

# THE GAUSSIAN INTEGRAL

KEITH CONRAD

Let

$$I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx, \quad J = \int_0^{\infty} e^{-x^2} dx, \quad \text{and } K = \int_{-\infty}^{\infty} e^{-\pi x^2} dx.$$

These positive numbers are related:  $J = I/(2\sqrt{2})$  and  $K = I/\sqrt{2\pi}$ .

**Theorem.** *With notation as above,  $I = \sqrt{2\pi}$ , or equivalently  $J = \sqrt{\pi}/2$ , or equivalently  $K = 1$ .*

We will give multiple proofs of this. (Other lists of proofs are in [5] and [10].) It is subtle since  $e^{-\frac{1}{2}x^2}$  has no simple antiderivative. For comparison,  $\int_0^{\infty} xe^{-\frac{1}{2}x^2} dx$  can be computed with the antiderivative  $-e^{-\frac{1}{2}x^2}$  and equals 1. In the last section, the Gaussian integral's history is presented.

## 1. FIRST PROOF: POLAR COORDINATES

The most widely known proof, due to Poisson [10, p. 3], expresses  $J^2$  as a double integral and then uses polar coordinates. To start, write  $J^2$  as an iterated integral using single-variable calculus:

$$J^2 = J \int_0^{\infty} e^{-y^2} dy = \int_0^{\infty} J e^{-y^2} dy = \int_0^{\infty} \left( \int_0^{\infty} e^{-x^2} dx \right) e^{-y^2} dy = \int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy.$$

View this as a double integral over the first quadrant. To compute it with polar coordinates, the first quadrant is  $\{(r, \theta) : r \geq 0 \text{ and } 0 \leq \theta \leq \pi/2\}$ . Writing  $x^2 + y^2$  as  $r^2$  and  $dx dy$  as  $r dr d\theta$ ,

$$\begin{aligned} J^2 &= \int_0^{\pi/2} \int_0^{\infty} e^{-r^2} r dr d\theta \\ &= \int_0^{\infty} r e^{-r^2} dr \cdot \int_0^{\pi/2} d\theta \\ &= -\frac{1}{2} e^{-r^2} \Big|_0^{\infty} \cdot \frac{\pi}{2} \\ &= \frac{1}{2} \cdot \frac{\pi}{2} \\ &= \frac{\pi}{4}. \end{aligned}$$

Since  $J > 0$ ,  $J = \sqrt{\pi}/2$ .<sup>1</sup> It is argued in [2] that this method can't be used on any other integral.

## 2. SECOND PROOF: ANOTHER CHANGE OF VARIABLES

Our next proof uses another change of variables to compute  $J^2$ . As before,

$$J^2 = \int_0^{\infty} \left( \int_0^{\infty} e^{-(x^2+y^2)} dx \right) dy.$$

---

<sup>1</sup>For a visualization of this calculation as a volume, in terms of  $\int_{-\infty}^{\infty} e^{-x^2} dx$  instead of  $J$ , see <https://www.youtube.com/watch?v=cy8r7WSuT1I>. We'll do a volume calculation for  $I^2$  in Section 5.

Instead of using polar coordinates, set  $x = yt$  in the inner integral ( $y$  is fixed). Then  $dx = y dt$  and

$$(2.1) \quad J^2 = \int_0^\infty \left( \int_0^\infty e^{-y^2(t^2+1)} y dt \right) dy = \int_0^\infty \left( \int_0^\infty ye^{-y^2(t^2+1)} dy \right) dt,$$

where the interchange of integrals is justified by Fubini's theorem for improper Riemann integrals. (The appendix gives an approach using Fubini's theorem for Riemann integrals on rectangles.) Since  $\int_0^\infty ye^{-ay^2} dy = \frac{1}{2a}$  for  $a > 0$ , we have

$$J^2 = \int_0^\infty \frac{dt}{2(t^2 + 1)} = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4},$$

so  $J = \sqrt{\pi}/2$ . This proof is due to Laplace [8, pp. 94–96] and historically precedes the widely used technique of the previous proof. We will see in Section 9 what Laplace's first proof was.

### 3. THIRD PROOF: DIFFERENTIATING UNDER THE INTEGRAL SIGN

For  $t > 0$ , set

$$A(t) = \left( \int_0^t e^{-x^2} dx \right)^2.$$

The integral we want to calculate is  $A(\infty) = J^2$  and then take a square root.

Differentiating  $A(t)$  with respect to  $t$  and using the Fundamental Theorem of Calculus,

$$A'(t) = 2 \int_0^t e^{-x^2} dx \cdot e^{-t^2} = 2e^{-t^2} \int_0^t e^{-x^2} dx.$$

Let  $x = ty$ , so

$$A'(t) = 2e^{-t^2} \int_0^1 te^{-t^2y^2} dy = \int_0^1 2te^{-(1+y^2)t^2} dy.$$

The function under the integral sign is easily antiderivatived *with respect to t*:

$$A'(t) = \int_0^1 -\frac{\partial}{\partial t} \frac{e^{-(1+y^2)t^2}}{1+y^2} dy = -\frac{d}{dt} \int_0^1 \frac{e^{-(1+y^2)t^2}}{1+y^2} dy.$$

Letting

$$B(t) = \int_0^1 \frac{e^{-t^2(1+x^2)}}{1+x^2} dx,$$

we have  $A'(t) = -B'(t)$  for all  $t > 0$ , so there is a constant  $C$  such that

$$(3.1) \quad A(t) = -B(t) + C$$

for all  $t > 0$ . To find  $C$ , we let  $t \rightarrow 0^+$  in (3.1). The left side tends to  $\left( \int_0^0 e^{-x^2} dx \right)^2 = 0$  while the right side tends to  $-\int_0^1 dx/(1+x^2) + C = -\pi/4 + C$ . Thus  $C = \pi/4$ , so (3.1) becomes

$$\left( \int_0^t e^{-x^2} dx \right)^2 = \frac{\pi}{4} - \int_0^1 \frac{e^{-t^2(1+x^2)}}{1+x^2} dx.$$

Letting  $t \rightarrow \infty$  in this equation, we obtain  $J^2 = \pi/4$ , so  $J = \sqrt{\pi}/2$ .

A comparison of this proof with the first proof is in [22].

#### 4. FOURTH PROOF: ANOTHER DIFFERENTIATION UNDER THE INTEGRAL SIGN

Here is a second approach to finding  $J$  by differentiation under the integral sign. I heard about it from Michael Rozman [15], who modified an idea on [math.stackexchange](#) [24], and in a slightly less elegant form it appeared much earlier in [20].

For  $t \in \mathbf{R}$ , set

$$F(t) = \int_0^\infty \frac{e^{-t^2(1+x^2)}}{1+x^2} dx.$$

Then  $F(0) = \int_0^\infty dx/(1+x^2) = \pi/2$  and  $F(\infty) = 0$ . Differentiating under the integral sign,

$$F'(t) = \int_0^\infty -2te^{-t^2(1+x^2)} dx = -2te^{-t^2} \int_0^\infty e^{-(tx)^2} dx.$$

Make the substitution  $y = tx$ , with  $dy = t dx$ , so

$$F'(t) = -2e^{-t^2} \int_0^\infty e^{-y^2} dy = -2Je^{-t^2}.$$

For  $b > 0$ , integrate both sides from 0 to  $b$  and use the Fundamental Theorem of Calculus:

$$\int_0^b F'(t) dt = -2J \int_0^b e^{-t^2} dt \implies F(b) - F(0) = -2J \int_0^b e^{-t^2} dt.$$

Letting  $b \rightarrow \infty$  in the last equation,

$$0 - \frac{\pi}{2} = -2J^2 \implies J^2 = \frac{\pi}{4} \implies J = \frac{\sqrt{\pi}}{2}.$$

#### 5. FIFTH PROOF: A VOLUME INTEGRAL

Our next proof is due to T. P. Jameson [6] and was rediscovered by A. L. Delgado [4]. Revolve  $z = e^{-\frac{1}{2}x^2}$  in the  $xz$ -plane around the  $z$ -axis to produce the “bell surface”  $z = e^{-\frac{1}{2}(x^2+y^2)}$ . See Figure 1, where the  $z$ -axis is vertical and passes through the top point, the  $x$ -axis lies just under the surface through the point 0 in front, and the  $y$ -axis lies just under the surface through the point 0 on the left. We will compute the volume  $V$  below the surface and above the  $xy$ -plane in two ways.

