
DOCTORAL THESIS

Zdeněk Kasner

Data-to-Text Generation with Neural Language
Models

Institute of Formal and Applied Linguistics

Supervisor: Mgr. et Mgr. Ondřej Dušek, Ph.D.

Study Program: Computational Linguistics

Prague 2024

I declare that I carried out this doctoral thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that Charles
University has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 paragraph 1 of the Copyright Act.

Prague, June 16, 2024 Zdeněk Kasner

iii

Title: Data-to-Text Generation with Neural Language Models

Author: Zdeněk Kasner

Department: Institute of Formal and Applied Linguistics

Supervisor: Mgr. et Mgr. Ondřej Dušek, Ph.D.,
Institute of Formal and Applied Linguistics

Abstract:

Data-to-text generation systems need to produce texts with high levels of seman-
tic accuracy. Rule-based systems can guarantee this aspect, but their fluency and
adaptability to new domains remain limited. Meanwhile, neural language models can
easily generate fluent texts and adapt to new domains but are notoriously prone to
producing inaccurate outputs. This thesis explores how to efficiently employ neural
components in data-to-text generation systems to get the best of both worlds. We
focus on approaches based on pretrained transformer language models. Primarily, the
models serve as building blocks for data-efficient and robust data-to-text generation
systems. Along with that, we introduce model-based evaluation metrics, focusing on
detecting errors in data-to-text outputs, and a toolkit for preprocessing and visualizing
data-to-text generation datasets. We also analyze the behavior of pretrained and large
language models in specific scenarios, including describing individual relations in
knowledge graphs and generating texts from standard data formats. We conclude that
while employing neural language models in data-to-text generation remains a delicate
endeavor, neural components can improve the fluency of the output texts and make
the systems adaptable to new domains. At the same time, the semantic accuracy of the
outputs can remain high if the models are used for specific, well-defined subtasks for
improving text quality. For future research, we emphasize the need for benchmarking
with suitable evaluation metrics on real-world use cases.

Keywords: data-to-text generation, natural language generation, natural lan-
guage processing, transformer architecture, pretrained language
models, large language models

v

Název práce: Generování textu z dat s neuronovými jazykovými modely

Autor: Zdeněk Kasner

Katedra: Ústav formální a aplikované lingvistiky

Vedoucí práce: Mgr. et Mgr. Ondřej Dušek, Ph.D.,
Ústav formální a aplikované lingvistiky

Abstrakt:

Systémy pro generování textu z dat by měly generovat texty odpovídající co nej-
přesněji vstupním datům. Pravidlové systémy tento aspekt zaručují, ale zaostávají
v plynulosti výstupů a možnostech přizpůsobení pro nové domény. Naopak neu-
ronové jazykové modely zvládají snadno generovat plynulé texty a přizpůsobovat
se novým doménám, ale jsou notoricky náchylné k produkci nepřesných výstupů.
V této práci zkoumáme, jak efektivně zakomponovat do systémů pro generování
textu z dat neuronové modely tak, abychom propojili výhody obou typů systémů.
Naše přístupy zakládáme na předtrénovaných jazykových modelech architektury
transformer. Tyto modely primárně používáme jako stavební bloky, díky kterým
mohou být systémy pro generování textu robustní a efektivně se učit z trénovacích
dat. Spolu s tím představujeme automatické evaluační metriky pro odhalování chyb ve
výstupech a sadu nástrojů pro předzpracování a vizualizaci datasetů pro generování
textu z dat. Analyzujeme také chování předtrénovaných a velkých jazykových modelů
ve specifických případech jako je popis jednotlivých relaci ve znalostních grafech a
generování textů ze standardních datových formátů. Z našich experimentů vyplývá,
že ačkoli k použití neuronových jazykových modelů při generování textu z dat je
potřeba přistupovat s rozmyslem, neuronové komponenty mohou zlepšit plynulost
výstupních textů a přizpůsobitelnost systémů novým doménám. Přesnost výstupů
přitom může zůstat vysoká, pokud jsou modely používány pro konkrétní dílčí úkoly
pro zlepšení kvality textu. Cílem budoucího výzkumu by mělo být vyhodnocování
systémů pomocí vhodných evaluačních metrik na reálných problémech.

Klíčová slova: generování textu z dat, generování přirozeného jazyka, zpraco-
vání přirozeného jazyka, architektura transformer, předtrénované
jazykové modely, velké jazykové modely

vii

Acknowledgements

What a ride this has been. When I signed up for the Natural Language Processing
course during my Erasmus+ stay at KU Leuven back in 2017, little did I know it would
be the flap of a butterfly wing. It feels tempting to say that I have been drawn towards
language processing since then, propelled by my fondness for reading, writing, and
learning languages. But that is just hindsight bias: I am quite sure that if it were
not for a couple of other life episodes, I still might have ended up doing something
completely different.

One such episode brought me to the Institute of Formal and Applied Linguistics—
ÚFAL. There, I met Jindřich Helcl and Jindřich Libovický, my current colleagues and
friends. Thanks to your course, I learned how research feels like, how strong is the
link between AI and NLP, and most importantly, how friendly are the people at ÚFAL.
I could not help it, interacting with you just felt right. After Jindřich H. became my
Master’s thesis supervisor, I started to consider doing research in NLP—but for that, I
first needed a PhD supervisor.

I once read that the PhD supervisor/student relationship is akin to marriage, as
it leads to intense personal interactions over several years. If that is the case, what
are the chances that you find a perfect person for that during a random encounter
in the hallway? However, that is essentially what happened to me. I sincerely could
not have wished for a better advisor than Ondřej Dušek. Thank you for teaching me
how to think and write properly, for all the discussions during our meetings about
the quirks of doing research (which were often off-topic but always insightful and
fun), for the intense exchanges before paper deadlines, that made me feel supported
and motivated, and in general for always being there, from the very beginning up till
the write-up of this thesis. Without you, I would not be where I am now.

Looking back at my five years at ÚFAL, my initial instincts were correct – you
became not only my colleagues but my friends. As colleagues, you inspired me with
your approach to research: working on what feels exciting and meaningful instead of
chasing research throughput, and staying playful while producing top-notch research.
At the same time, life at ÚFAL meant more to me than research. To put it briefly: right
after our first autumn retreat—where we cycled eighty kilometers, climbed to the
peak of Sněžka, and then played guitar the whole evening—I knew I was in the right
place. Naming just a few out of many: thank you, Vojta Hudeček for becoming my
friend and outdoor buddy, Rudolf Rosa for inviting me to your wedding, Tomáš Musil
for our co-teaching and train rides, people from our NG-NLG team (Simone Balloccu,
Mateusz Lango, Sourabrata Mukherjee, Ondřej Plátek, Patrícia Schmidtová) for our

ix

lively discussions full of jokes, Tomasz Limisiewicz for our hallway encounters and
conference travels, Tea Vojtěchová for taking part in my ventures to Irish dancing,
and all of you that made our monthly “community activity outside of the workplace”
a pleasant experience.

After two years of covid, my three months at Heriot-Watt University in Edinburgh
felt almost miraculous. Thank you, Ioannis Konstas, for volunteering to be my mentor,
and Xinnuo Xu, for being my local guide and friend. Yet another dream of mine
became true a year later when I was accepted for a research internship at the Mila - AI
Research Institute in Montréal. I am thankful to Siva Reddy and the rest of the team
for cordially inviting me to the group and keeping in touch later on. Special thanks
to Xing Han Lù for your enthusiasm, cool ideas, and being my friend in Montréal and
abroad. Our pair programming was an enriching experience, especially with your
thoughtful process of making coffee.

If I were not able to enjoy my life outside of research, none of this would matter.
Luckily, I was blessed to have many friends that made these years a real joyride.
Thanks to my close friends (Dan, Tomáš, Michal, Jan, and others) for our ongoing
interactions, the X-Challenge community for teaching me—nothing less than—how
to live, Vlakfest and Expedition Club for taking me to unorthodox adventures, and
people from the Board of European Students of Technology for staying in my life
way beyond our student years. And thanks to all the other people that I did not get a
chance to mention but your name belongs here.

The list would not be complete without you, Lenka. You became such an essential
element in my life that I now cannot imagine it any other way. Thank you for all the
affection and support that I got from you while writing this thesis, the time spent
together, our internal jokes, moments of understanding, and most of all, our common
horizons I am looking forward to. You give sense to all of this.

All those years that got me here, I have been constantly supported by my family.
Thanks to my parents, Zdeněk and Dana, for always welcoming me with open arms
and caring about my life. Thanks to my brother Marek for our discussions, friendship,
and many adventures. Lastly, thanks to my grandmother Zdeňka, who—besides
raising me as a kid—supported my vague childhood idea of becoming a university
teacher “since I will have three months of holidays”. Learning about the reality of
academia, I am sure she would be proud nevertheless.

If you are the village, I am the child. And out of all of you, there must have been
somebody who made me enjoy writing so much that I barely know when to stop…

The work has been supported by the European Union (ERC, NG-NLG, 101039303) and by the Charles
University projects GAUK 140320 and SVV 260 698. This work has been using language resources and
tools developed and/or stored and/or distributed by the LINDAT/CLARIN project of the Ministry of
Education, Youth and Sports of the Czech Republic (project LM2015071).

x

Contents

English Abstract v

Czech Abstract vii

Acknowledgements ix

Table of Contents xi

1 Introduction 1
1.1 Motivation . 3
1.2 Main Contributions . 5
1.3 Thesis Overview . 5

2 Background 7
2.1 Neural Language Models . 8

2.1.1 Neural Networks . 8
2.1.2 Text Representation . 11
2.1.3 Language Modeling . 13
2.1.4 Transformer Architecture . 14
2.1.5 Pretrained Language Models 19
2.1.6 Large Language Models . 22

2.2 Data-to-Text Generation . 23
2.2.1 Task and Applications . 23
2.2.2 D2T Generation Pipeline . 24
2.2.3 Rule-based Approaches . 26
2.2.4 Statistical Approaches . 27
2.2.5 Neural Approaches . 28
2.2.6 Datasets . 30
2.2.7 Evaluation Metrics . 34

3 Low-Resource Data-to-Text Generation 41
3.1 Finetuning Pretrained Language Models 42

3.1.1 WebNLG+ Shared Task . 42
3.1.2 Problem Formulation . 43

xi

3.1.3 Implementation . 43
3.1.4 Results . 44
3.1.5 Discussion . 46

3.2 Iterative Sentence Fusion . 47
3.2.1 Motivation . 48
3.2.2 Method . 48
3.2.3 Implementation . 50
3.2.4 Experiments . 51
3.2.5 Results . 51
3.2.6 Discussion . 53

3.3 Pipeline of Text-to-Text Neural Modules 53
3.3.1 Motivation . 54
3.3.2 Method . 55
3.3.3 WikiFluent Corpus . 57
3.3.4 Implementation . 59
3.3.5 Experiments . 60
3.3.6 Evaluation . 60
3.3.7 Discussion . 63

3.4 Conclusion . 64

4 Evaluating Semantic Accuracy 65
4.1 Detecting Omissions and Hallucinations 66

4.1.1 Motivation . 66
4.1.2 Method . 67
4.1.3 Experiments . 69
4.1.4 Evaluation . 70
4.1.5 Discussion . 71

4.2 Token-Level Error Classification . 72
4.2.1 Motivation . 73
4.2.2 Shared Task in Evaluating Accuracy 74
4.2.3 Our System . 75
4.2.4 Experiments . 78
4.2.5 Discussion . 80

4.3 Conclusion . 81

5 Unified Data Processing 83
5.1 TabGenie Toolkit . 83

5.1.1 Motivation . 84
5.1.2 Data . 85
5.1.3 Web Interface . 86
5.1.4 Developer Tools . 87
5.1.5 Implementation . 88
5.1.6 Case Studies . 89

xii

5.1.7 Discussion . 90
5.2 Conclusion . 90

6 Examining Model Behavior 91
6.1 Describing Relations in Knowledge Graphs 92

6.1.1 Motivation . 92
6.1.2 Rel2Text dataset . 94
6.1.3 Analysis and Experiments . 95
6.1.4 Evaluation Setup . 97
6.1.5 Automatic Metrics . 98
6.1.6 Manual Error Analysis . 100
6.1.7 Applications to Downstream Tasks 101
6.1.8 Discussion . 103

6.2 Data-to-Text Generation with Large Language Models 104
6.2.1 Motivation . 105
6.2.2 Reference-Free D2T Generation 106
6.2.3 Experiments . 106
6.2.4 Evaluation . 110
6.2.5 Results and Discussion . 112

6.3 Conclusion . 115

7 Conclusions 117

Bibliography 121

List of Abbreviations 165

List of Tables 165

List of Figures 167

List of Publications 171

xiii

1
Introduction

Producing natural language comes natural to us, humans. The key to computers’
versatility and efficiency—their “language”—are data structures: arrays and lists, trees
and graphs, tables and databases. Without appropriate tools, reading structured
data is to most people like deciphering a foreign language. What is the best tool to
understand it? The problem lies not just in the unfamiliar format of such data, but in
its scale. As the volume of structured data in our world is ever-growing, it becomes
rather tempting to turn the question around: Can we instead make the computer
translate the data to a language we already understand?

The attempts at generating natural language with a computer date back to the
1950s, when IBM researchers successfully used a computer for translating between
English and Russian (Sheridan, 1955). Shortly after, the work of Chomsky (1957)
introduced formal grammar, providing a principledway for generating languagewith a
set of rules. These initial successes stirred a lot of excitement – fully automated human-
level language generation seemed within reach. In the 1960s, people slowly began
to notice its difficulties. For example, Yngve (1961) notes there is “surprisingly wide
linguistic diversity” when constructing grammar rules for the first ten sentences of a
children’s book. Still, the field of text generation gained momentum and descriptions
of text generation systems started to appear (Woolley, 1969; Meehan, 1975; McDonald,
1975; Wang, 1980, inter alia). The report on the state of the art in text generation in
1982 predicted that within five years:

The resulting system can be expected to create acceptable, effective texts,
limited by quality considerations to be about one page in length.

(Mann, 1982)

1

Fast forward to the present, and the research community is beaming with excite-
ment again, this time about the unprecedented capabilities of neural language models
(LMs) in generating fluent texts (Radford et al., 2019; Brown et al., 2020). In the end,
it took us over fifty years to build such systems. Similarly to other tasks in artificial
intelligence, from object recognition (Papert, 1966) to self-driving cars (Driverless
Future, 2017), the apparent ease of the task for humans has proven deceptive. To
achieve progress, we had to move away from linguistic theories and rule-based sys-
tems, redefining our systems in terms of data-based approaches and generic learning
algorithms.

Natural language generation (NLG) has meanwhile established itself as a stan-
dalone scientific discipline, with its journals, conferences, and stable base of re-
searchers.1 The research in the preceding decades was characterized by using a varied
assortment of tools including grammars, formalisms, linguistic theories, and custom
components. Combining these tools was understood as necessary for building text
generation systems (Mann, 1982; Reiter and Dale, 1997). As a result, many systems
from that time—from chart captioning systems (Mittal et al., 1998) and graph descrip-
tors (Sun and Mellish, 2006), to weather forecast systems (Belz, 2008) and healthcare
report generators (Portet et al., 2009)—were accurate and reliable, but domain-specific
and rigid.

With neural models, natural language processing (NLP) as a research field, along
with NLG as one of its subfields, has changed dramatically (Gururaja et al., 2023; Li
et al., 2023). Most notably, these fields have become more experimental. While neural
language models (LMs) opened up fascinating possibilities in building end-to-end
systems and solving the long-standing issues with fluency and domain-independence
(Ferreira et al., 2019; Dušek et al., 2020; Sharma et al., 2022), working with neural
models turned out to be closer to behavioral sciences than engineering (Holtzman et al.,
2023). As the researchers began to “throw” neural LMs at all sorts of problems, the
issues concerning experimental design and evaluation came to the surface (Gehrmann
et al., 2023). Due to this, some researchers perceived the change as questionable at the
very least (Reiter, 2020; Gururaja et al., 2023; Michael et al., 2023). The shift towards
experimental approaches has also created a gap between research and industry; the
industry opted for established approaches meeting industrial standards instead of
trying new research artifacts (Dale, 2020, 2023).

Nevertheless, the progressive approach adopted by NLP over the past few years
turned out to have its merits. The general emphasis on openness, inherited from the
field of machine learning—where publicly releasing papers, code, and models has
become commonplace—has allowed everybody to stand on the proverbial shoulders

1See the history of SIGGEN meetings: https://aclanthology.org/sigs/siggen/.

2

https://aclanthology.org/sigs/siggen/

of giants. Thanks to open-science initiatives such as arXiv.org2 or HuggingFace3,
research became more accessible to both researchers and the general public. The
convergence towards generic approaches has also led to heavy cross-pollination of
ideas, making specific solutions easily applicable to other tasks. As such, NLG is
helping to advance other areas of NLP and contribute to general knowledge of the
natural language, its production and processing.

Finally, as we gained ways to generate language that do not require starting from
structured representations (summarize and paraphrase texts, continue text segments,
generate stories and answers to questions, or describe images and videos), the original
field concerned with generating descriptions of structured data has adopted the—
perhaps more apt—name of data-to-text (D2T) generation.

This thesis tells a story about how data-to-text generation and neural language
models came together. On the way, it touches various facets of D2T generation: from
improving generation in a low-resource setting (Chapter 3), over evaluating generated
texts (Chapter 4), processing and visualizing data (Chapter 5), to interpreting system
behavior (Chapter 6). The thesis inevitably reflects the shifts in NLP between 2020
and 2024: from the preliminary attempts at generating fluent language with small
pretrained LMs, all theway up to dealingwith the hype surrounding the large language
models (LLMs). The approaches presented in this thesis are primarily motivated by the
idea that adopting neural models in D2T may help us solve some long-standing issues
with flexibility and text fluency, which were out of reach for the best approaches from
previous decades.

1.1 Motivation

The main goal of the thesis is to close the gap outlined in the introduction: turning
experimental approaches into reliable and accurate D2T generation systems. As a
premise, we consider neural LMs4 as a useful tool of producing fluent and natural-
sounding text. However, we do not take neural LMs as a one-size-fits-all solution.
Instead, we carefully study how to integrate LMs in D2T systems while following the
strict demands on fluency, controllability, and semantic accuracy of the output.

2https://arxiv.org/
3https://huggingface.co/
4For brevity, we will commonly use “LMs” to denote “neural LMs” throughout this work unless

stated otherwise.

3

https://arxiv.org/
https://huggingface.co/

The side goal of the thesis is then to understand : understand the data we are
dealing with, the outputs we can reasonably expect, and the behavior of neural-based
systems in certain conditions. D2T generation has several specifics that make it a
good subject for this kind of study: its resource scarcity (due to which there are still
questions that cannot be answered by scaling up the models), the tension between
the established rule-based and new-coming neural approaches, and the fact that the
specific format and size of the data makes it less suitable for end-to-end solutions.

To make the goals more tangible, we split them into the following research
questions, which we address further on in the thesis:

RQ1 In which scenarios are LMs useful for D2T generation? First, it is crucial
to identify the strong sides of LMs and get an intuition of where the models
can make the most impact. How far can we get with LM-only baselines? And
are there outcomes that we can get with LMs that are better than previous
approaches?

RQ2 How to efficiently process the structured data with LMs? With structured
data, we need to deal with the fact that LMs were pre-trained on modeling
plain text only. To efficiently leverage the knowledge in LMs—especially in low-
resource settings—we need to find a way to transform the data into a suitable
input format while keeping its structure (along with other information in the
data) intact.

RQ3 How to make LM-based systems more controllable? A neural component
introduced in the D2T generation system will inevitably make the system less
controllable. The question is if we canminimize these issues by building systems
out of smaller and simpler components, training the models for more predictable
tasks, or producing intermediate outputs that can be manually examined.

RQ4 How to evaluate the outputs of D2T generation systems? Evaluating
generated texts gets harder as the quality of the texts starts to approach the
human level. Since human evaluation is costly and time-consuming, we study
how to build automatic metrics that can be used for system development and
evaluation. Particularly, we focus on the most pressing issue in D2T generation:
semantic accuracy of the generated texts with respect to the input data.

RQ5 How do D2T generation systems generalize to unseen domains and
datasets? D2T generation systems are often evaluated on a limited subset
of domains and datasets. Investigating how the models perform on unseen
domains, multiple datasets, and real-world data would give us a better picture
of the limitations of the current approaches.

4

1.2 Main Contributions

The following are our main contributions, following the research questions outlined
above:

Ad RQ1 We show that with a very simple LM-based finetuned baseline, we can
achieve strong results on a shared task of generating texts from a knowledge
graph (Section 3.1). We also point out the advantages and limitations of
open LLMs on D2T generation in zero-shot settings (Section 6.2).

Ad RQ2 We show how to transform the data to intermediate text-like input
suitable for LMs using handcrafted or automatically extracted templates
(Sections 3.2, 3.3, and 4.1), rule-based NLG methods (Section 4.2), and spe-
cialized LMs (Section 6.1). We show that these methods can serve as a basis
both for competitive neural-based D2T generation systems and for novel
LM-based evaluation metrics.

Ad RQ3 We show howwe can limit LMs to the task of improving text fluency and use
these LMs for building more controllable D2T generation systems with
an iterative approach (Section 3.2) and modular architecture (Section 3.3).
We show that these systems open up a new way of thinking about neural-
based LM with a different set of trade-offs than rule-based or end-to-end
systems.

Ad RQ4 We develop LM-based automatic metrics for evaluating outputs of D2T
generation systems on the level of data item mentions (Section 4.1) and
output tokens (Section 4.2). We show that the metrics achieve strong corre-
lations with human judgment in comparison with other metrics.

Ad RQ5 Weunify the format ofmultiple D2T generation datasets for easier process-
ing and visualization (Section 5.1). Using novel datasets, we also evaluate
the output quality and semantic accuracy of LMs across multiple D2T
tasks, data formats, and domains (Sections 6.1 and 6.2).

1.3 Thesis Overview

The thesis is organized into the background chapter (Chapter 2), the content chapters
(Chapters 3 to 6), and the concluding chapter (Chapter 7).

5

Sec. Topic Publication

Chapter 3: Low-Resource Data-to-Text Generation
§3.1 D2T generation with a finetuned LM Kasner and Dušek (2020b)
§3.2 D2T generation with an editing LM Kasner and Dušek (2020a)
§3.3 D2T generation with a pipeline of LMs Kasner and Dušek (2022)

Chapter 4: Evaluating Semantic Accuracy
§4.1 Evaluating D2T with natural language inference Dušek and Kasner (2020)
§4.2 Evaluating token-level accuracy of complex D2T Kasner et al. (2021)

Chapter 5: Unified Data Processing
§5.1 TabGenie toolkit for D2T datasets Kasner et al. (2023a)

Chapter 6: Examining Model Behavior
§6.1 Describing unseen triples in a knowledge graph Kasner et al. (2023b)
§6.2 D2T generation across domains with open LLMs Kasner and Dušek (2024)

Table 1.1: Overview of the thesis.

The Chapters 3 to 6, which describe our contributions, are outlined in Table 1.1.
First, we describe our work on improving D2T generation in low-resource scenarios
in Chapter 3. We continue with our work on evaluating the semantic accuracy of
D2T generation in Chapter 4. In Chapter 5, we describe TabGenie, our toolkit for
processing and visualization of D2T generation datasets. Finally, in Chapter 6, we
present our experiments with generalization performance of pretrained and large
LMs on D2T generation.

Publications The thesis includes the content of eight publications written by the
author of the thesis. Except for the paper Dušek and Kasner (2020), where the
experimental part was done by the author’s supervisor, the author of the thesis was
the main author of all the publications and executed major part of the work.5 All the
publications were (or are to be) published at top-tier NLP conferences ACL, EACL,
and INLG.

5The contributions for publications with multiple authors are detailed in the respective chapters.

6

2
Background

This chapter explains the basic concepts related to neural language models (LMs)
and data-to-text generation. The chapter serves as the main point of reference for
the concepts and related work referenced throughout the thesis; we will only briefly
revisit the most relevant concepts in the respective chapters.

In Section 2.1, we first cover neural LMs. We start with a brief theory of neural
networks and text representation for neural networks. This theoretical grounding
will help us to define the task of language modeling and its connection to neural
networks. We then look at specific neural architectures, particularly the transformer
architecture, and show how pretraining models based on this architecture can produce
models with strong natural language processing (NLP) capabilities.

In Section 2.2, we turn our attention to data-to-text (D2T) generation, the central
task explored in this thesis. To motivate the task, we start with an overview of real-
world D2T applications. We also explain the subtasks into which D2T generation can
be decomposed. We show how various approaches tackle these subtasks, starting
from early rule-based approaches to recent neural-based systems. Finally, we describe
D2T datasets and evaluation metrics, focusing on the ones relevant to this thesis.

7

2.1 Neural Language Models

In this section, we work our way towards neural LMs. We start with the mathematical
foundations of neural networks on which neural LMs are built (Section 2.1.1), the ways
we can represent text in neural networks (Section 2.1.2), and the basic ideas of language
modeling (Section 2.1.3). Equipped with the necessary theoretical background, we
then introduce the transformer architecture (Section 2.1.4) and how it serves as a
basis for pretrained (Section 2.1.5) and large (Section 2.1.6) language models.

2.1.1 Neural Networks

Neural networks are a tool for learning patterns from data.1 In our case, we are
interested the most in learning language patterns from large-scale textual data, which
will in turn help us with generating text.

To begin, let us say that our goal is to predict a real-number output y ∈ R for
a given vector of real numbers x = (x1, . . . , xd) ∈ Rd. We assume that the x → y

mapping is not arbitrary—if it were, it would leave us with memorizing all the (x, y)
pairs—but follows some regularities and underlying patterns that can be learned.
This assumption is naturally satisfied if we consider (x, y) to be representations of
real-world data, e.g., documents and their topics.

In machine learning, we approximate the mapping using mathematical models
designed to capture the patterns in their parameters. The models estimate the parame-
ters from a set of (x, y) examples called the training data and use these parameters to
predict the outputs on the test data, which is a new set of examples generally coming
from the same distribution.

PerceptronAlgorithm One of the earlymathematical models designed for learning
patterns from data is the perceptron algorithm (Rosenblatt, 1958, Bishop, 2006, p. 192).
For the perceptron algorithm, we need to restrict the output to a binary class label:
y ∈ {−1, 1}. The algorithm learns the parameters w = (w1, . . . , wd) ∈ Rd and the
bias b ∈ R describing a linear decision boundary separating the data points according
to their class label. The algorithm proceeds as follows:

(1) The parameters w and b are initialized to small random values (or zeros).

1Until we get to D2T generation in Section 2.2, we use the word “data” only in its abstract sense,
as in “any inputs we can apply our algorithms to”. We use the term “structured data” whenever it is
necessary to make the distinction.

8

(2) For each training example (xi, yi), the algorithm updates the weights and bias
to adjust their current estimate ŷi towards the ground truth target yi:

ŷi = sign(w · x + b) ▷ Perceptron rule (2.1)

w = w + (y − ŷ)x ▷ Weights update (2.2)

b = b + y − ŷ ▷ Bias update (2.3)

(3) The step (2) is repeated until convergence.

The perceptron algorithm is guaranteed to converge if (and only if) a hyperplane
exists that separates the data belonging to one class from another (Novikoff, 1962).

Multi-layer Perceptron To overcome the fact that the perceptron is limited to
linear decision boundaries, we can use a multi-layer perceptron (MLP; Goodfellow
et al., 2016, p. 164). This mathematical model—also known as a feed-forward neural
network—can approximate any bounded continuous function (Hornik et al., 1989).

As the name suggests, an MLP processes the input with multiple perceptron-like
units called neurons. Analogically to the perceptron (Equation 2.1), each neuron
computes its output o using the rule:

o = f(x⊤w + b), (2.4)

where f : R → R is the activation function, x ∈ Rn is the input vector, and w ∈ Rn

and b ∈ R are learnable parameters. Instead of signum, MLP uses differentiable
non-linear functions, nowadays most commonly the rectified linear unit (ReLU; Nair
and Hinton, 2010), where f(x) = max(0, x), or its variants (Hendrycks and Gimpel,
2016; Dubey et al., 2022).

For efficiency, the neurons are organized in layers, which enables formulatingMLP
computations in terms of matrix multiplication. The i-th layer of MLP is parametrized
with a matrix Wi ∈ Rd×n and a vector of biases bi ∈ Rn. The layer produces an
intermediate output called the hidden state hi−1 ∈ Rd (where we set h0 = x):

hi = f(hi−1Wi + bi). (2.5)

To estimate the parameters of the network, we need to train the network using
the training data. Similarly as with the perceptron, we first do a feed-forward pass
for each training example (x, y): we feed x into the network and use the current
parameters of the network to get the prediction ŷ. We then update the parameters to
minimize the gap between the predicted output ŷ and the ground truth output y. This
gap is described by a loss function L(y, ŷ) → R. Since all the computations in MLP are

9

differentiable, we can compute exactly how much each parameter contributes to the
loss function using the chain rule for derivatives. The derivative for each parameter—
called a gradient when grouped in a vector—with respect to the loss function directly
influences the size of the update. The process of computing and applying the updates
is called a backward pass (or backpropagation; Kelley, 1960; Rumelhart et al., 1986)
and operates in the reverse order of layers. The magnitude of the updates is controlled
by the learning rate α ∈ R.

One of the basic optimizers (i.e., the algorithms for updating the parameters) is the
stochastic gradient descent (SGD; Goodfellow et al., 2016, p. 275). SGD estimates the
gradient in each step using a limited number of examples called a batch and directly
updates the parameters in the direction of the gradient. As the speed and robustness
of convergence depend on the learning rate, more advanced optimizers—such as
Adam (Kingma and Ba, 2015)—adapt the learning rate for each parameter based on
the history of the gradients.

Recurrent Neural Networks Unlike with MLPs, where we the size of the input
is fixed, recurrent neural networks (RNNs) allow us to process a sequence of inputs
X = (x1, . . . , xn) of arbitrary length. An RNN computes a sequence of hidden states
H = (h(0), . . . , h(n)), i.e., one state for each input in the sequence. H—or sometimes
more specifically, the last hidden state h(n)—is the encoded representation of the
input sequence, which can be in turn used in downstream tasks (e.g., for tagging or
classifying the sequence).

The RNN computes the hidden states H by repeatedly applying a function f

parametrized by the parameters of the network θ, the current input xi, and the
previous hidden state h(i−1) (Goodfellow et al., 2016, p. 367):

h(i) = f(θ, h(i−1), xi), (2.6)

where the first hidden state h(0) ∈ Rk is initialized randomly. The function f is
generally implemented as a series of matrix multiplications and non-linear functions.
The process can be thought of as repeatedly applying the same feed-forward layer to
each element of the input and updated hidden state from the previous step (hence
the recurrence). The exact implementation of f can get more complex with advanced
RNN architectures such as LSTM (Hochreiter and Schmidhuber, 1997) or GRU (Cho
et al., 2014), which we will not cover in detail here.

RNNs had a lot of success across NLP on sequence processing tasks (Karpathy,
2015; Salehinejad et al., 2018). At the same time, RNNs turned out to have various
shortcomings, such as the vanishing gradient problem (which arises due to repeated
gradient updates with limited numerical precision), the fixed size of the hidden state

10

(which limits the amount of information about the sequence that can be stored during
the computation), and limited possibilities of parallelization; all of which made it hard
to model long-term dependencies and train the network efficiently (Hochreiter, 1998;
Pascanu et al., 2013). We return to RNNs mainly in Section 2.1.4, showing how they
became a predecessor to the transformer architecture.

2.1.2 Text Representation

Until now, we have assumed that our inputs are numerical vectors. However, it is yet
not clear how to represent text using these vectors – that is something we will look
into in this section.

One-Hot Encoding A text is a sequence of discrete units such as characters or
words. To convert these units—called tokens—to a numerical representation, we first
enumerate the set of all possible tokens (a vocabulary V) and assign each token an
integer index i ∈ {0, . . . , |V | − 1}.

The naive way to represent each token would be using its integer value. However,
this would misleadingly suggest linear dependence between tokens. A better way is
to use the index i for constructing a one-hot vector x ∈ {0, 1}|V | for each token:

xj =

⎧⎪⎨⎪⎩1 if i = j,

0 otherwise.
(2.7)

While this representation is more sound, it is quite sparse and does not capture the
semantics of individual tokens, which puts high requirements on the representational
capacity of the network.

Word Embeddings A more useful representation of tokens is one where tokens
with similar meanings have similar representations. To get this kind of representation,
we can build on the distributional theory of meaning, according to which the meaning
of a token is defined by a context in which it occurs (Harris, 1954; Firth, 1957).

In the context of neural networks, this idea is used in the Word2Vec algorithm
(Mikolov et al., 2013). The algorithm trains an MLP for a specific objective and uses its
weigths as token representations. TheMLP training objective (illustrated in Figure 2.1)
either consists of predicting the tokens in the neighborhood of each token (the skip-
gram objective) or vice versa—predicting the token itself based on the tokens in its
neighborhood (the continuous bag-of-words objective). The output of the algorithm
is an embedding matrix We ∈ R|V |×d, which assigns each token a d-dimensional
embedding vector x ∈ Rd.

11

MLP

(a) Continuous Bag-of-Words

MLP

(b) Skip-gram

Figure 2.1: The objectives employed by the Word2Vec algorithm (Mikolov et al., 2013).
The algorithm here uses a context window of size k = 5. In the (a) continuous bag-of-
words algorithm, we sum the embeddings of k − 1 surrounding tokens and predict the
original token. In the (b) skip-gram algorithm, we use the original token for predicting
the k − 1 surrounding tokens.

The notion of using an embedding matrix for representing tokens is used also in
neural LMs (Section 2.1.3). However, in the majority of neural LMs, the embedding
matrix is not trained separately with a specific algorithm but is initialized randomly
and trained jointly with the rest of the network via backpropagation.

Tokenization For processing text as a sequence, we need to have a way of tok-
enizing the text, i.e. splitting it into discrete units. The most straightforward way
would be to tokenize the text into either words or characters. Unfortunately, both of
these approaches have major shortcomings. With word-level tokenization, we are
not able to represent unknown words, i.e., the words not seen in the training corpus.
Word-level tokenization also considers morphologically similar words as independent
units, forcing the model to learn their representation separately. Moreover, word-level
tokenization becomes more difficult for languages such as Chinese, which does not
separate words with spaces. In contrast, character-level tokenization uses a small
and well-defined set of tokens, but the tokens are less meaningful and the resulting
sequence is much longer, making the approach computationally inefficient. (Jurafsky
and Martin, 2024, p.19)

Subword tokenization is the middle ground between the word-level and character-
level tokenization. It splits the text into smaller pieces called subwords, which are
continous character spans of various length. With subword tokenization, frequently
used words typically get their own subword while less frequent words are split into
multiple subwords. (Jurafsky and Martin, 2024, p.21)

12

A subword tokenization algorithm that is commonly used in neural LMs is byte-
pair encoding (BPE; Sennrich et al., 2016). The BPE algorithm starts with the vocabulary
of individual bytes, iteratively merging the most frequent tokens and adding them
to the vocabulary V until we reach the target vocabulary size. An example sub-
word tokenization of the expression “Subword tokenization” could be the subwords
['Sub', 'word', '▁token', 'ization'], where “▁” is a special character denoting
a preceding space.

There are also alternative sub-word tokenization algorithms, differing in their
approach to constructing the vocabulary. WordPiece (Wu et al., 2016) works similarly
to BPE, but instead of the most frequent token it chooses the token that maximizes the
likelihood of the training data. Unigram (Kudo, 2018) proceeds—unlike the previous
algorithms—top-down, starting with a large vocabulary and progressively reducing
the number of tokens to minimize unigram loss over the training data.

2.1.3 Language Modeling

After introducing the main principles of neural networks and showing how to repre-
sent text in neural networks, we are ready to explain the notion of language modeling,
a central concept for building neural LMs.

Language Model A language model is a mathematical model that estimates the
probability of a sequence of tokens X = (x1, . . . , xn). To estimate the probability, we
can factorize the sequence probability using the chain rule:

P (X) =
n∏︂

i=1
P (xi|x1, . . . , xi−1). (2.8)

This formulation gives us a way to compute the probability of the whole sequence as
the product of probabilities of individual sequence prefixes.

n-gram Language Model An n-gram LM (parametrized by a positive integer n)
further simplifies the product using the assumption that the probability of a token
depends only on n − 1 previous tokens (Jurafsky and Martin, 2024, p.32):

P (X) =
T∏︂

i=1
P (xi|xi−n+1, . . . , xi−1). (2.9)

13

n-gram LMs store the counts of n-gram occurrences over a training corpus in a
look-up table. The probabilities are then estimated using these counts, interpolating
over lower-order n-grams in case the specific n-gram did not occur in the training
corpus. The main limitation of n-gram LMs (besides the size of the look-up tables) is
the limit on the length of the context for each token, due to which n-gram LMs fail to
capture long-term dependencies (Bengio et al., 2003).

Neural Language Model A neural LM is a language model that estimates the
text probability Pθ(X) using a neural network with parameters θ. In contrast to
n-gram LMs, neural LMs can capture long-term dependencies and efficiently store
the probability distribution in their parameters.

The parameters of the neural LM are also estimated using a text corpus. For each
word xi in the corpus, we aim to maximize the conditional probability that the model
assigns to this word: Pθ(xi|x<i) given preceding words in the context x<i. If we
express the gap between the model distribution Pθ and the empirical distribution of
sequences in the corpus P using cross-entropy, this formulation is equal to minimizing
the negative log-likelihood of the next word (Jurafsky and Martin, 2024, p.158):

Li = − log Pθ(xi|x<i). (2.10)

This type of training is also called self-supervised : each token naturally occurring
in the corpus serves as the ground-truth label that the model aims to predict.

2.1.4 Transformer Architecture

In this section, we pave theway towards the transformer (Vaswani et al., 2017): the core
neural architecture used in NLP nowadays. We describe its individual components
and how the transformer is used for text processing.

Encoder-Decoder Framework We have described the RNN (Section 2.1.1) as a
neural network that can encode an input sequence into hidden states. The encoder-
decoder framework (Sutskever et al., 2014; Cho et al., 2014), originally introduced on
top of RNNs, allows us to also generate an output sequence. The idea is to use another
network called the decoder for generating the sequence, using the last hidden state
of the encoder as its initial state. Here, we illustrate how the framework is applied
using two RNNs:2

2We will later adapt the idea also for the transformer architecture.

14

(1) The first RNN, called the encoder, encodes the sentence of input embeddings
X = (x1, . . . , xn) into a sequence of hidden states He = {h(0)

e , . . . , h(n)
e }

(where h(0)
e is a null vector) by repeatedly applying a transformation E in each

timestep i ∈ (1, n):

h(i)
e = E(h(i−1)

e , xi). (2.11)

(2) The second RNN, called the decoder, usesh(n)
e as its initial stateh(0)

d and produces
the sequence of output tokens Y = (y1, . . . , ym) by repeatedly applying a
transformation D in each timestep j ∈ (1, m):

h(j)
d , yj = D(h(j−1)

d , yj−1). (2.12)

Note that the decoder produces the output sequence iteratively, yielding a token
yj in each timestep, which is fed back as input in the next step. This process is called
autoregressive decoding and is described in more detail in Section 2.1.5.

Attention Mechanism We have mentioned that the hidden state of an RNN used
in every step has a fixed size, which limits the amount of information the network
can capture about a sequence. The attention mechanism (Bahdanau et al., 2015; Luong
et al., 2015) bypasses this bottleneck by enabling the decoder to extract information
dynamically from the whole encoded sequence.

At each step j, the decoder first computes a weight vector αj : a probability
distribution over the encoder’s hidden states. The coefficients αji are then used as
weights in computing a context vector cj , which incorporates information from every
hidden state of the encoder proportionally to its weight. The context vector is used as
an additional input for the decoder:

h(j)
d , yj = D(h(j−1)

d , yj−1, cj). (2.13)

Transformer Architecture The transformer3 (Vaswani et al., 2017) is a neural
sequence processing architecture. Similarly as with RNNs, the input of the transformer
is a sequence X ∈ Rn,d and the output is the series of hidden states H ∈ Rn,d. Unlike
RNNs, the transformer can process the sequence efficiently in parallel. To achieve
that, the transformer replaces the RNN hidden state—used previously as a mechanism
for sharing information among tokens within a sequence—with the self-attention
mechanism.

3Although Vaswani et al. (2017) use “Transformer” with a capital “T”, the orthography is gradually
shifting towards the variant with a lowercase “t”. See, e.g., Jurafsky and Martin (2024, p. 215).

15

Specifically, the transformer processes the input in a series of blocks. Each block
is composed of two layers: (a) the self-attention layer and (b) the MLP layer. The layers
serve a different purpose: while the MLP layer computes element-wise operations
over each token, the self-attention layer enables sharing the information among
tokens.

• Self-attention layer: Self-attention (Cheng et al., 2016; Vaswani et al., 2017) is
a variant of the attention mechanism in which the source and the target states
come from the same sequence. Given the input X ∈ Rn,d, the self-attention
produces the output A ∈ Rn,d of the same size. For the state xj ∈ X, the self-
attention mechanism computes the vector aj ∈ A as a weighted combination
of the value vectors vi corresponding to the states xi ∈ X:

aj =
∑︂

i∈1..n

αjivi, (2.14)

where the value vector vi is computed using a trainable value matrix Wv ∈ Rn,d:

vi = xiWv. (2.15)

To get the attention weights αji, we first compute query and key vectors for
each state using trainable matrices Wq and Wk ∈ Rn,d. Each weight is a
normalized dot product of the corresponding vectors:

qi = xiWq, (2.16)

ki = xiWk, (2.17)

αji = softmax
(︄

qjki√
d

)︄
, (2.18)

where softmax(x) = exp(x)∑︁
i

exp(xi)
. The operations can be efficiently parallelized

using matrix multiplication:

Q = XWq, K = XWk, V = XWv, (2.19)

attn(Q, K, V) = softmax
(︄

QK⊤
√

d

)︄
V. (2.20)

To capture different aspects of the input sequence, the transformer uses k

attention heads. Each head Hi is parametrized by a set of attention matrices
W(Hi)

q ,W(Hi)
k , and W(Hi)

v , computing the self-attention as described above.
To compute the output of the self-attention layer, the output of each head is

16

concatenated and linearly transformed using the trainable output matrix Wo:

A = concat(attn(H1), . . . , attn(Hk))Wo. (2.21)

• MLP layer: The MLP layer processes the outputs of the self-attention layer
with a two-layer MLP. Specifically, it applies two linear transformations with a
non-linear activation function f in between:

H = f(ajW1 + b1)W2 + b2, (2.22)

where W1 ∈ Rd,dff , W2 ∈ Rdff,d, b1 ∈ Rdff , and b2 ∈ Rd are the trainable
parameters and dff is the dimensionality of the hidden layer. Note that the
operations in the MLP layer are element-wise (applied separately to each aj),
so the transformation can be computed efficiently in parallel.

To stabilize the training process, the input of each layer (or output, depending on
the architecture variant) is normalized using layer normalization (Ba et al., 2016). Yet
another feature that helps to stabilize training is the residual connection: the fact that
the output of the i-th layer is summed with its original input H(i):

H(i+1) = H(i) + layer(H(i)). (2.23)

This way, themodel can learn to adjust the input representation rather than completely
replacing it.

To get the input representation H(0), we sum the token embeddings X ∈ Rn,d with
positional embeddings. Positional embeddings encode the absolute or relative position
information of individual tokens, which would otherwise get lost in parallelized
processing.4

As shown in Figure 2.2, which summarizes the architecture details discussed so
far, the original transformer architecture is based on the encoder-decoder framework.
The decoder blocks implement two additional features:

• Each block contains an additional layer called the encoder-decoder attention.
In contrast to the self-attention mechanism, the keys and values come from
the last block of the encoder, enabling the decoder to attend to the encoded
sequence.

• The self-attention is masked so that each token can collect information only
from the preceding tokens, which is necessary to enable training the model for
left-to-right autoregressive decoding.

4There are multiple variants of positional embeddings with various trade-offs; see Dufter et al.
(2022) for an overview.

17

token emb.

pos. emb.

decoder

output probabilities

layer norm

layer norm

linear proj.

somax

masked self-aention
layer

MLP layer

+

+

layer norm

enc-dec aention
layer

+

+

token emb.

pos. emb.

encoder

layer norm

N
e e

n
c.

 b
lo

ck
s

layer norm

self-aention
layer

MLP layer

+

+

+

N
d

de
c.

 b
lo

ck
s

Figure 2.2: An encoder-decoder variant of the transformer architecture. The encoder
has Ne blocks, each consisting of a self-attention and MLP layer. The decoder has Nd

blocks with masked self-attention and encoder-decoder attention, again followed by
an MLP layer. The input to each layer is normalized using layer norm. After the last
decoder block, the output probabilities are computed using a linear projection and
softmax. The figure is adapted from https://github.com/bbycroft/llm-viz.

The hidden states produced by the transformer can be used for language modeling:
after the last decoder block, the hidden states are projected into a matrix of size
R|V |×n and normalized using softmax, producing a probability distribution over the
vocabulary for each input token.

Text Generation For generating text from a transformer decoder, we can use
left-to-right autoregressive decoding (Jurafsky and Martin, 2024, p.196). The decoding
process starts by feeding a special <s> (beginning of sequence) token into the decoder
and iteratively selecting the i-th token based on the model-predicted probability
distribution for the i-th position. The decoding stops once a special </s> (end of
sequence) token is decoded. The procedure is outlined in Algorithm 1.

18

https://github.com/bbycroft/llm-viz/blob/main/src/llm/intro-image.svg

Algorithm 1 Autoregressive decoding
1: Initialize: Y = <s>, y = <s> ▷ Output sequence, current token
2: while y ̸= </s> do
3: Predict next token probability distribution: p(y|Y)
4: Select the next token: y ∼ p(y|Y)
5: Update output sequence: Y = Y ∪ y
6: end while
7: Return Y

The token selection step (line 4) can be realized in various ways, including:

• Greedy decoding: Selecting themost probable token: yi = arg max
y∈V

pθ(y|y<i).

• Beam search: Extending the k most probable sequences from the previous
step with the next tokens, and selecting the k most probable sequences for the
next step.

• Top-k sampling: Sampling the next token from the distribution of k most
probable tokens.

• Top-p (nucleus) sampling (Holtzman et al., 2020): Sampling the next token
from the distribution of tokens with cumulative probability p.

While greedy decoding and beam search are used to generate more probable sequences
(approximating the exact algorithm for estimating the most probable sequence overall,
which has exponential complexity), sampling algorithms are used to decode more
creative outputs. Note that the list of the decoding algorithms as presented here is
not exhaustive; see Zarrieß et al. (2021) and Meister et al. (2022) for an overview and
further discussion.

2.1.5 Pretrained Language Models

To achieve good performance on an NLP task with a vanilla transformer model,
we need an extensive amount of labeled training data. A more efficient workflow
is as follows: the models are first pretrained on large-scale data—such as The Pile
(Gao et al., 2021), or C4 (Raffel et al., 2020)—and then finetuned for downstream
tasks on a smaller, task-specific dataset. Crucially, the pretraining is self-supervised
(cf. Section 2.1.3), i.e., it can be done using general-domain data with no specific
annotations. Although pretraining a model still requires significant computational
resources, the checkpoints of pretrained language models (PLMs) can be used for
efficient finetuning on downstream tasks.

19

Type Example Models # Parameters Note

Encoder
BERT (Devlin et al., 2019) 110M-340M notable pretrained encoder
RoBERTa (Liu et al., 2019b) 125M-355M improves BERT pretraining
LaserTagger (Malmi et al., 2019) 110M text-editing model

Enc-Dec
BART (Lewis et al., 2020) 139M-406M notable encoder-decodersT5 (Raffel et al., 2020) 220M-11B
mBART (Liu et al., 2020) 680M multilingual version of BART

Decoder
GPT-2 (Radford et al., 2019) 117M-1.5B notable pretrained decoder
Llama2 (Touvron et al., 2023)

7B-70B large language models (§2.1.6)Mistral (Jiang et al., 2023a)
Zephyr (Tunstall et al., 2023)

Table 2.1: Types of transformer architectures and specific models used in this work.
The number of parameters may vary based on the model variant.

Model types Depending on the downstream task, different variants of the trans-
former architecture are used:

• Encoder models (Devlin et al., 2019; Liu et al., 2019b) use only the encoder
part of the transformer architecture. These models are not generative; instead,
they produce a contextualized representation of the input sequence X. The
representation can be used for downstream tasks such as sequence classification,
sequence tagging, or computing sequence similarity.

• Encoder-decodermodels (Lewis et al., 2020; Raffel et al., 2020) use the original
encoder-decoder architecture, and are explicitly trained to transform an input
sequence X into a target sequence Y. Encoder-decoder models are mostly used
for sequence-to-sequence tasks, such as machine translation (MT), question
answering, or summarization.

• Decoder models (Radford et al., 2018, 2019) use only the decoder part of
the transformer architecture, which makes them suitable for generating text
continuations. While seemingly less expressive, the models can be used for the
same tasks as the encoder-decoder models, using the input sequence X as the
prefix for generating the output sequence Y.

Table 2.1 shows examples of the PLMs for each category, focusing on the models
relevant to this work.

Pretraining objectives There are multiple ways to use the ground truth sequence
for pretraining the transformer models (see Figure 2.3 for illustration):

20

A B C D

A B C D E

decoder

A C E

B D

encoder

A B X E A B C D

A B C D E

encoder decoder

(3) Causal language
modeling

<s>

(2) Text denoising
(1) Masked language

modeling

<s>

Figure 2.3: A scheme of the common objectives used by pretrained models: (1) masked
language modeling, (2) text denoising, (3) causal language modeling. The special
symbol <s> (beginning of a sentence) is used to bootstrap the decoding process.

