iKnow: an Intent-Guided Chatbot for Cloud
Operations with Retrieval-Augmented Generation

Junjie Huang*, Yuedong Zhong', Guangba Yu*, Zhihan Jiang*,
Minzhi Yanf, Wenfei Luan, Tianyu Yang?, Rui Ren*, Michael R. Lyu*

*The Chinese University of Hong Kong, China, {jjhuang23, guangbayu, zhjiang22, lyu}@cse.cuhk.edu.hk
fSun Yat-sen University, China, YHuawei Cloud Computing Technology Co., Ltd, China, yanminzhi @huawei.com

Abstract—Managing complex cloud services requires standard
operational documentation, but its sheer volume often hinders
cloud engineers from efficient knowledge acquisition. Retrieval-
Augmented Generation (RAG) can streamline this process by
retrieving relevant knowledge and generating concise, referenced
answers. However, deploying a reliable RAG-based chatbot
for cloud operation remains a challenge. In this experience
paper, we analyze the development and deployment of RAG-
based chatbots for operational question answering (OpsQA) at
a large-scale cloud vendor. Through an empirical study of 2,000
real-world queries across three operational teams, we identify
five unique OpsQA intent types (e.g., symptom analysis and
terminology explanation) and their corresponding requirements
for a satisfactory answer, which differ from general software
engineering queries. Our analysis further uncovers six root causes
leading to chatbot failures—over half stem from query issues (i.e.,
incompleteness, out-of-scope, or invalid queries), while others are
from retrieval or generation issues. To address these issues, we
propose iKnow, an intent-guided RAG-based chatbot that inte-
grates intent detection, query rewriting tailored to each intent,
and missing knowledge detection to enhance answer quality. In
internal evaluations, iKnow improves average answer accuracy
from 65.8% to 81.3% with only a modest increase in latency.
iKnow has been deployed for six months at CloudA, supporting
thousands of cloud engineers in daily operations. We discuss
lessons learned from real-world deployment, providing valuable
insights for future research and practical implementations in
similar domains.

Index Terms—software operation, chatbot, retrieval augmented
retrieval, intent detection

I. INTRODUCTION

Modern cloud platforms, such as Azure and AWS, provide
over 200 distinct products, each with comprehensive documen-
tation that elaborates on their features, usage procedures, and
troubleshooting guides [1]], [2]. However, software engineers
who manage and operate these services encounter considerable
challenges in accessing relevant information. For example,
when a GPU Xid 74 Error occurs during training large lan-
guage models (LLMs), engineers must sift through extensive
pages of documents to determine that this error is related to
an NVLink Error and follow subsequent mitigation steps.

As shown in Fig. [T} existing keyword-based retrieval sys-
tems [3], [4] offer limited capabilities, often returning exten-
sive relevant documents that require manual filtering and inter-
pretation, thus leading to reduced productivity and prolonged
resolution times [5]—[7]]. In addition, the inability to quickly

*Zhihan Jiang is the corresponding author.

Information Retrieval RAG-based QA System

Retrieval Phase
0 g
Query Query, =
[N
0%,

Docs ')

Answer ;%

@ A

Reading LLM

Keyword-based IR

Text Processing

Keywords

Document
Database

Manual Checking

Retriever Document

Database

X

+ Query

Retrieved Docs

Do

Generation Phase

Massive
Datasets

Fig. 1. Comparisons of information seeking methods.

access actionable information can result in suboptimal solu-
tions or delays in critical decision-making, adversely affecting
service quality and customer satisfaction. Recent studies have
explored LLMs to answer cloud operation queries [8]-[10].
However, these models often suffer from hallucination, i.e.,
generating plausible but incorrect responses, posing significant
risks in high-stakes operational environments [11]. Addition-
ally, much of the documentation and domain-specific knowl-
edge in cloud operations is proprietary and confidential, often
absent from the training data of general-purpose LLMs [9].
To overcome these limitations of “out-of-the-box” LLMs,
Retrieval-Augmented Generation (RAG) is proposed for
knowledge-intensive tasks [[12]]. As shown in Fig. [l a RAG
framework combines a retrieval component, which searches a
designated document database for relevant knowledge, with a
generation component, which synthesizes responses based on
both retrieved documents and query context [[13]]. By incorpo-
rating relevant knowledge, a RAG-based chatbot can generate
summarized answers with source reference, making them well-
suited for cloud operations requiring verifiable information.
Despite RAG’s potential, developing a reliable RAG-based
chatbot for cloud operations presents significant challenges. In
this experience paper, we analyze the development of RAG-
based chatbots for operational question answering (OpsQA)
at a large-scale cloud vendor, CloudA (§ [ITI). Plenty of teams
at CloudA maintain diverse operational documents, such as
product manuals, FAQs, incident tickets, and failure libraries.
We develop three RAG-based chatbots based on open-source
solutions for three operational teams at CloudA and deploy
them for two months. Through an empirical analysis of 2,000
data points (including user queries, retrieved documents, and
LLM-generated responses), we identify five unique intent
types in OpsQA, such as symptom analysis and terminology

explanation. These types differ significantly from general
software queries, primarily due to a greater focus on system
analysis [[14], [15]. We also outline the requirements to satisfy
the information need in each intent. However, existing RAG-
based chatbots exhibits limited performance in real-world
OpsQA, especially those with particular intents (§ [[IlI-C).

To understand the weaknesses of the RAG-based chatbots
based on open-source solutions, we investigate the 683 failed
cases to investigate root causes (§ [[[I-D). From the empirical
analysis, we identify six root causes and their distributions
spanning the lifecycle of a RAG pipeline, including query,
retrieval, and generation. We find that more than half of
failed queries are imperfect (i.e., incomplete (32%), out-of-
scope (10%), and invalid (9%)), requiring query enhancement
for more precise retrieval and focused response. Lacking
knowledge is another important cause (the second highest of
27%), which causes LLMs to respond more often with its
intrinsic knowledge and have more chances of hallucination.
Furthermore, we find that root causes have a correlation to
query intents. For example, 58.8% failed queries for terminol-
ogy explanation are due to incomplete query, suggesting the
potential of intent-specific query enhancement.

To address the issues, we introduce iKnow, an intent-guided
chatbot for OpsQA. iKnow follows a general RAG framework
but enriched with a series of intent-specific improvements to
handle operational queries of varying intents. First, to manage
queries of different intents, we propose an efficient intent
detection module based on prototypical network [16]], [17].
The classified queries are then routed to a query rewriting
module for intent-specific rewriting before retrieval. Guided
by the detected intents, this module leverages an LLM with
tailored prompts to reformulate the imperfect queries, ensuring
they were semantically rich and properly structured, thereby
improving retrieval accuracy and generation focus. Lastly,
we introduce a missing knowledge detection module after
retrieval, which applies LLM-based categorization on query-
context sufficiency to detect the absence of relevant knowl-
edge. With improved queries and relevant retrieved context,
LLMs can generate more accurate responses to help operatiors.

We evaluate iKnow on three internal datasets with 2,000
queries. The results reveal that iKnow achieved a significant
improvement in overall accuracy, from original 65.8% to
81.3%. Specifically, iKnow improves the response comprehen-
siveness to cover more aspects when explaining terminology
(with 78% win-rate in coverage), while also provides more
concrete details (such as commands and API examples) in
answering queries that seeks summary (with 77% win-rate in
specificity). We also conduct ablation study to evaluate the
effectiveness of proposed components. Moreover, our intent-
specific enhancements do not cause a significant increase in
delay, achieving an end-to-end latency of 22.5 seconds and
consuming 19.1% of the total time, underscoring its practical
effectiveness. Till now, iKnow has been deployed at CloudA
for six months, providing QA services to a range of operational
teams with customized documents, including customer service,
on-call engineers, DevOps engineers. Finally, we share our

lessons learned throughout the deployment experience and

discuss future directions.

Contribution. We summarize our contribution as follows.

« We present a comprehensive study of cloud operation ques-
tion answering with RAG-based chatbots. We qualitatively
and quantitatively characterize five operational query intents
and six root causes, suggesting the room for improvement.

« We developed iKnow, an intent-guided RAG-based chatbot
that addresses prevalent reliability challenges through intent
detection, query rewriting, and missing knowledge detec-
tion. Deployed at CloudA, iKnow supports thousands of
cloud operators in their daily tasks.

o We share our experiences and lessons learned from build-
ing and deploying a reliable chatbot for cloud operations,
providing valuable insights for future research and practical
implementations in similar domains.

II. BACKGROUND
A. Cloud Operation and Chatbot

To improve service reliability and customer satisfaction,
modern cloud companies often organize a large group of
operational engineers to perform operational tasks and manage
their cloud-based software systems [18]]. These tasks, such as
system maintenance, testing, and troubleshooting, are complex
and diverse, necessitating high expertise to ensure precise
operations [19], [20]. To ensure the safety and reliability of
the operation works, engineers often need to follow documents
to reduce misoperation [21]-[23]]. These documents, including
product manuals, troubleshooting guides, and historical issue
tickets, are valuable resources for engineers providing knowl-
edge of the service system and guidance of operation steps.
However, manually retrieving knowledge from documents is
time-consuming and prone to omission of important infor-
mation, as engineers need to frequently switch among pages
and continuously adjust queries to search numerous documents
distributed in different platforms.

Recently, question answering systems (aka, chatbots), which
accept a user’s query and deliver a concise answer in natural
language, are widely adopted to fulfill the information need
and improve the efficiency of software engineers [24]-[26].
These chatbots, leveraging the text comprehension abilities of
Large Language Models (LLMs) [27], have shown significant
success in interpreting diverse questions and producing coher-
ent answers and are widely adopted in cloud companies such
as Azure [28] and AWS [29]. Nonetheless, relying solely on
LLMs poses challenges such as the hallucination and the in-
ability to access to timely and proprietary data [[11], [12]. This
is especially problematic in cloud operations, where sensitive
documents, including failure logs, are retained exclusively
within organizations and span multiple versions.