First we compute  $V$  by *horizontal slices*, which are discs:  $V = \int_0^1 A(z) dz$  where  $A(z)$  is the area of the disc formed by slicing the surface at height  $z$ . Writing the radius of the disc at height  $z$  as  $r(z)$ ,  $A(z) = \pi r(z)^2$ . To compute  $r(z)$ , the surface cuts the  $xz$ -plane at a pair of points  $(x, e^{-\frac{1}{2}x^2})$  where the height is  $z$ , so  $e^{-\frac{1}{2}x^2} = z$ . Thus  $x^2 = -2 \ln z$ . Since  $x$  is the distance of these points from the  $z$ -axis,  $r(z)^2 = x^2 = -2 \ln z$ , so  $A(z) = \pi r(z)^2 = -2\pi \ln z$ . Therefore

$$V = \int_0^1 -2\pi \ln z dz = -2\pi (z \ln z - z) \Big|_0^1 = -2\pi(-1 - \lim_{z \rightarrow 0^+} z \ln z).$$

By L’Hospital’s rule,  $\lim_{z \rightarrow 0^+} z \ln z = 0$ , so  $V = 2\pi$ . (A calculation of  $V$  by shells is in [12].)

Next we compute  $V$  by *vertical slices* in planes  $x = \text{constant}$ . Vertical slices are scaled bell curves: look at the black contour lines in Figure 1. The equation of the bell curve along the top of the vertical slice with  $x$ -coordinate  $x$  is  $z = e^{-\frac{1}{2}(x^2+y^2)}$ , where  $y$  varies and  $x$  is fixed. Then

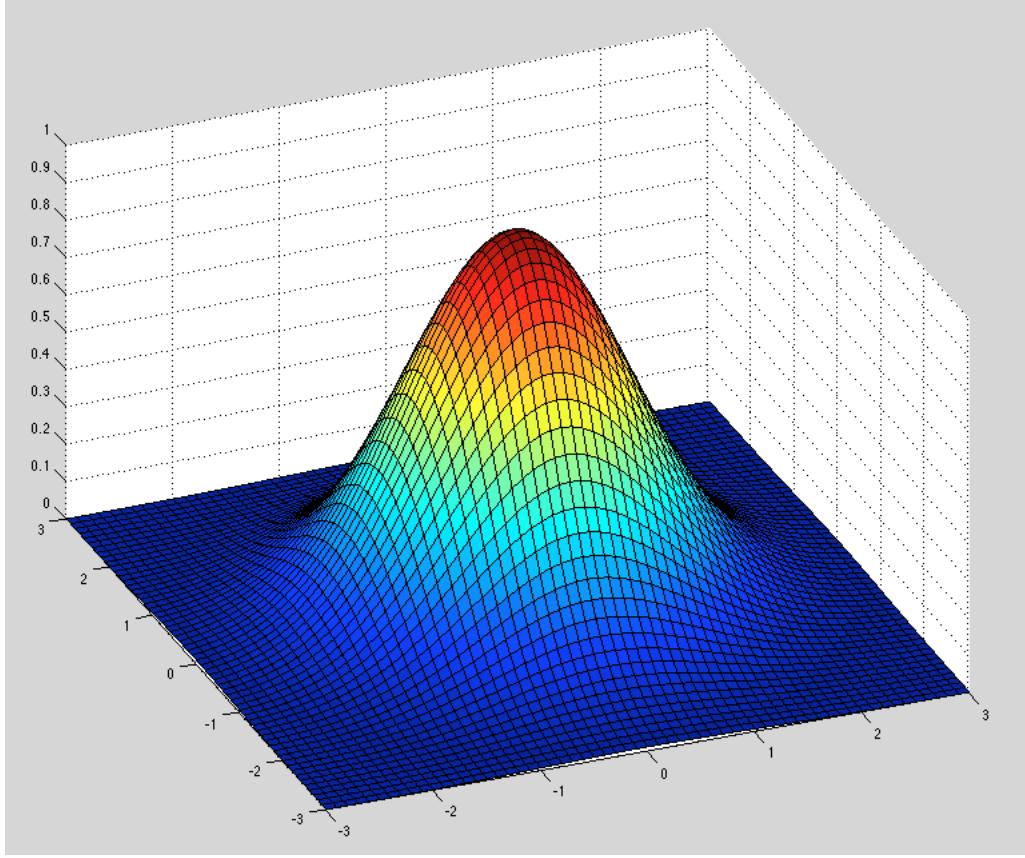


FIGURE 1. The bell surface  $z = e^{-\frac{1}{2}(x^2+y^2)}$

$V = \int_{-\infty}^{\infty} A(x) dx$ , where  $A(x)$  is the area of the  $x$ -slice:

$$A(x) = \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2+y^2)} dy = e^{-\frac{1}{2}x^2} \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy = e^{-\frac{1}{2}x^2} I.$$

Thus  $V = \int_{-\infty}^{\infty} A(x) dx = \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} I dx = I \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx = I^2$ .

Comparing the two formulas for  $V$ , we have  $2\pi = I^2$ , so  $I = \sqrt{2\pi}$ .

## 6. SIXTH PROOF: THE $\Gamma$ -FUNCTION

For any integer  $n \geq 0$ , we have  $n! = \int_0^{\infty} t^n e^{-t} dt$ . For  $x > 0$  we define

$$\Gamma(x) = \int_0^{\infty} t^x e^{-t} \frac{dt}{t},$$

so  $\Gamma(n) = (n-1)!$  when  $n \geq 1$ . Using integration by parts,  $\Gamma(x+1) = x\Gamma(x)$ . One of the basic properties of the  $\Gamma$ -function [16, pp. 193–194] is

$$(6.1) \quad \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_0^1 t^{x-1}(1-t)^{y-1} dt.$$

Set  $x = y = 1/2$ :

$$\Gamma\left(\frac{1}{2}\right)^2 = \int_0^1 \frac{dt}{\sqrt{t(1-t)}}.$$

Note

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty \sqrt{t} e^{-t} \frac{dt}{t} = \int_0^\infty \frac{e^{-t}}{\sqrt{t}} dt = \int_0^\infty \frac{e^{-x^2}}{x} 2x dx = 2 \int_0^\infty e^{-x^2} dx = 2J,$$

so  $4J^2 = \int_0^1 dt/\sqrt{t(1-t)}$ . With the substitution  $t = \sin^2 \theta$ ,

$$4J^2 = \int_0^{\pi/2} \frac{2 \sin \theta \cos \theta d\theta}{\sin \theta \cos \theta} = 2 \frac{\pi}{2} = \pi,$$

so  $J = \sqrt{\pi}/2$ . Equivalently,  $\Gamma(1/2) = \sqrt{\pi}$ . Any method that proves  $\Gamma(1/2) = \sqrt{\pi}$  is also a method that calculates  $\int_0^\infty e^{-x^2} dx$ .

## 7. SEVENTH PROOF: ASYMPTOTIC ESTIMATES

We will show  $J = \sqrt{\pi}/2$  by a technique whose steps are based on [17, p. 371].

