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ABSTRACT

This paper describes the block coding algorithm that underpins the
new High Throughput JPEG 2000 (HTJ2K) standard. The objective
of HTJ2K is to overcome the computational complexity of the origi-
nal block coding algorithm, by providing a drop-in replacement that
preserves as much of the JPEG 2000 feature set as possible, while al-
lowing reversible transcoding to/from the original format. We show
how the new standard achieves these goals, with high coding effi-
ciency, and extremely high throughput in software.

Index Terms— JPEG 2000, JPH, Image coding, Low complex-
ity, Vectorization

1. INTRODUCTION

JPEG 2000 offers both high coding efficiency and a rich set of fea-
tures, including: scalability; region-of-interest accessibility; and op-
timized rate control without iterative encoding. The code-stream
contains embedded subsets representing a hierarchy of spatial res-
olutions and a fine-grained progression of quality/SNR operating
points. Accessibility arises from the fact that the sub-bands pro-
duced by wavelet transformation are partitioned into code-blocks
that are coded independently. These properties facilitate extremely
efficient interactive access to large compressed images, where both
decoding and communication are limited to a region or resolution of
interest. Beyond these core features of JPEG 2000 Part-1 [1], Part-
2 [2] defines rich multi-component transforms, with applications in
hyperspectral imagery, multi-focal microscopy and compression of
medical volumes, along with non-linear transforms that support ef-
ficient HDR compression, and many other tools. Part-9, also known
as JPIP [3, 4], defines transport protocols and request/response syn-
tax to support efficient interactive browsing of imagery, volumes and
even video over lossy and lossless networks, leveraging heavily from
the random access and scalability of JPEG 2000.

Recently, the JPEG committee, formally known as Working
Group 1 (WG1) of ISO/IEC JTC1/SC29, has finalized its work on
a new Part-15 to the JPEG 2000 family, known as High Through-
put JPEG 2000 (HTJ2K). The HTJ2K standard defines an alternate
block coding algorithm that can be used as a drop-in replacement
for the original algorithm of Part-1, preserving most features from
all parts of the JPEG 2000 family, while offering much lower com-
putational complexity. HTJ2K also defines a wrapping file format
known as JPH, which may become a more common name for the
technology.

The purpose of this paper is to provide an overview of the High
Throughput (HT) block coding algorithm in HTJ2K, explaining how
the algorithm can be used in encoding and transcoding applications,
and to provide experimental evidence for the coding efficiency and
throughput of the entire system, in a software environment.

2. HTJ2K STANDARDIZATION

The HT block coder in HTJ2K is ultimately derived from an algo-
rithm known as Fast Block Coding with Optimized Truncation (FB-
COT), which was first proposed in [5] for the JPEG-XS standard for
lightweight, ultra-low latency video compression. While FBCOT
met the low latency requirements of JPEG-XS, with high coding ef-
ficiency, a different approach was selected for that standard, primar-
ily due to a hard requirement to fit the solution within a specified
FPGA deployment target.

The FBCOT algorithm in [5], which is further documented in
[6], presented sufficient evidence for initiation of the HTJ2K project
within JPEG. A public Call for Proposals (CfP) [7] was issued in
June 2017, with evaluations in April 2018, which resulted in a vari-
ant of the FBCOT algorithm [8] being adopted for the first working
draft of the standard. A series of core experiments led to further im-
provements in coding efficiency without any loss in throughput [9],
with the Draft International Standard released for ballot in October
2018.

The key requirements expressed in the CfP [7] are: a) support
for reversible transcoding with existing JPEG 2000 code-streams; b)
a loss of no more than 15% in coding efficiency; and c) an average
increase in block coder throughput (encoder and decoder) of at least
10x, for an optimized software implementation, in comparison to
the JPEG 2000 Part-1 block coding algorithm . These requirements
were not only met, but considerably exceeded, as demonstrated by
a formal WG1 evaluation; key results from this evaluation are sum-
marised in Figs. 1, 2.