• Masked Language Modeling: The goal is to predict a token at a masked
position given both its left and right context. This objective is inspired by
the Cloze task in psychology, where a similar task is given to human subjects
(Taylor, 1953). The objective is commonly used for encoder-only models such
as BERT (Devlin et al., 2019).

• Text Denoising: The goal is generally to predict the original sequence from
its corrupted version. This objective combines masked language modeling with
other tasks such as predicting a deleted token or predicting a number of missing
tokens. It is used for pretraining encoder-decoder models such as BART (Lewis
et al., 2020) or T5 (Raffel et al., 2020).

• Causal language modeling: The goal is to predict the next token given the
previous sequence of tokens, as described in Equation 2.10. This objective is
used for pretraining decoder-only models, including GPT-2 (Radford et al., 2019)
and most of large language models (LLMs).

As a matter of fact, only causal language modeling adheres to the strict definition
of a language model as given in Section 2.1.3 (Cotterell et al., 2023). However, all of
the objectives are used in practice, often combined with auxiliary objectives such as
next sentence prediction or token frequency prediction (Aroca-Ouellette and Rudzicz,
2020).

Finetuning By finetuning a model, we mean additional training of a pretrained
model on a task-specific dataset. Finetuning a pretrained model is more efficient
than training a model from scratch, as the pretrained representations provide a
warm start for the training process. However, finetuning typically cannot be applied
repeatedly on the same model, as it leads to erasing previous knowledge, also known
as catastrophic forgetting (McCloskey and Cohen, 1989; Kirkpatrick et al., 2016).

21

Few-shot and Zero-shot Settings If the size of the finetuning data is very limited
(up to a few hundred examples), we talk about few-shot setting. By limiting the
finetuning data to zero, we arrive at a zero-shot setting, where we use a model on a
task which it has not been trained for. These settings are crucial for tasks with scarce
data, also called low-resource scenarios. (Hedderich et al., 2021)

2.1.6 Large Language Models

Scaling the models in terms of the number of parameters and the size of the training
data has turned out to further improve the performance of the models (Kaplan et al.,
2020; Hoffmann et al., 2022). Larger models were shown to exhibit unprecedented
capabilities in terms of language fluency, language understanding, and reasoning
skills (Wei et al., 2022a; Bubeck et al., 2023), giving name to a specific category of
large language models (LLMs; Brown et al., 2020; Zhao et al., 2023a). Broadly speaking,
LLMs are transformer decoders with billions of parameters and training tokens (Yang
et al., 2024), although this definition is necessarily arbitrary to a degree (Rogers and
Luccioni, 2024).

At the time of writing, LLMs are becoming an omnipresent phenomenon in most
of the NLP areas. In many NLP tasks, from document-level translation (Wang et al.,
2023b) and MT evaluation (Kocmi and Federmann, 2023b) to news summarization
(Zhang et al., 2023) and story generation (Xie et al., 2023), LLMs have comparable or
better performance than previous task-specific approaches.

Although the most performant LLMs are currently available only through propri-
etary APIs (OpenAI, 2023a,b; Team et al., 2023; Anthropic, 2024), there is an increasing
amount of performant open-access LLMs (Jiang et al., 2023a; Touvron et al., 2023)
available through platforms such as HuggingFace Transformers (Wolf et al., 2019).

In-context Learning LLMs can perform certain tasks without the need for fine-
tuning on task-specific data Etask = {(x1, y1), . . . , (xn, yn)}. Instead of training, we
provide Etask as a part of the prompt (i.e., the text used as a decoding prefix). After
Etask, we also append our test input xn+1. Using causal language modeling with other
examples for the context, the model can be expected to decode the corresponding
output ŷn+1. This ability is known as in-context learning (Brown et al., 2020; Dong
et al., 2022). As the set of input-output examples is usually limited by the context size,
we talk about few-shot prompting.

22

Instruction Tuning Another key to strong cross-task performance of LLMs is
instruction tuning: finetuning on a large dataset of tasks formulated using natural
language instructions, such as “Answer this question: {question}” or “Translate this
sentence: {sentence}” (Sanh et al., 2022; Ouyang et al., 2022). Due to their strong
generalization abilities, the instruction-tuned models can be prompted to perform a
task of choice in natural language, even without being directly trained for it. This
allows to use the model for the task with no examples in the context, a setting known
as zero-shot prompting.

2.2 Data-to-Text Generation

In this section, we provide background for the task of data-to-text generation. First,
we present the task itself along with its applications (Section 2.2.1) and the subtasks
to which D2T generation can be decomposed (Section 2.2.2). For the subtasks, we
present rule-based (Section 2.2.3), statistical (Section 2.2.4), and neural (Section 2.2.5)
approaches. In the final part, we describe the D2T datasets (Section 2.2.6) and evalua-
tion metrics (Section 2.2.7) we use in the thesis.

2.2.1 Task and Applications

D2T generation is an umbrella term for tasks that require transforming structured
data into natural language. The input can take various forms, including graphs, trees,
2D tables, charts, or databases. The output is a fluent text that accurately conveys the
information from the data (Gatt and Krahmer, 2018; Sharma et al., 2022).

Before we talk about D2T generation from the research point of view, we present
an overview of its practical applications:

• Automated Journalism: Augmenting (or, in simple cases, even replacing)
human journalists for writing data-based reports, including:

– News reports: Automating news writing, e.g., for election results (Leppä-
nen et al., 2017), incidents (van der Lee et al., 2020), earthquakes (Oremus,
2014), or wildlife tracking (Siddharthan et al., 2012; Ponnamperuma et al.,
2013).

– Sport reports: Generating game summaries for sports such as basketball
(Wiseman et al., 2017; Thomson et al., 2020), baseball (Puduppully et al.,
2019), or soccer (van der Lee et al., 2017).

23

– Financial reports: Supporting financial decisions by generating com-
ments on stock prices (Murakami et al., 2017; Aoki et al., 2018) and sum-
marizing financial documents (Chapman et al., 2022).

– Weather reports: Generating weather forecasts and weather-related
reports (Goldberg et al., 1994; Belz, 2005, 2008; Angeli et al., 2010; Balakr-
ishnan et al., 2019).

• Business Intelligence Reports: Providing decision support in business re-
ports alongside data summaries and visualizations (mostly developed by com-
mercial companies such as Arria,5 InfoSentience,6 or vPhrase;7 see also Dale
(2023) for a recent overview).

• Chart Captioning: Generating captions8 for charts or graphs, e.g., for assistive
technologies, document indexing, or simplifying decision support (Demir et al.,
2008, 2012; Obeid and Hoque, 2020; Kantharaj et al., 2022).

• Healthcare Summaries: Providing clinical data summaries about patients to
clinicians (Portet et al., 2009; Scott et al., 2013), or providing medical informa-
tion to patients, e.g., for behavioral change (Reiter et al., 2003) or nutritional
counseling (Balloccu and Reiter, 2022).

• Product Descriptions: Automating generating product descriptions in specific
domains such as for laptops and TVs (Wen et al., 2015a, 2016), or general-domain
approaches for big e-commerce platforms (Shao et al., 2021; Koto et al., 2022).

2.2.2 D2T Generation Pipeline

Until recently, D2T generation was decomposed into approximately 4-6 subtasks9

which were addressed separately (Reiter and Dale, 1997; Reiter, 1996, 2007; Gatt and
Krahmer, 2018). Even though recent advances enable approaches which solve the
task in an end-to-end fashion (i.e., without intermediate steps), the subtasks are still
relevant for conceptualization of D2T generation. We choose to split the pipeline into
five representative subtasks, as illustrated in Figure 2.4:

(1) Content Selection: Deciding which facts from the structured data to include
in the text.

5https://www.arria.com
6https://infosentience.com
7https://www.vphrase.com
8In contrast to image captioning (Stefanini et al., 2023), here the systems can rely on the underlying

data in textual form (although the approaches can be hybrid, see e.g. Kantharaj et al., 2022).
9The count is only approximate: for example, Mille et al. (2023) further subdivides some of the

subtasks, leading to 10 subtasks in total.

24

https://www.arria.com
https://infosentience.com
https://www.vphrase.com

Document planningContent Selection

val time
temp 15 9-12
windSpeed 3.6 9-12
windDir NE 9-12
gust 5.0 9-12
skyCover 75 9-12
...

time 9-12 skyCover 75

windSpeed 3.6 temp 15

time 9-12

skyCover 75

windSpeed 3.6

temp 15

It is morning.
It is cloudy.
Wind is moderate.

Temperature is
15 degrees.

Expect a cloudy morning with a moderate breeze.
The temperature will hover around 15 degrees.

1 2 Sentence planning3

4 Lexicalization Surface realization5

I. II.

III. IV.

sentence #1 sentence #2

sentence #1 sentence #2

Figure 2.4: A five-step D2T generation pipeline presented on the example of generating
a weather forecast. (1) The fields relevant for the forecast are selected from the data
table. (2) The fields are ordered. (3) The ordered fields are aggregated into sentences.
(4) Each field is transformed into a text segment. (5) The text segments are combined
into the final text.

(2) Document Planning: Determining the order of the facts and dividing the
facts into paragraphs.

(3) Sentence Planning: Aggregating the facts into sentences.

(4) Lexicalisation: Transforming the facts to text segments.

(5) Surface Realisation: Combining the text segments into a well-formed text in
natural language.

Decomposing D2T generation into subtasks helps to modularize the system. Each
module has a specific and well-defined function, which makes the system more
explainable. Modularization also enables realizing each subtask using a different
approach (see Sections 2.2.3 to 2.2.5).

The subtasks are typically executed in a pipeline, i.e., the input is sequentially
processed by a series of modules. The main issue of pipeline-based approaches is error
accumulation: the errors from onemodule propagate to downstreammodules. Despite
this issue, the pipeline approach is the basis of many rule-based D2T generation
systems (Mille et al., 2023) and can also benefit neural-based systems (Moryossef et al.,
2019b; Puduppully and Lapata, 2021; see also Section 3.3).

25

2.2.3 Rule-based Approaches

By rule-based approaches for D2T generation, we mean the approaches using manu-
ally defined rules or grammars.10 Rule-based approaches are still in use in various
forms today (Gatt and Krahmer, 2018; Dale, 2020, 2023). It is helpful to view these
approaches through the lens of the whole D2T generation pipeline (Section 2.2.2), as
these approaches typically tackle particular subtasks of the pipeline individually.

Content Selection Extracting meaningful information from the data typically
relies on domain-specific heuristics, e.g., “if a pattern is detected in the signal, include it
in the report” (Portet et al., 2009). Various factors can influence the decision, including
the target length of the report, the type of the report, and its target audience (Gkatzia,
2016).

Text Planning Rule-based text planning follows discourse strategies that are de-
signed to satisfy the desired communicative goals (such as define, compare, or describe;
McKeown, 1985). The resulting rules can be formulated, for example, such as “if
a player scores two consecutive goals, describe these in the same sentence” (Gatt and
Krahmer, 2018).

Template-based Lexicalization and Surface Realization Simpler rule-based
approaches for lexicalization and surface realization are typically based on templates:
pre-written text snippets with placeholders that are filled with values from the data.
Templates can range from simple fill-in-the-blank approaches (such as “The temper-
ature will be {temp} degrees”) to more sophisticated templates using a templating
language (Gatt and Reiter, 2009; Reiter, 2016). Rules are used for selecting the tem-
plates, combining them, and filling the placeholders with values (with the last step
being non-trivial in languages with rich morphology; see Dušek and Jurčíček (2019)).
The resulting rule-based system is usually tied to a specific task and domain, but it
can be a way to generate outputs of sufficient quality with reasonable development
time and costs (van der Lee et al., 2018).

Grammar-based Lexicalization and Surface Realization A different way to han-
dle lexicalization and surface realization in rule-based systems is using grammar-based
approaches. Even though a grammar is technically also a set of rules, it differs by the
fact that it describes the production rules for the whole sentence. Grammar-based ap-
proaches are rooted in linguistic theories, such as systemic grammars (Halliday, 1985;

10In contrast to the data-driven approaches (presented in Sections 2.2.4 and 2.2.5), which derive the
system’s inner workings from the data.

26

Matthiessen, 1991) or meaning-text theory (Mel’cuk et al., 1988; Goldberg et al., 1994).
The implementation typically relies on off-the-shelf realizers such as FUF/SURGE
(Elhadad and Robin, 1997) or KPML (Bateman, 1997). Grammar-based approaches are
more general-purpose than rule-based approaches; however, they require consider-
able manual effort, detailed input, and often also additional rules for choosing among
multiple valid outputs (Gatt and Krahmer, 2018).

2.2.4 Statistical Approaches

The idea of statistical11 D2T generation approaches is to derive the inner workings
of a D2T generation system (or its component) from statistics of a text corpus. This
may apply both to individual steps of the D2T generation pipeline (estimating pa-
rameters of a specific module) or for parametrizing an end-to-end system (Liang
et al., 2009; Dušek and Jurčíček, 2015). This idea is not mutually exclusive with rule-
based and grammar-based approaches; in fact, corpus statistics were initially used
for re-ranking the outputs generated from a grammar-based system (Bangalore and
Rambow, 2000; Langkilde, 2000; Ratnaparkhi, 2000) or even integrated directly at the
level of generation decisions (Belz, 2008).

Even fully data-driven approaches still relied on grammatical rules; the only dif-
ference was that these rules were derived from treebanks, i.e., text corpora annotated
with syntactic and semantic sentence structures. For example, the approach of White
et al. (2007) relied on a Combinatory Categorial Grammar (Steedman, 2004) derived
from the Penn Treebank (Hockenmaier and Steedman, 2007). Hybrid approaches
combined a set of hand-written rules or grammars with statistical models (Konstas
and Lapata, 2012; Gardent and Perez-Beltrachini, 2017).

The earlier stages of the D2T generation pipeline, such as content selection or
text planning, were usually tackled by unsupervised machine learning methods. For
example, Duboue and Mckeown (2003) proposed to use a clustering-based method for
content selection, estimating the relative importance of each cluster for the final text.
Barzilay and Lee (2004) modelled the content structure using Hidden Markov Models
(Baum and Petrie, 1966), learning the structure from unannotated documents. An
example of a statistical approach for text planning is presented in Liang et al. (2009),
who learn latent alignment between the text and the data for text segmentation and
structuring.

11Since statistical D2T generation approaches overlap with classical machine learning methods,
these approaches are perhaps better described as pre-neural data-driven approaches. However, we will
stick to the more established term.

27

2.2.5 Neural Approaches

Building upon the previous data-driven approaches, neural networks (see Section 2.1.1)
began to be studied more widely in the context of D2T generation around 2015 (Wen
et al., 2015a; Dušek and Jurčíček, 2016). Thanks to advances in hardware (Hooker,
2021) and efficient learning from large data (LeCun et al., 2015), neural networks
enabled not only building more powerful modules for the D2T generation pipeline
but also replacing the pipeline entirely with end-to-end models (Dušek et al., 2020).
For a more detailed overview of neural D2T generation in recent years, we point the
reader to the surveys of Sharma et al. (2022) and Lin et al. (2024); here, we mainly
focus on the concepts and model architectures related to this thesis.

Linearization To get an input sequence suitable for the neural model, structured
data first needs to be converted into a sequence of tokens. To preserve the data
structure while keeping the input simple, a common practice is to linearize the input:
convert the data to a minimalistic representation with a handful of dedicated special
tokens serving as delimiters. An example linearization of a knowledge graph is
depicted in Figure 2.5 (c). Linearization can be very effective (Yang et al., 2020;
Hoyle et al., 2021; Xie et al., 2022), beating specialized representations such as graph
embeddings (Marcheggiani and Perez-Beltrachini, 2018; Koncel-Kedziorski et al.,
2019).

(a)

Al Anderson

banjo

country music

[{
 "object": "Al Anderson",
 "property": "instrument",
 "subject": "banjo"
},{
 "object": "Al Anderson",
 "property": "genre",
 "subject": "country music"
}]

Al Anderson | instrument \

| banjo <sep> Al Anderson \

| genre | country music

(b) (c)

in
st
ru
me
nt

genre

Figure 2.5: Representations of a simple knowledge graph: (a) the original knowledge
graph, (b) JSON representation, (c) linearized representation.

Delexicalization A specific data value may appear only a few or zero times in the
training data, making it difficult for the model to learn its representation. Delexical-
ization is the process of replacing the values with placeholders, allowing the model
to work only with the fill-in-the-blank templates instead of actual values (Oh and
Rudnicky, 2000; Mairesse et al., 2010; Wen et al., 2015b; Dušek and Jurčíček, 2016).

28

The values are filled in the post-processing step using simple rules, akin to template-
based systems. This approach was shown to be useful even for languages with rich
morphology, where the values can be inflected using a dedicated language model
(Dušek and Jurčíček, 2019).

Sequence-to-Sequence Generation Generating text from data in the end-to-end
fashion, i.e., without intermediate steps, is enabled by neural sequence-to-sequence
(seq2seq) models. Seq2seq models are designed for transforming variable-length input
sequences into variable-length output sequences (Cho et al., 2014; Sutskever et al.,
2014). The typical seq2seq architecture is the encoder-decoder framework described
in Section 2.1.4. In the case of D2T generation, the input sequence is the linearized
version of structured data, and the output sequence is the target text.

RNN-based Approaches The original seq2seq approaches were designed for MT
(Cho et al., 2014; Sutskever et al., 2014), but soon were also adopted for other natural
language generation (NLG) tasks. Wen et al. (2015b) and Dušek and Jurčíček (2016)
adopted RNNs for generating the response in a dialogue system, using a structured
representation of the dialogue act as the input. Mei et al. (2016) use RNNs to address
also the content selection step, identifying salient data records using the attention
mechanism for generating weather reports.

An important addition to RNN-based approaches was the copy mechanism, which
allows the model to generate the tokens by copying them from the input sequence (Gu
et al., 2016; See et al., 2017). The copy mechanism is an alternative to delexicalization,
enabling the model to fill in lexical values by itself. Unlike delexicalization, the copy
mechanism is trainable along with the rest of the model (Gehrmann et al., 2018).

RNNs were still used even after the introduction of the transformer model (Sec-
tion 2.1.4) since they tend to work better in low-resource settings. For example,
Freitag and Roy (2018) experimented with using a text denoising objective to pretrain
an RNN-based system for D2T generation. For adapting an RNN-based model to
other domains, Wen and Young (2020) proposed data counterfeiting, i.e., replacing
delexicalized slots with slots from another domain. To improve the faithfulness of
the outputs, Rebuffel et al. (2022) propose an architecture based on three RNNs fo-
cusing separately on content, faithfulness, and fluency. Various shared tasks and
comparisons (Gardent et al., 2017b; Dušek et al., 2020; Ferreira et al., 2019) showed
that RNN-based approaches were generally competitive with rule-based approaches:
the RNNs produce more fluent text, while the pipeline-based approaches make less
semantic errors.

29

PLM-based Approaches Using a transformer model for D2T generation became
practical with the arrival of PLMs discussed in Section 2.1.5. As an example, the
2020 WebNLG+ shared task (see Section 2.2.6) was dominated by systems based on
pretrained encoder-decoder transformer models (Ferreira et al., 2020).

PLMs made it possible to remove both delexicalization and copy mechanism. The
general language modeling pretraining, along with the learned ability to copy tokens
from the input, allows the model to handle rare entities not present in the task-
specific training data. PLMs are also able to produce outputs with considerably
better fluency than RNN-based models. Moreover, variants of PLMs pretrained on
multilingual corpora (Liu et al., 2020; Xue et al., 2021) can produce outputs in a variety
of languages.

Due to the advantages above, PLM-based approaches excel in low-resource set-
tings, which are common for many D2T generation tasks. Following Chen et al.
(2020d), other works adopted PLMs for few-shot or zero-shot D2T generation. In
these scenarios, the models are typically finetuned on domain-specific data for few-
shot generation (Chang et al., 2021b; Su et al., 2021a) or on related domains for
zero-shot generation (see Section 3.3). Improving PLM-based D2T generation in En-
glish revolves mainly around (1) finding suitable data representations and (2) ensuring
the semantic accuracy of the outputs, both of which we will discuss in the following
chapters.

LLM-based Approaches At the time of writing, approaches using LLMs for D2T
generation are still in naissance. Works which compared zero-shot or few-shot LLM
prompting with finetuned PLMs on existing datasets have found that LLMs rank
behind state-of-the-art finetuned models on automatic metrics (Axelsson and Skantze,
2023; Yuan and Färber, 2023). In Section 6.2, we will also show that LLMs can be
employed for zero-shot generation of data in standard data formats, with the main
issue remaining the semantical accuracy of the outputs. However, to the best of our
knowledge, there are yet no large-scale comparisons or attempts of finetuning LLMs
for D2T generation (as of May 2024).

2.2.6 Datasets

In this section, we outline the format and structure of D2T generation datasets,
focusing on the datasets used in this thesis. The overview of the datasets is presented
in Table 2.2 (note that we mainly focus on the datasets in boldface).12

12We do not describe here our novel datasets presented in Kasner et al. (2023b) and Kasner and
Dušek (2024); these are described in their respective sections in Chapter 6.

30

Dataset Data Format Domain(s) # Total Ex.

CACAPO (van der Lee et al., 2020) Key-value News♦ 20,149
DART (Nan et al., 2021) RDF triples Wikipedia♦ 70,524
E2E (Dušek et al., 2019, 2020) Key-value Restaurants 36,856
EventNarrative (Colas et al., 2021) RDF triples Events♦ 224,428
HiTab (Cheng et al., 2022) Table w/hl Statistics♦ 10,672
Chart-To-Text (Kantharaj et al., 2022) Table Statistics♦ 34,811
Logic2Text (Chen et al., 2020c) Table w/hl Wikipedia♦ 10,753
LogicNLG (Chen et al., 2020a) Table Wikipedia♦ 37,015
NumericNLG (Suadaa et al., 2021) Table Science♦ 1,355
SciGen (Moosavi et al., 2021) Table Science♦ 17,551
Rotowire∗ (Wiseman et al., 2017) Table Basketball 6,150
ToTTo (Parikh et al., 2020) Table w/hl Wikipedia♦ 136,553
WebNLG (Gardent et al., 2017b) RDF triples DBpedia♦ 42,873
WikiBio (Lebret et al., 2016) Key-value Biographies♦ 728,321
WikiSQL (Zhong et al., 2017) Table + SQL Wikipedia♦ 80,654
WikiTableText (Bao et al., 2018) Key-value Wikipedia♦ 13,318

Table 2.2: The list of D2T datasets used in this work. All listed datasets are included
in the TabGenie framework (Section 5.1), except for Rotowire, where we include an
updated version dubbed SportSett:Basketball instead (Thomson et al., 2020). Our main
focus is on the datasets in boldface. Glossary of data types: Key-value: key-value
pairs, Table: tabular data (w/hl: with highlighted cells), SQL: strings with SQL queries.
♦ indicates that the dataset is multi-domain; ♦ indicates that the dataset is open-
domain. For brevity, we report only the total number of examples in the datasets (i.e.,
aggregating train, dev, and test sets).

.

Data Formats The following formats of structured data are present in the datasets
that we use in this thesis (and at the same time, representative of D2T generation
datasets in general):

• Key-value pairs: The input is a set of tuples (k, v), where k is a key (also called
a slot), which is typically a descriptive text string, and v is a generic value such
as a text string, a number, or a boolean. The format is used, e.g., as a meaning
representation for representing dialogue states in dialogue systems (Rastogi
et al., 2020; Budzianowski et al., 2018).

• RDF (Resource Description Framework)13 triples: The input is a set of
triples (s, p, o), where s is a subject, p is a predicate, and o is an object. This
formalism directly translates to a directed graph, where s and o are nodes, and p

is a directed edge between these nodes. In a knowledge graph such as Wikidata

13See https://www.w3.org/TR/PR-rdf-syntax/.

31

https://www.w3.org/TR/PR-rdf-syntax/

or DBpedia, the subject is usually an entity with a given identifier (e.g., a person,
an object, or a place), the object is either another entity or a generic value (a
text string or a number), and the predicate expresses the relation between the
subject and the object.14

• Tabular: The input is structured as a table, i.e., a two-dimensional cell matrix of
m columns and n rows. A table cell can contain a textual or a numerical value.
If a cell is marked as a heading, it contains a “key” (a label) for the respective
row or column. In some datasets, a subset of cells is pre-highlighted – in that
case, the output text should describe only that particular subset of cells.

As we show in Section 5.1, key-value pairs and RDF triples can be converted to a
tabular format with minimal information loss. We also show how to handle data in
JSON format15 in Section 6.2.

Domains In D2T generation, the notion of a domain—commonly used for drawing
boundaries between the datasets or their subsets—mostly follows the dictionary
definition of an area of interest.16 However, its exact scope may vary: for example,
whileWen et al. (2016) consider datasheets for TVs and laptops as coming from distinct
domains, Lin et al. (2024) group all tables from ACL Anthology papers in a single
domain (Suadaa et al., 2021).

The definition is more clear for the term multi-domain. Most commonly, a dataset
is called multi-domain if two subsets of data come from distributions so different that
the model trained on one subset does not straightforwardly generalize to the other
subset (van der Lee et al., 2020; Budzianowski et al., 2018; Rastogi et al., 2020). If the
topic of the dataset is unrestricted, or if it is based on a large-scale data source such
as Wikipedia, the dataset is considered open-domain (see, e.g., Chen et al., 2020a; Nan
et al., 2021; Kann et al., 2022).

Datasets The following D2T generation datasets (highlighted in Table 2.2) are the
most relevant for the thesis:

• WebNLG: The WebNLG dataset (Gardent et al., 2017a,b) contains RDF triples
from DBpedia (Auer et al., 2007) and their crowdsourced descriptions. Each
example consists of 1-7 triples, forming a subgraph in the DBpedia knowledge
graph. The target text should describe all the entities and the relations between
them. The original WebNLG dataset (Gardent et al., 2017a) contains 15 domains
(such as Astronaut, Building, or Food), out of which 5 are unseen, i.e., included

14For this reason, a predicate may be also referred to as “relation”.
15JavaScript Object Notation; https://www.json.org.
16https://dictionary.cambridge.org/dictionary/english/domain

32

https://www.json.org
https://dictionary.cambridge.org/dictionary/english/domain

The Boston Celtics defeated the host
Philadelphia 76ers, 102 - 92, at Wells Fargo
Center on Friday. In a game that was expected to
be close, the more veteran team grinded down
the young team in the fourth quarter to run away
with a win. In fact, the Celtics outscored the
Sixers, 33 - 20, in the fourth quarter. Defense
carried Boston, [... 1325 more characters]

dataset

WebNLG

E2E

Rotowire

input reference output

[..
.1

8
m

or
e

co
lu

m
ns

]

[... 208 more rows]

The Punter is a moderate-priced restaurant
near Café Sicilia that serves Chinese food.

name

eatType

food

priceRange

near

The Punter

restaurant

Chinese

moderate

Café Sicilia

key value

entity period AST BLK DREB

home

players

game 20 4 33

H1 37 1 118

H2 73 12 95

Q1 3 0 11

Q2 7 1 8

Q3 7 1 9

Q4 3 2 5

Alhambra

s

h

i

p

b

e

a

m

8.3 m

s

h

i

p

l

a

u

n

c

h

1855-05-31

The Alhambra was launched May 31st 1855
and had a beam of 8.3m.

Figure 2.6: Example inputs and reference outputs from the WebNLG, E2E, and Ro-
towire datasets.

only in the test set. Each set of triples includes several verbalizations to promote
lexical variability. In version 2, the dataset was annotated for intermediate
subtasks and enriched with semi-automated German translations (Shimorina
and Gardent, 2018; Ferreira et al., 2018). Version 3 of the dataset (Ferreira et al.,
2020) contains one additional domain and automatic translations to Russian.

– We participated in the 2020 edition of WebNLG Challenge, which is a
series of shared tasks based on the WebNLG dataset (Gardent et al., 2017b;
Shimorina et al., 2019; Ferreira et al., 2020; Cripwell et al., 2023; see Sec-
tion 3.1). We also used the dataset in the experiments on low-resource D2T
generation (Sections 3.2 and 3.3), evaluation (Section 4.1), data processing
(Section 5.1), and out-of-domain generalization (Section 6.1).

• E2E: The E2E dataset (Dušek et al., 2020, 2019) contains restaurant descriptions
in the form of key-value pairs (3-8 items per example) and corresponding human-
written restaurant recommendations. The name of the dataset is derived from
the E2E Challenge, a shared task that focused on evaluating end-to-end D2T

33

generation systems (Dušek et al., 2020). Since the original version of the dataset
contained a lot of semantic noise (incorrect or missing facts in the crowdsourced
descriptions), we use the cleaned version from Dušek et al. (2019) as the default
version for our experiments.

– Similarly to WebNLG, we used the dataset in our experiments on low-
resource D2T generation (Sections 3.2 and 3.3), evaluation (Section 4.1),
and data processing (Section 5.1).

• Rotowire: Rotowire (Wiseman et al., 2017) is a dataset with tabular statistics
of basketball games and their corresponding game summaries. The target text
contains only a small subset of the full input table, so the systems also need to
model the content selection step. Together with the full-paragraph length of
the target summaries, this aspect makes the dataset particularly challenging
for D2T generation systems.

– We used the outputs from the neural systems on this dataset for building
a token-level evaluation metric (Section 4.2). We also included its updated
version SportSett:Basketball (Thomson et al., 2020) in our data processing
toolkit (Section 5.1).

See Figure 2.6 for example inputs and reference outputs from these datasets.

2.2.7 Evaluation Metrics

The most common evaluation measures for D2T generation are intrinsic, i.e., focusing
on evaluating certain aspects of the quality of the system and its outputs (Gkatzia and
Mahamood, 2015; Celikyilmaz et al., 2020).17 The intrinsic measures can be divided
between automatic metrics and human evaluation. Automatic metrics are generally
cheaper, faster, and more easily replicable. However, they mostly serve only as a
crude heuristic for the desired performance measure, which should be correlated with
human judgment (van der Lee et al., 2019). Human evaluation is more expensive
and difficult to execute, but if executed correctly, it can give us a more precise and
fine-grained picture of system performance. A rule of thumb is that an experimental
result should be supported by both kinds of metrics.

17As opposed to extrinsic measures, which evaluate the impact of the system in the external environ-
ment (Celikyilmaz et al., 2020). While extrinsic metrics could give us a better picture of the real-world
impact, they are not suitable for early research stages due to high demands on the system quality, and
they are also less suitable for evaluating individual subtasks (van der Lee et al., 2019), which is why we
focus on intrinsic measures in this work.

34

If we have human-written (also called ground truth or gold-standard18) reference
texts at our disposal, we can use reference-based automatic metrics. The implicit
assumption with reference-based metrics is that the more similar the generated text
is to the respective human-written reference text, the better. Referenceless metrics,
on the other hand, can be more varied: they can either judge the intrinsic qualities
of the text, such as its fluency, diversity, and reading level, or—taking the input data
into account—the faithfulness of the text with respect to the input data. (Celikyilmaz
et al., 2020)

In the following paragraphs, we will introduce reference-based automatic metrics
for measuring lexical similarity, semantic similarity, and semantic accuracy of the
generated text, followed by referenceless automatic metrics for text fluency and lexical
diversity. Finally, we will discuss evaluation methods based on human annotators
and large language models.

Lexical Similarity Lexical similarity metrics measure the similarity between the
generated and reference text using word-level (or character-level) overlap. These
metrics are fast, easy to compute, and have been used for decades as a convenient
proxy for system comparison in various NLP areas (Celikyilmaz et al., 2020). How-
ever, there is a recent upsurge of works arguing against these metrics because their
correlations with human judgments for high-quality outputs are low or negative, and
the metrics fail to capture fine-grained phenomena (Mathur et al., 2020; Kocmi et al.,
2021; Gehrmann et al., 2023). As a general rule, lexical similarity metrics (if used, e.g.,
for comparison with prior work) should be accompanied by other metrics.

Here are some of the common metrics which we use in this work:

• BLEU (Papineni et al., 2002) measures n-gram precision, i.e., to which extent the
n-grams in the generated text correspond to the reference text. It is computed as
a geometric mean of the individual 1-4-gram precisions, with a brevity penalty
to penalize outputs shorter than the reference. BLEU was originally used for
evaluating MT, but it has become commonplace in NLP. The SacreBLEU library
(Post, 2018) was developed to tackle inconsistencies in implementations of the
metric (Reiter, 2018).

• ROUGE (Lin, 2004) is a set of metrics that focus on recall, i.e., to which extent
does the generated text preserve the information in the reference text. ROUGE
has been originally designed for evaluating automatic summarization, but
similarly to BLEU, it has been used widely (and as recently found by Grusky

18The term gold-standard can misleadingly suggest that human-written references are the “holy grail”
which the systems should imitate. This is generally an overstatement, as human-written references are
often noisy and faulty (Dušek et al., 2019; Clark et al., 2021), but they can still serve as a valuable point
of reference.

35

(2023), oftentimes incorrectly) across the NLP literature. ROUGE includes
several variants, such as ROUGE-L, which measures the longest matching word
sequence, and ROUGE-1/2/3/4, which measures the overlap on the respective
n-grams.

• METEOR (Banerjee and Lavie, 2005) is a metric that computes the harmonic
mean of precision and recall w.r.t. a reference computed on unigrams. METEOR
also partially addresses non-exact matches by using stemming and synonym
matching. It has been shown to produce better correlations with human judg-
ments than BLEU (Agarwal and Lavie, 2008) but is more complex and expensive
to compute.

• NIST (Martin and Przybocki, 2000) is a metric which focuses on precision
similarly to BLEU. However, it assigns higher weights to less common n-grams,
which are considered more informative (Doddington, 2002). Its length penalty
is also more robust to slight variations in text length.

• ChrF++ (Popovic, 2015, 2017) is a metric which computes the F1-score on
character n-grams. The metric is more robust to morphological variations than
word-level metrics. On top of the original ChrF metric, ChrF++ also considers
word unigrams and bigrams along with the character n-grams.

Semantic Similarity As described in Section 2.1.2, word embeddings map words
with similar meanings close to each other in the vector space. Semantic similarity
metrics use this fact to measure the similarity of texts as a distance between their
embeddings. The metrics most often rely on contextual embeddings computed by pre-
trained transformer encoders (Peters et al., 2018; Devlin et al., 2019; see Section 2.1.4).
In contrast to lexical similarity metrics, semantic similarity metrics are more robust
to lexical variations but are more computationally expensive. They are also subject to
the limitations of pretrained models, including their biases and black-box nature.

The following are the metrics which we use in this work:

• BERTScore (Zhang et al., 2020a) measures the semantic similarity of texts
by computing cosine similarity between the embeddings of the texts encoded
by a pretrained transformer model. It was initially developed on top of BERT
(Devlin et al., 2019), but it now also supports other transformer encoder models.
Its flexibility helps to achieve better correlations with human judgment but
makes it less suitable for comparison across different works.

36

• BLEURT (Sellam et al., 2020) measures the semantic similarity of texts using
a BERT model (Devlin et al., 2019) which is further finetuned for predicting
human ratings on synthetically labeled data. Compared to BERTScore, BLEURT
is less flexible but ensures a more consistent setup across works.

• NUBIA (Kané et al., 2020) measures the semantic similarity of texts by com-
bining features from two finetuned RoBERTa models (Liu et al., 2019b), on the
semantic similarity benchmark STS (Cer et al., 2017) and on the natural lan-
guage inference benchmark MNLI (Williams et al., 2018); along with perplexity
from the GPT-2 model (Radford et al., 2019). These features are combined using
an MLP layer. Combining the features ensures better robustness of the metric
at the cost of higher complexity and higher computational requirements.

Semantic Accuracy Semantic accuracy19 measures inaccuracies in the output
text with respect to the input data. The inaccuracies in D2T generation can be
broadly divided into omissions (the model not mentioning facts in the input data) and
hallucinations (the model mentioning extra facts that are not supported by the input
data). Naturally, omissions apply only if the task requires mentioning all the facts
in the input data. Further, hallucinations can be extrinsic, i.e., the model introduces
external information not present in the data, or intrinsic, i.e., the model uses the data
incorrectly. (Maynez et al., 2020)

Honovich et al. (2022) presents a survey of factual consistency metrics, focusing
on NLG areas such as summarization, fact verification, paraphrasing, and knowledge-
grounded dialogue. Targetting specifically D2T generation, Data-QuestEval (Rebuffel
et al., 2021) is a referenceless metric that uses QuestEval (Scialom et al., 2021), a
tandem of question generation and question answering models. For tabular data,
PARENT (Dhingra et al., 2019) was proposed as a reference-based metric, which
uses lexical alignment models for computing precision and recall for tabular values.
In Sections 4.1 and 4.2, we present two novel referenceless metrics for evaluating
semantic accuracy of D2T generation using PLMs. In Section 6.2, we also show how
to evaluate the semantic accuracy of texts using a LLM.

Text Fluency Text fluency is a catch-all term for measuring grammatical correct-
ness, spelling, word, and stylistic choices of text (Celikyilmaz et al., 2020). In MT,
lexical similarity metrics (such as BLEU) were used as a proxy for measuring text
fluency, following the intuition that texts that are more similar to human written text

19The similar phenomenon is also called faithfulness, factual accuracy, or factual consistency (Celiky-
ilmaz et al., 2020). In this work, we use the term semantic accuracy to refer to the faithfulness of the
text to the input data, i.e., regardless of the factual correctness of the data itself (as opposed to factual
accuracy, which is determined by the actual state of the world).

37

tend to be more fluent (Papineni et al., 2002; Celikyilmaz et al., 2020). However, outside
of MT, the correlation between lexical similarity metrics and fluency was repeatedly
found to be low or negative (Novikova et al., 2017; Fabbri et al., 2021; Nekvinda and
Dušek, 2021). An alternative measure of text fluency is the perplexity of the text under
a neural LM. This approach assumes that the LM assigns higher probability to more
fluent sentences, which were supposedly more common in the pretraining corpus.
Despite its shortcomings (Wang et al., 2022), this evaluation approach is used across
various NLG works (Kann et al., 2018; Wang et al., 2020; Kané et al., 2020; Liu et al.,
2021; Lee et al., 2022).

Lexical Diversity Lexical diversity measures the variability and richness of expres-
sions in the text (van Miltenburg et al., 2018). One way to express lexical diversity
is the ratio between the average number of different words and the total number of
words, called type-token ratio (TTR) or distinct n-grams (Johnson, 1944; Li et al., 2016).
Another way is to measure the entropy of n-grams (Shannon, 1948). Lexical diversity
is not generally required in D2T generation, although there are approaches explicitly
aiming to decode diverse outputs (Han et al., 2021; Perlitz et al., 2022).

Human Evaluation Since automatic metrics serve only as imperfect proxies for
human judgment, using human annotators is a crucial part of any NLG experimental
evaluation (Gehrmann et al., 2023). Although there are attempts at standardizing
human evaluation (Thomson and Reiter, 2020), human annotation protocols are usually
task-specific (van der Lee et al., 2019; Belz et al., 2020; Howcroft et al., 2020). There
are two main paradigms of human evaluation: large-scale evaluation using crowd
workers mainly focusing on quantitative aspects (crowdsourcing), and small-scale
evaluation using expert annotators focusing primarily on qualitative aspects (manual
evaluation).

• Crowdsourcing: Crowdsourcing platforms such as AmazonMechanical Turk20

or Prolific21 are often used for distributing the work between human annotators.
These platforms offer a convenient interface for hiring annotators with a specific
background. Due to financial incentives and skill issues, the quality of outputs
may vary, especially since the workers are nowadays prone to delegating the
task to LLMs (Veselovsky et al., 2023). It is, therefore, necessary to employ
quality assurance checks in the annotation process.

20https://www.mturk.com
21https://prolific.com

38

https://www.mturk.com
https://prolific.com

• Manual Error Analysis: To measure fine-grained aspects of output quality,
manual evaluation can be performed by the paper authors or other domain
experts on a moderate-sized sample of data (~100 examples). The main goal of
manual evaluation is to provide insights into the kinds of errors that appear in
the output texts.

LLM-based Evaluation Recently, researchers have started to examine the potential
of replacing human annotators with LLMs-based metrics (Zhao et al., 2023c; Sottana
et al., 2023; Kocmi and Federmann, 2023b; Chiang and Lee, 2023; Wang et al., 2023a; Fu
et al., 2023). In particular, the GPT-4 model (OpenAI, 2023b) was shown to be better
in following fine-grained instructions compared to other LLMs and of having high
correlations with human judgment on evaluating generated texts. Since the model can
be prompted for the specific task, using LLMs can be cheaper and more robust than
human annotators. However, due to concerns about its non-reproducibility (Kocmi
and Federmann, 2023a) and bias (Wang et al., 2023c), this evaluation method is only
experimental. We present experiments using a LLM-based metric for text evaluation
in Section 6.2.

39

3
Low-Resource Data-to-Text

Generation

This chapter introduces three low-resource data-to-text (D2T) generation approaches
based on pretrained language models (PLMs). By low-resource, we mean using as
little in-domain data as possible for generating fluent and accurate texts. We develop
approaches that leverage the general-domain pretraining of PLMs to generate texts
in domains with thousands, hundreds, or even zero training examples.

The datawe focus on are RDF triples from factual knowledge graphs in theWebNLG
dataset and key-value meaning representations in the E2E dataset (see Section 2.2.6
for the description of the datasets). These datasets assume that content selection was
performed beforehand, i.e., we always want to verbalize the whole input (focusing on
later steps of the D2T generation pipeline described in Section 2.2.2).

The most straightforward setting, that we present in Section 3.1, consists of
finetuning mBART (Liu et al., 2020), a pretrained transformer encoder-decoder model.
For finetuning the model, we need approximately thousands of in-domain examples.
We show that this simple setup is powerful and achieves competitive results on a
shared task for generating knowledge graph descriptions, addressing RQ1. On top
of that, we show that this approach can be directly applied to non-English settings,
namely to text generation in Russian.

In Sections 3.2 and 3.3, we present approaches based on PLMs that can generate
texts with an even more limited amount of in-domain training examples. While these
approaches address the issue of efficiency (RQ2), using PLMs directly leads to another
issue – how to control the model output (RQ3). Our key idea is to use a PLM only as a
tool for improving text fluency regardless of the content and delegating (possibly crude
and basic, but semantically correct) verbalization of the content to different, more

41

controllable means, such as simple templates. Section 3.2 shows an approach based
on a text-editing language model (a model that generates text by editing the input
sequence) which has a limited vocabulary and is trained on iteratively fusing simple
templates. The limited vocabulary and a specific training objective help the model
generate semantically correct sentences. In Section 3.3, we present an alternative
approach that uses an ordinary autoregressive pretrained model but adds an ordering
and aggregation step for generating more fluent texts. Moreover, we show how to
train a PLM for all the steps entirely on domain-general operations, eliminating the
need for in-domain training examples.

3.1 Finetuning Pretrained Language Models

This section is based on the paper Train Hard, Finetune Easy: Multilingual Denoising
for RDF-to-Text Generation (Kasner and Dušek, 2020b), joint work with Ondřej Dušek,
published in the Proceedings of the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+) at INLG 2020.

This section introduces a simple approach for generating knowledge graph de-
scriptions. Our approach is based on finetuning a multi-lingual PLM on linearized
graphs and the accompanying human-written descriptions from the WebNLG dataset.
In the WebNLG+ 2020 Shared Task (Ferreira et al., 2020), our model ranked in the first
third of the leaderboard for English and the first or second for Russian on automatic
metrics. It also made it in the best or second-best system cluster on human evaluation.
In Section 3.1.4, we show that with a moderate amount of in-domain finetuning
data, a simple PLM-based approach can achieve satisfactory results in generating
descriptions of knowledge graphs. We also point out its limitations in Section 3.1.5,
namely its inability to infer the semantics of ambiguous relation labels; a topic to
which we will return in Section 6.1.

3.1.1 WebNLG+ Shared Task

The WebNLG Challenge 2020 (WebNLG+; Ferreira et al., 2020) was the second edition
of the shared task in graph-to-text generation. The task was based on the WebNLG
dataset containing subgraphs from the DBpedia knowledge graph. Each subgraph is
described by a set of RDF triples and accompanied by crowdsourced text descriptions
(see Section 2.2.6). On top of the original challenge (Gardent et al., 2017b), WebNLG+
included a separate track for generating texts in Russian, in which we also participated.

42

3.1.2 Problem Formulation

Our input is a set of RDF triples x ∈ X , where each triple x = (s, p, o) describes the
relation p between the entities s and o in the knowledge graph. Our target output Y

is a fluent and semantically accurate natural language description of X .
We formulate the task as sequence-to-sequence generation. First, we linearize the

input sequence (see Section 2.2.5) in the default order using two arbitrary separator
tokens: one to delimit the triple constituents and another to delimit individual triples
(see Table 3.1). Using the linearized sequence as an input and the target text as
an output, we finetune a pretrained encoder-decoder model for the cross-entropy
objective (Equation 2.10). With the finetuned model, we generate the target texts
using autoregressive decoding (see Algorithm 1).

3.1.3 Implementation

Data Preprocessing We use the provided XML WebNLG data reader1 to load and
linearize the triples. For each triple, we use the flat_triple()methodwhich converts
each triple into the “s | p | o” string, using a pipe (“|”) as a separator. We use another
token not present in the training data (“▶”) for delimiting individual triples to avoid
extending the model vocabulary.2 We linearize the triples in their default order. For
the input to the model, we tokenize the data using SentencePiece tokenizer (Kudo
and Richardson, 2018) trained on the training dataset, using a vocabulary of 250,000
subword tokens.

Model We use mBART (Liu et al., 2020), a multilingual PLM based on BART, a
transformer model pretrained on text denoising (see Section 2.1.5). The model uses
12 layers for the encoder and 12 layers for the decoder (∼680M parameters), and it
is pretrained on the large-scale CC25 corpus extracted from Common Crawl, which
contains data in 25 languages (Wenzek et al., 2020).

Training We finetune the pre-trained mbart.CC25 model from the fairseq toolkit
(Ott et al., 2019) using the default parameters,3 changing only the total number of
updates from 40k to 10k to reflect the smaller size of our data. We train a separate
version of mBART for each language: mBARTen on English inputs and English outputs,
and mBARTru on English inputs and Russian outputs.

1https://gitlab.com/webnlg/corpus-reader
2We chose the separators arbitrarily, as the model is to be finetuned with the selected separators.
3We use dropout 0.3, attention dropout 0.1, and 1024 tokens per batch; we set the initial learning

rate to 0.0003 and use polynomial decay with 2500 warmup steps. We train the model using the Adam
optimizer (Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.98 and ε = 1e − 06. For the full set of training
arguments, see https://github.com/facebookresearch/fairseq/tree/main/examples/mbart.

43

https://gitlab.com/webnlg/corpus-reader
https://github.com/facebookresearch/fairseq/tree/main/examples/mbart

input Piotr_Hallmann | weight | 70.308 ▶ Piotr_Hallmann | birthDate | 1987-08-25

out (en) Born on August 25th 1987, Piotr Hallmann has a weight of 70.308.

in Ciudad_Ayala | populationMetro | 1777539

out (en) The population metro of Ciudad Ayala is 1777539.

in Bakewell_tart | ingredient | Frangipane

out (ru) Франжипан - один из ингредиентов тарта Бейквелл.
transcr. Franzhipan - odin iz ingredientov tarta Bejkvell.
transl. Frangipane is one of the ingredients of the Bakewell tart.

Table 3.1: Example outputs from the mBART model finetuned for RDF-to-text gen-
eration. (1) The model can work with unseen entities, dates, and numbers. (2) The
label deviates too much from its meaning for the unseen property populationMetro,
leading to incorrect output. (3) The model trained on Russian targets can use English
data to form sentences in Russian, transcribing the entities to Cyrillic.

3.1.4 Results

We report on WebNLG automatic and human evaluation results, as well as our error
analysis.

Automatic Metrics The results of our approach for English are shown in Table 3.2.
Our approach beats the baseline model based on the FORGe generator (Mille et al.,
2019) in all metrics and places in the first third of the submissions. While it loses
performance on unseen categories, the drop is less dramatic than other competing
approaches. For Russian, the results are shown in Table 3.3. Our system not only
beats the baseline by a large margin (as did all competing submissions), but it ranks
first in two metrics out of four (BLEU, BERTScore) and second in the remaining ones.

Human Evaluation The challenge organizers ran a human evaluation campaign,
asking annotators to rate the texts for data coverage, relevance, correctness, text
structure, and fluency. Each criterion has been rated with a number ranging from
0 (worst) to 100 (best). The scores were clustered into groups among which there
are no statistically significant differences according to the Wilcoxon rank-sum test
(Wilcoxon, 1992).

Our systems made it into the top clusters (1 or 2) for both English and Russian.
For English, our mBARTen system ranks first (out of two to four clusters) for all the
categories in seen domains, and first or second in unseen entities and unseen domains. In
total, our English system achieved rank 1 for relevance, correctness and text structure,
and rank 2 for data coverage and fluency. For Russian, our mBARTru system ranks
second for correctness and first (out of two to three clusters) in all other categories.

