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Abstract. To check the satisfiability of (non-linear) real arithmetic for-
mulas, modern satisfiability modulo theories (SMT) solving algorithms
like NLSAT depend heavily on single cell construction, the task of gen-
eralizing a sample point to a connected subset (cell) of Rn, that contains
the sample and over which a given set of polynomials is sign-invariant.
In this paper, we propose to speed up the computation and simplify
the representation of the resulting cell by dynamically extending the
considered set of polynomials with further linear polynomials. While this
increases the total number of (smaller) cells generated throughout the
algorithm, our experiments show that it can pay off when using suitable
heuristics due to the interaction with Boolean reasoning.
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1 Introduction

Satisfiability checking deals with the problem of deciding whether a first-order
logic formula admits a solution. Satisfiability modulo theories (SMT) solvers use
specialized algorithms to tackle this problem for different theories. While the
targeted problems are generally hard (NP-complete for propositional logic, and
even undecidable for integer arithmetic), modern SMT solvers are highly efficient
and widely used as integrated engines, e.g. for automated deduction [5,17].

In this paper, we focus on the quantifier-free fragment of non-linear real arith-
metic (NRA), denoted as QF-NRA, whose formulas are Boolean combinations of
polynomial constraints with rational coefficients and real-valued variables. The
cylindrical algebraic decomposition (CAD) method [11], which is in general a
quantifier elimination procedure for NRA, was the first tractable technique for
solving the satisfiability problem for QF-NRA. A CAD partitions the search space
of the variables into a finite number of cells, such that all polynomials in the
input formula are sign-invariant - and thus the input formula is truth-invariant
- within each CAD cell. Consequently, we can decide the satisfiability problem
by checking one point from each cell. Despite major improvements by, e.g., Mc-
Callum [23,24], Lazard [21], and Brown [8], CAD still scales poorly, often due to
expensive resultant computations.
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Inspired by CAD, one of the most successful SMT-solving techniques for QF-
NRA is NLSAT [19], an instance of the model constructing satisfiability calculus
(MCSAT) [25] by Jovanic and de Moura. NLSAT extends DPLL+CDCL-style
propositional reasoning with a dual approach for the theory. The propositional
part consists of deciding truth values for constraints, Boolean propagation, and
Boolean conflict resolution. Dually, the theory part decides real values for theory
variables, accompanied by theory propagation to assure that theory assignments
evaluate constraints consistently with the Boolean assignment, and theory con-
flict resolution. Steps from both parts are interleaved, maintaining consistent
partial assignments to guide each other towards a solution.

If all possible values for an unassigned theory variable would contradict the
Boolean assignment of some constraint, then the current theory assignment can-
not be extended consistently. This situation is resolved using an explanation
backend, which generalizes the conflict’s reason to a lemma (called explana-
tion) that not only excludes the current conflicting assignment but also fur-
ther similar situations from the future search. For example, given the formula
(x2

1 + x2
2 − 1 < 0 ∨ x2 > 0), NLSAT could decide the first constraint to be true,

and then assign x1 = 2. Now, no value of x2 would satisfy x2
1 + x2

2 − 1 < 0, as it
simplifies to x2

2 < −3 under x1 = 2. However, if x2
1 + x2

2 − 1 < 0 holds, then any
value x1 > 1 would require x2

2 to be negative. Thus we can generalize the value
x1 = 2 to x1 > 1 by learning the lemma (¬(x2

1 + x2
2 − 1 < 0) ∨ x1 ≤ 1).

Explanations should be efficiently computable and generalize as strongly as
possible. Note that the learnt clause may contain literals not present in the
input formula (like x1 < 1 above), thus the generalization technique is crucial
for completeness. NLSAT uses CAD techniques to generalize a sample point to a
single cell around it. However, NLSAT computes cells locally w.r.t. a sample and
a subset of the constraints, which offers potential for simpler computations and
larger cells. While improvements of Brown and Košta [9], Li and Xia [22], and
Nalbach et al. [28] use this potential and avoid certain resultant computations,
single cell construction remains a major factor for the running time.

Contributions. The cost of computing a resultant of two polynomials depends on
their degree. If one of the polynomials is linear, the resultant is generally cheap
to compute. In this paper, we dynamically insert linear polynomials during the
cell construction from [28], effectively under-approximating the bounds on the
cell. This reduces the effort of the construction by replacing expensive resultant
computations with simpler ones. It also affects the quality of the cell for NLSAT:
The representation is simpler, but the cell covers less of the search space. This
paper follows up on the extended abstract [29], in which we briefly introduced
this idea. In particular, our contributions include the following:

– We generalize the ideas from [29] and provide a clear algorithmic formulation.
– We elaborate on the reasons for potential non-termination of NLSAT using

the modified single cell construction by providing an example, and adapt the
method to guarantee termination.

– We explore several variants of our method, including different ways of con-
structing additional polynomials and criteria for when to insert them.
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– We provide an extensive experimental evaluation of these variants, using our
implementation in the SMT solver SMT-RAT [12,30].

Structure. In Section 2 we recall some background, including the levelwise single
cell construction from [28], which we adapt for under-approximation in Section 3.
We explore variants of our approach in Section 4 and discuss experiments in
Section 5. In Section 6 we conclude with an outlook on future work.

Related Work. Some incomplete but fast explanation backends for NLSAT are
not based on CAD, but on Fourier-Motzkin variable elimination [18], virtual
substitution [2], or interval constraint propagation [20].

