

procedure P is
begin

P;
end P;

When executing on a host OS it might take a very long time for a call to P to exhaust available
storage, maybe longer than you'd be willing to wait. But on an embedded system, where
physical storage is limited and there's no virtual memory, it might not take long at all.

Now, you might think that you don't use recursion, much less infinitely recursive routines,
so this problem doesn't apply to you. But recursion is just an easy illustration. How long a
call chain is too long? It depends on the memory resources available.

Moreover, exhaustion is not due only to the storage required for the call/return semantics.
Frames include the representation of the local objects declared within the subprograms'
declarative parts, if any.

procedure P;

procedure P is
Local : Integer;
begin
Local := 0;
P;
end P;

Each execution of a call to P creates a semantically distinct instance of Local. A new frame
containing the storage for each call's copy of Local implements that requirement nicely.

Of course, different subprograms usually declare different local objects, if they declare any
at all. Because the storage required for these declarations varies, the corresponding frame
sizes vary.

We can use that fact to reduce the length of the dynamic call chain required to illustrate
storage exhaustion. The called subprograms will declare very large objects within their
declarative parts. Hence each frame is correspondingly larger than if the subprogram de-
clared nothing locally. Continuing the infinitely recursive subprogram example:

procedure P;

procedure P is
type Huge_Component is array (Long_Long Integer) of Long_Float;
type Huge_Array is array (Long_Long_Integer) of Huge Component;
Local : Huge Array;

begin
Local := (others => (others => 0.0));
P;

end P;

The size of the frame for an individual call to P will be very large indeed, if it is representable
at all. Fewer calls will be required before Storage Error is raised.

Now, with all that said, let's get back to this approach to silent termination. Here's the code
again:

task body Worker is
begin
Recovery : loop
begin
Initialize State;
(continues on next page)
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(continued from previous page)
Normal : loop
Do Actual Work;
end loop Normal;
exception
when Error : others =>
Put Line (Exception Name (Error) & " handled in task Worker.");
end;
end loop Recovery;
end Worker;

At this point you might be thinking that Storage Error would be caught by the others
choice anyway, so this (long-winded) talk about stack frames and dynamic call chains is
irrelevant. That's where the caveat comes into play.

Specifically, if there's insufficient storage remaining for execution to continue, how how
do we know there's enough storage remaining to execute the exception handler? For that
matter, how do we even know there's enough storage available for the run-time library to
find the handler in the first place? Absent a storage analysis, we can't know with certainty.

Therefore, if the application matters, perform a worst-case storage analysis per task, in-
cluding the exception handlers, and explicitly specify the tasks' stacks accordingly. For
example:

task Worker with Storage Size => System Config.Worker Storage;

We've defined the value as a constant named Worker_ Storage declared in an application-
defined package System Config. All such values are declared in that package, for the sake
of centralizing all the application's configuration parameters. We'd declare all the tasks'
priorities there too.

Finally, although this approach works, the state initialization requires some thought.

As shown above, full initialization is performed again when the Recovery loop circles back
around to the top of the loop. As a result, the normal processing in Do_Actual Work must
be prepared for suddenly encountering completely different state, i.e., a restart to the ini-
tial state. If that is not feasible the call to Initialize State could be moved outside, prior
to the start of the Recovery loop, so that it only executes once. Perhaps a different ini-
tialization procedure could be called after the exception handler to do partial initialization.
Whether or not that will suffice depends on the application.

However, these approaches do not address task termination due to task abort statements.

Aborting tasks is both messy and expensive at run-time. If a task is updating some object
and is aborted before it finishes the update, that object is potentially corrupted. That's the
messiness. If an aborted task has dependent tasks, all the dependents are aborted too,
transitively. A task in a rendezvous with the aborted task is affected, as are those queued
waiting to rendezvous with it, and so on. That's part of the expensiveness when aborts are
actually used. Worse, even if never used, abort statements impose an expense at run-time.
The language semantics requires checks for an aborted task at certain places within the
run-time library. Those checks are executed even if no task abort statement is ever used
in the application. To avoid that distributed cost, you would need to apply a tasking profile
disallowing abort statements and build the executable with a correspondingly reduced run-
time library implementation.

As a conseqguence, aborting a task should be very rarely done. Regardless, the task abort
statement exists. How can we express a last wishes response for that cause too?

Fortunately, Ada provides a facility that addresses all possible causes: normal termination,
termination due to task abort, and termination due to unhandled exceptions.

With this facility developers specify procedures that are invoked automatically by the run-
time library during task finalization. These procedures express the last wishes for the task,

15.2. Implementation 125



Ada In Practice

but do not require any source code within the task, unlike the exception handler in each
task body described earlier. These response procedures are known as handlers.

During execution, handlers can be applied to an individual task or to groups of related tasks.
Handlers can also be removed from those tasks or replaced with other handlers. Because
procedures are not first-class entities in Ada, handlers are assigned and removed by passing
access values designating them.

The facility is defined by package Ada.Task Termination. The package declaration for this
language-defined facility follows, with slight changes for easier comprehension.

with Ada.Task Identification; use Ada.Task Identification;
with Ada.Exceptions; use Ada.Exceptions;

package Ada.Task_Termination

is
type Cause Of_Termination is (Normal, Abnormal, Unhandled Exception);

type Termination Handler is access protected procedure
(Cause : in Cause Of Termination;
T : in Task Id;
X : in Exception Occurrence);

procedure Set Dependents Fallback Handler
(Handler : in Termination Handler);

function Current Task Fallback Handler
return Termination Handler;

procedure Set Specific Handler
(T : in Task Id;
Handler : in Termination Handler);

function Specific Handler (T : Task Id) return Termination Handler;
end Ada.Task Termination;

As shown, termination handlers are actually protected procedures, with a specific pa-
rameter profile. Therefore, the type Termination Handler is an access-to-protected-
procedure with that signature. The compiler ensures that any designated protected proce-
dure matches the parameter profile.

Termination handlers apply either to a specific task or to a group of related tasks, including
potentially all tasks in the partition. Each task has one, both, or neither kind of handler. By
default none apply. (Unless a partition is part of a distributed program, a single partition
constitutes an entire Ada program.)

Clients call procedure Set Specific Handler to apply the protected procedure designated
by Handler to the task with the specific Task Id value T. These are known as specific
handlers. The use of a Task Id to specify the task, rather than the task name, means that
we can set or remove a handler without having direct visibility to the task in question.

Clients call procedure Set Dependents Fallback Handler to apply the protected proce-
dure designated by Handler to the task making the call, i.e., the current task, and to all
tasks that are dependents of that task. These handlers are known as fall-back handlers.

Handlers are invoked automatically, with the following semantics:

1. If a specific handler is set for the terminating task, it is called and then the response
finishes.

2. If no specific handler is set for the terminating task, the run-time library searches for a
fall-back handler. The search is recursive, up the hierarchy of task masters, including,
ultimately, the environment task. If no fall-back handler is found no handler calls are
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made whatsoever. If a fall-back handler is found it is called and then the response
finishes; no further searching or handler calls occur.

As a result, at most one handler is called in response to any given task termination.

The following client package illustrates the approach. Package Obituary declares protected
object Obituary.Writer, which declares two protected procedures. Both match the profile
specified by type Termination Handler. One such procedure would suffice, we just provide
two for the sake of illustrating the flexibility of the dynamic approach.

Listing 5: obituary.ads
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Task Termination; use Ada.Task Termination;
with Ada.Task Identification; use Ada.Task Identification;
package Obituary is

protected Writer is

procedure Note Passing

(Cause : Cause Of Termination;
Departed : Task Id;
Event : Exception Occurrence);

-- Written by someone who's read too much English lit

procedure Dissemble

(Cause : Cause Of Termination;
Departed : Task Id;
Event : Exception Occurrence);

-- Written by someone who may know more than they're saying
end Writer;

end Obituary;

Clients can choose among these protected procedures to set a handler for one or more
tasks.

The two protected procedures display messages corresponding to the cause of the termi-
nation. One procedure prints respectful messages, in the style of someone who's read too
much Old English literature. The other prints rather dissembling messages, as if written by
someone who knows more than they are willing to say. The point of the difference is that
more than one handler can be available to clients, and their choice is made dynamically at
run-time.

The package body is structured as follows:

with Ada.Text I0; wuse Ada.Text IO0;
package body Obituary is

protected body Writer is
procedure Note Passing () is ...
procedure Dissemble () is ...
end Writer;

begin -- optional package executable part
Set Dependents Fallback Handler (Writer.Note Passing'Access);
end Obituary;

In addition to defining the bodies of the protected procedures, the package body has an
executable part. That part is optional, but in this case it is convenient. This executable
part calls procedure Set Dependents Fallback Handler to apply one of the two handlers.
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Because this call happens during library unit elaboration, it sets the fall-back handler for
all the tasks in the partition (the program). The effect is global to the partition because
library unit elaboration is invoked by the environment task, and the environment task is
the ultimate master of all application tasks in a partition. Therefore, the fall-back handler is
applied to the top of the task dependents hierarchy, and thus to all tasks. The application
tasks need not do anything in their source code for the handler to apply to them.

The call to Set_Dependents_Fallback Handler need not occur in this particular package
body, or even in a package body at all. But because we want it to apply to all tasks in
this specific example, including library tasks, placement in a library package's elaboration
achieves that effect.