For  $x \geq 0$ , power series expansions show  $1 + x \leq e^x \leq 1/(1-x)$ . Reciprocating and replacing  $x$  with  $x^2$ , we get

$$(7.1) \quad 1 - x^2 \leq e^{-x^2} \leq \frac{1}{1 + x^2}.$$

for all  $x \in \mathbf{R}$ .

For any positive integer  $n$ , raise the terms in (7.1) to the  $n$ th power and integrate from 0 to 1:

$$\int_0^1 (1 - x^2)^n dx \leq \int_0^1 e^{-nx^2} dx \leq \int_0^1 \frac{dx}{(1 + x^2)^n}.$$

Using the changes of variables  $x = \sin \theta$  on the left,  $x = y/\sqrt{n}$  in the middle, and  $x = \tan \theta$  on the right,

$$(7.2) \quad \int_0^{\pi/2} (\cos \theta)^{2n+1} d\theta \leq \frac{1}{\sqrt{n}} \int_0^{\sqrt{n}} e^{-y^2} dy \leq \int_0^{\pi/4} (\cos \theta)^{2n-2} d\theta < \int_0^{\pi/2} (\cos \theta)^{2n-2} d\theta.$$

Set  $I_k = \int_0^{\pi/2} (\cos \theta)^k d\theta$ , so  $I_0 = \pi/2$ ,  $I_1 = 1$ , and (7.2) implies

$$(7.3) \quad \sqrt{n} I_{2n+1} \leq \int_0^{\sqrt{n}} e^{-y^2} dy < \sqrt{n} I_{2n-2}.$$

We will show that as  $k \rightarrow \infty$ ,  $kI_k^2 \rightarrow \pi/2$ . Then

$$\sqrt{n} I_{2n+1} = \frac{\sqrt{n}}{\sqrt{2n+1}} \sqrt{2n+1} I_{2n+1} \rightarrow \frac{1}{\sqrt{2}} \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2}$$

and

$$\sqrt{n} I_{2n-2} = \frac{\sqrt{n}}{\sqrt{2n-2}} \sqrt{2n-2} I_{2n-2} \rightarrow \frac{1}{\sqrt{2}} \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2},$$

so by (7.3),  $\int_0^{\sqrt{n}} e^{-y^2} dy \rightarrow \sqrt{\pi}/2$ . Thus  $J = \sqrt{\pi}/2$ .

To show  $kI_k^2 \rightarrow \pi/2$ , first we compute several values of  $I_k$  explicitly by a recursion. Using integration by parts,

$$I_k = \int_0^{\pi/2} (\cos \theta)^k d\theta = \int_0^{\pi/2} (\cos \theta)^{k-1} \cos \theta d\theta = (k-1)(I_{k-2} - I_k),$$

so

$$(7.4) \quad I_k = \frac{k-1}{k} I_{k-2}.$$

Using (7.4) and the initial values  $I_0 = \pi/2$  and  $I_1 = 1$ , the first few values of  $I_k$  are computed and listed in Table 1.

| $k$ | $I_k$            | $k$ | $I_k$    |
|-----|------------------|-----|----------|
| 0   | $\pi/2$          | 1   | 1        |
| 2   | $(1/2)(\pi/2)$   | 3   | $2/3$    |
| 4   | $(3/8)(\pi/2)$   | 5   | $8/15$   |
| 6   | $(15/48)(\pi/2)$ | 7   | $48/105$ |

TABLE 1.

From Table 1 we see that

$$(7.5) \quad I_{2n}I_{2n+1} = \frac{1}{2n+1} \frac{\pi}{2}$$

for  $0 \leq n \leq 3$ , and this can be proved for all  $n$  by induction using (7.4). Since  $0 \leq \cos \theta \leq 1$  for  $\theta \in [0, \pi/2]$ , we have  $I_k \leq I_{k-1} \leq I_{k-2} = \frac{k}{k-1} I_k$  by (7.4), so  $I_{k-1} \sim I_k$  as  $k \rightarrow \infty$ . Therefore (7.5) implies

$$I_{2n}^2 \sim \frac{1}{2n} \frac{\pi}{2} \implies (2n)I_{2n}^2 \rightarrow \frac{\pi}{2}$$

as  $n \rightarrow \infty$ . Then

$$(2n+1)I_{2n+1}^2 \sim (2n)I_{2n}^2 \rightarrow \frac{\pi}{2}$$

as  $n \rightarrow \infty$ , so  $kI_k^2 \rightarrow \pi/2$  as  $k \rightarrow \infty$ . This completes our proof that  $J = \sqrt{\pi}/2$ .

**Remark 7.1.** This proof is closely related to the fifth proof using the  $\Gamma$ -function. Indeed, by (6.1)

$$\frac{\Gamma(\frac{k+1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{k+1}{2} + \frac{1}{2})} = \int_0^1 t^{(k+1)/2+1} (1-t)^{1/2-1} dt,$$

and with the change of variables  $t = (\cos \theta)^2$  for  $0 \leq \theta \leq \pi/2$ , the integral on the right is equal to  $2 \int_0^{\pi/2} (\cos \theta)^k d\theta = 2I_k$ , so (7.5) is the same as

$$\begin{aligned} I_{2n}I_{2n+1} &= \frac{\Gamma(\frac{2n+1}{2})\Gamma(\frac{1}{2})}{2\Gamma(\frac{2n+2}{2})} \frac{\Gamma(\frac{2n+2}{2})\Gamma(\frac{1}{2})}{2\Gamma(\frac{2n+3}{2})} \\ &= \frac{\Gamma(\frac{2n+1}{2})\Gamma(\frac{1}{2})^2}{4\Gamma(\frac{2n+1}{2} + 1)} \\ &= \frac{\Gamma(\frac{2n+1}{2})\Gamma(\frac{1}{2})^2}{4^{\frac{2n+1}{2}} \Gamma(\frac{2n+1}{2})} \\ &= \frac{\Gamma(\frac{1}{2})^2}{2(2n+1)}. \end{aligned}$$

By (7.5),  $\pi = \Gamma(1/2)^2$ . We saw in the fifth proof that  $\Gamma(1/2) = \sqrt{\pi}$  if and only if  $J = \sqrt{\pi}/2$ .

### 8. EIGHTH PROOF: STIRLING'S FORMULA

Besides the integral formula  $\int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx = \sqrt{2\pi}$  that we have been discussing, another place in mathematics where  $\sqrt{2\pi}$  appears is in Stirling's formula:

$$n! \sim \frac{n^n}{e^n} \sqrt{2\pi n} \quad \text{as } n \rightarrow \infty.$$

In 1730 De Moivre proved  $n! \sim C(n^n/e^n)\sqrt{n}$  for some positive number  $C$  without being able to determine  $C$ . Stirling soon thereafter showed  $C = \sqrt{2\pi}$  and wound up having the whole formula named after him. We will show that determining that the constant  $C$  in Stirling's formula is  $\sqrt{2\pi}$  is equivalent to showing that  $J = \sqrt{\pi}/2$  (or, equivalently, that  $I = \sqrt{2\pi}$ ).

