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Abstract

An emerging problem in computer vision is the recon-
struction of 3D shape and pose of an object from a sin-
gle image. Hitherto, the problem has been addressed
through the application of canonical deep learning methods
to regress from the image directly to the 3D shape and pose
labels. These approaches, however, are problematic from
two perspectives. First, they are minimizing the error be-
tween 3D shapes and pose labels - with little thought about
the nature of this “label error” when reprojecting the shape
back onto the image. Second, they rely on the onerous and
ill-posed task of hand labeling natural images with respect
to 3D shape and pose. In this paper we define the new task
of pose-aware shape reconstruction from a single image,
and we advocate that cheaper 2D annotations of objects
silhouettes in natural images can be utilized. We design
architectures of pose-aware shape reconstruction which re-
project the predicted shape back on to the image using the
predicted pose. Our evaluation on several object categories
demonstrates the superiority of our method for predicting
pose-aware 3D shapes from natural images.

1. Introduction

Reliably predicting the 3D shape and pose of an object
from a single image has only become feasible in computer
vision over the last few years due to advances in deep learn-
ing. A substantial barrier to success stems from the inher-
ent lack of natural training images with labeled 3D shape
and pose information. Some efforts have been undertaken
recently to rectify this including the construction of PAS-
CAL3D+ [27], ObjectNet3D [26] and IKEA [13] datasets.
In all these cases images of several object categories are
manually annotated with corresponding 3D CAD models
and pose information.

Such datasets, however, suffer from several limitations.
First, they are limited to very few object categories and sam-
ples. Second, the human labeler must choose a 3D CAD

Figure 1: Input natural images with bounding box (left),
reprojected silhouettes (middle), and reconstruction (right)
results. The yellow arrow shows the canonical camera.

model from a finite dictionary of models. This is prob-
lematic and error prone as the dictionary of CAD models
made available rarely covers the actual variation encoun-
tered in natural imagery (e.g. only 7 CAD models are used
to describe all natural images of category “aeroplane” in
PASCAL3D+). Third, the pose of the CAD model is de-
termined by annotating coarse landmarks within the natural
image that correspond to points on the CAD model - pose
is then recovered through a PnP process [15]. This is also
error prone due to the shape mismatch of the CAD model
with the natural image. Given the above limitations, directly
training or even fine-tuning with such datasets is not desir-
able.

Recently, the vision community has shifted their atten-
tion to synthetically rendering images directly from tex-
tured CAD models [19, 2]. Notable efforts that use syn-
thetic imagery for training deep models to estimate pose or
reconstruct 3D shape include [19, 6, 1, 4, 11, 17, 20, 18].
This trend offers two advantages. First, it alleviates the



need for using images with error prone hand labeled pose
and 3D shapes. Further, the textured CAD models can
be used to synthesize nearly limitless amounts of realis-
tic rendered training images with accurate ground truth
pose and 3D model labels [19]. Second, the proven po-
tential of deep networks to model complicated patterns can
be exploited to handle large amounts of appearance vari-
ations [6, 3, 24]. While these approaches have shown
promising results on rendered images, there is a noticeable
drop in performance [17] when applied to natural (i.e. non-
rendered) images. We shall refer to this herein as the “ren-
der gap”. Efforts have been made to fine-tune these net-
works using a small amount of labeled natural images [3]
to overcome this problem but the intrinsic errors associated
with the labeling process limits its effectiveness.

Unlike labelling object shape and pose, annotating the
silhouette of an object within a natural image can be per-
formed extremely efficiently and accurately by human la-
belers. Instance segmentation tools (as they are often re-
ferred to) have evolved in such a manner that are has now
become feasible to hand segment tens of thousands of im-
ages from an object category for a reasonable amount of
cost and effort (e.g. more than 13k segmentation for chairs
in MS COCO [14]).

Contributions: In this paper we want to explore how one
could take advantage of this, hitherto, untapped resource
for training a deep network for predicting 3D shape and
pose that addresses the “render gap”. Specifically, we pro-
pose a novel scheme to extend current state-of-the-art meth-
ods [24, 6] to predict pose-aware 3D (voxelized) shape of
an object from a single natural image using cheap silhou-
ette labels of natural images (see Fig. 1). The key observa-
tion behind our approach is, the pose-aware shape estimate
should match well with the silhouette of the object in the im-
age when reprojected back to the image plane. This insight
allows us to leverage a much larger set of hand segmented
natural images for training a deep network that alleviates
the “render gap”.