The observant reader will note the with-clause for Ada.Text IO, included for the sake of
references to Put_Line. We'll address the ramifications momentarily. Here are the bodies
for the two handlers:

Listing 6: obituary.adb
with Ada.Text I0; use Ada.Text IO0;

package body Obituary is
protected body Writer is

procedure Note Passing

(Cause : Cause Of Termination;
Departed : Task Id;
Event : Exception Occurrence)
is
begin

case Cause is
when Normal =>
Put Line (Image (Departed) &
" went gently into that good night");
when Abnormal =>
Put Line (Image (Departed) & " was most fouly murdered!");
when Unhandled Exception =>
Put Line (Image (Departed) &
" was unknit by the much unexpected " &
Exception Name (Event));
end case;
end Note Passing;

procedure Dissemble

(Cause : Cause Of Termination;
Departed : Task Id;
Event : Exception Occurrence)
is
begin

case Cause is
when Normal =>
Put Line (Image (Departed) & " died, naturally.");
Put Line ("We had nothing to do with it.");
when Abnormal =>
Put Line (Image (Departed) & " had a tragic accident.");
Put Line ("We're sorry it had to come to that.");
when Unhandled Exception =>
Put Line (Image (Departed) &
" was apparently fatally allergic to " &
Exception Name (Event));
end case;
end Dissemble;
(continues on next page)

128 Chapter 15. Dealing with Silent Task Termination



45

47
48
49
50

© ©® N o U A W N R

W oW N N NN NNNNNNR B B B B B BB e
P O © ® N O U A W N B O © © N O 0~ W N B O

Ada In Practice

(continued from previous page)

end Writer;

begin -- optional package executable part
Set Dependents Fallback Handler (Writer.Note Passing'Access);
end Obituary;

Now, about those calls to Ada.Text I0.Put Line. Procedure Put Line is a potentially
blocking operation. Consequently, a call within a protected operation is a bounded error
(see RM 9.5.1(8)) and the resulting execution is not portable. For example, the Put Line
calls will likely work as expected on a native OS. However, their execution may do something
else on other targets, including raising Program Error if detected. The GNAT bare-metal
targets, for example, raise Program Error.

For a portable approach, we move these two blocking calls to a new dedicated task and
revise the protected object accordingly. That's portable because a task can make blocking
calls.

First, we change Obituary.Writer to have a single protected procedure and a new entry.
The protected procedure will be used as a termination handler, as before, but does not
print the messages. Instead, when invoked by task finalization, the handler enters the
parameter values into an internal data structure and then enables the entry barrier on the
protected entry. The dedicated task waits on that entry barrier and, when enabled, retrieves
the stored values describing a termination. The task can then call Put_Line to print the
announcement with those values.

Here's the updated Obituary package declaration:

Listing 7: obituary.ads
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Task Termination; use Ada.Task Termination;
with Ada.Task Identification; use Ada.Task Identification;
with Ada.Containers.Vectors;
package Obituary is
pragma Elaborate Body;

Comment On Normal Passing : Boolean := True;
-- Do we say anything if the task completed normally?

type Termination_Event is record

Cause : Cause Of Termination;
Departed : Task Id;
Event : Exception_Id;

end record;

package Termination_Events is new Ada.Containers.Vectors
(Positive, Termination Event);

protected Writer is

procedure Note Passing

(Cause : Cause Of Termination;
Departed : Task Id;
Event : Exception_Occurrence);

entry Get Event (Next : out Termination Event);

private
(continues on next page)
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(continued from previous page)

Stored Events : Termination Events.Vector;
end Writer;

end Obituary;
As a minor refinement we add the option to not print announcements for normal comple-
tions, for those applications that allow task completion.

We must declare the generic container instantiation outside the protected object, an unfor-
tunate limitation of protected objects. We would prefer that clients have no compile-time
visibility to it, since it is an implementation artifact.

The updated package body is straightforward:

Listing 8: obituary.adb

package body Obituary is
protected body Writer is
-- Note Passing --
procedure Note Passing
(Cause : Cause Of Termination;
Departed : Task Id;
Event : Exception_Occurrence)
is
begin
if Cause = Normal and then
not Comment On Normal Passing
then
return;
else
Stored Events.Append
(Termination Event' (Cause,
Departed,
Exception Identity (Event)));
end if;
end Note Passing;
-- Get Event --
entry Get Event (Next : out Termination Event)
when
not Stored Events.Is Empty
is
begin
Next := Stored Events.First Element;
Stored Events.Delete First;
end Get Event;
end Writer;
begin -- optional package executable part

Set Dependents Fallback Handler (Writer.Note Passing'Access);
end Obituary;

In the body of Note Passing, we store the Exception Id for the exception occurrence
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indicated by Event. That exception occurrence need not be active by the time the task
reads the Id for that occurrence.

A new child package declares the task that prints the termination information:

Listing 9: obituary-output.ads

package Obituary.Output is
pragma Elaborate Body;

task Printer;

end Obituary.Output;

In the package body, the task body iteratively suspends on the call to Writer.Get Event,
waiting for a termination handler to make the termination data available. Once it returns
from the call, if ever, it simply prints the information and awaits further events:

Listing 10: obituary-output.adb
with Ada.Text I0; wuse Ada.Text IO0;

package body Obituary.Output is

task body Printer is
Next : Termination_ Event;
begin
loop
Writer. Get Event (Next);
case Next.Cause is
when Normal =>
Put Line (Image (Next.Departed) & " died, naturally.");
-- What a difference that comma makes!
Put Line ("We had nothing to do with it.");
when Abnormal =>
Put Line (Image (Next.Departed) &
" had a terrible accident.");
Put Line ("We're sorry it had to come to that.");
when Unhandled Exception =>
Put Line (Image (Next.Departed) &
" reacted badly to " &
Exception Name (Next.Event));
Put Line ("Really, really badly.");

end case;
end loop;
end Printer;

end Obituary.Output;

We declared this task in a child package because one can view the Printer and the Writer
as parts of a single subsystem, but that structure isn't necessary. An unrelated application
task could just as easily retrieve the information stored by the protected Writer object.

Here is a sample demonstration main procedure, a simple test to ensure that termination
due to task abort is captured and displayed:
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Listing 11: demo_fallback_handler_abort.adb

with Obituary.Output; pragma Unreferenced (Obituary.Output);
-- otherwise neither package is in the executable

procedure Demo Fallback Handler Abort is

task Worker;
task body Worker is

begin
loop -- ensure not already terminated when aborted
delay 0.0; -- yield the processor
end loop;

end Worker;

begin
abort Worker;
end Demo Fallback Handler Abort;

Note that the nested task would not be accepted under the Ravenscar or Jorvik profiles
because those profiles require tasks to be declared at the library level, but that can easily
be addressed.

When this demo main is run, the output looks like this:

worker 00000174BC68A570 had a terrible accident.
We're sorry it had to come to that.

The actual string representing the task identifier will vary with the implementation.

You'll have to use control-c (or whatever is required on your host) to end the program be-
cause the Printer task in Obituary.Output runs forever. Many applications run forever
so that isn't necessarily a problem. That could be addressed if need be.

15.3 Pros

The facility provided by package Ada.Task Termination allows developers to respond in
any way required to task termination. The three causes, normal completion, unhandled
exceptions, and task abort are all supported. Significantly, no source code in application
tasks is required for the termination support to be applied, other than the isolated calls to
set the handlers.

15.4 Cons

On a bare metal target there may be restrictions that limit the usefulness of the facility. For
example, on targets that apply the Ravenscar or Jorvik profiles, task abort is not included
in the profile and tasks are never supposed to terminate for any reason, including normally.
Independent of the profiles, some run-time libraries may not support exception propagation,
or even any exception semantics at all.

15.5 Relationship With Other Idioms

None.
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15.6 Notes

If you did want to use a generic package to define a task type that is resilient to unhandled
exceptions, you could do it like this:

Listing 12: resilient_workers.ads

with System;
with Ada.Exceptions; use Ada.Exceptions;

generic
type Task_Local_State is limited private;
with procedure Initialize (This : out Task Local State);
with procedure Update (This : in out Task Local State);
with procedure Respond To Exception
(Current State : in out Task Local State;
Error : Exception Occurrence);
package Resilient_Workers is

task type Worker

(Urgency : System.Priority := System.Default Priority)
with

Priority => Urgency;

end Resilient Workers;

Listing 13: resilient_workers.adb

package body Resilient_Workers is

task body Worker is
State : Task Local State;
begin
Recovery : loop
begin
Initialize (State);
Normal : loop
Update (State);
-- The call above is expected to return, ie
-- this loop is meant to iterate
end loop Normal;
exception
when Error : others =>
Respond To Exception (State, Error);
end;
end loop Recovery;
end Worker;

end Resilient Workers;

Although this code looks useful, in practice it has issues.

First, in procedure Initialize, the formal parameter mode may be a problem. You might
need to change the parameter mode from mode out to mode in-out instead, because recov-
ery from unhandled exceptions will result in another call to Initialize. Mode out makes
sense for the first time Initialize is called, but does it make sense for all calls after that?
It depends on the application's procedures. The behavior of Update may be such that local
state should only partially be reset in subsequent calls to Initialize.

Furthermore, if Initialize must only perform a partial initialization on subsequent calls,
the procedure must keep track of the number of calls. That requires a variable declared
external to the body of Initialize. The additional complexity is unfortunate. We could
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perhaps mitigate this problem by having two initialization routines passed to the instanti-
ation: one for full initialization, called only once with mode out for the state, and one for
partial initialization, called on each iteration of the Recovery loop with mode in-out for the
state:

Listing 14: resilient_workers.adb

package body Resilient_Workers is

task body Worker is

State : Task Local State;
begin

Fully Initialize (State);

Recovery : loop
begin
Normal : loop
Update (State);
-- The call above is expected to return, i.e.
-- this loop is meant to iterate
end loop Normal;
exception
when Error : others =>
Respond To Exception (State, Error);
end;

Partially Initialize (State);
end loop Recovery;
end Worker;

end Resilient Workers;

If both application initialization routines happen to do the same thing, we'd like the devel-
oper to be able to pass the same application procedure to both generic formal procedures
Fully InitializeandPartially Initializeintheinstantiation. Butthatwouldn't com-
pile because the parameter modes don't match.

