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Abstract. The cylindrical algebraic decomposition (CAD) is currently
the only complete method used in practise for answering questions about
real algebra, despite its doubly exponential complexity. Recently, some
novel algorithms like NLSAT, CAlC and NuCAD for satisfiability check-
ing respectively quantifier elimination have been proposed, which build
on the CAD idea to generalize a sample point to a connected set (cell)
of points that share certain properties with the sample. This process is
called single cell construction. In this paper, we adapt this method to
potentially generate bigger cells by detecting that certain adjacent cells
maintain those relevant invariance properties. For formalizing the result-
ing algorithm in this paper, we generalize the notion of delineability to
local delineability. An experimental evaluation of a first implementation
in NLSAT is provided.

1 Introduction

The cylindrical algebraic decomposition (CAD) method [5] answers certain ques-
tions about real algebraic formulas. Despite its doubly exponential complexity, it
is currently still the only complete method used in practise. Applications include
quantifier elimination - as implemented in QEPCAD, Redlog and a range of com-
mercial tools - and satisfiability-modulo-theories (SMT) solving for the theory of
non-linear arithmetic - as implemented in z3, cvc5, yices2, and SMT-RAT.

The CADmethod decomposes the real space into finitely many connected sets
(called cells) such that certain properties of the input polynomials are invariant
in each of these sets. Computing such decompositions is expensive and is often
finer than needed for answering the desired question. Modern algorithms such
as NLSAT [6], CAlC [1, 7] and NuCAD compute only a sequence of coarser de-
compositions, heuristically reducing the computational effort. These algorithms
essentially use a single cell construction algorithm (first introduced in [6], ex-
tended in [4, 10]), which is based on the CAD idea and computes a single cell
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that maintains some properties of some polynomials and contains a given sample
point.

These algorithms are more efficient than using a full CAD for two reasons:
Firstly, during single cell construction, we can identify which parts of the CAD
projection polynomials are relevant to the current cell, thus reduce the compu-
tational effort by avoiding expensive computations. Secondly, these algorithms
exploit the Boolean structure from the input formula and sign conditions on
the polynomials to determine which parts of the search space need to be ex-
cluded by the single cell construction. Larger cells facilitate these mechanisms,
as they exclude larger parts of the search space. Further, for some applications
like quantifier elimination, not only the efficient computation is relevant, but
also the quality of the computed results; larger cells may reflect the problem’s
structure better and thus be more useful to the user.

Existing single cell construction algorithms already compute cells that are
the merger of adjacent cells computed by a CAD by reducing the amount of
projection polynomials. This paper carries these ideas forward, and merges ad-
jacent cells based on the shape of the varieties. Since the early years of CAD,
there is the idea of determining adjacencies of cells (also from different cylin-
ders) and clustering, where the number of samples during lifting is reduced. We
clarify that in this paper, we only consider adjacencies in the same cylinder. We
thus use the term merging to distinguish our approach from clustering.

Contribution. We extend the levelwise single cell construction presented in [10],
which we introduce in the preliminaries in Section 2. In Section 3, we present
our idea and how to detect computationally the cells that can be merged. In Sec-
tion 4, we formalize these ideas by introducing a new notion of local delineability
and give the necessary theorems for computing the projection. Afterwards, we
further refine these ideas in Section 5. Finally, we provide an experimental eval-
uation of our first implementation in the context of NLSAT in Section 6 and
conclude in Section 7.

2 Preliminaries

We briefly introduce our notation and refer to the preliminaries of [10] for details.
Let N, N>0, Q, and R denote the set of all natural (incl. 0), positive integer,

rational, and reals numbers respectively. For i, j ∈ N with i < j, we define
[i..j] = {i, . . . , j} and [i] = [0..i]. For i, j ∈ N>0, j ≤ i and r ∈ Ri, we denote by
rj the j-th component of r and by r[j] the vector (r1, . . . , rj). Let f, g : D → E
and let < be a total order on E. We write f < g if f(d) < g(d) for all d ∈ D and
f ≤ g if f(d) ≤ g(d) for all d ∈ D.

We work with the variables x1, . . . , xn with n ∈ N>0 under a fixed ordering
x1 ≺ x2 ≺ ... ≺ xn. A polynomial is built from a set of variables and numbers
from Q using addition and multiplication. We use Q[x1, . . . , xi] to denote multi-
variate polynomials in those variables. A polynomial p is of level j (level(p) = j)
if xj is the largest variable in p with non-zero coefficient.
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Let i ∈ [n] and p, q ∈ Q[x1, . . . , xi] of level i. For j ∈ [1..i] and r =
(r1, . . . , rj) ∈ Rj we write p(r, xj+1, . . . , xi) for the polynomial p after substi-
tuting r1, . . . , rj for x1, . . . , xj in p and indicating the remaining free variables
in p. We use realRoots(p) ⊆ Ri to denote the set of real roots of p, degxj

(p) to
denote the degree of p in xj , coeffxj

(p) the set of coefficients of p in xj , ldcfxj
(p)

the leading coefficient of p in xj , factors(p) to denote the irreducible factors of
p, discxj

(p) to denote the discriminant of p with respect to xj , and resxj
(p, q)

to denote the resultant of p and q with respect to xj . Let r ∈ Ri−1 then p is
nullified on r if p(r, xi) = 0.