44

BLEU METEOR ChrF++ BERTScore BLEURT

All Ours 50.34 (10) 0.398 (8) 0.666 (8) 0.951 (8) 0.57 (8)
Baseline 40.57 (14) 0.373 (15) 0.621 (15) 0.943 (14) 0.47 (12)

Seen Cat. Ours 59.13 (10) 0.422 (10) 0.712 (9) 0.960 (9) 0.58 (14)
Baseline 42.95 (31) 0.387 (27) 0.650 (28) 0.943 (31) 0.41 (31)

Unseen Cat. Ours 42.24 (10) 0.375 (13) 0.617 (10) 0.943 (11) 0.52 (10)
Baseline 37.56 (12) 0.357 (15) 0.584 (15) 0.940 (12) 0.44 (12)

Unseen Ent. Ours 51.23 (4) 0.406 (8) 0.687 (7) 0.959 (8) 0.63 (8)
Baseline 40.22 (17) 0.384 (15) 0.648 (15) 0.949 (13) 0.55 (12)

Table 3.2: Results of mBARTen (all data, seen categories, unseen categories, unseen
entities), compared to the baseline from the organizers. The numbers in brackets
show the rank of each model (out of 35 submissions) with respect to the given metric.

BLEU METEOR ChrF++ BERTScore

Ours 52.93 (1) 0.672 (2) 0.677 (2) 0.909 (1)
Baseline 23.53 (12) 0.461 (12) 0.511 (12) 0.836 (12)

Table 3.3: Results of mBARTru, compared to the baseline. The numbers in brackets
show the rank of each model (out of 12 submissions) if ordered by the given metric.

Manual Analysis To better understand the nature of errors made by our system,
we manually inspected a sample of 50 outputs in each language.4 We found semantic
errors in 12 English outputs, mostly concentrated along the unseen categories (Scien-
tist, Movie, Musical Record). The model tends to describe musical works and movies
in terms of written works (“written”, “published” etc.), i.e., the closest seen category.
There are also several swaps in roles of the entities (e.g., “is to southeast” instead of
“has to its southeast”, “follows” instead of “is followed by” etc.).

In a few cases, the model hallucinates a relation not specified in the data (e.g.,
“born on January 1, 1934 in Istanbul” when a date of birth and current residence is
given, not the birthplace) or is not able to infer background knowledge not given
on the input (it talks about a dead person in the present tense). Semantic errors in
Russian were less frequent (9 sentences), which is expected as there are no unseen
categories. Moreover, the system shows an impressive performance at translating
entity names from the English RDF into Russian.

We further found 10 outputs with suboptimal phrasing in English and 9 in Russian,
where the model did not connect properties of the same type in coordination (e.g.,
two musical genres for a record) or gave numbers without proper units (e.g., “runtime
of 89.0” or “area of 250493000000.0”).

4Automatic back-translation to English was used to facilitate understanding of Russian.

45

3.1.5 Discussion

Why Our Approach Works Our solution benefits from the mBART model, that
absorbed vast amounts of factual world knowledge during pretraining (Petroni et al.,
2019). Combinedwith its ability to produce fluent texts, themodel expectedly performs
well at generating short, factually grounded sentences. Moreover, the multilingual
pretraining of the model allows us to use a single architecture for both English and
Russian. We note that a careful choice of hyperparameters seems necessary for
optimal performance, as other solutions in the challenge also used pretrained models
with similar architecture but uneven results.5

Limitations Building a high-quality training set of in-domain data, such as the one
we had at our disposal, requires substantial human effort and financial resources. The
generalization to other languages also does not come cheap: as English and Russian
are the two most represented languages in the mBART pre-training corpora (ca. 300
GB of data each), the performance of our model would be supposedly lower in other
languages. The performance of our model is noticeably lower on categories unseen in
training (which, as we show in Section 6.1, is a non-trivial issue), and the model may
not generalize well to examples longer than encountered in the training data (Zhou
et al., 2023; Xu et al., 2023b).

Beyond In-Domain Finetuning In Sections 3.2 and 3.3, we introduce approaches
for D2T generation that cut down on the need for an extensive amount of in-domain
training data. These approaches still rely on the existence of PLMs, but the models
are given inductive bias necessary for the task in question: namely, that the goal is
to transform a disfluent input (i.e., the structured data in its original format) into a
fluent output (i.e., the structured data expressed in natural language). With these
approaches, we circumvent the need for high-quality in-domain data by learning
general-purpose text-to-text operations on open-domain data.

Future of the WebNLG Shared Task The 2023 WebNLG Shared Task, which took
place three years later, featured our system as the baseline for the Russian graph-
to-text generation track (Cripwell et al., 2023). In describing the 2023 results, the
organizers of the task note that “results on Russian for the present edition provide
very small improvements over the best results for 2020.” These results suggest that
(1) the WebNLG task is saturated (at least for high-resource languages), yielding

5In our case, we achieved satisfactory results using the default parameters, as described in Sec-
tion 3.1.3.

46

only small improvements regardless of the technique, and (2) fixing the long tail
requires approaches allowing to identify and correct unclear input cases (e.g., by
human interventions based on model uncertainty), which may not be possible in the
framework of the shared task.

Relation to Large LanguageModels Surprisingly, our findings are still valid in the
era of large language models (LLMs). As shown by Axelsson and Skantze (2023) and
Yuan and Färber (2023), the GPT-3.5 model (OpenAI, 2023a) does not generally outper-
form finetuned systems on the WebNLG dataset. In particular, Axelsson and Skantze
(2023) compared zero-shot performance GPT-3.5 to the systems of the WebNLG 2020
challenge and found the model achieves similar performance as our system on English
while not outperforming the best systems in the challenge. The LLM makes semantic
errors (as we also discuss in Section 6.2) and performs significantly worse on Russian
data than on English data. Yuan and Färber (2023) further demonstrate that the LLM
is hard to control with respect to the output format. In addition to that, the LLMs
may have an unfair advantage in these evaluations since they may have memorized
the outputs on the WebNLG test set (Balloccu et al., 2024).

3.2 Iterative Sentence Fusion

This section is based on the paper Data-to-Text Generation with Iterative Text Editing
(Kasner and Dušek, 2020a), joint work with Ondřej Dušek, published in the Proceed-
ings of the 13th International Conference on Natural Language Generation (INLG
2020).

In this section, we present an approach for generating semantically accurate texts
from structured data in low-resource settings. Our approach builds on a text-editing
model trained on the task of sentence fusion. After transforming individual data items
to text using trivial templates, we iteratively improve the resulting text by applying
sentence fusion, filtering, and re-ranking (Sections 3.2.2 and 3.2.3). Although our
approach gets lower scores on lexical similarity metrics on WebNLG and E2E datasets
than the state-of-the-art approaches, it achieves high levels of semantic accuracy due
to the limited scope of the sentence fusion model and the guaranteed presence of
the entities (Sections 3.2.4 and 3.2.5). We also demonstrate that our task formulation
allows zero-shot D2T generation by training a model on a general-domain dataset for
sentence fusion. The code for the experiments is available on Github.6

6https://github.com/kasnerz/d2t_iterative_editing

47

https://github.com/kasnerz/d2t_iterative_editing

3.2.1 Motivation

We aim to improve the semantic accuracy D2T generation. Other works have pursued
this goal, e.g., by adapting the decoding algorithm (Tian et al., 2019), improving the
robustness of the model by injecting noise in its hidden states (Kedzie and McKeown,
2019), or self-training with a natural language understanding model (Nie et al., 2019).
Our approach is inspired by the systems which use a generate-then-rerank approach
(Dušek and Jurčíček, 2016; Juraska et al., 2018), e.g., using a classifier to filter incorrect
outputs (Harkous et al., 2020).

To generate outputs with sufficient semantic accuracy for the filtering step, we
take advantage of three facts: (1) we can lexicalize individual data items using trivial
templates, (2) concatenating the lexicalizations tends to produce an unnatural sound-
ing but semantically accurate output, and (3) a PLM trained on improving the output
fluency can be used for combining the lexicalizations.

3.2.2 Method

We focus on data structured as RDF triples. In our approach, we start from single-
triple templates and iteratively fuse them into the resulting text while filtering and
reranking the results. We first detail the main components of our system (template
extraction, sentence fusion, PLM scoring) and then give the overall description of the
generation algorithm.

Template Extraction We collect a set of templates for each unique predicate. We
use two approaches: (a) handcrafting the template manually for each predicate in
the training set and (b) automatically extracting the template from the lexicalizations
of the examples in the training set. For unseen predicates, we add a single fallback
template: The <predicate> of <subject> is <object>.

Sentence Fusion We train a model for the task of sentence fusion, i.e., combining
sentences into a coherent text (Barzilay andMcKeown, 2005). To construct the training
data for the model, we select pairs of examples (X, X ′) and their corresponding text
descriptions (Y, Y ′) from the original training set such that the examples consist of
(k, k+1) triples and have k triples in common. This leaves us with an extra triple xk+1

present only in X ′. For each training example, we use the concatenated sequence
Y lex(xk+1) as a source and the sequence Y ′ as a target, where lex(xk+1) denotes
lexicalizing the triple xk+1 using an appropriate template. As a result, the model
learns to integrate Y and xk+1 into a single coherent expression.

48

Figure 3.1: A single iteration of our algorithm for iterative D2T generation. In Step 1,
the template for the triple is selected and filled. In Step 2, the sentence is fused with
the template. In Step 3, the result for the next iteration is selected from the beam by
filtering and language model scoring.

PLM Scoring For re-ranking the text, we use an additional component for com-
puting text fluency, which we refer to as LMScorer. As described in Section 2.2.7,
we use perplexity of the text under a a PLM, computing the score of the output text
Y composed of tokens (y1, . . . , yn) as a geometric mean of the token conditional
probability:

score(Y) =
⎛⎝ n∏︂

i=1
P (yi|y1, . . . , yi−1)

⎞⎠ 1
n

. (3.1)

Generation Algorithm The input of the algorithm (Figure 3.1) is a set of T ordered
triples. First, we lexicalize the triple x0 to get the output text Y0 by filling the available
templates and using the template with the best score from LMScorer. In each of the
following steps i = (1, . . . , T − 1), we lexicalize the triple xi and concatenate it with
Yi−1. To improve the fluency of the text, we use the sentence fusion model with beam
search to produce k hypotheses. We filter and re-rank the hypotheses (see the next
paragraph), getting Yi for the next step. The output is the text YT −1 from the final
step.

Filtering and Re-ranking In each decoding step, we remove hypotheses in the
beam missing any entity from the input data using a simple heuristic based on string
matching. We re-score the remaining hypotheses in the beam with LMScorer and
set the hypothesis with the best score as Yi. In case there are no sentences left in
the beam after the filtering step, we let Yi be the text in which the lexicalized xi is
appended after Yi−1 without sentence fusion, ensuring the semantic accuracy of the
text.

49

dataset method predicate example #1 example #2

WebNLG extracted foundedBy o was the founder of s . s was founded by o .
E2E extracted area+food s offers o2 cuisine in the o1 . s in o1 serves o2 food.
E2E manual near s is located near o . o is close to s .

Table 3.4: Examples of templates we used in our experiments. The markers s and o
are placeholders for the subject and the object, respectively (E2E templates contain
two objects). The templates for the single predicates in the WebNLG dataset and the
pairs of predicates in the E2E dataset are extracted automatically from the training
data; the templates for the single predicates in E2E are created manually.

3.2.3 Implementation

Template Extraction We experiment with the WebNLG and E2E datasets (see
Section 2.2.6). For WebNLG, we extract the templates from the training examples
containing only a single triple. In the E2E dataset, there are no such examples;
therefore, we first extract the templates for pairs of predicates, using them as a starting
point for the algorithm to leverage the lexical variability in the data (manually filtering
out the templates with semantic noise). We also create a small set of templates for
each single predicate manually, using them in the subsequent steps of the algorithm.7

See Table 3.4 for examples of templates we used in our experiments.

Sentence Fusion Model We base our sentence fusion model on the text-editing
model LaserTagger (Malmi et al., 2019), which is a PLM based on BERT (Devlin et al.,
2019). LaserTagger generates outputs by tagging inputs with edit operations (KEEP
a token, DELETE a token, and ADD a phrase before the token), which makes it suitable
for tasks where the output highly overlaps with the input. An important feature of
LaserTagger is its limited output vocabulary size, consisting of k most frequent
(possibly multi-token) phrases used to transform inputs to outputs in the training
data. After the vocabulary is precomputed, all infeasible examples in the training data
are filtered out. At the cost of limiting the number of training examples, this filtering
makes the training data cleaner by removing outliers. The limited vocabulary also
makes the model less prone to hallucination errors.

LMScorer As the LMScorer backend, we use the pre-trained GPT-2 language
model (Radford et al., 2019) from the Huggingface Transformers (Wolf et al., 2019).
We compute the perplexity scores using the lm-scorer8 package.

7In the E2E dataset, the data is in the form of key-value pairs. We transform the data to RDF triples
by using the name of the restaurant as a subject and the rest of the pairs as predicate and object. This
creates n − 1 triples for n pairs.

8https://github.com/simonepri/lm-scorer

50

https://github.com/simonepri/lm-scorer

WebNLG E2E

BLEU NIST METEOR ROUGEL BLEU NIST METEOR ROUGEL

baseline 0.277 6.328 0.379 0.524 0.207 3.679 0.334 0.401
sent. fusion 0.353 7.923 0.386 0.555 0.252 4.460 0.338 0.436
zero-shot 0.288 6.677 0.385 0.530 0.220 3.941 0.340 0.408
SFC 0.524 - 0.424 0.660 0.436 - 0.390 0.575
T5 0.571 - 0.440 - - - - -

Table 3.5: Results of automatic metrics on the WebNLG and E2E test sets.

3.2.4 Experiments

Baseline For the baseline, we concatenate the best templates according to LMScorer
without applying the sentence fusion (i.e., always using the fallback).

Sentence Fusion For the sentence fusion experiments, we use LaserTagger with
the autoregressive decoder with a beam of size 10. We use all reference lexicalizations
from WebNLG and E2E datasets and the vocabulary size V = 100, following our
preliminary experiments. We finetune the model for 10,000 updates with batch size 32
and learning rate 2 × 10−5. For the beam filtering heuristic, we check for the presence
of entities by simple string matching in WebNLG; for the E2E dataset, we use a set of
regular expressions from Dušek et al. (2019). We process the triples in their default
order.

Zero-shot Generation Additionally, we conduct a zero-shot experiment. We train
the sentence fusion model with the same setup, but instead of the in-domain datasets,
we use a subset of the balanced-Wikipedia portion of the DiscoFuse dataset (Geva
et al., 2019). We keep only the discourse types relevant to our use case,9 which leaves
us with >2M examples, i.e., two orders of magnitude more than in our D2T generation
datasets, but lower variability of discourse connectives.

3.2.5 Results

Accuracy vs. Fluency On lexical similarity metrics (Table 3.5), our system lags
behind the state-of-the-art approaches selected for comparison: the Semantic Fidelity
Classifier (SFC; Harkous et al., 2020) and the finetuned T5 model (T5; Kale and Rastogi,
2020b). However, both the fusion and the zero-shot approaches show improvements

9The types we keep are PAIR_ANAPHORA, PAIR_NONE, SINGLE_APPOSITION, SINGLE_RELATIVE,
SINGLE_S_COORD*, SINGLE_S_COORD_ANAPHORA*, SINGLE_VP_COORD*. For the discourse types with an
asterisk, we only keep the examples with the connectives ”and” or ”, and”.

51

Triples (Albert Jennings Fountain, deathPlace, New Mexico Territory); (Albert Jennings Fountain,
birthPlace, New York City); (Albert Jennings Fountain, birthPlace, Staten Island)

Step #0 Albert Jennings Fountain died in New Mexico Territory.
Step #1 Albert Jennings Fountain, who died in New Mexico Territory, was born in

New York City.
Step #2 Albert Jennings Fountain, who died in New Mexico Territory, was born in New York

City, Staten Island.

Reference Albert Jennings Fountain was born in Staten Island, New York City and died in the
New Mexico Territory.

Table 3.6: An example of correct behavior of the algorithm on the WebNLG dataset.
Newly added entities are underlined, the output from Step #2 is the output text.

over the baseline. It is also important to note that our approach ensures zero en-
tity errors by definition: we fill the entities verbatim into the templates, and if an
entity is missing in the whole beam, we use a fallback instead (although semantic
inconsistencies can still occur, e.g., if a verb or function words are missing).

Error Analysis The fused sentences in the E2E dataset, where all the objects are
related to a single subject, often lean towards compact forms, e.g., Aromi is a family
friendly chinese coffee shop with a low customer rating in riverside. On the contrary,
the sentence structure in WebNLG mostly follows the structure from the templates,
and the model makes minimal changes to fuse the sentences. See Table 3.6 for an
example of the system output. Of all steps, 28% are fallbacks (no fusion is performed)
in WebNLG and 54% in the E2E dataset. The higher number of fallbacks in the E2E
dataset can be explained by a higher lexical variability of the references, together
with a higher number of data items per example. This variability makes it harder for
the model to maintain the text coherency over multiple steps.

Templates On average, there are 12.4 templates per predicate in WebNLG and
8.3 in the E2E dataset. In cases where the set of templates is more diverse, e.g., if
the template for the predicate country has to be selected from {<subject> is situated
within <object>, <subject> is a dish found in <object>}, LMScorer helps to select the
semantically accurate template for the specific entities. We note that the literal
insertion of entities into the templates can be too rigid in some cases, e.g., Atatürk
Monument (İzmir) is made of “Bronze”.

Zero-shot Experiments The zero-shot model trained on DiscoFuse is able to
correctly pronominalize or delete repeated entities and join the sentences with con-
junctions, e.g. William Anders was born in British Hong Kong, and was a member of the
crew of Apollo 8. While the model makes only limited use of sentence fusion, it makes
the output more fluent while keeping strong guarantees of the output accuracy.

52

3.2.6 Discussion

Fixed Triple Order LaserTagger does not allow arbitrary reordering of words in
the sentence, which can limit the output fluency. Grajcar (2023) expands upon our
approach by using Felix, a text-editing model that is capable of arbitrary reordering
of words in the sentence (Mallinson et al., 2020). As noted by Grajcar (2023), the order
is indeed more flexible with Felix, but the quality of the outputs is still limited by the
abilities of text-editing models.10 In Section 3.3, we use an ordering module along with
autoregressive PLMs, showing that the explicit ordering step leads to improvements
in output quality.

Sentence Fusion A major issue with sentence fusion is deciding when to apply
it. In our approach, we rely on the implicit knowledge of the model learned from in-
domain training data, which often leads to outputs that are too compact. In Section 3.3,
we thus introduce an aggregation module which explicitly decides which facts should
be mentioned together in a sentence. We also note that the term sentence fusion is
not accurate as the sentences are sometimes kept separate; this is why we later opt
for using a more generally applicable term paragraph compression (cf. Section 3.3).

Benefits of Our Approach Our system generates outputs that are suboptimal in
fluency when compared with larger models. However, certain unique features make
our approach still attractive. Firstly, the approach guarantees the presence of the
entities in the output, which is not guaranteed by any approach relying on a language
model (LM) in the final step. Our approach also helps with direct control over the
generative process. For example, one can accept or reject the changes at each step
or build a set of custom rules for individual edit operations on specific tokens. This
possibility can be useful for fine-grained hallucination control (Rebuffel et al., 2022;
Chen et al., 2023a) and increasing the robustness of the model in a production system
(Heidari et al., 2021; Wang et al., 2023d).

3.3 Pipeline of Text-to-Text Neural Modules

This section is based on the paper Neural Pipeline for Zero-Shot Data-to-Text Generation
(Kasner and Dušek, 2022), joint work with Ondřej Dušek, published in the Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (ACL
2022).

10With increasing capabilities of autoregressive models, the main advantage of text-editing models
is their speed, especially for tasks where only minor edits are needed (Malmi et al., 2022).

53

In this section, we further develop the approach from Section 3.2 for generating
semantically accurate text from structured data. The main limitation of the previous
approach, based on iterative transformations of simple templates, was the limited
fluency of the output texts. To improve text fluency, we propose using autoregressive
PLMs and adding modules for ordering and aggregation, turning the generation
process into a three-step pipeline (Sections 3.3.2 and 3.3.4). We also propose a way
to make each of these steps trainable on a generic synthetic corpus (Section 3.3.3).
We confirm that on WebNLG and E2E datasets, our approach can get lower rates of
omissions and hallucinations than prior approaches according to a semantic accuracy
metric while achieving levels of lexical similarity comparable to some of the prior
systems; all of this without the need for in-domain training data (Sections 3.3.5
and 3.3.6). Our code and data is available on Github.11

3.3.1 Motivation

Our experiments in Section 3.2 with iterative sentence fusion led to several observa-
tions:

(1) The fixed order of triples limits the expressivity of the model, leading to unnat-
ural outputs.

(2) Using the sentence fusion model on every sentence boundary tends to produce
sentences that are too compact.

(3) Text-editing models underperform state-of-the-art autoregressive models in
terms of output quality.

Following these observations, we improve our approach by (1) inserting a triple-
ordering step in the process, (2) replacing the sentence fusion with paragraph com-
pression, and (3) basing the approach on trainable autoregressive models.

Our approach follows the idea of pipeline-based approaches (see Section 2.2.2).
In particular, our pipeline is inspired by the concept of pipelines based on iterative
improvements of simple templates (Laha et al., 2019) and neural modules (Ferreira
et al., 2019). We focus on the ordering and aggregation steps, which were shown to
improve the quality of D2T generation outputs in domain-specific setups (Moryossef
et al., 2019a,b; Trisedya et al., 2020; Su et al., 2021b).

11https://github.com/kasnerz/zeroshot-d2t-pipeline

54

https://github.com/kasnerz/zeroshot-d2t-pipeline

(William Anders, wasACrewMemberOf, Apollo 8)

(William Anders, birthPlace, British Hong Kong)

(William Anders, birthDate, 1933-10-17)

William Anders was born
on 1933-10-17 in British
Hong Kong. He was a
crew member of Apollo 8.

William Anders was born on 1933-10-17.

William Anders was born in British Hong Kong.

ordering paragraph compression
a

+

<sep>

William Anders was a crew member of Apollo 8.
b

c

aggregation

c

b

c

b

c

b

}
Figure 3.2: A scheme of our approach for zero-shot data-to-text generation from RDF
triples. After a simple transformation of triples to facts, we apply the pipeline of
modules for (1) ordering, (2) aggregation, and (3) paragraph compression. Individual
modules are trained on a large general-domain text corpus and operate over text in
natural language.

In contrast to previous approaches, our pipeline is fully trainable on general-
domain data, i.e., without using any training data from target D2T datasets. By
eliminating the need for human references, we remove the costly and time-consuming
data collection process. At the same time, we also avoid the brittleness of few-shot
approaches, which are sensitive to the choice of finetuning examples (Chen et al.,
2020d; Su et al., 2021a; Chang et al., 2021a).

3.3.2 Method

Here, we provide a formal description of our approach. Similarly to Sections 3.1
and 3.2, we focus on the task of producing a natural language description Y a set of
RDF triples x ∈ X , where each triple x = (s, p, o) describes the relation p between
the entities s and o in the knowledge graph.

Given a set of triples X on the input, we:

(1) transform the triples into facts, i.e., short sentences in natural language,

(2) sort the facts using an ordering module,

(3) insert sentence delimiters between the ordered facts using an aggregation mod-
ule,

(4) input the ordered sequence of facts with delimiters into a paragraph compression
module, which generates the final description Y .

In Sections 3.3.3 and 3.3.4, we show how to implement all these steps without the
need for any in-domain training data.

55

Transforming Triples to Facts The first step in our pipeline involves transforming
each of the input triples x ∈ X into a fact f ∈ F using a transformation T : X →
F . We define a fact f as a single sentence in natural language describing x. The
transformation serves two purposes: (a) preparing the data for the subsequent text-
to-text operations and (b) introducing in-domain knowledge about the semantics of
individual predicates.

Ordering We assume that the default order of triples X is random. Note, however,
that F from the previous step is a set of meaningful sentences. We can use this to
our advantage and apply a sentence ordering module (Barzilay et al., 2001; Lapata,
2003) to maximize the coherency of the paragraph resulting from their concatenation.
The sentence ordering module O(F) produces an ordered sequence of facts: Fo =
{fo1 , . . . , fon}, where o1:n is a permutation of fact indices. An example outcome of
such operation may be ordering adjacently facts mentioning birth date and birth place
of a person, followed by their occupation, as it is shown in Figure 3.2. The ordering
module allows downstream modules to focus only on operations over neighboring
facts.

Aggregation Some facts will be typically mentioned together in a single sentence.
Considering the previous example, occupation is likely to be mentioned separately,
while birth date and birth place are likely to be mentioned together. We make these
decisions using the aggregation module, which takes a sequence of ordered facts Fo as
input and produces a sequence of sentence delimiters A(Fo) = {δo1 , δo2 , . . . , δon−1};
δi ∈ {0, 1}. Unlike previous works (Wiseman et al., 2018; Shao et al., 2019; Shen
et al., 2020; Xu et al., 2021), which capture the segments corresponding to individual
parts of the input as latent variables, we simply insert delimiters into the ordered
sequence of facts to mark sentence boundaries. The output δi = 0 means that the
facts should be aggregated, and their corresponding sentences should be fused. Note
that the markers serve only as a hint for the paragraph compression module, i.e., the
sentences are not actually yet fused in this step.

Paragraph Compression The paragraph compression (PC) module takes as input
the ordered sequence of facts with delimiters Fa = {fo1 , δo1 , fo2 , . . . , δon−1 , fon} and
produces the final text Y . It has two main objectives: (a) fusing related sentences, i.e.,
sentences i and j in between which δi = 0, and (b) rephrasing the text to improve
its fluency, e.g., fixing disfluencies in the templates or replacing noun phrases with
referring expressions. Unlike in text summarization or sentence simplification, the
edits will typically be minor since we aim to preserve the semantics of the text.

56

The Westmeath Examiner is a weekly newspaper in Westmeath, Ireland.

It is located in Westmeath, Ireland.

The Westmeath Examiner is a weekly newspaper.

original paragraph

The Westmeath Examiner is a weekly newspaper.

It was founded in 1882.

It was founded in 1882.

split-and-rephrase

coreference replacement

The Westmeath Examiner is located in Westmeath, Ireland.

The Westmeath Examiner was founded in 1882.
processed paragraph

split
successful

pronouns
resolved

Figure 3.3: The building process of the WikiFluent corpus. We apply a split-and-
rephrase model on each sentence in the paragraph and resolve coreferences in the
split sentences. The result is a set of simple sentences that convey the same meaning
as the original paragraph. The synthesized sentences are used as input in our models;
the original human-written texts are used as ground truth.

3.3.3 WikiFluent Corpus

For training the modules, we need to build a corpus where (1) the input is a set of
simple, template-like sentences, and (2) the output is a fluent text in natural language
preserving the semantics of the input. Here, we propose a way to build such a large-
scale synthetic corpus from English Wikipedia. Our resulting corpus (WikiFluent) is
orders of magnitude larger than in-domain D2T datasets (see Table 3.7) and provides
training data for all the modules in our pipeline.

Data Source For building the WikiFluent corpus (Figure 3.3), we first extracted
934k first paragraphs of articles from aWikipedia dump12 usingWikiExtractor (Attardi,
2015). Wikipedia is commonly used for large-scale pretraining of D2T generation
models, as it provides a source of neutral texts based on factual data (Jin et al.,
2020; Chen et al., 2020b). We used the first paragraphs of Wikipedia entries with
lengths between 30-430 characters, filtering out lists, disambiguations, and malformed
paragraphs. To balance the lengths of inputs, we divided the paragraphs according to
their length into four equally-sized bins (30-130 characters, etc.) and selected 250k
examples from each bin.

12enwiki-20210401-pages-articles-multistream

57

#train #dev #test tok/src tok/tgt sent/src sent/tgt

WebNLG 18,102 870 1,862 26.8 22.6 3.0 1.4
Clean E2E 33,236 4,299 1,847 29.2 22.3 4.2 1.5

WikiFluent-full 915,855 9,346 9,346 52.9 41.1 3.9 2.0
WikiFluent-filtered 700,517 7,149 7,149 45.6 35.4 3.4 1.8

Table 3.7: Number of examples (train / dev / test), the average number of tokens per
source and target, the average number of sentences per source and target (after filling
the templates for the D2T datasets), the total number of templates.

Split-and-Rephrase Split-and-rephrase is the task of splitting a complex sentence
into a sequence of shorter sentences preserving the original meaning (Narayan et al.,
2017). We train13 BART-base (Lewis et al., 2020) for the split-and-rephrase task on
the WikiSplit corpus, containing human-made sentence splits from Wikipedia edit
history (Botha et al., 2018). We split each paragraph into sentences using NLTK (Bird
et al., 2009) and apply the split-and-rephrase model to each sentence. To ensure that
the splits are not deterministic, we choose uniformly randomly between 0-2 recursive
calls. If the sentence cannot be meaningfully split, the model tends to duplicate the
sentence on the output; in that case, we use only the original sentence and do not
proceed with any splitting.

Coreference Replacement The split sentences heavily use referring expressions,
while the facts are presumably self-contained. Therefore, we apply a coreference
resolution model (Lee et al., 2018) from the AllenNLP framework (Gardner et al., 2018)
and we replace referring expressions with their antecedents (e.g., pronouns with
noun phrases). Note that we replace the referring expressions only in the synthesized
sentences, not in the original paragraphs, so that the paragraph compression module
is later implicitly trained to generate referring expressions in the final description.

Filtering To ensure that the generated sentences convey the same semantics as the
original paragraph, we use the RoBERTa model14 (Liu et al., 2019b) finetuned on the
MultiNLI dataset (Williams et al., 2018) for checking the semantic accuracy of the
generated text. Following Dušek and Kasner (2020) (see Section 4.1), we test if the
original paragraph entails each of the synthesized sentences (checking for omissions)
and if the set of concatenated synthesized sentences entails the original paragraph
(checking for hallucinations). In a filtered version of the WikiFluent corpus, we
include only the examples without omissions or hallucinations (as computed by the
model), reducing it to 714k examples (approximately 75% of the original size).

13Following the same setup as for a paragraph compression model (Section 3.3.4).
14https://huggingface.co/roberta-large-mnli

58

https://huggingface.co/roberta-large-mnli

3.3.4 Implementation

This section describes how we implement our pipeline using simple template trans-
formations and neural models trained on the WikiFluent dataset.

Templates We transform triples into facts using a single-triple template ti for
each predicate, analogically to our approach in Section 3.2.3, i.e., using the templates
extracted from the training data. Compared to more complex rule-based template
generation engines (Laha et al., 2019; Heidari et al., 2021; Mehta et al., 2022), the
approach minimizes manual workload and makes it easier to control the quality of
the input for the subsequent steps.

Ordering Model For our ordering model, we use the Simple Pointer model from
Calizzano et al. (2021).15 The model is based on a pretrained BART-base model (Lewis
et al., 2020) extended with a pointer network fromWang andWan (2019). We train the
model using the synthesized simple sentences in the WikiFluent corpus, randomly
shuffling the order of the sentences and training the model to restore their original
order.

Aggregation Model We base our aggregation model on RoBERTa-large (Liu et al.,
2019b) with a token classification head. We input the sequence of ordered facts Fo

into the model, separating each pair of facts foi
with a separator token. The token

classification layer classifies each separator token into two classes {0, 1} correspond-
ing to the delimiter δi. We ignore the outputs for the non-separator tokens while
computing cross-entropy loss. We create training examples for aggregation using
the synthesized sentences in the WikiFluent corpus, in which we set δi = 0 for
the sentences i, i + 1 which are the result of splitting a single sentence and δi = 1
otherwise.

Paragraph Compression Model For the paragraph compression model, we fine-
tune BART-base (Lewis et al., 2020) on theWikiFluent corpus, concatenating the split
sentences on the input and training the model to produce the original, human-written
complex sentences on the output. We add delimiters between the sentences i and
i+1 where δi = 1 using a special token <sep>, which we add to the model vocabulary.
We expect that the model learns to fuse the sentences between which there are no
delimiters on the input. We evaluate how the model learns to respect the order and
aggregation markers in Section 3.3.6.

15For details about the model, please refer to Calizzano et al. (2021).

59

A dam is a barrier
obstructing flowing
water.

A dam is a barrier.

3-stage

2-stage

1-stage

A dam obstructs
flowing water.src

tgt

aggord PC

PC+agg

+

PC+ord+agg

a

b

a b ab aba

b

Figure 3.4: An example illustrating how the individual modules are trained and
subsequently applied as the parts of the pipeline. See Section 3.3.5 for the description
of the ordering model (ord), the aggregation model (agg), and the variants of the
paragraph compression model (PC, PC+agg, PC+ord+agg).

3.3.5 Experiments

We train our pipeline modules on theWikiFluent corpus as described in Section 3.3.4.
Next, we use these modules without any further finetuning for generating descriptions
for RDF triples on the WebNLG and E2E datasets.

Pipeline versions To evaluate individual components of our pipeline, we train
three versions of the paragraph compression model (see Figure 3.4). The models share
the same architecture and targets but differ in their inputs:

• PC – the model takes as an input ordered facts with delimiters (as described in
Section 3.3.2),

• PC+agg – the model takes as an input the ordered facts without delimiters (i.e.,
the aggregation is left implicitly to the model),

• PC+ord+agg – the model takes as an input the facts in random order and
without delimiters (i.e., both ordering and aggregation are left implicitly to the
model).

Correspondingly, we test three versions of the pipeline for the ablation study:

• 3-stage – a full version of the pipeline consisting of the ordering model (ord),
the aggregation model (agg), and the PC model,

• 2-stage – a pipeline consisting of the ord model and the PC+agg model,

• 1-stage – a single stage consisting of the PC+ord+agg model.

3.3.6 Evaluation

We evaluate outputs from the {1,2,3}-stage variants of our pipeline using automatic
metrics, and we perform a detailed manual error analysis of the model outputs. We
also evaluate the performance of the ordering and aggregation modules and the ability
of the PCmodule to follow the content plan. Finally, we include an intrinsic evaluation
of our modules on the WikiFluent test set.

60

WebNLG E2E
B M O H B M O H

Copy 37.18 38.77 0.000 0.000 24.19 34.89 0.000 0.000

UPF-FORGe∗ 38.65 39.00 0.075 0.101 - - - -
Melbourne∗ 45.13 37.00 0.237 0.202 - - - -
Ke et al. (2021)†∗ 66.14 47.25 - - - - - -
Laha et al. (2019)† 24.80 34.90 - - - - - -

TGen∗ - - - - 40.73 37.76 0.016 0.083
Harkous et al. (2020)†∗ - - - - 43.60 39.00 - -

full
3-stage 42.92 39.07 0.051 0.148 36.04 36.95 0.001 0.001
2-stage 42.90 39.28 0.043 0.125 35.84 36.91 0.001 0.001
1-stage 39.08 38.94 0.071 0.204 30.81 36.01 0.009 0.122

filtered
3-stage 43.19 39.13 0.152 0.073 35.88 36.95 0.001 0.001
2-stage 43.49 39.32 0.146 0.096 36.01 36.99 0.001 0.001
1-stage 42.99 38.81 0.202 0.093 34.08 36.32 0.012 0.050

Table 3.8: Automatic metrics on the WebNLG and E2E datasets. B = BLEU, M =
METEOR, O = omissions / # facts, H = hallucinations / # examples. The systems
marked with asterisk (*) are trained on in-domain data. The results for the systems
marked with † are taken from the respective works. Boldface denotes the best variant
of our zero-shot system.

Automatic Metrics Following prior work, we use BLEU (Papineni et al., 2002)
and METEOR (Banerjee and Lavie, 2005) to evaluate the outputs against the human
references.16 We also evaluate the number of omission and hallucination errors (i.e.,
facts missing or added, respectively) using our automatic metric based on the RoBERTa
model (Liu et al., 2019b) described in Section 4.1.

We include a diverse set of baselines for comparison. Copy denotes the baseline
of copying the facts without further processing. For WebNLG, we further compare
our systems with the results of:

• UPF-FORGe and Melbourne – systems (grammar-based and supervised, re-
spectively) from the first run of WebNLG Challenge (Gardent et al., 2017b),

• Ke et al. (2021) – a state-of-the-art system with a structure-aware encoder and
task-specific pretraining,

• Laha et al. (2019) – a zero-shot D2T generation system.

For E2E, we compare our systems with the results of:

• TGen (Dušek and Jurčíček, 2015) – the baseline system for the E2E Challenge
(Dušek et al., 2020),

16We use the implementation from https://github.com/tuetschek/e2e-metrics.

61

https://github.com/tuetschek/e2e-metrics

WebNLG E2E
H I O R G H I O R G

full
3-stage 3 39 2 2 16 0 1 0 0 17
2-stage 8 36 1 5 16 1 1 0 1 23
1-stage 28 27 6 10 20 17 0 1 79 45

filtered
3-stage 2 37 2 1 15 0 0 0 0 17
2-stage 5 32 1 2 14 0 0 0 0 11
1-stage 8 40 6 6 16 11 2 1 41 22

Table 3.9: Number of manually annotated errors on 100 examples: H = hallucinations,
I = incorrect fact merging, O = omissions, R = redundancies, G = grammar errors or
disfluencies.

• Harkous et al. (2020) – a state-of-the-art supervised system on the cleaned
version of E2E data.

The automatic evaluation (Table 3.8) shows that our systems consistently out-
perform the Copy baseline (e.g., ∼12 BLEU points for E2E), which is already strong
thanks to our manually curated set of templates.17 Automatic scores also suggest
that our systems are comparable with some older supervised systems, although they
underperform the state-of-the-art supervised systems.

The 2-stage system is generally on par with the 3-stage system, which indicates
that explicit aggregation using the agg model may not be necessary. However, a
separate aggregation module allows one to control the aggregation step explicitly.
The models using the filtered version of the corpus generally produce better results,
although they also bring in a larger number of omissions.

Manual Error Analysis We manually examined 100 model outputs, counting
the number of semantic errors (hallucinations, omissions, incorrect fact merging,
redundancies) and grammatical errors. The results are summarized in Table 3.9.

The 1-stage model (which has to order the facts implicitly) tends to repeat the
facts in the text (especially in E2E) and produces frequent hallucinations. These
problems are largely eliminated with the 2-stage and 3-stage models, which produce
almost no hallucinations or omissions.

However, the outputs on WebNLG for all systems suffer from semantic errors
resulting from merging unrelated facts. This mostly happens with unrelated predi-
cates connected to the same subject/object (e.g., “X was born in Y”, “X worked as Z”
expressed as “X worked as Z in Y”). On the E2E data, where predicates share the same
subject, the outputs are generally consistent, and the 2-stage and 3-stage models

17On WebNLG, Copy achieves 37.18 BLEU points, compared to 24.80 BLEU points of the full system
of Laha et al. (2019), which uses automatic template generation.

62

Input (Allen Forrest; background; solo singer), (Allen Forrest; genre; Pop music), (Allen Forrest;
birthPlace; Dothan, Alabama)

Templ. Allen Forrest is a solo singer. Allen Forrest performs Pop music. Allen Forrest was
born in Dothan, Alabama.

Model Allen Forrest is a solo singer who performs Pop music. He was born in Dothan,
Alabama.

Human Born in Dothan, Alabama, Allen Forrest has a background as a solo singer and was a
pop artist.

Input name[Wildwood], eatType[restaurant], food[French], area[riverside], near[Raja Indian
Cuisine]

Templ. Wildwood is a restaurant. Wildwood serves French food. Wildwood is in the riverside.
Wildwood is near Raja Indian Cuisine.

Model Wildwood is a restaurant serving French food. It is in the riverside near Raja Indian
Cuisine.

Human A amazing French restaurant is called the Wildwood. The restaurant is near the Raja
Indian Cuisine in riverside. They love kids.

Table 3.10: Example outputs of our model (3-stage, filtered). For each example, we
show the input triples, the intermediate templates, the output from the model, and
the corresponding human reference. Note that in contrast to the model output, the
reference contains a typo (“A amazing”) and its style is generally less constrained.

exhibit almost no semantic errors. Grammar errors and disfluencies stem mainly
from over-eager paragraph compression or from artifacts in our templates and are
relatively minor (e.g., missing “is” in “serves French food and family-friendly”). See
Table 3.10 for an example of model output.

Content Planning We manually evaluate how the PC model follows the content
plan (i.e., keeping the predefined order and aggregating the sentences according to
the delimiters) using 100 randomly chosen examples with more than one triple on
WebNLG and E2E. We find that the model follows the content plan in 95% and 100% of
cases, respectively. The incorrect cases include mainly a fact not properly mentioned
or an extra boundary between sentences without a separator. We can thus conclude
that the pretraining task successfully teaches the PC model to follow a given content
plan.

3.3.7 Discussion

Ordering and Aggregation As we have shown, reducing the task to fusing neigh-
boring sentences (by pre-ordering the triples with a dedicated module) makes the
model less prone to producing omissions or hallucinations. The claim may hold even
with larger language models, although additional experiments are needed to confirm

63

this hypothesis. As shown in Su et al. (2021b), another advantage of having an explicit
order is that we can manually change the order to control the output on a fine-grained
level. We have also shown that explicit aggregation may not necessarily improve
output fluency, although it can still help with more explicit controllability.

Possible Extensions Beyond generating factual information from English knowl-
edge graphs, one can imagine applying the approach to more complex cases of factual
D2T generation, for example by prepending a context selection module for table-
to-text generation (Parikh et al., 2020; Cheng et al., 2022) or by using templates for
logical formulas in logical table-to-text generation (Chen et al., 2020a,c). That being
said, we are unaware of a follow-up work that would go in this direction, perhaps due
to the harder scalability of such a modularized system. For applying the approach to
other languages, a go-to approach would be using the respective language edition of
Wikipedia to train a sentence splitting model along the lines of Botha et al. (2018),
followed by building the respective language variant of the WikiFluent corpus.

Can We Do Without the Templates? Hand-crafting the templates as the first
step somewhat lessens the advantages of our data-driven approach. For this reason,
we show in Section 6.1 that we can replace this step with a model finetuned on a
suitable dataset and get better results on lexical similarity metrics. Alternatively, we
can also replace this step by prompting an LLM, as shown in Xiang et al. (2022) and
Saha et al. (2023). In this case, however, special care needs to be taken to ensure a
consistent style and semantic accuracy of model outputs (cf. Section 6.2).

3.4 Conclusion

We introduced three approaches for data-driven D2T generation focused on generating
descriptions of a knowledge graph. In Section 3.1, we showed that finetuning of a
PLM can achieve satisfactory results with minimal effort given a moderate amount of
in-domain training data. Subsequently, we identified the shortcomings of such an
approach, which we addressed in Sections 3.2 and 3.3. First, we focused on improving
the need for costly in-domain training data. We reduced the amount of data necessary
in Section 3.2 by limiting the model vocabulary and eliminated the need for in-domain
data completely in Section 3.3 by using general-domain training data. Second, we
focused on improving the semantic accuracy of the system: we ensured the presence
of entities in the output (Section 3.2) and showed how to balance semantic accuracy
with fluency (Section 3.3). We also discussed the benefits of our approaches in light
of recent progress, such as better controllability and output consistency.

64

4
Evaluating Semantic Accuracy

As discussed in Section 2.2.7, it is essential that the texts based on the input data are
faithful to the data, i.e., semantically accurate. However, automatically evaluating this
aspect using automatic metrics is not trivial, which is an issue that we raised in RQ4.
To address this issue, this chapter introduces two metrics for evaluating the semantic
accuracy of data-to-text (D2T) generation. The metrics are predominantly based on
pretrained language models (PLMs) and generic text-to-text operations, which makes
our approaches applicable to various tasks and domains.

In Section 4.1, we first describe a metric suitable for D2T generation tasks where
all the facts in the input data should be mentioned. The metric is based on an off-
the-shelf PLM for natural language inference (NLI), i.e., classifying text entailment,
which we repurpose for detecting omissions and hallucinations in the output text (see
Section 2.2.7). Similarly to Chapter 3, we address the input format representation (RQ2)
using simple templates for each data item. We show that our metric correlates well
with human judgments and that in some cases the metric even provides judgments
that are more accurate.

In Section 4.2, we focus on detecting semantic errors in D2T generation from
complex tabular data. We propose a metric based on a PLM-based tagger, that can
mark individual tokens with fine-grained error categories such as incorrect entity,
incorrect number, or non-checkable fact. To provide relevant information from the
structured data for the tagger, we combine the neural tagger with a rule-based fact
generator and a neural-based retriever. The metric ranked first out of four automatic
metrics in the Shared Task on Evaluating Accuracy in Generated Texts (Thomson and
Reiter, 2021).

65

4.1 Detecting Omissions and Hallucinations

This section is based on the paper Evaluating Semantic Accuracy of Data-to-Text
Generation with Natural Language Inference (Dušek and Kasner, 2020), joint work with
Ondřej Dušek, published in the Proceedings of the The 13th International Conference
on Natural Language Generation (INLG 2020). The experimental part was done by
Ondřej Dušek; the author of this thesis came up with the initial idea and wrote the
paper. The paper has received the award for the best short paper at INLG 2020.

In this section, we propose a new metric for evaluating the semantic accuracy of
D2T generation. Our metric is based on a neural model pretrained for NLI. We use
the NLI model to check textual entailment between the input data and the output text
in both directions, allowing us to reveal omissions or hallucinations (Sections 4.1.2
and 4.1.3). We demonstrate that even without any extra model training and with
minimal handcrafting, our approach achieves high accuracy (>90%) on the E2E dataset
and produces useful results (>75% accuracy) on the more challengingWebNLG dataset.
Additionally, we show with manual error analysis that some instances marked as
faults of our metric were in fact assessed correctly by our metric (Section 4.1.4). The
experimental code for our metric is available on GitHub.1

4.1.1 Motivation

In Section 2.2.7, we described two ways in which the semantic accuracy of D2T
outputs can be violated: the text may be missing some data (omission) or contain
extra information not supported by the data (hallucination). Since state-of-the-art
neural D2T generation models are prone to both of these (Gehrmann et al., 2018;
Ferreira et al., 2019; Dušek et al., 2020), recognizing the violations of semantic accuracy
is essential for proper system evaluation and further development. However, it is
difficult for handcrafted heuristics to cover all edge cases, as minor changes in wording
may cause major differences in the meaning of the text. Human evaluation, on the
other hand, is expensive and difficult to scale.

We note that if we transform individual data items to short sentences (facts), we
can check whether each fact is entailed by the generated text. Specifically, if we find
that the given fact is not entailed by the generated text, we can report an omission
of the corresponding data item. Vice versa, if we concatenate all the facts and these

1https://github.com/ufal/nlgi_eval

66

https://github.com/ufal/nlgi_eval

Figure 4.1: An example of evaluating the output from a D2T system with our metric.
The generated text is used as a premise (P) to check for omissions and as a hypothesis
(H) to check for hallucinations. TheNLI model generates probabilities for contradiction
(C), neutral (N) and entailment (E).

do not entail the generated text, we can report a hallucination in the generated text.
For this approach, we need only two ingredients: (1) a way to convert individual data
items to facts and (2) a model that can assess if a text entails a fact. We formalize our
approach in the next section.

4.1.2 Method

We are given a set of RDF triples x ∈ X , where each triple x = (s, p, o) describes the
relation p between the entities s and o, and the corresponding natural language de-
scription Y . Our task is to assess whether Y mentions all the triples in X . Additionally,
we should also check whether the text mentions any extra information.

Data Preprocessing Throughout Chapter 3, we used simple templates for trans-
forming individual triples to facts, i.e., simple sentences capturing the triple meaning.
We use the same method here, considering two cases:

(1) Default: We use a specific template for each predicate, using templates that are
either handcrafted or extracted from the NLG systems’ training data.

(2) Backoff: We use only a single, universal “backoff” template for all the facts, in
the form: The <predicate> of <subject> is <object>.

Natural Language Inference NLI is a sequence classification task that takes two
inputs—a hypothesis and a premise—and produces one of the possible outputs: the
hypothesis is entailed by (follows from) the premise, contradicts the premise, or their
relation is neutral. Neural models for NLI (Zhang et al., 2020b; Liu et al., 2019a,b)
have already reached near-human levels of performance, making them suitable for
evaluating the output of abstractive summarization systems (Maynez et al., 2020).

67

Checking Semantic Accuracy with NLI We can use an NLI model for assessing
the semantic accuracy of generated texts. Consider the two input facts from Figure 4.1:
F ={“Blue spice is a pub”, “Blue Spice is located in the riverside”} and the generated text:
Y =“You can bring your kids to Blue Spice in the riverside area.” We propose using an
NLI model for checking if the semantic information implied by F and Y is equal. In
this case, the model should detect an omission, i.e., that the first fact is not entailed by
the text (there is no mention of Blue Spice being a pub), and also a hallucination, i.e.,
that the text is not entailed by the facts (the information about kids is superfluous).

We achieve this by using the NLI model to check for entailment in two directions:

(1) To check for omissions, we use the whole generated text as a premise and
sequentially feed each fact as a hypothesis to the NLI model. Any failed NLI
check is considered an omission.

(2) To check for hallucinations, we concatenate all facts as a premise and feed the
generated text as a hypothesis to the NLI model. If this NLI check fails, the text
is considered to contain hallucination. This step cannot be split into simpler
NLI checks.

The final output of our metric is either 4-way (denoted as Fine) or 2-way (denoted
as Rough):

• Fine: We output the probabilities of 4 categories: OK (i.e., all NLI checks passed),
omission, hallucination, or omission+hallucination (based on the failed checks).
The 4-way output is more useful for system evaluation since we can distinguish
whether the system tends to hallucinate or omit information.

• Rough: The three failure modes are combined into not_OK. The 2-way output
corresponds more to usage inside an D2T generation system for output rerank-
ing or filtering, where any incorrect output should be penalized or filtered
out.

Additionally, we compute a confidence score of the model as the minimum of all
the entailment probabilities.