Then there's the question of the nature of the task. Is it periodic, or sporadic, or free
running? If it is periodic, we need a delay statement in the Normal loop to suspend the
task for the required period. The generic's task body doesn't do that. The actual procedure
passed to Update could do the delay, but now, like a single version of Initialize required
to do both partial and full initialization, it needs additional state declared external to the
procedure body (for the Time variable used by the absolute delay statement).

Finally, the single generic formal type used to represent the task's local state can be awk-
ward. Having one type for a task's total state is unusual, and aggregating otherwise un-
related types into one isn't good software engineering and doesn't reflect the application
domain. Nor is it necessarily trivial to create one type representing a set of distinct vari-
ables. For example, some of these stand-alone variables could be objects of indefinite
types. Different task objects of a given task type might not agree on those objects' con-
straints. Furthermore, that awkwardness extends to the procedures that use that single
object, in that every procedure except for Initialize will likely ignore parts of it.

In summary, the problems are likely more problematic than this generic is worth.
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SIXTEEN

IDIOMS FOR PROTECTED OBJECTS

O Note

Parts of this chapter were originally published as the Blog Post: On the Benefits of Fam-
ilies ... (Entry Families)®°.

First, a bit of background regarding synchronization in concurrent programming, protected
objects, and the requeue statement. If you already know this material, feel free to skip
ahead to the Motivation (page 137) section for this chapter.

Concurrent programming is more complex (and more fun) than purely sequential program-
ming. The cause of this complexity is two-fold: 1) the executing threads' statements are
likely interleaved at the assembly language level, and 2) the order of that interleaving is
unpredictable. As a result, developers cannot know, in general, where in its sequence of
statements any given thread is executing. Developers can only assume that the threads
are making finite progress when they execute.

A consequence of unpredictable interleaving is that the bugs specific to this type of pro-
gramming are timing-dependent. Such bugs are said to be Heisenbugs because they "go
away when you look at them," i.e., changing the code — adding debugging statements or
inserting debugger breakpoints — changes the timing. The bug might then disappear en-
tirely, or simply appear elsewhere in time. We developers must reason about the possible
effects of interleaving and design our code to prevent the resulting bugs. (That's why this
is fun.) Such bugs are really design errors.

One of these errors is known as a race condition. A race condition is possible when multiple
threads access some shared resource that requires mutually exclusive access. If we acci-
dentally forget the finite progress assumption we may incorrectly assume that the threads
sharing that resource will access it serially. Unpredictable execution interleaving cannot
support that assumption.

Race conditions on memory locations are the most common, but the issue is general in
nature, including for example hardware devices and OS files. Hence the term "resource."

For example, suppose multiple threads concurrently access an output display device. This
device can be ordered to move its cursor to arbitrary points on the display by writing a
specific sequence of bytes to it, including the numeric values for X and Y coordinates. A
common use is to send the "move cursor to X, Y" sequence and then send the text intended
to appear at coordinates X and Y.

Clearly, this device requires each client thread to have mutually exclusive access to the
device while sending those two byte sequences. Otherwise, uncoordinated interleaving
could result in one thread preempting another thread in the middle of sending those two
sequences. The result would be an intermingled sequence of bytes sent to the device. (On
a graphics display the chaotic output can be entertaining to observe.)
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Memory races on variables are less obvious. Imagine two threads, Threadl and Thread2,
that both increment a variable visible to both (an integer, let's say).

Suppose that the shared integer variable has a value of zero. Both threads increment the
variable, so after they do so the new value should be two. The compiler will use a hardware
register to hold and manipulate the variable's value because of the increased performance
over memory accesses. Each thread has an independent copy of the registers, and will
perform the same assembly instructions:

1. load a register's value from the memory location containing the variable's value
2. increment the register's value
3. store the register's new value back to the variable's memory location.

The two threads' executions may be interleaved in these three steps. It is therefore possible
that Threadl will execute step 1 and step 2, and then be preempted by the execution of
Thread2. Thread?2 also executes those two steps. As a result, both threads' registers have
the new value of 1. Finally, Threadl and Thread2 perform the third step, both storing a
value of 1 to the variable's memory location. The resulting value of the shared variable will
be 1, rather than 2.

Another common design bug is assuming that some required program state has been
achieved. For example, for a thread to retrieve some data from a shared buffer, the buffer
must not be empty. Some other thread must already have inserted data. Likewise, for a
thread to insert some data, the buffer must not be full. Again, the finite progress assump-
tion means that we cannot know whether either of those two states are achieved.

Therefore, interacting threads require two forms of synchronization: mutual exclusion and
condition synchronization. These two kinds of synchronization enable developers to reason
rigorously about the execution of their code in the context of the finite progress assumption.

Mutual exclusion synchronization prevents threads that access some shared resource from
doing so at the same time, i.e., it provides mutually exclusive access to that resource. The
effect is achieved by ensuring that, while any given thread is accessing the resource, that
execution will not be interleaved with the execution of any other thread's access to that
shared resource.

Condition synchronization suspends a thread until the condition — an arbitrary Boolean
expression — is True. Only when the expression is (or becomes) True can the caller thread
be allowed to continue.

A thread-safe bounded buffer is a good example for these two kinds of synchronization.
Some threads, the producers, will insert items into the buffer. Other threads, the con-
sumers, will concurrently remove items. The array object representing the buffer contents,
as well as the indexes into the array, require mutually exclusive access for both producers
and consumers. Furthermore, producers must be blocked (suspended) as long as the given
buffer is full, and consumers must be blocked as long as the given buffer is empty.

Concurrent programming languages support mechanisms providing the two forms of syn-
chronization. In some languages these are explicit constructs; other languages take differ-
ent approaches. In any case, developers can apply these mechanisms to enforce assump-
tions more specific than simple finite progress.

Ada uses the term task rather than thread so we will use that term from here on.

The protected procedures and protected entries declared by a protected object (PO) auto-
matically execute with mutually exclusive access to the entire protected object. No other
caller task can be executing these operations at the same time, so execution of the proce-
dure or entry body statements will not be interleaved. (Functions are special because they
have read-only access to the data in the PO.) Therefore, there can be no race conditions
on the data encapsulated within it. Even if the protected object has no encapsulated data,
these operations always execute with mutually exclusive access. During such execution
we can say that the PO is locked, speaking informally, because all other caller tasks are
held pending.
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Protected entries are much like protected procedures, except that entry bodies include a
barrier condition that is used to express condition synchronization. The condition is an
arbitrary Boolean expression, although there are some restrictions on the content for im-
plementation reasons. Only when the barrier condition is True will a caller to the entry
be allowed to execute the entry body. Once the body completes, the caller exits and can
continue execution outside of the PO. (We'll say more about that later.) For example, en-
try barriers can express whether a bounded buffer is full or empty, thereby enabling and
disabling buffer insertion and removal.

Under some circumstances, an entry may execute a requeue statement to reroute the caller
to some other entry, for reasons that will be explained shortly, but from the caller task's
point of view there is only one call being made.

The requeue statement may not be familiar to many readers. To explain its semantics we
first need to provide its rationale.

Ada synchronization constructs are based on avoidance synchronization, meaning that:

1. the user-written controls that enable/disable the execution of protected entry bodies
and task entry accept statements enable them only when they can actually provide
the requested service, and

2. that determination is based on information known prior to the execution of the entry
body or accept statement.

For example, at runtime, if a bounded buffer is full, that fact can be determined from the
buffer's state: is the count of contained items equal to the capacity of the backing array? If
so, the user-defined controls disable the operation to insert another value. Likewise, if the
buffer is empty, the removal operation is disabled. When we write the buffer implementa-
tion we know beforehand what the operations will try to do, so we can write the controls
to disallow them at runtime until they can succeed. Most of the time that's sufficient, but
not always. If we can't know precisely what the operations will do when we write the code,
avoidance synchronization won't suffice.

The requeue statement is employed when avoidance synchronization is not sufficient. A
task calling an entry that executes a requeue statement is much like a person calling a
large company on the telephone. Calling the main number connects you to a receptionist (if
you're lucky and don't get an annoying menu). If the receptionist can answer your question,
they do so and then you both hang up. Otherwise, the receptionist forwards the call to the
person they determine that you need to speak with. After doing so, the receptionist hangs
up, because from their point of view the call is complete. The call is not complete from
your point of view, though, until you finish your conversation with the new person. And of
course you may have to wait to speak to that person.

Like the receptionist, the first entry called must take (execute) the call without knowing
what the request will be, because the entry barrier cannot reference the entry parameters.
The parameter values are only known once the entry body executes. Therefore, the first
entry may or may not be able to provide the requested service and allow the caller to return
from the call. If not, it requeues the call and finishes, leaving the call still pending on the
requeue target, i.e., the second entry.

A requeue statement is not required in all cases but, as you will see, sometimes it is essen-
tial. Note that protected procedures cannot execute requeue statements, only protected
entries can do so. Protected procedures are appropriate when only mutual exclusion is
required (to update encapsulated data).