Note, however, that the formal WG1 performance evaluation in-
volved only the block coding module itself. Images and video frames
from a test suite were individually compressed using JPEG 2000
Part-1, then reversibly transcoded to use the new HT block coding al-
gorithm, allowing relative changes in coding efficiency and through-
put to be measured in a well defined test harness. By contrast with
this approach, an objective of this paper is to shed light on the cod-
ing efficiency and throughput of a complete HTJ2K system, includ-
ing wavelet transform, colour transformation, and all components
required to generate and parse the complete code-stream syntax.

3. FBCOT AND THE HT BLOCK CODER

We use the term FBCOT to refer to a complete compression sys-
tem based on the HT block encoder, while HTJ2K refers only to
the code-stream syntax and decoding procedures that are defined in
JPEG 2000 Part-15. The distinction between FBCOT and HTJ2K
is that only the decoding process is the subject of standardization.
Other fast alternatives to the JPEG 2000 block coder have previ-
ously been proposed [10, 11], but without considering the lossless
transcoding and rate control options that form part of the FBCOT
approach.
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Fig. 1. JPEG formal evaluation of HTJ2K coding efficiency.
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Fig. 2. JPEG formal evaluation of HTJ2K block coder throughput.

Fig. 3 illustrates the overall FBCOT architecture. FBCOT and
HTJ2K substantially preserve the existing architecture and code-
stream sytnax of JPEG 2000. Imagery is first subjected to any re-
quired multi-component transforms and/or non-linear point trans-
forms, as allowed by Part-1 or Part-2 of JPEG 2000, after which
transformed image components are processed by a reversible or ir-
reversible Discrete Wavelet Transform (DWT), which decomposes
each component into a hierarchy of detail sub-bands and one base
(LL) sub-band. All sub-bands are partitioned into blocks whose size
is no more than 4096 samples, with typical dimensions being 64×64
or 32 × 32; very wide and short blocks such as 1024 × 4 are also
important for low latency applications. Each block is individually
quantized (if irreversible) and coded, producing a block bit-stream
comprising one or more coding passes. In the encoder, an optional
Post-Compression Rate-Distortion optimization (PCRD-opt) phase
is used to discard generated coding passes so as to achieve a rate or
distortion target, which may be global (whole code-stream) or local
(small window of code-blocks). Finally, the bits belonging to the se-
lected coding passes from each code-block are assembled into J2K
packets to form the final code-stream.

The original JPEG 2000 block coding algorithm, identified here
as J2K-1, processes sub-band samples in coding passes, known as
Cleanup (CUP), Significance Propagation (SP) and Magnitude Re-
finement (MR). Each CUP pass brings the quality of all samples in
the code-block to a whole magnitude bit-plane boundary, while the
SP and MR are refinement passes that raise only certain samples to
the next bit-plane boundary. Truncating the representation at the end
of an SP or MR pass effectively results in a data-dependent variable
level of quantization. Since J2K1 makes three passes through the
code-block for each bit-plane, the algorithm is computationally ex-
pensive. At high bit-rates, including lossless compression, the block

encoding and decoding complexity of J2K1 can exceed that of all
other JPEG 2000 processes by more than an order of magnitude.

The HT block coding algorithm also adopts a coding pass struc-
ture, with CUP, SP and MR coding passes, defined with respect to
bit-planes p. However, the CUP pass associated with each bit-plane
p fully encodes the magnitudes µp[n] =

⌊
|x[n]|
2p

⌋
and the signs of

those samples x[n] for which µp[n] 6= 0. This information com-
pletely subsumes that associated with all previous (larger p) coding
passes, so that there is no point in emitting them to the code-stream.
The HT refinement passes, SP and MR, encode the same informa-
tion as their J2K1 counterparts, which allows a J2K1 codestream to
be transcoded to the HTJ2K format without altering its quantized
sample representation in any way. To fully recover this information,
an HT block decoder must process at most one CUP, one SP and one
MR pass, whereas a J2K1 block decoder may need to process a large
number of passes.