B. RAG-based Chatbot

To address these limitations of ‘‘out-of-the-box” LLMs,
Retrieval-Augmented Generation (RAG) was proposed to im-
prove chabot performance by delivering faithful responses
tailored to documents of specific domains [12]. As depicted in

Fig. [6(a), a conventional RAG system consists of two stages:
the offline and online stages. In the offline stage, a large set of
raw documents are embedded into vectors and stored in vector
databases for future retrieval. Specifically, documents are first
segmented into fixed-length chunks (e.g., 100 tokens). Chunk
enrichment methods are often applied in this stage to improve
retrieval accuracy, such as prefixing titles [30]. These chunks
are subsequently encoded into vectors via an embedding model
and stored in a vector database for efficient retrieval. In the
online stage, an incoming query is first encoded into a vector
with the same embedding model. This vector is then used to
retrieve relevant chunks from the database using a similarity
metric such as cosine similarity. In addition to similarity
search, methods like reranking and term-based ranking, are
frequently used together to increase the likelihood of answer
coverage in top-k chunks [30]], [31]. After retrieval, the query
and associated chunks are composed into a prompt, which
contains instructions for LLMs to answer based on the given
context. Finally, an LLM processes the prompt and produces
response answers, which are returned to the users.

ITII. STUDY OF PRELIMINARY RAG-BASED QA SYSTEMS

To satisfy the emerging information seeking need of cloud
operators quickly, our team first developed and deployed
three RAG-based chatbots at CloudA using open-source so-
lutions [32], [33]] . Having being deployed for two months,
these systems, while effective and useful for many cases, still
produces unsatisfactory or incorrect outputs as open-sourced
frameworks might fail short in tackling specific issues in Op-
sQA. Therefore, we first conduct a thorough empirical study
to qualitatively and quantitatively analyze task characteristics
and answer failures in OpsQA. In the following section, we
introduce our study setting and share our findings.

A. Study Design

To understand the characteristics of OpsQA and perfor-
mance of RAG-based chatbots, we design three research
questions (RQ) to answer through our analysis.

« RQ1: What questions do cloud operators frequently ask?

« RQ2: How well can existing RAG-based chatbot answer
these questions?

« RQ3: Why does existing RAG-based chatbot fail?

Study System: The deployed chatbots follow the standard
RAG framework introduced in § We adopt an open-
source LangChain [32] framework and the FAISS [33] vector
database. Specifically, we set the chunk size as 100 tokens and
prepend document names and section titles to enrich seman-
tics. The embedding model BGE-M3 [34] is employed, while
the reranker model is bce-reranker-base_vl [35],
and Qwen2.5-32B [36] serves as the LLM. We retrieve
the most similar five chunks to compose the prompt. Apart
from the RAG framework, we have developed a user interface
enabling users to submit queries and offer feedbacks. QA data
is also stored to track system usage.

TABLE I
SUMMARY OF OPSQA DATASETS.

Query Document Source
300 Product docs, group Wikis, FAQ

1,350 Product docs, group Wikis, FAQ
350 Incident ticket, fault library, FAQ

Data Type

Text, PDF, HTML
Text, PDF
Text, PDF, Figure

Words User Group

~1.2M External Ops Team
~0.6 M Internal Ops Team
~0.4M On Call Team

[N

Study Dataset: To answer the three RQs, we manually
analyze real-world QA data collected from deployed RAG-
based QA systems over two months at CloudA, a prominent
cloud vendors offering hundreds of services to global users.
To enhance the generalizability of our findings, we devel-
oped three datasets by randomly sampling user queries and
responses from three systems. These systems share the same
architecture but are used by different teams, each with their
customized documents. A contains 300 cases based on the
product manuals of product A, used by an external operations
team. B contains 1,350 cases based on the product manuals of
product B, used by the internal operations teams. C includes
350 cases based on the incident tickets and failure logs of
product C used by an On Call Engineers (OCEs) team. Each
case includes a query, the top-10 retrieved documents, and the
generated response. Table |I| shows the dataset statistics.

Study Methods: To answer the three RQs, we identified
the key factors to capture for each RQ, i.e., query intents,
answer correctness, and root causes, respectively (as shown
in Table [[I). To holistically study these factors, we employ
a two-phase paradigm commonly used in empirical software
engineering studies [22[], [37]], [38]]. Initially, open coding [39],
[40] is conducted to develop a taxonomy and annotation guide-
lines through iterative manual analysis, followed by consensus-
based annotations for quantitative analysis at scale using the
established taxonomy. The annotation was conducted using a
custom annotation system, which managed task assignment
and label collection due to the large number of cases and
annotators involved. We elaborate our methods as follows.

TABLE I
STUDY FACTORS FOR ANALYZING OPSQA DATASETS.
RQ Study Factor

RQ1 Query Intent
RQ2 Answer Correctness

Description

What is the information needed?
What are the requirements of answers? Does
the answer satisfy the requirements?

RQ3 Root Cause ‘What causes the incorrect answer?

We first randomly split 2,000 cases into training, validation,
and test sets in a 2:1:1 ratio. In phase one, 15 experts, including
five doctoral students and ten engineers with over three years
of cloud operations experience, used open coding [39]], [40] to
develop a taxonomy for each factor with the training set inde-
pendently. Specifically, every case was coded by three different
experts, resulting in three codes per case. The codes—free-
form descriptions or keywords—were then discussed by all
experts to develop a consensus taxonomy and annotation
guidelines. Two team leaders facilitated the discussion and
resolved disagreements on non-consensus codes. In phase two,
15 experts annotated the examples using the taxonomy and
guideline via the annotation system. Each case was indepen-
dently labeled by three experts. The labeling process began
with the validation set to ensure no new categories emerged

TABLE III
INTENT TAXONOMY OF REAL-USER QUERIES IN OPSQA.

Query Manifestation

Intent Query Examples

Symptom Describes observable or ambiguous “No performance data for VM disk usage?”
Analysis system behaviors and anomalies. “App Orchestration error: Slave has no response.”
Multi-facet Solicits a comprehensive or summa- “Flink troubleshooting summary?”
Summary rized overview of operational concepts ~ “FAQ for SystemA backup?”

or issues, often using high-level terms. ~ “Comprehensive guide to S production issues”
Terminology Asks for the meaning of a technical ~“ESN?” “SystemA private key?”
Explanation term, usually short or abbreviated. “Operator login password policy?”

Fact Seeks specific factual details, often
Verification posed as yes/no or what questions.

“Does ServiceA support capacity statistics?”
“Can roles of existing users be modified?”

Operational Requests step-by-step instructions for ~ “Check tenant operation logs?”
Guidance an action, often as a “how-to” question ~ “Add MySQL to access whitelist?”
or verb—noun phrase. “How to request quota for the current VDC?”
A B (4
20.7% 19.1% LEXEC Symptom Analysis
39.8% —_— o Multi-facet Summary
49.0% 8.7% 9.8% Terminology Explanation
200 Fact Verification
4 192% 212% Operational Guidance
14.7% . . perational Guidance

Fig. 2. The query distribution of different intents.

and to further refine the taxonomy if necessary. The testset
was then annotated and the inter-annotator agreement (i.e.,
Krippendorff’s alpha [41]) was measured to ensure reliability,
followed by annotation of the training set. For each case, the
final label was determined by majority vote; any remaining
disagreements were resolved through group discussion. After
annotation, we observe a high concordance for all factors:
Query Intent: 0.84, Answer Correctness: 0.86, Root Cause:
0.81. It is worth-noting that each case was not redundantly
classified into multiple categories.

The annotation system ensured that each case was assigned
to 3 different experts and prevented duplicate assignments.
This partial coverage approach is widely used in crowdsourc-
ing platforms like Amazon Mechanical Turk [42]] for large-
scale annotation. To accommodate varying time commitments
among experts, a flexible annotation scheme was adopted,
requiring each expert to annotate at least 100 cases per factor.

B. RQI: What questions do cloud operators frequently ask?

1) Study Settings: To understand the information need of
cloud operators, we first examine and categorize the intents
of the queries they submit, following previous work on pro-
grammers’ questions [14], [43]]. To collect intent taxonomy
and labels, we follow the study method introduced in § [[TI-A]
Table [T} outlines the intent categories with definitions and
examples. Fig. 2| shows the intent distribution in three datasets.
In the following, we highlight key findings from our analysis.

2) Analysis: Operational queries manifest five unique in-
tent types when operators search for answers. These queries
cover information need from two dimensions: general opera-
tional knowledge (e.g., terminology explanation and
multi-facet summary) and task-specific guidance (e.g.,
symptom analysis). The former usually serves to en-
hance operator knowledge, whereas the latter provides detailed
guidance to address complex issues in system performance
during routine tasks. Furthermore, the intent types in OpsQA
differ significantly from programmers’ questions typically
found on platforms (e.g., Stack Overflow and GitHub), where
intents related to API usage, conceptual understanding, dis-
crepancies, and reviews are predominant [[14f], [[15[, [43]].

Symptom analysis is the most common intent, occupying
40.6% on average across three operations teams, which
differs from general SE questions. Symptom analysis
dominates among the five intent categories, showing the high-
est frequency across all three datasets, specifically 45.4%,
39.1%, and 37.3% in A, B, and C, respectively. These queries
literally describe an observable anomalous behavior, such as a
failure phenomenon or an error message, reflecting operators’
helplessness when facing complex real-time issues and their
need for diagnostic insights from past cases. The large portion
emphasizes the primary role of cloud operators in diagnosing
and resolving unprecedented issues, which is also different
from general programmers’ questions that focus more on how-
to questions [14], [15], [43]], [44].

Operators across teams have similar information need,
yet show moderate variations in their query preferences,
highlighting the generalizability of our OpsQA intent tax-
onomy. As shown in Fig. [2] three datasets share the same five
intent types. While symptom analysis is the most preva-
lent type in these datasets, the distributions of other intents
show moderate differences. For example, queries concerning
fact verification are more common among OCE teams
(14.5% for C) compared to the other two teams (8.7%/9.8% for
A/B). Moreover, terminology explanation are posed
more frequently by the internal team (19.2%/21.2% for B/C)
than by the external team (7.0% for .A). The intent distribution
suggests that our OpsQA intent taxonomy can be generalized
across operational teams with diverse roles.