16.1 Motivation

Of the several highly significant features added to the Ada language over the years, pro-
tected objects are one of the most important.
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One of the reasons for this prominence is that protected objects make efficient asyn-
chronous task interactions possible. Many, if not most, task interactions are asynchronous,
but early Ada had only a synchronous mechanism for communication and synchronization,
known informally as the rendezvous. The rendezvous is a high-level, very robust mecha-
nism providing communication and synchronization for two tasks at a time. This mechanism
isn't a problem in itself. If the application requires what amounts to an atomic action with
two task participants, then the rendezvous meets this requirement nicely.

But, as a synchronous mechanism, the rendezvous is far too expensive when only an asyn-
chronous mechanism (involving only one task) is required. Older mechanisms used for
asynchronous interactions, such as semaphores, mutexes, and condition variables, are
nowhere near as simple and robust for clients, but are much faster.

In addition, the rendezvous is only available between tasks, meaning that abstractions
requiring mutual exclusion and condition synchronization had to be implemented as tasks
too. Inserting and removing from a thread-safe buffer, for example, involved expensive
task switching between the buffer task, the producer task, and the consumer task. This
was the primary source of comparative inefficiency.

There was a non-standard notion of a passive task that wasn't actually a thread of control,
and therefore did not require task switching, but it was not widely adopted. In that same
vein, Ada 80 had a built-in Semaphore task type, intended to be implemented efficiently and
used as the name suggests, but mixing the higher-level rendezvous with the much lower-
level semaphore abstraction was considered poor language design. It did not survive to the
ANSI and first ISO standards. Ultimately, the designers of the first version of Ada thought
that processors would become so much faster in the future that the relative inefficiency
and semantic mismatch wouldn't matter. Processors did get faster, but the problems still
mattered.

Another reason that protected objects are so important is that they are applicable to a wide
range of programming domains. Protected objects are critical to concurrent programming,
real-time programming, and embedded systems programming with Ada. We've already
highlighted their high level, robust support for asynchronous interactions in concurrent
programming. For real-time programming, systems of any significant complexity will map
deadlines to tasks. Consequently, in such systems the programming model is concurrent
programming with the addition of predictability. In these systems protected objects have
additional semantics (e.g., priorities) but supply the same benefits as in concurrent pro-
gramming. For embedded systems programming, protected objects are used to express
interrupt handlers, again with added semantics.

Their most important contribution, however, goes beyond direct client use of their au-
tomatic mutual exclusion and condition synchronization semantics. Developers can use
protected objects to create just about any synchronization and communication protocol
imaginable. These include application independent abstractions such as atomic actions,
readers-writers locks, mutexes, and so on, but also schemes based on application-specific
protocols and data structures. When combined with other language features, such as re-
queue, task identifiers, and the overall composition capabilities of the language, the result
is a flexible, powerfully expressive facility.

16.2 Implementation

Protected objects are primarily utilized in two ways. We will refer to these two ways as
idioms, for the sake of consistency with the rest of this course, although the other idioms in
this course are much more narrow in scope. In the first, protected objects encapsulate and
manipulate application-specific data. In the second, protected objects are used to create
developer-defined synchronization and communication abstractions.
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16.2.1 First Idiom Category: Application-Specific Protected Objects

In the first idiom, a given protected object implements all the application-specific function-
ality for the shared resources it encapsulates. We declare the shared data in the PO private
part and declare the protected entries and procedures that manipulate that data in the vis-
ible part, as well as functions for reading that data if needed. The compiler won't allow any
direct references to the hidden data from outside of the PO; the visible operations must
be called by client tasks to manipulate the data. Readers familiar with the classic monitor
construct will recognize it as the conceptual foundation for protected objects used this way.

For example, let's say we want to protect a product serial number variable from concurrent
manipulation by multiple caller tasks. These tasks need to get the next sequential serial
number, which entails incrementing the current value each time a task requests the next
number. We must prevent the increment from occurring concurrently, otherwise the re-
sulting race condition could occasionally provide incorrect values to the callers. Therefore,
the increment will be done inside a protected procedure that provides the current value via
parameter and also increments the value before returning. We declare the protected object
like so:

protected Serial Number is

procedure Get Next (Number : out Positive);
private

Value : Positive := 1;
end Serial Number;

protected body Serial Number is

procedure Get Next (Number : out Positive) is

begin
Number := Value;
Value := Value + 1;

end Get Next;

end Serial Number;

Whenever any task calls Serial Number.Get Next, the task will block until it has mutually
exclusive access to the PO, and consequently to the Serial Number.Value component.
At that point, Value is assigned to the formal parameter and then incremented. Once the
procedure returns, the caller task can continue execution with their unique serial number
copy. No race conditions are possible and the shared serial number value increments safely
each time Get Next is called.

Note the robust nature of a protected object's procedural interface: clients simply call the
protected procedures, entries, or functions. The called procedure or entry body, when it
executes, will always do so with mutually exclusive access. (Functions can have some ad-
ditional semantics that we can ignore here.) There is no explicit lower level synchronization
mechanism for the client to acquire and release. The semantics of protected objects are im-
plemented by the underlying Ada run-time library, hence all error cases are also covered.
This procedural interface, with automatic implementation for mutual exclusion, is one of
the significant benefits of the monitor construct on which protected objects are based.

16.2.2 Second Idiom Category: Developer-Defined Concurrency Ab-
stractions

In the second idiom, data may be declared in the protected object private part, but they are
not application data. Likewise, the protected operations do nothing application specific.

Instead, the PO provides some synchronization (and perhaps communication) protocol that
we want to make available to client tasks. These tasks call the protected object's operations
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in order to get the protocol's semantics applied to their execution. The data declared in the
private part, if any, exist purely for the sake of implementing the intended protocol.

In particular, the protected operations block and release the caller tasks per the new ab-
straction's semantics. We are using the term block loosely here, meaning the caller task is
not allowed to return from the call until some condition holds.

These abstractions are frequently declared as protected types rather than anonymously
typed protected objects like the Serial Number PO. Protected types are especially preferred
when the protocol is application independent and hence reusable. Declaration as a type
also provides all the flexibility of types, including the ability to declare as many objects of
the type as required and the ability to compose other types using them. Types also allow
parameterization via discriminants, if necessary.

The synchronization abstractions may be classic mechanisms long known to the concurrent
programming community, for example semaphores, or they may be wholly novel, perhaps
based on application-specific contexts and data structures. Very sophisticated abstractions
can be expressed, such as atomic actions involving an arbitrary number of tasks. The
possibilities are endless.

For example, we could have a protected type that implements the Readers-Writers synchro-
nization protocol. In this protocol only one task at a time can write (update) the state of the
shared objects, and writers must wait until there are no readers, but multiple simultaneous
readers are allowed as long as there is no writer active. Such a protected object would have
multiple protected operations, some to block callers until appropriate for the given read or
write action requested, and some to signal the end of the read or write operation so that a
pending request (if any) can be granted.

This second idiomatic application of protected objects is extremely useful and therefore
common. However, there is also a situation in which we are forced to use it, for the sake of
portability. That happens when statements that would otherwise be within a protected op-
eration include a potentially blocking operation. This is a term defined by the language for
those constructs that may cause a currently executing caller task to yield the processor to
another task. As such, they are not allowed within protected operations, neither directly nor
indirectly. To understand why, you need to understand the underlying system approaches
available for implementing the mutually exclusive access that protected operations provide
automatically.

16.2.2.1 System Implementation of PO Mutual Exclusion

The underlying run-time library implements the mutual exclusion and thread management
semantics for protected objects. Two approaches are known.

One implementation approach, typical when executing on an operating system, uses an
explicit locking mechanism provided by the OS. The run-time library code implementing
the protected operations first acquires a dedicated OS lock and then later releases it when
exiting.

But another approach is available that does not use explicit locks. Instead, mutual exclusion
is implemented via priorities, both task priorities and PO priorities. Note that this imple-
mentation requires priorities to be defined, execution on a uniprocessor, and the Ceil-
ing Locking policy to have been specified via the Locking Policy pragma.

Specifically, developers assign a priority to each protected object. Each PO priority must be
the highest (the ceiling) of all the priorities of those tasks that actually call the operations
provided by the PO. Consequently, for any given PO, no task that calls that PO will have
a higher priority than the PO priority. Because caller tasks inherit the PO priority (imme-
diately), their calls execute with the highest priority of any caller task for that specific PO.
Therefore, no other caller task can preempt any current caller executing within the PO. The
current caller may be preempted, but not by a task that would also call that same PO. Thus,
mutually exclusive access is provided automatically, and very efficiently. This approach has
other benefits as well that are not pertinent here.
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However, the priority-based implementation cannot work reliably if blocking is allowed
within a protected operation. If the current caller could yield the processor inside a pro-
tected operation, some other task could then be allowed to continue execution, including
possibly a task making a call to that same PO. In that case mutual exclusion would not be
provided for that PO.

As a result, the language defines a number of potentially blocking operations and disallows
them within protected operations. Any I/O operation is potentially blocking, for example,
as are delay statements, but there are others as well. See the Ada RM, section 9.5{34} for
the full list.

For example, in the Dealing with Silent Task Termination idiom (page 121) idiom we had an
initial implementation of a protected procedure body that called Ada.Text I0.Put Line:

procedure Dissemble

(Cause : in Cause Of Termination;
Departed : in Task Id;
Event : in Exception Occurrence)
is
begin

case Cause is
when Normal =>
Put Line (Image (Departed) & " died, naturally.");
Put Line ("We had nothing to do with it.");
when Abnormal =>
Put Line (Image (Departed) & " had a tragic accident.");
Put Line ("We're sorry it had to come to that.");
when Unhandled Exception =>
Put Line (Image (Departed) &
" was apparently fatally allergic to " &
Exception Name (Event));
end case;
end Dissemble;

As described in that idiom entry, the above might work, but it is not portable.