Our method differs from previous related works [29, 6,

, 3] in several ways. First, our method is capable of learn-
ing from both rendered image-shape pairs as well as natural
images with annotated silhouettes - the only approach thus
far to our knowledge to do so. Second, unlike [6, 29, 24, 3]
which output 3D voxelized shapes in canonical viewpoint
(we refer to as aligned shapes throughout the paper), our ap-
proach also simultaneously predicts the shape in full 6 DOF
of pose. During training we jointly optimize over pose
and style as our proposed reprojection metric is dependent
on both. This differs from previous approaches that learn
pose [19] and style (i.e. aligned shapes) [6, 24, 3] inde-
pendently. Third, we argue that reprojection error rather
than 3D reconstruction error is a preferable loss for train-
ing deep networks for predicting pose and 3D shape when

single natural images lack 3D shape ground-truth.

Our proposed scheme is applicable to current approaches
of predicting aligned shapes, such as 3D-VAE-GAN [24] or
the TL-embedding network [6]. As illustrated in Fig. 2, we
build the architecture of pose-aware reconstruction based on
these two methods (see Appendix I in supplementary ma-
terial), respectively named as p-TL and p-3D-VAE-GAN.
Fine-tuning on natural images is performed in our training
pipeline with a novel reprojection loss. At testing time,
an input natural image of an object is fed into the fine-
tuned network (Fig. 2(part 3)) to estimate its pose-aware 3D
shape. No silhouette is needed in the testing stage. More
details are provided throughout the rest of the paper.

This strategy closes the loop for pose-aware shape recon-

struction both in training and testing: being able to repro-
ject back onto the image frame gives an extra metric of how
nice the reconstruction is by just looking at how well the
reprojected shape matches the object in the image. We also
demonstrate later that, in our scheme this metric of repro-
jection error also speaks for quality 3D reconstruction; in
other words, out strategy does not degrade 3D reconstruc-
tion performance.
Notation: Vectors are represented with lower-case bold
font (e.g. a). Matrices are in upper-case bold (e.g. M) while
scalars are italicized (e.g. a or A). Variables with a sub-
script gt, e.g. My, are the ground truth of the correspond-
ing variable M. For denoting the /" sample in a set (e.g.
images, shapes), we use superscript with parentheses (e.g.
M)y, Uppercase calligraphic symbols (e.g.F(x)) denote
functions which take in a vector or a scalar.

2. Related Work

Shape from a Single Image: Approaches and Data Non-
learning approaches address the problem of shape recon-
struction from a single image mainly through optimization.
Shape priors are either acquired from CAD datasets [25], or
learned with structure from (sub)category techniques [22,

]. In these methods weaker annotations are often required
for optimizing shape or pose, such as key points [22] or in-
stance segmentation [9], limiting the application and perfor-
mance of these methods. Moreover, imperfect shape prior
and optimization procedure have led to smooth but fuzzy
reconstructions, and pose optimization from a single image
has been error-prone.

For learning based methods, Xiang et al. [25] develop
exemplar detectors of pose-aware shapes through annotated
image-shape pairs. Such detectors, however, are acquired
with very limited amount of natural images. This drasti-
cally limits the application of this method for 3D inference
in the wild, where objects display severe occlusion, uncom-
mon pose, and large intra-class variation. To alleviate the
problem, domain adaptation has been applied in the feature
level with rendered-natural image pairs [17]. This methods
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Figure 2: The proposed methods for reconstructing pose-aware 3D voxelized shapes (details in the text): p-TL (part 1 & 3)

and p-3D-VAE-GAN (part 2 & 3).

still requires annotated natural image-shape pairs.

Recently the emerging field of deep 3D vision has wit-
nessed rapid development in this task. Among these meth-
ods, the TL-embedding network [6], 3D-VAE-GAN [24]
and 3D-R2N2 [3] take advantage of generative networks
to embed 3D representation in latent space as shape prior,
and develop regressors from image domain to the shape do-
main. Moreover, 3D-R2N2 introduces LSTM to the hidden
representation to accommodate sequential inputs. The main
drawback of these methods, however, is that they are either
purely trained on rendered samples [0, 24], or fine-tuned on
very few natural image-shape pairs [3]. This nature un-
avoidably limits the generalization ability of these methods
to natural testing images due to the statistical difference be-
tween features extracted from rendered images and the nat-
ural images (“render gap”).

Representation and Factors of Shape In the age of non-
learning methods, mesh representation [9, 22] is prominent
due to its flexibility during optimization. In later learning-
based methods, voxelized shapes are in more favor because
the quantized voxel grid they live in enables easy label-
ing [25] and better suits convolutional operations in deep
learning [24, 6, 3]. Skeleton (connections among key
points) has also been considered [23] but beyond the dis-
cussion of shape in this paper.