The general idea of using linear approximations or abstractions for QF-NRA
has been explored before. For example, the ksmt calculus [6] transforms each
formula into a set of linear arithmetic clauses and a set of non-linear constraints
and then incrementally constructs a model, mainly performing linear reason-
ing. Partial assignments which falsify a non-linear constraint are generalized to
conjunctions of linear constraints, using local linear approximations of the non-
linear functions. Incremental linearization [10] computes a linear abstraction of
the input formula by replacing all multiplications with uninterpreted functions,
possibly allowing to derive unsatisfiability by purely linear reasoning. The ab-
straction is refined incrementally by adding linear arithmetic axioms for the
individual multiplications. Neither of these methods is complete, though ksmt
was shown to be δ-complete.

2 Preliminaries

We assume that the reader has some basic knowledge about multivariate poly-
nomials, logic and SMT solving. For an introduction, we refer to, e.g., [4,13].

Let N, Q, and R be the sets of natural (incl. 0), rational, respectively real
numbers. For k ∈ N, let [k] := {1, . . ., k}; for r ∈ Rk and i ∈ [k] let ri be the ith
entry in r, r[i] := (r1, . . ., ri), and r[0] = (). For the extent of this paper, we fix
some n ∈ N \ {0} and ordered real-valued variables x1 ≺ . . . ≺ xn.

Polynomials. For i ∈ [n], let Q[x1, . . ., xi] be the set of all polynomials in
x1, . . . , xi with rational coefficients (for i = 0, this is Q). We can write any
p ∈ Q[x1, . . ., xi] as a univariate polynomial p = cdx

d
i +cd−1x

d−1
i + . . .+c1xi+c0

in xi with either d = 0 or cd ̸= 0, with degree degxi
[p] := d, coefficients

coeffxi [p] := {c0, . . . , cd} ⊂ Q[x1, . . ., xi−1], and leading coefficient ldcfxi [p] := cd.
Given r ∈ Ri, we write p(r) for the evaluation p(r1, . . . , ri) ∈ R. Given r ∈ Ri−1

and r′ ∈ R, let p(r, xi) ∈ R[xi] result from p by substituting r1, . . . , rj−1 for
x1, . . . , xj−1, and we write p(r, r′) for p(r1, . . . , rj−1, r

′).

Real Roots. Let p ∈ Q[x1, . . ., xi]. A (real) root of p is a point r ∈ Ri so that
p(r) = 0; the variety of p is the set of its roots. The roots of univariate polynomi-
als build the set of (real) algebraic numbers Q̄ := {r ∈ R | ∃q ∈ Q[x].q(r) = 0}.
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Given r ∈ Q̄i−1, one can compute realRoots(p, r) := {rj ∈ R | p(r, rj) = 0}, i.e.
the roots of p over r. If realRoots(p, r) = R, then we say that p is nullified over
r. Otherwise, realRoots(p, r) is a finite set of algebraic numbers.

Let j ∈ N. An indexed root expression rootxi
[p, j] : Ri−1 → R ∪ {⊥} maps

each r ∈ Ri−1 to the j-th root of p over r if it exists, and to ⊥ otherwise:

rootxi
[p, j](r) :=

{
⊥ if realRoots(p, r) = R or j > |realRoots(p, r)|, and else
zj where realRoots(p, r) = {z1, . . . , zk}, z1 < . . . < zk.

We refer to the polynomial p of an indexed root expression ξ = rootxi
[p, j] by ξ.p,

and we say that the level of ξ is i. The set of indexed root expressions of level i is
IRE(i). Given P ⊆ Q[x1, . . ., xi] and r ∈ Q̄i−1, one can compute the indexed root
expressions defined over r: irExp(P, r) := {ξ ∈ IRE(i) | ξ.p ∈ P and ξ(r) ̸= ⊥}.

The resultant of two polynomials p, q ∈ Q[x1, . . ., xi] w.r.t. xi is a polynomial
resxi

[p, q] ∈ Q[x1, . . ., xi−1], such that for all r ∈ Ri−1 it holds: if there is r′ ∈ R
with p(r, r′) = 0 = q(r, r′), then resxi

[p, q](r) = 0. The discriminant of p is
discxi [p] := resxi [p, p

′], where p′ is the derivative of p w.r.t xi.

Formulas. A formula of the quantifier-free fragment of (non-linear) real arith-
metic (QF-NRA) is a Boolean combination of (polynomial) constraints of the
form p ∼ 0, with p ∈ Q[x1, . . ., xn] and ∼∈ {<,>,=,≤,≥, ̸=}. An extended
constraint has the form xi ∼ ξ, where ξ ∈ IRE(i) is an indexed root expression.

Cells. A cell is a non-empty connected set S ⊆ Ri for some i ∈ [n]. We call
S (semi-)algebraic if it is the solution set of a conjunction of constraints and
extended constraints. We call p sign-invariant over S, if the sign of p(r) is the
same for all points r ∈ S (i.e. ∀r ∈ S. p(r) ∼ 0 for a fixed ∼∈ {<,=, >}). We
call S sign-invariant for P ⊂ Q[x1, . . ., xi], if all p ∈ P are sign-invariant over S.

2.1 Levelwise Single Cell Construction

Given a constraint set C and an assignment s ∈ Ri, if all extensions of s evaluate
some constraints from C to false, then we say that s is inconsistent with C. In
NLSAT, if the theory assignment is inconsistent with the constraints C defined to
be true by the Boolean assignment, then we generalize s to a cell S ⊆ Ri, whose
points are all inconsistent with C. To do so, we derive a set P ⊂ Q[x1, . . ., xi]
of projection polynomials, such that s ∈ S and the sign-invariance of P over S
assures that all points in S are inconsistent with C. The learned explanation is
then (¬C ∨¬φS), where φS is a conjunction of extended constraints defining S.