68

4.1.3 Experiments

For our NLI model, we use the roberta-large-mnli2 checkpoint of the pretrained
RoBERTa model (Liu et al., 2019b), which was finetuned on the MultiNLI dataset
(Williams et al., 2018). We use the model as is, without any further training on
domain-specific data. Given a premise text and a hypothesis text, the NLI model
produces a probability distribution over three results: contradiction, neutral, and
entailment (see Section 4.1.2). We consider a NLI check as passed if the probability
for entailment is the highest of the three.

We experiment with the WebNLG and E2E datasets, similarly as in Chapter 3 (see
Section 2.2.6 for the descriptions of the datasets). Since both datasets were used in
shared tasks, we can compare the outputs of our system with the respective measures
of semantic accuracy:

• For WebNLG, we compare our metric with crowdsourced human ratings of
semantic adequacy (Shimorina et al., 2019). In particular, we use the answers
for the question: “Does the text correctly represent the meaning in the data?”,
where the human annotators used a three-point Likert scale (1 = Incorrect, 2 =
Medium, 3 = Correct). The answers are averaged over multiple annotators. In
our experiments, we consider a sentence correct if it achieved a human rating
of 2.5 or higher.3

• For E2E, we compare our metric to the results of the handcrafted automatic
script which was used in the E2E challenge (Dušek et al., 2020).4

We experiment with the Default and Backoff approaches to transforming triples
to facts, as described in Section 4.1.2. For WebNLG, we obtained templates by delexi-
calizing human references for single-triple examples from the WebNLG training data.
For E2E, we handcrafted eight templates for each predicate in the dataset.5

2https://huggingface.co/roberta-large-mnli
3We also tried a threshold of 2.0, with slightly worse results.
4While the E2E challenge did include crowdsourced evaluation of semantic accuracy, the results

were unreliable, overestimating the number of errors (Dušek et al., 2020).
5For each predicate in WebNLG, we choose randomly if more templates are found and use the

backoff if no templates are found. Note that for E2E, we did not use the complex templates extracted
from the training data (cf. Chapter 3).

69

https://huggingface.co/roberta-large-mnli

WebNLG E2E
A R P F1 ρ Af Ar R P F1

Default 0.775 0.772 0.796 0.784 0.628 0.911 0.933 0.895 0.910 0.903
Backoff 0.768 0.760 0.793 0.776 0.637 0.846 0.874 0.913 0.768 0.834

Table 4.1: WebNLG and E2E results, compared to crowdsourced human ratings and
the automatic evaluation script, respectively (A = accuracy, Af = Fine accuracy, Ar =
Rough accuracy, R = recall, P = precision, F1 = F-measure, ρ = Spearman correlation
of confidence scores with human scores).

4.1.4 Evaluation

We evaluate our metric in terms of accuracy (A), precision (P), recall (R), and F1-
measure6 (F1) with respect to the corresponding ground truth outputs. For WebNLG,
we additionally compute Spearman correlation coefficient (ρ) of themodel’s confidence
scores with the average human scores. For E2E, we evaluate the accuracy for both
the Fine (Af) and Rough (Ar) variants described in Section 4.1.2, making use of the
fact that the automatic script reports both omissions and hallucinations. The scores
for both datasets are summarized in Table 4.1.

We additionally perform a manual error analysis on a random sample of 100 error
examples for each dataset, i.e., examples where our metric gave a different assessment
from the ground truth.

WebNLG Analysis The overall scores (between 77-80% for all measures) show that
our metric deviates quite a lot from human judgments. Our manual error analysis
indicates several potential sources of discrepancies:

(1) The human annotation is somewhat noisy—many correctly rendered outputs
do not reach the 2.5 threshold, while some incorrect ones do.

(2) The human annotators also tend to give lower scores to accurate but ungram-
matical or poorly organized texts, while our metric tends to rate these texts as
OK.

(3) Imprecise templates can confuse the NLI (e.g., for the predicate nationality,
our extracted template is <subj> was <obj>, which works well with values such
as French, but not with United States). This is a weak point of our metric, as
illustrated by the very small performance difference between the Default and
Backoff setups. However, the issue can be mitigated by a better selection of the
templates from training data, e.g., using language-model scoring.

6We treat not_OK samples as positive since we focus on detecting errors.

70

The Spearman correlation of our model’s confidence scores with the average
human scores is around 0.63 (p <1e-10). This is similar to n-gram-based metrics on
this data (Shimorina (2018) reports 0.59 for BLEU and 0.73 for METEOR), but unlike
these metrics, our approach does not require human-written reference texts.

Moreover, our re-examination shows that almost half of the error examples (42
out of 100) were in fact correctly classified by our metric (i.e., their crowdsourced
human annotation was incorrect), so the true performance is most likely higher than
the reported numbers.

E2E Analysis The results for the E2E dataset are very good compared to the
WebNLG dataset, with over 90% agreement with the handcrafted script. This can
be attributed to lower lexical variability and less noisy texts, as well as to the better
quality of the handcrafted templates (the difference between the Default and Backoff
setups is much more pronounced here). The main issues identified by our error
analysis are:

(1) Problems in the interpretation of some values, e.g., price range=less than £20
is verbalized as “cheap” or family-friendly=no as “adult-only”. These cases are
classified as not_OK by the NLI model.

(2) Missing or over-greedy patterns in the slot error script, causing annotation
errors.

(3) Edge cases: some expressions cannot be interpreted in a straightforward way,
e.g., “high restaurant” for pricerange=high is deemed OK by the NLI but not by
the slot error script.

(4) Expressions in the outputs that do not correspond to input facts, such as “with
full service”, are considered hallucinations by the NLI but ignored by the slot
error script.

Again, we consider about half of the error examples (45 out of 100) as correctly
classified by our metric, and thus our metric’s performance is probably higher than
the reported values.

4.1.5 Discussion

Comparison to Other Metrics Automatic metrics for assessing semantic accuracy
of text are mostly reference-based (Zhao et al., 2019; Dhingra et al., 2019; Sellam
et al., 2020; Rony et al., 2022) or targetting tasks with non-structured inputs such as
summarization, paraphrasing, or fact verification (Honovich et al., 2022; Zha et al.,
2023), which makes their use-cases different from ours. The closest alternative to
our metric is Data-QuestEval (Rebuffel et al., 2021): a metric based on a question

71

generation and question answering model, which is trained on a synthetic dataset
containing structured data on the input. In the future, a more flexible metric for
evaluating semantic accuracy could be based on large language models (Zhao et al.,
2023c; Sottana et al., 2023; Kocmi and Federmann, 2023b), a topic to which we return
in Section 6.2.

Limitations Perhaps surprisingly, the main bottleneck of the metric is not in the
capabilities in NLI model. Although the NLI model is not perfect, Chen and Eger
(2022) have shown that out-of-the-box NLI models are generally better and more
robust metrics than specially trained approaches. In many cases, however, converting
the structured data to a format suitable to PLM can be non-trivial. In this respect, we
would like to refer to the discussion on automating template generation with PLMs
and large language models (LLMs) in Section 3.3.7.

4.2 Token-Level Error Classification

This section is based on the paper Text-in-Context: Token-Level Error Detection for
Table-to-Text Generation (Kasner et al., 2021), joint work with Simon Mille and Ondřej
Dušek, published in the Proceedings of the 14th International Conference on Natural
Language Generation (INLG 2021). The work describes our submission to the Shared
Task on Evaluating Accuracy in Generated Texts. The project was led by the author
of the thesis, Simon Mille provided the rule-based generator and wrote its description,
Ondřej Dušek supervised the project.

In this section, we present an automatic metric for fine-grained detection of
semantic accuracy errors in D2T generation outputs. In contrast with the example-
level metric introduced in Section 4.1, the metric we introduce here can detect the
hallucination errors on the level of individual tokens.7 The metric combines a rule-
based D2T generation system and PLMs (Section 4.2.3). We first use a rule-based D2T
generation system to generate all facts that can be derived from the input as short
natural-language sentences (cf. Section 4.1). For each sentence we evaluate, we select
a subset of relevant facts by measuring their semantic similarity with the examined
sentence. For annotating erroneous tokens, we finetune a pretrained language model
for token-level classification, using the annotated data with the relevant facts in the
context as the ground truth.

7For the purpose of this section, the term token denotes the output of word-level tokenization as
implemented in NLTK (Bird et al., 2009), mostly consisting of individual words or punctuations signs.

72

On the test set of the Shared Task on Evaluating Accuracy in Generated Texts
(Thomson and Reiter, 2021), we achieve 69% recall and 75% precision with a model
trained on a mixture of human-annotated and synthetic data, placing first out of
four submissions in the track for automatic metrics (Section 4.2.4). The code for our
experiments is available on Github.8

4.2.1 Motivation

In Section 4.1, we presented a metric for detecting semantic errors in D2T generation
at the level of individual data items. The metric is well-suited for cases where the
text should mention all the data on the input, as it can report individual missing items
(omissions). However, it is less suitable for detecting incorrect information in the text
(hallucinations), as it can give only a single “hallucination score” for the entire text.
This is problematic for the texts generated from complex data, where the omissions
are not relevant (since we do not verbalize all the input data), but the system can still
produce numerous hallucinations.

An example of a dataset with complex data is Rotowire (Wiseman et al., 2017;
see Section 2.2.6 for details). In this dataset, the task is to generate basketball match
summaries from tabular data. Rotowire poses multiple challenges for neural systems,
including the fact that it requires content selection or that its human-written training
texts are themselves not always grounded in data, which makes neural models more
susceptible to hallucination (Dušek et al., 2019). The output texts are also usually
longer, which makes the hallucinations more common and detecting hallucination
errors on a more fine-grained level essential.

There is, however, no established way to check for hallucinations automatically.
Specific content-checking metrics mostly remain a domain of handcrafted pattern
matching (Wen et al., 2015b; Dušek et al., 2019), which does not scale well to new
domains. While human evaluation provides a more reliable alternative, it is costly
and difficult to set up (van der Lee et al., 2019; Belz et al., 2020; Thomson and Reiter,
2020). Neural metrics such RoMe (Rony et al., 2022) or Data-QuestEval (Rebuffel et al.,
2021) do not target specifically content preservation, especially not on the level of
individual tokens.

8https://github.com/kasnerz/accuracySharedTask_CUNI-UPF

73

https://github.com/kasnerz/accuracySharedTask_CUNI-UPF

The Memphis Grizzlies (5-2N) defeated the Phoenix Suns (3 - 2) MondayE 102-91 at the Talking Stick
Resort ArenaE in Phoenix. The Grizzlies had a strongW first half where they out-scoredW the Suns
59N-42N. Marc Gasol scored 18 points, leadingW the Grizzlies. Isaiah Thomas addedC 15 points, he
is averaging 19 points on the season so farNC.

• 2N – Incorrect number, should be 0.
• MondayE – Incorrect named entity, should be Wednesday.
• Talking Stick Resort ArenaE – Incorrect named entity, should be US Airways Center.
• strongW – Incorrect word, the Grizzlies did not do well in the first half.
• out-scoredW – Incorrect word, the Suns had a higher score in first half.
• 59N – Incorrect number, should be 46.
• 42N – Incorrect number, should be 52 .
• leadingW – Incorrect word. Marc Gasol did not lead the Grizzlies, Mike Conley did with 24

points.
• Isaiah Thomas addedC – Context error. Thomas played for the Suns, but context here implies

he played for the Grizzlies and added to their score.
• averaging 10 points on the season so farNC – Not checkable. This is very hard to check,

since data sources report performance per season and per game, not performance up to a
particular point in a season.

Figure 4.2: Example text with error annotations adapted from Thomson and Reiter
(2021), using the error marking style from Thomson et al. (2023). The original data
for this game is available at https://www.basketball-reference.com/boxscores/
201411050PHO.html .

4.2.2 Shared Task in Evaluating Accuracy

The goal of the Shared Task on Evaluating Accuracy in Generated Texts at INLG 2021
was to develop a token-level error annotation metric for complex D2T generation
(Reiter andThomson, 2020). The organizers of the shared task first manually annotated
60 outputs of various neural systems trained on Rotowire, using the error types defined
in Thomson and Reiter (2020):

• NUMBERN – Incorrect number (both digits and numerals).

• NAMEE – Incorrect named entity (people, places, teams, days of the week).

• WORDW – Incorrect word which is not one of the above.

• CONTEXTC – A phrase inappropriate for the context.

• NOT_CHECKABLENC – A statement which cannot be checked.

• OTHERO – Any other type of mistake.

74

https://www.basketball-reference.com/boxscores/201411050PHO.html
https://www.basketball-reference.com/boxscores/201411050PHO.html

• Patrick Patterson scored 14 points.
• Patrick Patterson provided 5 rebounds.
• Patrick Patterson provided 3 defensive rebounds.
• Patrick Patterson provided 2 offensive rebounds.
• Patrick Patterson provided 1 assists.
...

Team Win Loss Pts
Mavericks 31 41 86
Raptors 44 29 94

…

Player AS RB PT
Patrick Patterson 1 5 14

Delon Wright 4 3 8
…

…
• Patrick Patterson provided 14 points
 on 5/6 shooting, 5 rebounds, 3 defensive
 rebounds, 2 offensive rebounds and 1 assist.
...

• The Toronto Raptors, which were leading
 at halime by 10 points (54-44), defeated
 the Dallas Mavericks by 8 points (94-86).
…

• Toronto Raptors won the first half
 by 10 points (54-44).
• Toronto Raptors beat Dallas Mavericks
 by 8 points (94-86).
...

simple (hand-craed templates) compact (FORGe system)

Figure 4.3: Rule-based system that we use to generate facts from the input data. The
facts are used as input to the error-checking model (see Figure 4.4). We experiment
with (a) simple hand-crafted templates and (b) compact sentences generated by the
FORGe system.

An example of an annotated system output is provided in Figure 4.2. The objective of
the shared task was to either implement an automatic metric for creating the same
type of annotations automatically or to develop a human evaluation scenario capable
of producing the same annotations while requiring fewer resources.

4.2.3 Our System

Our submission for the shared task falls into the first category: we developed an
automatic metric based on a PLM, that marks each token in the output text for the
presence of errors. To make the tabular input data understandable for the PLM, we
use a rule-based system to exhaustively generate all the facts that can be derived from
the data.9 Since the context window of the PLM underlying the metric is limited, we
also use a neural-based retrieval system to retrieve only c relevant facts, which are
added into the context window of the PLM to support its decisions. We describe the
individual components of our system below.

Rule-based Fact Descriptions We use a rule-based system to generate facts from
the input tables in natural language. For each game, we generate facts about the game
(hosting team, visiting team, date converted to weekday), line-score objects (team
name and statistics), and box-score objects (player name, player team, player starting
position and their personal statistics). We also generate additional facts that can be
inferred from the input table, such as which team won and by howmuch, comparisons
between the team and player raw data (e.g., Team A and Team B committed the same
number of fouls), details based on statistics (e.g., Player X recorded a double-double), or
an interpretation of some numbers (e.g., Team A came back in the 4th quarter).10

9Similarly to Sections 3.3 and 4.1, we represent the fact as short sentences.
10A number of facts frequently mentioned in human-written descriptions could not be obtained

from the Rotowire data, as for instance the player stats per quarter, a career-high points total, whether
a player is an all-star or not, or if a player scored the winning shot. These facts thus cannot be checked
with our system.

75

DeMarre Carroll chipped

in 14 points, five rebounds,

one assist and one steal.

E

Dallas Mavericks hosted Toronto Raptors on Saturday.
Toronto was the favorite in this game.

Toronto Raptors won the first half by 10 points (54-44).
...

Patrick Patterson provided 1 assist.
Patrick Patterson scored 14 points.

Patrick Patterson provided 5 rebounds.
Patrick Patterson commited 2 fouls.
Patrick Patterson provided 0 steals.

...
DeMarre Carroll did not play.

...

C (context)

Patrick Patterson scored

14 points. Patrick Patterson

provided 5 rebounds. (...)

...✓
✓
✓

✓

✓

c facts
selected

{DeMarre Carroll chipped

in 14 points, five rebounds,

one assist and one steal.

Rule-based NLG Semantic similarity Token classification

s (evaluated sentence)

E

N

Figure 4.4: An overview of our system. First, we generate the facts from the input
table with a rule-based NLG system (see Figure 4.4). For each evaluated sentence s,
we select c facts with the highest semantic similarity, getting a context C . The pair
(C, s) is given as an input to a pretrained LM for token-level error classification.

We experiment with both simple descriptions created by filling in sentence tem-
plates and compact descriptions generated using a grammar-based system:

• Simple descriptions are produced by a template-based system, with one tem-
plate per fact. We handcrafted 129 sentence templates to cover all the facts de-
scribed above. A sentence template looks like the following: “[PLAYER_NAME]
scored [PTS] points.”, where square brackets indicate variables that are instanti-
ated with the corresponding input values (see Figure 4.3 for sample sentences).

• Compact descriptions are produced by the FORGe system (Mille et al., 2019),
that allows for the generation of more compact sentences. For instance, the
five bottom sentences from the simple system in Figure 4.3 are covered by the
single bottom sentence from the compact system. FORGe performs surface
realization in several steps, by first aggregating the templates based on the
predicate and argument identity and then structuring, linearizing, and inflecting
components of the sentences. The FORGe grammars were used off-the-shelf,11

with additional 98 manually crafted abstract templates.

The simple system produces about 569 facts for each game. The compact system
covers the same amount of information with more syntactically complex sentences,
producing about 112 sentences per game, i.e., five times less.

Context Retrieval The maximum length of the input sequence for our error tagger
(see Section 4.2.4) is 512 tokens, which is about 10% of the total length of the generated
sentences G. Therefore, we select only a subset of G, which we refer to as context
C . For each generated sentence gi ∈ G, we measure semantic similarity between gi

and the evaluated sentence s using Sentence Transformers (Reimers and Gurevych,

11We deactivated cross-sentence referring expression generation so that each generated sentence
can be used independently.

76

2019). In particular, we embed the sentence tokens by applying mean pooling on
the output of paraphrase-distilroberta-base-v2, getting the embedding vectors es

and egi
. Then, we compute the cosine similarity between the embeddings:

score = es · egi

∥es∥∥egi
∥

. (4.1)

For the context C , we select the top c sentences from G that have the highest cosine
similarity to s.

LM-based Error Tagger As our error tagger, we use RoBERTa (Liu et al., 2019b)
with a token-level classification head. The model receives an input X = (C, s)
and is trained to annotate each token in s either with an OK label or with a label
corresponding to one of the error categories. We experiment with two data sources
for training the model:

• gold-standard annotated data from the shared task (which contains all error
types),

• synthetic data created by perturbing the human-written summaries from Ro-
towire (which contains only NAMEE and NUMBERN errors).

Synthetic Data The gold-standard data contains only 60 games, as opposed to 3,395
games in the Rotowire training set. This led us to the idea of using the training set as
a source of synthetic data, introducing errors into human-written descriptions. We
focus only on theNAMEE andNUMBERN errors, i.e., the categories that are the most
represented and also easiest to generate. In each sentence, we identify named entities
in the text using spaCy.12 We modify only a certain portion of entities according to
the entity modification rate (EMR), which we treat as a hyperparameter. We introduce
the NAMEE errors by:

(1) swapping the names of teams with opponent teams,

(2) swapping the names of players with other players in the game,

(3) swapping the names of cities with other cities in the Rotowire dataset,

(4) swapping the days of the week.

12https://spacy.io

77

https://spacy.io

For NUMBERN errors, we take an integer n identified in the text, sample a number
from a normal distribution with µ = n and σ = 3, and truncate it to get an integer.
We re-sample if the output equals the original number or for negative outputs. If the
number is spelled out, we use text2num13 and num2words14 to convert to digits and
back.

4.2.4 Experiments

For the error tagger, we train a PyTorch version of RoBERTa from the Huggingface
Transfomers repository (Wolf et al., 2019) using the AdamW optimizer (Loshchilov
and Hutter, 2017), learning rate 5 × 10−5 and linear warmup. We finetune the model
for 10 epochs and select the model with the highest validation score. We experiment
with several hyperparameters:

• simple vs. compact sentences in G,

• number of sentences retrieved for the context: c = 5, 10, 20 or 40;

• entity modification rate (EMR): proportion of entities modified in the synthetic
data: 0.25, 0.5, or 0.75.

We evaluate themodel using a script provided by the organizers, which computes recall
and precision of the model output with respect to the human-annotated data. Since
we use the human-annotated data for training, we perform 6-fold cross-validation:
in each run, we use 45 games for training, 5 games for validation, and 10 games for
evaluation.

Development Results The results of our model on the development data are
listed in Table 4.2. For our final submission, we selected the model with the best
F1-score overall, which is 0.65 (0.61 recall and 0.69 precision). The model uses 40
compact sentences in context, 0.25 EMR, and was trained on both synthetic and
human-annotated data. Although compact texts are generally helpful, there are also
some well-performing models using simple templates only. A higher number of
sentences in context may help to achieve a better F1-score, but not always (the longer
context is also sometimes cropped to fit the input). Using a higher EMR then generally
leads to higher recall, suggesting that the model adapts to the base rate of errors.

13https://pypi.org/project/text2num/
14https://pypi.org/project/num2words/

78

https://pypi.org/project/text2num/
https://pypi.org/project/num2words/

Gen. Data c
EMR = 0.25 EMR = 0.5 EMR = 0.75

R P F1 R P F1 R P F1

Si
m

pl
e

s

5 0.123 0.723 0.210 0.165 0.512 0.250 0.310 0.323 0.316
10 0.138 0.737 0.232 0.181 0.549 0.272 0.328 0.400 0.360
20 0.137 0.741 0.231 0.179 0.559 0.271 0.327 0.433 0.373
40 0.165 0.712 0.268 0.199 0.560 0.294 0.296 0.436 0.353

s+h

5 0.422 0.617 0.501 0.414 0.594 0.488 0.401 0.583 0.475
10 0.467 0.551 0.506 0.438 0.638 0.519 0.428 0.665 0.521
20 0.518 0.640 0.573 0.544 0.575 0.559 0.509 0.595 0.549
40 0.584 0.644 0.613 0.595 0.612 0.603 0.519 0.639 0.573

C
om

pa
ct

s

5 0.151 0.696 0.248 0.170 0.617 0.267 0.336 0.427 0.376
10 0.176 0.663 0.278 0.195 0.624 0.297 0.295 0.486 0.367
20 0.196 0.672 0.303 0.205 0.635 0.310 0.278 0.552 0.370
40 0.166 0.643 0.264 0.197 0.595 0.296 0.306 0.530 0.388

s+h

5 0.600 0.641 0.620 0.552 0.635 0.591 0.588 0.600 0.594
10 0.583 0.662 0.620 0.629 0.606 0.617 0.656 0.606 0.630
20 0.622 0.647 0.634 0.597 0.688 0.639 0.600 0.660 0.629
40 0.614 0.690 0.650 0.609 0.630 0.619 0.611 0.630 0.620

Table 4.2: Recall (R), precision (P) and F1 scores on development data. s stands for
synthetic training data and h for human training data. c indicates the number of
sentences in the context provided to the tagger, EMR stands for entity modification
rate. Best recall, precision and F1 scores for both generators (simple and compact) are
shown in bold, the submitted model is highlighted in yellow.

Submission Results Table 4.3 shows the results of our model on the official test
data of the task, broken down by error types. The overall scores are higher than on
the development set – test set recall is 0.69 (vs. 0.61 on the development set), and
precision is 0.76 (vs. 0.69). The fact that we used all the available human-annotated
data for training the final model may have contributed to the difference, but it is also
possible that the test data was somewhat less challenging. We note that our model was
able to identify only three types of errors (NAMEE, NUMBERN, WORDW), having
better results for the NAMEE and NUMBERN errors. We believe the explanation is
two-fold: the names and numbers are often found verbatim in the input data (and in
our generated facts), which makes them easy to detect, and also the corresponding
error types were the most represented in the training data. In contrast, the three error
types that were not detected are much less represented in the training data and are
hard to detect in our setup.

79

Error Type Mistake Token
R P R P

NAMEE 0.750 0.846 0.759 0.862
NUMBERN 0.777 0.750 0.759 0.752
WORDW 0.514 0.483 0.465 0.529
CONTEXTC 0.000 - 0.000 -
NOT_CHECKABLENC 0.000 - 0.000 -
OTHERO 0.000 - 0.000 -

Overall 0.691 0.756 0.550 0.769

Table 4.3: Results of our system on test data: recall (R) and precision (P) are shown
for individual error types.

4.2.5 Discussion

Limitations Our metric depends on the existence of a rule-based system for gen-
erating factual statements from the data. Such a system may be hard to develop,
even though we have shown that simple templates can be similarly efficient as more
complex approaches. As our approach is data-driven, it also requires system outputs
annotated with errors. This requirement may be partially mitigated by using synthetic
data. In our case, using synthetic data only results in low recall (see Table 4.2), but
more sophisticated techniques for creating the synthetic data may lead to better
results.

How to Improve The Metric Our submission achieved the best results in the
automatic metrics category, but there is still a gap with what humans can achieve,
as shown by the Laval University submission’s overall 0.84 recall and 0.88 precision
(Garneau and Lamontagne, 2021). One way to improve our system would be to enrich
the reference fact descriptions by either inferring more information from the raw data
or by extracting additional data from external databases. Another option would be to
add surrounding sentences to the context – this could help to resolve coreferences
(e.g. if a player is referred to as ”He”) and to detect the CONTEXTC errors.

LLM-based Alternatives Recently, the evaluation metrics based on LLMs are
starting to provide an alternative, more flexible approach for evaluating generated
texts (Kocmi and Federmann, 2023a; Zhao et al., 2023c; Sottana et al., 2023; Chiang and
Lee, 2023; Fu et al., 2023). An advantage of the LLM-based metrics is the possibility
of defining custom error categories without the need for having annotated data for
finetuning the model. We explore such an approach in Section 6.2, where we use a

80

LLM-based metric for token-level evaluation of generated text. However, it should be
noted that with LLM-basedmetrics, greater flexibility is traded for lower controllability
(especially in the case of closed models), making the evaluation potentially biased
and hard to reproduce (Stureborg et al., 2024; Koo et al., 2023; Wang et al., 2023c).

4.3 Conclusion

We introduced two metrics for evaluating the semantic accuracy of D2T generation.
Themetric presented in Section 4.1 targets the cases where all the data items need to be
mentioned in the output text. It uses a combination of simple templates and an off-the-
shelf neural model, making our approach applicable with minimal additional effort.
The metric introduced in Section 4.2 then targets complex data-to-text generation,
using a combination of a rule-based system, a neural retriever, and a neural token-level
classifier. While this metric requires in-domain training data, it enables annotating
semantic errors on the level of individual tokens. Future research directions may
include removing the need for rule-based preprocessing and improving the flexibility
with respect to the output error categories.

81

5
Unified Data Processing

In this chapter, we introduce a single set of experiments in Section 5.1: an approach
for unified processing of data-to-text (D2T) generation datasets. We first convert the
input data in sixteen D2T generation datasets of various formats and provenance
into a standard tabular format. On top of the unified format, we build TabGenie: a
toolkit combining web interface, command-line interface and Python bindings for
simplifying data visualization and processing. While data visualization helps us to
present the contents of individual datasets, a unified format helps with streamlining
the process of multi-task training, helping us progress towards RQ5. At the end of
the section, we present multiple real-world use cases of our framework.

5.1 TabGenie Toolkit

This section is based on the paper TabGenie: A Toolkit for Table-to-Text Generation
(Kasner et al., 2023a), joint work with Ekaterina Garanina, Ondřej Plátek, and Ondřej
Dušek. The work was published as a system demonstration in the Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (ACL 2023).
The project was led by the author of the thesis; the other authors helped with minor
implementation tasks and paper writing.

In this section, we present TabGenie – a toolkit that enables researchers to
explore, preprocess, and analyze a variety of D2T generation datasets as tables with
associated metadata. The web interface of TabGenie (introduced in Section 5.1.3)
provides an interactive mode for debugging table-to-text generation models, facilitates
side-by-side comparison of generated system outputs, and allows easy exports for

83

manual analysis. TabGenie is also equipped with command line processing tools and
Python bindings for unified dataset loading and processing (Section 5.1.4). We release
TabGenie as a Python package1 and provide its open-source code and a live demo
through Github.2

5.1.1 Motivation

In Table 2.2, we provided a representative, although not comprehensive, overview of
research datasets for D2T generation. As the number of datasets keeps growing and
research keeps accelerating, researchers need to streamline their interactions with
these datasets. However, each dataset comes with a different input format and task
description, and the input data may not be easy to access and visualize. Platforms such
as HuggingFace Datasets (Lhoest et al., 2021) or the GEM benchmark (Gehrmann et al.,
2021) provide a unified way to access the datasets, but they still leave the majority of
the data processing load on the user.

A key component missing from current D2T tools is the possibility to visualize
input data and generated outputs. Visualization plays an important role in examining
and evaluating scientific data (Kehrer and Hauser, 2013) and can help researchers make
more informed design choices. A suitable interface can also encourage researchers to
step away from unreliable automatic metrics (Gehrmann et al., 2023) and focus on
manual error analysis (van Miltenburg et al., 2021, 2023).

Along with that, demands for a unified input data format have recently been
raised with multi-task training for large language models (Sanh et al., 2022; Scao et al.,
2022; Ouyang et al., 2022, inter alia). Some works have used simple data linearization
techniques for converting structured data into a textual format to align it with the
format used for other tasks (Xie et al., 2022; Tang et al., 2022). However, they use
custom preprocessing code for the linearization, leading to discrepancies between
individual works.

To address these gaps, we present TabGenie – a multi-purpose toolkit for inter-
acting with D2T generation datasets. The cornerstone of TabGenie is a unified data
representation. Each input is represented as a matrix of m columns and n rows consist-
ing of individual cells accompanied with metadata. Building upon this representation,
TabGenie provides multiple features for unified workflows with table-to-text datasets,
including:

(1) visualizing individual dataset examples in a tabular format,

(2) interacting with table-to-text generation systems in real time,

1https://pypi.org/project/tabgenie/
2https://github.com/kasnerz/tabgenie

84

https://pypi.org/project/tabgenie/
https://github.com/kasnerz/tabgenie

Figure 5.1: The web interface of TabGenie. The left panel and the top navigation bar
contain user controls; the center panel shows table properties and table content; the
right panel contains system outputs.

(3) comparing generated system outputs,

(4) loading and preprocessing data for downstream tasks,

(5) exporting examples and generating spreadsheets for manual error analysis.

5.1.2 Data

Input data in TabGenie is in tabular format. We define a table as a two-dimensional
matrix with m columns and n rows, which together define a grid of m × n cells.
Each cell contains a (possibly empty) text string. A continuous sequence of cells
{ci, . . . , ci+k} from the same row or column may be merged, in which case the values
of {ci+1, . . . , ci+k} are linked to the value of ci. A cell may be optionally marked as a
heading, which is represented as an additional property of the cell.3

To better accommodate the format of datasets such as ToTTo (Parikh et al., 2020) or
HiTab (Cheng et al., 2022), we also allow individual cells to be highlighted. Highlighted
cells are assumed to be preselected for generating an output description. The tables
may be accompanied by an additional set of properties (see the properties block
in Figure 5.1),4 which we represent as key-value pairs alongside the table. These
properties may be used for generating the table description.

3The headings are typically located in the first row or column but may also span multiple rows or
columns and may not be adjacent.

4The properties usually represent table metadata. An example of such a property is a “title” of the
table in WikiBio (Lebret et al., 2016) or a “category” in WebNLG (Gardent et al., 2017b).

85

Unifying Data Format Our D2T generation datasets contain three high-level input
data formats: tables, RDF triples, and key-value pairs. We note that converting the
latter two to tabular format requires only minimal changes to the data structure
while allowing a unified data representation and visualization. We make a few minor
changes to datasets that do not immediately adhere to the tabular format:

• For graph-to-text datasets, we format each triple as a row, using three columns
labeled subject, predicate, and object.

• For key-value datasets, we use a two-column format, where the first column
contains the keys and is marked as a heading, and the second column contains
the values.

• For SportSett:Basketball (Thomson et al., 2020),5 we merge its two tables box
score and line score and add appropriate headings where necessary.

Datasets We include the 16 datasets listed in Table 2.2 in TabGenie, covering
many subtasks of D2T generation. All the datasets are available under a permissive
open-source license. To ease the data distribution, we load all the datasets using the
Huggingface datasets package (Lhoest et al., 2021), which comes equipped with a
data downloader. We publicly added to Huggingface datasets 9 out of 16 datasets
that were not yet available.6 A custom dataset can be added to TabGenie by simply
sub-classing the data loader class and overriding the method for processing individual
entries.

5.1.3 Web Interface

TabGenie offers a way to interact with datasets through a web interface. The interface
features a single-page layout with three panels containing user controls, input data,
and system outputs (see Figure 5.1).

Content Exploration TabGenie renders input data as HTML tables, providing
better visualizations than existing data viewers, especially in the case of large and
hierarchical tables.7 Users can navigate through individual examples in the dataset
sequentially, access an example using its index, or go to a random example. Users can
add notes to examples and mark examples as favorites to access later. The interface
also shows information about the dataset (such as its description, version, homepage,
and license) and provides an option to export individual examples.

5A derivative of Rotowire (Wiseman et al., 2017, see Sections 2.2.6 and 4.2).
6See https://huggingface.co/datasets?search=kasnerz.
7Compare, e.g., with the ToTTo dataset on Huggingface Datasets where the table is provided in a

single field called “table” : https://huggingface.co/datasets/totto.

86

https://huggingface.co/datasets?search=kasnerz
https://huggingface.co/datasets/totto

Interactive Mode In the interactive mode, the user can modify the input data and
observe how changes influence model outputs. We assume that the model provides
access through a simple API queried by TabGenie. The user can highlight different
cells, edit cell contents, and edit the parameters of the downstream processor.

Pre-generated Outputs TabGenie also allows to visualize static pre-generated
outputs, which are loaded in a JSONL8 format from a specified directory. Multiple
outputs can be displayed alongside a specific example for comparing outputs from
multiple systems.

5.1.4 Developer Tools

Besides the web interface, TabGenie also provides developer-friendly access through
Python bindings and a command-line interface. Both of these interfaces aim to simplify
dataset preprocessing in downstream tasks. The key benefit of using TabGenie is that
it provides streamlined access to data in a consistent format, removing the need for
dataset-specific code for extracting information such as table properties, references,
or individual cell values.

Python Bindings TabGenie can replace custom preprocessing code in Python
codebases. With a single unified interface for all the datasets, the TabGenie wrapper
class allows to:

• load a dataset from the Huggingface Datasets or a local folder,

• access individual table cells and their properties,

• linearize tables using pre-defined or custom functions,

• prepare Huggingface Dataset objects for downstream processing.

TabGenie can be installed as a Python package, making the integration simple and
intuitive.

Command-line Tools TabGenie supports several basic commands via command
line:

• Run The tabgenie run command launches the local web server, mimicking
the behavior of flask run.

Example usage:

tabgenie run --port=8890 --host="0.0.0.0"

8https://jsonlines.org

87

https://jsonlines.org

• Export The tabgenie export command enables batch exporting of the dataset.
The supported formats are xlsx, html, json, txt, and csv. Except for csv, table
properties can be exported along with the table content.

Example usage:

tabgenie export --dataset "webnlg" \

--split "dev" \

--out_dir "export/datasets/webnlg" \

--export_format "xlsx"

Exports can also be done in the web interface.

• Spreadsheet For error analysis, it is common to select N random examples
from the dataset along with the system outputs and manually annotate them
with error categories. The tabgenie sheet command generates a suitable
spreadsheet for this procedure.

Example usage:

tabgenie sheet --dataset "webnlg" \

--split "dev" \

--in_file "out-t5-base.jsonl" \

--out_file "analysis_webnlg.xlsx" \

--count 50

5.1.5 Implementation

TabGenie runs with Python >=3.8 and requires only a few basic packages as depen-
dencies. It can be installed as a stand-alone tabgenie module from PyPI or from the
project repository.

Backend The web server is based on Flask,9 a popular lightweight Python-based
web framework. The server runs locally and can be configured with a YAML10

configuration file. On startup, the server loads the data using the datasets11 package.
To render web pages, the server uses the tinyhtml12 package and the Jinja13 templating
language.

9https://pypi.org/project/Flask/
10https://yaml.org
11https://pypi.org/project/datasets/
12https://pypi.org/project/tinyhtml/
13https://jinja.palletsprojects.com/

88

https://pypi.org/project/Flask/
https://yaml.org
https://pypi.org/project/datasets/
https://pypi.org/project/tinyhtml/
https://jinja.palletsprojects.com/

Frontend The web frontend is built on HTML5, CSS, Bootstrap,14 JavaScript, and
jQuery.15 We additionally use the D3.js16 library for visualizing the structure of data
in graph-to-text datasets. To keep the project simple, we do not use any other major
external libraries.

5.1.6 Case Studies

We present several case studies for using TabGenie in D2T generation research. The
instructions and code samples for these tasks are available in the project repository.

Table-To-Text Generation TabGenie can serve for finetuning a sequence-to-
sequence language model for table-to-text generation in PyTorch (Paszke et al., 2019)
using the Huggingface Transformers (Wolf et al., 2019) framework. In a typical
finetuning procedure, the user needs to prepare a Dataset object with tokenized input
and output sequences. TabGenie provides a customizable function get_hf_dataset(),
which linearizes the tables and tokenizes the inputs and references with the provided
tokenizer, simplifying preprocessing a dataset to the following:

from transformers import AutoTokenizer

import tabgenie as tg

instantiate a tokenizer

t = AutoTokenizer.from_pretrained(...)

load the dataset

tg_dataset = tg.load_dataset(dataset_name="totto")

preprocess the dataset

hf_dataset = tg_dataset.get_hf_dataset(split="train", tokenizer=t)

Interactive Prompting TabGenie can be used for observing the impact of various
prompts during table-to-text generation. The user customizes the provided model_api

pipeline to communicate with the model through an API. The API can communicate
either with an external model (using e.g. OpenAI API17), or with a model running
locally (using libraries such as FastAPI18). The user then interacts with the model
through the TabGenie web interface, where they are able to modify prompts or table
contents as well as highlight specific cells.

14https://getbootstrap.com/
15https://jquery.com
16https://d3js.org
17https://openai.com/api/
18https://fastapi.tiangolo.com

89

https://getbootstrap.com/
https://jquery.com
https://d3js.org
https://openai.com/api/
https://fastapi.tiangolo.com

Error Analysis TabGenie can help with annotating error categories in the outputs
of a table-to-text generation model. The user generates system outputs on a test set
and saves them in JSONL format. Through the command-line interface, the user will
then generate an XLSX file which can be imported into any suitable office software
and distributed to annotators for performing error analysis.

5.1.7 Discussion

Limitations For some D2T inputs, the tabular structure may be inappropriate, such
as for tree-based structures (Balakrishnan et al., 2019), bag-of-words (Lin et al., 2019),
or multimodal inputs (Krishna et al., 2017). It is also not well-suited for the heavily
nested JSON format, which we explore as the input format in Section 6.2. As the
framework targets the research community, its use requires some programming skills
(e.g., for integrating the model API).

Extending the Framework Adding new datasets to TabGenie is straightforward
as long as the dataset is convertible to the unified format. Due to deployment issues,
TabGenie does not include large synthetic datasets (Agarwal et al., 2021; Jin et al.,
2020), but these datasets could be added locally.

5.2 Conclusion

We presented a toolkit for unified processing of D2T generation datasets. The toolkit
enables researchers to gain insights into the datasets by visualizing their contents in
a web interface. The toolkit also allows to pre-process datasets in a unified format,
facilitating their processing with language models (LMs). On top of that, the toolkit
provides various practical methods such as sending the inputs to a D2T generation
models via an API or generating error analysis spreadsheets. As such, the framework
promotes more informed and principled D2T generation research.

90

6
Examining Model Behavior

In this chapter, we analyze primarily the issue we outlined in RQ5: generalization
abilities of neural language models (LMs). Specifically, we investigate how well LMs
used for data-to-text (D2T) generation generalize to the data with domains or formats
that the models were not specifically trained for. To help us with the investigation,
we introduce custom datasets that we collect for the purposes of our experiments.

In Section 6.1, we examine the capabilities of pretrained language models (PLMs)
to describe unseen relations between entities in knowledge graphs. For this problem,
existing D2T datasets are not able to discern memorization from generalization. We
thus collect a custom dataset with a large variety of relation labels, including unseen
labels in the test set. Using our dataset, we investigate whether the models can
correctly describe the relations they have not seen in the training data. We find that
the models can generalize unseen labels as long as the labels are human-readable and
unambiguous, which is often (but not always) fulfilled in real-world data.

In Section 6.2, we investigate the abilities of open large language models (LLMs)
for D2T generation from common formats such as JSON, CSV, and Markdown. To
prevent data contamination, we scrape unlabeled data from public sources across five
domains. Using an automatic metric and human annotators, we quantify the semantic
accuracy of the generated texts with respect to the input data. We find that although
the generated descriptions are fluent, most of them contain semantic errors.

91

6.1 Describing Relations in Knowledge Graphs

This section is based on the paper Mind the Labels: Describing Relations in Knowledge
Graphs With Pretrained Models (Kasner et al., 2023b), joint work with Ioannis Konstas
and Ondřej Dušek. The work was published in the Proceedings of the 17th Conference
of the European Chapter of the Association for Computational Linguistics (EACL
2023). The project was led by the author of the thesis; Ioannis Konstas and Ondřej
Dušek co-supervised the project.

In this section, we investigate how human-readable data labels help PLMs with
D2T generation. We start by noticing that PLMs can use labels such as column head-
ings, keys, or relation names to generalize to out-of-domain examples (Section 6.1.1).
The question is whether this ability is robust enough, and how accurate the outputs are
in cases where these labels are ambiguous or incomplete. To answer these questions,
we focus on the specific task of describing a relation between two entities.

For our experiments, we collect Rel2Text (Section 6.1.2): a novel dataset for
verbalizing a diverse set of 1,522 unique relations from three large-scale knowledge
graphs (Wikidata, DBpedia, YAGO). We evaluate model outputs on unseen relations
using a combination of automatic metrics and manual analysis (Sections 6.1.3 to 6.1.6).
We find that although PLMs for D2T generation expectedly fail on unclear cases, mod-
els trained with a large variety of relation labels are surprisingly robust in verbalizing
novel, unseen relations. We argue that using data with a diverse set of clear and
meaningful labels is key to training D2T generation systems capable of generalizing
to novel domains. We release the code and data for our experiments on Github.1

6.1.1 Motivation

D2T generation systems need to accurately capture the semantics of relations between
values in the data. However, the data labels such as relation names (Färber et al., 2018;
Haller et al., 2022), table headings (Parikh et al., 2020), or meaning representation keys
(Dušek et al., 2020) may provide only superficial or—if the labels are abbreviations,
such as in the Rotowire dataset (Wiseman et al., 2017, cf. Section 4.2)—no usable hints
about the data semantics.

PLMs such as BART (Lewis et al., 2020) or T5 (Raffel et al., 2020) can quickly adapt
to new domains and exhibit robustness to out-of-domain inputs. We investigate to
what extent PLMs are limited by the expressivity of the data labels. A suitable testing
ground is the task of describing RDF triples in a knowledge graph (KG), which we
already tackled in Chapter 3. However, this time we focus on individual triples. Even

1https://github.com/kasnerz/rel2text

92

https://github.com/kasnerz/rel2text

label property id verbalization note

part of P361 s is part of o . can be used verbatim

duration P2047 s lasted for o . unambiguous verbalization

platform P400 s is available on o .
s runs on o .

multiple equivalent lexical choices

occupant P466 o is occupied by s .
s plays at o .

semantics depends on entities

parent P8810 s is the parent of o .
o is the parent of s .

ambiguous relation direction

Table 6.1: Example relation labels and the variability in their verbalizations. s and o
denote the subject and object in the triple, respectively. The Wikidata page for each
relation is available at https://www.wikidata.org/wiki/Property:<property_id>.

for a single triple, there is a wide range of lexical choices for the relation label, while
the entities can be copied verbatim or with only minor morphological changes. For
instance, consider the last example in Table 6.1: the model can use its representation
of “parent” to understand there is a “is-a-parent-of” relation between the entities, but
it has to infer (or guess) who is the parent of whom. Even in less ambiguous cases,
the model still has to correctly capture the intended semantics of the relation (e.g.
“occupant” meaning “home team”).

Current human-annotated datasets for D2T generation are not suitable for inves-
tigating this problem, as they contain only a small number of relations and rarely
contain any unseen relations in the test set (Mille et al., 2021). The only existing
datasets covering verbalizations of a wider range of KG relations are based on model-
generated outputs (Agarwal et al., 2021; Amaral et al., 2022). For this reason, we collect
a novel human-annotated dataset for the task.

Our aim is also to investigate whether incorporating long-form descriptions of
data labels helps improve model outputs. Previous works have reached contradictory
conclusions: Wang et al. (2021) use descriptions of relations instead of their labels
for relation embeddings, concluding that it results in worse performance on down-
stream tasks. Conversely, Kale and Rastogi (2020a) and Lee et al. (2021) improve the
performance of their systems by including schema descriptions on the input for the
dialogue state tracking and dialogue response generation systems.

93

https://www.wikidata.org/wiki/Property:P361
https://www.wikidata.org/wiki/Property:P2047
https://www.wikidata.org/wiki/Property:P400
https://www.wikidata.org/wiki/Property:P466
https://www.wikidata.org/wiki/Property:P8810
https://www.wikidata.org/wiki/Property:<property_id>

Lastly, we investigate verbalizing single triples as a stand-alone task. As we have
repeatedly shown (Sections 3.2, 3.3, and 4.1), and in line with other works (Xiang et al.,
2022; Kale and Rastogi, 2020a; Gupta et al., 2020; Neeraja et al., 2021), transforming
triples to text helps for PLMs-based data processing. We train a model for verbalizing
single relations and use it to replace manual templates in our system described in
Section 3.3.

6.1.2 Rel2Text dataset

For our experiments, we need data with diverse labels and their human verbalizations.
We start by collecting a large set of relations from three large-scale KGs (Wikidata,
DBpedia, and YAGO). For each relation, we collect its label, textual description, and up
to five triples in which the relation occurs in the KG. We then use human annotators
to collect a verbalization for each triple, i.e., a short sentence capturing the meaning
of the triple. After filtering, our dataset—which we call Rel2Text (Re-writing edge
labels to Text)2—contains 4,097 single triples covering 1,522 unique relations. We
describe the data collection process in the following paragraphs.

Input Data An RDF triple is a tuple t = (s, r, o), where r denotes the relation3

between the subject s and the object o. We retrieve triples from three open large-scale
KGs encoding factual knowledge:

• Wikidata (Vrandecic and Krötzsch, 2014) is a large-scale Wikipedia-based KG
created using collaborative editing. With approximately 10,000 human-created
relations equipped with descriptions,4 it is by far the largest source of variety
in relation labels.

• YAGO (Tanon et al., 2020) is a KG which builds upon factual knowledge from
Wikidata, but uses a limited set of 116 pre-defined relations from schema.org

(Guha et al., 2016) mapped to a subset of Wikidata relations.

• DBpedia (Auer et al., 2007; Lehmann et al., 2015) is a KG that maps Wikipedia
infotables to a predefined ontology containing 1,355 relations, about 350 of
which are accompanied by a description.

2Or simply “Relations-to-Text”.
3In previous sections, we have also called this constituent a predicate; these notions are equivalent.
4https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all

94

https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all

We query all KGs using their openly available endpoints to retrieve a list of
relations in each KG. For each relation, we retrieve up to five triples that use this
relation and the relation description, i.e., a short explanatory text. If present, we also
retrieve descriptions for the subject and the object. We apply a set of filtering heuristics,
leaving out, e.g., relations describing KG metadata or identification numbers.5 In this
way, we collect 7,334 triples with 1,716 relations in total.

Annotation Process We collect human-written verbalizations for all input triples
using Prolific.6 We built a web interface where human annotators are shown a single
triple t and asked to describe it in a single sentence. The annotators are encouraged
to re-use the entities in their original form, but they can change the form if necessary.
The annotators can also report noisy inputs. We employed 420 annotators in total,
each of which annotated 20 examples. We set the average reward per hour according
to the platform recommendations to £7.29 per hour, and we accepted all the inputs
that passed our built-in checks.

Postprocessing the Data A considerable portion of the collected verbalizations
contain typos and grammatical errors, misunderstood meaning of the relation, or
extra information in the input. To ensure the high quality of our data, we manually
examined all crowdsourced examples and annotated them as OK, noisy, corrupted,
or containing extra information. For our experiments, we only use the subset of our
dataset with OK annotations, one per input triple (4,097 examples, 1,522 distinct
relations).

6.1.3 Analysis and Experiments

For answering RQ5 on our task, we formulate the following sub-questions:

• (a) Are PLMs finetuned for D2T generation able to describe relations not present
in the finetuning corpus?

• (b) How many training examples do the PLMs need to generate satisfactory
outputs?

• (c) How do the PLMs behave when provided limited lexical cues about the
relation?

• (d) Can relation descriptions help to clarify ambiguous cases and improve the
semantic accuracy of the outputs?

5Relations describing various IDs make up a large portion of relations in Wikidata. Since we focus
on diversity instead of coverage, we decided not to include these relations in our dataset.

6https://www.prolific.co/

95

https://www.prolific.co/

Datasets First, we divide our Rel2text dataset into a training and test split. Next,
we use the Rel2Text test set to evaluate a finetuned BART model (Lewis et al., 2020).
We train the models on the following datasets, all of which focus on verbalizing factual
information from KGs and use the same triple-based input data format:

• Rel2Text: Our dataset with single triples from three KGs with 4,097 examples,
1,522 relations, and human-annotated outputs.