A constraint p ∼ 0 compares a polynomial p ∈ Q[x1, . . . , xi] to zero using
a relation symbol ∼∈ {=, ̸=, <,>,≤,≥}, and has the solution set {r ∈ Ri |
p(r) ∼ 0}. A subset of Ri for some i ∈ [n] is called semi-algebraic if it is the
solution set of a Boolean combination of polynomial constraints. A cell is a non-
empty connected subset of Ri for some i ∈ [n]. A polynomial p ∈ Q[x1, . . . , xi]
is sign-invariant on a set R ⊆ Ri if the sign of p(r) is the same for all r ∈ R.

Given i, j ∈ N>0 with j < i, we define the projection of a set R ⊆ Ri onto Rj

by R ↓[j]= {(r1, . . . , rj) | ∃rj+1, . . . , ri. (r1, . . . , ri) ∈ R}. Given a cell R ⊆ Ri,
i ∈ [1..n] and continuous functions f, g : R→ R, we define the cells R× (f, g) =
{(r, ri+1) | r ∈ R, ri+1 ∈ (f(r), g(r))} (R× (−∞, g), R× (f,∞) analogously).

An i-dimensional (analytic) submanifold of Rn is a non-empty subset R ⊆ Rn

that “looks locally like Ri”. Given an open subset U ⊆ Ri, a function f : U → R
is called analytic if it has a multiple power series representation around each
point of U . Given an i-dimensional submanifold R of Rn, a function f : R → R
is called analytic if for all r ∈ R, R looks locally like Ri with respect to a
coordinate system about r and f looks locally like an analytic function Ri → R.
Let p ∈ Q[x1, . . . , xn] be a polynomial and r ∈ Rn be a point. Then the order
ordr(p) of p at r is defined as the minimum k such that some partial derivative
of total order k of p does not vanish at r (and ∞ if all vanish). We call p order-
invariant on R ⊆ Rn if ordr(p) = ordr′(p) for all r, r

′ ∈ R. For details, we refer
to [8].

2.1 Cylindrical Algebraic Decomposition, McCallum’s Projection
and Levelwise Single Cell Construction

We give a short reminder of the cylindrical algebraic decomposition (CAD) [5]
and the projection operator by McCallum [8, 9]: A CAD is a decomposition C of
Rn such that each cell R ∈ C is semi-algebraic and locally cylindrical - i.e. can be
described as solution set of ψ1(x1)∧ψ2(x1, x2)∧ψn(x1, . . . , xn) where ψi is either
xi = θ(x1, . . . , xi−1), θl(x1, . . . , xi−1) < xi < θu(x1, . . . , xi−1), θl(x1, . . . , xi−1) <
xi, or xi < θu(x1, . . . , xi−1) for some continuous functions θ, θl, θu - and C is
cylindrically arranged - i.e. either n = 1 or {R ↓n−1| R ∈ C} is a cylindrically
arranged decomposition of Rn−1. The shape of such a CAD allows reasoning
about properties of (sets of) polynomials computationally. In particular, it is
called sign-invariant for a set of polynomials P ⊆ Q[x1, . . . , xn] if each p ∈
P is sign-invariant on each R ∈ C. A sign-invariant CAD for P is computed
recursively, i.e. to describe the cells’ boundaries for xn, we first compute the
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underlying decomposition by a projection operation resulting in a set P ′ ⊆
Q[x1, . . . , xn−1] whose sign-invariant CAD will describe the first n−1 dimensions
of the cells of the sign-invariant CAD of P . The single cell construction [4, 10]
method computes, given a set of polynomials P ⊆ Q[x1, . . . , xn] and a sample
point s ∈ Rn, a locally cylindrical cell R ⊆ Rn such that s ∈ Rn and such that
P is sign-invariant on R. In the rest of this section, we give a brief introduction
to the levelwise method [10] and the required CAD theory.

Delineability. A central notion states that the variety of a polynomial can be
described by continuous functions which are nicely ordered over a given cell.
This allows us to reason about the polynomial’s roots using these functions.

Definition 1 (Delineability [5, 9]). Let i ∈ N, R ⊆ Ri be a cell, and p ∈
Q[x1, . . . , xi+1] \ {0}. The polynomial p is called delineable on R if and only if
there exist finitely many continuous functions θ1, . . . , θk : R → R (for k ≥ 0)
such that

– θ1 < . . . < θk;
– the set of real roots of p(r, xi+1) is {θ1(r), . . . , θk(r)} for all r ∈ R; and
– there exist constants m1, . . . ,mk ∈ N>0 such that for all r ∈ R and all
j ∈ [1..k], the multiplicity of the root θj(r) of p(r, xi+1) is mj.