Applying (7.4) repeatedly,

$$\begin{aligned} I_{2n} &= \frac{2n-1}{2n} I_{2n-2} \\ &= \frac{(2n-1)(2n-3)}{(2n)(2n-2)} I_{2n-4} \\ &\vdots \\ &= \frac{(2n-1)(2n-3)(2n-5) \cdots (5)(3)(1)}{(2n)(2n-2)(2n-4) \cdots (6)(4)(2)} I_0. \end{aligned}$$

Inserting  $(2n-2)(2n-4)(2n-6) \cdots (6)(4)(2)$  in the top and bottom,

$$I_{2n} = \frac{(2n-1)(2n-2)(2n-3)(2n-4)(2n-5) \cdots (6)(5)(4)(3)(2)(1)}{(2n)((2n-2)(2n-4) \cdots (6)(4)(2))^2} \frac{\pi}{2} = \frac{(2n-1)!}{2n(2^{n-1}(n-1)!)^2} \frac{\pi}{2}.$$

Applying De Moivre's asymptotic formula  $n! \sim C(n/e)^n \sqrt{n}$ ,

$$I_{2n} \sim \frac{C((2n-1)/e)^{2n-1} \sqrt{2n-1}}{2n(2^{n-1}C((n-1)/e)^{n-1} \sqrt{n-1})^2} \frac{\pi}{2} = \frac{(2n-1)^{2n} \frac{1}{2n-1} \sqrt{2n-1}}{2n \cdot 2^{2(n-1)} C e (n-1)^{2n} \frac{1}{(n-1)^2} (n-1)} \frac{\pi}{2}$$

as  $n \rightarrow \infty$ . For any  $a \in \mathbf{R}$ ,  $(1+a/n)^n \rightarrow e^a$  as  $n \rightarrow \infty$ , so  $(n+a)^n \sim e^a n^n$ . Substituting this into the above formula with  $a = -1$  and  $n$  replaced by  $2n$ ,

$$(8.1) \quad I_{2n} \sim \frac{e^{-1} (2n)^{2n} \frac{1}{\sqrt{2n}}}{2n \cdot 2^{2(n-1)} C e (e^{-1} n^n)^2 \frac{1}{n^2} n} \frac{\pi}{2} = \frac{\pi}{C \sqrt{2n}}.$$

Since  $I_{k-1} \sim I_k$ , the outer terms in (7.3) are both asymptotic to  $\sqrt{n} I_{2n} \sim \pi/(C\sqrt{2})$  by (8.1). Therefore

$$\int_0^{\sqrt{n}} e^{-y^2} dy \rightarrow \frac{\pi}{C\sqrt{2}}$$

as  $n \rightarrow \infty$ , so  $J = \pi/(C\sqrt{2})$ . Therefore  $C = \sqrt{2\pi}$  if and only if  $J = \sqrt{\pi}/2$ .

## 9. NINTH PROOF: THE ORIGINAL PROOF

The original proof that  $J = \sqrt{\pi}/2$  is due to Laplace [9] in 1774. (An English translation of Laplace's article is mentioned in the bibliographic citation for [9], with preliminary comments on that article in [19].) He wanted to compute

$$(9.1) \quad \int_0^1 \frac{dx}{\sqrt{-\log x}}.$$

Setting  $y = \sqrt{-\log x}$ , this integral is  $2 \int_0^\infty e^{-y^2} dy = 2J$ , so we expect (9.1) to be  $\sqrt{\pi}$ .

Laplace's starting point for evaluating (9.1) was a formula of Euler:

$$(9.2) \quad \int_0^1 \frac{x^r dx}{\sqrt{1-x^{2s}}} \int_0^1 \frac{x^{s+r} dx}{\sqrt{1-x^{2s}}} = \frac{1}{s(r+1)} \frac{\pi}{2}$$

for positive  $r$  and  $s$ . (Laplace himself said this formula held "whatever be"  $r$  or  $s$ , but if  $s < 0$  then the number under the square root is negative.) Accepting (9.2), let  $r \rightarrow 0$  in it to get

$$(9.3) \quad \int_0^1 \frac{dx}{\sqrt{1-x^{2s}}} \int_0^1 \frac{x^s dx}{\sqrt{1-x^{2s}}} = \frac{1}{s} \frac{\pi}{2}.$$

Now let  $s \rightarrow 0$  in (9.3). Then  $1-x^{2s} \sim -2s \log x$  by L'Hopital's rule, so (9.3) becomes

$$\left( \int_0^1 \frac{dx}{\sqrt{-\log x}} \right)^2 = \pi.$$

Thus (9.1) is  $\sqrt{\pi}$ .

Euler's formula (9.2) looks mysterious, but we have met it before. In the formula let  $x^s = \cos \theta$  with  $0 \leq \theta \leq \pi/2$ . Then  $x = (\cos \theta)^{1/s}$ , and after some calculations (9.2) turns into

$$(9.4) \quad \int_0^{\pi/2} (\cos \theta)^{(r+1)/s-1} d\theta \int_0^{\pi/2} (\cos \theta)^{(r+1)/s} d\theta = \frac{1}{(r+1)/s} \frac{\pi}{2}.$$

We used the integral  $I_k = \int_0^{\pi/2} (\cos \theta)^k d\theta$  before when  $k$  is a nonnegative integer. This notation makes sense when  $k$  is any positive real number, and then (9.4) assumes the form  $I_\alpha I_{\alpha+1} = \frac{1}{\alpha+1} \frac{\pi}{2}$  for  $\alpha = (r+1)/s - 1$ , which is (7.5) with a possibly nonintegral index. Letting  $r = 0$  and  $s = 1/(2n+1)$  in (9.4) recovers (7.5). Letting  $s \rightarrow 0$  in (9.3) corresponds to letting  $n \rightarrow \infty$  in (7.5), so the proof in Section 7 is in essence a more detailed version of Laplace's 1774 argument.

## 10. TENTH PROOF: RESIDUE THEOREM

We will calculate  $\int_{-\infty}^{\infty} e^{-x^2/2} dx$  using contour integrals and the residue theorem. However, we can't just integrate  $e^{-z^2/2}$ , as this function has no poles. For a long time nobody knew how to handle this integral using contour integration. For instance, in 1914 Watson [21, p. 79] wrote "Cauchy's theorem cannot be employed to evaluate all definite integrals; thus  $\int_0^\infty e^{-x^2} dx$  has not been evaluated except by other methods." In the 1940s several contour integral solutions were published using awkward contours such as parallelograms [11], [13, Sect. 5] (see [3, Exer. 9, p. 113] for a recent appearance). Our approach will follow Kneser [7, p. 121] (see also [14, pp. 413–414] or [23]), using a rectangular contour and the function

$$\frac{e^{-z^2/2}}{1 - e^{-\sqrt{\pi}(1+i)z}}.$$

This function comes out of nowhere, so our first task is to motivate the introduction of this function.

We seek a meromorphic function  $f(z)$  to integrate around the contour  $\gamma_R$  in Figure 2, with vertices at  $-R$ ,  $R$ ,  $R + ib$ , and  $-R + ib$ , where  $b$  will be fixed and we let  $R \rightarrow \infty$ .

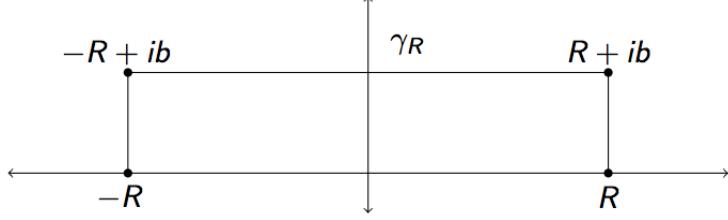


FIGURE 2. Contour to compute Gaussian

Suppose  $f(z) \rightarrow 0$  along the right and left sides of  $\gamma_R$  uniformly as  $R \rightarrow \infty$ . Then by applying the residue theorem and letting  $R \rightarrow \infty$ , we would obtain (if the integrals converge)

$$\int_{-\infty}^{\infty} f(x) dx + \int_{\infty}^{-\infty} f(x + ib) dx = 2\pi i \sum_a \text{Res}_{z=a} f(z),$$

where the sum is over poles of  $f(z)$  with imaginary part between 0 and  $b$ . This is equivalent to

$$\int_{-\infty}^{\infty} (f(x) - f(x + ib)) dx = 2\pi i \sum_a \text{Res}_{z=a} f(z).$$

Therefore we want  $f(z)$  to satisfy

$$(10.1) \quad f(z) - f(z + ib) = e^{-z^2/2},$$

where  $f(z)$  and  $b$  need to be determined.