Definition 1. Given i ∈ [n], P ⊂ Q[x1, . . ., xi] and s ∈ Ri, the problem of
single cell construction (SCC) is to compute a description of an algebraic cell
S ⊆ Ri so that s ∈ S and all p ∈ P are sign-invariant over S.

We now recall the levelwise SCC approach [28] by Nalbach et al., which is sum-
marized in Algorithm 1, and which we will modify in Section 3.
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Algorithm 1: levelwise-scc(P, s)
Input : A finite P ⊆ Q[x1, . . ., xi], and s ∈ Ri (with i ∈ [n]).
Output: A description (I1 ∧ . . .∧ Ii) of a sign-invariant cell for P containing s

1 for j = i, . . . , 1 do
2 Pj := P ∩ (Q[x1, . . ., xj ] \Q[x1, . . ., xj−1])
3 if realRoots(p, s[j−1]) = R for some p ∈ Pj then return FAIL
4 {ξ1, . . . , ξk} := irExp(Pj , s[j−1]) s.t. ξ1(s[j−1]) ≤ . . . ≤ ξk(s[j−1])
5 if k = 0 then Ij := (true)
6 else if sj = ξℓ(s[j−1]) for some ℓ then Ij := (xj = ξℓ)
7 else if sj > ξk(s[j−1]) then Ij := (ξk < xj)
8 else if sj < ξ1(s[j−1]) then Ij := (xj < ξ1)
9 else Ij := (ξℓ < xj ∧ xj < ξℓ+1) for the ℓ with ξℓ(s[j−1]) < sj < ξℓ+1(s[j−1])

10 add to P discriminants and coefficients ensuring delineability
11 add to P resultants ensuring sign-invariance
12 return (I1 ∧ . . . ∧ Ii)

Let i ∈ [n], s ∈ Ri, P ⊂ Q[x1, . . ., xi], and for j ∈ [i] let Pj be the polynomials
from P with largest variable xj (i.e. those containing xj , but not xj+1, . . . , xi).
For each dimension j = i, . . ., 1, the algorithm determines a symbolic interval
Ij of the form (xj = ξ), (xj < ξ), (xj > ξ), or (ξ < xj ∧ xj < ξ′) for some
ξ, ξ′ ∈ IRE(j), bounding the value of xj w.r.t. the lower variables x1, . . . , xj−1.
For all r ∈ Rj−1 with ξ(r) ̸= ⊥ ≠ ξ′(r), Ij defines a concrete interval Ij(r) ⊆ R
which is {ξ(r)}, (−∞, ξ(r)), (ξ(r),∞), or (ξ(r), ξ′(r)), respectively.

The final cell described by I1 ∧ . . . ∧ Ii is locally cylindrical, i.e., I1 defines
a concrete interval S1 ⊆ R, and for j = 2, . . . , i, the root expressions in Ij are
defined everywhere over Sj−1, and they specify the cell

Sj = {(r, r′) ∈ Rj | r ∈ Sj−1 ∧ r′ ∈ Ij(r)}.

To determine Ij , we assign x1, . . . , xj−1 to the underlying sample s[j−1], and
compute realRoots(p, s[j−1]) for all p ∈ Pj . These roots witness the indexed
root expressions in Line 4. The greatest root below (or equal to) sj and the
smallest root above (or equal to) sj provide the interval boundaries (if they do
not exist, −∞ and ∞ are used). Thus, the polynomials in Pj are sign-invariant
over {s[j−1]} × Ij(s[j−1]).

The idea is now that the to-be-constructed underlying cell Sj−1 ⊆ Rj−1 will
be a neighbourhood around s[j−1] over which the root expressions in Ij define
total continuous functions such that Sj is a sign-invariant cell for Pj containing
s[j]. To obtain an underlying cell with the desired properties, the concepts of
delineability and order-invariance (a strengthening of sign-invariance) are used:

Definition 2 (Delineability [11]). Let j ∈ [n−1] and S ⊆ Rj be a cell. A
non-zero polynomial p ∈ Q[x1, . . ., xj+1] is delineable over S if there exist k ≥ 0
continuous functions θ1, . . . , θk : S → R and constants m1, . . .mk ∈ N such that
for all r ∈ S holds θ1(r) < . . . < θk(r), realRoots(p, r) = {θ1(r), . . . , θk(r)}, and
for all ℓ = 1, . . . , k the multiplicity of the root θℓ(r) in p(r, xj+1) is mℓ.
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Definition 3 (Order-invariance [23]). The order of p ∈ Q[x1, . . ., xj ] at r ∈
Rj, denoted ord(p, r), is the minimum k so that some partial derivative of p of
total order k does not evaluate to 0 at r (or ∞, if all evaluate to 0). We call p
order-invariant on R ⊆ Rj if ord(p, r) = ord(p, r′) for all r, r′ ∈ R.

The indexed root expressions of p determined in Line 4 witness the θ functions.
That these are well-defined continuous functions is assured by the delineability
of p. The method uses the fact that p is delineable over the underlying cell Sj−1

if discxj
[p] is order-invariant on Sj−1 and ldcfxj

[p] is sign-invariant over Sj−1;
thus it adds these polynomials to P and ensures their properties on the next
level, thereby restricting Ij−1 and the levels below.