For the factors influencing shapes, most works con-
sider shapes in canonical viewpoint (pose). In this case,
only style variations are parametrized. However, datasets
have been developed for pose-aware shape annotations, e.g.
PASCAL3D+ [27] and IKEA dataset [13]. A few works
take advantage of these datasets and perform pose-aware re-
construction [9, 22, 23]. These works mostly infer the cor-
rect pose and shape in mesh form in a non-learning manner,
and require instance segmentation as input [9, 22]. Another
stream of works focus on estimating pose alone from a sin-
gle image, e.g. [21, |7]and [19].

Reprojection Loss as Supervision The role of reprojection
loss in related tasks has been explored in various occasions,

including constraining 3D reconstruction with multi-view
annotations [29], weakly-supervised shape optimization [9,

], or structure from silhouettes [5]. However in the task
of learning shape from natural images, the rich repository of
segmentation annotations on natural image sets have never
been explored as supervision.

3. Proposed Method
3.1. Assumption

We follow [6, 24, 3] by making the following assump-
tions. (1) We assume weak-perspective projection to avoid
estimating camera intrinsics. (2) We have the bounding box
of the object throughout the approach. (3) Shape is repre-
sented as binary voxels in a regular grid, written as a func-
tion V(x) = {0,1} : R® — B, which is sampling the
single channel voxelized shape at location x = [z, y, 2|7 in
the voxel grid. (4) Realistic rendering is done with random
lighting and original texture from the CAD models as an
approximation to real-world statistics.

3.2. Shape Parametrization

We propose to model 3D pose-aware shape of an object
by both pose and style parameters. We can express a shape
as a function V(x;s, p) parametrized by the style parameter
s € RM and pose parameter p € RY. These parameters
will be recovered at testing time, and used to estimate pose-
aware 3D shapes from natural images. By this definition,
shapes in canonical pose but varying in styles are named
“aligned shapes”.

In the recent works of [0, 24, 3] only shapes in canonical
pose are considered, reflecting variations in style. In these
works, a generative network is applied to learn an embed-
ding of style parameters and a generator to recover the shape
from the embedding. However, for pose-aware shapes, they
are also heavily influenced by the 6 DOF pose of the object,
or equivalently, the extrinsics of the camera. Hence, pose-
aware shapes can be readily embedded in a space with style



and pose parameters coupled together. However, we argue
that this is a suboptimal goal to aim for because the space
of pose-aware shapes grows in a multiplicative manner with
the degree of freedom imposed by the pose parametrization,
demanding accordingly increased capacity of the generative
model.

Instead, given 6 DOF pose can be explicitly parametrized
with p € RY in our camera model, we propose to decou-
ple style and pose parameters by estimating explicit pose
independently from style, and apply an rigid transformation
operation to the aligned shape generated from style parame-
ters to impose pose. This results in unchanged capacity de-
mand of the generative model, and an additively increased
parameter space rather than multiplicatively. This discus-
sion echos with [ 1] where transformations of head pose in
a facial image are disentangled from appearance variations
when learning an autoencoder. Experiments can be found
in Section 4.2 where a comparison between learning with
coupled and decoupled style and pose parameters is drawn
in the case of 3D VAE [10] and 3D-VAE-GAN [24].

3.3. Overview of the Training Pipeline

The approach consists of three main stages. (1) Train

an style regressor and a shape generator which maps from
a rendered image to an aligned shape. (2) Train a pose re-
gressor which regresses from the image to the pose param-
eters. Note that this training procedure can be carried out in
parallel with the first step. (3) Append a pose transforma-
tion and reprojection layer after the generator to transform
the aligned shape according to the estimated pose and then
reproject it back to the image frame. Fine-tune the style
regressor and pose regressor to natural image sets by min-
imizing reprojection loss between the ground truth silhou-
ettes and reprojected ones. We build two architectures for
pose-aware shape reconstruction following our approach,
under the name of p-TL (pose-aware TL-embedding net-
work; part 1 & 3 in Fig. 2) and p-3D-VAE-GAN (pose-
aware 3D-VAE-GAN; part 2 & 3 in Fig. 2), respectively
upon TL-embedding network [0] and the state-of-the-art
3D-VAE-GAN [24].
Encoder and Generator for Aligned Shapes: For the first
stage, the architecture is explored in works of [6, 24, 3]. We
build our architectures of style encoder and aligned shape
generator upon [6] and [24] with minor improvements,
and leave [3] for future exploration.