Let's try  $f(z) = e^{-z^2/2}/d(z)$ , for an unknown  $d(z)$  whose zeros are poles of  $f(z)$ . We want

$$(10.2) \quad f(z) - f(z + \tau) = e^{-z^2/2}$$

for some  $\tau$  (which will *not* be purely imaginary, so (10.1) doesn't quite work, but (10.1) is only motivation). Substituting  $e^{-z^2/2}/d(z)$  for  $f(z)$  in (10.2) gives us

$$(10.3) \quad e^{-z^2/2} \left( \frac{1}{d(z)} - \frac{e^{-\tau z - \tau^2/2}}{d(z + \tau)} \right) = e^{-z^2/2}.$$

Suppose  $d(z + \tau) = d(z)$ . Then (10.3) implies

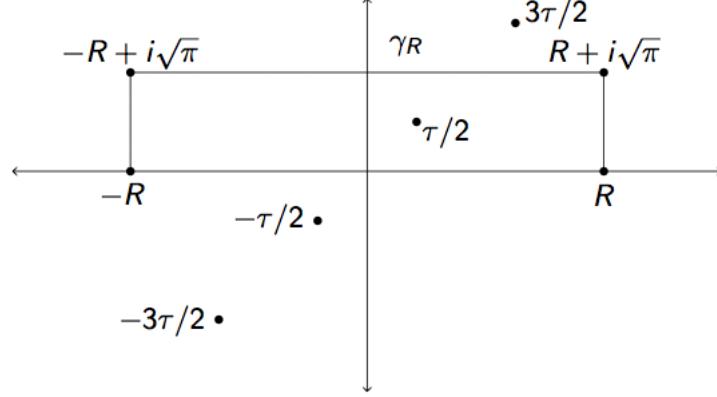
$$d(z) = 1 - e^{-\tau z - \tau^2/2},$$

and with this definition of  $d(z)$ ,  $e^{-z^2/2}/d(z)$  satisfies (10.2) if and only if  $e^{\tau^2} = 1$ , or equivalently  $\tau^2 \in 2\pi i \mathbf{Z}$ . The simplest nonzero solution is  $\tau = \sqrt{\pi}(1+i)$ . From now on this is the value of  $\tau$ , so  $e^{-\tau^2/2} = e^{-i\pi} = -1$  and  $d(z) = 1 + e^{-\tau z}$ . Set

$$f(z) = \frac{e^{-z^2/2}}{d(z)} = \frac{e^{-z^2/2}}{1 + e^{-\tau z}},$$

which is Kneser's function mentioned earlier. This function satisfies (10.2) and we henceforth ignore the motivation (10.1). Poles of  $f(z)$  are at odd integral multiples of  $\tau/2$ .

We will integrate this  $f(z)$  around the contour  $\gamma_R$  in Figure 3, whose height  $\sqrt{\pi}$  is  $\text{Im}(\tau)$ .

FIGURE 3. The contour  $\gamma_R$  and poles of Kneser's function

The poles of  $f(z)$  nearest the origin are plotted in Figure 3; they lie along the line  $y = x$ . The only pole of  $f(z)$  inside  $\gamma_R$  (for  $R > \sqrt{\pi}/2$ ) is at  $\tau/2$ , so by the residue theorem

$$\int_{\gamma_R} f(z) dz = 2\pi i \operatorname{Res}_{z=\tau/2} f(z) = 2\pi i \frac{e^{-\tau^2/8}}{(-\tau)e^{-\tau^2/2}} = \frac{2\pi i e^{3\tau^2/8}}{-\sqrt{\pi}(1+i)} = \frac{2\pi i e^{3\pi i/4}}{-\sqrt{\pi}(1+i)} = \sqrt{2\pi}.$$

Since the left and right sides of  $\gamma_R$  have the same length,  $\sqrt{\pi}$ , for all  $R$ , to show the integral of  $f$  along those sides tends to 0 uniformly as  $R \rightarrow \infty$ , it suffices to show  $f(z) \rightarrow 0$  uniformly along those sides as  $R \rightarrow \infty$ . Parametrize  $z$  along the left and right sides as  $-R + it$  and  $R + it$  with  $t$  running over  $[0, \sqrt{\pi}]$  in one direction or the other (which won't matter since we'll be taking absolute values). Then, using the reverse triangle inequality in the denominator, when  $R > \sqrt{\pi}$  (so  $R > t$ )

$$|f(R + it)| = \frac{|e^{-R^2/2-iRt+t^2/2}|}{|1 + e^{-\tau(R+it)}|} \leq \frac{e^{-R^2/2}e^{t^2/2}}{|1 - e^{-\operatorname{Re}(\tau(R+it))}|} \leq \frac{e^{-R^2/2}e^{\pi/2}}{1 - e^{-\sqrt{\pi}(R-t)}} < \frac{e^{-R^2/2}e^{\pi/2}}{1 - e^{-\sqrt{\pi}(R-\sqrt{\pi})}},$$

which tends to 0 as  $R \rightarrow \infty$ . Also

$$|f(-R + it)| = \frac{|e^{-R^2/2+iRt+t^2/2}|}{|1 + e^{-\tau(-R+it)}|} \leq \frac{e^{-R^2/2}e^{t^2/2}}{|1 - e^{-\operatorname{Re}(\tau(-R+it))}|} \leq \frac{e^{-R^2/2}e^{\pi/2}}{e^{\sqrt{\pi}(R+t)} - 1} < \frac{e^{-R^2/2}e^{\pi/2}}{e^{\sqrt{\pi}R} - 1},$$

which tends to 0 as  $R \rightarrow \infty$ . Thus

$$\sqrt{2\pi} = \int_{-\infty}^{\infty} f(x) dx + \int_{\infty+i\sqrt{\pi}}^{-\infty+i\sqrt{\pi}} f(z) dz = \int_{-\infty}^{\infty} f(x) dx - \int_{-\infty}^{\infty} f(x + i\sqrt{\pi}) dx.$$

In the second integral, write  $i\sqrt{\pi}$  as  $\tau - \pi$  and use (real) translation invariance of  $dx$  to obtain

$$\sqrt{2\pi} = \int_{-\infty}^{\infty} f(x) dx - \int_{-\infty}^{\infty} f(x + \tau) dx = \int_{-\infty}^{\infty} (f(x) - f(x + \tau)) dx = \int_{-\infty}^{\infty} e^{-x^2/2} dx \quad \text{by (10.2).}$$

## 11. ELEVENTH PROOF: FOURIER TRANSFORMS

For a continuous function  $f: \mathbf{R} \rightarrow \mathbf{C}$  that is rapidly decreasing at  $\pm\infty$ , its Fourier transform is the function  $\mathcal{F}f: \mathbf{R} \rightarrow \mathbf{C}$  defined by

$$(11.1) \quad (\mathcal{F}f)(y) = \int_{-\infty}^{\infty} f(x)e^{-ixy} dx.$$

For example,  $(\mathcal{F}f)(0) = \int_{-\infty}^{\infty} f(x) dx$ . Here are three properties of the Fourier transform.

- If  $f$  is differentiable, then after using differentiation under the integral sign on the Fourier transform of  $f$  we obtain

$$(\mathcal{F}f)'(y) = \int_{-\infty}^{\infty} -ixf(x)e^{-ixy} dx = -i(\mathcal{F}(xf(x)))(y).$$

- Using integration by parts on the Fourier transform of  $f$ , with  $u = f(x)$  and  $dv = e^{-ixy} dx$ , we obtain

$$(\mathcal{F}(f'))(y) = iy(\mathcal{F}f)(y).$$

- If we apply the Fourier transform twice then we recover the original function up to interior and exterior scaling:

$$(11.2) \quad (\mathcal{F}^2 f)(x) = 2\pi f(-x).$$

The  $2\pi$  is admittedly a nonobvious scaling factor here, and the proof of (11.2) is nontrivial. We'll show the appearance of  $2\pi$  in (11.2) is equivalent to the evaluation of  $I$  as  $\sqrt{2\pi}$ .