The method still has to ensure that no root function crosses the cell bound-
aries (the root expressions in Ij) over Sj−1, because this would imply a sign
change of some polynomial within Sj . For this purpose, we use that for any two
ξ, ξ′ ∈ irExp(Pj , s[j−1]) and ∼ ∈ {<,=} with ξ(s[j−1]) ∼ ξ′(s[j−1]), it holds: If
resxj

[ξ.p, ξ′.p] is order-invariant on Sj−1, then ξ(r) ∼ ξ′(r) for all r ∈ Sj−1.
Since only intersections of roots with the cell boundaries are relevant, it

suffices to maintain a partial ordering of the root functions, ensured by cer-
tain resultants (Line 11). For example, if ξ1, . . . , ξk are as in Algorithm 1 and
Ij = (ξℓ < xj ∧ xj < ξℓ+1), then we could add {resxj

[ξℓ′ .p, ξℓ.p] | ℓ′ < ℓ} ∪
{resxj

[ξℓ+1.p, ξℓ′ .p] | ℓ+ 1 < ℓ′}, ensuring that ξ1, . . . , ξℓ−1 stay below (or equal
to) ξℓ and ξℓ+2, . . . , ξk stay above (or equal to) ξℓ+1. By exploiting transitivity,
other partial orderings and thus other sets of resultants are also viable; this is
a heuristic decision. However, the resultant resxi [ξℓ.p, ξℓ+1.p] of the bounds is
always added to ensure connectedness of Sj .

Note that this method fails if any of the encountered polynomials is nullified
on the underlying sample, because then delineability cannot be ensured in the
same way. The method can detect this and return “FAIL”, and a different, com-
plete approach is used instead. To further ensure that no polynomial p ∈ Pj is
nullified over any other point in Sj−1, some c ∈ coeffxj [p] with c(s[j−1]) ̸= 0 is
also added to P in Line 10. After adding all required polynomials to P , if j > 1,
then the method proceeds with the construction of Ij−1 in the same way.

Example 1. Figure 1 illustrates an example with a given sample s ∈ R2 and
polynomials P = {p1, p2, p3} ⊂ Q[x1, x2]. The line labelled with p1 indicates the
variety of p1 i.e. those points r ∈ R2 with p1(r) = 0, and similarly for p2, p3.

We start at level 2, where P2 = P . At x1 = s1, there is one root of p2 below
s2 and one root of each polynomial above s2. The roots closest to s2 define the
symbolic interval I2 := (ξ1 < x2 ∧ x2 < ξ2) (Figure 1a). To ensure correctness
of this interval for all values of x1 in the underlying cell (to be computed at
level 1), the discriminants and leading coefficients of p1, p2, p3 are added to P
(dash-dotted lines in Figure 1b). Moreover, adding resx2 [p3, p1] and resx2 [p3, p2]
(dashed lines in Figure 1b) ensures that none of the root functions cross the
upper interval bound defined by p1 over I1. Note that the crossing of ξ3 and ξ4
is irrelevant, and the corresponding resultant of p1 and p2 is thus avoided. On
level 1, we isolate the roots of these polynomials and use the closest to s1 as
interval boundaries, resulting in the shaded cell (Figure 1c).
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Fig. 1: Illustration of the levelwise construction described in Example 1.

3 Adding Polynomials to Avoid Expensive Resultants

The running time of SCC is dominated by discriminant and resultant computa-
tions. Given p, q ∈ Q[x1, . . ., xn] with dj = degxj

[p], ej = degxj
[q] for all j ∈ [n],

the resultant of p and q requires O(dnen) polynomial multiplications and, in
the worst case, its degree w.r.t. any xj is dnej + djen. Given P ⊂ Q[x1, . . ., xn]
with maximal degree d in any variable, the degree and time complexity of re-
sultants during SCC grows doubly exponential in worst-case (d2

n

), as resultants
of resultants are computed iteratively. The levelwise method already mitigates
the effort for computing resultants, e.g. it avoids involving polynomials of high
degree. However, some cannot be avoided, e.g. polynomials defining the bounds
of an interval are always included in some resultant computations.

Our approach is as follows: If a high-degree polynomial p would define a
bound of a symbolic interval Ij , then we add a new linear polynomial p∗ =
(xj − c) to P , whose root c ∈ Q lies strictly between that bound and the sample
sj . Using this as a new, under-approximating bound for Ij allows replacing
expensive resultants of p and some q ∈ P by resultants of p∗ with q, which are
simply computed by substituting c for xj in q, and their degree is bounded by
the one of q. The choice of c ensures that (1) the resulting cell still contains the
sample, (2) all other roots remain outside the cell, and (3) the underlying levels
still generalize to some larger cell. Towards the latter, c should not be equal
to any polynomial’s root, as the cell then would only generalize to a section
Ij−1 = (xj−1 = ξ) on the level below as the resultant of that polynomial with
p∗ would have a root at s[j−1].

Example 2. In Example 1 (depicted in Figure 2a), the levelwise method cannot
avoid the resultants resx2

[p2, p3] and resx2
[p3, p1], which are expensive if p1, p2

and p2 have high degree. Adding a linear polynomial p∗ with a root ξ∗ between
s and ξ2, lets us use ξ∗ as upper bound of I2, and it suffices to compute only
the cheap resultants of p∗ with p1, p2, p3 (like shown in Figure 2b). Figure 2c
shows the resulting cell S′ (pink, shaded) and the original cell S (hatched).
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Fig. 2: Approximated cell using a new linear polynomial

Importantly, p1, p2 and p3 are sign-invariant over S′. Note that we might also
under-approximate the lower bound of I2, or the bounds of I1, leading to an
even smaller cell, but also reducing computations.