Summary of RQ1: There are five intent types in OpsQA.
Cloud operators primarily seek information on symptom
analysis (40.6%), highlighting unique characteristics in
cloud operations compared to general SE questions. The
intent distribution’s similarity across datasets suggests the
taxonomy generalizability.

C. RQ2: How well can existing RAG answer these questions?

1) Study Settings: Upon understanding the query infor-
mation needs in OpsQA, our next focus is to evaluate the
performance of existing RAG-based chatbots in handling these
queries. As shown in RQ1, queries have distinct informational
requirements; hence, responses need to be both factually
accurate and aligned with specific demands. For example,
responses to symptom analysis queries should analyze
the issue thoroughly and identify its root cause. To collect
intent-specific response criteria and correctness labels, we
implement the study method introduced in § Table
shows the criteria for correct responses and symptoms for
failed responses of various query intents. Responses meeting
the criteria are regarded as correct, while those displaying
failure symptoms will be regarded as incorrect. Fig. [3] shows
the answer accuracy across three datasets.

2) Analysis: RAG-based chatbots exhibit varying ca-
pability in answering OpsQA queries, excelling at pri-
mary information needs (symptom analysis) but strug-
gling with factual and terminology-related queries. The

TABLE IV

INTENT-SPECIFIC ANSWER CRITERIA FOR RAG-BASED OPSQA.

TABLE V

ROOT CAUSES OF OPSQA FAILURES IN RAG-BASED CHATBOT

Intent

Answer

of Failed Answer

Root Cause

Definition

Example

Diagnoses the issue, identifies

Hallucination: Fabricates causes or suggestions not in sources.

Symptom root cause, and provides action- Intent-conflicting: Misidentifies or ignores the issue.
Analysis able suggestions, grounded in Overly Generic: Lacks concrete diagnosis or actionable steps.
the retrieved sources. Defici : Provides misleading or incomplete analysis.
g and s izes rel- F Fabricates aspects not supported by sources.
Multi-facet evant aspects to deliver a com- Intent-conflicting: Summarizes non-targeted concepts.
Summary prehensive overview, highlight- Overly Generic: Offers vague summary without specifics.

ing key perspectives.

Deficiency: Omits key or offers

synthesis.

Terminology
Explanation

Provides a clear and accurate
definition of the targeted term
with relevant details, as sup-
ported by sources.

F ination: Fabricates definitions unsupported by sources.
Intent-conflicting: Explains unrelated concepts.

Overly Generic: Gives vague or overly brief definitions.
Deficiency: Gives incorrect or incomplete definitions.

Explicitly confirms or refutes Hallucination: States facts not grounded in sources.
Fact the queried fact with explana- Intent-conflicting: Fails to directly answer the question.
Verification tions and supporting evidence Overly Generic: Provides vague explanations for the verification.
from the sources. Deficiency: Gives incorrect or incomplete explanations.
Delivers thorough, step-by-step Hallucination: Suggests unverified or incorrect procedures.
Operational instructions with actionable de- Intent-conflicting: Fails to provide steps or targets wrong task.
Guidance tails, ensuring completeness and ~ Overly Generic: Lacks concrete actions or operational details.

practical applicability.

Deficiency: Misses critical steps or details.

Incomplete
Query

The query lacks sufficient context or specificity, often
containing only a noun/term without signal words
(e.g., what, why, how), making the intent ambiguous.

“ESN?”; “Snapshot Residue”;
“SSL_ERROR_SYSCALL”

Out-of-Scope
Query

The query is unrelated to IT operations or outside the
domain covered by the system.

“What’s the financial status of
customerA?”

Invalid The query contains nonsensical text, corrupted input, ~ “sdfa”; “Snaphot Resdieu”
Query or severe misspellings, rendering it unanswerable.
Knowledge The query is relevant and well-formed, but the re- Asking about a newly released
Missing quired information is absent from the document cor- feature not yet documented in
pus, resulting in no retrievable evidence. the knowledge base.
Inaccurate The retriever fails to return all necessary documents Relevant documents exist in
Retriever due to model or data preparation issues (e.g., improper corpus but are not included in
chunking, poor embeddings, poor ranking methods). the top-k retrieved chunks.
Inaccurate The model generates incorrect or unsupported output Misinterpreting “indicator” as a
Generation despite receiving relevant context, due to decoding, general term, or providing a

prompt, or alignment issues (e.g., misunderstanding
terms or instructions, omitting details).

generic summary when a step-
by-step guide was requested.

Symptom Analysis 79.7%
Multi-facet Summary 73.3%
Terminology Explanation 42.9%
Fact Verification 59.9%
Operational Guidance 66.0%
20 40 60 80 Accuracy(%)

Fig. 3. Response accuracy of different intent types.

system achieves high accuracy for symptom analysis queries
(79.7%), the most common intent, demonstrating its effec-
tiveness in supporting primary operational needs. However,
accuracy drops notably for queries seeking factual details,
such as terminology explanations (42.9%). This gap suggests
that while the chatbot effectively addresses the most common
queries, it is less reliable for direct factual retrieval, which is
mainly due to incomplete knowledge and queries (see RQ3
(§ [II-D)). Therefore, addressing these limitations is essential
to enhance the accuracy of RAG-based chatbots in OpsQA.

Answer requirements for queries of different intents are
distinct, resulting in intent-specific failure symptoms. In
OpsQA, each query intent reflects a unique information need
from cloud operators, which in turn determines the criteria for
a satisfactory response. For example, symptom analysis
queries require answers that can accurately diagnose is-
sues and provide actionable guidance, while terminology
explanation queries expect precise and context-aware
definitions. Due to these varying requirements, the symp-
toms of failed responses are also intent-specific: an unsatis-
factory symptom analysis answer may lack diagnostic
insight or actionable detail, whereas a failed terminology
explanation may present an imprecise or off-the-topic
definition. Table [IV] summarizes these intent-specific answer
requirements and corresponding failure symptoms.

Failed responses consistently exhibit four primary types
of symptoms, though their manifestations vary by intent.
Across all query intents, incorrect answers from existing
RAG-based chatbots tend to fall into four major symptom
categories: hallucination (fabricating content not present in
sources), intent-conflicting (misunderstanding or ignoring the
query intent), overly generic (lacking specificity or actionable
detail), and deficiency (providing incomplete or misleading
information). While these types are observed consistently,
their specific manifestations are shaped by the correspond-

ing answer requirements. For example, an overly generic
response in symptom analysis might simply restate the
problem without offering concrete diagnostic steps, whereas
in terminology explanation it could provide a vague
definition lacking technical depth. This consistent symptom
taxonomy supports systematic and fine-grained evaluation of
answers across diverse operational scenarios.

Summary of RQ2: RAG-based chatbots show varying
effectiveness across OpsQA query intents. They excel at
addressing primary symptom analysis queries (79.7%), but
perform poorer on queries requiring factual or terminology
details. Distinct answer requirements for each intent lead to
specific failure symptoms, underscoring the need for intent-
aware improvements to enhance overall answer quality.

D. RQ3: Why does existing RAG fail to answer the questions?

1) Study Setting: RQ2 reveals the inconsistent performance
of RAG-based chatbots across different query intents. Next,
we aim to systematically uncover the root causes of answer
failures. To this end, we analyze the 683 incorrect cases
identified in RQ2 and follow the study method described
in § to identify root causes and collect labels. While
multiple causes may co-occur, for clarity, we report only
the most dominant cause for each case in our analysis.
Table [V] outlines the taxonomy with definitions and examples.
While prior works explored fine-grained analysis of model-
side failures in RAG pipelines (e.g., insufficient training or
prompt deficiency) [30], [31]], [45], our focus is on practical
failures in the cloud operation domain. Thus we group model-
side causes into two broad categories (i.e., inaccurate
retriever and inaccurate generation) rather than
further subdividing them. Fig.] and Fig. [5] present the overall
and intent-specific distributions of root causes, respectively.
We discuss key findings in the following analysis.

2) Analysis: Over half of failures (51%) originate from
user query issues, with incomplete query emerging as
the leading cause (32%). This highlights the need for
clarification to obtain more accurate answers. Incomplete
queries often lack sufficient context or explicit intent, chal-
lenging both retrieval and generation stages, as the system
must infer user intent from minimal input. For example, a

Query-side (51%) Retrieval-side (38%) Generation
Out-of-scope
Query
(10%)

Inaccurate
Retriever
(11%) (11%)

Inaccurate

Incomplete Generation

Query (32%)

Knowledge

Invalid Missing (27%)

Query
(%)

Fig. 4. The overall failure distribution.
query like “Snapshot Residue” is ambiguous, as it is unclear
what information the user seeks, a definition or a solution,
which can confuse the retriever and the generator to produce
off-target responses. This cause is especially pronounced for
terminology explanation queries, where 58.8% of failures are
due to incompleteness. The prevalence of such queries reveals
a gap between real-world user behavior and the well-formed
queries found in many benchmark RAG datasets [44]], [46],
[47]. Addressing this requires both system-side improvements,
such as intent clarification or query reformulation, and user
education to encourage more explicit queries.

Out-of-scope (10%) and invalid queries (9%) are crucial
causes that should be properly detected and communicated
to users. Although imperfect responses to these irrelevant
queries do not adversely affect cloud operations, processing
them still results in unnecessary computational consumption,
which is suboptimal for system efficiency. Early detection
and user notification can help avoid this inefficiency. No-
tably, these root causes are most frequent in terminology
explanation queries, suggesting that intent-specific detec-
tion methods, such as intent classification or query validation,
could effectively identify and address these issues.

Knowledge missing (27%) is the second most frequent
root cause, often leading to hallucinated responses that
lack grounded knowledge and may adversely impact cloud
operations. When required information is absent from the
system’s knowledge base, accurate retrieval may fail and the
LLMs may generate plausible but incorrect answers [11]],
[48]], which can mislead operators and potentially compromise
operational reliability. This root cause is especially prob-
lematic for fact verification, symptom analysis,
and operational guidance queries, which require con-
crete details that are often not fully documented due to the dif-
ficulty of enumerating all possible failure scenarios. To address
this, the QA system should assess knowledge sufficiency and
notify users when information is incomplete or unavailable,
thus improving transparency and reducing erroneous actions.