Fixing  $a > 0$ , set  $f(x) = e^{-ax^2}$ , so

$$f'(x) = -2axf(x).$$

Applying the Fourier transform to both sides of this equation implies  $iy(\mathcal{F}f)(y) = -2a\frac{1}{-i}(\mathcal{F}f)'(y)$ , which simplifies to  $(\mathcal{F}f)'(y) = -\frac{1}{2a}y(\mathcal{F}f)(y)$ . The general solution of  $g'(y) = -\frac{1}{2a}yg(y)$  is  $g(y) = Ce^{-y^2/(4a)}$ , so

$$f(x) = e^{-ax^2} \implies (\mathcal{F}f)(y) = Ce^{-y^2/(4a)}$$

for some constant  $C$ . We have  $1/(4a) = a$  when  $a = 1/2$ , so set  $a = 1/2$ : if  $f(x) = e^{-x^2/2}$  then

$$(11.3) \quad (\mathcal{F}f)(y) = Ce^{-y^2/2} = Cf(y).$$

Setting  $y = 0$  in (11.3), the left side is  $(\mathcal{F}f)(0) = \int_{-\infty}^{\infty} e^{-x^2/2} dx = I$ , so  $I = Cf(0) = C$ .

Applying the Fourier transform to both sides of (11.3) with  $C = I$  and using (11.2), we get  $2\pi f(-x) = I(\mathcal{F}f)(x) = I^2 f(x)$ . At  $x = 0$  this becomes  $2\pi = I^2$ , so  $I = \sqrt{2\pi}$  since  $I > 0$ . That is the Gaussian integral calculation. If we didn't know that the constant on the right side of (11.2) is  $2\pi$ , whatever its value is would wind up being  $I^2$ , so saying  $2\pi$  appears on the right side of (11.2) is equivalent to saying  $I = \sqrt{2\pi}$ .

There are other ways to define the Fourier transform besides (11.1), such as

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ixy} dx \quad \text{or} \quad \int_{-\infty}^{\infty} f(x)e^{-2\pi ixy} dx.$$

These transforms have properties similar to the transform as defined in (11.1), so they can be used in its place to compute the Gaussian integral. Let's see how such a proof looks using the second alternative definition, which we'll write as

$$(\tilde{\mathcal{F}}f)(y) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ixy} dx.$$

For this Fourier transform, the analogue of the three properties above for  $\mathcal{F}$  are

- $(\tilde{\mathcal{F}}f)'(y) = -2\pi i(\tilde{\mathcal{F}}(xf(x)))(y)$ .
- $(\tilde{\mathcal{F}}(f'))(y) = 2\pi iy(\tilde{\mathcal{F}}f)(y)$ .
- $(\tilde{\mathcal{F}}^2 f)(x) = f(-x)$ .

The last property for  $\tilde{\mathcal{F}}$  looks nicer than that for  $\mathcal{F}$ , since there is no overall  $2\pi$ -factor on the right side (it has been hidden in the definition of  $\tilde{\mathcal{F}}$ ). On the other hand, the first two properties for  $\tilde{\mathcal{F}}$  have overall factors of  $2\pi$  on the right side while the first two properties of  $\mathcal{F}$  do not. You can't escape a role for  $\pi$  or  $2\pi$  somewhere in every possible definition of a Fourier transform.

Now let's run through the proof again with  $\tilde{\mathcal{F}}$  in place of  $\mathcal{F}$ . For  $a > 0$ , set  $f(x) = e^{-ax^2}$ . Applying  $\tilde{\mathcal{F}}$  to both sides of the equation  $f'(x) = -2axf(x)$ ,  $2\pi iy(\tilde{\mathcal{F}}f)(y) = -2a\frac{1}{-(2\pi i)}(\mathcal{F}f)'(y)$ , and that is equivalent to  $(\tilde{\mathcal{F}}f)'(y) = -\frac{2\pi^2}{a}y(\mathcal{F}f)(y)$ . Solutions of  $g'(y) = -\frac{2\pi^2}{a}yg(y)$  all look like  $Ce^{-(\pi^2/a)y^2}$ , so

$$f(x) = e^{-ax^2} \implies (\tilde{\mathcal{F}}f)(y) = Ce^{-(\pi^2/a)y^2}$$

for a constant  $C$ . We want  $\pi^2/a = \pi$  so that  $e^{-(\pi^2/a)y^2} = e^{-\pi y^2} = f(y)$ , which occurs for  $a = \pi$ . Thus when  $f(x) = e^{-\pi x^2}$  we have

$$(11.4) \quad (\tilde{\mathcal{F}}f)(y) = Ce^{-\pi y^2} = Cf(y).$$

When  $y = 0$  in (11.4), this becomes  $\int_{-\infty}^{\infty} e^{-\pi x^2} dx = C$ , so  $C = K$ : see the top of the first page for the definition of  $K$  as the integral of  $e^{-\pi x^2}$  over  $\mathbf{R}$ .

Applying  $\tilde{\mathcal{F}}$  to both sides of (11.4) with  $C = K$  and using  $(\tilde{\mathcal{F}}^2 f)(x) = f(-x)$ , we get  $f(-x) = K(\tilde{\mathcal{F}}f)(x) = K^2 f(x)$ . At  $x = 0$  this becomes  $1 = K^2$ , so  $K = 1$  since  $K > 0$ . That  $K = 1$ , or in more explicit form  $\int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1$ , is equivalent to the evaluation of the Gaussian integral  $I$  with the change of variables  $y = \sqrt{2\pi}x$  in the integral for  $K$ .

## 12. HISTORY OF THE GAUSSIAN INTEGRAL

The function  $e^{-x^2/2}$ , more commonly written as  $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$  ("normal distribution") so it has total integral 1 over  $\mathbf{R}$ , plays an essential role in probability and statistics, and it was in such settings that this function was initially found. Three separate investigations led to it.

- (1) Large sample approximation to binomial: De Moivre [1, pp. 235-237] in 1733 found that a large number of samples from a binomial distribution with  $p = 1/2$  can be approximated by a normal distribution. He did not write the Gaussian integral directly, but in [1, Cor. 2, p. 237] he estimated that the probability a binomial random variable with  $p = 1/2$  is within a standard deviation of the mean from above is .341344. This is  $\frac{1}{\sqrt{2\pi}} \int_0^1 e^{-x^2/2} dx$ . Such a role for the normal distribution did not make it stand out. De Moivre's work was generalized by Laplace in 1812 to binomial distributions with any  $p$  in  $(0, 1)$ . The normal approximation to the binomial for large sample sizes is a mainstay in probability and statistics courses.
- (2) Distribution of Errors: Gauss in 1809 (based on work starting in 1801) was led to  $\frac{a}{\sqrt{\pi}}e^{-a^2x^2}$  in his astronomical work on locating the lost asteroid Ceres by the method of least squares. (At  $a = 1/\sqrt{2}$  this is  $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ .) To Gauss, such a function for suitable  $a$  describes the distribution of errors in measurements: it is "the error curve". The difficulty in finding such a curve to model errors is hard to appreciate today, when the answer is known. In the 1770s, for example, Laplace proposed other error curves with corners or asymptotes at  $x = 0$ , as in Figure 4 below. In the second picture,  $a$  is the largest imagined error.
- (3) Central Limit Theorem: Laplace, in his 1812 book *Théorie analytique des probabilités* [8], developed the first version of the Central Limit Theorem, which assigns a special role to the normal distribution.