The θj are called real root functions of p on R. The sets R × θj are called
sections of p over R. The cells in R × R minus these sections are called sectors
of p over R.

Analytic delineability is defined like delineability, but the underlying cell is
required to be a connected analytic submanifold and the real root functions are
required to be analytic. △

In particular, if a polynomial is delineable on some cell, then we can refer to
each root function by an index. Let i ∈ N, p ∈ Q[x1, . . . , xi+1], level(p) = i+ 1,
and j ∈ N>0. An indexed root is a partial function rootxi+1

[p, j] : Ri ↪→ R
that maps s ∈ Ri to the j-th real root of p(s, xi+1) if it exists. Given a cell
R ⊆ Ri where p is delineable, then rootxi+1 [p, j] coincides with the root function
θj from the above definition on R; to simplify notation, we use both notions
interchangeably when R is clear from the context. Let θ denote the above indexed
root, then θ.p and θ.j refer to p and j respectively. We denote the set of indexed
roots of p that are defined at s ∈ Ri by irExpr(p, s); we define this set analogously
for sets of polynomials as well.

The following theorem gives a projection to obtain a cell where a polynomial
is delineable:

Theorem 1 (Delineability of a Single Polynomial [9, Theorem 2], [3,
Theorem 3.1]). Let i ∈ N, R ⊆ Ri be a connected analytic submanifold,
and p ∈ Q[x1, . . . , xi+1], level(p) = i + 1 be irreducible. Assume that p is not
nullified at any point in R, discxi+1

(p) is order-invariant on R, and ldcfxi+1
(p)

is sign-invariant on R.
Then p is analytically delineable on R and is order-invariant on its sections

over R. △
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Root Orderings. Once we can describe the roots of individual polynomials by
ordered root functions on the underlying cell, we can reason about intersections
of root functions from different polynomials, e.g. ensure that two root functions
remain in the same order on the underlying cell.

Theorem 2 (Lifting of Pairs of Polynomials [10, Theorem A.1]). Let
i ∈ N, R ⊆ Ri be a connected analytic submanifold, s ∈ R, and p1, p2 ∈
Q[x1, . . . , xi+1] be irreducible and coprime such that level(p1) = level(p2) = i+1.
Assume that p1 and p2 are analytically delineable on R and resxi+1

(p1, p2) is
order-invariant on R.

Let θ1, θ2 : R → R be real root functions of p1 and p2 on R respectively, and
∼∈ {<,=} such that θ1(s) ∼ θ2(s). Then θ1 ∼ θ2 on R. △

In fact, to maintain that two real root functions θ1 and θ2 stay in the same
order on R, we could also exploit transitivity, e.g. θ1 < θ3 on R and θ3 < θ2
on R implies θ1 < θ2 on R. The work in [10] generalizes this idea to orderings
in a set of root functions. This allows for flexibility in the choice of resultants
which we compute to maintain certain invariance properties, potentially avoiding
the computation of expensive resultants. For this paper, we do not consider
exploiting transitivity, although everything can be extended accordingly.

Single Cell Construction. The idea is, given polynomials P ⊆ Q[x1, . . . , xn] and
a sample s ∈ Ri, we compute and sort the real roots of p(s[i−1], xi), p ∈ P . We
determine the greatest root below (or equal to) si and the smallest root above
(or equal to) si (if they do not exist, we use −∞ and ∞ respectively). Let θl
and θu be the corresponding real root functions respectively. To describe a sign-
invariant cell for P , the bounds on xi are described by the symbolic interval (of
level i) (θl, θu) (whose bounds depend on x1, . . . , x[i−1]) if θl(s[i−1]) < θu(s[i−1])
and [θl, θu] if θl(s[i−1]) = θu(s[i−1]). We use I.l and I.u to refer to θl and θu
respectively. We define R × I as R × (θl, θu) (first case) or R × θl.l (second
case). The idea is now to use root orderings to make sure that each p ∈ P is
sign-invariant in the interval:

Theorem 3 (Root Ordering for Sign Invariance). Let i ∈ N, R ⊆ Ri

be connected, p ∈ Q[x1, . . . , xi+1] be irreducible such that level(p) = i + 1, I be
a symbolic interval of level i + 1. Assume that p, I.l.p, I.u.p (if defined) are
analytically delineable on R, and that for each real root function θ of p on R it
holds

– if I = (I.l, I.u), then either I.l ̸= −∞ and θ ∼ I.l on R for some ∼∈ {<,=},
or I.u ̸= −∞ and I.u ∼ θ on R for some ∼∈ {<,=};

– if I = [I.l, I.u] with I.l = I.u, then either θ < I.l on R, I.u < θ on R, or
θ = I.l = I.u on R.

Then p is sign-invariant on R× I. △

We can compute witnesses for the real root functions of p on R by computing
the set irExpr(p, s[i−1]). This set covers all roots of p that might appear on R if
p is delineable on R. This results in the abstract algorithm in Algorithm 1.