• WebNLG (Ferreira et al., 2020; Gardent et al., 2017b, see Section 2.2.6): The
DBpedia-based triple-to-text dataset with 38k examples, 411 relations, up to 7
triples per example, and human-annotated outputs. We use the English part of
version 3.0 from HuggingFace.7

• KeLM (Agarwal et al., 2021): A Wikidata-based dataset with 11M examples,
1,519 relations, up to 13 triples per example, and model-generated outputs.

To answer the question (a), we compare the performance of BART finetuned on the
Rel2Text training set with BART finetuned on WebNLG and KeLM. Using Rel2text
only, we then prepare various setups for answering the questions (b), (c), and (d).

Rel2Text Data Split We use approximately 15% of the Rel2Text examples for the
test set. To ensure maximum fairness and focus on model generalization to unseen
relations, we do not include in the Rel2Text test set any relations that have an
exact string match with a relation in KeLM, WebNLG, or the Rel2Text training set.
We also exclude any relations for which the maximum semantic similarity8 to any
KeLM/WebNLG/Rel2Text training relation exceeds a threshold of 0.9. We set this
threshold empirically to exclude relations that are almost synonymous, but slightly
lexically different. We use 90% of the remaining examples for the training set and 10%
for the validation set.

Experimental Setup We split the camel-cased multi-word expressions in the rela-
tion labels. For finetuning the models, we linearize the input triples by prepending
the individual triple constituents (subject, relation, object) with special tokens that
we add to the model vocabulary. In a default scenario, we finetune BART-base (Lewis
et al., 2020) for 10 epochs and select the best checkpoint using validation BLEU score,
then use greedy decoding to produce outputs. We repeat each experiment with five
random seeds, averaging the results.

Compared Systems In our experiments, we compare the following systems:

7https://huggingface.co/datasets/web_nlg
8Computed as cosine similarity between embeddings of the labels, which are encoded using all-

distilroberta-v1 from SBERT (Reimers and Gurevych, 2019).

96

https://huggingface.co/datasets/web_nlg

• Copy Baseline: We introduce a simple copy baseline by outputting the triple
constituents separated by space: “[subject] [relation] [object]”.

• Full Training Data: We use the default setup on full Rel2Text and WebNLG
training sets. For KeLM (which is about 300× larger thanWebNLG), we finetune
the model only for one epoch. We denote the trained models full-rel2text , full-
webnlg, and full-kelm, respectively.

• Limited Training Data: For the limited training data setup, we prepare few-
shot splits from Rel2Text as subsets containing N = {25, 50, 100, 200} relations
with a single example per relation. We select examples at random, ensuring that
each few-shot split is a subset of the larger splits. We finetune the fewshot-N
models for 10 epochs without validation, using the last checkpoint.

• Limited Lexical Cues: We investigate how the models behave if we do not
include the relation labels at all. We consider three scenarios:

– mask-test – We train the model on Rel2Text in the standard training
setup. For testing, we replace the relation labels in Rel2Text with the
<mask> token.

– mask-train – For training, we replace the relation labels in Rel2Text
with the <mask> token. We test the model on Rel2Text in the standard
evaluation setup.

– mask-all – We replace the relation labels in Rel2Text with the <mask>
token for both training and testing.

• Incorporating Descriptions: Our dataset contains short textual descriptions
of the relations, which may be useful to disambiguate its meaning and provide
additional cues to the model. We consider two scenarios:

– desc-repl – We replace the relation label with its description.

– desc-cat – We concatenate the relation description with the input, sepa-
rated using the special token <rel_desc>.

6.1.4 Evaluation Setup

Automatic Metrics We evaluate generated outputs using an extensive set of auto-
matic metrics from the GEM-metrics9 package (Gehrmann et al., 2021). We use BLEU
(Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005), and BLEURT (Sellam
et al., 2020) for measuring lexical similarity. For semantic similarity, we use NUBIA
(Kané et al., 2020) along with its individual features: the semantic similarity score

9https://github.com/GEM-benchmark/GEM-metrics

97

https://github.com/GEM-benchmark/GEM-metrics

(SS) on a 0-5 scale, the contradiction (C), neutral (N), and entailment (E) probabilities,
and the perplexity score (PPL). To assess lexical diversity, we measure the number of
unique n-grams (U-1), conditional entropy of bi-grams (CE2), and the mean segmental
type-token ratio over segment lengths of 100 (MSTTR). We also measure the average
output length in tokens (len). See Section 2.2.7 for the detailed description of the
metrics.

Manual Error Analysis Based on our preliminary observations, we identify four
sources of model errors:

• Sem: semantic errors (text not corresponding to the input data),

• Dir: swap of the relation direction (a special case of a semantic error),

• Lit: too literal (containing awkward or misleading phrasing),

• Lex: grammar/lexical errors.

We further identified two types of input data errors:

• Ent: relations that need to be disambiguated using entities,

• Lbl: relations with unclear labels.

Examples are shown in Table 6.2. For error analysis, we select 100 random examples
together with their corresponding outputs from the full-rel2text, full-webnlg, full-kelm,
fewshot-100,mask-all and desc-cat models. Without revealing the sources of annotated
outputs, we mark all error categories that apply.

6.1.5 Automatic Metrics

Table 6.3 shows automatic scores for all our models.

Lexical and Semantic Similarity full-rel2text is the best among the fully trained
models regarding lexical overlap metrics, which is expected, as it is trained on the
most similar reference distribution. full-webnlg and full-kelm models are almost
equal in terms of semantic consistency, achieving around 90% average entailment
probability, which is on par with the copy baseline.

Few-shot Models For the few-shot models, semantic consistency is much lower
(e.g., the average entailment probability is between 65% and 85%), showing that there
is a certain minimum amount of data needed to achieve consistent outputs. As we
show in Figure 6.1, using more examples to train the model generally helps decrease
variance and increase performance across various metrics.

98

Label Example inputs and outputs (incorrect, correct)

m
od

el
Sem (Yousra Matine, sport country, Morocco)

Yousra Matine was born in Morocco. [mask-mask]
Yousra Matine plays for Morocco. [full-rel2text]

Dir (Kentucky Channel, former broadcast network, KET ED)
KET ED was broadcast on Kentucky Channel ED. [fewshot-100]
The Kentucky Channel was broadcast on KET ED. [full-rel2text]

Lit (Vietnam Television, first air date, 1970-09-07)
The first air date of Vietnam Television was 1970-09-07. [full-kelm]
Vietnam Television first aired on 1970-09-07. [full-rel2text]

Lex (RPG-43, used in war , The Troubles)
RPG-43 was used in the The Troubles. [full-rel2text]
The RPG-43 was used in the Troubles. [full-kelm]

da
ta

Ent (The Age of Entitlement, by artist, The Basics)
The Age of Entitlement was written by The Basics. [full-kelm]
The Age of Entitlement was recorded by The Basics. [full-rel2text]

Lbl (General Motors Epsilon platform, vehicle, Cadillac XTS)
General Motors Epsilon is a vehicle similar to the Cadillac XTS. [full-webnlg]
General Motors Epsilon platform is used in the Cadillac XTS. [desc-cat]

Table 6.2: Error categories used in manual analysis, with examples of errors found
and corresponding correct verbalizations (square brackets denote the model). Model
error types (top): Sem – The output is semantically incorrect, Dir – The direction of
the relation is swapped, Lit – The verbalization is too literal, Lex – There is a lexical
error in the output. Input data error types (bottom): Ent – The verbalization may
depend on the entities, Lbl – The relation label is not clear.

Masked Relations Interestingly, models that do not see the relations during test
time (mask-test and mask-all) still achieve around 60% average entailment probability,
similarly to the worst few-shot model. Although their rate of contradictions is higher
than for other models, the results suggest that in many cases, the guessed relation is
semantically consistent with the correct relation. Another interesting observation is
that the mask-train model (trained not to use the labels) can use the labels provided
at test time to improve the outputs considerably (contradiction rate drops from 17%
to 5% compared to mask-all).

Influence of Descriptions The fact that short labels are both sufficient and neces-
sary for successful verbalization is emphasized by the fact that the desc-repl model is
worse than full-rel2text (although the descriptions are longer and supposedly explain
the relation semantics). Moreover, the benefits of concatenating the descriptions
alongside the relation labels (desc-cat) are negligible, only slightly improving lexical
similarity metrics (0.5 BLEU point gain over full-rel2text).

99

Lexical Semantics Referenceless

BLEU MET BLR SS C N E NB U-1 CE-2 TTR PPL len

human - - - - - - - - 1785 2.13 0.62 5.88 9.55
copy 29.04 37.52 0.09 4.79 1.22 7.57 91.21 0.74 1606 1.17 0.7 7.55 6.72

full-rel2text 52.54 44.86 0.54 4.72 3.50 4.65 91.85 0.88 1661 1.96 0.58 5.89 9.16
full-webnlg 41.99 41.59 0.41 4.65 3.68 6.93 89.39 0.86 1651 2.54 0.56 5.65 10.29
full-kelm 46.74 42.94 0.46 4.70 3.95 5.29 90.77 0.86 1652 2.32 0.56 5.83 9.71

fewshot-25 31.13 35.52 -0.02 3.94 8.35 27.26 64.39 0.65 1445 2.93 0.52 5.34 10.67
fewshot-50 40.60 40.05 0.25 4.44 8.04 13.12 78.84 0.76 1536 2.31 0.55 5.79 9.90
fewshot-100 45.88 42.38 0.38 4.53 6.34 10.60 83.06 0.81 1600 2.13 0.57 5.85 9.57
fewshot-200 48.67 43.34 0.44 4.58 5.40 9.03 85.57 0.83 1626 2.04 0.58 5.89 9.36

mask-test 42.45 38.52 0.25 3.99 14.91 18.47 66.62 0.65 1669 1.96 0.61 5.69 8.96
mask-train 46.90 43.15 0.43 4.55 5.85 11.55 82.61 0.81 1646 2.00 0.57 5.91 9.74
mask-all 42.53 38.49 0.24 3.85 17.58 25.15 57.26 0.61 1677 1.96 0.61 5.66 9.16

desc-repl 49.35 42.85 0.47 4.57 5.78 8.80 85.42 0.82 1693 1.94 0.59 5.86 9.18
desc-cat 53.07 45.04 0.55 4.72 3.46 4.66 91.88 0.87 1668 1.91 0.59 5.92 9.11

Table 6.3: The summary of evaluation using automatic metrics on Rel2text test
set. MET = METEOR, BLR = BLEURT, TTR = MSTTR. See Section 6.1.3 for the
descriptions of the models and metrics.

Lexical Diversity In terms of lexical diversity, human references use more unique
n-grams, but the model outputs are very similar in other aspects. It remains to be
seen if the model outputs can stay semantically consistent with diversity-focused
decoding techniques such as nucleus sampling (Holtzman et al., 2020).

6.1.6 Manual Error Analysis

Results are summarized in Figure 6.2; examples of model outputs for each error type
are shown in Table 6.2.

Naturalness of Expressions The full-kelm and full-webnlg models use expressions
that are too literal (Lit) in 23 and 29 cases, respectively, while the full-rel2text and
desc-cat models do the same only in 11 cases (5 out of which are marked as Lbl, i.e.,
with an unclear label). This suggests that the variability of our dataset helps models
to apply more natural expressions, especially if the relation is understandable from
its label.

Semantic Errors There is a near-constant portion of examples where the models
make a semantic error (Sem) and the input is marked as needing an extra description
(Lbl). The models also make relatively many semantic errors, most prominently in
the case of the fewshot-100 and the mask-all models. The mask-all model made a
semantic error in 78 cases, suggesting that guessing the exact relation just from the

100

25 50 100 200 full

30

35

40

45

50

BLEU

25 50 100 200 full
0.34

0.36

0.38

0.40

0.42

0.44

METEOR

25 50 100 200 full

0.0

0.1

0.2

0.3

0.4

0.5

BLEURT

25 50 100 200 full
3.8

4.0

4.2

4.4

4.6

SS

25 50 100 200 full
60

65

70

75

80

85

90

E

25 50 100 200 full

5.2

5.4

5.6

5.8

PPL

Figure 6.1: Boxplots for selected metrics from Table 6.3 w.r.t. the number of examples
(displayed on the x-axis, full = 1522), taking into account variance from individual
random seeds.

entities is difficult (although still possible in 22 cases). Moreover, the outcomes from
this model are fluent (only 4 Lex errors), making it hard to detect faulty cases. The
case of swapping the relation direction (Dir) is not that common, which is probably
down to having only a few examples in our dataset prone to this kind of error.

Additional Clues There were only 12 out of 100 examples annotated as Ent, which
suggests that the verbalization of the relation can be mostly decided irrespective of
the entities in the triple. Notably, the results for full-rel2text and desc-cat are very
similar, rendering the impact of extra descriptions negligible.

6.1.7 Applications to Downstream Tasks

Given that the full-rel2text model can describe relations from their labels with high
accuracy, we investigate if we can use the model to replace manually created templates
in downstream tasks. We select two qualitatively different tasks, both using the idea
of transforming individual input triples to simple sentences as a preprocessing step:
zero-shot data-to-text generation (introduced in Section 3.3) and tabular reasoning
(Gupta et al., 2020; Neeraja et al., 2021).

101

BARTR BARTW BARTK desc-cat fewshot-100 mask-all
0

10

20

30

40

50

60

70 DIR
LIT
LEX
SEM
LBL

Figure 6.2: Number of annotated errors per model (see Table 6.2 for the description of
error categories and Section 6.1.3 for the models). The striped part signifies that the
label of the input was marked as unclear.

Zero-shot Data-to-Text Generation In Section 3.3, we described our approach
for zero-shot D2T generation, where we handcrafted a template for each individual
relation. Here, we replicate this setup on the WebNLG dataset, applying the full-
rel2text model instead of the handcrafted templates. The results are summarized in
Table 6.4. We note that the pipeline using our model for preprocessing is able to
achieve improvements of ∼2 BLEU points, at the cost of a slightly higher omission
and hallucination rate, but crucially without needing the manual effort to create
templates. A cursory examination shows that sentences produced by our model are
qualitatively similar to the manual templates but more varied. Unlike the templates,
our model may verbalize a relation differently depending on the entities. Overall, we
argue that training a PLM on verbalizing individual relations can potentially replace
the manual effort of creating simple templates, which will have a notable impact on
scaling similar approaches to larger datasets.

dataset model BLEU METEOR O H

filtered
orig 43.19 39.13 0.152 0.073
full-rel2text 45.39 38.97 0.056 0.161

full
orig 42.92 39.07 0.051 0.148
full-rel2text 44.63 38.93 0.058 0.166

Table 6.4: Lexical similarity metrics (BLEU, METEOR) and omission (O) and halluci-
naton (H) rate; following the setup from Section 3.3.

102

Tabular Reasoning For the task of natural language inference (NLI) from
a table, Gupta et al. (2020) represent each table cell using a simple template
“The key of title are value.” (similarly to our fallback template in Section 4.1). Neer-
aja et al. (2021) extend their approach by preparing a fine-grained set of rules10 for
individual entity categories. We replicate the setup of Neeraja et al. (2021) for the
original (OPR) and better (BPR) paragraph representation using their public codebase.
We then replace their templates with our full-rel2text model, verbalizing the triple
(title, key, value). We compute the accuracy of the 3-way NLI outcome on the dev
set and three provided test sets (α1,2,3). The results are summarized in Table 6.5.
Our manual evaluation suggests that sentences generated by our model are indeed
more grammatical (even compared to BPR), but for the tabular NLI task, we observe
a performance comparable to OPR and BPR across all three test sets. In line with
McCoy et al. (2019), we conclude that for classification tasks such as NLI, the input
content appears to be more important than the input form.

premise repr. dev α1 α2 α3

OPR (Gupta et al., 2020) 76.78 75.30 68.46 64.63
BPR (Neeraja et al., 2021) 77.04 74.44 67.46 63.17
full-rel2text (ours) 74.44 74.31 64.59 63.46

Table 6.5: NLI accuracy for the dev set and test sets α1,2,3 from the InfoTabS dataset.
The results are averaged over three random seeds.

6.1.8 Discussion

Takeaways We showed that PLMs can verbalize novel relations as long as the
relation label is human-readable and unambiguous. However, when the cues about
the relation are limited, the model will resolve to guessing. A takeaway for datasets
that do not follow standard naming conventions, such as the Rotowire dataset (see
Section 2.2.6) which uses abbreviations for column headers (e.g., FG3A stands for “the
number of shots the player attempted beyond the arc”), is that rephrasing the labels to
natural language may increase the quality of outputs from neural systems. How to
handle input data with noisy labels is still an open question. We suggest detecting
and fixing these cases prior to generation, for example, with a human-in-the-loop
setup.

10Formalized using more than 250 lines of Python code: https://github.com/utahnlp/
knowledge_infotabs/blob/main/scripts/preprocess/bpr.py#L120

103

https://github.com/utahnlp/knowledge_infotabs/blob/main/scripts/preprocess/bpr.py#L120
https://github.com/utahnlp/knowledge_infotabs/blob/main/scripts/preprocess/bpr.py#L120

Implications for Large Language Models We focused on PLMs, which require
at least several hundred examples to produce satisfactory results. With in-context
learning, LLMs may bring down the number of examples required close to zero. In
the latter case, the models cannot learn correct verbalizations from the training data,
which makes using clear and unambiguous labels even more important. A follow-
up work has shown that prompting LLMs can bring comparable results to using a
finetuned PLM in our scenario but requires a more complex setup for controlling the
model outputs (Vejvar and Fujimoto, 2023).

Efficient Use of Relation Descriptions To achieve more notable improvements
with long-form descriptions of relations, it may be necessary to include amore detailed
specification regarding the relation direction, type, or acceptable values. The model
also needs to be able to reason about this specification, which could be achieved with
the help of LLMs and chain-of-thought reasoning (Wei et al., 2022b; Zhao et al., 2023c).

Limitations Our analysis is limited to verbalizing single triples, which is only a
trivial case of graph-to-text generation. Nevertheless, we believe that this simplified
setting allows us to distill insights that are still applicable to graph-to-text generation
in general (cf. Section 3.3). We also focus only on the English part of the KGs: for more
morphologically rich languages, an extra effort must be put into correctly inflecting
the entities in the generated text.

6.2 Data-to-Text Generation with Large Language
Models

This section is based on the paper Beyond Traditional Benchmarks: Analyzing Behaviors
of Open LLMs on Data-to-Text Generation (Kasner and Dušek, 2024), joint work with
Ondřej Dušek. The work is accepted to the Proceedings of the 62th Annual Meeting
of the Association for Computational Linguistics (ACL 2024).

In this section, we investigate the specifics of D2T generation with large language
models (LLMs). To avoid benchmarking the models on data seen during pretraining
(Section 6.2.2), we do not use standard D2T datasets described in Section 2.2.6. Instead,
we capitalize on the ability of LLMs to process structured data in standard formats such
as JSON, CSV, andMarkdownwithout task-specific finetuning. To collect new data, we
design a tool for downloading structured data records from public APIs (Section 6.2.2).
Using reference-free evaluation methods based on human annotators and GPT-4,
we evaluate semantic accuracy of model outputs on the word level (Sections 6.2.3

104

Task Id Domain Output type Source Format

openweather Weather five-day weather forecast OpenWeather JSON
gsmarena Technology product description GSMArena JSON
ice_hockey Sport ice hockey game summary RapidAPI JSON
owid Health chart caption OurWorldInData CSV
wikidata World facts entity description Wikidata Markdown

Table 6.6: The domains and tasks included in the Quintd data collection tool we
use for testing D2T generation with LLMs. In our experiments, we download 100
development and 100 test examples of input data for each domain.

and 6.2.4). We find that although the outputs from the LLMs are fluent, the semantic
accuracy of the outputs is a major issue: both according to human annotators and
GPT-4, more than 80% of the outputs of open LLMs contain at least one semantic
error. We publicly release the code, data, and model outputs.11

6.2.1 Motivation

At the time of writing, the applicability of LLMs (Ouyang et al., 2022; Touvron et al.,
2023; Jiang et al., 2023a; Tunstall et al., 2023) to D2T generation remains underexplored.
The only existing works evaluated proprietary models on a handful of well-established
benchmarks (Axelsson and Skantze, 2023; Yuan and Färber, 2023). However, the cur-
rent D2T generation benchmarks are not only getting saturated (van Miltenburg et al.,
2023), but also promote optimization towards traditional reference-based evaluation
metrics, which were shown to correlate poorly with human judgment (Gehrmann
et al., 2023; van der Lee et al., 2021; Novikova et al., 2017).

When it comes to the models, using closed LLMs (OpenAI, 2023b,a) is increasingly
considered a bad research practice due to its non-reproducibility (Rogers, 2023; Chen
et al., 2023c). Contamination of LLMs training data with standard benchmarks then
further restricts the space for experiments (Golchin and Surdeanu, 2023; Aiyappa
et al., 2023; Balloccu et al., 2024).

Our analysis circumvents these issues by (1) collecting ad-hoc structured data
without human-written references, (2) using reference-free evaluation methods for
annotating errors on the level of individual tokens, and (3) focusing on open LLMs,
which – apart from being more accessible – are also getting more competitive with
proprietary models (Zheng et al., 2023; Beeching et al., 2023).

11https://d2t-llm.github.io/

105

https://openweathermap.org
https://www.gsmarena.com
https://rapidapi.com
https://ourworldindata.org
https://wikidata.org
https://d2t-llm.github.io/

6.2.2 Reference-Free D2T Generation

Data Collection Tool We introduce a tool named Quintd12 for collecting ad-hoc
test sets using public APIs in five different domains. Our main reasons for departing
from the traditional scheme of benchmarking on well-established datasets are:

(1) Any published test sets may be potentially included in the training data of
LLMs.

(2) Public sources of structured data offer enough resources for creating ad-hoc
test sets.

(3) Without human references, our data collection scheme is lightweight and
replicable.

Given the available public sources of data, we settled on the five tasks shown in
Table 6.6: generating five-day weather forecasts, product descriptions, ice hockey
game summaries, chart captions, and entity descriptions. The tasks are based on
structured data in common formats: JSON, CSV, and Markdown.

Quintd-1 Dataset Using Quintd, we collected the dataset for our experiments
in this paper (Quintd-1). The dataset contains 500 examples in the development
set and 500 examples in the test set (100 examples per domain for each split). We
downloaded the data between November 2023 and January 2024. Note that the dataset
contains only unlabeled data without any reference outputs (e.g., weather data, but
not a textual weather forecast), so the outputs need to be evaluated in a reference-free
setup.

Task Definition Each example in Quintd-1 consists of a structured data record x

from a domain D ∈ {openweather, gsmarena, ice_hockey, owid, wikidata}. Given x

and a prompt P , the goal is to generate natural language output y faithful to the data
x, according to the instructions in the prompt P (see Figure 6.3).

6.2.3 Experiments

Models For our experiments, we selected the following LLMs available under an
open license: Llama 2 (Touvron et al., 2023; TogetherAI, 2023),13 Mistral (Jiang et al.,
2023a),14 and Zephyr (Tunstall et al., 2023).15

12Quintet of Unlabeled Inputs for Natural Tasks in Data-to-text, pronounced as “quintet”
13https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
14https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
15https://huggingface.co/HuggingFaceH4/zephyr-7b-beta

106

https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta

Prompt

Based on the given data:

 ̀ ̀̀

{data}

 ̀ ̀̀

Your task is to write a brief, fluent, and coherent single-paragraph

{output_type} in natural language. The text should be balanced and

neutral. Make sure that all the facts mentioned in the text can be

derived from the input data, do *not* add any extra information.

Output prefix

Sure! Here is the {output_type}:

"

Figure 6.3: The prompt P and the model output prefix we used for the experiments in
this paper. data is filled with the data record x and output_type is filled accordingly
for each domain D (see Table 6.6).

The models are instruction-tuned, operate with 32k context, and perform well
on recent benchmarks. All the models have 7B parameters and thus fit on a single
NVIDIA A40 (48G VRAM) in 16-bit precision. We accessed the models via an API
provided by the text-generation-webui framework16 running locally. For the final
experiments, we also included GPT-3.5 (gpt-3.5-turbo-1106) accessed through the
OpenAI API (OpenAI, 2023a).17

Experimental Process To avoid extensive prompt engineering, we use the same
prompt template P for all the domains and models. For our preliminary experiments,
we first wrote down the initial version of the prompt and used the data without further
preprocessing. We then iteratively improved our experimental setup by observing
outputs on the development set.

Observations from Preliminary Experiments Here, we describe all the obser-
vations and modifications we made before generating the final outputs on the test
set:

16https://github.com/oobabooga/text-generation-webui
17We only included GPT-3.5 in our final experiments since proprietary models were not our focus.

We did not include GPT-4 since we use the model for evaluation (see §6.2.4) and LLMs tend to be biased
towards their outputs (Koo et al., 2023; Stureborg et al., 2024).

107

https://github.com/oobabooga/text-generation-webui

prompt

"weather": [{
 "description":
 "light rain",
 }],
"wind": {
 "deg": 328,
 "gust": 3.92,
 "speed": 2.27
}
(...)

Mountain Brook, AlabamaNC is expected to
have a mild and mostly cloudy start to
the weekM, with temperatures ranging from
4.78°C to 11.47°C. Rain is expected on
Monday and TuesdayI (...)

e
v
a
lu
a
ti
o
n

g
e
n
e
ra
ti
o
n

+

human

annotators

GPT-4

ra
w

d
a
ta

output

Llama2-7B-

32k-Instruct

✔✘

o
p
e
n

L
L
M
s

Mistral-7B

instruct

Zephyr-7B-

beta

a
n
n
o
ta
to
rs

d
a
ta

 v
is
u
a
li
z
a
ti
o
n

data

Figure 6.4: Our experimental setup. We first generate the outputs using LLMs that
are given raw data and a task-specific prompt. We annotate the token-level semantic
errors in the LLM outputs with (a) an automatic metric based on GPT-4 that matches
the output to the raw data, and (b) human annotators, who annotate the errors in the
output given the data visualization.

• Any input field may appear in the output. The models do not always select
the most relevant fields for the given output. For example, we observed that the
models commonly mention identifiers, timestamps, files, and other metadata,
leading to unnatural outputs. To mitigate these issues, we manually picked
irrelevant fields and filtered them out.

• Units need to be specified explicitly. If measurement units are not specified
in the data record, the models tend to resort to their best guess. This may go
unnoticed if the unit is evident from the context (e.g., the model will usually
not report the temperature in Fahrenheit instead of Celsius), but it may get
problematic if the value is ambiguous (e.g., wind speed in km/h versus m/s).
Therefore, we explicitly add units to all data records where appropriate.

• Understandable keys are enough. On the flip side, we decided not to add
extra descriptions to the keys if the key was understandable from its name (e.g.,
homeTeam or dimensions). As we discussed in Section 6.1, pretrained models
interpret field names correctly as long as they are human-readable. We only
include chart metadata for the CSV files in the owid domain.

108

• Long inputs can be troublesome. The inputs in some domains can easily get
longer than 10-20k tokens. This issue is amplified by the fact that the evaluated
LLMs tokenize numbers into individual digits. To accommodate for the long
inputs, we picked models that accept up to 32k tokens.18 However, with long
inputs, the GPU memory consumption also gets considerably higher, so we
needed to downsample the data in owid and openweather to keep their length
under ~8k tokens.

• Few-shot experiments are infeasible. Due to the context-length limitations,
we were not able to run few-shot experiments since we could not robustly fit an
additional (xexample, yexample) pair in the prompt. We attempted to include only
yexample (making the setup “half-shot”), but we observed that the models then
used entities from the example (unrelated to the actual input) in their outputs.
Therefore, we decided to leave this line of experiments for future work.

• Deterministic decoding and sampling are on par. In our preliminary
experiments, we observed a roughly similar output quality for both greedy
decoding and sampling.19 For the final experiments, we decided to use greedy
decoding, which is non-parametric and conceptually more suitable for D2T
generation.

• Prefixing the output makes parsing easier. Even with variations of a
“generate only the output” instruction appended to the prompt, the models
(especially Llama 2) tended to first confirm the request. For that reason, we
decided to prefix the input for all the models with “Sure! Here is the {output_type}:
””. The opening quote at the end of the prefix allowed us to robustly parse the
text simply by stripping the closing quote from the model output.

• The outputs are fluent but inaccurate. We observed that the vast majority
of model outputs were grammatically and stylistically correct, capturing the
output type specified in the prompt. However, we also noticed that the outputs
contained many semantic errors (even after emphasizing the focus on semantic
accuracy in the prompt, see Figure 6.3). This observation led us to evaluate
the model outputs using word-level annotations focused on semantic accuracy
errors (see Section 6.2.4).

18For this reason, we use Llama-2-7B-32k with 32k token context (TogetherAI, 2023) instead of the
official Llama-2-7B-Instruct, which only supports 4k context (Touvron et al., 2023).

19We used the text-generation-webui default decoding parameters: temperature=0.7, top_p=0.9,
and top_k=20.

109

• Be careful about subtle bugs. During our preliminary experiments, we had
to fix subtle bugs in our API calls such as incorrect instruction templates20 or
involuntary input truncation. We note that with the apparent ease of API access
and robustness of LLMs, such bugs could go unnoticed and artificially skew the
model performance.

Final Experiments Taking the observations from our preliminary experiments
into account, we proceeded to generate the outputs on the test set of Quintd-1 for
token-level error analysis. We first preprocessed the data as mentioned: we stripped
out unnecessary fields, added units, and downsampled the data to fit the context.
For all the models, we used the prompt in Figure 6.3 and greedy decoding with a
maximum of 512 output tokens.

For comparison, we also generated outputs for the same inputs and identical
prompts with GPT-3.5. Note that even though we fixed the temperature and seed to
0, the rest of the decoding parameters are inaccessible to us and may differ from the
parameters we used for the open models.

6.2.4 Evaluation

For evaluation, we focus on identifying semantic errors in model outputs. We compare
the generated texts to the input data, looking for parts of texts that are not faithful to
the input data. We annotate the errors on the token level, considering all the tokens
in the output text as potential sources of errors.

We use two complementary referenceless evaluation methods:

• Ehum: human evaluation based on crowdsourcing,

• Egpt: an automatic metric based on GPT-4.

The methods use similar instructions and produce outputs with equivalent format.
The main idea is to compensate for the shortcomings of each approach: while human
evaluation is costly (about 10× more expensive than automatic evaluation in our
setup), using only an automatic metric based on a closed LLM would make the
evaluation potentially non-reproducible and biased (Kocmi and Federmann, 2023a;
Wang et al., 2023c). Reporting the results of both methods should hopefully increase
the robustness and replicability of our results.

We use similar error taxonomy and notation are we did in Section 4.2, inspired by
Thomson and Reiter (2020). After preliminary examination of the outputs, we settled
on four error categories: INCORRECTI, NOT_CHECKABLENC, MISLEADINGS,
and OTHERO. To set a clear boundary between the categories and reach better inter-

20https://huggingface.co/docs/transformers/chat_templating

110

https://huggingface.co/docs/transformers/chat_templating

Error Description

INCORRECTI The fact in the text contradicts the data.
NOT_CHECKABLENC The fact in the text cannot be checked given the data.
MISLEADINGS The fact in the text is misleading in the given context.
OTHERO The text is problematic for another reason, e.g., grammatically or stylis-

tically incorrect, irrelevant, or repetitive.

Example
data Nokia 3310 | color : black, blue, grey | display: 320x240px
text Nokia 3310 is produced in FinlandNC and features a 320x320I display.

It is available in black colorS. The data seem to provide only
partial information about the phone.O

Table 6.7: Categories of errors annotated in our evaluation and an example demon-
strating the error types.

annotator agreement, we decided to keep our taxonomy more high-level this time and
not to distinguish between fine-grained categories (e.g., incorrect name vs. incorrect
number). The descriptions of our error categories, as presented in the instructions for
annotation, are included in Table 6.7.

Human-based Evaluation For the human annotation metric, we prepared a cus-
tom web interface, where an annotator is instructed to annotate text spans with the
respective error categories. We created custom visualizations for each input data
format, as illustrated in Figure 6.4.21

We hired annotators on the Prolific crowdsourcing platform.22 In total, we hired
100 annotators, each annotating 20 examples (4 model outputs for each of the five
domains). We selected annotators with at least 10 completed tasks, a 100% approval
rate, and English as their primary language. We paid the annotators £9 per hour,
according to the platform’s recommendations. The median time for completing the
annotations was 47 minutes.

GPT-4-based Evaluation For automatic evaluation, we leverage the fact that LLM-
basedmetrics can be customized for a particular taskwithout the need for training data.
In our experiments, we use a metric based on GPT-4 (gpt-4-1106-preview, OpenAI,
2023b), which was shown to be superior to other LLMs in following fine-grained in-
structions, reaching high correlations with human judgment on evaluating generated
texts (Zhao et al., 2023c; Sottana et al., 2023; Kocmi and Federmann, 2023a,b).23

21We open-sourced our annotation framework as a stand-alone software package, see https://

github.com/kasnerz/factgenie.
22https://prolific.com
23We confirmed that GPT-3.5 and Llama 3 have lower correlations with human judgments also in

our scenario, see Appendix D of Kasner and Dušek (2024).

111

https://github.com/kasnerz/factgenie
https://github.com/kasnerz/factgenie
https://prolific.com

Incorrect Not Checkable Misleading Other All cat.
Ehum Egpt Ehum Egpt Ehum Egpt Ehum Egpt Ehum Egpt Tok.

Llama 2 1.57 2.79 1.25 0.91 0.25 0.12 0.10 0.09 3.18 3.90 83.8
Mistral 2.03 3.23 1.12 0.54 0.44 0.26 0.25 0.10 3.85 4.12 114.9
Zephyr 1.44 2.84 0.77 0.40 0.20 0.29 0.16 0.05 2.58 3.58 98.0

GPT-3.5 0.65 1.76 0.49 0.38 0.18 0.26 0.07 0.02 1.39 2.42 84.9

Table 6.8: The average number of errors per output (lower is better) based on human
annotators (Ehum) and GPT-4 (Egpt). We also include the average number of tokens per
output in the rightmost column. The results of the best open LLM are emphasized.

We instantiate Egpt with a prompt and a system message describing the task. We
instruct the model to produce a JSON output with sequentially ordered errors using
the following format:

{

"errors": [{

"reason": [REASON],

"text": [TEXT_SPAN],

"type": [ERROR_CATEGORY]

},

...]

}.

Note that we require that the model first generates the free-form text reason for
the error.24 Generating the reason comes at almost no extra cost and our cursory
observations suggest that requiring it leads to more precise outputs.

We align themodel outputs with the original text by stringmatching on TEXT_SPAN,
moving the current position forward after each match. We ensure that the model
response is a valid JSON using OpenAI’s response_format parameter.

6.2.5 Results and Discussion

A summary of the token-level annotations is given in Tables 6.8 and 6.9.

How Accurate Are Model Outputs? Depending on the model, between 76-86%
of examples contain an error according to Ehum, suggesting that open LLMs make
semantic errors very often. According to Egpt, the number is as high as 89-94%. The
most common error type is INCORRECTI. As shown in Table 6.8, all the open LLMs

24We did not ask the crowdworkers for free-form reasoning about the errors since that would make
the annotation notably more complex.

112

Incorrect Not Checkable Misleading Other All cat.
Ehum Egpt Ehum Egpt Ehum Egpt Ehum Egpt Ehum Egpt

Llama 2 53.2% 80.0% 57.4% 44.8% 17.4% 8.8% 7.6% 7.6% 85.6% 94.0%
Mistral 53.6% 80.2% 49.6% 31.8% 20.6% 17.0% 13.6% 8.4% 81.2% 93.0%
Zephyr 46.8% 78.0% 42.2% 25.0% 16.2% 20.6% 11.6% 4.2% 75.6% 89.4%

GPT-3.5 38.0% 65.0% 28.8% 19.6% 12.6% 16.2% 6.2% 2.2% 60.6% 75.8%

Table 6.9: The percentage of outputs containing at least one error (lower is better) based
on human annotators (Ehum) and GPT-4 (Egpt). The results of the best open LLM are
emphasized.

make more than two statements contradicting the data per output on average.
The NOT_CHECKABLENC errors are also relatively common: more than one per
output on average according to Ehum, and at least one being present in more than 25%
of examples according to both metrics.

The differences between the open LLMs are not major. Out of the open LLMs,
Zephyr has the best results across categories and metrics, followed by Llama 2. How-
ever, the outputs of Mistral are longer on average, leaving more space for errors.
GPT-3.5 (which we consider separately) does generally better according to both
Egptand Ehum, although it still makes an error in 60-75% of examples (more than 1 error
per example on average). In general, the results show that LLMs make too many
semantic errors to be usable in practice for D2T generation in a zero-shot setting.

Do Evaluation Methods Agree? To quantify the agreement of Ehum and Egpt, we
computed the Pearson correlation coefficient between the error counts on the level
of tokens, examples, and domains as follows (note that each error category was
considered separately):

• For rdomain, we used the average error counts per domain.25

• For rexample, we used the count of errors per example.

• For rtoken, we used binary indicators marking whether each word is labeled as
an error.

We see that the correlation on the level of words is weak (rtoken = 0.26) but gets
better on the example level (rexample = 0.52) and even better on the domain level
(rdomain = 0.93).

We also measure inter-annotator agreement between human annotators. For that,
we obtained annotations from two annotators for 100 model outputs. The results are
similar: the annotators agree weakly on the token level (rtoken = 0.36), stronger on the
example level (rexample = 0.53), and even stronger on the domain level (rdomain = 0.85).

25See Appendix F of Kasner and Dušek (2024) for the results for individual domains.

113

We conclude that while the details regarding error spans and categories may vary, the
annotators as well as GPT-4 generally agree on the accuracy of model outputs for a
given set of examples. In the future, the agreement could be improved by measuring
errors on the phrase level (Vamvas and Sennrich, 2022).

Recommendations for Future Work Based on the above results, we formulate a
few recommendations for future works exploring D2T generation with LLMs:

• Focus on semantic accuracy. The output of LLMs is satisfactory regarding
the style, format, and purpose of the text. However, the amount of semantic
errors remains very high. Improving the semantic accuracy of the models (Li
et al., 2022), along with new model-based evaluation metrics (Liu et al., 2023;
Xu et al., 2023a), could thus help to bring improve LLM-based D2T generation
systems where it is most needed.

• Use long-context models. The memory issues with long context, making few-
shot experiments infeasible, can potentially be solved by using more efficient
long-context models equipped with Flash Attention (Dao et al., 2022) and fast
inference libraries such as llama.cpp,26 especially in the light of the recent
rapid increase of the available context window size of LLMs (Bai et al., 2023;
Munkhdalai et al., 2024).

• Test the models in the wild. Except for using an ad-hoc dataset of real-
world data as we did in our work, the validity of D2T evaluation beyond the
experimental setting can also be ensured by continuous evaluation with human
users (Zheng et al., 2023) and evaluating the real-world impact of the systems
(Reiter, 2023).

• Multilinguality is an opportunity. With the recent efforts in extending D2T
generation to low-resource languages (Cripwell et al., 2023), multilingual D2T
generation with open LLMs seems a promising direction. Although we did not
go beyond English, initial steps were already taken by works such as Lorandi
and Belz (2023) and Lorandi and Belz (2024).

26https://github.com/ggerganov/llama.cpp

114

https://github.com/ggerganov/llama.cpp

6.3 Conclusion

To improve D2T generation systems based on neural LMs, it is important to know the
input data we are dealing with, along with the strong and weak points of the models
we are using. We had both of these points in mind when conducting the experiments
described in this chapter. We analyzed the capabilities of pretrained models of various
sizes, focusing on openly available models, and provided recommendations for future
directions in D2T generation with these models. Our insights are based on custom
datasets, carefully assembled for the purpose of the analysis.

In Section 6.1, we investigated how well PLMs can generalize to unseen data labels.
We collected a dataset for triple-to-text generation with a large variety of unique
relation labels. Using the dataset, we analyzed the performance of finetuned PLMs in
various scenarios, concluding that for good generalization, it is important to equip
the data with unambiguous, human-readable labels.

In Section 6.2, we presented an exploratory study into D2T generation with open
LLMs. We used ad-hoc collected data in standard formats from five domains, prompt-
ing LLMs to generate texts based on the data. Using a combination of a GPT-4-based
metric and human evaluation, we found out that the outputs contain unacceptably
large amounts of semantic errors. In light of these findings, we recommended im-
proving semantic accuracy as the main future direction for D2T generation with
LLMs.

We conclude that pretraining equips LMs with the abilities to generate text from
data with new data labels or formats. This ability is most apparent with LLMs, that
can perform a large variety of D2T generation tasks without the need for task-specific
training data. However, their zero-shot abilities are a double-edged sword, as the
text fluency text may conceal semantic errors in the output. Finetuned models are
the safer choice for small, targetted operations, such as the ones we performed in
Sections 3.3, 4.1, and 6.1, where consistency across examples is required.

115

7
Conclusions

We set out to explore how to use language models (LMs) to improve the robustness
and fluency of data-to-text (D2T) generation systems. The issues we had to deal
with—semantic inaccuracies of generated texts, lack of automatic evaluation metrics,
heterogeneous data formats, and unknown scope of LMs abilities—are as pressing as
ever, despite the increase in LM capabilities over the past few years. That is not to say
that there has not been any progress: the opposite is evidenced by numerous works
introduced in Chapter 2 and others we did not get the chance to mention.

We hope to have also contributed to the progress with the answers to our research
questions outlined in Section 1.1, including:

• RQ1: Our finding that simple LM-based approaches can be used for generating
fluent outputs from structured data (Sections 3.1 and 6.2),

• RQ2: Our finding that preprocessing the data with templates and rule-based
systems can help downstream LM components (Sections 3.2, 3.3, 4.1, and 4.2),

• RQ3: Our finding that constraining LM to improving text quality helps to
improve the semantic accuracy of the system outputs (Sections 3.2 and 3.3),

• RQ4: Our finding that LMs can be also used for automatic metrics for evaluating
semantic accuracy (Sections 4.1 and 4.2),

• RQ5: Our finding that the best way to leverage LM pretraining is to use
standardized and understandable input formats (Sections 5.1, 6.1, and 6.2).

At this point, we are well-equipped to also discuss a few meta-questions. Are
we solving the right problems in D2T generation? Do we want to continue integrat-
ing LMs in D2T generation systems? And is there value in developing specialized
approaches, or are all the problems going to be solved by using ever larger models?

117

A good starting point to answering these questions is realizing that language
models (and LLMs in particular) are here to stay. The ongoing proliferation of LLMs
in natural language processing (Min et al., 2024; Zhao et al., 2023a; Naveed et al.,
2023) makes it hard to imagine a subfield that would be left intact by their impact.
There is a solid reason for that: with LLMs, certain things unimaginable during
previous decades—such as fine-grained steering of a system using natural language
instructions—are now becoming possible. We can expect that D2T without LLMs
would, to put it bluntly, soon start to feel awkward. People are already becoming
used to consuming fluent texts and seamlessly interacting with language generation
systems, aspects that are hard to replace with non-LLM systems. As we stated in
the introduction, D2T generation is primarily about simplifying interactions for end
users, so these aspects cannot be neglected if D2T research is to stay relevant.

At the same time, users are (hopefully, along with us researchers) becoming
aware of the limitations of LM-based systems. Even the most powerful LMs nowadays
cannot reliably perform symbolic tasks such as basic arithmetic operations (Qian et al.,
2023), understand reflexivity of relations between entities (Berglund et al., 2024), or
recognize unanswerable or unknowable questions (Yin et al., 2023). All of these issues
are tied to D2T generation: for example, understanding the scope of relations (and
recognizing the ambiguous ones) is crucial for the correct verbalization of knowledge
graphs, as we discussed in Section 6.1. It is reasonable to expect that these issues will
not be fully solved with further scaling of LLMs or minor architectural improvements.
We therefore need to tread carefully when integrating LMs into D2T generation
systems: a system relying too heavily on LMs may not be ever able to guarantee
outputs accurate enough for day-to-day usage, let alone for sensitive applications.

It would be, however, counter-productive to dismiss LMs by likening them to a
“black box”, picking on their unpredictable behavior. It is better to acknowledge that
even the black boxes are still boxes: components that can be embedded in a larger
system. As we repeatedly showed throughout the thesis, such a component can be
helpful when used wisely. We can, for example, over-generate LM outputs and select
only the relevant ones (Section 3.2) or train the LM in a way that its outputs are more
predictable (Section 3.3). We can also build our system around the tasks on which LMs
achieve state-of-the-art performance, such as natural language inference (Section 4.1)
or text classification (Section 4.2).

Looking at recent developments, we only scratched the surface of what is possible.
Even now, we can go beyond the lexicalization and surface realization steps—which
were the primary focus of this thesis—by connecting LMs to tools such as a Python
interpreter or an SQL engine, enabling LMs to perform content selection as well (Cao
et al., 2023; Jiang et al., 2023b; Gemmell and Dalton, 2023). We can imagine that
by combining code execution with approaches such as chain-of-thought prompting

118

and its advanced variants (Wei et al., 2022b; Chu et al., 2023), the systems will be
able to automatically perform logical operations over the data to derive interesting
insights (Zhao et al., 2023b; Chen et al., 2020a,c). Soon, we may think of literal data
transcription or shallow data summarization the way we think about, for example,
word-for-word translation: as an approach that is too basic to even consider using.
LM-powered systems could thus get us closer to presenting useful insights from
large-scale structured data, the ultimate purpose of D2T generation.

As the systems get better at handling multiple natural language processing (NLP)
tasks in a unified way, the role of individual tasks—such as D2T generation—could
become somewhat less important. A single LM-based component could jointly tackle
all the tasks that are currently thought of as stand-alone: natural language understand-
ing, text-to-SQL, data mining, question answering, or data-to-text generation (Schopf
et al., 2023; Chen et al., 2021). Rather than in the tasks themselves, the researchers
would then specialize in auxiliary tools used on top of the LMs such as approaches for
steering the generation process, output quality assurance, or personalization (Zhang
et al., 2024; Chen et al., 2023b).

Evaluating future systems may get more difficult. The first step we need to focus
on is making the current evaluation measures reflect actual system improvements
(Gehrmann et al., 2023; van Miltenburg et al., 2023). As we discussed in Section 6.2,
this can mean moving away from traditional benchmarks, that can get saturated
(Kiela et al., 2021; Raji et al., 2021), or even included in the LLM training data (Balloccu
et al., 2024). In the long run, we should also focus on the ecological validity of the
systems we are developing (Reiter, 2017). To achieve that, we should focus more on
extrinsic evaluation, i.e., evaluating the system as a whole instead of its individual
components (cf. Reiter et al., 2003; Eugenio et al., 2002, see also Section 2.2.7). These
measures are harder to iterate on but give us a better picture of the real-world impact
of the systems we are building.

A final recommendation, that perhaps should have come a bit sooner: look in
the data and try to perform the task yourselves first. As much as we introduced the
data as the language of computers, its content and structure can always be traced
down to human-made inputs. Our experiments—such as the ones in Sections 5.1
and 6.1—made it clear to us that the inputs themselves are often incomplete and hard
to understand. In these cases, trying to present the data in understandable form is
the same as translating gibberish language. Until the computers can reliably fix our
errors, we need to do the legwork and fix them ourselves. In other words: keep on
learning the language of the data we are producing.

119

Bibliography

Agarwal, A. – Lavie, A. Meteor, M-BLEU and M-TER: Evaluation Metrics for High-
Correlation with Human Rankings of Machine Translation Output. In Proceedings of the
Third Workshop on Statistical Machine Translation, WMT at ACL 2008, p. 115–118, Columbus,
Ohio, USA, 2008. Available at: https://aclanthology.org/W08-0312/.

Agarwal, O. – Ge, H. – Shakeri, S. – Al-Rfou, R. Knowledge Graph Based Synthetic Corpus
Generation for Knowledge-Enhanced Language Model Pre-training. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2021, p. 3554–3565, Online, 2021.
doi: 10.18653/V1/2021.NAACL-MAIN.278. Available at: https://doi.org/10.18653/v1/

2021.naacl-main.278.

Aiyappa, R. – An, J. – Kwak, H. – Ahn, Y.-y. Can We Trust the Evaluation on ChatGPT?
In Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP
2023), p. 47–54, Toronto, Canada, July 2023. doi: 10.18653/v1/2023.trustnlp-1.5. Available
at: https://aclanthology.org/2023.trustnlp-1.5.

Amaral, G. – Rodrigues, O. – Simperl, E. WDV: A Broad Data Verbalisation Dataset
Built from Wikidata. In The Semantic Web - ISWC 2022 - 21st International Semantic Web
Conference, Proceedings, 13489 / Lecture Notes in Computer Science, p. 556–574, Virtual Event,
2022. doi: 10.1007/978-3-031-19433-7_32. Available at: https://doi.org/10.1007/978-3-

031-19433-7_32.

Angeli, G. – Liang, P. – Klein, D. A Simple Domain-Independent Probabilistic Approach
to Generation. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2010, 9-11 October 2010, MIT Stata Center, Massachusetts, USA,
A meeting of SIGDAT, a Special Interest Group of the ACL, p. 502–512, 2010. Available at:
https://aclanthology.org/D10-1049/.

Anthropic, A. The Claude 3 Model Family: Opus, Sonnet, Haiku. Claude-
3 Model Card. 2024. Available at: https://www-cdn.anthropic.com/

de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.

121

https://aclanthology.org/W08-0312/
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://aclanthology.org/2023.trustnlp-1.5
https://doi.org/10.1007/978-3-031-19433-7_32
https://doi.org/10.1007/978-3-031-19433-7_32
https://aclanthology.org/D10-1049/
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Aoki, T. – Miyazawa, A. – Ishigaki, T. – Goshima, K. – Aoki, K. – Kobayashi, I. – Taka-
mura, H. – Miyao, Y. Generating Market Comments Referring to External Resources. In
Proceedings of the 11th International Conference on Natural Language Generation, p. 135–139,
Tilburg University, The Netherlands, 2018. doi: 10.18653/V1/W18-6515. Available at:
https://doi.org/10.18653/v1/w18-6515.