We generalize this approach and modify levelwise-scc, so that on each
level, it can dynamically extend the working set P with arbitrary polynomials,
resulting in our new method apx-scc shown in Algorithm 2, which adds Line 4.
The method apx-criteria decides whether adding new polynomials is benefi-
cial, by checking e.g. whether the symbolic interval Ij would be defined by a
polynomial with high degree. If the criteria are fulfilled, apx-polys computes
a set of new polynomials (called auxiliary polynomials) that are added to P .
The auxiliary polynomials have roots at favourable positions, admitting an eas-
ier set of resultants to be computed. We discuss the different approaches for
implementing apx-criteria and apx-polys in Section 4.

Adding auxiliary polynomials makes the maximal possible sign-invariant cell
around the given sample point smaller, hence we compute some kind of under-
approximation. However, as shown in Figure 2c, the cell computed by apx-scc is

Algorithm 2: apx-scc(P, s)
Input : A finite P ⊆ Q[x1, . . ., xi] and s ∈ Ri (with i ∈ [n]).
Output: A description (I1, . . . , Ii) of a sign-invariant cell for P containing s

1 for j = i, . . . , 1 do
2 Pj := P ∩ (Q[x1, . . ., xj ] \Q[x1, . . ., xj−1])
3 if realRoots(p, s[j−1]) = R for some p ∈ Pj then return FAIL
4 if apx-criteria(Pj , s[j]) then P := P ∪ apx-polys(Pj , s[j])
5 compute Ij as before (Lines 2-9 in Algorithm 1)
6 add to P polynomials ensuring delineability and sign-invariance (Lines

10-11 in Algorithm 1)
7 return (I1, . . . , Ii)
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not necessarily a subset of the cell computed by levelwise-scc, as strengthening
the bounds of Ij might allow weakening some bound of Ij−1. In any case, both the
original and the approximated cell (S and S′) are subsets of the maximal sign-
invariant cell Smax for P . While S = Smax may hold, it always holds S′ ⊊ Smax.

Our modification has two main benefits for the usage in NLSAT: (1) Avoid-
ing expensive resultant computations means that explanations can be computed
much faster; and (2) during later computations, NLSAT needs to isolate the roots
of the cell boundaries over further sample points, for checking whether a given
sample lies in the excluded cell - the effort for these computations may be dras-
tically reduced by polynomials of lower degree (or even degree 1). On the other
hand, the under-approximated cells may lead to more cells generated throughout
the search, and even lead to non-termination, as we will see in Section 3.1.

It is important to note that our modification does not eliminate the strong
degree growth entirely, because the discriminants needed for delineability are also
resultants. Moreover, for sections Ij = (xj = ξ) we cannot compute meaningful
approximations, forcing us to fall back to the default method.

Theorem 1 (Correctness). Let P ⊂ Q[x1, . . ., xi] be finite and s ∈ Ri. If
apx-scc(P, s) yields the cell S ⊆ Ri, then s ∈ S and P is sign-invariant over S.

Proof. The idea is that the original method could produce the same cell, when
given an appropriately modified input. For each j ∈ [i], let Qj ⊂ Q[x1, . . ., xj ] be
the set of polynomials added by apx-scc on level j, and let Q := Q1 ∪ . . . ∪Qi.
Consider the cell S′ ⊆ Ri computed by levelwise-scc(P∪Q, s). As that method
is correct, s ∈ S′ and P ∪ Q is sign-invariant over S′. By definition of sign-
invariance, this implies that P is sign-invariant over S′.

We show S = S′ to complete the proof: The polynomials in Qj do not impact
the computations of the levels j + 1, . . . , i, because Qj ∩ Pk = ∅ for each k ̸= j.
Thus, both levelwise-scc and apx-scc compute each level j only based on
P ∪

⋃i
k=j Qk. As their computations do not differ (apart from adding Qj), they

compute exactly the same intervals and projections. ⊓⊔

3.1 Incompleteness

Like levelwise-scc, our approach fails in the case of nullification and is thus
incomplete as a stand-alone procedure. However, one can detect nullification and
resort to a complete construction for that cell. More critically, the termination
of NLSAT is no longer guaranteed when using apx-scc for explanations.

Example 3 (Non-Termination). We continue Example 2. After excluding the
approximated cell from the search, NLSAT chooses a new value for y. This value
can lie between the auxiliary cell boundary and the root of p3, leading to the
sample s′ as shown in Figure 3a. Since s′ and s are in the same maximal sign-
invariant cell for p1, p2, p3, it leads to a conflict with the same constraints, and
thus apx-scc is called with the same polynomials. When computing the new
explanation, another auxiliary boundary is introduced between s′ and p3, and
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x1

x2

p2 p3p1
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s′

(a)

x1

p2 p3p1

s

s′
s′′

(b)

x1

p2 p3p1

s
s′
s′′

(c)

Fig. 3: Non-termination of NLSAT with under-approximating cells, as described
in Example 3. Figure (b) zooms in on the area between p3 and the approximation.

this behaviour repeats, leading to a sample s′′ as in Figure 3b. This can repeat
indefinitely, and NLSAT will run into the same conflict over and over, without
ever covering the entire search space. This behaviour cannot occur with the
original construction, as is illustrated in Figure 3c.

Note that NLSAT does not always run into this situation. It might also choose
samples that are further away, thus escaping the conflict. Thanks to the Boolean
structure of the formula, the remaining search space might still be covered by
approximated cells for other conflicts, which involve different sets of polynomials.

We can also express this with formal terms from [19]: the termination of
NLSAT relies on the fact that a finite basis explanation function is used. That is,
for every input formula φ, there is a finite set B(φ) ⊂ Q[x1, . . ., xn] such that in
all possible runs of NLSAT, all explanations use only polynomials from B. Since
there are runs of NLSAT for which our explanation produces infinitely many
different literals, apx-scc does not yield a finite basis explanation function.