Inaccurate generation (11%) accounts a smaller pro-
portion of root causes, but still require attention and
improvement. This indicates that, given correct queries and
retrieved context, a 32B LLM can resolve most cloud operation
questions. Nevertheless, further enhancing generation accuracy
remains important, as this phase directly affects response qual-
ity and user satisfaction. Improvements may involve adopting
more capable LLMs with broader operational knowledge and
refining prompt instructions to better capture user intent.

Summary of RQ3: We identify six root causes in RAG-

100% 16.4% 13.7% 7.9% 10.4% 8.9% Root Cause
80% T 15.7% /0 18a¥% a0 Inaccurate Generation
7%
0 18.8% Inaccurate Retriever
60% 19.6% 36.7% !
o, . Knowledge Missing
46.3% 9.8% 58.2%
40% R0 5.6% Invalid Query
S 3 Out-of-scope Quer
20% 39.2% 5 B0ty ut-of-scope Query
17.2% s . Incomplete Query
0% =
Symptom Multi-facet Terminology Fact Operational
Analysis Summary Explanation Verification Guidance

Fig. 5. The failure distribution of varying intents.

based chatbot failures for OpsQA, with incomplete queries
(32%) and missing knowledge (27%) being the most com-
mon. Efforts should prioritize improving query clarity and
detecting knowledge gaps in retrieval to address the failures.

IV. IKNOW: AN INTENT-AWARE OPSQA RAG SYSTEM

In this section, we introduce our optimization experience
on RAG-based chatbot to mitigate the above limitations. From
our study, we identify the prevalence of query incompleteness
and knowledge absence. Motivated by the strong correlation
of these with query intents, we propose iKnow, an intent-
aware chatbot to mitigate these failures to handle the diverse
information needs of operational queries.

Fig. [6(b) shows the overall architecture of iKnow. Given a
query, iKnow first identifies the intent and extracts metadata
(e.g., document version). This intent directs query rewriting by
enhancing specific requirements, while the metadata informs
the selection of a proper vector database considering the docu-
ment’s evolution in OpsQA. Once relevant chunks are retrieved
by two-stage retrieval, iKnow then assesses the presence of
knowledge and determine if to provide a degraded response.
Once sufficient knowledge is confirmed, an enhanced prompt
is utilized to produce a valid response. In the following, we
introduce iKnow in detail.

A. Vector Databases

Before online QA, we first build vector databases (VecDBs)
offline with operation documents. Due to rapid software evo-
lution, multiple document versions are available for operator
reference. Hence, we construct multiple VecDBs offline and
select a proper VecDB for querying a specific version. For each
VecDB, documents are divided into semantically meaningful
chunks, balancing between including complete sentences and
adhering to maximum token counts. The document title of
chunks is prefixed to enrich contextual information [30].
The chunks are encoded into vectors using a BGE-m3 [34]]
embedding model for indexing. The vectors are then stored in
a FAISS [33]] VecDB to enable fast retrieval.

B. Intent Detection and Metadata Extraction

To enable intent-guided query rewriting for different re-
quirements, we first classify the intent category of each
OpsQA query. As shown in RQ1 (§III-B), OpsQA queries
with different intents often show distinct linguistic patterns.
For example, terminology explanation queries are typically
concise and contain only a technical term, while operational
guidance queries often start with “how to” or “what is the
process for.” These semantic cues allow semantic-based intent
classification.

(a) A Typical RAG Framework
Vector

=D =

= . . = |

—> Processing>{ Indexing ! . .
Raw D =) Databases Offline Processing

Online QA

Retrieval Phase

? ! —>| Encoding

Generation Phase

. Retrieved Prompt K
Matching M anone. T Pt |, P
Composing LM

LLM Response |

(b) The Framework of iKnow

Structural . =31 Vector
Processing Indexing %’E Databases

Offline Processing

Documents

Online QA

Selection
Enhanced Promp(l @

D Missing
Two-gtage Knowledgel- =12 0L
Enriched| Retrieval |retrieved Detecti Generation
2 Query Query Chunks L 2€tECTION

H Missing
Degraded 1
() Response | LLM Response

Fig. 6. The framework of iKnow compared to the existent system.

Metadata
Extraction

Inten‘t ngr}/
Detection | ntent| Rewriting

2
>_°~

In iKnow, we use Prototypical Networks (PN) [16]], [[17] for
intent detection, due to its efficiency and strong performance
in low-resource settings. PN first constructs an intent’s embed-
ding to serve as its prototype and then finds the closest intent
prototype to classify a given query embedding. Specifically, we
select BGE-m3 [34] to vectorize queries, due to its excellence
in sentence embedding modeling. The mean of query vectors
that share the same intent in the training dataset is calculated as
the prototype. During classification, the query vector is firstly
computed and then assessed for cosine similarity [49] with
all five intent prototypes. The prototype with the maximum
similarity is assigned as the target intent category.

In this work, we extract two types of metadata, ie., ap-
plication and version, to select VecDB with the appropriate
documents. For efficiency, we build a term database and match
the string to extract query metadata. In case no matched
metadata are found, we provide the latest version and default
application to guide VecDB selection.

C. Intent-guided Query Rewriting

As query issues account for a majority of failures, we pro-
pose rewriting queries [43]], [44]], [50] to improve query clarity.
High-quality rewritten queries should be well structured and
clear [47] to facilitate retrieval and QA. However, due to the
variety of information needs in operational queries, simply
adopting a uniform rewriting style might alter the original
intent. To address this, we employ the identified intent to guide
query rewriting.

Specifically, we utilize an LLM to rewrite queries by
providing detailed rewritten prompts. These prompts contain
rewriting instructions and three examples specific to an intent
category. For example, for terminology explanation queries,
the prompt guides the LLM to rephrase the terminology
query into a “what” question concerning its definition and
attributes, e.g., “What are the definition and use scenarios of
an ESN?”. The result is a rewritten query with enhanced detail
and focus, which is beneficial for subsequent retrieval and
generation [47]. Due to space limitations, the full rewritten
prompt is available in our anonymous repository [51].

D. Two-stage Evidence Retrieval

Retrieval quality is crucial for answer accuracy in RAG
frameworks, as the LLM’s reasoning is limited by the rele-
vance of retrieved evidence [[52], [53[]. However, as shown in
RQ3 (§[[I-D), many OpsQA queries still face partial or impre-
cise retrieval, where relevant documents are not ranked highly
enough to be included in the LLM’s context. To address this,
we adopt a two-stage retrieval method. First, a vector-based
similarity search retrieves a broad set of candidate chunks
(e.g., top-15), just as in the typical RAG framework, which
maximizes recall but may introduce irrelevant results. After
that, a cross-encoder reranker [35]] re-scores these candidates
based on their pair-wise relevance to the query, selecting the
top-k (e.g., top-5) for LLM input. This approach balances the
efficiency of dense retrieval with the precision of reranking,
enabling fast and accurate retrieval.

Specifically in the online phase, a query is first encoded
with the same embedding model and then searched in the
vector database with cosine similarity to obtain candidate sets.
Chunks with similarity scores below a threshold (i.e., 0.8)
are excluded. After retrieval, candidates are ordered based
on reranking scores computed by a pre-trained bce-reranker-
base_v1 [35]. This involves feeding the concatenated query
and each candidate into the reranker to estimate the relevance
score. In this work, top-10 results are from initial search and
top-3 reranked candidates are used for generation.

E. Missing Knowledge Detection

As shown in RQ3 (§I-D), the absence of knowledge in the
retrieved chunks can lead chatbots to generate hallucinatory
responses, which has severe impacts to mislead operators and
potentially harm software systems. Therefore, we propose to
detect knowledge unavailability to improve response trust-
worthiness and transparency. Inspired by [48], we identify
knowledge unavailability with LLMs. Specifically, the LLM
evaluates whether the chunks adequately address the revised
query and, if not, generates a degraded response that both
signals the knowledge insufficiency and suggests an alternative
query answerable by the current data. The detection prompt is
available in our anonymous repository [S1].

F. Intent-guided Generation

Finally, we develop a prompt tailored for RAG-based chat-
bot in OpsQA to facilitate accurate responses. In particular, we
concatenate the original query, rewritten query, and retrieved
chunks with a prompt that instructs LLMs to answer the ques-
tion based on the context provided. In addition, we incorporate
instructions to improve output transparency by specifying
the rewritten query in the responses. The complete prompt
is available in our anonymous repository [51]]. Finally, the
LLM response with document references including document
metadata and links is delivered to operators.

G. Implementation Details

We deploy iKnow on an Ubuntu 20.04 server with 64
CPUs, 128 GB RAM, and an NVIDIA Tesla T4 16 GB

A 56.3 7.8 %2111 85.2 Direct Prompting
B- 57.0 F10:1%¥1312 80.3 0Old Chatbot

I .
C- 51.1 ¥11.47%19:47 81.9 iKnow

0 20 40 60 goAccuracy (%)

Fig. 7. The LLM judge accuracy of iKnow and the old chatbot.

GPU. To balance performance and computational feasibility,
we use the open-source Qwen-2.5-32B-instruct [36] model
without fine-tuning for query rewriting, missing knowledge
detection, and response generation. The LLM is deployed as
an internal service on a remote server and accessed via an APL
For retrieval, we use BGE-m3 [34] as the embedding model
and bce-reranker-base_v1 [35]] as the reranker. The retrieval
similarity threshold is set to 0.8 and the number of retrieved
chunks (k) is set to 3. All prompts used in iKnow are available
in our anonymous repository [51] for reproducibility.

V. EXPERIMENTAL RESULTS

We investigate the following research questions (RQs) to
study the effectiveness and efficiency of iKnow in OpsQA.

+ RQ4: How effective is iKnow in OpsQA?
« RQS: How effective are different components?
« RQ6: How efficient is iKnow in OpsQA?