Aroca-Ouellette, S. – Rudzicz, F. On Losses for Modern Language Models. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, p.
4970–4981, Online, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.403. Available at: https:
//doi.org/10.18653/v1/2020.emnlp-main.403.

Attardi, G. WikiExtractor. https://github.com/attardi/wikiextractor, 2015.

Auer, S. – Bizer, C. – Kobilarov, G. – Lehmann, J. – Cyganiak, R. – Ives, Z. G. DBpedia:
A Nucleus for a Web of Open Data. In The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian SemanticWeb Conference, ISWC 2007 + ASWC 2007, 4825 / Lecture Notes
in Computer Science, p. 722–735, Busan, Korea, 2007. doi: 10.1007/978-3-540-76298-0_52.
Available at: https://doi.org/10.1007/978-3-540-76298-0_52.

Axelsson, A. – Skantze, G. Using Large Language Models for Zero-Shot Natural Lan-
guage Generation from Knowledge Graphs. CoRR. 2023, abs/2307.07312. doi: 10.48550/
ARXIV.2307.07312. Available at: https://doi.org/10.48550/arXiv.2307.07312.

Ba, L. J. – Kiros, J. R. – Hinton, G. E. Layer Normalization. CoRR. 2016, abs/1607.06450.
Available at: http://arxiv.org/abs/1607.06450.

Bahdanau, D. – Cho, K. – Bengio, Y. Neural Machine Translation by Jointly Learning to Align
and Translate. In 3rd International Conference on Learning Representations, ICLR 2015Pro-
ceedings, San Diego, CA, USA, 2015. Available at: http://arxiv.org/abs/1409.0473.

Bai, Y. – Lv, X. – Zhang, J. – Lyu, H. – Tang, J. – Huang, Z. – Du, Z. – Liu, X. – Zeng, A. –
Hou, L. – Dong, Y. – Tang, J. – Li, J. LongBench: A Bilingual, Multitask Benchmark for
Long Context Understanding. CoRR. 2023, abs/2308.14508. doi: 10.48550/ARXIV.2308.14508.
Available at: https://doi.org/10.48550/arXiv.2308.14508.

Balakrishnan, A. – Rao, J. – Upasani, K. – White, M. – Subba, R. Constrained Decoding for
Neural NLG FromCompositional Representations in Task-Oriented Dialogue. In Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Volume
1: Long Papers, p. 831–844, Florence, Italy, 2019. doi: 10.18653/V1/P19-1080. Available at:
https://doi.org/10.18653/v1/p19-1080.

Balloccu, S. – Reiter, E. Comparing Informativeness of an NLG Chatbot vs Graphical App
In Diet-Information Domain. CoRR. 2022, abs/2206.13435. doi: 10.48550/ARXIV.2206.13435.
Available at: https://doi.org/10.48550/arXiv.2206.13435.

122

https://doi.org/10.18653/v1/w18-6515
https://doi.org/10.18653/v1/2020.emnlp-main.403
https://doi.org/10.18653/v1/2020.emnlp-main.403
https://github.com/attardi/wikiextractor
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.48550/arXiv.2307.07312
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
https://doi.org/10.48550/arXiv.2308.14508
https://doi.org/10.18653/v1/p19-1080
https://doi.org/10.48550/arXiv.2206.13435

Balloccu, S. – Schmidtová, P. – Lango, M. – Dušek, O. Leak, Cheat, Repeat: Data Con-
tamination and Evaluation Malpractices in Closed-Source LLMs. In Proceedings of the
18th Conference of the European Chapter of the Association for Computational Linguistics,
EACL 2024 - Volume 1: Long Papers, p. 67–93, St. Julian’s, Malta, 2024. Available at:
https://aclanthology.org/2024.eacl-long.5.

Banerjee, S. – Lavie, A. METEOR: An Automatic Metric for MT Evaluation with Improved
Correlation with Human Judgments. In Proceedings of theWorkshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization at ACL 2005, p. 65–72,
Ann Arbor, Michigan, USA, 2005. Available at: https://aclanthology.org/W05-0909/.

Bangalore, S. – Rambow, O. Corpus-Based Lexical Choice in Natural LanguageGeneration. In
38th Annual Meeting of the Association for Computational Linguistics, p. 464–471, Hong Kong,
China, 2000. doi: 10.3115/1075218.1075277. Available at: https://aclanthology.org/P00-

1059/.

Bao, J. – Tang, D. – Duan, N. – Yan, Z. – Lv, Y. – Zhou, M. – Zhao, T. Table-to-Text:
Describing Table Region with Natural Language. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), p. 5020–5027, New Orleans, Louisiana, USA, 2018. doi:
10.1609/AAAI.V32I1.11944. Available at: https://doi.org/10.1609/aaai.v32i1.11944.

Barzilay, R. – Lee, L. Catching the Drift: Probabilistic Content Models, with Applications to
Generation and Summarization. In Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, HLT-NAACL 2004, p.
113–120, Boston, Massachusetts, USA, 2004. Available at: https://aclanthology.org/N04-

1015/.

Barzilay, R. – McKeown, K. R. Sentence Fusion for Multidocument News Summarization.
Comput. Linguistics. 2005, 31, 3, p. 297–328. doi: 10.1162/089120105774321091. Available at:
https://doi.org/10.1162/089120105774321091.

Barzilay, R. – Elhadad, N. – McKeown, K. R. Sentence Ordering in Multidocument
Summarization. In Proceedings of the First International Conference on Human Lan-
guage Technology Research, HLT 2001, San Diego, California, USA, 2001. Available at:
https://aclanthology.org/H01-1065/.

Bateman, J. A. Enabling Technology for Multilingual Natural Language Generation: The
KPML Development Environment. Natural Language Engineering. 1997, 3, 1, p. 15–55.

Baum, L. E. – Petrie, T. Statistical Inference for Probabilistic Functions of Finite State Markov
Chains. The annals of mathematical statistics. 1966, 37, 6, p. 1554–1563.

123

https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/W05-0909/
https://aclanthology.org/P00-1059/
https://aclanthology.org/P00-1059/
https://doi.org/10.1609/aaai.v32i1.11944
https://aclanthology.org/N04-1015/
https://aclanthology.org/N04-1015/
https://doi.org/10.1162/089120105774321091
https://aclanthology.org/H01-1065/

Beeching, E. – Fourrier, C. – Habib, N. – Han, S. – Lambert, N. – Rajani, N. – Sanseviero,
O. – Tunstall, L. – Wolf, T. Open LLM Leaderboard. https://huggingface.co/spaces/

HuggingFaceH4/open_llm_leaderboard, 2023.

Belz, A. Corpus-Driven Generation of Weather Forecasts. In Proc. 3rd Corpus Linguistics
Conference, 2005.

Belz, A. Automatic Generation of Weather Forecast Texts using Comprehensive Prob-
abilistic Generation-Space Models. Nat. Lang. Eng. 2008, 14, 4, p. 431–455. doi:
10.1017/S1351324907004664. Available at: https://doi.org/10.1017/S1351324907004664.

Belz, A. – Mille, S. – Howcroft, D. M. Disentangling the Properties of Human Evaluation
Methods: A Classification System to Support Comparability, Meta-Evaluation and Repro-
ducibility Testing. In Proceedings of the 13th International Conference on Natural Language
Generation, INLG 2020, p. 183–194, Dublin, Ireland, 2020. doi: 10.18653/V1/2020.INLG-1.24.
Available at: https://doi.org/10.18653/v1/2020.inlg-1.24.

Bengio, Y. – Ducharme, R. – Vincent, P. – Janvin, C. A Neural Probabilistic Language
Model. J. Mach. Learn. Res. 2003, 3, p. 1137–1155. Available at: http://jmlr.org/papers/

v3/bengio03a.html.

Berglund, L. – Tong, M. – Kaufmann, M. – Balesni, M. – Stickland, A. C. – Korbak, T.
– Evans, O. The Reversal Curse: LLMs trained on “A is B” fail to learn “B is A”. In The
Twelfth International Conference on Learning Representations, 2024. Available at: https:
//openreview.net/forum?id=GPKTIktA0k.

Bird, S. – Klein, E. – Loper, E. Natural Language Processing With Python: Analyzing Text
With the Natural Language Toolkit. O’Reilly Media, Inc., 2009.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer. 2006, 2, p. 5–43.

Botha, J. A. – Faruqi, M. – Alex, J. – Baldridge, J. – Das, D. Learning to Split and Rephrase
From Wikipedia Edit History. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, p. 732–737, Brussels, Belgium, 2018. doi: 10.18653/v1/D18-
1080. Available at: https://www.aclweb.org/anthology/D18-1080.

Brown, T. B. et al. Language Models are Few-Shot Learners. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, 2020. Available at: https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Bubeck, S. – Chandrasekaran, V. – Eldan, R. – Gehrke, J. – Horvitz, E. – Kamar, E.
– Lee, P. – Lee, Y. T. – Li, Y. – Lundberg, S. M. – Nori, H. – Palangi, H. – Ribeiro,
M. T. – Zhang, Y. Sparks of Artificial General Intelligence: Early Experiments with GPT-
4. CoRR. 2023, abs/2303.12712. doi: 10.48550/ARXIV.2303.12712. Available at: https:

//doi.org/10.48550/arXiv.2303.12712.

124

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://doi.org/10.1017/S1351324907004664
https://doi.org/10.18653/v1/2020.inlg-1.24
http://jmlr.org/papers/v3/bengio03a.html
http://jmlr.org/papers/v3/bengio03a.html
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://www.aclweb.org/anthology/D18-1080
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712

Budzianowski, P. – Wen, T. – Tseng, B. – Casanueva, I. – Ultes, S. – Ramadan, O. –
Gasic, M. MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-
Oriented Dialogue Modelling. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, p. 5016–5026, Brussels, Belgium, 2018. Available at: https:
//aclanthology.org/D18-1547/.

Calizzano, R. – Ostendorff, M. – Rehm, G. Ordering Sentences and Paragraphs with
Pre-Trained Encoder-Decoder Transformers and Pointer Ensembles. In DocEng ’21: ACM
Symposium on Document Engineering 2021, p. 10:1–10:9, Limerick, Ireland, 2021. doi:
10.1145/3469096.3469874. Available at: https://doi.org/10.1145/3469096.3469874.

Cao, Y. – Chen, S. – Liu, R. – Wang, Z. – Fried, D. API-Assisted Code Generation for
Question Answering on Varied Table Structures. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2023, p. 14536–14548, Singapore,
2023. doi: 10.18653/V1/2023.EMNLP-MAIN.897. Available at: https://doi.org/10.18653/

v1/2023.emnlp-main.897.

Celikyilmaz, A. – Clark, E. – Gao, J. Evaluation of Text Generation: A Survey. CoRR. 2020,
abs/2006.14799. Available at: https://arxiv.org/abs/2006.14799.

Cer, D. – Diab, M. – Agirre, E. – Lopez-Gazpio, I. – Specia, L. SemEval-2017 Task 1: Semantic
Textual Similarity Multilingual and Crosslingual Focused Evaluation. In Proceedings of the
11th International Workshop on Semantic Evaluation (SemEval-2017), p. 1–14, Vancouver,
Canada, August 2017. doi: 10.18653/v1/S17-2001. Available at: https://aclanthology.org/

S17-2001.

Chang, E. – Shen, X. – Marin, A. – Demberg, V. The SelectGen Challenge: Finding the
Best Training Samples for Few-Shot Neural Text Generation. In Proceedings of the 14th
International Conference on Natural Language Generation, INLG 2021, p. 325–330, Aberdeen,
Scotland, UK, 2021a. doi: 10.18653/V1/2021.INLG-1.36. Available at: https://doi.org/

10.18653/v1/2021.inlg-1.36.

Chang, E. – Shen, X. – Zhu, D. – Demberg, V. – Su, H. Neural Data-to-Text Generation
with LM-based Text Augmentation. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, p.
758–768, Online, 2021b. doi: 10.18653/V1/2021.EACL-MAIN.64. Available at: https:

//doi.org/10.18653/v1/2021.eacl-main.64.

Chapman, C. L. – Hillebrand, L. P. – Stenzel, M. R. – Deußer, T. – Biesner, D. – Bauckhage,
C. – Sifa, R. Towards Generating Financial Reports from Tabular Data using Transformers.
InMachine Learning and Knowledge Extraction - 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9
International Cross-Domain Conference, CD-MAKE 2022, Proceedings, 13480 / Lecture Notes
in Computer Science, p. 221–232, Vienna, Austria, 2022. doi: 10.1007/978-3-031-14463-9_14.
Available at: https://doi.org/10.1007/978-3-031-14463-9_14.

125

https://aclanthology.org/D18-1547/
https://aclanthology.org/D18-1547/
https://doi.org/10.1145/3469096.3469874
https://doi.org/10.18653/v1/2023.emnlp-main.897
https://doi.org/10.18653/v1/2023.emnlp-main.897
https://arxiv.org/abs/2006.14799
https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://doi.org/10.18653/v1/2021.inlg-1.36
https://doi.org/10.18653/v1/2021.inlg-1.36
https://doi.org/10.18653/v1/2021.eacl-main.64
https://doi.org/10.18653/v1/2021.eacl-main.64
https://doi.org/10.1007/978-3-031-14463-9_14

Chen, J. – Xu, R. – Zeng, W. – Sun, C. – Li, L. – Xiao, Y. Converge to the Truth: Factual Error
Correction via Iterative Constrained Editing. InThirty-Seventh AAAI Conference on Artificial
Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intel-
ligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2023, p. 12616–12625, Washington, DC, USA, 2023a. doi: 10.1609/AAAI.V37I11.26485.
Available at: https://doi.org/10.1609/aaai.v37i11.26485.

Chen, J. – Liu, Z. – Huang, X. – Wu, C. – Liu, Q. – Jiang, G. – Pu, Y. – Lei, Y. – Chen, X.
– Wang, X. – Lian, D. – Chen, E. When Large Language Models Meet Personalization:
Perspectives of Challenges and Opportunities. CoRR. 2023b, abs/2307.16376. doi: 10.48550/
ARXIV.2307.16376. Available at: https://doi.org/10.48550/arXiv.2307.16376.

Chen, L. – Zaharia, M. – Zou, J. How Is ChatGPT’s Behavior Changing Over Time?
CoRR. 2023c, abs/2307.09009. doi: 10.48550/ARXIV.2307.09009. Available at: https:

//doi.org/10.48550/arXiv.2307.09009.

Chen, S. – Zhang, Y. – Yang, Q. Multi-Task Learning in Natural Language Processing: An
Overview. CoRR. 2021, abs/2109.09138. Available at: https://arxiv.org/abs/2109.09138.

Chen, W. – Chen, J. – Su, Y. – Chen, Z. – Wang, W. Y. Logical Natural Language Generation
from Open-Domain Tables. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, p. 7929–7942, Online, 2020a. doi: 10.18653/V1/
2020.ACL-MAIN.708. Available at: https://doi.org/10.18653/v1/2020.acl-main.708.

Chen, W. – Su, Y. – Yan, X. – Wang, W. Y. KGPT: Knowledge-Grounded Pre-Training for
Data-to-Text Generation. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, p. 8635–8648, Online, 2020b. doi: 10.18653/
V1/2020.EMNLP-MAIN.697. Available at: https://doi.org/10.18653/v1/2020.emnlp-

main.697.

Chen, Y. – Eger, S. MENLI: Robust Evaluation Metrics from Natural Language Inference.
CoRR. 2022, abs/2208.07316. doi: 10.48550/ARXIV.2208.07316. Available at: https://

doi.org/10.48550/arXiv.2208.07316.

Chen, Z. – Chen, W. – Zha, H. – Zhou, X. – Zhang, Y. – Sundaresan, S. – Wang, W. Y.
Logic2Text: High-Fidelity Natural Language Generation from Logical Forms. In Findings
of the Association for Computational Linguistics: EMNLP 2020, EMNLP 2020 / Findings of
ACL, p. 2096–2111, Online Event, 2020c. doi: 10.18653/V1/2020.FINDINGS-EMNLP.190.
Available at: https://doi.org/10.18653/v1/2020.findings-emnlp.190.

Chen, Z. – Eavani, H. – Chen, W. – Liu, Y. – Wang, W. Y. Few-Shot NLG with Pre-
Trained Language Model. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, p. 183–190, Online, 2020d. doi: 10.18653/V1/
2020.ACL-MAIN.18. Available at: https://doi.org/10.18653/v1/2020.acl-main.18.

126

https://doi.org/10.1609/aaai.v37i11.26485
https://doi.org/10.48550/arXiv.2307.16376
https://doi.org/10.48550/arXiv.2307.09009
https://doi.org/10.48550/arXiv.2307.09009
https://arxiv.org/abs/2109.09138
https://doi.org/10.18653/v1/2020.acl-main.708
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.48550/arXiv.2208.07316
https://doi.org/10.48550/arXiv.2208.07316
https://doi.org/10.18653/v1/2020.findings-emnlp.190
https://doi.org/10.18653/v1/2020.acl-main.18

Cheng, J. – Dong, L. – Lapata, M. Long Short-Term Memory-Networks for Machine Reading.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, p. 551–561, Austin, Texas, USA, 2016. doi: 10.18653/V1/D16-1053. Available
at: https://doi.org/10.18653/v1/d16-1053.

Cheng, Z. – Dong, H. – Wang, Z. – Jia, R. – Guo, J. – Gao, Y. – Han, S. – Lou, J. – Zhang,
D. HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language
Generation. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022, p. 1094–1110, Dublin, Ireland, 2022. doi:
10.18653/V1/2022.ACL-LONG.78. Available at: https://doi.org/10.18653/v1/2022.acl-

long.78.

Chiang, D. C. – Lee, H. Can Large Language Models Be an Alternative to Human Evaluations?
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2023, p. 15607–15631, Toronto, Canada, 2023. doi: 10.18653/
V1/2023.ACL-LONG.870. Available at: https://doi.org/10.18653/v1/2023.acl-long.870.

Cho, K. – Merrienboer, B. – Gülçehre, Ç. – Bahdanau, D. – Bougares, F. – Schwenk, H.
– Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, p. 1724–1734, 2014. doi: 10.3115/V1/D14-1179. Available
at: https://doi.org/10.3115/v1/d14-1179.

Chomsky, N. Syntactic Structures. The Hague/Paris: Mouton, 1957. ISBN 978-3-11-021832-9.

Chu, Z. – Chen, J. – Chen, Q. – Yu, W. – He, T. – Wang, H. – Peng, W. – Liu, M. –
Qin, B. – Liu, T. A Survey of Chain of Thought Reasoning: Advances, Frontiers and
Future. CoRR. 2023, abs/2309.15402. doi: 10.48550/ARXIV.2309.15402. Available at:
https://doi.org/10.48550/arXiv.2309.15402.

Clark, E. – August, T. – Serrano, S. – Haduong, N. – Gururangan, S. – Smith, N. A. All
That’s ’Human’ Is Not Gold: EvaluatingHuman Evaluation of Generated Text. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), p. 7282–7296, Virtual Event, 2021. doi: 10.18653/V1/2021.ACL-LONG.565.
Available at: https://doi.org/10.18653/v1/2021.acl-long.565.

Colas, A. M. – Sadeghian, A. –Wang, Y. –Wang, D. Z. EventNarrative: A Large-scale Event-
centric Dataset for Knowledge Graph-to-Text Generation. In Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, 2021. Available at: https://datasets-benchmarks-proceedings.neurips.cc/

paper/2021/hash/a3f390d88e4c41f2747bfa2f1b5f87db-Abstract-round1.html.

127

https://doi.org/10.18653/v1/d16-1053
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.48550/arXiv.2309.15402
https://doi.org/10.18653/v1/2021.acl-long.565
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a3f390d88e4c41f2747bfa2f1b5f87db-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a3f390d88e4c41f2747bfa2f1b5f87db-Abstract-round1.html

Cotterell, R. – Svete, A. – Meister, C. – Liu, T. – Du, L. Formal Aspects of Language
Modeling. CoRR. 2023, abs/2311.04329. doi: 10.48550/ARXIV.2311.04329. Available at:
https://doi.org/10.48550/arXiv.2311.04329.

Cripwell, L. – Belz, A. – Gardent, C. – Gatt, A. – Borg, C. – Borg, M. – Judge, J. –
Lorandi, M. – Nikiforovskaya, A. – Soto Martinez, W. The 2023 WebNLG Shared
Task on Low Resource Languages. Overview and Evaluation Results (WebNLG 2023). In
Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and
Multilingual WebNLG Challenge (MM-NLG 2023), p. 55–66, Prague, Czech Republic, 2023.
Available at: https://aclanthology.org/2023.mmnlg-1.6.

Dale, R. Natural Language Generation: The Commercial State of the Art in 2020. Nat.
Lang. Eng. 2020, 26, 4, p. 481–487. doi: 10.1017/S135132492000025X. Available at: https:
//doi.org/10.1017/S135132492000025X.

Dale, R. Navigating the Text Generation Revolution: Traditional Data-to-Text NLG Com-
panies and the Rise of ChatGPT. Nat. Lang. Eng. 2023, 29, 4, p. 1188–1197. doi:
10.1017/S1351324923000347. Available at: https://doi.org/10.1017/s1351324923000347.

Dao, T. – Fu, D. Y. – Ermon, S. – Rudra, A. – Ré, C. FlashAttention: Fast andMemory-Efficient
Exact Attention With IO-Awareness. In Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, 2022. Available at: http://papers.nips.cc/paper_files/paper/2022/

hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Demir, S. – Carberry, S. – McCoy, K. F. Generating Textual Summaries of Bar Charts. In INLG
2008 - Proceedings of the Fifth International Natural Language Generation Conference, June 12-
14, 2008, Salt Fork, Ohio, USA, 2008. Available at: https://aclanthology.org/W08-1103/.

Demir, S. – Carberry, S. – McCoy, K. F. Summarizing Information Graphics Textually.
Comput. Linguistics. 2012, 38, 3, p. 527–574. doi: 10.1162/COLI_A_00091. Available at:
https://doi.org/10.1162/COLI_a_00091.

Devlin, J. – Chang, M. – Lee, K. – Toutanova, K. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, Volume 1 (Long
and Short Papers), p. 4171–4186, USA, 2019. doi: 10.18653/V1/N19-1423. Available at:
https://doi.org/10.18653/v1/n19-1423.

Dhingra, B. – Faruqi, M. – Parikh, A. P. – Chang, M. – Das, D. – Cohen, W. W. Handling
Divergent Reference Texts when Evaluating Table-to-Text Generation. In Proceedings of
the 57th Conference of the Association for Computational Linguistics, ACL 2019, Volume 1:
Long Papers, p. 4884–4895, Florence, Italy, 2019. doi: 10.18653/V1/P19-1483. Available at:
https://doi.org/10.18653/v1/p19-1483.

128

https://doi.org/10.48550/arXiv.2311.04329
https://aclanthology.org/2023.mmnlg-1.6
https://doi.org/10.1017/S135132492000025X
https://doi.org/10.1017/S135132492000025X
https://doi.org/10.1017/s1351324923000347
http://papers.nips.cc/paper_files/paper/2022/hash/ 67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ 67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://aclanthology.org/W08-1103/
https://doi.org/10.1162/COLI_a_00091
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/p19-1483

Doddington, G. Automatic Evaluation of Machine Translation Quality using n-gram Co-
Occurrence Statistics. In Proceedings of the second international conference on Human
Language Technology Research, p. 138–145, 2002. Available at: https://aclanthology.org/

www.mt-archive.info/HLT-2002-Doddington.pdf.

Dong, Q. – Li, L. – Dai, D. – Zheng, C. – Wu, Z. – Chang, B. – Sun, X. – Xu, J. – Sui,
Z. A Survey on In-Context Learning. arXiv preprint arXiv:2301.00234. 2022. Available at:
https://doi.org/10.48550/arXiv.2301.00234.

Driverless Future. Autonomous Car Forecasts. https://www.driverless-

future.com/?page_id=384, 2017. Accessed on March 08, 2024.

Dubey, S. R. – Singh, S. K. – Chaudhuri, B. B. Activation Functions in Deep Learning: A
Comprehensive SurveyAnd Benchmark. Neurocomputing. 2022, 503, p. 92–108. doi: 10.1016/
J.NEUCOM.2022.06.111. Available at: https://doi.org/10.1016/j.neucom.2022.06.111.

Duboue, P. – Mckeown, K. Statistical Acquisition of Content Selection Rules for Natural
Language Generation. In Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, p. 121–128, 2003.

Dufter, P. – Schmitt, M. – Schütze, H. Position Information in Transformers: An Overview.
Comput. Linguistics. 2022, 48, 3, p. 733–763. doi: 10.1162/COLI_A_00445. Available at:
https://doi.org/10.1162/coli_a_00445.

Dušek, O. – Jurčíček, F. Sequence-to-Sequence Generation for Spoken Dialogue via Deep
Syntax Trees and Strings. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-12, 2016, Volume 2: Short Papers, Berlin,
Germany, 2016. doi: 10.18653/V1/P16-2008. Available at: https://doi.org/10.18653/v1/

p16-2008.

Dušek, O. – Jurčíček, F. Training a Natural Language Generator from Unaligned Data. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Volume 1: Long
Papers, p. 451–461, Beijing, China, 2015. doi: 10.3115/V1/P15-1044. Available at: https:
//doi.org/10.3115/v1/p15-1044.

Dušek, O. – Jurčíček, F. Neural Generation for Czech: Data and Baselines. In Proceedings of
the 12th International Conference on Natural Language Generation, INLG 2019, p. 563–574,
Tokyo, Japan, 2019. doi: 10.18653/V1/W19-8670. Available at: https://aclanthology.org/

W19-8670/.

Dušek, O. – Kasner, Z. Evaluating Semantic Accuracy of Data-to-Text Generation with
Natural Language Inference. In Proceedings of the 13th International Conference on Natural
Language Generation, INLG 2020, p. 131–137, Dublin, Ireland, 2020. doi: 10.18653/V1/
2020.INLG-1.19. Available at: https://doi.org/10.18653/v1/2020.inlg-1.19.

129

https://aclanthology.org/www.mt-archive.info/HLT-2002-Doddington.pdf
https://aclanthology.org/www.mt-archive.info/HLT-2002-Doddington.pdf
https://doi.org/10.48550/arXiv.2301.00234
https://www.driverless-future.com/?page_id=384
https://www.driverless-future.com/?page_id=384
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1162/coli_a_00445
https://doi.org/10.18653/v1/p16-2008
https://doi.org/10.18653/v1/p16-2008
https://doi.org/10.3115/v1/p15-1044
https://doi.org/10.3115/v1/p15-1044
https://aclanthology.org/W19-8670/
https://aclanthology.org/W19-8670/
https://doi.org/10.18653/v1/2020.inlg-1.19

Dušek, O. – Howcroft, D. M. – Rieser, V. Semantic Noise Matters for Neural Natural
Language Generation. In Proceedings of the 12th International Conference on Natural
Language Generation, INLG 2019, p. 421–426, Tokyo, Japan, 2019. doi: 10.18653/V1/W19-
8652. Available at: https://aclanthology.org/W19-8652/.

Dušek, O. – Novikova, J. – Rieser, V. Evaluating the State-of-the-Art of End-to-End Natural
Language Generation: The E2E NLG challenge. Comput. Speech Lang. 2020, 59, p. 123–156.
doi: 10.1016/J.CSL.2019.06.009. Available at: https://doi.org/10.1016/j.csl.2019.06.009.

Elhadad, M. – Robin, J. SURGE: A Comprehensive Plug-in Syntactic Realization Component
for Text Generation. Computational Linguistics. 1997, 99, 4.

Eugenio, B. D. – Glass, M. – Trolio, M. J. The DIAG experiments: Natural Language
Generation for Intelligent Tutoring Systems. In Proceedings of the International Natural
Language Generation Conference, Harriman, p. 120–127, New York, USA, 2002. Available at:
https://aclanthology.org/W02-2116/.

Fabbri, A. R. – Kryscinski, W. – McCann, B. – Xiong, C. – Socher, R. – Radev, D. R.
SummEval: Re-evaluating Summarization Evaluation. Trans. Assoc. Comput. Linguistics.
2021, 9, p. 391–409. doi: 10.1162/TACL_A_00373. Available at: https://doi.org/10.1162/

tacl_a_00373.

Färber, M. – Bartscherer, F. – Menne, C. – Rettinger, A. Linked Data Quality of DBpedia,
Freebase, OpenCyc, Wikidata, and YAGO. Semantic Web. 2018, 9, 1, p. 77–129. doi:
10.3233/SW-170275. Available at: https://doi.org/10.3233/SW-170275.

Ferreira, T. C. –Moussallem, D. – Krahmer, E. –Wubben, S. Enriching theWebNLGCorpus.
In Proceedings of the 11th International Conference on Natural Language Generation, p.
171–176, Tilburg University, The Netherlands, 2018. doi: 10.18653/V1/W18-6521. Available
at: https://doi.org/10.18653/v1/w18-6521.

Ferreira, T. C. – Lee, C. – Miltenburg, E. – Krahmer, E. Neural Data-to-Text Generation:
A Comparison Between Pipeline And End-to-End Architectures. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, p. 552–562, Hong
Kong, China, 2019. doi: 10.18653/V1/D19-1052. Available at: https://doi.org/10.18653/

v1/D19-1052.

Ferreira, T. C. – Gardent, C. – Ilinykh, N. – Van Der Lee, C. – Mille, S. – Moussallem,
D. – Shimorina, A. The 2020 Bilingual, Bi-Directional WebNLG+ Shared Task Overview
and Evaluation Results (WebNLG+ 2020). In Proceedings of the 3rd International Workshop
on Natural Language Generation from the Semantic Web (WebNLG+), 2020. Available at:
https://aclanthology.org/2020.webnlg-1.7/.

130

https://aclanthology.org/W19-8652/
https://doi.org/10.1016/j.csl.2019.06.009
https://aclanthology.org/W02-2116/
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.3233/SW-170275
https://doi.org/10.18653/v1/w18-6521
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://aclanthology.org/2020.webnlg-1.7/

Firth, J. A Synopsis of Linguistic Theory, 1930-1955. Studies in linguistic analysis. 1957, p.
10–32.

Freitag, M. – Roy, S. Unsupervised Natural Language Generation with Denoising Autoen-
coders. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, p. 3922–3929, Brussels, Belgium, 2018. doi: 10.18653/V1/D18-1426. Available at:
https://doi.org/10.18653/v1/d18-1426.

Fu, J. – Ng, S. – Jiang, Z. – Liu, P. GPTScore: Evaluate as You Desire. CoRR. 2023,
abs/2302.04166. doi: 10.48550/ARXIV.2302.04166. Available at: https://doi.org/10.48550/

arXiv.2302.04166.

Gao, L. – Biderman, S. – Black, S. – Golding, L. – Hoppe, T. – Foster, C. – Phang, J.
– He, H. – Thite, A. – Nabeshima, N. – Presser, S. – Leahy, C. The Pile: An 800GB
Dataset of Diverse Text for Language Modeling. CoRR. 2021, abs/2101.00027. Available at:
https://arxiv.org/abs/2101.00027.

Gardent, C. – Perez-Beltrachini, L. A Statistical, Grammar-Based Approach to Microplan-
ning. Comput. Linguistics. 2017, 43, 1, p. 1–30. doi: 10.1162/COLI_A_00273. Available at:
https://doi.org/10.1162/COLI_a_00273.

Gardent, C. – Shimorina, A. – Narayan, S. – Perez-Beltrachini, L. Creating Training
Corpora for NLGMicro-Planners. In Proceedings of the 55th AnnualMeeting of the Association
for Computational Linguistics, ACL 2017 4, Volume 1: Long Papers, p. 179–188, Vancouver,
Canada, 2017a. doi: 10.18653/V1/P17-1017. Available at: https://doi.org/10.18653/v1/

P17-1017.

Gardent, C. – Shimorina, A. – Narayan, S. – Perez-Beltrachini, L. TheWebNLGChallenge:
Generating Text from RDF Data. In Proceedings of the 10th International Conference on
Natural Language Generation, INLG 2017, Santiago de Compostela, p. 124–133, Spain, 2017b.
doi: 10.18653/V1/W17-3518. Available at: https://doi.org/10.18653/v1/w17-3518.

Gardner, M. – Grus, J. – Neumann, M. – Tafjord, O. – Dasigi, P. – Liu, N. F. – Peters, M. E.
– Schmitz, M. – Zettlemoyer, L. AllenNLP: A Deep Semantic Natural Language Processing
Platform. CoRR. 2018, abs/1803.07640. Available at: http://arxiv.org/abs/1803.07640.

Garneau, N. – Lamontagne, L. Shared Task in Evaluating Accuracy: Leveraging Pre-
Annotations in the Validation Process. In Proceedings of the 14th International Conference
on Natural Language Generation, INLG 2021, p. 266–270, Aberdeen, Scotland, UK, 2021. doi:
10.18653/V1/2021.INLG-1.26. Available at: https://doi.org/10.18653/v1/2021.inlg-1.26.

Gatt, A. – Krahmer, E. Survey of the State of the Art in Natural Language Generation:
Core Tasks, Applications and Evaluation. J. Artif. Intell. Res. 2018, 61, p. 65–170. doi:
10.1613/JAIR.5477. Available at: https://doi.org/10.1613/jair.5477.

131

https://doi.org/10.18653/v1/d18-1426
https://doi.org/10.48550/arXiv.2302.04166
https://doi.org/10.48550/arXiv.2302.04166
https://arxiv.org/abs/2101.00027
https://doi.org/10.1162/COLI_a_00273
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/w17-3518
http://arxiv.org/abs/1803.07640
https://doi.org/10.18653/v1/2021.inlg-1.26
https://doi.org/10.1613/jair.5477

Gatt, A. – Reiter, E. SimpleNLG: A Realisation Engine for Practical Applications. In ENLG
2009 - Proceedings of the 12th European Workshop on Natural Language Generation, March
30-31, 2009, p. 90–93, Athens, Greece, 2009. Available at: https://aclanthology.org/W09-

0613/.

Gehrmann, S. – Dai, F. Z. – Elder, H. – Rush, A. M. End-to-End Content and Plan Selection
for Data-to-Text Generation. In Proceedings of the 11th International Conference on Natural
Language Generation, p. 46–56, Tilburg University, The Netherlands, 2018. doi: 10.18653/
V1/W18-6505. Available at: https://doi.org/10.18653/v1/w18-6505.

Gehrmann, S. et al. The GEM Benchmark: Natural Language Generation, its Evaluation and
Metrics. CoRR. 2021, abs/2102.01672. Available at: https://arxiv.org/abs/2102.01672.

Gehrmann, S. – Clark, E. – Sellam, T. Repairing the Cracked Foundation: A Survey of
Obstacles in Evaluation Practices for Generated Text. J. Artif. Intell. Res. 2023, 77, p. 103–166.
doi: 10.1613/JAIR.1.13715. Available at: https://doi.org/10.1613/jair.1.13715.

Gemmell, C. – Dalton, J. Generate, Transform, Answer: Question Specific Tool Synthesis
for Tabular Data. CoRR. 2023, abs/2303.10138. doi: 10.48550/ARXIV.2303.10138. Available
at: https://doi.org/10.48550/arXiv.2303.10138.

Geva, M. – Malmi, E. – Szpektor, I. – Berant, J. DiscoFuse: A Large-Scale Dataset for
Discourse-Based Sentence Fusion. In Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), p. 3443–3455, Minneapolis, Minnesota, jun 2019. doi:
10.18653/v1/N19-1348. Available at: https://www.aclweb.org/anthology/N19-1348.

Gkatzia, D. Content Selection in Data-to-Text Systems: A Survey. CoRR. 2016, abs/1610.08375.
Available at: http://arxiv.org/abs/1610.08375.

Gkatzia, D. – Mahamood, S. A Snapshot of NLG Evaluation Practices 2005 - 2014. In ENLG
2015 - Proceedings of the 15th European Workshop on Natural Language Generation, 10-11
September 2015, University of Brighton, p. 57–60, Brighton, UK, 2015. doi: 10.18653/V1/W15-
4708. Available at: https://doi.org/10.18653/v1/w15-4708.

Golchin, S. – Surdeanu, M. Time Travel in LLMs: Tracing Data Contamination in Large
Language Models. CoRR. 2023, abs/2308.08493. doi: 10.48550/ARXIV.2308.08493. Available
at: https://doi.org/10.48550/arXiv.2308.08493.

Goldberg, E. – Driedger, N. – Kittredge, R. I. Using Natural-Language Processing to
Produce Weather Forecasts. IEEE Expert. 1994, 9, 2, p. 45–53. doi: 10.1109/64.294135.
Available at: https://doi.org/10.1109/64.294135.

Goodfellow, I. J. – Bengio, Y. – Courville, A. C. Deep Learning. Adaptive Computation
and Machine Learning. MIT Press, 2016. Available at: http://www.deeplearningbook.org/.
ISBN 978-0-262-03561-3.

132

https://aclanthology.org/W09-0613/
https://aclanthology.org/W09-0613/
https://doi.org/10.18653/v1/w18-6505
https://arxiv.org/abs/2102.01672
https://doi.org/10.1613/jair.1.13715
https://doi.org/10.48550/arXiv.2303.10138
https://www.aclweb.org/anthology/N19-1348
http://arxiv.org/abs/1610.08375
https://doi.org/10.18653/v1/w15-4708
https://doi.org/10.48550/arXiv.2308.08493
https://doi.org/10.1109/64.294135
http://www.deeplearningbook.org/

Grajcar, P. Data-to-Text GenerationWith Text-EditingModels. Master’s thesis. 2023. Available
at: http://hdl.handle.net/20.500.11956/184140.

Grusky, M. Rogue Scores. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2023, p. 1914–1934, Toronto,
Canada, 2023. doi: 10.18653/V1/2023.ACL-LONG.107. Available at: https://doi.org/

10.18653/v1/2023.acl-long.107.

Gu, J. – Lu, Z. – Li, H. – Li, V. O. K. Incorporating Copying Mechanism in Sequence-
to-Sequence Learning. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016, Volume 1: Long Papers, Berlin,
Germany, 2016. doi: 10.18653/V1/P16-1154. Available at: https://doi.org/10.18653/v1/

p16-1154.

Guha, R. V. – Brickley, D. – Macbeth, S. Schema.org: Evolution of Structured Data on
the Web. Commun. ACM. 2016, 59, 2, p. 44–51. doi: 10.1145/2844544. Available at:
https://doi.org/10.1145/2844544.

Gupta, V. – Mehta, M. – Nokhiz, P. – Srikumar, V. INFOTABS: Inference on Tables
as Semi-structured Data. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, p. 2309–2324, Online, 2020. doi: 10.18653/V1/
2020.ACL-MAIN.210. Available at: https://doi.org/10.18653/v1/2020.acl-main.210.

Gururaja, S. – Bertsch, A. – Na, C. – Widder, D. G. – Strubell, E. To Build Our Future,
We Must Know Our Past: Contextualizing Paradigm Shifts in Natural Language Processing.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, p. 13310–13325, Singapore, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.822.
Available at: https://doi.org/10.18653/v1/2023.emnlp-main.822.

Haller, A. – Polleres, A. – Dobriy, D. – Ferranti, N. – Méndez, S. J. R. An Analysis
of Links in Wikidata. In The Semantic Web - 19th International Conference, ESWC 2022,
Proceedings, 13261 / Lecture Notes in Computer Science, p. 21–38, Hersonissos, Crete, Greece,
2022. doi: 10.1007/978-3-031-06981-9_2. Available at: https://doi.org/10.1007/978-3-

031-06981-9_2.

Halliday, M. A. Systemic Background. Systemic perspectives on discourse. 1985, 1, p. 1–15.

Han, J. – Beck, D. – Cohn, T. Generating Diverse Descriptions from Semantic Graphs. In
Proceedings of the 14th International Conference on Natural Language Generation, INLG
2021, p. 1–11, Aberdeen, Scotland, UK, 2021. doi: 10.18653/V1/2021.INLG-1.1. Available at:
https://doi.org/10.18653/v1/2021.inlg-1.1.

133

http://hdl.handle.net/20.500.11956/184140
https://doi.org/10.18653/v1/2023.acl-long.107
https://doi.org/10.18653/v1/2023.acl-long.107
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.1145/2844544
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2023.emnlp-main.822
https://doi.org/10.1007/978-3-031-06981-9_2
https://doi.org/10.1007/978-3-031-06981-9_2
https://doi.org/10.18653/v1/2021.inlg-1.1

Harkous, H. – Groves, I. – Saffari, A. Have Your Text and Use It Too! End-to-End Neural
Data-to-Text Generation with Semantic Fidelity. In Proceedings of the 28th International
Conference on Computational Linguistics, COLING 2020, p. 2410–2424, Barcelona, Spain
(Online, 2020. doi: 10.18653/V1/2020.COLING-MAIN.218. Available at: https://doi.org/

10.18653/v1/2020.coling-main.218.

Harris, Z. S. Distributional Structure. Word. 1954, 10, 2-3, p. 146–162.

Hedderich, M. A. – Lange, L. – Adel, H. – Strötgen, J. – Klakow, D. A Survey on Recent
Approaches for Natural Language Processing in Low-Resource Scenarios. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2021, p. 2545–2568, Online, 2021.
doi: 10.18653/V1/2021.NAACL-MAIN.201. Available at: https://doi.org/10.18653/v1/

2021.naacl-main.201.

Heidari, P. – Einolghozati, A. – Jain, S. – Batra, S. – Callender, L. – Arun, A. – Mei,
S. – Gupta, S. – Donmez, P. – Bhardwaj, V. – Kumar, A. – White, M. Getting to
Production with Few-shot Natural Language Generation Models. In Proceedings of the
22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGdial 2021,
p. 66–76, Singapore and Online, 2021. doi: 10.18653/V1/2021.SIGDIAL-1.8. Available at:
https://doi.org/10.18653/v1/2021.sigdial-1.8.

Hendrycks, D. – Gimpel, K. Gaussian Error Linear Units (GeLUs). arXiv preprint
arXiv:1606.08415. 2016.

Hochreiter, S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and
Problem Solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1998, 6, 2, p. 107–116. doi:
10.1142/S0218488598000094. Available at: https://doi.org/10.1142/S0218488598000094.

Hochreiter, S. – Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 8,
p. 1735–1780. doi: 10.1162/NECO.1997.9.8.1735. Available at: https://doi.org/10.1162/

neco.1997.9.8.1735.

Hockenmaier, J. – Steedman, M. CCGbank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Treebank. Comput. Linguistics. 2007, 33, 3,
p. 355–396. doi: 10.1162/COLI.2007.33.3.355. Available at: https://doi.org/10.1162/

coli.2007.33.3.355.

Hoffmann, J. et al. Training Compute-Optimal Large Language Models. CoRR. 2022,
abs/2203.15556. doi: 10.48550/ARXIV.2203.15556. Available at: https://doi.org/10.48550/

arXiv.2203.15556.

Holtzman, A. – Buys, J. – Du, L. – Forbes, M. – Choi, Y. The Curious Case of Neural Text
Degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, 2020. Available at: https://openreview.net/forum?id=rygGQyrFvH.

134

https://doi.org/10.18653/v1/2020.coling-main.218
https://doi.org/10.18653/v1/2020.coling-main.218
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.sigdial-1.8
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556
https://openreview.net/forum?id=rygGQyrFvH

Holtzman, A. – West, P. – Zettlemoyer, L. Generative Models as a Complex Systems
Science: How Can We Make Sense of Large Language Model Behavior? CoRR. 2023,
abs/2308.00189. doi: 10.48550/ARXIV.2308.00189. Available at: https://doi.org/10.48550/

arXiv.2308.00189.

Honovich, O. – Aharoni, R. – Herzig, J. – Taitelbaum, H. – Kukliansky, D. – Cohen, V.
– Scialom, T. – Szpektor, I. – Hassidim, A. – Matias, Y. TRUE: Re-evaluating Factual
Consistency Evaluation. In Proceedings of the Second DialDoc Workshop on Document-
grounded Dialogue and Conversational Question Answering, DialDoc at ACL 2022, p. 161–175,
Dublin, Ireland, 2022. doi: 10.18653/V1/2022.DIALDOC-1.19. Available at: https://

doi.org/10.18653/v1/2022.dialdoc-1.19.

Hooker, S. The Hardware Lottery. Commun. ACM. 2021, 64, 12, p. 58–65. doi: 10.1145/3467017.
Available at: https://doi.org/10.1145/3467017.

Hornik, K. – Stinchcombe, M. B. – White, H. Multilayer Feedforward Networks Are
Universal Approximators. Neural Networks. 1989, 2, 5, p. 359–366. doi: 10.1016/0893-
6080(89)90020-8. Available at: https://doi.org/10.1016/0893-6080(89)90020-8.

Howcroft, D. M. – Belz, A. – Clinciu, M. – Gkatzia, D. – Hasan, S. A. – Mahamood, S.
– Mille, S. – Miltenburg, E. – Santhanam, S. – Rieser, V. Twenty Years of Confusion
in Human Evaluation: NLG Needs Evaluation Sheets and Standardised Definitions. In
Proceedings of the 13th International Conference on Natural Language Generation, INLG
2020, p. 169–182, Dublin, Ireland, 2020. doi: 10.18653/V1/2020.INLG-1.23. Available at:
https://doi.org/10.18653/v1/2020.inlg-1.23.

Hoyle, A. M. – Marasovic, A. – Smith, N. A. Promoting Graph Awareness in Linearized
Graph-to-Text Generation. In Findings of the Association for Computational Linguistics:
ACL/IJCNLP 2021, ACL/IJCNLP 2021 / Findings of ACL, p. 944–956, Online Event, 2021.
doi: 10.18653/V1/2021.FINDINGS-ACL.82. Available at: https://doi.org/10.18653/v1/

2021.findings-acl.82.

Jiang, A. Q. et al. Mistral 7B. CoRR. 2023a, abs/2310.06825. doi: 10.48550/ARXIV.2310.06825.
Available at: https://doi.org/10.48550/arXiv.2310.06825.

Jiang, J. – Zhou, K. – Dong, Z. – Ye, K. – Zhao, X. – Wen, J.-R. StructGPT: A General
Framework for Large Language Model to Reason over Structured Data. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, p. 9237–9251,
Singapore, December 2023b. doi: 10.18653/v1/2023.emnlp-main.574. Available at: https:
//aclanthology.org/2023.emnlp-main.574.

135

https://doi.org/10.48550/arXiv.2308.00189
https://doi.org/10.48550/arXiv.2308.00189
https://doi.org/10.18653/v1/2022.dialdoc-1.19
https://doi.org/10.18653/v1/2022.dialdoc-1.19
https://doi.org/10.1145/3467017
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.18653/v1/2020.inlg-1.23
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.48550/arXiv.2310.06825
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574

Jin, Z. – Guo, Q. – Qiu, X. – Zhang, Z. GenWiki: A Dataset of 1.3 Million Content-
Sharing Text and Graphs for Unsupervised Graph-to-Text Generation. In Proceedings of
the 28th International Conference on Computational Linguistics, COLING 2020, p. 2398–2409,
Barcelona, Spain (Online, 2020. doi: 10.18653/V1/2020.COLING-MAIN.217. Available at:
https://doi.org/10.18653/v1/2020.coling-main.217.

Johnson, W. Studies in Language Behavior: A Program of Research. Psychological Monographs.
1944, 56, 2, p. 1–15.

Jurafsky, D. – Martin, J. H. Speech and Language Processing (3rd ed. draft). Draft available
online, 2024. https://web.stanford.edu/~jurafsky/slp3/.

Juraska, J. – Karagiannis, P. – Bowden, K. – Walker, M. A. A Deep Ensemble Model with
Slot Alignment for Sequence-to-Sequence Natural Language Generation. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2018, Volume 1 (Long Papers), p.
152–162, New Orleans, Louisiana, USA, 2018. doi: 10.18653/V1/N18-1014. Available at:
https://doi.org/10.18653/v1/n18-1014.

Kale, M. – Rastogi, A. Template Guided Text Generation for Task-Oriented Dialogue. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, p. 6505–6520, Online, 2020a. doi: 10.18653/V1/2020.EMNLP-MAIN.527.
Available at: https://doi.org/10.18653/v1/2020.emnlp-main.527.

Kale, M. – Rastogi, A. Text-to-Text Pre-Training for Data-to-Text Tasks. In Proceedings of
the 13th International Conference on Natural Language Generation, INLG 2020, p. 97–102,
Dublin, Ireland, 2020b. doi: 10.18653/V1/2020.INLG-1.14. Available at: https://doi.org/

10.18653/v1/2020.inlg-1.14.

Kané, H. – Kocyigit, M. Y. – Abdalla, A. – Ajanoh, P. – Coulibali, M. NUBIA: NeUral Based
Interchangeability Assessor for Text Generation. CoRR. 2020, abs/2004.14667. Available at:
https://arxiv.org/abs/2004.14667.

Kann, K. – Rothe, S. – Filippova, K. Sentence-Level Fluency Evaluation: References Help, But
Can Be Spared! In Proceedings of the 22nd Conference on Computational Natural Language
Learning, CoNLL 2018, p. 313–323, Brussels, Belgium, 2018. doi: 10.18653/V1/K18-1031.
Available at: https://doi.org/10.18653/v1/k18-1031.