In our version of p-TL (see part 1.a in Fig. 2), the vanilla
autoencoder is replaced with more recent volumetric varia-
tional autoencoder (VAE) [10] to learn a compact style em-
bedding space for aligned shapes. After the VAE is learned,
a style regressor connects images to style space. For p-3D-
VAE-GAN, we adapt the architecture from [24] (see part
2.a in Fig. 2) to fit the grid size of 30x30x30, and use re-
construction loss of convolution features instead of voxels

as suggested in [12]. Network parameters and training de-
tails can be found in Appendix I in supplementary material.
Image to Pose Regressor: At the second stage, we train an
extra pose regressor (part 1.b & 2.b in Fig. 2) to regress ren-
dered images to their ground truth pose parameters. Given
3-channel rendered RGB images as a function of subpixel
location u = [u,v]?, parametrized by the pose parame-
ters p and style parameters s of the object in the image:
{ZW (u;s® p®M) : R? — R3}- |, we train a pose regres-
sor R,(Z(s,p)) = p to map an image Z to ground truth
pose p,, by minimizing the Euclidean loss between p and
p,;- Here we abuse the notation a bit by denoting Z(s, p) as
a concatenation of Z(u; s, p) over all pixels:

I(ul;su p)
6R3DX1 (1)

I(s,p) = :
Z(up;s,p)

Pose-aware Shape Reconstruction and Fine-tuning on
Natural Images: The last part of our framework (Fig. 2
part 3) fine-tunes style and pose regressors on natural im-
ages. We denote the style regressor as R(Z(s,p)) = s.
The aligned shape generator takes in s and outputs the re-
constructed aligned shape V(x;s).

To impose the correct pose on the reconstructed shape,
we design a rigid transformation layer to transform the re-
constructed aligned shape with the predicted pose of p.
We define the transformation function as an inverse warp
parametrized by p: W™1(x;p) : R® — R3, which will be
discussed later. In such case, the transformed shape in vec-
torized form is

VW~ (x1;p);s)
V(s,p) = : eRY
VW~ (xqs;p);s)

where @) is the side length of the voxel grid. The in-
verse warp can be implemented as inverse sampling of orig-
inal voxels with the rigid transformation parametrized by p.
This transformation layer retains the style of the predicted
shape and only changes its pose.

A reprojection operation is then applied after the trans-
formation layer to project the rotated voxels onto the image
plane, assuming that a weak-perspective projection camera
is placed at a fixed canonical viewpoint. This returns a mask
M(x1.9)) € [0,1] : R? — R where X1.0] = [z,y]7. As-
suming the shape V(W™1(x;p);s) is reprojected along its
374 dimension (which we assume as axis z here), then we
write the reprojection as:

M(x(1:238,p) = max VOV~ (x;p);s) 3)



The max operation can be considered as performed
along the optical axis of the camera, analogous to ray-
tracing where the value of first non-zero cubic is returned.

Given a ground truth natural image with annotated
silhouette M g¢(X[1:2];8,p) and the predicted silhouette
M (X(1.9); 8, p), the reprojection loss is defined with binary
Cross-entropy:

‘Crp(M; Mgt) = (4)
1 &
@ Z _Mgt (X[1:2]j; S, p) 1Og(M (X[1:2]j; S, p))
j=1

— (1 = Myge(xp1:2153 8, p)) log(1 — M(X[1.2)558,P))

The network is then fine-tuned end-to-end by minimiz-

ing reprojection loss on natural images. The shape genera-
tor is fixed in this step to function as a prior on the learned
style space. Moreover, natural images are mixed with ren-
dered images in equal portions within a batch to stabilize
fine-tuning. Details of fine-tuning will be shown later.
Pose Parametrization: In our setting, we intend to recover
full 6 DOF pose, which is 3 DOF of rotation and 3 DOF
of translation in a weak-perspective model. However we
find the generative model learns well the interpolation be-
tween shapes of varying scale, thus we treat the DOF of
scale (depth) as one latent factor of style, that is, an aligned
shape under different scales are considered to be different
in style, instead of in pose. The repository of CAD mod-
els is then accordingly augmented with random scale. As
a result our model recovers shapes in full 6 DOF by using
pose parameters p € R (3 for rotation plus 2 for in-plane
translation).