The discovery of normally distributed data in the social sciences by Quetelet and others in the mid-19th century along with more general versions of the Central Limit Theorem solidified its role

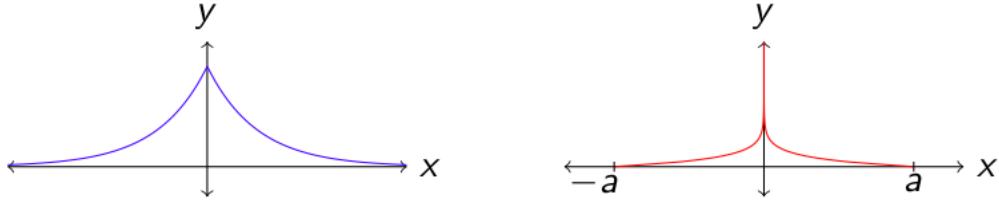


FIGURE 4. Laplace's error curves:  $\frac{m}{2}e^{-m|x|}$  in 1774 and  $\frac{1}{2a} \log(a/|x|)$  when  $|x| \leq a$  in 1777.

from then on. See [18] for more details. In that era, it was called the “Law of Error” or “the Error Curve”. The name Central Limit Theorem is due to George Polya in 1920,<sup>2</sup> and the widespread use of the name “normal distribution” is due to Karl Pearson.<sup>3</sup>

#### APPENDIX A. REDOING SECTION 2 WITHOUT IMPROPER INTEGRALS IN FUBINI'S THEOREM

In this appendix we will work out the calculation of the Gaussian integral in Section 2 without relying on Fubini's theorem for improper integrals. The key equation is (2.1), which we recall:

$$\int_0^\infty \left( \int_0^\infty ye^{-(t^2+1)y^2} dt \right) dy = \int_0^\infty \left( \int_0^\infty ye^{-(t^2+1)y^2} dy \right) dt.$$

The calculation in Section 2 that the iterated integral on the right is  $\pi/4$  does not need Fubini's theorem in any form. It is going from the iterated integral on the left to  $\pi/4$  that used Fubini's theorem for improper integrals. The next theorem could be used as a substitute, and its proof will only use Fubini's theorem for integrals on rectangles.

**Theorem A.1.** *For  $b > 1$  and  $c > 1$ ,*

$$\int_0^\infty \left( \int_0^\infty ye^{-(t^2+1)y^2} dt \right) dy = \frac{\pi}{4} + O\left(\frac{1}{b}\right) + O\left(\frac{1}{\sqrt{c}}\right).$$

Having  $b \rightarrow \infty$  and  $c \rightarrow \infty$  in Theorem A.1 makes the right side  $\pi/4$  without changing the left side.

**Lemma A.2.** (1) *For all  $x \in \mathbf{R}$ ,  $e^{-x^2} \leq \frac{1}{x^2 + 1}$ .*

(2) *For  $a > 0$ ,  $\int_0^\infty \frac{dx}{a^2x^2 + 1} = \frac{\pi}{2a}$ .*

(3) *For  $a > 0$  and  $c > 0$ ,  $\int_c^\infty \frac{dx}{a^2x^2 + 1} = \frac{1}{a} \left( \frac{\pi}{2} - \arctan(ac) \right)$ .*

(4) *For  $a > 0$  and  $c > 0$ ,  $\int_c^\infty \frac{dx}{a^2x^2 + 1} < \frac{1}{a^2c}$ .*

(5) *For  $a > 0$ ,  $\frac{\pi}{2} - \arctan a < \frac{1}{a}$ .*

*Proof.* The proofs of (1), (2), and (3) are left to the reader. To prove (4), replace  $1 + a^2t^2$  by the smaller value  $a^2t^2$ . To prove (5), write the difference as  $\int_a^\infty dx/(x^2 + 1)$  and then bound  $1/(x^2 + 1)$  above by  $1/x^2$ .  $\square$

<sup>2</sup>See <https://mathoverflow.net/questions/44132>.

<sup>3</sup>See <https://mathshistory.st-andrews.ac.uk/Miller/mathword/n/>.

Now we prove Theorem A.1.

*Proof.* Step 1. For  $b > 1$  and  $c > 1$ , we'll show the improper integral can be truncated to an integral over  $[0, b] \times [0, c]$  plus error terms:

$$\int_0^\infty \left( \int_0^\infty y e^{-(t^2+1)y^2} dt \right) dy = \int_0^b \left( \int_0^c y e^{-(t^2+1)y^2} dt \right) dy + O\left(\frac{1}{\sqrt{c}}\right) + O\left(\frac{1}{b}\right).$$

Subtract the integral on the right from the integral on the left and split the outer integral  $\int_0^\infty$  into  $\int_0^b + \int_b^\infty$ :

$$\begin{aligned} \int_0^\infty \left( \int_0^\infty y e^{-(t^2+1)y^2} dt \right) dy - \int_0^b \left( \int_0^c y e^{-(t^2+1)y^2} dt \right) dy &= \int_0^b \left( \int_c^\infty y e^{-(t^2+1)y^2} dt \right) dy \\ &\quad + \int_b^\infty \left( \int_0^\infty y e^{-(t^2+1)y^2} dt \right) dy. \end{aligned}$$

On the right side, we will show the **first iterated integral** is  $O(1/\sqrt{c})$  and the **second iterated integral** is  $O(1/b)$ . The second iterated integral is simpler:

$$\begin{aligned} \int_b^\infty \left( \int_0^\infty y e^{-(t^2+1)y^2} dt \right) dy &= \int_b^\infty \left( \int_0^\infty e^{-(yt)^2} dt \right) y e^{-y^2} dy \\ &\leq \int_b^\infty \left( \int_0^\infty \frac{dt}{y^2 t^2 + 1} \right) y e^{-y^2} dy \quad \text{by Lemma A.2(1)} \\ &= \int_b^\infty \frac{\pi}{2y} y e^{-y^2} dy \quad \text{by Lemma A.2(2)} \\ &= \frac{\pi}{2} \int_b^\infty e^{-y^2} dy \\ &\leq \frac{\pi}{2} \int_b^\infty \frac{dy}{y^2 + 1} \quad \text{by Lemma A.2(1)} \\ &= \frac{\pi}{2b} \quad \text{since } \frac{1}{y^2 + 1} < \frac{1}{y^2}, \end{aligned}$$

and this is  $O(1/b)$ . Returning to the first iterated integral,

$$\begin{aligned} \int_0^b \left( \int_c^\infty y e^{-(t^2+1)y^2} dt \right) dy &= \int_0^b \left( \int_c^\infty e^{-(yt)^2} dt \right) y e^{-y^2} dy \\ &\leq \int_0^b \left( \int_c^\infty \frac{dt}{y^2 t^2 + 1} \right) y e^{-y^2} dy \quad \text{by Lemma A.2(1)} \\ &= \int_0^1 \left( \int_c^\infty \frac{dt}{y^2 t^2 + 1} \right) y e^{-y^2} dy + \int_1^b \left( \int_c^\infty \frac{dt}{y^2 t^2 + 1} \right) y e^{-y^2} dy \\ &\leq \int_0^1 \left( \int_c^\infty \frac{dt}{y^2 t^2 + 1} \right) y e^{-y^2} dy + \int_1^b \frac{1}{y^2 c} y e^{-y^2} dy \quad \text{by Lemma A.2(4)} \\ &= \int_0^1 \left( \frac{\pi}{2} - \arctan(yc) \right) e^{-y^2} dy + \frac{1}{c} \int_1^b \frac{dy}{y e^{y^2}} \quad \text{by Lemma A.2(3)} \\ &\leq \int_0^1 \left( \frac{\pi}{2} - \arctan(yc) \right) dy + \frac{1}{c} \int_1^\infty \frac{dy}{y e^{y^2}}. \end{aligned}$$

The last term is  $O(1/c)$ . We will show the first term is  $O(1/\sqrt{c})$  by carefully splitting up  $\int_0^1$ .