6 J. Nalbach and E. Ábrahám

Algorithm 1: single cell construction(P,s)

Input : finite P ⊂ Q[x1, . . . , xn], s ∈ Rn

Output: Symbolic intervals I1, . . . , In for x1, . . . , xn describing a
sign-invariant cell for P containing s

1 foreach i = n, . . . , 1 do
2 Pi := {p ∈ P | level(p) = i}, P := P \ Pi

3 {θ1, . . . , θk} := irExpr(Pi, s[i−1]) such that θ1(s[i−1]) ≤ . . . ≤ θk(s[i−1])
// Determine symbolic interval

4 if si = θj(s[i−1]) for some j then Ii := [θj , θj ]
5 else if θj(s[i−1]) < si < θj+1(s[i−1]) for some j then Ii := (θj , θj+1)
6 else if si < θ1(s[i−1]) for some j then Ii := (−∞, θ1)
7 else if θk(s[i−1]) < si for some j then Ii := (θk,∞)
8 else Ii := (−∞,∞)
9 foreach p ∈ Pi do

// Ensure order invariance for each polynomial

10 if p(s[i−1], xi) = 0 then return FAIL
11 add some c ∈ coeffxi(p) to P such that c(s) ̸= 0
12 add polynomials to P s.t. p is delineable and order-invariant in its

sections according to Theorem 1
13 add polynomials to P s.t. p is sign-inv. acc. to Theorems 2 and 3

14 add polynomials to P s.t. Ii.l < Ii.u according to Theorem 2

15 return I1, . . . , In

Note that in Line 10, the algorithm might fail, as McCallum’s projection
operator cannot reason about cells where a polynomial is nullified. In Line 11,
we add additional coefficients that prevent polynomials from nullification on the
constructed underlying cell, for which we refer to [10]. Further, we recall that the
constructed call is an analytic submanifold as it is bounded by root functions.
Line 13 ensures the connectedness of the cell.

3 Detecting “Irrelevant” Roots

Our main contribution in this work is to merge adjacent cells during single cell
construction by ignoring root functions when determining the symbolic interval
describing the bounds on some variable. For that we identify which roots are
“irrelevant”. Before we formally define what we mean by this, we illustrate the
ideas by some examples.

Example 1. Consider the polynomials p1 = x22+x
2
3−1 and p2 = −1.25+x2+x3

and the sample s = (0,−1.125), whose real roots are depicted in Figure 1 (note
that we do not use x1 here yet, the example is two-dimensional). The single cell
algorithm would produce a cell where the x3-dimension is bounded from above by
the first root of p1. We make sure it is well-defined by adding the discriminant
p4 of p1. To maintain that no root of p2 crosses this upper bound over the
underlying cell, we add the resultant p5 of p1 and p2 to the projection; speaking
in terms of properties, we maintain the ordering rootx2

[p1, 1] < rootx2
[p2, 1] on
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p1

p2

s

x
3

p4 p4p5

x2
Fig. 1: First example. The intersections of the real roots of p1 and p2 (marked
with red circles) are irrelevant for constructing the cell around s. Thus, instead
of the smaller cell (shaded in darker colour) bounded from above by a root of
the resultant p5 in the x2-dimension, we could obtain the wider cell (shaded in
lighter colour) bounded from above by the discriminant p4 in the x2-dimension.

the one-dimensional cell. Now, for the x2-dimension, the cell will be bounded
from above by a root of p5. However, both roots of the resultant mark points
where p2 intersects the second root of p1, thus these intersections would not affect
sign-invariance of the constructed cell - they are irrelevant to the constructed cell.
In this example, we thus could ignore the roots of p5, yielding a much larger cell.
Computationally, we need to check for every root s2 ∈ R of p5 whether the first
root of p1(s2, x3) is smaller than the first root of p2(s2, x3) - the computations
refer to the correct roots as p2 is delineable on R and p1 is delineable on an
interval containing the sample point and the two roots of the resultant (and
thus the roots can be indexed consistently over that interval).

In fact, to describe the same set of points, the single cell would need to
compute 5 cells (all upper bounded by the first root of p1 in the x3-dimension,
and in the x2-dimension bounded by the point intervals defined by the roots of
p5, and the three open intervals between the roots of p4 and p5 respectively).
Thus, by ignoring roots of the resultant, we merge adjacent cells.

Now consider the modified polynomials p1 = x22+x
2
3−1 and p2 = x1+x2+x3

and the sample s = (−1.25, 0,−1.125). The circle p1 becomes a cylinder aligned
with the x1-axis, and the line gets a plane which is not parallel to any axis. Five
cuts of this example and its projection are depicted in Figure 2.