For rotation, the parametrization of Euler angles [19]
works well in pose classification tasks among limited view-
points. Euler angles, however, suffer from the issue of gim-
bal lock [7]' and non-uniformly distributed pose space. An-
other popular choice for rotation parametrization is quater-
nion. This parametrization, however, is strongly limited by
the unit norm constraint which is not suitable for regression
tasks. We choose to parametrize rotation using the exponen-
tial twist, where an rotation around an unit axis for less or
equal than 180° clockwise is parametrized by the axis vector
and rotation angle. More specifically, for a rotation around
unit axis n = [ny,ng,n3]7 for radian ¢, the rotation matrix
is given by R = e[™x?, where [n] is the skew-symmetric
matrix, defined as:

0 —ns no
mx=|n3z 0 -m 4)
—nNn9 ni 0

By setting the rules for exponential twist, the twist pa-
rameters w = ¢n € R? is only constrained within a ball

when elevation of the camera reaches 90°, 1 degree of freedom is lost
between azimuth and yaw.

of radius 7 in R3. This constraint can be implemented with
the tanh function to limit the norm of w. Another interest-
ing property of exponential twist is that the derivative of R
with respect to w is readily available which makes it feasible
for optimization with first-order methods [8]. By explicitly
parametrizing pose with exponential twist, the dimension
of rotation parameters is 3. For in-plane translation, two
scalars are represented in t = [t, t, 0]7 € R3. Thus the
final inverse warp function can be written as:

(6)

W% p) = {R ‘Ti

0 1
where X is the homogeneous coordinates of x in the voxel
grid, p = [w? ¢, t,]T € R5.

As for the choice between classification and regression
for pose estimation as discussed in [16], we favor regres-
sion over classification because, in our case the estimated
pose needs to be converted to a transformation matrix as in
Eq. 6, and this conversion as a function needs to be smooth
in the step of fine-tuning. However this would not be the
case if we follow [19] by outputting an one-hot vector of
p over the pose space, considering we will need a lookup
table for this purpose, which in nature is not differentiable.

4. Experiments
4.1. Data Preparation

Given there is no publicly available dataset for our pur-
pose, we collect and process the data from some existing
datasets. We select three object categories, including aero-
plane, chair, and car which have datasets available for both
3D CAD models (for rendering training data), natural im-
ages with annotated segmentation masks (silhouettes for
natural image fine-tuning) and natural images with anno-
tated 3D shapes (for evaluation). We use CAD models from
the ShapeNet dataset [19] and their CAD-to-voxel pipeline
to voxelize CADs into 30 x 30 x 30 voxel grids. We use the
rendering procedure provided in [19] to generate rendered
images with sampled lighting and 6 DOF poses, over back-
ground natural images from the SUN dataset [28]. Poses are
sampled from the distribution in PASCAL3D+ dataset [27]
with random perturbations. The natural image-silhouette
pairs for fine-tuning are obtained from the instance seg-
mentation masks in the MS COCO [14] dataset, cropped,
normalized and centered in the 227 x 227 image frame.
We pruned the dataset beforehand to remove samples with
strong perspective effect or severe occlusion to facilitate
natural image fine-tuning as we did not take care of such sit-
uations in our assumptions. Natural image-shape pairs for
testing are acquired from PASCAL3D+ with ground truth
pose and style annotation, and the same preprocessing is
applied as to the data from MS COCO. The size of data we
used for training and testing is listed in Table. 1.



aeroplane  chair car
rendered with shapes 206,296 345,001 382,144
MS COCO with masks 4,734 3,200 2,942
PASCAL3D+ with shapes 125 220 279

Table 1: Size of data for each object category.

aligned shape | pose-aware shape
V2V im2V | V2V im2V
3D VAE 0.876 - 0.544 -
3D-VAE-GAN - 0.752 - 0.403
p-3D-VAE-GAN - - - 0.665

Table 2: Average precision (AP) of learning 3D VAE, 3D-
VAE-GAN and p-3D-VAE-GAN with aligned shapes and
pose-aware shapes of three categories (car, aeroplane, and
chair).

4.2. Pose as a Latent Shape Factor

As discussed in Section 3.2, decoupling pose from style
when parametrizing pose-aware shapes helps to reduce the
demand for model capacity, hence improves reconstruction
performance. To evaluate this assertion, we develop two
experiments on rendered dataset, including (1) volumetric
reconstruction with 3D VAE, and (2) volumetric reconstruc-
tion from single image with 3D-VAE-GAN and p-3D-VAE-
GAN using rendered image-shape pairs for both aligned and
pose-aware shapes. The results can be found at Table 2
measuring average precision (AP) of reconstruction aver-
aged over three categories, following the practice of [24].
In this table, V2V shows the reconstruction AP of the out-
put voxels compared to input voxels, and im2V shows the
rfeconstruction AP of the output voxels to the ground truth
voxel of the input image. See Appendix I in supplementary
material for details of the implementation.