As a consequence, we may find ourselves with some statement (e.qg., the call to Put_Line)
that would have been within a protected operation for the sake of mutually exclusive access,
but that cannot be included there if the code is to be portable. The statement must be
written outside of a PO, not within a protected object's operations, and not in anything
called by those protected operations.

16.2.2.2 Examples for Second Idiom Category

We will use the approach to potentially blocking operations as the first example.

Suppose we are implementing a message logging facility. Any given task executing in
the application can write a log message by calling a procedure named Enter, defined in
package Log. The actual messages are values of type String:

package Log is

procedure Enter (Log Entry : String);
end Log;

Messages are written to an external file so that they will persist. That file is declared in the
package body. Therefore, the package design is an Abstract Data Machine (page 17):

with Ada.Text I0; use Ada.Text I0;
package body Log is

Log File : File_Type;

(continues on next page)
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(continued from previous page)
procedure Enter (Log Entry : String) is
begin
Put Line (Log File, Msg);
Flush (Log File);
end Enter;

begin
Create (Log File, Out File, "log.txt");
end Log;

Unfortunately, this won't work reliably in a concurrent program. Multiple tasks may call
procedure Enter simultaneously, indirectly making the Log File object a shared resource.
Race conditions are therefore possible when updating the Log File object via Put Line.
We could employ a protected object to prevent the race condition, but as we saw with
protected procedure Dissemble above, placing the call to Put_Line within a protected op-
eration is not portable. We need some other way to ensure mutually exclusive access to
the shared file object.

In some programming languages, a mutex is used to provide mutually exclusive access
(hence the name) to some set of objects that are shared among multiple competing threads.
All these threads must follow the same usage pattern:

1. before accessing the shared resource, a thread calls a routine on the mutex in order
to block until it is appropriate to continue,

2. upon return from the call that thread executes an arbitrary sequence of statements
accessing the resource,

3. after that sequence, the thread calls another operation on the same mutex to signal
that some other thread can now be allowed to return from their call in step one.

A mutex must be implemented so that, for any given mutex object, only one caller at a
time is allowed to return from the call in step one. Therefore, step one is said to acquire or
seize the mutex object, and step three releases it. The result is that only one thread at a
time will execute the statements in step two, hence with mutually exclusive access to the
manipulated resources.

We can create a protected type providing a basic mutex abstraction. The protected oper-
ations will consist of two routines: one to acquire the mutex (step one) and one to release
it (step three). Calls to these two PO operations can then bracket an application-specific
sequence of statements that manipulate objects requiring mutually exclusive access (step
two). But now this bracketed code can include some potentially blocking operations.

protected type Mutex is

entry Acquire;

procedure Release;
private

Available : Boolean := True;
end Mutex;

protected body Mutex is

entry Acquire when Available is
begin

Available := False;
end Acquire;

procedure Release is
begin
Available := True;
end Release;
(continues on next page)
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(continued from previous page)
end Mutex;

Tasks that want to exclusively acquire an object of the Mutex type will call entry Acquire on
that PO. Similarly, tasks call protected procedure Release to signal that the logical hold on
the PO is no longer required. The component Available is declared within the protected
private part, and exists only to implement the mutex semantics.

The gist of the implementation is that acquiring the Mutex object amounts to allowing a
caller task to exit their call to the entry Acquire, with any other caller tasks held pending.
The entry barrier condition expresses the logic of whether the caller is allowed to continue,
via the internal Boolean component Available. There is no actual lock in view here, just
the effect of a lock. That effect is achieved via condition synchronization that ensures
only one task at a time can return from the Acquire call. All other callers to Acquire are
held, suspended, in the entry's queue. When Release is called that Mutex protected object
becomes available for locking again.

The following code fragment illustrates using the Mutex type for the sake of controlling
access to a shared variable, in this case the file object in the message logging package.
Here is the pertinent part of the logging facility's package body:

Log Lock : Mutex;
Log File : File_Type;

procedure Enter (Log Entry : String) is
begin
Log Lock.Acquire;
Put Line (Log File, Log Entry);
Flush (Log File);
Log Lock.Release;
end Enter;

The body of procedure Enter first calls Log Lock.Acquire. The call is not allowed to re-
turn until the caller task exclusively holds the logical lock associated with the Log Lock
object. Therefore, every subsequent statement executes with mutual exclusion relative to
the Log Lock object. In this case, there are two such statements, the one that writes the
string to the single shared output file and one that flushes any internal buffers associated
with the file. They are both potentially blocking operations, but we're not in a protected
operation so that's not a problem. Finally, procedure Enter calls Log Lock.Release to
relinquish the current caller task's hold on the Log Lock mutex. If some other task was
waiting to hold the Log_Lock object, that task can now return from its call to Acquire and
can execute its update to the log file.

There are issues unaddressed in the three-step client protocol illustrated by the code above,
especially error cases. For example, even if an exception is raised in step two, we need to
ensure that Release is called with exactly-once semantics. There are other abstractions
that address these client usage issues, namely scope-based locking, but we'll ignore them
here. See the Resource Acquisition Is Initialization (page 103) idiom for the Scope Lock

type.

The implementation of type Mutex above doesn't have quite the full canonical semantics.
So far it is really just that of a binary semaphore. In particular, a mutex should only be
released by the same task that previously acquired it, i.e., the current owner. We can
implement that consistency check in a fuller illustration of this example, one that raises an
exception if the caller to Release is not the current owner of the Mutex object.

The new version of type Mutex is declared as follows. The difference is the additional com-
ponent of type Ada.Task Identification.Task Id named Current Owner. (Assume a
use-clause for that package.)
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protected type Mutex is
entry Acquire;
procedure Release;

private

Available : Boolean := True;

Current Owner : Task Id := Null Task Id;
end Mutex;

The updated protected body is as follows:

protected body Mutex is

entry Acquire when Available is
begin

Available := False;

Current Owner := Acquire'Caller;
end Acquire;

procedure Release is
begin
if Current Owner = Current Task then
Available := True;
Current Owner := Null Task Id;
else
raise Protocol Error;
end if;
end Release;

end Mutex;

Note how entry Acquire, when granting the logical lock and releasing the caller, also cap-
tures the identity of that caller. Procedure Release can verify that identity when it is eventu-
ally called, using function Current Task declared in package Ada.Task Identification.

We can build on that version of the type Mutex to make a variation named Reen-
trant Mutex. This type allows a given task to re-acquire a Reentrant Mutex object if
that same task is the current owner, i.e., has returned from a previous call to Acquire and
has not yet called Release a matching number of times:

protected type Reentrant_Mutex is
entry Acquire;
procedure Release;

private

entry Retry;
-- Internal target of requeue when the mutex 1is already owned.

Depth : Natural := 0;
--  Number of calls to Seize for a given holder. A value of zero
-- corresponds no task currently holding the mutex.

Current Owner : Task Id := Null Task Id;
-- The current holder of the mutex, initially none.

end Reentrant Mutex;

We still have the Current Owner component, but we've added a new component to keep
track of the depth of the current owner's calls. The depth test replaces the simple Boolean
test of being available, so the Available component is gone. Instead, when the depth is
zero the corresponding protected object is available, but it is also available if the current
caller of Acquire is the current owner from a previous call.
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protected body Reentrant Mutex is

entry Acquire when True is

begin
if Current Owner = Null Task Id then
Current Owner := Acquire'Caller;
Depth := 1;

elsif Current Owner = Acquire'Caller then
Depth := Depth + 1;
else -- held already, but not by current caller
requeue Retry with abort;
end if;
end Acquire;

procedure Release is
begin
if Current Owner = Current Task then
Depth := Integer'Max (0, Depth - 1);
if Depth = 0 then
Current Owner := Null Task Id;
end if;
else
raise Protocol Error;
end if;
end Release;

entry Retry when Depth = 0 is

begin

Depth := 1;

Current Owner := Retry'Caller;
end Retry;

end Reentrant Mutex;

The barrier for entry Acquire is always set to True because the test for availability is not
possible until the body begins to execute. If the PO is not available, the caller task is
requeued onto the Retry entry. (A barrier set to True like this is a strong indicator of a
requeue operation.) The Retry entry will allow a caller to return — from the caller's point
of view, a return from the call to Acquire — only when no other caller currently owns the
PO.

The examples so far exist primarily for providing mutual exclusion to code that includes
potentially blocking operations. By no means, however, are these the only examples. Much
more sophisticated abstractions are possible.

For example, let's say we want to have a notion of events that application tasks can await,
suspending until the specified event is signaled. At some point, other tasks will signal that
these events are ready to be handled by the waiting tasks. Understand that events don't
have any state of their own, they either have happened or not, and may happen more than
once.

For the sake of discussion let's declare an enumeration type representing four possible
events:

type Event is (A, B, C, D);

These event names are not very meaningful, but they are just placeholders for those that
applications would actually define. Perhaps a submersible's code would have events named
Hatch_Open, Hatch_Closed, Umbilical Detached, and so on.

Client tasks can suspend, waiting for an arbitrary event to be signaled, and other tasks can
signal the occurrence of events, using a event manager that the two sets of tasks reference.
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Here's the declaration of the manager type:

type Manager is limited private;

Type Manager will be fully implemented in the package private part as a protected type.

The type is limited because it doesn't make sense for clients to assign one Manager object
to another, nor to compare them via predefined equality. There's another reason you'll see
shortly. The type is private because that's the default for good software engineering, and
there's no reason to override that default to make the implementation visible to clients. Our
API will provide everything clients require, when combined with the capabilities provided
by any limited type (e.g., declaring objects, and passing them as parameters).