A. RQ4: Effectiveness of iKnow

Settings. We evaluate iKnow with an LLM-as-a-judge ap-
proach [54], [55[, which instructs LLMs to assess answers
based on predefined correctness criteria. This method ac-
commodates the diverse valid expressions of LLM-generated
answers and is widely adopted in RAG evaluations [55], [56].
We use three datasets introduced in § with 2,000 queries
for evaluation. For each query, a judge LLM (i.e., Qwen-2.5-
32B-instruct with a temperature of O to avoid randomness)
evaluates answer correctness using the binary criteria defined
in Table [V] We report LLM-judged accuracy as the main
metric and validate judge’s reliability via Pearson correla-
tion [57]] with human annotations on the old chatbot’s answers
(r = 0.713, indicating substantial agreement). Following [56],
[58], we also conduct a pairwise win-tie-loss analysis, where
the same judge LLM compares iKnow and the old system
along two dimensions: coverage (degree to which all relevant
aspects are addressed) and specificity (amount of precise,
concrete information provided). We report the proportions of
wins, ties, and losses for iKnow in each dimension.
Analysis. Figure[7]shows the LLM-judged accuracy across the
three datasets. iKnow achieves high accuracy on all datasets,
with 85.2%/ 80.3%/ 81.9% for A/B/C, respectively. As open-
source LLMs are not trained with the proprietary documents,
directly querying LLMs achieves low accuracy, with 56.3%/
57.0%/ 51.1% for A/B/C. Equipped with our intent-guided
framework, iKnow shows substantial improvements compared
to the old system with naive RAG, with accuracy gains of
21.1%/ 13.2%/ 19.4% on the respective datasets. The average
accuracy has been further improved from 65.8% to 81.3%.
These results indicate that iKnow is effective in generating
correct responses for cloud operators.

Specificity Coverage
Symptom Analysis 60% 8% 32% 70% 3% 27%
Multi-facet Summary 7% 3% 20% 68% 32%

Terminology Explanation 67% 5% 28% 78% 22%
Fact Verification 58% 8% 33% 67% 33%
Operational Guidance 58% 8% 33% 58% 2% 40%
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Win Tie Win

Fig. 8. The pairwise accuracy in different intents.

Fig. [§] shows the mean win-rate of iKnow’s answers in vary-

ing intents on three datasets. We find that iKnow consistently
outperforms the old system in specificity and coverage across
all query intents. Notably, for terminology explanation queries,
iKnow shows the highest improvement in coverage (win rate:
78%), whereas for multi-facet summary queries, the greatest
gain is in specificity (win rate: 77%). The improvements likely
stem from enhanced rewritten queries, which clarifies query
intent and expands required details, enabling the LLM to
generate more targeted and precise answers.
Error Analysis To further assess the limitations of iKnow, we
conduct an analysis of the 374 errors identified by the LLM
judge. We find five errors types: (1) Intent detection errors
(23.0%), where the system misclassifies the user’s intent,
leading to inappropriate query rewriting and ultimately incor-
rect responses (e.g., interpreting a symptom analysis query
as a fact verification query); (2) Retrieval errors (12.6%),
where relevant documents are not ranked highly enough, often
due to insufficient semantic overlap between the query and
documents; (3) Missing knowledge (37.2%), where the re-
quired information is absent from the current knowledge base
(e.g., queries needing real-time monitoring data or external
resources); (4) LLM judge mislabelling (16.6%), where LLM
judges label a correct answer as incorrect, reflecting limita-
tions in automatic evaluation; and (5) Other errors (9.6%).
Notably, most errors stem from missing knowledge, indicating
the limitations in the current knowledge base in covering
all operator needs. Intent detection and retrieval errors also
remain significant, suggesting further improvements in these
components could enhance accuracy. Moreover, LLM judge
mislabelling highlights the need for more reliable evaluation,
such as selective human review. These insights inform future
work on expanding knowledge coverage, refining intent detec-
tion, and improving evaluation protocols.

B. RQS5: Effectiveness of different components

We conduct three ablation studies to evaluate the effective-
ness of three core components in iKnow, i.e., intent detection,
query rewriting, and missing knowledge detection.

Intent Detection To evaluate the precision of intent detection,
we perform a ten-fold cross-validation [59] with all 2,000 ex-
amples. Given the cost and effort of building an intent dataset
of such a size in practice, we also explore how detection
accuracy varies with different amounts of training data. To
achieve this, we incrementally increase the training set size by
5% steps and report accuracy on held-out test set. Fig. [0 shows
the results. We find that with the full dataset, the prototypical
network achieves a mean accuracy of 85.3% in classifying
intents, indicating its effectiveness in guiding the rewriting
thereafter. Furthermore, accuracy improves steadily as more

training data is added, reaching a plateau of 84.7% with
approximately 40% of data (i.e., 720 labels). This suggests
that effective intent detection can be achieved with a relatively
small amount of labeled data, demonstrating the efficiency of
prototypical networks in low-resource settings.

m

+ Standard Deviation

Accuracy (%)
~ [e] o0
W (=] W

20 40 60 80 100
Training Data Ratio (%)

Fig. 9. Accuracy of intend detection.

Query Rewriting A rewritten query that complies user’s
intent while being well-formatted is beneficial to retrieving
more relevant documents and instructing LLMs to respond.
Therefore, we evaluate the effectiveness of query rewriting.
Specifically, we use the judge LLM to assess rewritten queries
for all the 2,000 samples. For each query, the judge provides
a binary label for whether the rewritten query better expresses
and enriches the user’s original intent without altering its
meaning. Our results show that 99% of queries are enhanced in
intents while keeping coherence and completeness, indicating
the effectiveness of rewriting process. Table [V shows some
enhanced rewritten query examples.

TABLE VI
EXAMPLES OF QUERY REWRITING CASES FOR CLOUD OPERATION QA

Intent Original Query Rewritten Query

Symptom BlockA reserved block < Why and how to solve the BlockA reserved block
Analysis threshld alarm? count falling below a threshold that triggers an alarm?
Multi-facet High-level performance = How to conduct a comprehensive performance trou-
Summary troubleshooting guide? bleshooting? What key indicators and steps should be

included? What are the common diagnostic tools?

Terminology ~ mdc process? What is a MDC process? Explain its concept, func-

Explanation tions, and role in detail.

Fact Is it possible to configure ~ Can available partitions be configured to be visible

Verification available partitions to be only to certain users? How can such a configuration
partially visible? be performed?

Operational A-Manager upgrade? How to perform A-Manager upgrade operation? Please

Guidance provide detailed steps.

Missing Knowledge Detection To evaluate the accuracy of
detecting missing knowledge in the retrieved chunks, we have
developed a binary classification dataset using pre-existing
labels. Specifically, the negative examples (i.e., where knowl-
edge is missing) contain 60 cases that exhibit knowledge
missing failures in § [[II-D] On the other hand, positive
examples (i.e., where knowledge is sufficient) are randomly
chosen from correct cases in equal numbers, based on the
assumption that adequate context is necessary for accurate
responses. Experimental results show that our LLM-based
detection module can effectively determine whether necessary
knowledge is present in the context, achieving an accuracy
of 94.3% precision, 83.3% recall, and 88.5% F1 score in
classification. The precise detection serves as a foundation,
where iKnow can selectively comply to user queries, which
can be introduced in the responses to improve transparency
and user trust. The precise detection forms the basis for more

€mmmmmmmmmmmmmmmmemmmee End-to-end Latency: 22.5s
Query
—>0.1s" 08 " 055~ 19s T 155 * 15.65
T 4 AN ~ '\
Query Rewriting Reranking Missing

Intent Detection Similarity Search Knowledge Detection Generation

Fig. 10. End-to-end and component-wise latency of iKnow.

transparent and reliable responses by offering guidelines of
selectively complying to queries [48]], [60].

C. RQG6: Efficiency of iKnow

Efficiency is critical for industrial QA systems, as high la-
tency can negatively impact user satisfaction [61]], [[62]] In this
RQ, we evaluate the efficiency of iKnow by end-to-end and
component-wise latency on all the 2,000 samples. Specifically,
we record the time spent on different components and report
the mean latency. As shown in Fig. [I0] the mean end-to-
end latency of iKnow is 22.5 seconds, which is significantly
lower than the time of manual knowledge retrieving by cloud
operators. A detailed breakdown shows that answer generation
accounts for the largest portion of the total latency (69%),
primarily due to the extensive computation of LLM decoding
over extended context. Additionally, the extra time introduced
by intent detection, query rewriting, two-stage retrieval and
missing knowledge detection accounts for just 19.1% of total
latency. which improves answer accuracy and transparency
with modest overhead.

Summary of RQ4-RQ6: Our intent-aware enhancements,
i.e., intent detection, query rewriting, and missing knowl-
edge detection, significantly improve the accuracy and
comprehensiveness of answers while necesitates a modest
increase of latency in RAG-based OpsQA, enabling effi-
cient and practical support for cloud operators.

VI. LESSONS LEARNED

We have deployed iKnow in CloudA for six months, pro-
viding automatic QA services for thousands of users from
diverse operation teams, including customer service, on-call
engineers, cloud testing engineers, DevOps engineering, etc.
In the following, we introduce the lessons learned from our
deployment experience and how our results can implicate
chatbot users, OpsQA chatbot provider, and researcher to
better develop and leverage OpsQA chatbots.

A. Implications for Chatbot Users

Formulating a complete question with explicit informa-
tion need and specific details is of great importance. Our
findings from RQI1-2 reveal that incomplete queries account
for approximately one third of failed answers, particularly in
terminology explanation scenarios (§ [[II-D). Interacting with
chatbots is different from the way we use a search engine.
Therefore, instead of directly entering terminology or pasting a
piece of error code, users should clarify their need and specific
details in the question to improve the efficiency of knowledge
acquisition.

Be aware of knowledge boundary of chatbots and
ask relevant questions. Although we inform the users of

the included knowledge bases, we find iKnow still receives
operation-irrelevant questions that seek knowledge from other
domains such as coding questions (RQ3). Though chatbots
can respond to these questions, the correctness and trust-
worthiness is questionable, as LLMs can produce hallucinated
answers in the absence of proper knowledge. Therefore, users
should ask relevant questions to best assist in their work.