Retaining Completeness. If we ensure that in every run of NLSAT, we add
only finitely many auxiliary polynomials, then termination is guaranteed again.
The reasoning is that there will be a point after which the output of apx-scc is
always equal to the original levelwise construction levelwise-scc. Since this is
a finite-basis explanation function, termination will be guaranteed.

Lemma 1 (Termination). A run of NLSAT using apx-scc terminates iff
apx-criteria(Pj , s[j]) returns true only finitely many times during that run.

To make use of this lemma, we provide additional information to apx-criteria,
like the number ncells of so far approximated cells. Then, apx-criteria could re-
turn false whenever ncells exceeds some fixed threshold, fulfilling the condition
from Lemma 1 and thus implying termination.

However, the optimal threshold will vary depending on the input formula. A
more flexible approach is to gradually strengthen the criteria as the number of
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approximated cells increases. For example, we only add a polynomial if a cell
boundary is defined by some p ∈ P with degxp

[j] ≥ c·ncells+d, where c, d ∈ Q≥0.
This avoids the behaviour from Example 3, since c · ncells + d eventually

exceeds the degree of the involved polynomials, but other cells with more expen-
sive resultants are still approximated. Importantly, this only ensures termination
because the added polynomials are linear; otherwise, the degrees of polynomials
derived in the construction could grow indefinitely, always fulfilling the criterion.

The guarantee may also be given by other criteria, e.g. using individual coun-
ters for the involved polynomials.

4 Variants

We now present several instantiations for apx-polys and apx-criteria. The
first three methods approximate a cell boundary: Given the sample s[j] and some
p ∈ P , whose root ξ would be a bound of Ij , we construct some p∗ with a root
c ∈ Q between sj and b := ξ(s[j−1]).

Simple Approach. At the beginning of Section 3, we already introduced the
idea of adding polynomials xj − c defining a constant bound c on xj . We now
elaborate on the choice of c. Although choosing c close to b restricts Ij less, it
may shrink the underlying cell depending on the shape of p’s variety. This can be
observed in Figure 3: the closer the approximate bound is to the actual bound,
the smaller becomes I1 (the interval for x1). It is thus not immediately clear what
to choose. More importantly, this approach can produce numbers c = num/den
with large bit size log(num)+log(den), causing significant overhead in operations
like substituting c into high-degree polynomials. Therefore, we choose c with a
minimal bit size using a method based on the Stern-Brocot tree [7,31].

The following two approaches try to provide better approximations of the
cell boundary, hoping to increase the cell’s quality for NLSAT.

Taylor. We want to construct p∗ so that its gradient at its root (s[j−1], c) is
equal to the gradient of p at its root r := (s[j−1], b):

p∗ =
∂p

∂xj
(r) · (xj − c) +

∑
k∈[j−1]

( ∂p

∂xk
(r) · (xk − sk)

)
This is a slight modification of the first-order Taylor expansion of p at r, the
difference being that the constant term p(r) is left out as it is always zero, and
that (xj − c) is used instead of (xj − rj) in the first term. This ensures that p∗
has its root at (s[j−1], c) instead of r. Now, clearly

p∗(s[j−1], c) = 0 and
∂p∗
∂xk

(s[j−1], c) =
∂p

∂xk
(r) for all k ∈ [j].

The idea is that the root functions of p and p∗ will behave similarly around
s[j−1], as illustrated in Figure 4a. The dashed line is the root of the tangent to
p3 at (sj−1, b), which is then shifted to pass through c.
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Unfortunately, if some sample coordinate sk is irrational, then (1) we cannot
use the term (xk−sk), since we require rational coefficients, and (2) the gradients
∂p/∂xk(r) are harder to compute and might also be irrational. We tackle (1) by
omitting the summand corresponding to xk for the k where sk is irrational,
and (2) by finding rational approximations of the gradients: Each (irrational)
algebraic number can be isolated using an open interval containing a single root
of its defining polynomial; this interval can be refined arbitrarily by bisection.
For k ∈ [j], let gk ≈ ∂p/∂xk(r) be a rational approximation, then we get

p∗ = gj · (xj − c) +
∑

k∈[j−1] s.t. sk∈Q

(
gk · (xk − sk)

)
Both mitigations harm the quality of the approximation, as some gradients

are only approximately equal, or not counted in at all.

Piecewise Linear. Instead of approximating the boundary at a single point,
we can use piecewise linear interpolation. For this purpose, we determine an
interval D ⊆ R around sj−1 so that p is delineable over

{s[j−2]} ×D = {(s[j−2], s
′) ∈ Rj−1 | s′ ∈ D} ⊆ Rj−1,

i.e. discxj
[p] and certain coefficients of p are sign-invariant over that set. We now

know that ξ is a total continuous function over {s[j−2]}×D, which is needed for
deriving a meaningful interpolation.

We then choose k ∈ N support points d1 < . . . < dk from D such that
sj−1 ∈ {d1, . . . , dk}, and for each ℓ ∈ [k] we compute the value ξ((s[j−2], dℓ))
of the root function at that support point (in practice, we only isolate it in
a rational interval). Each of those values is under-approximated by choosing a
value d′ℓ ∈ Q “close” to the boundary ξ((s[j−2], dℓ)) such that (s[j−2], dℓ, d

′
ℓ) ∈ Rj

is inside the cell. We require that one support point dℓ is equal to sj−1, because
this guarantees that (s[j−2], dℓ, d

′
ℓ) (for this particular ℓ) is between the bound

and the sample point.
The approximate bound then consists of k − 1 pieces, which connect the

points {(s[j−2], dℓ, d
′
ℓ) ∈ Rj | ℓ ∈ [k]} and which are defined by the roots of

p
(ℓ)
∗ := (dℓ+1 − dℓ)(xj − d′ℓ)− (d′ℓ+1 − d′ℓ)(xj−1 − dℓ), ℓ ∈ [k − 1].