Kann, K. – Ebrahimi, A. – Koh, J. J. – Dudy, S. – Roncone, A. Open-domain Dialogue
Generation: What We Can Do, Cannot Do, And Should Do Next. In Proceedings of the 4th
Workshop on NLP for Conversational AI, ConvAI at ACL 2022, p. 148–165, Dublin, Ireland,
2022. doi: 10.18653/V1/2022.NLP4CONVAI-1.13. Available at: https://doi.org/10.18653/

v1/2022.nlp4convai-1.13.

136

https://doi.org/10.18653/v1/2020.coling-main.217
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.18653/v1/n18-1014
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.inlg-1.14
https://doi.org/10.18653/v1/2020.inlg-1.14
https://arxiv.org/abs/2004.14667
https://doi.org/10.18653/v1/k18-1031
https://doi.org/10.18653/v1/2022.nlp4convai-1.13
https://doi.org/10.18653/v1/2022.nlp4convai-1.13

Kantharaj, S. – Leong, R. T. K. – Lin, X. – Masry, A. – Thakkar, M. – Hoqe, E. – Joty, S. R.
Chart-to-Text: A Large-Scale Benchmark for Chart Summarization. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, p. 4005–4023, Dublin, Ireland, 2022. doi: 10.18653/V1/2022.ACL-LONG.277.
Available at: https://doi.org/10.18653/v1/2022.acl-long.277.

Kaplan, J. – McCandlish, S. – Henighan, T. – Brown, T. B. – Chess, B. – Child, R. – Gray,
S. – Radford, A. – Wu, J. – Amodei, D. Scaling Laws for Neural Language Models. CoRR.
2020, abs/2001.08361. Available at: https://arxiv.org/abs/2001.08361.

Karpathy, A. The Unreasonable Effectiveness of Recurrent Neural Networks. http://

karpathy.github.io/2015/05/21/rnn-effectiveness/, 2015. Accessed on April 20, 2024.

Kasner, Z. – Dušek, O. Neural Pipeline for Zero-Shot Data-to-Text Generation. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), ACL 2022, p. 3914–3932, Dublin, Ireland, 2022. doi: 10.18653/V1/2022.ACL-
LONG.271. Available at: https://doi.org/10.18653/v1/2022.acl-long.271.

Kasner, Z. – Dušek, O. Data-to-Text Generation with Iterative Text Editing. In Proceedings
of the 13th International Conference on Natural Language Generation, INLG 2020, p. 60–67,
Dublin, Ireland, 2020a. doi: 10.18653/V1/2020.INLG-1.9. Available at: https://doi.org/

10.18653/v1/2020.inlg-1.9.

Kasner, Z. – Dušek, O. Beyond Traditional Benchmarks: Analyzing Behaviors of Open LLMs
on Data-to-Text Generation. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2024. Available at: http://arxiv.org/

abs/2401.10186. To appear.

Kasner, Z. – Dušek, O. Train Hard, Finetune Easy: Multilingual Denoising for RDF-to-
Text Generation. In Proceedings of the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+), p. 171–176, Dublin, Ireland (Virtual), 12
2020b. Available at: https://aclanthology.org/2020.webnlg-1.20.

Kasner, Z. – Mille, S. – Dušek, O. Text-in-Context: Token-Level Error Detection for
Table-to-Text Generation. In Proceedings of the 14th International Conference on Natural
Language Generation, INLG 2021, p. 259–265, Aberdeen, Scotland, UK, 2021. doi: 10.18653/
V1/2021.INLG-1.25. Available at: https://doi.org/10.18653/v1/2021.inlg-1.25.

Kasner, Z. – Garanina, E. – Plátek, O. – Dušek, O. TabGenie: A Toolkit for Table-to-Text
Generation. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, ACL 2023, p. 444–455, Toronto, Canada, 2023a. doi:
10.18653/V1/2023.ACL-DEMO.42. Available at: https://doi.org/10.18653/v1/2023.acl-

demo.42.

137

https://doi.org/10.18653/v1/2022.acl-long.277
https://arxiv.org/abs/2001.08361
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://doi.org/10.18653/v1/2022.acl-long.271
https://doi.org/10.18653/v1/2020.inlg-1.9
https://doi.org/10.18653/v1/2020.inlg-1.9
http://arxiv.org/abs/2401.10186
http://arxiv.org/abs/2401.10186
https://aclanthology.org/2020.webnlg-1.20
https://doi.org/10.18653/v1/2021.inlg-1.25
https://doi.org/10.18653/v1/2023.acl-demo.42
https://doi.org/10.18653/v1/2023.acl-demo.42

Kasner, Z. – Konstas, I. – Dušek, O. Mind the Labels: Describing Relations in Knowledge
Graphs With Pretrained Models. In Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, p. 2390–2407,
Croatia, 2023b. doi: 10.18653/V1/2023.EACL-MAIN.176. Available at: https://doi.org/

10.18653/v1/2023.eacl-main.176.

Ke, P. – Ji, H. – Ran, Y. – Cui, X. – Wang, L. – Song, L. – Zhu, X. – Huang, M. JointGT:
Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs. In
Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, ACL/IJCNLP
2021 / Findings of ACL, p. 2526–2538, Online Event, 2021. doi: 10.18653/V1/2021.FINDINGS-
ACL.223. Available at: https://doi.org/10.18653/v1/2021.findings-acl.223.

Kedzie, C. – McKeown, K. R. A Good Sample is Hard to Find: Noise Injection Sampling
and Self-Training for Neural Language Generation Models. In Proceedings of the 12th
International Conference on Natural Language Generation, INLG 2019, p. 584–593, Tokyo,
Japan, 2019. doi: 10.18653/V1/W19-8672. Available at: https://aclanthology.org/W19-

8672/.

Kehrer, J. – Hauser, H. Visualization and Visual Analysis of Multifaceted Scientific Data: A
Survey. IEEE Trans. Vis. Comput. Graph. 2013, 19, 3, p. 495–513. doi: 10.1109/TVCG.2012.110.
Available at: https://doi.org/10.1109/TVCG.2012.110.

Kelley, H. J. Gradient Theory of Optimal Flight Paths. Ars Journal. 1960, 30, 10, p. 947–954.

Kiela, D. et al. Dynabench: Rethinking Benchmarking in NLP. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2021, p. 4110–4124, Online, 2021.
doi: 10.18653/V1/2021.NAACL-MAIN.324. Available at: https://doi.org/10.18653/v1/

2021.naacl-main.324.

Kingma, D. P. – Ba, J. Adam: A Method for Stochastic Optimization. In 3rd International
Conference on Learning Representations, ICLR 2015Proceedings, San Diego, CA, USA, 2015.
Available at: http://arxiv.org/abs/1412.6980.

Kirkpatrick, J. – Pascanu, R. – Rabinowitz, N. C. – Veness, J. – Desjardins, G. – Rusu,
A. A. – Milan, K. – Quan, J. – Ramalho, T. – Grabska-Barwinska, A. – Hassabis, D. –
Clopath, C. – Kumaran, D. – Hadsell, R. Overcoming Catastrophic Forgetting in Neural
Networks. CoRR. 2016, abs/1612.00796. Available at: http://arxiv.org/abs/1612.00796.

Kocmi, T. – Federmann, C. GEMBA-MQM: Detecting Translation Quality Error Spans With
GPT-4. In Proceedings of the Eighth Conference on Machine Translation, WMT 2023, p.
768–775, Singapore, 2023a. Available at: https://aclanthology.org/2023.wmt-1.64.

138

https://doi.org/10.18653/v1/2023.eacl-main.176
https://doi.org/10.18653/v1/2023.eacl-main.176
https://doi.org/10.18653/v1/2021.findings-acl.223
https://aclanthology.org/W19-8672/
https://aclanthology.org/W19-8672/
https://doi.org/10.1109/TVCG.2012.110
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1612.00796
https://aclanthology.org/2023.wmt-1.64

Kocmi, T. – Federmann, C. Large Language Models Are State-of-the-Art Evaluators of
TranslationQuality. In Proceedings of the 24th Annual Conference of the European Association
for Machine Translation, EAMT 2023, p. 193–203, Tampere, Finland, 2023b. Available at:
https://aclanthology.org/2023.eamt-1.19.

Kocmi, T. – Federmann, C. – Grundkiewicz, R. – Junczys-Dowmunt, M. – Matsushita, H.
– Menezes, A. To Ship or Not to Ship: An Extensive Evaluation of Automatic Metrics for
Machine Translation. In Proceedings of the Sixth Conference on Machine Translation, WMT
at EMNLP 2021, p. 478–494, Online Event, 2021. Available at: https://aclanthology.org/

2021.wmt-1.57.

Koncel-Kedziorski, R. – Bekal, D. – Luan, Y. – Lapata, M. – Hajishirzi, H. Text Generation
from Knowledge Graphs with Graph Transformers. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, Volume 1 (Long and Short
Papers), p. 2284–2293, USA, 2019. doi: 10.18653/V1/N19-1238. Available at: https://

doi.org/10.18653/v1/n19-1238.

Konstas, I. – Lapata, M. Concept-to-text Generation via Discriminative Reranking. In
The 50th Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Conference, July 8-14, 2012Volume 1: Long Papers, p. 369–378, Jeju Island, Korea, 2012.
Available at: https://aclanthology.org/P12-1039/.

Koo, R. – Lee, M. – Raheja, V. – Park, J. I. – Kim, Z. M. – Kang, D. Benchmarking Cognitive
Biases in Large Language Models as Evaluators. CoRR. 2023, abs/2309.17012. doi: 10.48550/
ARXIV.2309.17012. Available at: https://doi.org/10.48550/arXiv.2309.17012.

Koto, F. – Lau, J. H. – Baldwin, T. Can Pretrained Language Models Generate Persuasive,
Faithful, and Informative Ad Text for Product Descriptions? In Proceedings of the Fifth
Workshop on E-Commerce and NLP (ECNLP 5), p. 234–243, Dublin, Ireland, 2022. doi:
10.18653/v1/2022.ecnlp-1.27. Available at: https://aclanthology.org/2022.ecnlp-1.27.

Krishna, R. – Zhu, Y. – Groth, O. – Johnson, J. – Hata, K. – Kravitz, J. – Chen, S. –
Kalantidis, Y. – Li, L. – Shamma, D. A. – Bernstein, M. S. – Fei-Fei, L. Visual Genome:
Connecting Language and Vision Using Crowdsourced Dense Image Annotations. Int.
J. Comput. Vis. 2017, 123, 1, p. 32–73. doi: 10.1007/s11263-016-0981-7. Available at:
https://doi.org/10.1007/s11263-016-0981-7.

Kudo, T. Subword Regularization: Improving Neural Network Translation Models with
Multiple Subword Candidates. In Proceedings of the 56th AnnualMeeting of the Association for
Computational Linguistics, ACL 2018, Volume 1: Long Papers, p. 66–75, Melbourne, Australia,
2018. doi: 10.18653/V1/P18-1007. Available at: https://aclanthology.org/P18-1007/.

139

https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://doi.org/10.18653/v1/n19-1238
https://doi.org/10.18653/v1/n19-1238
https://aclanthology.org/P12-1039/
https://doi.org/10.48550/arXiv.2309.17012
https://aclanthology.org/2022.ecnlp-1.27
https://doi.org/10.1007/s11263-016-0981-7
https://aclanthology.org/P18-1007/

Kudo, T. – Richardson, J. SentencePiece: A Simple and Language Independent Subword
Tokenizer and Detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations,
p. 66–71, Brussels, Belgium, 2018. doi: 10.18653/V1/D18-2012. Available at: https://

doi.org/10.18653/v1/d18-2012.

Laha, A. – Jain, P. – Mishra, A. – Sankaranarayanan, K. Scalable Micro-planned Genera-
tion of Discourse from Structured Data. Comput. Linguistics. 2019, 45, 4, p. 737–763. doi:
10.1162/COLI_A_00363. Available at: https://doi.org/10.1162/coli_a_00363.

Langkilde, I. Forest-Based Statistical Sentence Generation. In 6th Applied Natural Language
Processing Conference, ANLP 2000, p. 170–177, Seattle, Washington, USA, 2000. Available at:
https://aclanthology.org/A00-2023/.

Lapata, M. Probabilistic Text Structuring: Experiments with Sentence Ordering. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics, 7-12 July 2003,
Sapporo Convention Center, Sapporo, p. 545–552, Japan, 2003. doi: 10.3115/1075096.1075165.
Available at: https://aclanthology.org/P03-1069/.

Lebret, R. – Grangier, D. – Auli, M. Neural Text Generation from Structured Data with
Application to the Biography Domain. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2016, p. 1203–1213, Austin, Texas, USA,
2016. doi: 10.18653/V1/D16-1128. Available at: https://doi.org/10.18653/v1/d16-1128.

LeCun, Y. – Bengio, Y. – Hinton, G. E. Deep Learning. Nat. 2015, 521, 7553, p. 436–444. doi:
10.1038/NATURE14539. Available at: https://doi.org/10.1038/nature14539.

Lee, C. – Cheng, H. – Ostendorf, M. Dialogue State Tracking with a Language Model using
Schema-Driven Prompting. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Virtual Event /, p. 4937–4949, Punta Cana,
Dominican Republic, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.404. Available at: https:
//doi.org/10.18653/v1/2021.emnlp-main.404.

Lee, K. – He, L. – Zettlemoyer, L. Higher-Order Coreference Resolution with Coarse-to-
Fine Inference. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT,
Volume 2 (Short Papers), p. 687–692, New Orleans, Louisiana, USA, 2018. doi: 10.18653/V1/
N18-2108. Available at: https://doi.org/10.18653/v1/n18-2108.

Lee, N. – Ping, W. – Xu, P. – Patwary, M. – Fung, P. – Shoeybi, M. – Catan-
zaro, B. Factuality Enhanced Language Models for Open-Ended Text Genera-
tion. In Advances in Neural Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, 2022. Available at: http://papers.nips.cc/paper_files/paper/2022/hash/

df438caa36714f69277daa92d608dd63-Abstract-Conference.html.

140

https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.1162/coli_a_00363
https://aclanthology.org/A00-2023/
https://aclanthology.org/P03-1069/
https://doi.org/10.18653/v1/d16-1128
https://doi.org/10.1038/nature14539
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/n18-2108
http://papers.nips.cc/paper_files/paper/2022/hash/df438caa36714f69277daa92d608dd63-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/df438caa36714f69277daa92d608dd63-Abstract-Conference.html

Lehmann, J. – Isele, R. – Jakob, M. – Jentzsch, A. – Kontokostas, D. – Mendes, P. N.
– Hellmann, S. – Morsey, M. – Kleef, P. – Auer, S. – Bizer, C. DBpedia - A Large-
Scale, Multilingual Knowledge Base Extracted From Wikipedia. Semantic Web. 2015, 6, 2,
p. 167–195. doi: 10.3233/SW-140134. Available at: https://doi.org/10.3233/SW-140134.

Leppänen, L. – Munezero, M. – Granroth-Wilding, M. – Toivonen, H. Data-Driven News
Generation for Automated Journalism. In Proceedings of the 10th International Conference
on Natural Language Generation, INLG 2017, Santiago de Compostela, p. 188–197, Spain,
2017. doi: 10.18653/V1/W17-3528. Available at: https://doi.org/10.18653/v1/w17-3528.

Lewis, M. – Liu, Y. – Goyal, N. – Ghazvininejad, M. – Mohamed, A. – Levy, O. – Stoyanov,
V. – Zettlemoyer, L. BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, p. 7871–7880, Online,
2020. doi: 10.18653/V1/2020.ACL-MAIN.703. Available at: https://doi.org/10.18653/v1/

2020.acl-main.703.

Lhoest, Q. et al. Datasets: A Community Library for Natural Language Processing. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, EMNLP 2021, Online and Punta Cana, Dominican Republic, 7-11
November, 2021, p. 175–184, 2021. doi: 10.18653/v1/2021.emnlp-demo.21. Available at:
https://doi.org/10.18653/v1/2021.emnlp-demo.21.

Li, J. – Galley, M. – Brockett, C. – Gao, J. – Dolan, B. A Diversity-Promoting Objective
Function for Neural Conversation Models. In NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, p. 110–119, San Diego California, USA, 2016. doi: 10.18653/V1/N16-1014.
Available at: https://doi.org/10.18653/v1/n16-1014.

Li, S. – Han, C. – Yu, P. – Edwards, C. – Li, M. – Wang, X. – Fung, Y. R. – Yu, C. –
Tetreault, J. R. – Hovy, E. H. – Ji, H. Defining a New NLP Playground. In Findings of the
Association for Computational Linguistics: EMNLP 2023, p. 11932–11951, Singapore, 2023.
doi: 10.18653/V1/2023.FINDINGS-EMNLP.799. Available at: https://doi.org/10.18653/

v1/2023.findings-emnlp.799.

Li, W. – Wu, W. – Chen, M. – Liu, J. – Xiao, X. – Wu, H. Faithfulness in Natural Language
Generation: A Systematic Survey of Analysis, Evaluation and Optimization Methods. CoRR.
2022, abs/2203.05227. doi: 10.48550/ARXIV.2203.05227. Available at: https://doi.org/

10.48550/arXiv.2203.05227.

Liang, P. – Jordan, M. I. – Klein, D. Learning Semantic Correspondences with Less
Supervision. In ACL 2009, Proceedings of the 47th Annual Meeting of the Association
for Computational Linguistics and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, 2-7 August 2009, p. 91–99, Singapore, 2009. Available at:
https://aclanthology.org/P09-1011/.

141

https://doi.org/10.3233/SW-140134
https://doi.org/10.18653/v1/w17-3528
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/n16-1014
https://doi.org/10.18653/v1/2023.findings-emnlp.799
https://doi.org/10.18653/v1/2023.findings-emnlp.799
https://doi.org/10.48550/arXiv.2203.05227
https://doi.org/10.48550/arXiv.2203.05227
https://aclanthology.org/P09-1011/

Lin, B. Y. – Shen, M. – Xing, Y. – Zhou, P. – Ren, X. CommonGen: A Constrained Text Gen-
eration Dataset Towards Generative Commonsense Reasoning. CoRR. 2019, abs/1911.03705.
Available at: http://arxiv.org/abs/1911.03705.

Lin, C.-Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization
Branches Out, p. 74–81, Barcelona, Spain, jul 2004. Available at: https://www.aclweb.org/

anthology/W04-1013.

Lin, Y. – Ruan, T. – Liu, J. –Wang, H. A Survey onNeural Data-to-Text Generation. IEEE Trans.
Knowl. Data Eng. 2024, 36, 4, p. 1431–1449. doi: 10.1109/TKDE.2023.3304385. Available at:
https://doi.org/10.1109/TKDE.2023.3304385.

Liu, X. – He, P. – Chen, W. – Gao, J. Multi-Task Deep Neural Networks for Natural Language
Understanding. In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Volume 1: Long Papers, p. 4487–4496, Florence, Italy, 2019a. doi:
10.18653/V1/P19-1441. Available at: https://doi.org/10.18653/v1/p19-1441.

Liu, Y. – Medlar, A. – Glowacka, D. Can Language Models Identify Wikipedia Articles with
Readability and Style Issues? In ICTIR ’21: The 2021 ACM SIGIR International Conference on
the Theory of Information Retrieval, p. 113–117, Virtual Event, Canada, 2021. doi: 10.1145/
3471158.3472234. Available at: https://doi.org/10.1145/3471158.3472234.

Liu, Y. – Iter, D. – Xu, Y. – Wang, S. – Xu, R. – Zhu, C. G-Eval: NLG Evaluation using
GPT-4 with Better Human Alignment. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, p. 2511–2522, Singapore, 2023.
doi: 10.18653/V1/2023.EMNLP-MAIN.153. Available at: https://doi.org/10.18653/v1/

2023.emnlp-main.153.

Liu, Y. – Ott, M. – Goyal, N. – Du, J. – Joshi, M. – Chen, D. – Levy, O. – Lewis, M. –
Zettlemoyer, L. – Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. CoRR. 2019b, abs/1907.11692. Available at: http://arxiv.org/abs/1907.11692.

Liu, Y. – Gu, J. – Goyal, N. – Li, X. – Edunov, S. – Ghazvininejad, M. – Lewis, M. – Zettle-
moyer, L. Multilingual Denoising Pre-training for Neural Machine Translation. Trans.
Assoc. Comput. Linguistics. 2020, 8, p. 726–742. doi: 10.1162/TACL_A_00343. Available at:
https://doi.org/10.1162/tacl_a_00343.

Lorandi, M. – Belz, A. Data-to-Text Generation for Severely Under-Resourced Lan-
guages With GPT-3.5: A Bit of Help Needed From Google Translate (WebNLG 2023).
In Proceedings of the Workshop on Multimodal, Multilingual Natural Language Genera-
tion and Multilingual WebNLG Challenge (MM-NLG 2023), p. 80–86, 2023. Available at:
https://aclanthology.org/2023.mmnlg-1.9/.

142

http://arxiv.org/abs/1911.03705
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.1109/TKDE.2023.3304385
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.1145/3471158.3472234
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
http://arxiv.org/abs/1907.11692
https://doi.org/10.1162/tacl_a_00343
https://aclanthology.org/2023.mmnlg-1.9/

Lorandi, M. – Belz, A. High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models. In Findings of the Association for
Computational Linguistics: EACL 2024, p. 1451–1461, St. Julian’s, Malta, 2024. Available at:
https://aclanthology.org/2024.findings-eacl.98.

Loshchilov, I. – Hutter, F. Fixing Weight Decay Regularization in Adam. CoRR. 2017,
abs/1711.05101. Available at: http://arxiv.org/abs/1711.05101.

Luong, T. – Pham, H. – Manning, C. D. Effective Approaches to Attention-based Neural
Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, p. 1412–1421, Lisbon, Portugal, 2015. doi: 10.18653/V1/
D15-1166. Available at: https://doi.org/10.18653/v1/d15-1166.

Mairesse, F. – Gasic, M. – Jurčíček, F. – Keizer, S. – Thomson, B. – Yu, K. – Young,
S. J. Phrase-Based Statistical Language Generation using Graphical Models and Active
Learning. In ACL 2010, Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, July 11-16, 2010, p. 1552–1561, Uppsala, Sweden, 2010. Available
at: https://aclanthology.org/P10-1157/.

Mallinson, J. – Severyn, A. – Malmi, E. – Garrido, G. FELIX: Flexible Text Editing
Through Tagging and Insertion. In Findings of the Association for Computational Linguistics:
EMNLP 2020, EMNLP 2020 / Findings of ACL, p. 1244–1255, Online Event, 2020. doi:
10.18653/V1/2020.FINDINGS-EMNLP.111. Available at: https://doi.org/10.18653/v1/

2020.findings-emnlp.111.

Malmi, E. – Krause, S. – Rothe, S. – Mirylenka, D. – Severyn, A. Encode, Tag, Realize:
High-Precision Text Editing. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, p. 5053–5064, Hong Kong, China, 2019. doi: 10.18653/V1/
D19-1510. Available at: https://doi.org/10.18653/v1/D19-1510.

Malmi, E. – Dong, Y. – Mallinson, J. – Chuklin, A. – Adámek, J. – Mirylenka, D. –
Stahlberg, F. – Krause, S. – Kumar, S. – Severyn, A. Text Generation with Text-Editing
Models. CoRR. 2022, abs/2206.07043. doi: 10.48550/ARXIV.2206.07043. Available at:
https://doi.org/10.48550/arXiv.2206.07043.

Mann, W. Text Generation. American Journal of Computational Linguistics. 1982, 8, 2, p. 62–69.
Available at: https://aclanthology.org/J82-2003.

Marcheggiani, D. – Perez-Beltrachini, L. Deep Graph Convolutional Encoders for Struc-
tured Data to Text Generation. In Proceedings of the 11th International Conference on
Natural Language Generation, p. 1–9, Tilburg University, The Netherlands, 2018. doi:
10.18653/V1/W18-6501. Available at: https://doi.org/10.18653/v1/w18-6501.

143

https://aclanthology.org/2024.findings-eacl.98
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/d15-1166
https://aclanthology.org/P10-1157/
https://doi.org/10.18653/v1/2020.findings-emnlp.111
https://doi.org/10.18653/v1/2020.findings-emnlp.111
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.48550/arXiv.2206.07043
https://aclanthology.org/J82-2003
https://doi.org/10.18653/v1/w18-6501

Martin, A. – Przybocki, M. The NIST 1999 Speaker Recognition Evaluation—An Overview.
Digital signal processing. 2000, 10, 1-3, p. 1–18.

Mathur, N. – Baldwin, T. – Cohn, T. Tangled up in BLEU: Reevaluating the Evaluation
of Automatic Machine Translation Evaluation Metrics. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, p. 4984–4997, Online,
2020. doi: 10.18653/V1/2020.ACL-MAIN.448. Available at: https://doi.org/10.18653/v1/

2020.acl-main.448.

Matthiessen, C. Lexico (Grammatical) Choice in Text Generation. 1991, p. 249–292.

Maynez, J. – Narayan, S. – Bohnet, B. – McDonald, R. T. On Faithfulness and Factuality in
Abstractive Summarization. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, p. 1906–1919, Online, 2020. doi: 10.18653/V1/
2020.ACL-MAIN.173. Available at: https://doi.org/10.18653/v1/2020.acl-main.173.

McCloskey, M. – Cohen, N. J. Catastrophic Interference in Connectionist Networks: The
Sequential Learning Problem. 24. Elsevier, 1989.

McCoy, T. – Pavlick, E. – Linzen, T. Right for the Wrong Reasons: Diagnosing Syntactic
Heuristics in Natural Language Inference. In Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Volume 1: Long Papers, p. 3428–3448,
Florence, Italy, 2019. doi: 10.18653/V1/P19-1334. Available at: https://doi.org/10.18653/

v1/p19-1334.

McDonald, D. A Framework for Writing Generation Grammars for Interactive Computer
Programs. American Journal of Computational Linguistics. November 1975, p. 4–17. Available
at: https://aclanthology.org/J75-4016. Microfiche 33.

McKeown, K. Text Generation. Cambridge University Press, 1985.

Meehan, J. R. Using Planning Structures to Generate Stories. American Journal of Computa-
tional Linguistics. November 1975, p. 78–94. Available at: https://aclanthology.org/J75-

4021. Microfiche 33.

Mehta, S. V. – Rao, J. – Tay, Y. – Kale, M. – Parikh, A. – Strubell, E. Improving Composi-
tional Generalization with Self-Training for Data-to-Text Generation. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2022, p. 4205–4219, Dublin, Ireland, 2022. doi: 10.18653/V1/2022.ACL-LONG.289.
Available at: https://doi.org/10.18653/v1/2022.acl-long.289.

Mei, H. – Bansal, M. – Walter, M. R. What to Talk About and How? Selective Generation
using LSTMswith Coarse-to-Fine Alignment. InNAACLHLT 2016,The 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, p. 720–730, San Diego California, USA, 2016. doi: 10.18653/V1/N16-1086.
Available at: https://doi.org/10.18653/v1/n16-1086.

144

https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/p19-1334
https://doi.org/10.18653/v1/p19-1334
https://aclanthology.org/J75-4016
https://aclanthology.org/J75-4021
https://aclanthology.org/J75-4021
https://doi.org/10.18653/v1/2022.acl-long.289
https://doi.org/10.18653/v1/n16-1086

Meister, C. – Wiher, G. – Cotterell, R. On Decoding Strategies for Neural Text Gen-
erators. Trans. Assoc. Comput. Linguistics. 2022, 10, p. 997–1012. Available at: https:

//transacl.org/ojs/index.php/tacl/article/view/3807.

Mel’cuk, I. A. – others. Dependency Syntax: Theory and Practice. SUNY press, 1988.

Michael, J. – Holtzman, A. – Parrish, A. – Mueller, A. – Wang, A. – Chen, A. – Madaan,
D. – Nangia, N. – Pang, R. Y. – Phang, J. – Bowman, S. R. What Do NLP Researchers
Believe? Results of the NLP Community Metasurvey. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
p. 16334–16368, Toronto, Canada, 2023. doi: 10.18653/V1/2023.ACL-LONG.903. Available
at: https://doi.org/10.18653/v1/2023.acl-long.903.

Mikolov, T. – Sutskever, I. – Chen, K. – Corrado, G. S. – Dean, J. Distributed Representa-
tions of Words and Phrases and their Compositionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, p. 3111–3119, Nevada,
United States, 2013. Available at: https://proceedings.neurips.cc/paper/2013/hash/

9aa42b31882ec039965f3c4923ce901b-Abstract.html.

Mille, S. – Dasiopoulou, S. – Fisas, B. – Wanner, L. Teaching FORGe to Verbalize DBpedia
Properties in Spanish. In Proceedings of the 12th International Conference on Natural
Language Generation, INLG 2019, p. 473–483, Tokyo, Japan, 2019. doi: 10.18653/V1/W19-
8659. Available at: https://aclanthology.org/W19-8659/.

Mille, S. – Dhole, K. D. – Mahamood, S. – Perez-Beltrachini, L. – Gangal, V. – Kale,
M. S. – Miltenburg, E. – Gehrmann, S. Automatic Construction of Evaluation Suites for
Natural Language Generation Datasets. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, 2021.
Available at: https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/

ec8956637a99787bd197eacd77acce5e-Abstract-round1.html.

Mille, S. – Lareau, F. – Dasiopoulou, S. – Belz, A. Mod-D2T: A Multi-layer Dataset for
Modular Data-to-Text Generation. In Proceedings of the 16th International Natural Language
Generation Conference, INLG 2023, p. 455–466, Prague, Czechia, 2023. doi: 10.18653/V1/
2023.INLG-MAIN.36. Available at: https://doi.org/10.18653/v1/2023.inlg-main.36.

Min, B. – Ross, H. – Sulem, E. – Veyseh, A. P. B. – Nguyen, T. H. – Sainz, O. – Agirre,
E. – Heintz, I. – Roth, D. Recent Advances in Natural Language Processing via Large
Pre-trained Language Models: A Survey. ACM Comput. Surv. 2024, 56, 2, p. 30:1–30:40. doi:
10.1145/3605943. Available at: https://doi.org/10.1145/3605943.

Mittal, V. O. – Moore, J. D. – Carenini, G. – Roth, S. F. Describing Complex Charts
in Natural Language: A Caption Generation System. Comput. Linguistics. 1998, 24, 3,
p. 431–467.

145

https://transacl.org/ojs/index.php/tacl/article/view/3807
https://transacl.org/ojs/index.php/tacl/article/view/3807
https://doi.org/10.18653/v1/2023.acl-long.903
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://aclanthology.org/W19-8659/
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec8956637a99787bd197eacd77acce5e-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec8956637a99787bd197eacd77acce5e-Abstract-round1.html
https://doi.org/10.18653/v1/2023.inlg-main.36
https://doi.org/10.1145/3605943

Moosavi, N. S. – Rücklé, A. – Roth, D. – Gurevych, I. Learning to Reason for Text
Generation from Scientific Tables. CoRR. 2021, abs/2104.08296. Available at: https:

//arxiv.org/abs/2104.08296.

Moryossef, A. – Goldberg, Y. – Dagan, I. Improving Quality and Efficiency in Plan-based
Neural Data-to-text Generation. In Proceedings of the 12th International Conference on
Natural Language Generation, INLG 2019, p. 377–382, Tokyo, Japan, 2019a. doi: 10.18653/
V1/W19-8645. Available at: https://aclanthology.org/W19-8645/.

Moryossef, A. – Goldberg, Y. – Dagan, I. Step-by-Step: Separating Planning fromRealization
in Neural Data-to-Text Generation. In Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, Volume 1 (Long and Short Papers), p. 2267–2277, USA,
2019b. doi: 10.18653/V1/N19-1236. Available at: https://doi.org/10.18653/v1/n19-1236.

Munkhdalai, T. – Faruqi, M. – Gopal, S. Leave No Context Behind: Efficient Infinite
Context Transformers with Infini-attention. CoRR. 2024, abs/2404.07143. doi: 10.48550/
ARXIV.2404.07143. Available at: https://doi.org/10.48550/arXiv.2404.07143.

Murakami, S. – Watanabe, A. – Miyazawa, A. – Goshima, K. – Yanase, T. – Takamura,
H. – Miyao, Y. Learning to Generate Market Comments from Stock Prices. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 4,
Volume 1: Long Papers, p. 1374–1384, Vancouver, Canada, 2017. doi: 10.18653/V1/P17-1126.
Available at: https://doi.org/10.18653/v1/P17-1126.

Nair, V. – Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24,
2010, p. 807–814, Haifa, Israel, 2010. Available at: https://icml.cc/Conferences/2010/

papers/432.pdf.

Nan, L. et al. DART: Open-Domain Structured Data Record to Text Generation. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2021, p. 432–447, Online, 2021.
doi: 10.18653/V1/2021.NAACL-MAIN.37. Available at: https://doi.org/10.18653/v1/

2021.naacl-main.37.

Narayan, S. – Gardent, C. – Cohen, S. B. – Shimorina, A. Split and Rephrase. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, p.
606–616, Copenhagen, Denmark, 2017. doi: 10.18653/V1/D17-1064. Available at: https:
//doi.org/10.18653/v1/d17-1064.

Naveed, H. – Khan, A. U. – Qiu, S. – Saqib, M. – Anwar, S. – Usman, M. – Barnes, N. – Mian,
A. A Comprehensive Overview of Large Language Models. CoRR. 2023, abs/2307.06435. doi:
10.48550/ARXIV.2307.06435. Available at: https://doi.org/10.48550/arXiv.2307.06435.

146

https://arxiv.org/abs/2104.08296
https://arxiv.org/abs/2104.08296
https://aclanthology.org/W19-8645/
https://doi.org/10.18653/v1/n19-1236
https://doi.org/10.48550/arXiv.2404.07143
https://doi.org/10.18653/v1/P17-1126
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/d17-1064
https://doi.org/10.18653/v1/d17-1064
https://doi.org/10.48550/arXiv.2307.06435

Neeraja, J. – Gupta, V. – Srikumar, V. Incorporating External Knowledge to Enhance
Tabular Reasoning. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2021, p. 2799–2809, Online, 2021. doi: 10.18653/V1/2021.NAACL-MAIN.224. Available at:
https://doi.org/10.18653/v1/2021.naacl-main.224.

Nekvinda, T. – Dušek, O. Shades of BLEU, Flavours of Success: The Case of MultiWOZ.
CoRR. 2021, abs/2106.05555. Available at: https://arxiv.org/abs/2106.05555.

Nie, F. – Yao, J. –Wang, J. – Pan, R. – Lin, C. A Simple Recipe towards Reducing Hallucination
in Neural Surface Realisation. In Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Volume 1: Long Papers, p. 2673–2679, Florence, Italy,
2019. doi: 10.18653/V1/P19-1256. Available at: https://doi.org/10.18653/v1/p19-1256.

Novikoff, A. B. On Convergence Proofs on Perceptrons. In Proceedings of the Symposium on
the Mathematical Theory of Automata, 12, p. 615–622. New York, NY, 1962.

Novikova, J. – Dušek, O. – Curry, A. C. – Rieser, V. Why We Need New Evaluation Metrics
for NLG. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, p. 2241–2252, Copenhagen, Denmark, 2017. doi: 10.18653/V1/D17-
1238. Available at: https://doi.org/10.18653/v1/d17-1238.

Obeid, J. – Hoqe, E. Chart-to-Text: Generating Natural Language Descriptions for Charts
by Adapting the Transformer Model. In Proceedings of the 13th International Conference on
Natural Language Generation, INLG 2020, p. 138–147, Dublin, Ireland, 2020. doi: 10.18653/
V1/2020.INLG-1.20. Available at: https://doi.org/10.18653/v1/2020.inlg-1.20.

Oh, A. – Rudnicky, A. Stochastic Language Generation for Spoken Dialogue Systems. In
ANLP-NAACL 2000 Workshop: Conversational Systems, 2000.

OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt, 2023a. Accessed on
April 20, 2024.

OpenAI. GPT-4 Technical Report. CoRR. 2023b, abs/2303.08774. doi: 10.48550/
ARXIV.2303.08774. Available at: https://doi.org/10.48550/arXiv.2303.08774.

Oremus, W. The First News Report on the LA Earthquake Was Written by a Robot. Slate. com.
2014, 17.

Ott, M. – Edunov, S. – Baevski, A. – Fan, A. – Gross, S. – Ng, N. – Grangier, D. –
Auli, M. fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Demonstrations, p. 48–53, 2019. doi: 10.18653/V1/N19-4009. Available at: https:
//doi.org/10.18653/v1/n19-4009.

147

https://doi.org/10.18653/v1/2021.naacl-main.224
https://arxiv.org/abs/2106.05555
https://doi.org/10.18653/v1/p19-1256
https://doi.org/10.18653/v1/d17-1238
https://doi.org/10.18653/v1/2020.inlg-1.20
https://openai.com/blog/chatgpt
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/n19-4009

Ouyang, L. et al. Training Language Models to Follow Instructions With Human Feedback.
In NeurIPS, 2022. Available at: http://papers.nips.cc/paper_files/paper/2022/hash/

b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Papert, S. A. The Summer Vision Project. Massachusetts Institute of Technology, Project MAC.
1966.

Papineni, K. – Roukos, S. – Ward, T. – Zhu, W. BLEU: A Method for Automatic Evaluation
of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, July 6-12, 2002, p. 311–318, Philadelphia, PA, USA, 2002. doi:
10.3115/1073083.1073135. Available at: https://aclanthology.org/P02-1040/.

Parikh, A. P. – Wang, X. – Gehrmann, S. – Faruqi, M. – Dhingra, B. – Yang, D. –
Das, D. ToTTo: A Controlled Table-To-Text Generation Dataset. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, p.
1173–1186, Online, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.89. Available at: https:
//doi.org/10.18653/v1/2020.emnlp-main.89.

Pascanu, R. – Mikolov, T. – Bengio, Y. On the Difficulty of Training Recurrent Neural
Networks. In Proceedings of the 30th International Conference on Machine Learning, ICML
2013, 28 / JMLR Workshop and Conference Proceedings, p. 1310–1318, Atlanta, GA, USA,
2013. Available at: http://proceedings.mlr.press/v28/pascanu13.html.

Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, p. 8024–8035, 2019. Available at: https://proceedings.neurips.cc/paper/2019/

hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Perlitz, Y. – Ein-Dor, L. – Sheinwald, D. – Slonim, N. – Shmueli-Scheuer, M. Diversity
Enhanced Table-to-Text Generation via Type Control. CoRR. 2022, abs/2205.10938. doi:
10.48550/ARXIV.2205.10938. Available at: https://doi.org/10.48550/arXiv.2205.10938.

Peters, M. E. – Neumann, M. – Iyyer, M. – Gardner, M. – Clark, C. – Lee, K. – Zettlemoyer,
L. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2018, Volume 1 (Long Papers), p. 2227–2237, New
Orleans, Louisiana, USA, 2018. doi: 10.18653/V1/N18-1202. Available at: https://doi.org/

10.18653/v1/n18-1202.

Petroni, F. – Rocktäschel, T. – Riedel, S. – Lewis, P. S. H. – Bakhtin, A. – Wu, Y. – Miller,
A. H. Language Models as Knowledge Bases? In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP 2019, p. 2463–2473, Hong Kong, China,
2019. doi: 10.18653/V1/D19-1250. Available at: https://doi.org/10.18653/v1/D19-1250.

148

http://papers.nips.cc/paper_files/paper/2022/hash/ b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://aclanthology.org/P02-1040/
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
http://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.neurips.cc/paper/2019/hash/ bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.48550/arXiv.2205.10938
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/D19-1250

Ponnamperuma, K. – Siddharthan, A. – Zeng, C. – Mellish, C. – Wal, R. Tag2Blog:
Narrative Generation from Satellite Tag Data. In 51st Annual Meeting of the Association for
Computational Linguistics, ACL 2013, Proceedings of the Conference System Demonstrations,
4-9 August 2013, p. 169–174, Sofia, Bulgaria, 2013. Available at: https://aclanthology.org/

P13-4029/.

Popovic, M. chrF: Character N-Gram F-Score for Automatic MT Evaluation. In Proceedings
of the Tenth Workshop on Statistical Machine Translation, WMT at EMNLP 2015, 17-18
September 2015, p. 392–395, Lisbon, Portugal, 2015. doi: 10.18653/V1/W15-3049. Available
at: https://doi.org/10.18653/v1/w15-3049.

Popovic, M. chrF++: Words Helping Character N-Grams. In Proceedings of the Second
Conference on Machine Translation, WMT 2017, p. 612–618, Copenhagen, Denmark, 2017.
doi: 10.18653/V1/W17-4770. Available at: https://doi.org/10.18653/v1/w17-4770.

Portet, F. – Reiter, E. – Gatt, A. – Hunter, J. – Sripada, S. – Freer, Y. – Sykes, C.
Automatic Generation of Textual Summaries From Neonatal Intensive Care Data. Artif.
Intell. 2009, 173, 7-8, p. 789–816. doi: 10.1016/J.ARTINT.2008.12.002. Available at: https:
//doi.org/10.1016/j.artint.2008.12.002.

Post, M. A Call for Clarity in Reporting BLEU Scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, WMT 2018, p. 186–191, Belgium, Brussels, 2018.
doi: 10.18653/V1/W18-6319. Available at: https://doi.org/10.18653/v1/w18-6319.

Puduppully, R. – Lapata, M. Data-to-text Generation with Macro Planning. Trans. Assoc.
Comput. Linguistics. 2021, 9, p. 510–527. doi: 10.1162/TACL_A_00381. Available at: https:
//doi.org/10.1162/tacl_a_00381.

Puduppully, R. – Dong, L. – Lapata, M. Data-to-text Generation with Entity Modeling. In
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Volume 1: Long Papers, p. 2023–2035, Florence, Italy, 2019. doi: 10.18653/V1/P19-1195.
Available at: https://doi.org/10.18653/v1/p19-1195.

Qian, J. – Wang, H. – Li, Z. – Li, S. – Yan, X. Limitations of Language Models in Arithmetic
and Symbolic Induction. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2023, p. 9285–9298, Toronto, Canada,
2023. doi: 10.18653/V1/2023.ACL-LONG.516. Available at: https://doi.org/10.18653/

v1/2023.acl-long.516.

Radford, A. – Narasimhan, K. – Salimans, T. – Sutskever, I. – others. Im-
proving Language Understanding by Generative Pre-Training. OpenAI Blog.
2018. Available at: https://cdn.openai.com/research-covers/language-unsupervised/

language_understanding_paper.pdf.

149

https://aclanthology.org/P13-4029/
https://aclanthology.org/P13-4029/
https://doi.org/10.18653/v1/w15-3049
https://doi.org/10.18653/v1/w17-4770
https://doi.org/10.1016/j.artint.2008.12.002
https://doi.org/10.1016/j.artint.2008.12.002
https://doi.org/10.18653/v1/w18-6319
https://doi.org/10.1162/tacl_a_00381
https://doi.org/10.1162/tacl_a_00381
https://doi.org/10.18653/v1/p19-1195
https://doi.org/10.18653/v1/2023.acl-long.516
https://doi.org/10.18653/v1/2023.acl-long.516
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Radford, A. – Wu, J. – Child, R. – Luan, D. – Amodei, D. – Sutskever,
I. Language Models Are Unsupervised Multitask Learners. OpenAI Blog.
2019, p. 24. Available at: https://cdn.openai.com/better-language-models/

language_models_are_unsupervised_multitask_learners.pdf.

Raffel, C. – Shazeer, N. – Roberts, A. – Lee, K. – Narang, S. – Matena, M. – Zhou,
Y. – Li, W. – Liu, P. J. Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer. J. Mach. Learn. Res. 2020, 21, p. 140:1–140:67. Available at: http:
//jmlr.org/papers/v21/20-074.html.

Raji, I. D. – Denton, E. – Bender, E. M. – Hanna, A. – Paullada, A. AI and the Everything
in the Whole Wide World Benchmark. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, 2021.
Available at: https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/

084b6fbb10729ed4da8c3d3f5a3ae7c9-Abstract-round2.html.

Rastogi, A. – Zang, X. – Sunkara, S. – Gupta, R. – Khaitan, P. Towards Scalable Multi-
Domain Conversational Agents: The Schema-Guided Dialogue Dataset. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, p. 8689–8696, New York,
NY, USA, 2020. doi: 10.1609/AAAI.V34I05.6394. Available at: https://doi.org/10.1609/

aaai.v34i05.6394.

Ratnaparkhi, A. Trainable Methods for Surface Natural Language Generation. In 6th Applied
Natural Language Processing Conference, ANLP 2000, p. 194–201, Seattle, Washington, USA,
2000. Available at: https://aclanthology.org/A00-2026/.

Rebuffel, C. – Scialom, T. – Soulier, L. – Piwowarski, B. – Lamprier, S. – Staiano, J.
– Scoutheeten, G. – Gallinari, P. Data-QuestEval: A Referenceless Metric for Data-
to-Text Semantic Evaluation. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Virtual Event /, p. 8029–8036, Punta Cana,
Dominican Republic, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.633. Available at: https:
//doi.org/10.18653/v1/2021.emnlp-main.633.

Rebuffel, C. – Roberti, M. – Soulier, L. – Scoutheeten, G. – Cancelliere, R. – Gallinari,
P. Controlling Hallucinations at Word Level in Data-to-Text Generation. Data Min. Knowl.
Discov. 2022, 36, 1, p. 318–354. doi: 10.1007/S10618-021-00801-4. Available at: https:

//doi.org/10.1007/s10618-021-00801-4.

Reimers, N. – Gurevych, I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), p. 3982–3992, Hong Kong, China, November 2019. doi: 10.18653/v1/D19-1410.
Available at: https://www.aclweb.org/anthology/D19-1410.

150

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/084b6fbb10729ed4da8c3d3f5a3ae7c9-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/084b6fbb10729ed4da8c3d3f5a3ae7c9-Abstract-round2.html
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://aclanthology.org/A00-2026/
https://doi.org/10.18653/v1/2021.emnlp-main.633
https://doi.org/10.18653/v1/2021.emnlp-main.633
https://doi.org/10.1007/s10618-021-00801-4
https://doi.org/10.1007/s10618-021-00801-4
https://www.aclweb.org/anthology/D19-1410

Reiter, E. Building Natural-Language Generation Systems. CoRR. 1996, cmp-lg/9605002.
Available at: http://arxiv.org/abs/cmp-lg/9605002.

Reiter, E. NLG vs Templates: Levels of Sophistication in Generating Text. https:

//ehudreiter.com/2016/12/18/nlg-vs-templates, 2016. Accessed on June 15, 2024.

Reiter, E. A Structured Review of the Validity of BLEU. Comput. Linguistics. 2018, 44, 3. doi:
10.1162/COLI_A_00322. Available at: https://doi.org/10.1162/coli_a_00322.

Reiter, E. Academic NLG Should Not Fixate on End-to-End Neural. https://ehudreiter.com/

2020/12/01/dont-fixate-on-end-to-end-neural/, 2020. Accessed on March 08, 2024.

Reiter, E. How to do an NLG Evaluation: Task-Based (Extrinsic) Performance in
Real-World Context. https://ehudreiter.com/2017/04/27/task-based-real-world-nlg-

eval/, 2017. Accessed on June 14, 2024.

Reiter, E. We Should Evaluate Real-World Impact! https://ehudreiter.com/2023/11/13/

evaluate-real-world-impact/, 2023. Accessed on January 11, 2024.

Reiter, E. An Architecture for Data-to-Text Systems. In Proceedings of the Eleventh European
Workshop on Natural Language Generation, ENLG 2007, Schloss Dagstuhl, Germany, 2007.
Available at: https://aclanthology.org/W07-2315/.

Reiter, E. – Dale, R. Building Applied Natural Language Generation Systems. Nat. Lang.
Eng. 1997, 3, 1, p. 57–87. doi: 10.1017/S1351324997001502. Available at: https://doi.org/

10.1017/S1351324997001502.

Reiter, E. – Thomson, C. Shared Task on Evaluating Accuracy. In Proceedings of the 13th
International Conference on Natural Language Generation, INLG 2020, p. 227–231, Dublin,
Ireland, 2020. doi: 10.18653/V1/2020.INLG-1.28. Available at: https://doi.org/10.18653/

v1/2020.inlg-1.28.

Reiter, E. – Robertson, R. – Osman, L. Lessons From a Failure: Generating Tailored Smoking
Cessation Letters. Artif. Intell. 2003, 144, 1-2, p. 41–58. doi: 10.1016/S0004-3702(02)00370-3.
Available at: https://doi.org/10.1016/S0004-3702(02)00370-3.

Rogers, A. Closed AI Models Make Bad Baselines. https://hackingsemantics.xyz/2023/

closed-baselines/, 2023. Accessed on January 11, 2024.

Rogers, A. – Luccioni, S. Position: Key Claims in LLM Research Have a Long Tail of
Footnotes. In Forty-first International Conference on Machine Learning, 2024. Available at:
https://openreview.net/forum?id=M2cwkGleRL.

151

http://arxiv.org/abs/cmp-lg/9605002
https://ehudreiter.com/2016/12/18/nlg-vs-templates
https://ehudreiter.com/2016/12/18/nlg-vs-templates
https://doi.org/10.1162/coli_a_00322
https://ehudreiter.com/2020/12/01/dont-fixate-on-end-to-end-neural/
https://ehudreiter.com/2020/12/01/dont-fixate-on-end-to-end-neural/
https://ehudreiter.com/2017/04/27/task-based-real-world-nlg-eval/
https://ehudreiter.com/2017/04/27/task-based-real-world-nlg-eval/
https://ehudreiter.com/2023/11/13/evaluate-real-world-impact/
https://ehudreiter.com/2023/11/13/evaluate-real-world-impact/
https://aclanthology.org/W07-2315/
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.18653/v1/2020.inlg-1.28
https://doi.org/10.18653/v1/2020.inlg-1.28
https://doi.org/10.1016/S0004-3702(02)00370-3
https://hackingsemantics.xyz/2023/closed-baselines/
https://hackingsemantics.xyz/2023/closed-baselines/
https://openreview.net/forum?id=M2cwkGleRL

Rony, M. R. A. H. – Kovriguina, L. – Chaudhuri, D. – Usbeck, R. – Lehmann, J. RoMe:
A Robust Metric for Evaluating Natural Language Generation. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, p. 5645–5657, Dublin, Ireland, 2022. doi: 10.18653/V1/2022.ACL-LONG.387.
Available at: https://doi.org/10.18653/v1/2022.acl-long.387.

Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organiza-
tion in the Brain. Psychological review. 1958, 65, 6, p. 386.

Rumelhart, D. E. – Hinton, G. E. – Williams, R. J. Learning Representations by Back-
Propagating Errors. nature. 1986, 323, 6088, p. 533–536.

Saha, S. – Yu, X. – Bansal, M. – Pasunuru, R. – Celikyilmaz, A. MURMUR: Modular
Multi-Step Reasoning for Semi-Structured Data-to-Text Generation. In Findings of the
Association for Computational Linguistics: ACL 2023, p. 11069–11090, Toronto, Canada, 2023.
doi: 10.18653/V1/2023.FINDINGS-ACL.704. Available at: https://doi.org/10.18653/v1/

2023.findings-acl.704.

Salehinejad, H. – Baarbe, J. – Sankar, S. – Barfett, J. – Colak, E. – Valaee, S. Recent
Advances in Recurrent Neural Networks. CoRR. 2018, abs/1801.01078. Available at: http:
//arxiv.org/abs/1801.01078.

Sanh, V. et al. Multitask Prompted Training Enables Zero-Shot Task Generalization. In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 2022.
Available at: https://openreview.net/forum?id=9Vrb9D0WI4.

Scao, T. L. et al. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. CoRR.
2022, abs/2211.05100. doi: 10.48550/arXiv.2211.05100. Available at: https://doi.org/

10.48550/arXiv.2211.05100.

Schopf, T. – Arabi, K. –Matthes, F. Exploring the Landscape of Natural Language Processing
Research. In Proceedings of the 14th International Conference on Recent Advances in Natural
Language Processing, RANLP 2023, p. 1034–1045, Varna, Bulgaria, 2023. Available at:
https://aclanthology.org/2023.ranlp-1.111.

Scialom, T. – Dray, P. – Lamprier, S. – Piwowarski, B. – Staiano, J. –Wang, A. – Gallinari,
P. QuestEval: Summarization Asks for Fact-based Evaluation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event
/, p. 6594–6604, Punta Cana, Dominican Republic, 2021. doi: 10.18653/V1/2021.EMNLP-
MAIN.529. Available at: https://doi.org/10.18653/v1/2021.emnlp-main.529.

Scott, D. – Hallett, C. – Fettiplace, R. Data-to-Text Summarisation of Patient Records:
Using Computer-Generated Summaries to Access Patient Histories. Patient education and
counseling. 2013, 92, 2, p. 153–159.

152

https://doi.org/10.18653/v1/2022.acl-long.387
https://doi.org/10.18653/v1/2023.findings-acl.704
https://doi.org/10.18653/v1/2023.findings-acl.704
http://arxiv.org/abs/1801.01078
http://arxiv.org/abs/1801.01078
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
https://aclanthology.org/2023.ranlp-1.111
https://doi.org/10.18653/v1/2021.emnlp-main.529

See, A. – Liu, P. J. – Manning, C. D. Get ToThe Point: Summarization with Pointer-Generator
Networks. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017 4, Volume 1: Long Papers, p. 1073–1083, Vancouver, Canada, 2017. doi:
10.18653/V1/P17-1099. Available at: https://doi.org/10.18653/v1/P17-1099.

Sellam, T. – Das, D. – Parikh, A. P. BLEURT: Learning Robust Metrics for Text Generation.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, p. 7881–7892, Online, 2020. doi: 10.18653/V1/2020.ACL-MAIN.704. Available at:
https://doi.org/10.18653/v1/2020.acl-main.704.

Sennrich, R. – Haddow, B. – Birch, A. Neural Machine Translation of Rare Words with Sub-
word Units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Volume 1: Long Papers, Berlin, Germany, 2016. doi:
10.18653/V1/P16-1162. Available at: https://doi.org/10.18653/v1/p16-1162.

Shannon, C. E. A Mathematical Theory of Communication. The Bell system technical journal.
1948, 27, 3, p. 379–423.

Shao, H. – Wang, J. – Lin, H. – Zhang, X. – Zhang, A. – Ji, H. – Abdelzaher, T. F.
Controllable andDiverse Text Generation in E-Commerce. InWWW’21: TheWeb Conference
2021, p. 2392–2401, Virtual Event / Ljubljana, Slovenia, 2021. doi: 10.1145/3442381.3449838.
Available at: https://doi.org/10.1145/3442381.3449838.

Shao, Z. – Huang, M. – Wen, J. – Xu, W. – Zhu, X. Long and Diverse Text Generation with
Planning-based Hierarchical Variational Model. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP 2019, p. 3255–3266, Hong Kong, China,
2019. doi: 10.18653/V1/D19-1321. Available at: https://doi.org/10.18653/v1/D19-1321.

Sharma, M. – Gogineni, A. – Ramakrishnan, N. Innovations in Neural Data-to-Text
Generation. CoRR. 2022, abs/2207.12571. doi: 10.48550/ARXIV.2207.12571. Available at:
https://doi.org/10.48550/arXiv.2207.12571.

Shen, X. – Chang, E. – Su, H. – Niu, C. – Klakow, D. Neural Data-to-Text Generation via
Jointly Learning the Segmentation and Correspondence. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, p. 7155–7165, Online,
2020. doi: 10.18653/V1/2020.ACL-MAIN.641. Available at: https://doi.org/10.18653/v1/

2020.acl-main.641.

Sheridan, P. Research in Language Translation on the IBM Type 701. IBM Technical Newsletter.
1955, 9, p. 5–24.

Shimorina, A. Human vs Automatic Metrics: on the Importance of Correlation Design. CoRR.
2018, abs/1805.11474. Available at: http://arxiv.org/abs/1805.11474.

153

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.1145/3442381.3449838
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.48550/arXiv.2207.12571
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641
http://arxiv.org/abs/1805.11474

Shimorina, A. – Gardent, C. Handling Rare Items in Data-to-Text Generation. In Proceedings
of the 11th International Conference on Natural Language Generation, p. 360–370, Tilburg
University, The Netherlands, 2018. doi: 10.18653/V1/W18-6543. Available at: https:

//doi.org/10.18653/v1/w18-6543.

Shimorina, A. – Gardent, C. – Narayan, S. – Perez-Beltrachini, L. WebNLG
Challenge: Human Evaluation Results. 2019, p. 16. Available at: https://

synalp.gitlabpages.inria.fr/webnlg-challenge/files/human-eval-outline-v2.pdf.

Siddharthan, A. – Green, M. – Deemter, K. – Mellish, C. – Wal, R. Blogging Birds:
Generating Narratives About Reintroduced Species To Promote Public Engagement. In
INLG 2012 - Proceedings of the Seventh International Natural Language Generation Conference,
30 May 2012 - 1 June 2012, Starved Rock State Park, Utica, IL,, p. 120–124, USA, 2012. Available
at: https://aclanthology.org/W12-1520/.

Sottana, A. – Liang, B. – Zou, K. – Yuan, Z. Evaluation Metrics in the Era of GPT-4: Reliably
Evaluating Large Language Models on Sequence to Sequence Tasks. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023,
p. 8776–8788, Singapore, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.543. Available at:
https://doi.org/10.18653/v1/2023.emnlp-main.543.

Steedman, M. The Syntactic Process. Language, Speech, and Communication. MIT Press, 2004.
ISBN 978-0-262-69268-7.

Stefanini, M. – Cornia, M. – Baraldi, L. – Cascianelli, S. – Fiameni, G. – Cucchiara,
R. From Show to Tell: A Survey on Deep Learning-Based Image Captioning. IEEE Trans.
Pattern Anal. Mach. Intell. 2023, 45, 1, p. 539–559. doi: 10.1109/TPAMI.2022.3148210.
Available at: https://doi.org/10.1109/TPAMI.2022.3148210.

Stureborg, R. – Alikaniotis, D. – Suhara, Y. Large Language Models are Inconsistent and
Biased Evaluators. CoRR. 2024, abs/2405.01724. doi: 10.48550/ARXIV.2405.01724. Available
at: https://doi.org/10.48550/arXiv.2405.01724.

Su, Y. – Meng, Z. – Baker, S. – Collier, N. Few-Shot Table-to-Text Generation with
Prototype Memory. In Findings of the Association for Computational Linguistics: EMNLP
2021, Virtual Event /, p. 910–917, Punta Cana, Dominican Republic, 2021a. doi: 10.18653/V1/
2021.FINDINGS-EMNLP.77. Available at: https://doi.org/10.18653/v1/2021.findings-

emnlp.77.

Su, Y. – Vandyke, D. – Wang, S. – Fang, Y. – Collier, N. Plan-then-Generate: Controlled
Data-to-Text Generation via Planning. In Findings of the Association for Computational
Linguistics: EMNLP 2021, Virtual Event /, p. 895–909, Punta Cana, Dominican Republic, 2021b.
doi: 10.18653/V1/2021.FINDINGS-EMNLP.76. Available at: https://doi.org/10.18653/

v1/2021.findings-emnlp.76.

154

https://doi.org/10.18653/v1/w18-6543
https://doi.org/10.18653/v1/w18-6543
https://synalp.gitlabpages.inria.fr/webnlg-challenge/files/human-eval-outline-v2.pdf
https://synalp.gitlabpages.inria.fr/webnlg-challenge/files/human-eval-outline-v2.pdf
https://aclanthology.org/W12-1520/
https://doi.org/10.18653/v1/2023.emnlp-main.543
https://doi.org/10.1109/TPAMI.2022.3148210
https://doi.org/10.48550/arXiv.2405.01724
https://doi.org/10.18653/v1/2021.findings-emnlp.77
https://doi.org/10.18653/v1/2021.findings-emnlp.77
https://doi.org/10.18653/v1/2021.findings-emnlp.76
https://doi.org/10.18653/v1/2021.findings-emnlp.76

Suadaa, L. H. – Kamigaito, H. – Funakoshi, K. – Okumura, M. – Takamura, H. Towards
Table-to-Text Generation with Numerical Reasoning. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
p. 1451–1465, Virtual Event, 2021. doi: 10.18653/V1/2021.ACL-LONG.115. Available at:
https://doi.org/10.18653/v1/2021.acl-long.115.

Sun, X. – Mellish, C. Domain Independent Sentence Generation from RDF Representations
for the Semantic Web. 2006, p. 7.

Sutskever, I. – Vinyals, O. – Le, Q. V. Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, p. 3104–3112, Montreal,
Quebec, Canada, 2014. Available at: https://proceedings.neurips.cc/paper/2014/hash/

a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

Tang, T. – Li, J. – Zhao, W. X. – Wen, J. MVP: Multi-Task Supervised Pre-Training for
Natural Language Generation. CoRR. 2022, abs/2206.12131. doi: 10.48550/arXiv.2206.12131.
Available at: https://doi.org/10.48550/arXiv.2206.12131.

Tanon, T. P. – Weikum, G. – Suchanek, F. M. YAGO 4: A Reason-able Knowledge Base. In
The Semantic Web - 17th International Conference, ESWC 2020, Proceedings, 12123 / Lecture
Notes in Computer Science, p. 583–596, Heraklion, Crete, Greece, 2020. doi: 10.1007/978-3-
030-49461-2_34. Available at: https://doi.org/10.1007/978-3-030-49461-2_34.

Taylor, W. L. “Cloze Procedure”: A New Tool for Measuring Readability. Journalism quarterly.
1953, 30, 4, p. 415–433.

Team, G. – Anil, R. – Borgeaud, S. – Wu, Y. – Alayrac, J.-B. – Yu, J. – Soricut, R. –
Schalkwyk, J. – Dai, A. M. – Hauth, A. – others. Gemini: A Family of Highly Capable
Multimodal Models. arXiv preprint arXiv:2312.11805. 2023. Available at: https://doi.org/

10.48550/arXiv.2312.11805.

Thomson, C. – Reiter, E. Generation Challenges: Results of the Accuracy Evaluation Shared
Task. In Proceedings of the 14th International Conference on Natural Language Generation,
INLG 2021, p. 240–248, Aberdeen, Scotland, UK, 2021. doi: 10.18653/V1/2021.INLG-1.23.
Available at: https://doi.org/10.18653/v1/2021.inlg-1.23.

Thomson, C. – Reiter, E. A Gold Standard Methodology for Evaluating Accuracy in Data-
To-Text Systems. In Proceedings of the 13th International Conference on Natural Language
Generation, INLG 2020, p. 158–168, Dublin, Ireland, 2020. doi: 10.18653/V1/2020.INLG-1.22.
Available at: https://doi.org/10.18653/v1/2020.inlg-1.22.

155

https://doi.org/10.18653/v1/2021.acl-long.115
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.48550/arXiv.2206.12131
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.18653/v1/2021.inlg-1.23
https://doi.org/10.18653/v1/2020.inlg-1.22

Thomson, C. – Reiter, E. – Sripada, S. SportSett:Basketball - A Robust and Maintainable
Dataset for Natural Language Generation. In Proceedings of the Workshop on Intelligent
Information Processing and Natural Language Generation, p. 32–40, Santiago de Compostela,
Spain, September 2020. Association for Computational Lingustics. Available at: https:
//aclanthology.org/2020.intellang-1.4.

Thomson, C. – Reiter, E. – Sundararajan, B. Evaluating Factual Accuracy in Complex
Data-to-Text. Comput. Speech Lang. 2023, 80, p. 101482. doi: 10.1016/J.CSL.2023.101482.
Available at: https://doi.org/10.1016/j.csl.2023.101482.

Tian, R. – Narayan, S. – Sellam, T. – Parikh, A. P. Sticking to the Facts: Confident
Decoding for Faithful Data-to-Text Generation. CoRR. 2019, abs/1910.08684. Available at:
http://arxiv.org/abs/1910.08684.

TogetherAI. Preparing for the Era of 32K Context: Early Learnings and Explorations.
https://www.together.ai/blog/llama-2-7b-32k, 2023. Accessed on January 2, 2024.

Touvron, H. et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. CoRR. 2023,
abs/2307.09288. doi: 10.48550/ARXIV.2307.09288. Available at: https://doi.org/10.48550/

arXiv.2307.09288.

Trisedya, B. D. – Qi, J. – Zhang, R. Sentence Generation for Entity Description with Content-
Plan Attention. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
p. 9057–9064, New York, NY, USA, 2020. doi: 10.1609/AAAI.V34I05.6439. Available at:
https://doi.org/10.1609/aaai.v34i05.6439.

Tunstall, L. – Beeching, E. – Lambert, N. – Rajani, N. – Rasul, K. – Belkada, Y. – Huang,
S. – Werra, L. – Fourrier, C. – Habib, N. – Sarrazin, N. – Sanseviero, O. – Rush, A. M.
– Wolf, T. Zephyr: Direct Distillation of LM Alignment. CoRR. 2023, abs/2310.16944. doi:
10.48550/ARXIV.2310.16944. Available at: https://doi.org/10.48550/arXiv.2310.16944.

Vamvas, J. – Sennrich, R. As Little as Possible, as Much as Necessary: Detecting Over-
and Undertranslations with Contrastive Conditioning. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL 2022,
p. 490–500, Dublin, Ireland, 2022. doi: 10.18653/V1/2022.ACL-SHORT.53. Available at:
https://doi.org/10.18653/v1/2022.acl-short.53.

Lee, C. – Krahmer, E. – Wubben, S. PASS: A Dutch Data-to-Text System for Soccer, Targeted
Towards Specific Audiences. In Proceedings of the 10th International Conference on Natural
Language Generation, INLG 2017, Santiago de Compostela, p. 95–104, Spain, 2017. doi:
10.18653/V1/W17-3513. Available at: https://doi.org/10.18653/v1/w17-3513.

156

https://aclanthology.org/2020.intellang-1.4
https://aclanthology.org/2020.intellang-1.4
https://doi.org/10.1016/j.csl.2023.101482
http://arxiv.org/abs/1910.08684
https://www.together.ai/blog/llama-2-7b-32k
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1609/aaai.v34i05.6439
https://doi.org/10.48550/arXiv.2310.16944
https://doi.org/10.18653/v1/2022.acl-short.53
https://doi.org/10.18653/v1/w17-3513

Lee, C. – Krahmer, E. – Wubben, S. Automated Learning of Templates for Data-to-Text
Generation: Comparing Rule-Based, Statistical and Neural Methods. In Proceedings of the
11th International Conference on Natural Language Generation, p. 35–45, Tilburg University,
The Netherlands, 2018. doi: 10.18653/V1/W18-6504. Available at: https://doi.org/

10.18653/v1/w18-6504.

Lee, C. – Gatt, A. – Miltenburg, E. – Wubben, S. – Krahmer, E. Best Practices for the
Human Evaluation of Automatically Generated Text. In Proceedings of the 12th International
Conference on Natural Language Generation, INLG 2019, p. 355–368, Tokyo, Japan, 2019. doi:
10.18653/V1/W19-8643. Available at: https://aclanthology.org/W19-8643/.

Lee, C. – Emmery, C. – Wubben, S. – Krahmer, E. The CACAPO Dataset: A Multilingual,
Multi-Domain Dataset for Neural Pipeline and End-to-End Data-to-Text Generation. In
Proceedings of the 13th International Conference on Natural Language Generation, INLG
2020, p. 68–79, Dublin, Ireland, 2020. doi: 10.18653/V1/2020.INLG-1.10. Available at:
https://doi.org/10.18653/v1/2020.inlg-1.10.

Lee, C. – Gatt, A. – Miltenburg, E. – Krahmer, E. Human Evaluation of Automatically
Generated Text: Current Trends and Best Practice Guidelines. Comput. Speech Lang. 2021,
67, p. 101151. doi: 10.1016/J.CSL.2020.101151. Available at: https://doi.org/10.1016/

j.csl.2020.101151.

Miltenburg, E. – Elliott, D. – Vossen, P. Measuring the Diversity of Automatic Image De-
scriptions. In Proceedings of the 27th International Conference on Computational Linguistics,
COLING 2018, Santa Fe, New Mexico, USA, August 20-26, p. 1730–1741, 2018. Available at:
https://aclanthology.org/C18-1147/.

Miltenburg, E. – Clinciu, M. – Dušek, O. – Gkatzia, D. – Inglis, S. – Leppänen, L. –
Mahamood, S. – Manning, E. – Schoch, S. – Thomson, C. – Wen, L. Underreporting of
Errors in NLG Output, and What to Do About It. In Proceedings of the 14th International
Conference on Natural Language Generation, INLG 2021, p. 140–153, Aberdeen, Scotland,
UK, 2021. Available at: https://aclanthology.org/2021.inlg-1.14.

Miltenburg, E. – Clinciu, M. – Dušek, O. – Gkatzia, D. – Inglis, S. – Leppänen, L. –
Mahamood, S. – Schoch, S. – Thomson, C. – Wen, L. Barriers and Enabling Factors
for Error Analysis in NLG Research. Northern European Journal of Language Technology.
February 2023, 9, 1. ISSN 2000-1533. doi: 10.3384/nejlt.2000-1533.2023.4529. Available at:
https://nejlt.ep.liu.se/article/view/4529. Number: 1.

Vaswani, A. – Shazeer, N. – Parmar, N. – Uszkoreit, J. – Jones, L. – Gomez,
A. N. – Kaiser, L. – Polosukhin, I. Attention Is All You Need. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,, p.
5998–6008, USA, 2017. Available at: https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

157

https://doi.org/10.18653/v1/w18-6504
https://doi.org/10.18653/v1/w18-6504
https://aclanthology.org/W19-8643/
https://doi.org/10.18653/v1/2020.inlg-1.10
https://doi.org/10.1016/j.csl.2020.101151
https://doi.org/10.1016/j.csl.2020.101151
https://aclanthology.org/C18-1147/
https://aclanthology.org/2021.inlg-1.14
https://nejlt.ep.liu.se/article/view/4529
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Vejvar, M. – Fujimoto, Y. ASPIRO: Any-shot Structured Parsing-error-Induced ReprOmpting
for Consistent Data-to-Text Generation. In Findings of the Association for Computational
Linguistics: EMNLP 2023, p. 3550–3563, Singapore, 2023. doi: 10.18653/V1/2023.FINDINGS-
EMNLP.229. Available at: https://doi.org/10.18653/v1/2023.findings-emnlp.229.

Veselovsky, V. – Ribeiro, M. H. – West, R. Artificial Artificial Artificial Intelligence:
Crowd Workers Widely Use Large Language Models for Text Production Tasks. CoRR.
2023, abs/2306.07899. doi: 10.48550/ARXIV.2306.07899. Available at: https://doi.org/

10.48550/arXiv.2306.07899.

Vrandecic, D. – Krötzsch, M. Wikidata: A Free Collaborative Knowledgebase. Commun.
ACM. 2014, 57, 10, p. 78–85. doi: 10.1145/2629489. Available at: https://doi.org/10.1145/

2629489.

Wang, J. – Liang, Y. – Meng, F. – Shi, H. – Li, Z. – Xu, J. – Qu, J. – Zhou, J. Is ChatGPT a
Good NLG Evaluator? A Preliminary Study. CoRR. 2023a, abs/2303.04048. doi: 10.48550/
ARXIV.2303.04048. Available at: https://doi.org/10.48550/arXiv.2303.04048.

Wang, J. On Computational Sentence Generation From Logical Form. In Proceedings of the
8th International Conference on Computational Linguistics, COLING ’80, p. 405–411, Tokyo,
Japan, 1980. Available at: https://aclanthology.org/C80-1061/.

Wang, L. – Lyu, C. – Ji, T. – Zhang, Z. – Yu, D. – Shi, S. – Tu, Z. Document-Level Machine
Translation with Large Language Models. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, p. 16646–16661, Singapore, 2023b.
doi: 10.18653/V1/2023.EMNLP-MAIN.1036. Available at: https://doi.org/10.18653/v1/

2023.emnlp-main.1036.

Wang, P. – Li, L. – Chen, L. – Zhu, D. – Lin, B. – Cao, Y. – Liu, Q. – Liu, T. – Sui, Z. Large
Language Models Are Not Fair Evaluators. CoRR. 2023c, abs/2305.17926. doi: 10.48550/
ARXIV.2305.17926. Available at: https://doi.org/10.48550/arXiv.2305.17926.

Wang, T. – Wang, X. – Qin, Y. – Packer, B. – Li, K. – Chen, J. – Beutel, A. – Chi, E. H. CAT-
Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2020, p. 5141–5146, Online, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.417.
Available at: https://doi.org/10.18653/v1/2020.emnlp-main.417.

Wang, T. – Wan, X. Hierarchical Attention Networks for Sentence Ordering. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, p. 7184–7191, Honolulu, Hawaii,
USA, 2019. doi: 10.1609/AAAI.V33I01.33017184. Available at: https://doi.org/10.1609/

aaai.v33i01.33017184.

158

https://doi.org/10.18653/v1/2023.findings-emnlp.229
https://doi.org/10.48550/arXiv.2306.07899
https://doi.org/10.48550/arXiv.2306.07899
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.48550/arXiv.2303.04048
https://aclanthology.org/C80-1061/
https://doi.org/10.18653/v1/2023.emnlp-main.1036
https://doi.org/10.18653/v1/2023.emnlp-main.1036
https://doi.org/10.48550/arXiv.2305.17926
https://doi.org/10.18653/v1/2020.emnlp-main.417
https://doi.org/10.1609/aaai.v33i01.33017184
https://doi.org/10.1609/aaai.v33i01.33017184

Wang, X. – Gao, T. – Zhu, Z. – Zhang, Z. – Liu, Z. – Li, J. – Tang, J. KEPLER: A Unified
Model for Knowledge Embedding and Pre-trained Language Representation. Trans. Assoc.
Comput. Linguistics. 2021, 9, p. 176–194. doi: 10.1162/TACL_A_00360. Available at: https:
//doi.org/10.1162/tacl_a_00360.

Wang, Y. – Deng, J. – Sun, A. – Meng, X. Perplexity from PLM Is Unreliable for Evaluating
Text Quality. CoRR. 2022, abs/2210.05892. doi: 10.48550/ARXIV.2210.05892. Available at:
https://doi.org/10.48550/arXiv.2210.05892.

Wang, Z. et al. Interactive Natural Language Processing. CoRR. 2023d, abs/2305.13246. doi:
10.48550/ARXIV.2305.13246. Available at: https://doi.org/10.48550/arXiv.2305.13246.

Wei, J. et al. Emergent Abilities of Large Language Models. Trans. Mach. Learn. Res. 2022a,
2022. Available at: https://openreview.net/forum?id=yzkSU5zdwD.

Wei, J. – Wang, X. – Schuurmans, D. – Bosma, M. – Ichter, B. – Xia, F. – Chi,
E. H. – Le, Q. V. – Zhou, D. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. In Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, 2022b. Available at: http://papers.nips.cc/paper_files/paper/2022/hash/

9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Wen, T. – Young, S. J. Recurrent Neural Network Language Generation for Spoken Dialogue
Systems. Comput. Speech Lang. 2020, 63, p. 101017. doi: 10.1016/J.CSL.2019.06.008. Available
at: https://doi.org/10.1016/j.csl.2019.06.008.

Wen, T.-H. – Gašic, M. – Mrkšic, N. – Rojas-Barahona, L. M. – Su, P.-H. – Vandyke, D. –
Young, S. Toward Multi-Domain Language Generation using Recurrent Neural Networks.
In NIPS Workshop on Machine Learning for Spoken Language Understanding and Interaction,
2015a.

Wen, T. – Gasic, M. – Mrksic, N. – Su, P. – Vandyke, D. – Young, S. J. Semantically
Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2015, p. 1711–1721, Lisbon, Portugal, 2015b. doi: 10.18653/V1/D15-1199. Available
at: https://doi.org/10.18653/v1/d15-1199.

Wen, T. – Gasic, M. – Mrksic, N. – Rojas-Barahona, L. M. – Su, P. – Vandyke, D. – Young,
S. J. Multi-Domain Neural Network Language Generation for Spoken Dialogue Systems. In
NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, p. 120–129, San Diego California,
USA, 2016. doi: 10.18653/V1/N16-1015. Available at: https://doi.org/10.18653/v1/n16-

1015.

159

https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.48550/arXiv.2210.05892
https://doi.org/10.48550/arXiv.2305.13246
https://openreview.net/forum?id=yzkSU5zdwD
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1016/j.csl.2019.06.008
https://doi.org/10.18653/v1/d15-1199
https://doi.org/10.18653/v1/n16-1015
https://doi.org/10.18653/v1/n16-1015

Wenzek, G. – Lachaux, M. – Conneau, A. – Chaudhary, V. – Guzmán, F. – Joulin, A. –
Grave, E. CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data.
In Proceedings of The 12th Language Resources and Evaluation Conference, LREC 2020, p.
4003–4012, Marseille, France, 2020. Available at: https://aclanthology.org/2020.lrec-

1.494/.

White, M. – Rajkumar, R. – Martin, S. Towards Broad Coverage Surface Realization with
CCG. In Proceedings of the Workshop on Using corpora for natural language generation,
Copenhagen, Denmark, 2007. Available at: https://aclanthology.org/2007.mtsummit-

ucnlg.4.

Wilcoxon, F. Individual Comparisons by Ranking Methods. In Breakthroughs in statistics. :
Springer, 1992. p. 196–202.

Williams, A. – Nangia, N. – Bowman, S. R. A Broad-Coverage Challenge Corpus for Sentence
Understanding through Inference. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2018, Volume 1 (Long Papers), p. 1112–1122, New Orleans, Louisiana, USA,
2018. doi: 10.18653/V1/N18-1101. Available at: https://doi.org/10.18653/v1/n18-1101.

Wiseman, S. – Shieber, S. M. – Rush, A. M. Challenges in Data-to-Document Generation. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2017, p. 2253–2263, Copenhagen, Denmark, 2017. doi: 10.18653/V1/D17-1239.
Available at: https://doi.org/10.18653/v1/d17-1239.

Wiseman, S. – Shieber, S. M. – Rush, A. M. Learning Neural Templates for Text Generation.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
p. 3174–3187, Brussels, Belgium, 2018. doi: 10.18653/V1/D18-1356. Available at: https:
//doi.org/10.18653/v1/d18-1356.

Wolf, T. – Debut, L. – Sanh, V. – Chaumond, J. – Delangue, C. – Moi, A. – Cistac,
P. – Rault, T. – Louf, R. – Funtowicz, M. – Brew, J. HuggingFace’s Transformers:
State-of-the-Art Natural Language Processing. CoRR. 2019, abs/1910.03771. Available at:
http://arxiv.org/abs/1910.03771.

Woolley, G. H. Automatic Text Generation. In International Conference on Computational
Linguistics COLING 1969: Preprint No. 37, Sånga Säby, Sweden, September 1969. Available
at: https://aclanthology.org/C69-3701.

Wu, Y. et al. Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation. CoRR. 2016, abs/1609.08144. Available at: http://arxiv.org/

abs/1609.08144.

160

https://aclanthology.org/2020.lrec-1.494/
https://aclanthology.org/2020.lrec-1.494/
https://aclanthology.org/2007.mtsummit-ucnlg.4
https://aclanthology.org/2007.mtsummit-ucnlg.4
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/d17-1239
https://doi.org/10.18653/v1/d18-1356
https://doi.org/10.18653/v1/d18-1356
http://arxiv.org/abs/1910.03771
https://aclanthology.org/C69-3701
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

Xiang, J. – Liu, Z. – Zhou, Y. – Xing, E. P. – Hu, Z. ASDOT: Any-Shot Data-to-Text Genera-
tion with Pretrained Language Models. In Findings of the Association for Computational
Linguistics: EMNLP 2022, p. 1886–1899, Abu Dhabi, United Arab Emirates, 2022. doi:
10.18653/V1/2022.FINDINGS-EMNLP.136. Available at: https://doi.org/10.18653/v1/

2022.findings-emnlp.136.

Xie, T. et al. UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with
Text-to-Text Language Models. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, p. 602–631, Abu Dhabi, United Arab Emirates,
2022. doi: 10.18653/V1/2022.EMNLP-MAIN.39. Available at: https://doi.org/10.18653/

v1/2022.emnlp-main.39.

Xie, Z. – Cohn, T. – Lau, J. H. The Next Chapter: A Study of Large Language Models in
Storytelling. In Proceedings of the 16th International Natural Language Generation Conference,
INLG 2023, p. 323–351, Prague, Czechia, 2023. doi: 10.18653/V1/2023.INLG-MAIN.23.
Available at: https://doi.org/10.18653/v1/2023.inlg-main.23.

Xu,W. –Wang, D. – Pan, L. – Song, Z. – Freitag, M. –Wang,W. Y. – Li, L. INSTRUCTSCORE:
Explainable Text Generation Evaluation with Finegrained Feedback, 2023a. Available at:
http://arxiv.org/abs/2305.14282.

Xu, X. – Dušek, O. – Rieser, V. – Konstas, I. AggGen: Ordering and Aggregating while
Generating. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), p. 1419–1434, Virtual Event, 2021. doi: 10.18653/
V1/2021.ACL-LONG.113. Available at: https://doi.org/10.18653/v1/2021.acl-long.113.

Xu, X. – Titov, I. – Lapata, M. Compositional Generalization for Data-to-Text Generation.
In Findings of the Association for Computational Linguistics: EMNLP 2023, p. 9299–9317,
Singapore, 2023b. doi: 10.18653/V1/2023.FINDINGS-EMNLP.623. Available at: https:

//doi.org/10.18653/v1/2023.findings-emnlp.623.

Xue, L. – Constant, N. – Roberts, A. – Kale, M. – Al-Rfou, R. – Siddhant, A. – Barua,
A. – Raffel, C. mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, p. 483–498,
Online, 2021. doi: 10.18653/V1/2021.NAACL-MAIN.41. Available at: https://doi.org/

10.18653/v1/2021.naacl-main.41.

Yang, J. – Jin, H. – Tang, R. – Han, X. – Feng, Q. – Jiang, H. – Zhong, S. – Yin, B. – Hu,
X. B. Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. ACM
Trans. Knowl. Discov. Data. 2024, 18, 6, p. 160:1–160:32. doi: 10.1145/3649506. Available at:
https://doi.org/10.1145/3649506.

161

https://doi.org/10.18653/v1/2022.findings-emnlp.136
https://doi.org/10.18653/v1/2022.findings-emnlp.136
https://doi.org/10.18653/v1/2022.emnlp-main.39
https://doi.org/10.18653/v1/2022.emnlp-main.39
https://doi.org/10.18653/v1/2023.inlg-main.23
http://arxiv.org/abs/2305.14282
https://doi.org/10.18653/v1/2021.acl-long.113
https://doi.org/10.18653/v1/2023.findings-emnlp.623
https://doi.org/10.18653/v1/2023.findings-emnlp.623
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.1145/3649506

Yang, Z. – Einolghozati, A. – Inan, H. – Diedrick, K. – Fan, A. – Donmez, P. – Gupta,
S. Improving Text-to-Text Pre-Trained Models for the Graph-to-Text Task. In Proceedings
of the 3rd International Workshop on Natural Language Generation from the Semantic Web
(WebNLG+), p. 107–116, 2020.

Yin, Z. – Sun, Q. – Guo, Q. – Wu, J. – Qiu, X. – Huang, X. Do Large Language Models Know
What They Don’t Know? In Findings of the Association for Computational Linguistics: ACL
2023, p. 8653–8665, Toronto, Canada, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.551.
Available at: https://doi.org/10.18653/v1/2023.findings-acl.551.

Yngve, V. H. Random Generation of English Sentences. In Proceedings of the International
Conference on Machine Translation and Applied Language Analysis, 1961.

Yuan, S. – Färber, M. Evaluating Generative Models for Graph-to-Text Generation. In
Proceedings of the 14th International Conference on Recent Advances in Natural Language
Processing, RANLP 2023, p. 1256–1264, Varna, Bulgaria, 2023. Available at: https://

aclanthology.org/2023.ranlp-1.133.

Zarrieß, S. – Voigt, H. – Schüz, S. Decoding Methods in Neural Language Generation:
A Survey. Inf. 2021, 12, 9, p. 355. doi: 10.3390/INFO12090355. Available at: https:

//doi.org/10.3390/info12090355.

Zha, Y. – Yang, Y. – Li, R. – Hu, Z. AlignScore: Evaluating Factual Consistency with A
Unified Alignment Function. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2023, p. 11328–11348, Toronto,
Canada, 2023. doi: 10.18653/V1/2023.ACL-LONG.634. Available at: https://doi.org/

10.18653/v1/2023.acl-long.634.

Zhang, H. – Song, H. – Li, S. – Zhou, M. – Song, D. A Survey of Controllable Text Generation
using Transformer-based Pre-trained Language Models. ACM Comput. Surv. 2024, 56, 3,
p. 64:1–64:37. doi: 10.1145/3617680. Available at: https://doi.org/10.1145/3617680.

Zhang, T. – Kishore, V. – Wu, F. – Weinberger, K. Q. – Artzi, Y. BERTScore: Evaluating
Text Generation with BERT. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, 2020a. Available at: https://openreview.net/forum?id=

SkeHuCVFDr.

Zhang, T. – Ladhak, F. – Durmus, E. – Liang, P. –McKeown, K. R. – Hashimoto, T. B. Bench-
marking Large Language Models for News Summarization. CoRR. 2023, abs/2301.13848. doi:
10.48550/ARXIV.2301.13848. Available at: https://doi.org/10.48550/arXiv.2301.13848.

162

https://doi.org/10.18653/v1/2023.findings-acl.551
https://aclanthology.org/2023.ranlp-1.133
https://aclanthology.org/2023.ranlp-1.133
https://doi.org/10.3390/info12090355
https://doi.org/10.3390/info12090355
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.1145/3617680
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.48550/arXiv.2301.13848

Zhang, Z. – Wu, Y. – Zhao, H. – Li, Z. – Zhang, S. – Zhou, X. – Zhou, X. Semantics-
Aware BERT for Language Understanding. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, p. 9628–9635, New York, NY, USA, 2020b. doi: 10.1609/
AAAI.V34I05.6510. Available at: https://doi.org/10.1609/aaai.v34i05.6510.

Zhao, W. X. et al. A Survey of Large Language Models. CoRR. 2023a, abs/2303.18223. doi:
10.48550/ARXIV.2303.18223. Available at: https://doi.org/10.48550/arXiv.2303.18223.

Zhao, W. – Peyrard, M. – Liu, F. – Gao, Y. – Meyer, C. M. – Eger, S. MoverScore: Text
Generation Evaluating with Contextualized Embeddings and Earth Mover Distance. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP
2019, p. 563–578, Hong Kong, China, 2019. doi: 10.18653/V1/D19-1053. Available at:
https://doi.org/10.18653/v1/D19-1053.

Zhao, Y. – Qi, Z. – Nan, L. – Mi, B. – Liu, Y. – Zou, W. – Han, S. – Chen, R. – Tang, X. – Xu,
Y. – Radev, D. – Cohan, A. QTSumm: Query-Focused Summarization over Tabular Data.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
p. 1157–1172, Singapore, December 2023b. doi: 10.18653/v1/2023.emnlp-main.74. Available
at: https://aclanthology.org/2023.emnlp-main.74.

Zhao, Y. – Zhang, H. – Si, S. – Nan, L. – Tang, X. – Cohan, A. Investigating Table-to-
Text Generation Capabilities of LLMs in Real-World Information Seeking Scenarios, 2023c.
Available at: http://arxiv.org/abs/2305.14987.

Zheng, L. – Chiang, W. – Sheng, Y. – Zhuang, S. –Wu, Z. – Zhuang, Y. – Lin, Z. – Li, Z. – Li,
D. – Xing, E. P. – Zhang, H. – Gonzalez, J. E. – Stoica, I. Judging LLM-as-a-JudgeWithMT-
Bench and Chatbot Arena. CoRR. 2023, abs/2306.05685. doi: 10.48550/ARXIV.2306.05685.
Available at: https://doi.org/10.48550/arXiv.2306.05685.

Zhong, V. – Xiong, C. – Socher, R. Seq2SQL: Generating Structured Queries from Natural
Language using Reinforcement Learning. CoRR. 2017, abs/1709.00103. Available at: http:
//arxiv.org/abs/1709.00103.

Zhou, H. – Bradley, A. – Littwin, E. – Razin, N. – Saremi, O. – Susskind, J. – Bengio,
S. – Nakkiran, P. Understanding Length Generalization by Thinking Like Transformers.
In The 3rd Workshop on Mathematical Reasoning and AI at NeurIPS’23, 2023. Available at:
https://openreview.net/forum?id=tEUJiua8ir.

163

https://doi.org/10.1609/aaai.v34i05.6510
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.18653/v1/D19-1053
https://aclanthology.org/2023.emnlp-main.74
http://arxiv.org/abs/2305.14987
https://doi.org/10.48550/arXiv.2306.05685
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
https://openreview.net/forum?id=tEUJiua8ir

List of Abbreviations

AI artificial intelligence. ix
API application programming interface. 87

BLEU bilingual evaluation understudy. 35–37, 61, 62, 96, 97, 99, 100, 102
BPE byte-pair encoding. 13

D2T data-to-text. 3–8, 23–34, 37, 38, 41, 46–49, 51, 54, 55, 57, 61, 64–68, 72–74, 81, 83,
84, 86, 89–93, 95, 102, 104, 105, 113–115, 117–119

KG knowledge graph. 92–96, 104

LLM large language model. 3, 5, 6, 21–23, 30, 37–39, 47, 64, 72, 80, 81, 84, 91, 104–106,
108, 111–115, 118, 119

LM language model. 2–8, 12–14, 38, 53, 90, 91, 115, 117–119

MLP multi-layer perceptron. 9–11, 16, 17, 37
MT machine translation. 20, 22, 29, 35, 37, 38

NLG natural language generation. 2, 3, 5, 29, 37, 38
NLI natural language inference. 65–72, 103
NLP natural language processing. ix, 2, 3, 6, 7, 10, 14, 19, 22, 35, 36, 118, 119

PC paragraph compression. 56, 60, 63
PLM pretrained language model. 19, 20, 30, 37, 41–43, 46, 48–50, 53, 54, 64, 65, 72, 75,

91, 92, 94, 103, 104, 115

RDF Resource Description Framework. 31, 32, 41–45, 48, 50, 55, 67, 86, 92, 94
ReLU rectified linear unit. 9
RNN recurrent neural network. 10, 11, 14, 15, 29, 30

seq2seq sequence-to-sequence. 29
SGD stochastic gradient descent. 10

TTR type-token ratio. 38

165

List of Tables

1.1 Overview of the thesis. 6

2.1 Transformer architectures and models. 20
2.2 The list of data-to-text datasets used in this work. 31

3.1 Example outputs from the mBART model. 44
3.2 Results of our English model compared to the baseline. 45
3.3 Results of our Russian model compared to the baseline. 45
3.4 Examples of templates used for our experiments. 50
3.5 Results of automatic metrics on WebNLG and E2E 51
3.6 An example of outputs on the WebNLG dataset. 52
3.7 Statistics of WikiFluent and data-to-text datasets. 58
3.8 Automatic metrics on the WebNLG and E2E datasets 61
3.9 Number of manually annotated errors on 100 examples 62
3.10 Example outputs of our model (3-stage, filtered) 63

4.1 Results of our metric on WebNLG and E2E. 70
4.2 Results of our system on development data. 79
4.3 Results of our system on test data. 80

6.1 Example relation labels and their verbalizations. 93
6.2 Error categories used in manual analysis. 99
6.3 Results of automatic metrics on Rel2text test set 100
6.4 Automatic metrics on the zero-shot pipeline setup. 102
6.5 NLI accuracy on the InfoTabS dataset. 103
6.6 The domains and tasks included in Quintd. 105
6.7 Categories of errors used for evaluation. 111
6.8 The average number of errors per output. 112
6.9 The percentage of outputs containing at least one error. 113

167

List of Figures

2.1 Word2Vec objectives. 12
2.2 The transformer architecture. 18
2.3 Pretraining objectives. 21
2.4 A data-to-text generation pipeline. 25
2.5 Knowledge graph representations. 28
2.6 Examples from WebNLG, E2E, and Rotowire. 33

3.1 Iterative data-to-text generation. 49
3.2 Zero-shot data-to-text generation. 55
3.3 Building the WikiFluent corpus. 57
3.4 Pipeline variants. 60

4.1 Our semantic accuracy metric. 67
4.2 An example text with error annotations. 74
4.3 Our rule-based systems for generating facts from the input data. 75
4.4 Our system for token-level error annotation. 76

5.1 The web interface of TabGenie. 85

6.1 Selected automatic metrics on few-shot generation. 101
6.2 Manually annotated errors per model. 102
6.3 The prompt and the model output prefix. 107
6.4 Our experimental setup for data-to-text with large language models. 108

169

List of Publications

Kasner, Z. – Dušek, O. Train Hard, Finetune Easy: Multilingual Denoising for RDF-to-
Text Generation. In Proceedings of the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+), p. 171–176, Dublin, Ireland (Virtual),
12 2020b. Available at: https://aclanthology.org/2020.webnlg-1.20

• The data-to-text generation system based on the finetuned mBART model
(Section 3.1).

• Our submission for the WebNLG+ shared task.
• Citations (without self-citations): 9

Kasner, Z. – Dušek, O. Data-to-Text Generation with Iterative Text Editing. In
Proceedings of the 13th International Conference on Natural Language Generation, INLG
2020, p. 60–67, Dublin, Ireland, 2020a. doi: 10.18653/V1/2020.INLG-1.9. Available at:
https://doi.org/10.18653/v1/2020.inlg-1.9

• The data-to-text generation system based on iterative text editing (Section 3.2).
• Citations (without self-citations): 17

Kasner, Z. – Dušek, O. Neural Pipeline for Zero-Shot Data-to-Text Generation. In
Proceedings of the 60th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2022, p. 3914–3932, Dublin, Ireland, 2022.
doi: 10.18653/V1/2022.ACL-LONG.271. Available at: https://doi.org/10.18653/v1/

2022.acl-long.271

• The data-to-text generation system based on a pipeline of neural modules
(Section 3.3).

• Citations (without self-citations): 21

Dušek, O. – Kasner, Z. Evaluating Semantic Accuracy of Data-to-Text Generation
with Natural Language Inference. In Proceedings of the 13th International Conference
on Natural Language Generation, INLG 2020, p. 131–137, Dublin, Ireland, 2020. doi:
10.18653/V1/2020.INLG-1.19. Available at: https://doi.org/10.18653/v1/2020.inlg-

1.19

• The metric for detecting omissions and hallucinations in generated texts (Sec-
tion 4.2).

171

https://aclanthology.org/2020.webnlg-1.20
https://doi.org/10.18653/v1/2020.inlg-1.9
https://doi.org/10.18653/v1/2022.acl-long.271
https://doi.org/10.18653/v1/2022.acl-long.271
https://doi.org/10.18653/v1/2020.inlg-1.19
https://doi.org/10.18653/v1/2020.inlg-1.19

• Best short paper at INLG 2020.
• Citations (without self-citations): 47

Kasner, Z. – Mille, S. – Dušek, O. Text-in-Context: Token-Level Error Detection
for Table-to-Text Generation. In Proceedings of the 14th International Conference
on Natural Language Generation, INLG 2021, p. 259–265, Aberdeen, Scotland, UK,
2021. doi: 10.18653/V1/2021.INLG-1.25. Available at: https://doi.org/10.18653/v1/

2021.inlg-1.25

• The metric for token-level error detection in generated texts (Section 4.2)
• Our submission to the shared task Evaluating Accuracy in Generated Texts.
• Citations (without self-citations): 6

Kasner, Z. – Garanina, E. – Plátek, O. – Dušek, O. TabGenie: A Toolkit for Table-
to-Text Generation. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, ACL 2023, p. 444–455, Toronto,
Canada, 2023a. doi: 10.18653/V1/2023.ACL-DEMO.42. Available at: https://doi.org/

10.18653/v1/2023.acl-demo.42

• The toolkit for processing and visualization of data-to-text generation datasets
(Section 5.1).

• Citations (without self-citations): 2

Kasner, Z. – Konstas, I. – Dušek, O. Mind the Labels: Describing Relations in
Knowledge Graphs With Pretrained Models. In Proceedings of the 17th Conference
of the European Chapter of the Association for Computational Linguistics, EACL 2023,
Dubrovnik, p. 2390–2407, Croatia, 2023b. doi: 10.18653/V1/2023.EACL-MAIN.176.
Available at: https://doi.org/10.18653/v1/2023.eacl-main.176

• The analysis of verbalizing relations in knowledge graphs with pretrained
language models (Section 6.1).

• Citations (without self-citations): 3

Kasner, Z. – Dušek, O. Beyond Traditional Benchmarks: Analyzing Behaviors of
Open LLMs on Data-to-Text Generation. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), 2024. Available
at: http://arxiv.org/abs/2401.10186. To appear

• The analysis of data-to-text generation with open large language models (Sec-
tion 6.2).

• Citations (without self-citations): 2

Only publications relevant to this thesis are included. The number of citations was
computed using Semantic Scholar API. Total number of citations of publications
related to the topic of the thesis (without self-citations) by June 14, 2024: 107.

172

https://doi.org/10.18653/v1/2021.inlg-1.25
https://doi.org/10.18653/v1/2021.inlg-1.25
https://doi.org/10.18653/v1/2023.acl-demo.42
https://doi.org/10.18653/v1/2023.acl-demo.42
https://doi.org/10.18653/v1/2023.eacl-main.176
http://arxiv.org/abs/2401.10186

	English Abstract
	Czech Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Motivation
	Main Contributions
	Thesis Overview

	Background
	Neural Language Models
	Neural Networks
	Text Representation
	Language Modeling
	Transformer Architecture
	Pretrained Language Models
	Large Language Models

	Data-to-Text Generation
	Task and Applications
	D2T Generation Pipeline
	Rule-based Approaches
	Statistical Approaches
	Neural Approaches
	Datasets
	Evaluation Metrics

	Low-Resource Data-to-Text Generation
	Finetuning Pretrained Language Models
	WebNLG+ Shared Task
	Problem Formulation
	Implementation
	Results
	Discussion

	Iterative Sentence Fusion
	Motivation
	Method
	Implementation
	Experiments
	Results
	Discussion

	Pipeline of Text-to-Text Neural Modules
	Motivation
	Method
	WikiFluent Corpus
	Implementation
	Experiments
	Evaluation
	Discussion

	Conclusion

	Evaluating Semantic Accuracy
	Detecting Omissions and Hallucinations
	Motivation
	Method
	Experiments
	Evaluation
	Discussion

	Token-Level Error Classification
	Motivation
	Shared Task in Evaluating Accuracy
	Our System
	Experiments
	Discussion

	Conclusion

	Unified Data Processing
	TabGenie Toolkit
	Motivation
	Data
	Web Interface
	Developer Tools
	Implementation
	Case Studies
	Discussion

	Conclusion

	Examining Model Behavior
	Describing Relations in Knowledge Graphs
	Motivation
	Rel2Text dataset
	Analysis and Experiments
	Evaluation Setup
	Automatic Metrics
	Manual Error Analysis
	Applications to Downstream Tasks
	Discussion

	Data-to-Text Generation with Large Language Models
	Motivation
	Reference-Free D2T Generation
	Experiments
	Evaluation
	Results and Discussion

	Conclusion

	Conclusions
	Bibliography
	List of Abbreviations
	List of Tables
	List of Figures
	List of Publications