Tasks can wait for a single event to be signaled, or they can wait for one of several. Similarly,
tasks can signal one or more events at a time. Such groups of events are easily represented
by an unconstrained array type:

type Event_List is array (Positive range <>) of Event;

We chose Positive as the index subtype because it allows a very large number of compo-
nents, far more than is likely ever required, and has an intuitive default lower bound of 1.
An aggregate value of the array type can then represent multiple events, for example:

Event List'(A, C, D)

Given these three types we can define a useful API:

procedure Wait

(This : in out Manager;
Any Of These : Event List;
Enabler : out Event);

procedure Wait
(This : in out Manager;
This One : Event);

procedure Signal
(This : in out Manager;
All Of These : Event List);

procedure Signal
(This : in out Manager;
This One : Event);

Here's a task that waits for either event A or B, using a global Controller variable of the
Manager type:

task body A or B Processor is
Active : Event;

begin
loop
Wait (Controller,
Any Of These => Event List'(A, B),
Enabler => Active);
Put _Line ("A or B Processor responding to event " &
Active'Image);
end loop;

end A or B Processor;

When the call to Wait returns, at least one of either A or B has been signaled. One of
those signaled events was selected and returned in the Enabler parameter. That selected
event is no longer signaled when the call returns and will stay that way until another call
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to procedure Signal changes it. The other event in the list is not affected, whether or not
it was also signaled.

A signaling task could use the API to signal one event:

Signal (Controller, This One => B);

or just:

Signal (Controller, B);

To signal multiple events:

Signal (Controller, All Of These => Event List'(A, C, D));

Now let's consider the Manager implementation. As this is a concurrent program, we need
it to be thread-safe. We've declared the Manager type as limited, so either a task type or
a protected type would be allowed as the type's completion. (That's the other reason the
type is limited.) There's no need for this manager to do anything active, it just suspends
some tasks and resumes others when invoked. Therefore, a protected type will suffice,
rather than a task's active thread of control.

Clearly, tasks that await events must block until a requested event has been signaled,
assuming it was not already signaled when the call occurred, so a protected procedure won't
suffice. Protected procedures only provide mutual exclusion, whereas protected entries can
suspend a caller on a condition. Therefore, we'll use a protected entry for the waiters to
call. As you will see later, there is another reason to use protected entries here.

Inside the Manager protected type we need a way to represent whether events have been
signaled. We can use an array of Boolean components for this purpose, with the events
as the indexes. For any given event index value, if the corresponding array component is
True that event has been signaled, otherwise it has not.

type Event_States is array (Event) of Boolean;

Signaled : Event States := (others => False);

Thus, for example, if Signaled (B) is True, a task that calls Wait for B will be able to return.
Otherwise, that task will be blocked and cannot return from the call. Later another task will
set Signaled (B) to True, and then the waiting task can be unblocked.

Since an aggregate can also contain only one component if desired, we can use a single
set of protected routines for waiting and signaling in the Manager protected type. We don't
need one set of routines for waiting and signaling a single event, and another set of routines
for waiting and signaling multiple events. Here then is the visible part:

protected type Manager is

entry Wait
(Any Of These : Event List;
Enabler : out Event);

procedure Signal (ALl Of These : Event List);
private
end Manager;

Both the entry and the procedure take an argument of the array type, indicating one or more
client events. The entry, called by waiting tasks, also has an output argument, Enabler,
indicating which specific event enabled the task to resume, i.e., which event was found
signaled and was selected to unblock the task. We need that parameter because the task
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may have specified that any one of several events would suffice, and more than one could
have been signaled.

The bodies of our API routines are then just calls into the protected Manager that is passed
as the first argument. For example, here are two of the four:

procedure Wait

(This : in out Manager;
Any Of These : Event List;
Enabler C out Event)
is
begin
This.Wait (Any Of These, Enabler);
end Wait;

procedure Signal

(This : in out Manager;

This One : Event)
is
begin

This.Signal (Event List'(l => This One));
end Signal;

Now let's examine the implementation of the protected type. The visible part is repeated
here:

protected type Manager is

entry Wait
(Any Of These : Event List;
Enabler : out Event);

procedure Signal (ALl Of These : Event List);
private
end Manager;

The entry Wait suspends callers until one of the requested events is signaled, as specified
by the argument Any 0f These. Normally we'd expect to use the entry barrier to express
this behavior by querying the events' state array. If one of the requested events is True
the barrier would allow the call to execute and complete. However, barriers do not have
compile-time visibility to the entry parameters, so the parameters cannot be referenced in
the barriers. This situation calls for a requeue statement.

Because Wait always takes a call, the entry barrier is just hard-coded to True. (As men-
tioned earlier, that's always a strong indication that requeue is involved.) Even though this
barrier always allows a call, much like a protected procedure, we must use an entry because
only protected entries can requeue callers.

Inside the entry body the specified events' states are checked, looking for one that is True.
If one is found, the entry body completes and the caller returns to continue further, re-
sponding to the found event. If no requested event is True, though, we cannot let the
caller continue. We block it by requeueing the caller on to another entry. Eventually that
other entry will allow the caller to return, when an awaited event finally becomes True via
Signal.

Here then is the full declaration for the protected type Manager, including the array type
declaration that cannot be internal to the protected type:

type Event_States is array (Event) of Boolean;

(continues on next page)
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(continued from previous page)
protected type Manager is

entry Wait
(Any Of These : Event List;
Enabler : out Event);

procedure Signal (ALl Of These : Event List);
private

Signaled : Event States := (others => False);
Prior Retry Calls : Natural := 0;

entry Retry
(Any Of These : Event List;
Enabler : out Event);

end Manager;

The private part contains the event states component, a management component, and the
other entry, Retry, onto which we will requeue when necessary. Note that this other entry
is only meant to be called by a requeue from the visible entry Wait, so we declare it in the
private part to ensure there are no other calls to it. That informs the reader, but also the
maintainer, who in the future might be tempted to call it in some other context.

The routine that checks for an existing signaled event is internal to the protected type and
is declared as follows:

procedure Check Signaled

(These : Event List;
Enabler : out Event;
Found : out Boolean);

The procedure examines the events specified in the formal parameter These to see if any
of them are currently signaled, i.e., have a value of True. If it finds one, Enabler is set to
that event value and Found is set to True. Otherwise, Found is set to False and Enabler is
set to the value Event'First. The value assigned to Enabler in that case is arbitrary, but
the assignment itself is important. Assigning a value prevents the actual parameter from
becoming undefined upon return. Enabler will only be evaluated when Found returns True
so the arbitrary value will be ignored.

Here's the body of the entry Wait, containing a call to Check Signaled and the requeue
statement. Note that the formal parameter Wait.Enabler is passed as the actual param-
eter to Check Signaled.Enabler.

entry Wait
(Any Of These : Event List;
Enabler : out Event)
when
True
is
Found Awaited Event : Boolean;
begin
Check Signaled (Any Of These, Enabler, Found Awaited Event);
if not Found Awaited Event then
requeue Retry;
end if;
end Wait;

The hard-coded entry barrier (when True) always allows a caller to execute, subject to the
mutual exclusion requirement. If Check Signaled doesn't find one of the specified events
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signaled, we requeue the caller to the Retry entry. (The Wait entry parameters go to the
Retry entry, transparently.) On the other hand, if Check Signaled did find a specified event
signaled, we just exit the entry, the formal parameter Enabler having been set already by
the call to the internal procedure.

Eventually, presumably, an awaited False event will become True. That happens when
Signal is called:

procedure Signal (ALl O0f These : Event List) is
begin
for C of All Of These loop
Signaled (C) := True;
end loop;
Prior Retry Calls := Retry'Count;
end Signal;

After setting the specified events' states to True, Signal captures the number of queued
callers waiting on Retry. (The component Prior Retry Calls is an internal component
declared in the protected type. The value is never presented to callers, but is, instead, used
only to manage callers.)

At long last, here's the body of Retry:

entry Retry
(Any Of These : Event List;

Enabler : out Event)
when

Prior Retry Calls > 0
is

Found Signaled Event : Boolean;
begin

Prior Retry Calls := Prior Retry Calls - 1;
Check Signaled (Any Of These, Enabler, Found Signaled Event);
if not Found Signaled Event then
requeue Retry;
end if;
end Retry;

When a protected procedure or entry completes their sequence of statements, the run-time
system re-evaluates all the object's entry barriers, looking for an open (True) barrier with
a caller queued, waiting. If one is found, that entry body is allowed to execute on behalf of
that caller. On exit, the evaluation / execution process repeats. This process is known as a
protected action and is one reason protected objects are so expressive and powerful. The
protected action continues iterating, executing enabled entry bodies on behalf of queued
callers, until either no barriers are open or no open barriers have callers waiting. Note that
one of these entries may enable the barrier condition of some other entry in that same PO.

Therefore, when procedure Signal sets Prior Retry Calls to a value greater than zero
and then completes, the protected action allows Retry to execute. Furthermore, Retry
continues to execute, attempting to service all the prior callers in the protected action,
because its barrier becomes False only when all those prior callers have been serviced.

For each caller, Retry attempts the same thing Wait did: if a requested event is True the
caller is allowed to return from the call. Otherwise, the caller is requeued onto Retry. So
yes, Retry requeues the caller onto itself! Doing so is not inherently a problem, but in
this particular case a caller would continue to be requeued indefinitely when the requested
event is False, unless something prevents that from happening. That's the purpose of the
count of prior callers. Only that number of callers are executed by the body of Retry in the
protected action. After that the barrier is closed by Prior Retry Calls becoming zero,
the protected action ceases when the entry body exits, and any unsatisfied callers remain
queued.