An HT block encoder may generate any number of coding
passes, yielding a collection of candidate truncation points, with as-
sociated distortion and length implications. The PCRD-opt algo-
rithm can then select optimal truncation points from the available
passes. The PCRD-opt algorithm itself is identical to that of the
EBCOT [12] algorithm on which JPEG 2000 is based, but truncat-
ing an HT code-block at pass t0 leaves behind at most one CUP, one
SP and one MR pass, having indices t ∈ [3bt0/3c, t0].

As suggested in Fig. 3, high throughput HTJ2K encoding sys-
tems may employ “Complexity Control” procedures to determine a
small set of coding passes that are actually worth generating, avoid-
ing those that are likely to be discarded by the PCRD-opt algorithm.
For example, a two-pass strategy may be employed, in which a first
pass estimates lengths and distortions associated with the coding
passes without actually performing them, after which a crude PCRD-
opt implementation can be used to identify one, or perhaps two, HT
Sets to actually generate, followed by a final PCRD-opt step for pre-
cise rate control.

4. THE HT BLOCK CODING ALGORITHM

The HT SP and MR passes are similar to those of the J2K1 block
coder, operating in its “Bypass” mode, where significance propaga-
tion, sign and magnitude refinement symbols are not subjected to
entropy coding – this is still effective because these symbols tend
to have nearly uniform probability distributions. However, the HT
versions of these coding passes rearrange the symbols so as to allow
much faster software-based decoding via lookup tables, while ensur-
ing that hardware implementations can always decode the CUP, SP
and MR passes concurrently.

The HP CUP pass is by far the most important, since the CUP
pass associated with bit-plane p encodes all information from all
coarser bit-planes. A complexity challenged decoder may opt not
to process SP and MR passes, with a small sacrifice in quality, but
the CUP pass must be decoded. The design of the CUP pass is the
result of an iterative exploration of the trade-off between coding ef-
ficiency and achievable throughput on modern CPU platforms, with
specific attention to the exploitation of SIMD instruction sets for
vector processing.

The HT CUP pass employs three different entropy coding tech-
niques to exploit the most important forms of redundancy amongst
neighbouring sub-band samples. Fig. 4 illustrates most of the rel-
evant quantities. One important form of redundancy exploitation
is significance coding, whereby the binary significance symbols
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Fig. 3. High level architecture of FBCOT encoding and decoding processes.

Fig. 4. Major quantities involved in the HT Cleanup coding pass.

σ[n] = min{1, µ[n]} of each sample1 are subjected to variable
length and adaptive coding. Samples are processed in 2 × 2 quads
q, with an associated 4-bit significance pattern ρq , whose constituent
significance symbols are denoted σ0 through σ3 in Fig. 4. The sig-
nificance pattern ρq is coded with respect to a context cq that depends
on the significance of the quad’s 6 causal neighbours; in the figure,
these are denoted σsw, σw, σnw, σn, σne and σnf , in clockwise
order. Writing ∨ for the binary “OR” operator, we have

cq = (σnw ∨ σn) + 2(σsw ∨ σw) + 4(σne ∨ σnf ) ∈ [0, 7] (1)

Quads for which cq = 0 are treated specially as All Zero Context
(AZC) quads, coding first a binary quad significance symbol σq =
max{1, ρq}, after which the significance pattern ρq is coded only if
σq = 1.

A second important form of redundancy exploitation is magni-
tude exponent prediction. The magnitude exponent E[n] associated
with a significant sample n is defined by

E[n] =

{
0 σ[n] = 0

min{E ∈ N | 2E > v[n]} σ[n] = 1
(2)

where
v[n] = [2(µ[n]− 1) + sign(x[n])] · σ[n] (3)

is a rearrangement of the sign and offset magnitude bits for sample n,
known as its MagSgn value. E[n] can be interpreted as the number
of significant bits in v[n], being 0 for insignificant samples. The HT
CUP pass encodes a magnitude exponent bound Uq for each quad q,

1Here, we drop the bit-plane p from our notation, interpreting µ[n] =
µp[n] as the sample’s magnitude.