Exercise caution and verify critical responses. While
iKnow generally provides accurate answers grounded on op-
erational knowledge, occasional errors or hallucinations still
exist (RQ4). Therefore, users are recommended to verify
chatbot responses by checking the linked source documents
for reference, especially for those high-impact decisions. This
practice helps mitigate risks associated with overreliance on
automated answers.

B. Implications for OpsQA Chatbot Provider

Be aware of deployment challenges and approach to
monitoring data. Crafting a successful RAG-based chatbot
for operation, while promising, is not easy. The process de-
mands meticulous engineering of RAG pipelines, such as de-
sign and parameter choices in each stage of the pipeline [30],
[44]. Our success experience suggest that OpsQA chatbot
providers can pinpoint deficiency and fix problems of their
systems through guided failure analysis. They should carefully
approach to the data produced in the pipeline, analyze them
to understand the running status of chatbot service and make
improvements in order to build a reliable OpsQA chatbot.

OpsQA chatbot providers can benefit from integrating
intent detection and query rewriting. As shown in §
iKnow can effectively predict query intents and produce en-
hanced rewritten query. OpsQA chatbot providers can leverage
iKnow to help users formulate a better question with intent
detection (e.g., terminology explanation) and query rewriting.
These approaches can improve the response quality and finally
improve user experience.

Including links to reference documents in the answer en-
hances transparency. We implemented this strategy in iKnow
and noticed that it was appreciated by chatbot users. With a
clear connection to authoritative sources, users can directly
verify the origin and context of the information provided.
This approach can help minimize the risk of misinformation
and reinforce user trust in the generated responses, ultimately
contributing to a more reliable chatbot.

C. Implications for Researchers

Synthesizing domain-specific QA datasets for customized
training. Fine-tuning a personalized LLM on domain-specific
corpora can significantly improve QA performance [63]], how-
ever the challenges lie in how to build SFT data reflecting
the style and diversity of target domains [64]. Our intent
taxonomy reflects the real distribution of queries and operator
preferences in cloud operation, which can serve as a blueprint
for synthesizing cloud operation QA datasets. Future works
could explore training a specialized LLM on operation data to
enhance answer accuracy.

10

Incorporating real-time monitoring data for symptom
analysis. A subset of users has turned to iKnow for diagnosing
system failures, a task that often requires insight into the
current system status. Traditional static document corpora
lack the real-time, dynamic data captured in logs and traces.
Researchers are encouraged to explore methods that integrate
diagnostic data into RAG systems to better address symptom
analysis problems with more accurate diagnostics.

Aggregating evidence for multi-perspective questions. As
shown in § [[TI-B] users often submit complex questions that
demand explanations from several angles. In these cases, the
relevant evidence may be dispersed across multiple document
chunks, rendering direct answers insufficient. Advanced tech-
niques, such as GraphRAG [|65]], [66] that aggregate evidence
from diverse sources, offer promising solutions for these
scenarios. Future work could focus on synthesizing coherent
responses from fragmented data.

VII. THREATS TO VALIDITY

1) Internal Threats: The manual labeling process in our
study(§ [l and § [V) may introduce subjective bias. To address
this, we apply open coding with clear guidelines, consensus
discussions, and measured inter-annotator agreement using
Krippendorff’s alpha. Additionally, to ensure consistency in
LLM outputs, we set the temperature to 0, eliminating ran-
domness for identical input contexts. Although queries are
randomly sampled from three systems, selection bias may
remain, as our data covers only a two-month period and may
not capture all operational scenarios. Furthermore, despite our
efforts to define annotation guidelines clearly, some intent and
root causes may still be ambiguous or overlapping, potentially
affecting annotation consistency. Finally, using an LLM as a
judge may introduce bias, as its assessments might not always
align with human judgment, especially for nuanced cases.

2) External Threats: Our study is conducted exclusively
in CloudA; however, we believe that the queries in OpsQA
are common, and our findings can be generalized to other
cloud platforms mainly for two reasons. Firstly, the studied
documents include common operational sources, including
production manuals, incident tickets, FAQs, etc, which are
analogical to those of other platforms [20], [21]]. Secondly,
we construct datasets from three teams with varying document
types and tasks, and observed that while distributions differed,
the main intent and root cause categories were consistent. Nev-
ertheless, further validation in other companies and on public
platforms (e.g., StackOverflow) is needed to confirm broader
applicability. Furthermore, we examine proprietary, internal
operational queries in companies. Public conversations, like
those on StackOverflow and forums, may involve variations
in question formulation and terminology, potentially impacting
the external validity of our research.

VIII. RELATED WORKS

Prior studies have explored question answering in vari-
ous software engineering (SE) domains, including program-
ming [[67]], software development [6], [68], security [69],

testing [70], and many more [[71]]—[73]. These efforts motivate
the development of chatbots [24]-[26] to support SE tasks
by providing automated, natural language answers [24], [25]].
However, most focus on developer-centric scenarios, with
limited attention to operational contexts such as cloud man-
agement. Despite promise, developing chatbots often relies
on large-scale labeled data and costly model training, limit-
ing their adoption and scalability [8]], [74]. Recent advances
in large language models (LLMs) and retrieval-augmented
generation (RAG) have enabled more capable chatbots that
can leverage domain-specific documents [30], [64], [69], [75].
While some studies have reported on building chatbots for
developer support [[64]], [76], there is limited research focused
specifically on the unique needs of cloud operators.

Cloud operation involves managing and maintaining com-
plex infrastructures, requiring operators to follow standard
procedures documented in manuals and troubleshooting guides
(201, [21], [77]-[79]. Accessing and interpreting this infor-
mation efficiently remains a challenge. Many methods are
proposed to assist cloud operators by analyzing monitoring
data [80]-[84], diagnosing incidents [85]—[87]], writing scripts
[S], [21], providing mitigation actions [88], [89] and con-
ducting postmortem analysis [90]]. Although these methods
provide valuable task-specific insights, they often overlook
the broader spectrum of information needs in OpsQA, where
operators seek diverse resources such as diagnosis and mitiga-
tion steps. Recent studies introduce benchmarks and fine-tuned
LLMs for OpsQA [8]-[10], [[74], [91]], but they focus model
improvement on artificial, exam-style questions and overlook
practical challenges like ambiguous queries and integration of
dynamic, proprietary knowledge. A most-similar and closely
related work is [92f], which employs RAG with a query
rewriting module to tackle similar real-world challenges of
query-vagueness in CI/CD domain QA. Our work enhances the
query rewriting with an intent-guided design and incorporates
missing knowledge detection, which are directly motivated by
our comprehensive empirical findings.

Some works share lessons of deploying RAG-based chat-
bots. For example, some works [30]], [31], [45] identify
common failure points and propose solutions addressing issues
such as content freshness and system architecture. We encoun-
tered similar challenges during development. However, these
studies rarely examine the impact of query intents on chatbot
failures, especially in OpsQA, and lack quantitative analyses to
inform practitioners about the prevalence of reliability issues.
Beyond chatbots, RAG reliability has also been studied in
domains such as software defect detection [93|] and code
generation [94]. In contrast, we focus on chatbot reliability
for cloud operations, with an emphasis on understanding query
intent and its relationship to system failures.

IX. CONCLUSION

In this paper, we share our experience in developing a RAG-
based chatbot for OpsQA at CloudA. Towards this goal, we
first performed empirical studies to identify five intents of
OpsQA queries and assessed the performance of the current

11

RAG framework using 2,000 operational queries from three
deployed chatbots. Our analysis revealed six root causes and
their respective distributions, highlighting two critical issues:
query incompleteness and knowledge deficiency. To mitigate
these failures, we introduce iKnow, an intent-guided RAG-
based chatbot designed to meet a variety of informational
needs. Experiment results show the effectiveness and effi-
ciency of our approach. Additionally, we discuss lessons
learned for chatbot users, providers, and researchers involved
in OpsQA. With our successful implementation and gained
experience, we believe that a reliable RAG-based chatbot can
significantly enhance the efficiency of cloud operators.

ACKNOWLEDGMENT

We extend our sincere gratitude to the anonymous reviewers
for their constructive feedback. We also thank Renyi Zhong,
Yulun Wu, Jinyang Liu, Jiazhen Gu, Ziyu Liu, Yijing Liu,
Peng Han, Qiao Chen, Yi Yang, Cong Feng for their valuable
discussions and annotations. The work described in this paper
was supported by the Research Grants Council of the Hong
Kong Special Administrative Region, China (No. SRFS2425-
4503 of the Senior Research Fellow Scheme and No. CUHK
14209124 of the General Research Fund).

X. DATA AVAILABILITY

The source code and prompt of iKnow’s modules can be
found in https://github.com/Jun-jie-Huang/iKnow. However,
due to privacy concerns, we do not plan to release the entire
chatbot system and data.

REFERENCES
[1]

“What is microsoft azure?” 2025, [Online; accessed 29 May
2025]. [Online]. Available: https://azure.microsoft.com/en-us/resources/
cloud-computing-dictionary/what-1is-azure

“Cloud computing with aws,” 2025, [Online; accessed 29 May 2025].
[Online]. Available: https://aws.amazon.com/what-is-aws/

C. Carpineto and G. Romano, “A survey of automatic query expansion in
information retrieval,” Acm Computing Surveys (CSUR), vol. 44, no. 1,
pp. 1-50, 2012.

A. Bialecki, R. Muir, G. Ingersoll, and L. Imagination, “Apache lucene
4. in SIGIR 2012 workshop on open source information retrieval. sn,
2012, p. 17.

Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang,
S. Rajmohan, Q. Lin et al., “Xpert: Empowering incident management
with query recommendations via large language models,” in ICSE, 2024,
pp. 1-13.

Y. Tian, F. Thung, A. Sharma, and D. Lo, “Apibot: question answering
bot for api documentation,” in ASE. IEEE, 2017, pp. 153-158.

A. Lill, A. N. Meyer, and T. Fritz, “On the helpfulness of answering
developer questions on discord with similar conversations and posts from
the past,” in /CSE, 2024, pp. 1-13.