All well and good, but have you noticed the underlying assumption? The code assumes
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that unsatisfied callers are placed onto the entry queue at the end of the queue, i.e., in
FIFO order. Consequently, they are not included in the value of the Prior Retry Calls
count and so do not get executed again until Signal is called again. But suppose we have
requested elsewhere that entry queues (among other things) are ordered by caller priority?
We'd want that for a real-time system. But then a requeued caller would not go to the back
of the entry queue and could, instead, execute all over again, repeatedly, until the prior
caller count closed the entry.

If priority queuing might be used, we must change the internal implementation so that the
queuing policy is irrelevant. We'll still have Wait do a requeue when necessary, but no
requeue will ever go to the same entry executing the requeue statement. Therefore, the
entry queuing order won't make a difference. An entry family facilitates that change, and
rather elegantly, too.

An entry family is much like an array of entries, each one identical to the others. To work
with any one of the entries we specify an index, as with an array. For example, here's a
requeue to Retry as a member of an entry family, with Active Retry as the index:

requeue Retry (Active Retry)

In the above, the caller uses the value of Active Retry as an index to select a specific
entry in the family.

The resulting changes to the Manager type are as follows:

type Retry Entry Id is mod 2; -- hence 0 .. 1
type Retry_Barriers is array (Retry Entry Id) of Boolean;

protected type Manager is
. as before
private

Retry Enabled : Retry Barriers := (others => False);

Signaled : Event States := (others => False);
Active Retry : Retry Entry Id := Retry Entry Id'First;

entry Retry (Retry Entry Id)
(Any Of These : Event List;
Enabler : out Event);

end Manager;

Our entry family index type is Retry Entry Id. We happen to need two entries in this
implementation, so a modular type with two values will suffice. Modular arithmetic will
also express the logic nicely, as you'll see. The component Active Retry is of this type,
initialized to zero.

The entry Retry is now a family, as indicated by the entry declaration syntax specifying
the index type Retry Entry Id within parentheses. Each entry has the same parameters
as any others in the family, in this case the same parameters as in the previous implemen-
tation.

We thus have two Retry entries so that, at any given time, one of the entries can requeue
onto the other one, instead of onto itself. An entry family makes that simple to express.

At runtime, one of the Retry entries will field requeue calls from Wait and will be the entry
enabled by Signal. That entry is designated the active retry target, via the index held in
the component Active Retry.

Here's the updated body of Wait:

entry Wait
(Any Of These : Event List;

(continues on next page)
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Enabler : out Event)
when

True
is

Found Signaled Event : Boolean;
begin

Check Signaled (Any Of These, Enabler, Found Signaled Event);
if not Found Signaled Event then
requeue Retry (Active Retry) with abort;
end if;
end Wait;

The body is as before, except that the requeue target depends on the value of Ac-
tive Retry. (We'll discuss with abort later.)

When Signal executes, it now enables the active retry entry barrier:

procedure Signal (All Of These : Event List) is
begin
for C of ALl Of These loop
Signaled (C) := True;
end loop;
Retry Enabled (Active Retry) := True;
end Signal;

The barrier component Retry Enabled is now an array, using the same index type as the
entry family.

The really interesting part of the implementation is the body of Retry, showing the expres-
sive power of the language. The entry family member enabled by Signal goes through
all its pending callers, attempting to satisfy them and requeuing those that it cannot. But
instead of requeuing onto itself, it requeues them onto the other entry in the family. As a
result, the ordering of the queues is immaterial. Again, the entry family makes this easy to
express:

entry Retry (for K in Retry Entry Id)
(Any Of These : Event List;

Enabler : out Event)
when

Retry Enabled (K)
is

Found Signaled Event : Boolean;
begin

Check Signaled (Any Of These, Enabler, Found Signaled Event);
if Found Signaled Event then
return;
end if;
-- otherwise...
if Retry (K)'Count = @ then -- current caller is last one present
-- switch to the other Retry family member for
-- subsequent retries
Retry Enabled (K) := False;
Active Retry := Active Retry + 1;
end if;
-- NB: K + 1 wraps around to the other family member
requeue Retry (K + 1) with abort;
end Retry;

Note the first line:

entry Retry (for K in Retry Entry Id)
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as well as the entry barrier (before the reserved word is):

when Retry Enabled (K)

K is the entry family index, in this case iterating over all the values of Retry Entry Id (i.e.,
0. 1)

We don't have to write a loop checking each family member's barrier; that happens auto-
matically, via K. When a barrier at index K is found to be True, that corresponding entry
can execute a prior caller.

Note the last statement, the one performing the requeue:

requeue Retry (K + 1) with abort;

Like the Active Retry component, the index K is of the modular type with two possible
values, so K + 1 is always the other entry of the two. The addition wraps around, conve-
niently. As a result, the requeue is always onto the other entry, never itself, so the entry
queue ordering makes no difference.

The with abort syntax can be read as "with abort enabled for the requeued caller task."
Ordinarily, an aborted task that is suspended on an entry queue is removed from that
queue. That removal is allowable in this version of protected type Manager, unlike the
earlier FIFO version, because we are not using the count of prior callers to control the
number of iterations in the protected action involving Retry. In the FIFO implementation
we could not allow requeued callers to be removed from the Retry queue because the
count of prior callers would no longer match the number of queued callers actually present.
The protected action would await a caller that would never execute. In this more robust
implementation that cannot happen, so it is safe to allow aborted tasks to be removed from
the Retry queue.

Note that we do still check the count of pending queued callers, we just don't capture it
and use it to control the number of iterations in the protected action. If we've processed
the last caller for member K, we close member K's barrier immediately and then set the
active member index to the other entry member. Consequently, a subsequent call to Wait
will requeue to the other entry family member and Signal will, eventually, enable it.

Because we did not make the implementation visible to the package's clients, our internal
changes will not require users to change any of their code.

Note that both the Ravenscar and Jorvik profiles allow entry families, but Ravenscar al-
lows only one member per family because only one entry is allowed per protected object.
Such an entry family doesn't provide any benefit over a single entry declaration. Jorvik
allows multiple entry family members because it allows multiple entries per protected ob-
ject. However, neither profile allows requeue statements, for the sake of simplifying the
underlying run-time library implementation.

The full version using the entry-family approach is provided at the end of this text. Note
that we have used a generic package so that we can factor out the specific kind of events
involved, via the generic formal type. As long as the generic actual type is a discrete type
the compiler will be happy. That correspondence is essential because we use the event
type as an index for the array type Event States.

generic
type Event is (<>);
package Event_Management is

type Manager is limited private;

private
(continues on next page)
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type Event_States is array (Event) of Boolean;

end Event Management;

Here is a small demonstration program. As before, we just have some simple event names
to await and signal. We instantiate the generic package Event Management with that Event
type, and also the generic package Ada.Numerics.Discrete Random so that we can ran-
domly generate events to test the Event Management instance.

-- Make the protected entry queues not be FIFO ordered, to
-- demonstrate that the type Manager handles this case too.
pragma Queuing Policy (Priority Queuing);

with Ada.Text I0; use Ada.Text IO;
with Event Management;

with Ada.Numerics.Discrete Random;
procedure Demo Events is
type Event is (A, B, C, D);

package Events is new Event_Management (Event);
use Events;

package Arbitrary_Event is
new Ada.Numerics.Discrete Random (Event);
use Arbitrary Event;

G : Arbitrary Event.Generator;
Controller : Events.Manager;
-- Tasks to await the events being signaled.

-- We give them priorities to exercise the priority-based
-- Implementation, but the values are arbitrary.

task A or B Processor with Priority => 5;
task C Processor with Priority => 6;
task D _Processor with Priority => 7;

task body A or B Processor is
Active : Event;
begin
Lloop
Wait (Controller,
Any O0f These => Event List'(A, B),
Enabler => Active);
Put Line ("A or B Processor responding to event " &
Active'Image);
end loop;
end A or B Processor;

-- C Processor --
(continues on next page)
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task body C Processor is
begin
loop
Wait (Controller, C);
Put Line ("C Processor responding to event C");
end loop;
end C Processor;

task body D Processor is
begin
loop
Wait (Controller, D);
Put Line ("D _Processor responding to event D");
end loop;
end D Processor;

begin

loop
Signal (Controller, Random (G));
-- The tasks have priority for the sake of realism
-- since the queues are now ordered by priority.
-- However, we don't want any one task to
-- monopolize the output, so for the sake of the
-- demonstration we give the other tasks time to
-- suspend on their calls to Wait too. The delay
-- also makes the output easier to read.
delay 0.5;

end loop;

end Demo Events;

When executed, each task iteratively prints a message indicated that it is responding to
one of the awaited events. One of the tasks waits for one of two specified events, and the
other two tasks wait for a single event each. The main procedure signals events at random.
The demo runs forever so you'll have to kill it manually.

Each task writes to Standard Output. Strictly speaking, this tasking structure allows race
conditions on that shared (logical) file, but this is just a simple demo of the event facility
so it is not worth bothering to prevent them. For the same reason, we didn't declare a task
type parameterized with a discriminant for those tasks that await a single event.

16.2.3 Concurrent Programming

Concurrent programming applications will likely use both idioms. Thread-safe buffers are
extremely common, for example. But in addition, potentially blocking operations are some-
times necessary within regions of code that require mutually exclusive access.