Fig. 5. HT byte-streams grow in opposite directions to avoid sepa-
rate length signalling. MEL+VLC length encoded at end of Cleanup.

via an unsigned integer residual uq . Specificallly,

Uq = uq +max{1, γq ·max{Enw, En, Ene, Enf}}︸ ︷︷ ︸
κq

. (4)

The predictor κq depends on neighbouring exponents from the pre-
vious line, denoted Enw, En, Ene and Enf in Fig. 4, together with
γq , which is 1 for quads with more than one significant sample, and 0
otherwise. The bound Uq is required to be tight whenever the coded
residual uq is non-zero.

The third form of redundancy exploited by the HT CUP pass
is the Exponent Mag Bound (EMB) pattern εq of each significant
quad. As shown in the figure, εq can be understood as the most
significant bit-plane of the Uq-bit representation of the quad’s four
MagSgn values. The EMB pattern is coded only when uq > 0,
since then the Uq bound is tight and all EMB bits are magnitude bits
or 0; under these conditions, the EMB pattern εq cannot be 0 and
generally exhibits significant statistical redundancy.

We now briefly introduce the three entropy coding tools of the
HT CUP pass. The quad significance symbols σq for AZC quads q
are coded using an adaptive run-length coder (MELCODE) similar
to the one employed by the LOCO-I algorithm [13] employed by the
JPEG-LS standard, but with only 13 states. The resulting code bits
are packed into a separate MEL bit-stream.

For each non-AZC quad and each significant AZC quad, a
context-adaptive variable length coding (CxtVLC) procedure is used
to jointly encode the significance pattern ρq , a binary flag uoff

q =
max{1, uq}, plus some or all of the quad’s EMB pattern εq , us-
ing a separate VLC codebook for each context cq . The CxtVLC
codeword lengths are constrained to at most 7 bits, in order to sim-
plify decoding. As a result, the EMB patterns associated with some
combinations of cq , ρq and uoff

q = 1 are only partially coded. The
CxtVLC procedure is thus a variable-to-variable coding scheme, in
which both codeword lengths and the number of symbols recovered
from a decoded codeword are data dependent. It turns out that this
adds no significant complexity to the algorithm, while allowing bet-
ter exploitation of the redundancy associated with those symbols that
are actually coded.

In software, CxtVLC encoding is best accomplished using a
lookup table with 2048 entries, indexed by cq , ρq and εq · uoff

q . In
hardware, a much smaller lookup table can be employed, taking ad-
vantage of the fact that insignificant samples must have zero EMB
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bits. CxtVLC decoding can be accomplished using a lookup table
with 1024 entries, indexed by cq and the next 7 bits of the VLC bit-
stream. It is worth emphasizing that only one lookup is required
for every 4 samples, so hardware implementations with a throughput
of 1 sample per clock cycle can interleave lookups from 4 separate
code-blocks onto a single set of table resources. By contrast, im-
plementations of the original JPEG standard require up to one VLC
lookup per sample.

Whenever uoff
q 6= 0 the actual value of uq must also be coded.

A fixed variable length code, known as the UVLC code, is defined
for this purpose, producing codewords with tightly bounded lengths.
Prefix and suffix components of the UVLC codewords are inter-
leaved across a pair of quads, so that software implementations can
easily encode and decode a pair of quads together using a small
lookup table. Together, the CxtVLC and UVLC codewords are inter-
leaved into the VLC bit-stream on a quad-pair basis. Meanwhile, all
bits from the MagSgn values v[n] of significant samples, that can-
not be deduced from the coded significance and EMB patterns are
packed into a separate MagSgn bit-stream.

All HT bit-streams are subjected to byte-oriented bit-stuffing
procedures to avoid the appearance of illegal 16-bit marker codes
that are reserved by JPEG 2000 for resynchronization. Fig. 5 illus-
trates the complete set of resulting byte-streams that are associated
with a full HT Set. These 5 separate byte-streams can be encoded
and decoded asynchronously, which adds considerable concurrency
to hardware implementations and also accelerates software deploy-
ments. All aspects of an encoder can be heavily vectorized on mod-
ern CPUs, with the exception only of MEL encoding, which con-
sumes an average of around 0.25 clock cycles per sample on modern
x86 processors, due to its compact state machine and the fact that
AZC symbols are either rare or occur in runs.