H. Guo, J. Yang, J. Liu, L. Yang, L. Chai, J. Bai, J. Peng, X. Hu, C. Chen,
D. Zhang et al., “Owl: A large language model for it operations,” in
ICLR, 2024.

Y. Liu, C. Pei, L. Xu, B. Chen, M. Sun, Z. Zhang, Y. Sun,
S. Zhang, K. Wang, H. Zhang et al., “Opseval: A comprehensive task-
oriented aiops benchmark for large language models,” arXiv preprint
arXiv:2310.07637, 2023.

Y. Miao, Y. Bai, L. Chen, D. Li, H. Sun, X. Wang, Z. Luo, Y. Ren,
D. Sun, X. Xu et al., “An empirical study of netops capability of pre-
trained large language models,” arXiv preprint arXiv:2309.05557, 2023.
L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin et al,, “A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions,”
ACM Transactions on Information Systems, pp. 1-55, 2025.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

https://github.com/Jun-jie-Huang/iKnow
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure
https://aws.amazon.com/what-is-aws/

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktischel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” NeurIPS, pp.
9459-9474, 2020.

W. Fan, Y. Ding, L. Ning, S. Wang, H. Li, D. Yin, T.-S. Chua, and
Q. Li, “A survey on rag meeting llms: Towards retrieval-augmented
large language models,” in KDD, 2024, pp. 6491-6501.

C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?(nier track),” in /CSE, 2011, pp. 804—
807.

S. Beyer and M. Pinzger, “A manual categorization of android app
development issues on stack overflow,” in ICSME, 2014, pp. 531-535.
J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” NeurIPS, 2017.

T. Ma, Q. Wu, Z. Yu, T. Zhao, and C.-Y. Lin, “On the effectiveness of
sentence encoding for intent detection meta-learning,” in Proceedings of
NAACL: HLT, 2022, pp. 3806-3818.

A. Spadaccini and K. Guliani, “Being an on-call engineer: A google
sre perspective,” ;login:, vol. 40, pp. 43—47, 2015. [Online]. Available:
https://www.usenix.org/publications/login/oct15/spadaccini

P. Hamadanian, B. Arzani, S. Fouladi, S. K. R. Kakarla, R. Fonseca,
D. Billor, A. Cheema, E. Nkposong, and R. Chandra, “A holistic view
of ai-driven network incident management,” in Proceedings of the 22nd
ACM Workshop on Hot Topics in Networks, 2023, pp. 180-188.

L. Zhang, T. Jia, M. Jia, Y. Wu, A. Liu, Y. Yang, Z. Wu, X. Hu, P. S.
Yu, and Y. Li, “A survey of aiops for failure management in the era of
large language models,” arXiv preprint arXiv:2406.11213, 2024.

M. Shetty, C. Bansal, S. P. Upadhyayula, A. Radhakrishna, and A. Gupta,
“Autotsg: learning and synthesis for incident troubleshooting,” in ES-
EC/FSE, 2022, pp. 1477-1488.

S. Ghosh, M. Shetty, C. Bansal, and S. Nath, “How to fight production
incidents? an empirical study on a large-scale cloud service,” in SoCC,
2022, pp. 126-141.

X. Zhou, G. Li, Z. Sun, Z. Liu, W. Chen, J. Wu, J. Liu, R. Feng,
and G. Zeng, “D-bot: Database diagnosis system using large language
models,” Proceedings of the VLDB Endowment, pp. 2514-2527, 2024.
S. Lambiase, G. Catolino, F. Palomba, and F. Ferrucci, “Motivations,
challenges, best practices, and benefits for bots and conversational
agents in software engineering: A multivocal literature review,” ACM
Computing Surveys, vol. 57, no. 4, pp. 1-37, 2024.

C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software bots,” [EEE
Software, vol. 35, no. 1, pp. 18-23, 2017.

Q. Motger, X. Franch, and J. Marco, “Software-based dialogue systems:
survey, taxonomy, and challenges,” ACM Computing Surveys, vol. 55,
no. 5, pp. 1-42, 2022.

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” TOSEM, pp. 1-79, 2024.
“Azure ai-powered assistant,” 2025, [Online; accessed 29 May 2025].
[Online]. Available: https://azure.microsoft.com/en-us

“Qnabot on aws,” 2025, [Online; accessed 29 May 2025]. [On-
line]. Available: https://aws.amazon.com/cn/solutions/implementations/
qnabot-on-aws/

R. Akkiraju, A. Xu, D. Bora, T. Yu, L. An, V. Seth, A. Shukla, P. Gun-
decha, H. Mehta, A. Jha et al., “Facts about building retrieval augmented
generation-based chatbots,” arXiv preprint arXiv:2407.07858, 2024.

S. Barnett, S. Kurniawan, S. Thudumu, Z. Brannelly, and M. Abdelrazek,
“Seven failure points when engineering a retrieval augmented generation
system,” in Proceedings of the IEEE/ACM 3rd International Conference
on Al Engineering-Software Engineering for Al, 2024, pp. 194-199.
H. Chase, “LangChain,” Oct. 2022. [Online]. Available: https:
//github.com/langchain-ai/langchain

M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P-E. Mazaré,
M. Lomeli, L. Hosseini, and H. Jégou, “The faiss library,” arXiv preprint
arXiv:2401.08281, 2024.

J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu, “M3-
embedding: Multi-linguality, multi-functionality, multi-granularity text
embeddings through self-knowledge distillation,” in Findings of ACL,
2024, pp. 2318-2335.

I. NetEase Youdao, “Bcembedding: Bilingual and crosslingual embed-
ding for rag,” https://github.com/netease-youdao/BCEmbedding, 2023.
A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu,
F. Huang, H. Wei et al., “Qwen2. 5 technical report,” arXiv preprint
arXiv:2412.15115, 2024.

12

(38]
[39]
[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]
(51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines,” in ICSE, 2016,
pp. 120-131.

Z. Jiang, J. Huang, G. Yu, Z. Chen, Y. Li, R. Zhong, C. Feng, Y. Yang,
Z. Yang, and M. Lyu, “L4: Diagnosing large-scale 1lm training failures
via automated log analysis,” in Proceedings of the FSE, 2025, pp. 51-63.
J. M. Corbin, Grounded theory in practice. Sage, 1997.

J. A. Holton, “The coding process and its challenges,” The Sage
handbook of grounded theory, vol. 3, pp. 265-289, 2007.

K. Krippendorff, “Computing krippendorff’s alpha-reliability,” 2011.
“Amazon Mechanical Turk,” Oct. 2022. [Online]. Available: https:
/[www.mturk.com

S. Beyer, C. Macho, M. Pinzger, and M. Di Penta, “Automatically
classifying posts into question categories on stack overflow,” in ICPC,
2018, pp. 211-221.

P. Fathollahzadeh, M. E. Mezouar, H. Li, Y. Zou, and A. E. Has-
san, “Towards refining developer questions using llm-based named
entity recognition for developer chatroom conversations,” arXiv preprint
arXiv:2503.00673, 2025.

W. Glantz, “12 rag pain points and proposed solutions.” 2025, [Online;
accessed 29 May 2025]. [Online]. Available: https://towardsdatascience.
com/12-rag- pain-points-and-proposed-solutions-43709939a28c/

C. Choi, J. Kwon, J. Ha, H. Choi, C. Kim, Y. Lee, J.-y. Sohn,
and A. Lopez-Lira, “Finder: Financial dataset for question answer-
ing and evaluating retrieval-augmented generation,” arXiv preprint
arXiv:2504.15800, 2025.

X. Ma, Y. Gong, P. He, H. Zhao, and N. Duan, “Query rewriting
in retrieval-augmented large language models,” in EMNLP, 2023, pp.
5303-5315.

X. Peng, P. K. Choubey, C. Xiong, and C.-S. Wu, “Unanswer-
ability evaluation for retreival augmented generation,” arXiv preprint
arXiv:2412.12300, 2024.

M. Haering, C. Stanik, and W. Maalej, “Automatically matching bug
reports with related app reviews,” in ICSE. 1EEE, 2021, pp. 970-981.
Z. Eberhart and C. McMillan, “Generating clarifying questions for query
refinement in source code search,” in SANER, 2022, pp. 140-151.
“Opensource repository of iknow,” 2025, [Online; accessed 30 Sep
2025]. [Online]. Available: https://github.com/Jun-jie- Huang/iKnow

F. Cuconasu, G. Trappolini, F. Siciliano, S. Filice, C. Campagnano,
Y. Maarek, N. Tonellotto, and F. Silvestri, “The power of noise: Redefin-
ing retrieval for rag systems,” in Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2024, pp. 719-729.

M. Adeyemi, A. Oladipo, R. Pradeep, and J. Lin, “Zero-shot cross-
lingual reranking with large language models for low-resource lan-
guages,” in Proceedings of ACL, 2024, pp. 650-656.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing et al., “Judging 1lm-as-a-judge with mt-bench and
chatbot arena,” NeurIPS, pp. 46 595-46 623, 2023.

J. Gu, X. Jiang, Z. Shi, H. Tan, X. Zhai, C. Xu, W. Li, Y. Shen,
S. Ma, H. Liu er al, “A survey on llm-as-a-judge,” arXiv preprint
arXiv:2411.15594, 2024.

S. Wang, X. Yu, M. Wang, W. Chen, Y. Zhu, and Z. Dou, “Richrag:
Crafting rich responses for multi-faceted queries in retrieval-augmented
generation,” in COLING, 2025, pp. 11317-11333.

P. Sedgwick, “Pearson’s correlation coefficient,” Bmyj, vol. 345, 2012.
S. Es, J. James, L. E. Anke, and S. Schockaert, “Ragas: Automated
evaluation of retrieval augmented generation,” in EACL: System Demon-
strations, 2024, pp. 150-158.

R. Kohavi ef al., “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in IJCAI, 1995, pp. 1137-1145.

F. Brahman, S. Kumar, V. Balachandran, P. Dasigi, V. Pyatkin,
A. Ravichander, S. Wiegreffe, N. Dziri, K. Chandu, J. Hessel et al.,
“The art of saying no: Contextual noncompliance in language models,”
NeurIPS, pp. 49706-49 748, 2024.