Consider the third cut at x1 = −1.25, where the sample point lies. In fact, the
situation is the same as in Figure 1, thus we can determine irrelevant intersections
analogously to obtain a larger cell. However, note that we cannot ignore the
corresponding roots of the resultant p5 completely: consider the cut at 0, where
the intersection became relevant, i.e. if we would not bound the cell in the x1-
dimension properly, then the cell is not sign-invariant any more. The intuitive
reason is that at x1 = −1, the second root of the resultant p5 switches from
an intersection of p2 with the second root of p1 to an intersection with the first
root of p1, which describes the upper bound in the x3-dimension. This point is
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x1 = −0

p1

p2

x2

x
3

x1 = −1

p1

p2

x2

x
3

x1 = −1.25

p1

p2

x2

x
3

x1 = −1.41

p1

p2

x2

x
3

x1 = −1.82

p1

p2

x2

x
3

x1

x2

p4
p4

p5

p6
p7

p6
p7

Fig. 2: First example, extended by another dimension. The five coordinate sys-
tems at the top left depict x1-cuts. The two-dimensional coordinate system at the
bottom depicts the CAD-projection in the x1-x2-plane, and the one-dimensional
coordinate system depicts the CAD projection on the x1-line. On all coordinate
systems: the smaller cell is shaded in darker colour, the larger cell is shaded in
lighter colour, the point is the sample.

caught by the intersection of the resultant p5 with the discriminant p4 of p1, i.e.
we need to bound the cell in x1-dimension by the root of the resultant p7 of p4
and p5. For similar reasons, we need to take the discriminant p6 of the resultant
p5 into account in general.

The reason why we catch everything “bad” that can happen is: The sections
of the resultant p5 of p1 and p2 are well-ordered between the roots of the dis-
criminant p4 of p1 - i.e. the variety of p5 and p4 can be described by continuous
functions θ1 < θ2 < θ3 < θ4 on the interval between the corresponding roots of
p6 and p7. Thus, the sections θ2 and θ3 mark the points where the same roots
of p1 and p2 intersect. These intersections are relevant at the current sample
point (which we can check computationally as described above) if and only if
these intersections are relevant everywhere above these sections. We will later
define a property called local delineability that generalizes the well-ordering of
the sections of the resultants and discriminants. △

Example 2. Consider the same set of polynomials, now with the sample s =
(0, 0,−1.125).

As depicted in Figure 3, only a single intersection of p1 and p2 is irrelevant
to the cell (we maintain the ordering rootx2

[p1, 1] < rootx2
[p2, 1]). Still, we can
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x1 = 1

p1

p2

x2

x
3

x1 = 0

p1

p2

x2

x
3

x1 = −1

p1

p2

x2

x
3

x1

x2

p4
p4

p5

p6
p7

p6
p7

Fig. 3: First example, different sample point.

merge three adjacent cells (which are in the same cylinder). As the second root
of the resultant p5 witnesses the non-irrelevant intersection, it defines the upper
bound in the x2-dimension of the cell. △

Before we formally define what local delineability is, we examine a second
example hinting an even more general observation:

Example 3. Consider the sample point (−0.5, 0,−1.125), the set of polynomials
{p1, p2, p3} and its projection polynomials:

p1 = x22 + x23 − 1 p2 = x3 + 0.75 p3 = x1 − x3

p4 = discx3
(p1) p5 = resx3

(p1, p3) p6 = resx3
(p1, p2)

p7 = discx2
(p5) p8 = resx2

(p5, p6) p9 = resx2
(p6, p4)

As in the previous examples, we depict some cuts and the projection in
Figure 4. Observe that the original cell is bounded by the iterated resultant p8,
i.e. over its roots, the intersections of p3 with p1 and p2 with p1 intersect. For
the cell to be constructed around the given sample point, this intersection is not
relevant to our cell1, as p3 intersects with the second root of p1, while the first
root of p1 defines the upper bound in the x3-dimension (that is, we maintain
the ordering rootx2

[p1, 1] < rootx2
[p2, 1] and rootx2

[p1, 1] < rootx2
[p3, 1] on the

two-dimensional cell). We can thus extend the cell beyond the root of p8.
Now observe that the variety of the resultant p5 of p1 and p2 and the dis-

criminant p4 of p1 in the larger underlying two-dimensional cell is not described
by well-ordered continuous functions - but it is over some larger cell (in the same
cylinder over the one-dimensional cell). In this case, to maintain the mentioned
local delineability property, we only need the discriminant p7 of p5, the resultant
of p6 and p4 (which is trivial), and the resultant p9 of p5 with p4 - we do not
even need to compute the iterated resultant p8 at all! In contrast to the previous
example, the number of computed projection polynomials is reduced. △

1 If we would construct a cell at (0.5, 0,−1.125), this intersection of intersections would
be relevant to the cell.
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x1 = 0.5
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x1 = 0

p1

p2

p3

x2
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3

x1 = −0.5

p1

p2

p3

x2

x
3

x1 = −0.75

p1

p2

p3

x2

x
3

x1 = −1

p1
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p3

x2
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3
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p4p4
p5

p6p6

p7

p7

p8

p8

p9

Fig. 4: Second example. In the hatched cell, the roots of p4 and p5 are well-
ordered.