The first experiment of 3D VAE shows drastically
dropped performance when trying to encode pose-aware
shapes compared with encoding aligned models (V2V
aligned versus V2V pose-aware shape reconstruction),
since the space of pose-aware shapes is substantially larger
than that of aligned shapes. Thus, generative models such as
VAE are not able to efficiently encode such a large space of
style parameters. The second experiment shows that com-
pared to 3D-VAE-GAN, p-3D-VAE-GAN performs much
better at learning generative models to directly generate
pose-aware shapes from natural images (im2V pose-aware
shape reconstruction). This demonstrates the efficiency of
p-3D-VAE-GAN which decouples style from pose over two
separate regressors for pose-aware shape reconstruction, in-
stead of treating pose as part of the latent parameters and
learning a latent representation of style and pose altogether.

4.3. Qualitative Evaluation

We evaluate the performance of our approach on PAS-
CAL3D+ images with annotated masks, pose and 3D
shapes, before and after fine-tuning. However, it should be
noted that although we use these annotations as approxi-
mate ground truth in our setting of low resolution shapes,
the limitations of this dataset- as we mentioned earlier- still
make it a suboptimal target to evaluate against.

Fig. 3 and Fig. 4 visualize qualitative results showing

style and pose improvements after fine-tuning on natural
images, respectively. The yellow arrows show the canonical
camera, and larger cubes with warmer colors indicate higher
confidence scores. At Fig. 3, we show ground truth and
reconstructed shapes (before and after fine-tuning) in both
canonical and predicted poses (i.e. pose-aware shape recon-
struction). The effect of fine-tuning on predicting more ac-
curate styles can be seen by comparing the reconstructed
aligned shapes and reprojected silhouettes before and af-
ter fine-tuning against ground-truth. Fig. 4 shows the im-
provement in pose estimation after fine-tuning. For this
qualitative evaluation, we show pose-aware ground truth as
well as pose-aware shapes predicted before and after fine-
tuning. Again, by comparing the ground truth silhouettes
with those generated before and after fine-tuning, one can
see that silhouettes after fine-tuning are visually more simi-
lar to ground truth. These qualitative results show that fine-
tuning improves the estimated pose and projected silhou-
ettes. Moreover, these qualitative results demonstrate that
in addition to predicting more accurate pose and style, natu-
ral image based fine-tuning improves the robustness against
ambiguous poses. For the case of the first sample of aero-
plane in Fig. 4 (top left), the shape recovered before fine-
tuning suffers from ambiguity in azimuth. By constrain-
ing the reprojected aeroplane towards its ground truth body
length, the pose parameters are optimized in the continu-
ous pose space (particularly the DOF of azimuth in this ex-
ample) in a way to produce more accurate silhouette. This
significantly diminishes the pose ambiguity.
Failure Cases Analysis: Fig. 5 illustrates some failure
cases, which either end up with wrong shape before fine-
tuning, or fail to improve after fine-tuning. We categorize
the failure cases generally into three scenarios, including
(1) Ambiguous pose: Fig. 5 (up), (2) Occlusion: Fig. 5
(middle), this sample was mistakenly labelled clean in PAS-
CAL3D+ but in fact seriously occluded, leading to broken
results, and (3) Low image quality: Fig. 5 (bottom). Deteri-
orated (murky) images may result in wrong reconstruction
because their appearance statistics deviate too far from that
of the photorealistically rendered training images.

4.4. Quantitative Evaluation

In Table 3 and 4, we evaluate our performance by means
of AP between 3D shapes (3D AP) or 2D silhouettes (2D
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Figure 3: Examples of improvement in style with fine-tuning. For each sample, illustrations include: input image, aligned
& shape-aware shapes, reprojected silhouette of ground truth (left), before fine-tuning (middle) and after fine-tuning (right).
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Figure 4: Examples of improvement in pose with fine-tuning. Identical arrangements are made as in Fig. 3 except that

aligned models are not shown here.

AP) as an indication of reconstruction error. In particu-
lar, AP between aligned shapes indicates the error in style,
while AP between pose-aware shapes measures the overall
error in shape, influenced by both style and pose. We follow
the practice in [19] in evaluation of pose estimation.