C. Jin, Z. Zhang, X. Jiang, F. Liu, X. Liu, X. Liu, and X. Jin, “Ragcache:
Efficient knowledge caching for retrieval-augmented generation,” arXiv
preprint arXiv:2404.12457, 2024.

Z. Jiang, Y. Huang, G. Yu, J. Huang, J. Gu, and M. R. Lyu, “Hierar-
chical prediction-based management for Imaas systems,” arXiv preprint
arXiv:2504.03702, 2025.

G. Dong, H. Yuan, K. Lu, C. Li, M. Xue, D. Liu, W. Wang, Z. Yuan,
C. Zhou, and J. Zhou, “How abilities in large language models are
affected by supervised fine-tuning data composition,” in ACL, 2024, pp.
177-198.

https://www.usenix.org/publications/login/oct15/spadaccini
https://azure.microsoft.com/en-us
https://aws.amazon.com/cn/solutions/implementations/qnabot-on-aws/
https://aws.amazon.com/cn/solutions/implementations/qnabot-on-aws/
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/netease-youdao/BCEmbedding
https://www.mturk.com
https://www.mturk.com
https://towardsdatascience.com/12-rag-pain-points-and-proposed-solutions-43709939a28c/
https://towardsdatascience.com/12-rag-pain-points-and-proposed-solutions-43709939a28c/
https://github.com/Jun-jie-Huang/iKnow

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

(791

[80]

X. Liang, J. Ren, J. Qi, C. Peng, and B. Jiang, “Dialogagent: An auto-
engagement agent for code question answering data production,” in
ICSE-SEIP, 2025.

D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody, S. Truitt,
D. Metropolitansky, R. O. Ness, and J. Larson, “From local to global:
A graph rag approach to query-focused summarization,” arXiv preprint
arXiv:2404.16130, 2024.

Y. Zhou, Y. Su, Y. Sun, S. Wang, T. Wang, R. He, Y. Zhang, S. Liang,
X. Liu, Y. Ma et al., “In-depth analysis of graph-based rag in a unified
framework,” arXiv preprint arXiv:2503.04338, 2025.

C. Liu and X. Wan, “Codeqa: A question answering dataset for source
code comprehension,” in Findings of EMNLP, 2021, pp. 2618-2632.
J. Huang, D. Tang, L. Shou, M. Gong, K. Xu, D. Jiang, M. Zhou, and
N. Duan, “Cosqa: 20,000+ web queries for code search and question
answering,” in ACL-IJANLP, 2021, pp. 5690-5700.

A. Sajadi, B. Le, A. Nguyen, K. Damevski, and P. Chatterjee, “Do
IIms consider security? an empirical study on responses to programming
questions,” arXiv preprint arXiv:2502.14202, 2025.

D. Okanovié, S. Beck, L. Merz, C. Zorn, L. Merino, A. van Hoorn, and
F. Beck, “Can a chatbot support software engineers with load testing?
approach and experiences,” in ICPE, 2020, pp. 120-129.

S. Ezzini, S. Abualhaija, C. Arora, and M. Sabetzadeh, “Ai-based ques-
tion answering assistance for analyzing natural-language requirements,”
in ICSE. IEEE, 2023, pp. 1277-1289.

A. Bansal, Z. Eberhart, L. Wu, and C. McMillan, “A neural question
answering system for basic questions about subroutines,” in SANER.
IEEE, 2021, pp. 60-71.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager et al.,
“Building watson: An overview of the deepqa project,” Al magazine,
vol. 31, no. 3, pp. 59-79, 2010.

F. Yang, P. Zhao, Z. Wang, L. Wang, B. Qiao, J. Zhang, M. Garg,
Q. Lin, S. Rajmohan, and D. Zhang, “Empower large language model
to perform better on industrial domain-specific question answering,” in
EMNLP: Industry Track, 2023, pp. 294-312.

S. I. Ross, FE. Martinez, S. Houde, M. Muller, and J. D. Weisz, “The
programmer’s assistant: Conversational interaction with a large language
model for software development,” in [UI, 2023, pp. 491-514.

D. Abrahamyan and F. H. Fard, “Stackrag agent: Improving developer
answers with retrieval-augmented generation,” in /CSME. 1EEE, 2024,
pp. 893-897.

Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu et al., “Towards intelligent incident management: why we
need it and how we make it,” in ESEC/FSE, 2020, pp. 1487-1497.

P. Notaro, J. Cardoso, and M. Gerndt, “A survey of aiops methods
for failure management,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 12, no. 6, pp. 1-45, 2021.

M. Shetty, C. Bansal, S. Kumar, N. Rao, N. Nagappan, and T. Zimmer-
mann, “Neural knowledge extraction from cloud service incidents,” in
ICSE-SEIP. IEEE, 2021, pp. 218-227.

J. Gu, C. Luo, S. Qin, B. Qiao, Q. Lin, H. Zhang, Z. Li, Y. Dang, S. Cai,
W. Wu et al., “Efficient incident identification from multi-dimensional

13

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

(93]

[94]

issue reports via meta-heuristic search,” in ESEC/FSE, 2020, pp. 292—
303.

J. Liu, S. He, Z. Chen, L. Li, Y. Kang, X. Zhang, P. He, H. Zhang,
Q. Lin, Z. Xu et al., “Incident-aware duplicate ticket aggregation for
cloud systems,” in ICSE. IEEE, 2023, pp. 2299-2311.

J. Kuang, J. Liu, J. Huang, R. Zhong, J. Gu, L. Yu, R. Tan, Z. Yang,
and M. R. Lyu, “Knowledge-aware alert aggregation in large-scale cloud
systems: a hybrid approach,” in Proceedings of the 46th International
Conference on Software Engineering: Software Engineering in Practice,
2024, pp. 369-380.

J. Liu, J. Huang, Y. Huo, Z. Jiang, J. Gu, Z. Chen, C. Feng, M. Yan,
and M. R. Lyu, “Scalable and adaptive log-based anomaly detection with
expert in the loop,” CoRR, 2023.

J. Huang, Z. Jiang, J. Liu, Y. Huo, J. Gu, Z. Chen, C. Feng, H. Dong,
Z. Yang, and M. R. Lyu, “Demystifying and extracting fault-indicating
information from logs for failure diagnosis,” in ISSRE. IEEE, 2024,
pp. 511-522.

T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and
S. Rajmohan, “Recommending root-cause and mitigation steps for cloud
incidents using large lan(%uaée models,” in ICSE, 2023, p% 1737-1749.
X. Zhang, S. Ghosh, C. Bansal, R. Wang, M. Ma, Y. Kang, and
S. Rajmohan, “Automated root causing of cloud incidents using in-
context learning with gpt-4,” in Companion of FSE, 2024, pp. 266-277.
D. Zhang, X. Zhang, C. Bansal, P. Las-Casas, R. Fonseca, and S. Raj-
mohan, “Lm-pace: Confidence estimation by large language models for
effective root causing of cloud incidents,” in Companion of FSE, 2024,
pp. 388-398.

P. T. Isaza, M. Nidd, N. Zheutlin, J.-w. Ahn, C. A. Bhatt, Y. Deng,
R. Mahindru, M. Franz, H. Florian, and S. Roukos, “Retrieval aug-
mented generation-based incident resolution recommendation system for
it support,” arXiv preprint arXiv:2409.13707, 2024.

K. An, F. Yang, L. Li, Z. Ren, H. Huang, L. Wang, P. Zhao, Y. Kang,
H. Ding, Q. Lin et al., “Nissist: An incident mitigation copilot based on
troubleshooting guides,” arXiv preprint arXiv:2402.17531, 2024.

J. Huang, J. Liu, Z. Chen, Z. Jiang, Y. Li, J. Gu, C. Feng, Z. Yang,
Y. Yang, and M. R. Lyu, “Faultprofit: Hierarchical fault profiling of
incident tickets in large-scale cloud systems,” in /CSE-SEIP, 2024, pp.
392-404.

T. Zhang, Z. Jiang, S. Bai, T. Zhang, L. Lin, Y. Liu, and J. Ren,
“Ragditops: A supervised fine-tunable and comprehensive rag frame-
work for it operations and maintenance,” in EMNLP: Industry Track,
2024, pp. 738-754.

D. Chaudhary, S. L. Vadlamani, D. Thomas, S. Nejati, and M. Sabet-
zadeh, “Developing a llama-based chatbot for ci/cd question answering:
A case study at ericsson,” in ICSME, 2024, pp. 707-718.

Y. Shao, Y. Huang, J. Shen, L. Ma, T. Su, and C. Wan, “Are llms
correctly integrated into software systems?” in ICSE, 2025, pp. 741-
741.

S. Zhao, Y. Huang, J. Song, Z. Wang, C. Wan, and L. Ma, “Towards
understanding retrieval accuracy and prompt quality in rag systems,”
arXiv preprint arXiv:2411.19463, 2024.

	Introduction
	Background
	Cloud Operation and Chatbot
	RAG-based Chatbot

	Study of Preliminary RAG-based QA Systems
	Study Design
	RQ1: What questions do cloud operators frequently ask?
	Study Settings
	Analysis

	RQ2: How well can existing RAG answer these questions?
	Study Settings
	Analysis

	RQ3: Why does existing RAG fail to answer the questions?
	Study Setting
	Analysis

	iKnow: an Intent-aware OpsQA RAG System
	Vector Databases
	Intent Detection and Metadata Extraction
	Intent-guided Query Rewriting
	Two-stage Evidence Retrieval
	Missing Knowledge Detection
	Intent-guided Generation
	Implementation Details

	Experimental Results
	RQ4: Effectiveness of iKnow
	RQ5: Effectiveness of different components
	RQ6: Efficiency of iKnow

	Lessons Learned
	Implications for Chatbot Users
	Implications for OpsQA Chatbot Provider
	Implications for Researchers

	Threats to Validity
	Internal Threats
	External Threats

	Related Works
	Conclusion
	Data Availability
	References