4 Local Delineability and Modified Projection

In the previous section, we developed ideas for an adaption of Algorithm 1 for
detecting and generalizing irrelevant roots. We will extend the set P of projection
polynomials for pairs of indexed roots whose order needs to be maintained; that
is, instead of adding projection polynomials directly in Line 13, we add pairs of
root functions that ensure order-invariance of the given polynomial. Analogously
to polynomials, pairs of root functions are processed using theorems analogous
to Theorems 1 and 2 which we introduce in this section.

Processing a pair of root functions involves the following steps: (1) We check
over which roots of the resultant of the defining polynomials the root functions
intersect. (2) We ensure that the respective resultant is locally delineable in the
underlying cell, that is, its root functions do not intersect in the underlying cell.
This establishes a correspondence between the intersections of the root functions
and the resultant’s sections. (3) We merge the adjacent sectors with a resultant’s
section when the root functions do not intersect above the section (i.e. the test
from step (1) fails).

To elaborate step (1): Assume two root functions θ1 and θ2 of two polynomials
p1 and p2, both of level i + 1. Remind their representation as indexed root
expressions: If p1 and p2 are delineable over some cell, the index of their roots
is invariant, i.e. the indexed root will refer to the same root function. We thus
determine the interval I such that p1 and p2 are delineable on s[i−1] × I by
computing the required coefficients and discriminants. We now consider each
root s′ ∈ R of the resultant resxi

(p1, p2) over the current sample s[i−1] ∈ Ri−1 to
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x
2

x1
(a) Within R′, no intersec-
tions of the roots are al-
lowed; above or below R′,
intersections are allowed.

x
2

x1
(b) It is also possible that
roots “leave” and re-enter
R′, if all roots are well-
ordered in R′′.

x
2

x1
(c) If a root leaves R′ and
re-enters R′, no intersec-
tions with another root be-
tween these points are al-
lowed.

Fig. 5: Examples of local delineability. The shaded area in the one-dimensional
coordinate system depicts R from Definition 2, the shaded area in the two-
dimensional one depicts R′, the hatched area depicts R′′ if it differs from R′.

determine whether θ1 and θ2 intersect above (s[i−1], s
′): If s′ ∈ I, we evaluate θ1

and θ2 at (s[i−1], s
′) and check whether the result is equal. If s′ /∈ I, we cannot

check for intersections of the root functions, thus we assume s′ is relevant. We
will formalize this in Theorem 5.

In step (2), we will determine an ordering of the resultant’s roots that needs
to hold on the underlying cell R′ ⊆ Ri−1 such that the resultant is locally
delineable on a part of the cylinder R′ × R around the current sample point.

In step (3), we determine the set R: It will be composed of some adjacent
sections and sectors R1, . . . , Rk ⊆ Ri on R′ of the resultant such that θ1 and
θ2 are in the same order on R1, . . . , Rk (and thus on R). To determine these
sections and sectors, we use the information computed in step (1); the local
delineability in step (2) ensures that these cells are arranged cylindrically, i.e.
the cells that we merge are adjacent cells in the same cylinder R′ ×R. Thus, we
obtain a cylindrical cell R after the merge.

We formalize step (2):

Definition 2 (Local delineability). Let i ∈ N>0, R ⊆ Ri be a cell, p ∈
Q[x1, . . . , xi+1], level(p) = i+ 1, and R′ ⊆ Ri+1 connected such that R′ ↓[i]= R.
The polynomial p is called locally R′-delineable if and only if there exists a cell
R′′ ⊇ R′ such that R′′ ↓[i]= R and there exist finitely many continuous functions
θ1, . . . , θk : R→ R (for k ≤ 0) such that

– (r, θj(r)) ∈ R′′ for all r ∈ R and all j ∈ [1..k];
– θj < θj+1 on R for all j ∈ [1..k − 1];
– the set of real roots of the univariate polynomial p(r, xi+1) that are contained

in R′′ is {θj(r) | i ∈ [1..k], r ∈ R} for all r ∈ R; and
– there exist constants m1, . . . ,mk ∈ N>0 such that for all j ∈ [1..k] and all
r ∈ R, the multiplicity of the root θj(r) of p(r, xi+1) is mj.
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A set of polynomials P ⊂ Q[x1, . . . , xi+1], level(
∏

p∈P p) = i + 1 is called
locally R′-delineable if and only if

∏
p∈P |level(p)=i+1 p is locally R′-delineable.

Analytic local delineability is defined as local delineability, with the modi-
fication that it is only defined on connected analytic submanifolds (instead of
general cells) and the functions θ1, . . . , θk are required to be analytic (instead of
only continuous). △

Note that if a polynomial is delineable on R, then it is locally R× (−∞,∞)-
delineable. Figure 5 illustrates various examples of local delineability.