Considering the central goal of our paper is the fine-
tuning scheme on natural images with reprojection loss, all
these evaluations are comparisons in various metrics before
and after fine-tuning. For pose estimation, we achieve com-
parable results as in [19]; and more importantly, we are able
to further improve pose estimation with fine-tuning. For
style estimation (reflected by reconstruction performance

of aligned shapes in Table 4), results before fine-tuning on
aligned shapes (shadowed in grey) are reflecting the perfor-
mance of the prior approaches of TL-embedding network
[6] and 3D-VAE-GAN [24] in our experiment setting, given
this part of experiment is only re-implementation of their
original works. Based on this evaluation, our approach is
able to improve aligned shape reconstruction upon these
two methods.

We may observe from Table 3 that, after fine-tuning by
minimizing reprojection loss, not only the reprojected sil-
houettes better fit their ground truth, but also improvements
on style (3D AP) and pose (rotation error) are achieved, in-



p-TL p-3D-VAE-GAN
aero chair car aero chair car
2D AP before 0.589 0.844 0.815 0.627 0.852 0.851
after 0.704 0.849 0.872 0.720 0.878 0.894
3D AP before 0.211 0.531 0.630 0.183 0.527 0.642
after 0.219 0.552 0.639 0.249 0.577 0.664
rotation before | 0.67/23.0 | 0.78/8.2 | 0.83/4.8 | 0.67/23.2 | 0.76/8.2 | 0.86/5.0
Accz/ | afier | 068173 | 0.80/83 | 08052 | 0.70/17.2 | 0.80/8.1 | 0.86/4.7
MedErr | Suetal. | 0.76/15.1 | 0.85/9.7 | 0.86/6.1 | 0.76/15.1 | 0.85/9.7 | 0.86/6.1
translation | before 0.092 0.074 0.060 0.088 0.079 0.061
MedErr after 0.077 0.072 0.058 0.073 0.079 0.050

Table 3: Quantitative evaluation on pose-aware reconstruction. Error in 3D & 2D shapes are measured in AP (higher

is better) as in [

]. Error in rotation parameters is measured in Acc% (accuracy over I; higher is better) and MedErr
(median error; smaller is better) based on geodesic distance over the manifold of rotation [21]. Results form [

] are also

listed. Error in translation is measured by ratio of the absolute offset against the frame size of the silhouette (30px), and we

report the median number (smaller is better).

aero chair car
L before | 0.552 | 0.709 | 0.775
p after | 0.580 | 0.731 | 0.791
before | 0.669 | 0.727 | 0.781
p-3D-VAE-GAN| = v | 0.676 | 0.763 | 0.816

Table 4: Quantitative evaluation on reconstruction of
aligned shapes. We also use 3D AP as the metric to mea-
sure the aligned shape error. Gray shadowed results are

from re-implemented baseline methods of [6, 24].
. gt recon gt reproj
image shape shape silhoutte  silhoutte
ambiguous *
pose A' - .
oeluson “ e & B I
low image %
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Figure 5: Failure cases in fine-tuning, mainly caused by am-
biguous pose, occlusion and low image quality.

dicating that pose-aware shapes are improved on our test
set. This illustrates that the reprojection loss acts as a suf-
ficient constraint during fine-tuning without degrading the
reconstruction performance in 3D. We explain this obser-
vation with two factors. First, the generator is locked dur-
ing the fine-tuning, which provides a constant prior, map-

ping from style parameters to shape space. As long as the
fine-tuned style parameters are still within the valid scope of
this generator’s input space, the reconstructed shape will be
valid without degradation. Second, in the fine-tuning pro-
cess, the loss from rendered images in a training batch helps
constrain the two regressors from over-fitting or explosion.

We acknowledge that in the task of shape reconstruction
from a single image, optimizing the 2D reconstruction alone
does not necessarily guarantee desired performance in 3D.
More particularly, it can easily lead to reconstructing de-
graded shapes. However, by following our fine-tuning ap-
proach, which uses prior from the generator and constraint
from rendered images, the reprojection loss turns out to be
informative in fine-tuning as well as testing stage.

Details and analysis of fine-tuning are provided in Ap-
pendix II in supplementary material.

5. Conclusion

We define the new task of pose-aware shape reconstruc-
tion from a single natural image, and update the recent
methods of TL-embedding Network and 3D-VAE-GAN to
close the loop for this task, in both training and testing.
More particularly, our proposed framework allows fine-
tuning pose and style estimations by minimizing reprojec-
tion error over reprojected and ground truth silhouettes, and
evaluation with this metric. The updated framework offers
several advantages. First, it is capable of learning from
cheaper annotation of object silhouettes in natural image
sets. Second, pose and style estimations are jointly fine-
tuned on natural images. Third, we demonstrate both qual-
itatively and quantitatively that, our fine-tuning scheme is
able to not only refine pose-aware shape reconstruction, but
also improve upon current state-of-the-arts on the task of
aligned shape reconstruction as well as pose estimation.
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1. Appendix L.a. Network Architectures

We denote each fully-connected layer fc(d) by its out-
put dimension d, and volumetric convolution layer by
conv3D(k, c, s) representing kernel size of k, strides of s
across three spatial axes, and ¢ channels. 2D convolutional
layer is represented as conv2D(k, c, s). and the volumetric
transpose convolution layer by deconv3D(k, c, s).