For  $0 < \varepsilon < 1$ ,

$$\int_0^1 \left( \frac{\pi}{2} - \arctan(yc) \right) dy = \int_0^\varepsilon \left( \frac{\pi}{2} - \arctan(yc) \right) dy + \int_\varepsilon^1 \left( \frac{\pi}{2} - \arctan(yc) \right) dy.$$

Both integrals are positive, and the first one is less than  $(\pi/2)\varepsilon$ . The integrand of the second integral is less than  $1/(yc)$  by Lemma A.2(5), so

$$\int_\varepsilon^1 \left( \frac{\pi}{2} - \arctan(yc) \right) dy < \int_\varepsilon^1 \frac{dy}{yc} < \frac{1-\varepsilon}{\varepsilon c} < \frac{1}{\varepsilon c}.$$

Therefore

$$0 < \int_0^1 \left( \frac{\pi}{2} - \arctan(yc) \right) dy < \frac{\pi}{2}\varepsilon + \frac{1}{\varepsilon c}$$

for each  $\varepsilon$  in  $(0, 1)$ . Use  $\varepsilon = 1/\sqrt{c}$  to get

$$0 < \int_0^1 \left( \frac{\pi}{2} - \arctan(yc) \right) dy < \frac{\pi}{2\sqrt{c}} + \frac{1}{\sqrt{c}} = O\left(\frac{1}{\sqrt{c}}\right).$$

That proves the **first iterated integral** is  $O(1/\sqrt{c}) + O(1/c) = O(1/\sqrt{c})$  as  $c \rightarrow \infty$ .

Step 2. For  $b > 0$  and  $c > 0$ , we will show

$$\int_0^b \left( \int_0^c ye^{-(t^2+1)y^2} dt \right) dy = \frac{\pi}{4} + O\left(\frac{1}{e^{b^2}}\right) + O\left(\frac{1}{c}\right).$$

By Fubini's theorem for continuous functions on a *rectangle* in  $\mathbf{R}^2$ ,

$$\int_0^b \left( \int_0^c ye^{-(t^2+1)y^2} dt \right) dy = \int_0^c \left( \int_0^b ye^{-(t^2+1)y^2} dy \right) dt.$$

For the inner integral on the right, the formula  $\int_0^b ye^{-ay^2} dy = 1/(2a) - 1/(2ae^{ab^2})$  for  $a > 0$  tells us

$$\int_0^b ye^{-(t^2+1)y^2} dy = \frac{1}{2(t^2+1)} - \frac{1}{2(t^2+1)e^{(t^2+1)b^2}},$$

so

$$\begin{aligned} \int_0^c \left( \int_0^b ye^{-(t^2+1)y^2} dy \right) dt &= \frac{1}{2} \int_0^c \frac{dt}{t^2+1} - \frac{1}{2} \int_0^c \frac{dt}{(t^2+1)e^{(t^2+1)b^2}} \\ (A.1) \quad &= \frac{1}{2} \arctan(c) - \frac{1}{2} \int_0^c \frac{dt}{(t^2+1)e^{(t^2+1)b^2}}. \end{aligned}$$

Let's estimate these last two terms. Since

$$\arctan(c) = \int_0^\infty \frac{dt}{t^2+1} - \int_c^\infty \frac{dt}{t^2+1} = \frac{\pi}{2} + O\left(\int_c^\infty \frac{dt}{t^2}\right) = \frac{\pi}{2} + O\left(\frac{1}{c}\right)$$

and

$$\int_0^c \frac{dt}{(t^2+1)e^{(t^2+1)b^2}} \leq \int_0^c \frac{dt}{t^2+1} \frac{1}{e^{b^2}} \leq \int_0^\infty \frac{dt}{t^2+1} \frac{1}{e^{b^2}} = O\left(\frac{1}{e^{b^2}}\right),$$

feeding these error estimates into (A.1) finishes Step 2.  $\square$

## REFERENCES

- [1] A. De Moivre, *The Doctrine of Chances*, 2nd ed., Woodfall, London, 1738. [https://archive.org/details/bim\\_eighteenth-century\\_the-doctrine-of-chances\\_moivre-abraham-de\\_1738](https://archive.org/details/bim_eighteenth-century_the-doctrine-of-chances_moivre-abraham-de_1738).
- [2] D. Bell, “Poisson’s remarkable calculation – a method or a trick?” *Elem. Math.* **65** (2010), 29–36.
- [3] C. A. Berenstein and R. Gay, *Complex Variables*, Springer-Verlag, New York, 1991.
- [4] A. L. Delgado, “A Calculation of  $\int_0^\infty e^{-x^2} dx$ ,” *The College Math. J.* **34** (2003), 321–323.
- [5] H. Iwasawa, “Gaussian Integral Puzzle,” *Math. Intelligencer* **31** (2009), 38–41.
- [6] T. P. Jameson, “The Probability Integral by Volume of Revolution,” *Mathematical Gazette* **78** (1994), 339–340.
- [7] H. Kneser, *Funktionentheorie*, Vandenhoeck and Ruprecht, 1958.
- [8] P. S. Laplace, *Théorie Analytique des Probabilités*, Courcier, 1812.
- [9] P. S. Laplace, “Mémoire sur la probabilité des causes par les évènemens,” *Oeuvres Complètes* **8**, 27–65. (English trans. by S. Stigler as “Memoir on the Probability of Causes of Events,” *Statistical Science* **1** (1986), 364–378.)
- [10] P. M. Lee, [http://www.york.ac.uk/depts/maths/histstat/normal\\_history.pdf](http://www.york.ac.uk/depts/maths/histstat/normal_history.pdf).
- [11] L. Mirsky, *The Probability Integral*, *Math. Gazette* **33** (1949), 279. URL <http://www.jstor.org/stable/3611303>.
- [12] C. P. Nicholas and R. C. Yates, “The Probability Integral,” *Amer. Math. Monthly* **57** (1950), 412–413.
- [13] G. Polya, “Remarks on Computing the Probability Integral in One and Two Dimensions,” pp. 63–78 in *Berkeley Symp. on Math. Statist. and Prob.*, Univ. California Press, 1949.
- [14] R. Remmert, *Theory of Complex Functions*, Springer-Verlag, 1991.
- [15] M. Rozman, “Evaluate Gaussian integral using differentiation under the integral sign,” Course notes for Physics 2400 (UConn), Spring 2016.
- [16] W. Rudin, *Principles of Mathematical Analysis*, 3rd ed., McGraw-Hill, 1976.
- [17] M. Spivak, *Calculus*, W. A. Benjamin, 1967.
- [18] S. Stahl, “The Evolution of the Normal Distribution,” *Math. Mag.* **79** (2006), 96–113. URL <https://www.jstor.org/stable/27642916>.
- [19] S. Stigler, “Laplace’s 1774 Memoir on Inverse Probability,” *Statistical Science* **1** (1986), 359–363.
- [20] J. van Yzeren, “Moivre’s and Fresnel’s Integrals by Simple Integration,” *Amer. Math. Monthly* **86** (1979), 690–693.
- [21] G. N. Watson, *Complex Integration and Cauchy’s Theorem*, Cambridge Univ. Press, Cambridge, 1914.
- [22] <http://gowers.wordpress.com/2007/10/04/when-are-two-proofs-essentially-the-same/#comment-239>.
- [23] <http://math.stackexchange.com/questions/34767/int-intfty-inf-0-e-x2-dx-with-complex-analysis>.
- [24] <http://math.stackexchange.com/questions/390850/integrating-int-intfty-0-e-x2-dx-using-feynmans-parametrization-trick>