That is, p∗ is a piecewise function so that for r ∈ Rj holds p∗(r) = p
(ℓ)
∗ (r) if

dℓ ≤ r ≤ dℓ+1 (or ℓ = k if dk ≤ r). We can encode this function by a minimum
over maximum of linear functions as described in [33,32], and thus derive an QF-
NRA formula. Further, we can adapt the subsequent cell construction to handle
such compound interval bounds by using the techniques described in [26]: We
compute the resultant of each p

(ℓ)
∗ with the polynomials below or above the

interval and filter out roots of the resultants witnessing spurious intersections.
This approach is illustrated in Figure 4b where the intersections with the dashed
lines are filtered out.
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Fig. 4: Variants of the modified construction: (a) using Taylor expansion, (b)
using piecewise linear bounds, and (c) adding roots outside the cell.

There are two cases where we cannot apply this approach (and thus need to
apply e.g. the simple approach): (1) Like the Taylor approach, if sj−1 is irrational,
we cannot construct p∗, because sj−1 = dℓ for some ℓ ∈ [k], and thus we cannot
use the term xj−1 − dℓ. (2) If D = {sj−1}, i.e. D contains only one point, we
cannot choose more than one support point. However, at least two points are
needed to construct one piece of the approximate boundary. This case happens
e.g. when the discriminant of p (the original boundary-defining polynomial) has
a root ξdisc at s[j−1], which means that the next level will collapse to a section
Ij−1 = (xj−1 = ξdisc) anyway and the behaviour of p∗ around the sample does
not matter as much.

Roots Outside the Cell. We could also introduce polynomials p∗ with a root
function ξ∗ between the cell boundary ξ and some other root ξ′ outside the cell.
Instead of resxj

[ξ.p, ξ′.p], we compute resxj
[ξ.p, p∗] and resxj

[p∗, ξ′.p] and then
use transitivity, which may simplify the projection. While this has the advantage
of leaving the top level Ii unchanged, the underlying cell may still be restricted
by the new resultants. This is illustrated in Figure 4c.

Approximation Criteria. In addition to varying the way how auxiliary poly-
nomials are computed, we can also adapt when they are computed, by using
different instantiations of apx-criteria.

As our goal is to avoid expensive resultant computations, we are interested
in quantities which influence the resultant complexity on the current level. A
simple (yet effective in practice) criterion depends on the degree of the boundary-
defining polynomial p ∈ Q[x1, . . ., xi]: the bound is approximated if degxi

[p]
exceeds a fixed threshold. This has some limitations: (1) It can happen that
levelwise-scc would not compute any (expensive) resultants with p, but this
criterion would still advise inserting auxiliary polynomials. While this defeats
the purpose of avoiding expensive resultants, it is not completely useless as it
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still simplifies the cell description. (2) Different thresholds will be optimal for
different kinds of input problems, and it is not easy to guess a good one a priori.

Addressing the first issue, one can additionally check whether a resultant of
p with another nonlinear polynomial would be computed. However, this did not
improve the performance in our preliminary experiments. The second issue is
(partially) addressed with the dynamic termination criterion from Section 3.1,
where the threshold for the degree grows with the number of approximated cells.

Instead of the degree degxi
[p], we might also consider similar measures, e.g.

the sum-of-total-degrees of p’s monomials, which has been used for CAD projec-
tion orderings [15].

Transfer to CAlC. Similar to NLSAT, the cylindrical algebraic covering (CAlC)
method [1,27] tries to extend a partial assignment s ∈ Ri to a full model. It uses
the same theoretical framework as the levelwise construction to derive symbolic
intervals to be excluded from the search. In particular, it also ensures that certain
root functions ξ, ξ′ do not intersect by making resxi+1

[ξ.p, ξ′.p] order-invariant.
We can apply our technique and dynamically introduce a polynomial with a root
between ξ, ξ′, replacing an expensive resultant by two simpler ones, but shrinking
the underlying cell. This will introduce similar issues regarding termination,
which can be solved in similar ways as presented above for SCC.

5 Experiments

We implemented several variants of our approach in the SMT-RAT solver [12,30],
allowing us to use its existing implementations of the levelwise SCC and NLSAT.
SMT-RAT also uses explanation backends based on the Fourier-Motzkin variable
elimination (FM) [18], interval constraint propagation (ICP) [20], and virtual
substitution (VS) [2], which are fast, but may fail to provide an explanation,
especially for polynomials of degree 3 or higher. The backends are called sequen-
tially (FM, ICP, VS, SCC), so that the single cell construction is only needed
when all other backends fail. We compare the following variants for SCC:

Baseline: The original levelwise SCC.
Simple-j: For j ∈ {3, 4, 5, 6}, cell bounds defined by polynomials of degree

j or higher are approximated by simple polynomials of the form xj − c.
Termination is ensured by limiting the number of approximated cells to 50.

Simple-*: a virtual best portfolio of the Simple-j variants.
Dynamic: Uses the dynamic termination criterion from Section 3.1. A cell bound

is approximated by a simple polynomial of the form xj − c, if the defining
polynomial has degree higher than or equal to 1/5 · ncells + 3, where ncells is
the number of so far approximated cells.