Encoder and Generator for Aligned Shapes The
variational aligned shape encoder takes as input an
30x30x30x1 tensor, and consists of 3 convolution lay-
ers: conv3D(4, 2, 32), conv3D(4, 2, 64), conv3D(4, 2, 64),
two fully-connected layers fc(200) and fc(200), regressing
from the last convolution feature to the 200-dimensional
mean and variance vectors for style embedding, following
[2]. The decoder takes in the 200-dimensional style vector,
and consists of one fully-connected layer fc(8192) to con-
nect the input vector to an 4x4x4x 128 convolutional fea-
ture; and 3 transpose convolution layers deconv3D(4, 64,
2), deconv3D(4, 32, 2), deconv3D(4, 1, 2) output the re-
constructed shape with size 30x30x30x 1. All convolution
and transpose convolution layer are batch batch normalized
except the first convolution and last transpose convolution
layer. LeakyReL U [3][1] is the rectifier for all layers except
the output layer which uses fanh. This architecture is also
used for 3D VAE in Section 4.2.

Image to Style/Pose Regressors The two regressors have
identical architecture of convolution layers: conv2D(11, 4,
64), conv2D(5, 2, 128), conv2D(5, 2, 256), conv2D(5, 2,
512), conv2D(3, 1, 200). For the style regressor, an fc(200)
connects the last convolution layer to the style parameters.
For the pose regressor, fc(5) is used instead. All but the first
convolution layers are batch normalized, and rectified with
LeakyReLU.

2. Appendix Lb. Training Details

p-TL Both the aligned shape autoencoder and the style/pose
regressors are trained with Adam optimizer at an learning

rate of 0.0003 and batch size of 100.

p-3D-VAE-GAN We follow [4] in training the 3D-VAE-
GAN. We replace the L2 voxel-wise reconstruction loss de-
scribed in [5] with the L2 loss between the last layer convo-
lution features in the discriminator. We use RMSProp with
a learning rate of 2e-5 and and batch size of 100 in train-
ing the 3D-VAE-GAN. The pose regressor is trained in the
same routine as in p-TL.

3. Appendix II. Fine-tuning Details

In fine-tuning, we fine-tuned all the parameters in
style/pose regressors, with an tiny learning rate of le-12.
Each batch is natural images with silhouette annotations,
mixed with rendered image-shape pairs. In this case, the
loss is composed of two parts with both weight of 1: repro-
jection loss for natural images, and loss in shape for natural
images (for p-VAE, this part is the euclidean loss in style
and pose; for p-3D-VAE-GAN, this part is loss of VAE-
GAN).

Fig. | gives an evaluation of the test 3D AP of pose-
aware shapes over the ratio of natural images in a training
batch. We may observe a relatively equivalent portion of
rendered and natural samples in a fine-tuning batch returns
the best AP, while too few natural images helps little in fine-
tuning, and too many natural samples easily lead to over-
fitting.

4. Appendix III. Reprojected Silhouettes as In-
stance Segmentation

In this section we showcase test results for MS COCO
dataset where reprojected silhouettes from our pose-aware
shape reconstruction could be used as instance segmenta-
tion, similar to the practice in [6]. We list 20 samples
for each of the three categories: aeroplane, chair, car in
Fig. 2 3 4, respectively.
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Figure 1: 3D AP as a function of ratio of natural images
in a training batch, averaged over both approaches and all
categories.
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Figure 2: Reprojected silhouette as instance segmentation (aeroplane). For each sample we show the input image (left),
ground truth segmentation (middle left), reprojected silhouette(middle right), and reconstructed pose-aware shape(right).



Figure 3: Reprojected silhouette as instance segmentation (chair). For each sample we show the input image (left), ground
truth segmentation (middle left), reprojected silhouette(middle right), and reconstructed pose-aware shape(right).



Figure 4: Reprojected silhouette as instance segmentation (car). For each sample we show the input image (left), ground
truth segmentation (middle left), reprojected silhouette(middle right), and reconstructed pose-aware shape(right).