16.2.4 Real-Time Programming

As we mentioned in the introduction, protected objects provide the same benefits for real-
time programming as they provide for concurrent programming, albeit with additional se-
mantics. Those additions include execution with a priority, in particular. Clients will assign
a ceiling priority to each protected object, as described in the System Implementation of
PO Mutual Exclusion (page 140) section above. The purpose is to limit the blocking experi-
enced by tasks, along with other task interaction benefits on a uniprocessor.
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The GNAT package hierarchy includes a thread-safe bounded buffer abstraction that can
be used in real-time applications. The protected type is declared within a generic package,
like so:

protected type Bounded Buffer
(Capacity : Positive;
Ceiling : System.Priority)

with
Priority => Ceiling

is

private
end Bounded Buffer;

The two discriminants allow the type to be parameterized when clients declare objects
of the type. In this case, the Capacity discriminant will be given a value specifying the
maximum number of Element values that the object should be able to contain. More to
the point here, the Ceiling discriminant specifies the priority to be given to the protected
object itself.

16.2.5 Embedded Systems Programming

In the canonical model for handling interrupts in Ada, the handlers are protected proce-
dures. The enclosing PO is again given a priority, as for real-time programming, but now
the priority level is that of the Interrupt Priority subtype. The handlers are invoked by
the hardware via the run-time library and execute at the priority specified. This is essen-
tially use of the first idiom for protected objects, even though the encapsulated application
data is hardware oriented.

That's the canonical model, and hence the portable approach, but other approaches are
possible. For example, if the target and OS allow it, a developer can set up the system to
directly vector to a non-protected procedure. However, doing so is not portable, loses the
benefits of the integration with the priority scheme, and almost certainly includes limita-
tions on the operations allowed within the procedure body.

For further discussion, see the Interrupt Handling (page 85) idiom entry.

16.3 Pros

Protected objects extend prior research in concurrent programming language constructs,
specifically the monitor construct that replaces semaphores, mutexes, and condition vari-
ables. Condition synchronization is simply stated as a Boolean expression on an entry, with
caller suspension and resumption handled automatically. The monitor's explicit mechanism
for local caller suspension and resumption is no longer required. Furthermore, protected
action semantics make the code simpler than the combination of condition variables with
mutexes, including the need for the looping idiom in the PThreads model, because when
the condition expressed by the barrier becomes True the awakened caller is guaranteed to
hold the mutual exclusion lock.

Protected objects add asynchronous communication and synchronization to the existing
synchronous mechanism of Ada 83, addressing a serious deficiency for both concurrent and
real-time programming in Ada. They are also critical to embedded systems programming
with Ada.

Most importantly, developers can use protected objects (types) to create just about any
synchronization and communication protocol imaginable. Especially when combined with
other language features, the result is a flexible, extremely expressive facility.
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16.4 Cons

The private part of a protected definition can contain only declarations for protected oper-
ations and component declarations. This limitation leads to declarations, such as the array
type Event States, that are purely implementation artifacts but cannot be hidden inside
the private part. These artifacts will usually be declared immediately before the protected
object or type, thus making them compile-time visible to clients whenever the protected
type or object is visible to clients. Note that anonymously-typed array objects are not al-
lowed in the private part. You will understand why these limitations exist when you consider
that protected objects, when first conceived, were known as protected records. They have
only slightly more declarative options than those of record types.

Protected objects have more capabilities than semaphores, mutexes, and condition vari-
ables. As a consequence, they may have more run-time overhead, but not much. For
the automatic mutual exclusion implementation, the expense can be literally zero when
priorities are used instead of actual locks for the implementation.

16.5 Relationship With Other Idioms

None

16.6 Notes

1. Thanks to Andrei Gritsenko (AHgpein 'puueHko@disqus_VErI9jPNvR) for suggesting a
nice simplification of the FIFO version of the event waiting facility.

2. For more on tasking and topics like this, including examples of the second idiom,
see the book by Burns and Wellings, Concurrent and Real-Time Programming In Ada,
Cambridge University Press, 2007. Yes, 2007, but it is excellent and remains directly
applicable today. The implementation of the event manager is based on their Re-
source Controller example, for example.

16.7 Full Code for Event_Management Generic Package

The full implementation of the approach that works regardless of whether the queues are
FIFO ordered is provided below. Note that it includes some defensive code that we did not
mention above, for the sake of simplicity. See in particular procedures Signal and Wait
that take an Event List as inputs.

When compiling this generic package, you may get warnings indicating that the use of
parentheses for aggregates is an obsolete feature and that square brackets should be used
instead. Feel free to ignore them. Parentheses are not obsolete, neither in a practical sense
nor in the language standard's sense of being obsolescent. There are indeed cases where
square brackets are better, or even required, but those situations don't appear here.

Listing 15: event_management.ads

-- This package provides a means for blocking a calling task
-- until/unless any one of an arbitrary set of "events" 1is
-- ‘"signaled."

-- NOTE: this implementation allows either priority-ordered or
-- FIFO-ordered queuing.

generic
type Event is (<>);

(continues on next page)
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(continued from previous page)

package Event_Management is

type Manager is limited private;
type Event_List is array (Positive range <>) of Event;

procedure Wait

(This : in out Manager;
Any Of These : Event List;
Enabler : out Event)

with

Pre => Any O0f These'lLength > 0;
-- Block until/unless any one of the events in Any Of These has
-- been signaled. The one enabling event will be returned in the
-- Enabler parameter, and is cleared internally as Wait exits.
-- Any other signaled events remain signaled. Note that,
-- when Signal is called, the events within the aggregate
-- Any of These are checked (for whether they are signaled)
-- 1n the order they appear in the aggregate. We use a precondition
-- on Wait because the formal parameter Enabler is mode out, and type
-- Event is a discrete type. As such, if there was nothing in the list
-- to await, the call would return immediately, leaving Enabler's value
-- undefined.

procedure Wait

(This : in out Manager;

This One : Event);
-- Block until/unless the specified event has been signaled.
-- This procedure is a convenience routine that can be used
-- 1nstead of an aggregate with only one event component.

procedure Signal

(This : in out Manager;

ALl Of These : Event List);
-- Indicate that all of the events in All Of These are now
-- signaled. The events remain signaled until cleared by Wait.
-- We don't use a similar precondition like that of procedure
-- Wait because, for Signal, doing nothing is what the empty
-- list requests.

procedure Signal

(This : in out Manager;

This One : Event);
-- Indicate that event This One is now signaled. The event
-- remains signaled until cleared by Wait. This procedure is a
-- convenience routine that can be used instead of an aggregate
-- with only one event component.

private

type Event_States is array (Event) of Boolean;
type Retry_Entry_Id is mod 2;
type Retry_Barriers is array (Retry Entry Id) of Boolean;

protected type Manager is

entry Wait
(Any Of These : Event List;
Enabler : out Event);

procedure Signal (All Of These : Event List);

(continues on next page)
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private
Signaled : Event States := (others => False);
Retry Enabled : Retry Barriers := (others => False);
Active Retry : Retry Entry Id := Retry Entry Id'First;
entry Retry (Retry Entry Id)
(Any Of These : Event List;
Enabler : out Event);
end Manager;

end Event Management;
And the generic package body:

Listing 16: event_management.adb

package body Event_Management is

procedure Wait

(This : in out Manager;
Any Of These : Event List;
Enabler . out Event)
is
begin
This.Wait (Any Of These, Enabler);
end Wait;
-- Wait --

procedure Wait

(This : in out Manager;
This One : Event)

is
Unused : Event;

begin

This.Wait (Event List'(1l => This One), Unused);
end Wait;

procedure Signal

(This : in out Manager;
ALl Of These : Event List)

is

begin

-- Calling Manager.Signal has an effect even when the list
-- 1s empty, albeit minor, so we don't call it in that case

if A1l Of These'lLength > 0 then
This.Signal (A1l Of These);
end if;
end Signal;

-- Signal --

(continues on next page)
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procedure Signal

(This : in out Manager;
This One : Event)
is
begin
This.Signal (Event List' (1l => This One));
end Signal;
-- Manager --

protected body Manager is

procedure Check Signaled

(These : Event List;
Enabler : out Event;
Found : out Boolean);
-- Wait --
entry Wait
(Any Of These : Event List;
Enabler : out Event)
when
True
is
Found Signaled Event : Boolean;
begin

Check Signaled (Any Of These, Enabler, Found Signaled Event);
if not Found Signaled Event then
requeue Retry (Active Retry) with abort;
end if;
end Wait;

procedure Signal (All O0f These : Event List) is
begin
for C of ALl 0f These loop
Signaled (C) := True;
end loop;
Retry Enabled (Active Retry) := True;
end Signal;

entry Retry (for K in Retry Entry Id)
(Any Of These : Event List;

Enabler : out Event)
when

Retry Enabled (K)
is

(continues on next page)
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Found Signaled Event :
begin

Boolean;

(continued from previous page)

Check Signaled (Any Of These, Enabler, Found Signaled Event);

if Found Signaled Event then
return;

end if;

-- otherwise...

if Retry (K)'Count = 0 then -- current caller is last one

-- switch to the other Retry family member for

-- subsequent retries

Retry Enabled (K) := False;

Active Retry := Active Retry + 1;
end if;

-- NB: K + 1 wraps around to the other family member

requeue Retry (K + 1) with abort;
end Retry;

procedure Check Signaled

(These : Event List;
Enabler : out Event;
Found : out Boolean)
is
begin

for C of These loop
if Signaled (C) then
Signaled (C) := False;

Enabler := C;
Found := True;
return;
end if;
end loop;
Enabler := Event'First;

Found := False;
end Check Signaled;

end Manager;

end Event Management;

-- arbitrary, avoids undefined value

16.7. Full Code for Event_Management Generic Package
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