We now give a theorem that allows to realize local delineability in an algo-
rithm, assuming we can maintain an ordering of pairs of root functions (as in
Theorem 2 or the later following Theorem 5):

Theorem 4 (Local Delineability of a Set of Polynomials). Let i ∈ N,
R ⊆ Ri be a connected analytic submanifold, s ∈ R, P ⊂ Q[x1, . . . , xi+1] such
that level(

∏
p∈P p) = i + 1. Let I be a symbolic interval of level i + 1, and let

irExpr(factors(P ), s) = {θ1, . . . , θk} s.t. θ1(s) ≤ . . . ≤ θk(s).
Assume that I.l.p, I.u.p are analytically delineable on R, each q ∈ factors(P )

with level(q) < i + 1 is order-invariant on R, and for each q ∈ factors(P ) with
level(q) = i+ 1 it holds

– q is not nullified on any point in R,
– discxi+1

(q) is order-invariant on R,
– ldcfxi+1

(q) is sign-invariant on R.

Assume that there exist ℓ, ℓ′ ∈ [1..k] such that:

1. For all j ∈ [ℓ..ℓ′−1] it holds θj ∼ θj+1 on R for some ∼∈ {<,=}.
2. For all j ∈ [1..ℓ−1] it holds

– if I = (I.l, I.u) with I.l ̸= −∞, then θj ∼ I.l on R for some ∼∈ {<,=};
– if I = [I.l, I.u], then θj < I.l on R.

3. For all j ∈ [ℓ′+1..k] it holds
– if I = (I.l, I.u) with I.u ̸= ∞, then I.u ∼ θj on R for some ∼∈ {<,=};
– if I = [I.l, I.u], then I.u < θj on R.

4. For all j ∈ [1..ℓ−1] it holds θj ∼ θℓ on R for some ∼∈ {<,=}.
5. For all j ∈ [ℓ′+1..k] it holds θℓ′ ∼ θj on R for some ∼∈ {<,=}.

Then P is analytically locally (R×I)-delineable, and q ∈ factors(P ) is order-
invariant in each section of q on R that have a non-empty intersection with
(R× I). △

Note that if we choose ℓ = 1 and ℓ′ = k, then this yields delineability of P
on R (see Example 3). If ℓ′ < ℓ, then this yields sign-invariance of P on R.

Proof. Assume that R fulfils the antecedents of the theorem.
Let θ′1, . . . , θ

′
k′ : R → R be the real root functions describing the graph of∏

p∈P p on R. By construction, for every j′ ∈ [1..k′] there exists j ∈ [1..k] such
that θj = θ′j′ on R. Note that the lower level factors are not relevant for local
delineability.
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By analysis of each case, the real root functions of P defined at s are in
the shape required by Definition 2: θℓ, . . . , θℓ′ are the root functions matching
Definition 2 contained in some R′′ ⊆ Ri+1 such that R′′ ↓[i]= R. Condition 1
ensures that they do not intersect. θℓ and θℓ′ are the functions that bound R′′;
Conditions 4 and 5 ensure that all other root functions θ1, . . . , θℓ−1, θℓ′+1, . . . , θk
(θ1, . . . , θk if l > l′) do not enter R′′. R′ = (R × I) is described by I; Condition
2 and 3 ensure that R′ ⊆ R′′. Thus, the requirements from Definition 2 are
fulfilled, and P is analytically locally (R× I)-delineable.

The lower-level factors are all order-invariant on R by assumption, and the
factors on the current level are order-invariant in each of their respective sections
on R by Theorem 1. ⊓⊔

The above theorem only gives the conditions that need to hold for local
delineability. Now, we formalize which roots are irrelevant, and what needs to
hold in the underlying projection:

In the examples above, we hinted that we can only distinguish relevant from
irrelevant intersections of root functions where the defining polynomials are de-
lineable, as we can only compute values of indexed roots. Thus, for i ∈ N,
p ∈ Q[x1, . . . , xi+1], and s ∈ Ri, let proj polys(p) be the projection polynomials
of level i that need to be sign-invariant to maintain delineability of p accord-
ing to Theorem 1 (i.e. the discriminant, the leading coefficient, and some non-
zero coefficient for non-nullification). Further, for P ⊂ Q[x1, . . . , xi+1], let ρl =
max{ρ ∈ realRoots(∪p∈P,q∈proj polys(p)q(s[i−1])) | ρ ≤ si} and ρu = min{ρ ∈
realRoots(∪p∈P,q∈proj polys(p)q(s[i−1])) | ρ ≥ si}; we define the delineable interval
of P w.r.t. s as del int(P, s) = (ρl, ρu) if ρl ̸= ρu and del int(P, s) = [ρl, ρu]
otherwise.

Theorem 5 (Root Orderings for Pairs of Root Functions / Lifting
of Pairs of Root Functions). Let i ∈ N, R ⊆ Ri be a connected ana-
lytic submanifold, s ∈ R, p1, p2 ∈ Q[x1, . . . , xi+1] be irreducible and coprime
such that level(p1) = level(p2) = i + 1, θ1, θ2 : R → R be real root func-
tions of p1 and p2 respectively such that θ1(s) < θ2(s), I be a symbolic in-
terval of level i, and irExpr(factors(resxi+1

(p1, p2)), s[i−1]) = {ξ1, . . . , ξk} s.t.
ξ1(s[i−1]) ≤ . . . ≤ ξk(s[i−1]).