Decoding of an HT CUP pass is best understood as a two-stage
process. The first stage alternates on a line-pair basis between the
steps of context formation and VLC decoding, assuming that MEL
symbols have been decoded ahead of time, or batch processed. The
first step is easily vectorized, while the second is inherently sequen-
tial, operating on 2x2 quads; nonetheless, the second step can be
realized at a cost of approximately 3 clock cycles per sample on
modern x86 processors. The second stage uses ρq , εq and uq values
produced by the first stage to reconstruct MagSgn values v[n] from
the MagSgn bit-stream. This stage also alternates on a line-pair ba-
sis between two steps: 1) formation of exponent predictors κq and
boundsUq , according to (4); and 2) unpacking bits from the MagSgn

Table 1. Throughputs obtained on a 4-core desktop platform with
Intel i7-6700 (Skylake) CPU, 3.4GHz base clock, and 64-bit Ubuntu,
processing the 292 frame full RGB HDR Drums test sequence –
frame 0 was used in Fig. 6.

Conditions ENC:J2K1 ENC:HT DEC:J2K1 DEC:HT

2bpp vis i5x3 10.1 fps 81 fps 17.6 fps 148 fps = 3.7 GS/s
2bpp vis i9x7 9.7 fps 72 fps 17.2 fps 126 fps = 3.1 GS/s
2bpp mse i5x3 8.9 fps 75 fps 17.5 fps 130 fps = 3.2 GS/s
2bpp step i5x3 15.8 fps 114 fps 17.4 fps 126 fps = 3.1 GS/s
lossless r5x3 2.11 fps 67 fps 2.10 fps 67 fps = 1.7 GS/s

bit-stream, reconstructing MagSgn values and computing magnitude
exponents for use in the next line-pair’s first step. Both steps can be
heavily vectorized.

5. THROUGHPUT AND CODING EFFICIENCY RESULTS

Fig. 6 provides rate-distortion results for four readily available test
images. Bike and Woman were amongst the most important images
used in the original development of JPEG 2000; ParkJoy is part of
a 4K VQEG test sequence derived from scanned film; and Drums
is the first frame of an all digital 4K HDR test video, used in the
development of a number of standards. The JPEG test file names
appearing in the figure provide sufficient information to reproduce
the results provided here. The comparison involves 64 × 64 code-
blocks, 5 levels of irreversible 9 × 7 DWT and full PCRD-opt rate
control, with 3 target bit-rates per octave. Bjontegaard delta-rate
figures reported in the caption broadly confirm the conclusions of
Fig. 1.

Table 1 reveals the very high throughput of HTJ2K, capable of
reaching 3.7 Giga-samples/s at 2 bpp on a 4-core desktop CPU. The
lossy results at 2 bpp correspond to a high quality, being above the
maximum rate allowed for 4K Digital Cinema. We consider both
the 9× 7 transform of Part-1 and the irreversible LeGall 5× 3 trans-
form, using Part-2 transform extensions. Code-block dimensions are
32×128, which yields slightly higher throughput than 64×64, with
less memory and lower latency. For the first 3 rows of the table, rate
control is based on PCRD-opt, targeting either minimum MSE or
visually weighted MSE (vis), with a complexity-control algorithm
that is based on previous frame statistics [6] to avoid generating more
than 2 HT Sets per code-block. The fourth row uses the fastest possi-
ble encoding strategy for video, where bit-rate is controlled loosely
by quantization step size selection, and only one CUP pass is pro-
duced. All results are based on an experimental version of the pop-
ular Kakadu Software tools, with all hardware threads collaborating
on each video frame to avoid the latency and memory demands of
frame-parallel processing.

6. CONCLUSIONS

HTJ2K offers exceptionally high throughputs, with high coding ef-
ficiency, while preserving virtually all features of the JPEG 2000
family of standards. Decoding throughput appears to be higher than
anything reported for the original JPEG algorithm, even for 8-bit
content, while HTJ2K supports almost any precision, efficient re-
gion/resolution of interest decoding, interactive access via JPIP, and
reversible transcoding to/from the quality progressive J2K1 repre-
sentation, even on a block-by-block basis.
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