Taylor: Like Dynamic, but using Taylor approximations as in Section 4.
PWL-j: For j ∈ {2, 4, 6}, like Dynamic, but using piecewise linear approximations

with j pieces, as presented in Section 4.
PWL-*: a virtual best portfolio of the PWL-j variants.
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Outside: If the lower (resp. upper) cell bound and another root function below
(resp. above) that bound are defined by two non-linear polynomials, one of
which fulfils the dynamic criterion, then we add a polynomial (of the form
xj − c) whose root lies outside the cell, between the bound and the other
root, as explained in Section 4.

Moreover, we also compare to the state-of-the-art cvc5 [14] solver (version 1.2.1),
which uses incremental linearization and cylindrical algebraic coverings.

We used the QF-NRA benchmark set from SMT-LIB [3], but only consider
the 1684 instances where SMT-RAT calls SCC at least once, since there is no
difference between the variants on the other instances. The tests were conducted
on identical Intel®Xeon®8468 Sapphire CPUs with 2.1 GHz per core, with a
time limit of 1 minute and memory limit of 4GB per instance.

The results are summarized in Figure 5. While cvc5 usually solves more
instances than SMT-RAT on the entire QF-NRA set, already the Baseline solver
outperforms cvc5 on our restricted benchmark set.

Simple Approximations. Already the Simple-j variants solve around 45 in-
stances more than Baseline. However, these variants excel (partly) on different
instances: the virtual portfolio Simple-* solves at least 18 instances more than
each Simple-j variant.

Dynamic almost matches this performance, solving 58 instances more than
Baseline, and it is in fact the best (non-portfolio) variant in our tests. Inter-
estingly, the differences in solved satisfiable instances and unsatisfiable instances
are almost equal (30 more satisfiable, 28 more unsatisfiable). This suggests that
our explanations can not only help NLSAT find a model more quickly, but the
Boolean structure of the unsatisfiable problems often still allows to cover the
search space with the under-approximated cells.
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Fig. 5: Performance profile. The purple area covers all PWL-j variants, the green
area covers all Simple-j variants.
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Figure 6 shows a more detailed comparison between Dynamic and Baseline.
Looking at the running times, Dynamic can solve many instances within one
second, for which Baseline needs multiple seconds or even times out. On the
other hand, there are very few instances on which Dynamic is significantly slower,
even though the number of SCC calls is usually much higher. This is expected:
the approximated cells can be computed faster, but they cover less of the search
space. Moreover, our approach often significantly reduces the maximum degree
of any computed resultant. However, we did not find a clear reduction of degrees
of discriminants and coefficients.

Other Variants The Taylor and PWL-j variants performed slightly better than
Baseline, but worse than the simple approximations. It seems that the induced
overhead outweighs potential benefits of better approximations. In particular,
our investigations often showed large bit sizes of the rational coefficients in the
auxiliary polynomials and their resultants. Another reason could be that the
cell representation is less convenient, which is supported by the underwhelming
performance of Outside, which solves fewer instances than Baseline. While it
does avoid some resultants like the other variants, it does not simplify the cell
representation. Accordingly, this seems to be a significant factor.

Transfer to the CAlC Method. We also tested our modification in the context of
the cylindrical algebraic covering (CAlC) method [27], which is implemented in
SMT-RAT as well. Now considering all 12154 instances of the QF_NRA bench-
mark set, there is no significant difference between the baseline CAlC implemen-
tation (solving 9964 instances) and our modification (solving 9975 instances).
Once again, this might indicate that NLSAT especially benefits from simpler cell
descriptions (which are not used in CAlC) and from compensating smaller cells
by Boolean reasoning.

A Note on Non-Termination. In Section 3.1, we showed that our approach can
lead to non-termination with some sort of “looping” behaviour and presented
ways to combat this. Naturally, it would be interesting to know how often this
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occurs in practice. As it is quite hard to reliably detect this behaviour, we have
no concrete data. However, when turning off the limit on approximated cells, the
Simple-j variants time out significantly more often (solving around 40 instances
less than with the limit), hinting at the importance of our termination criteria.
However, there are other influences in practice: When sampling new values, SMT-
RAT prioritizes simple numbers, e.g. integers over rational numbers, and thus
even the variants without the hard bound might (temporarily) escape looping
when the gap between the actual cell boundary and the approximation becomes
small. Then it may still time out in other parts of the computation or get caught
in another loop.

6 Conclusions

We modified the levelwise single cell construction for NLSAT and CAlC by
dynamically inserting linear polynomials into the projection to avoid expen-
sive high-degree polynomials in resultant computations and description of the
resulting cell, at the cost of smaller cells - which are unterstood as “under-
approximations”. We introduced various variants to introduce such polynomials,
as well as criteria to mitigate potential non-termination of NLSAT and CAlC.

In our experiments, our approach could significantly improve the running
time of NLSAT. Interesingly, relatively simple under-aproximations performed
best, while more complex approximations did not pay off, suggesting that the
gains are mainly due to simpler root isolation in NLSAT.

There are several directions for further research: Firstly, we conjecture that
more intricate variants of apx-criteria may further improve efficiency. This is
not an easy task: In experiments not presented here, various other approaches
based e.g. on the sum-of-total-degrees of the polynomials or involving the de-
grees of all polynomials on a level did not yield better results. Secondly, our
approach can only reduce computational effort for resultants, but not yet for
discriminants, which have an even greater impact. Thirdly, the basic modifica-
tion of the CAlC method had little impact, which might be improved. Finally,
we guarantee termination of NLSAT by resorting to the original levelwise con-
struction at some point. Alternatively, we may consider δ-completeness instead,
as done e.g. in [16,6], and cover cells up to some precision δ.

Data Availability. Our implementation, experimental results, and tools for
reproducing them are available at https://doi.org/10.5281/zenodo.14916587.
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