Assume that p1 and p2 are analytically delineable on R, I.l.p and I.u.p are an-
alytically delineable on R ↓[i−1], R = R ↓[i−1] ×I, {resxi+1

(p1, p2), proj polys(p1),
proj polys(p2)} is locally R-delineable and each of its factors q is order-invariant
in each section of q on R ↓[i−1] that have a non-empty intersection with R, and
for every j ∈ [1..k], if

– ξj(s[i−1]) /∈ del int({p1, p2}, s), or
– s′ := ξj(s[i−1]) ∈ del int({p1, p2}, s) and θ1(s[i−1], s

′) = θ2(s[i−1], s
′),

then it holds

– if I = (I.l, I.u), then I.l ̸= −∞ and ξj ∼ I.l on R ↓[i−1] for some ∼∈ {<,=}
or I.u ̸= ∞ and I.u ∼ ξj on R ↓[i−1] for some ∼∈ {<,=};
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– if I = [I.l, I.u], then ξj < I.l on R ↓[i−1] or I.u < ξj on R ↓[i−1].

Then θ1 < θ2 holds on R. △

The adaption for the case θ1(s) = θ2(s) is a degenerate case (the resultant
is zero at s due to the intersection) and thus trivial. Note that checking the
second bullet point requires lifting over each (possibly non-rational) root of the
resultant, which might be computationally expensive. We emphasize that in an
actual implementation, no complete check needs to be implemented. We could
e.g. restrict ourselves to rational sample points.

Proof. Assume that R fulfils the antecedents of the theorem.
Assume for contradiction that there exists t ∈ R such that θ1(t) ̸< θ2(t).

As θ1(s) < θ2(s), there exists some t′ ∈ R such that θ1(t
′) = θ2(t

′) which is
a zero of resxi+1

(p1, p2), thus there exists j∗ ∈ [1..k] s.t. ξj∗(t
′
[i−1]) = t′i (i.e.

t′ ∈ R ↓[i−1] ×ξj∗).
Let R′ ⊇ R, R′ ↓[i−1]= R ↓[i−1] be maximal such that P = {resxi+1

(p1, p2),
proj polys(p1),proj polys(p2)} is analytically R′-locally delineable on R ↓[i−1],
and p1 and p2 are analytically delineable on R′, and P is order-invariant in
each of its sections on R ↓[i−1] that intersect with R

′. Note that as we included
the proj polyssets into the set of polynomials to be locally delineable, for each
j ∈ [1..k] it holds that (R ↓[i−1] ×ξj) ∩R ̸= ∅ implies R ↓[i−1] ×ξj ⊆ R′.

Now let R′
1, . . . , R

′
k′ ⊆ R′ be the maximal sign-invariant cells of resxi+1

(p1, p2)
inR′ (which are arranged cylindrically, that is for all j ∈ [1..k′] it holdsR′

j ↓[i−1]=
R ↓[i−1]); resxi+1(p1, p2) is order-invariant in each of these cells by assumption.
By Theorem 2, for each j ∈ [1..k′] there exists ∼j such that θ1 ∼j θ2 on R′

j .
Towards the contradiction, we conclude that ξj∗ is one of the sections con-

tained in R′ (i.e. there exists j ∈ [1..k′] such that R ↓[i−1] ×ξj∗ = R′
j). By

construction, it holds ({s[i−1]} × del int({p1, p2}, s)) ∩ R′
j = {(s[i−1], s

′)} for
some s′ ∈ R′ such that s′ = ξj∗(s[i−1]). By requirement of the theorem, ξj∗ is
required to “remain outside” I on R ↓[i−1], that is (R ↓[i−1] ×ξj∗)∩R = ∅. This
is a contradiction to the assumption which implied t′ ∈ (R ↓[i−1] ×ξj∗)∩R. ⊓⊔

5 Weak Orderings and (Half-)closed Intervals

So far, we did only consider root functions θ1, θ2 that are either strictly ordered
or equal on some underlying cell in Theorems 2 and 5. We will now consider root
functions that are ordered less-or-equal.

To motivate this, assume we want to construct a cell where some constraint
p ≤ 0 holds. Theorem 3 tells us that we can construct a cell around some sample
s such that p(s) ≤ 0 where p is sign-invariant by requiring that every root of
p remains outside the cell that we describe. However, this yields a smaller cell
guaranteeing the stronger property p < 0. Similarly, as in the previous section,
we could merge this cell with the adjacent cells where p = 0 holds (again, as
long as we cut these cells such that they are in the same cylinder).
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This merger might not only produce bigger cells, it also avoids lifting over
roots of polynomials, which is particularly expensive as non-rational number
computations cannot be avoided in this case.

To describe such cells, we extend the notion of symbolic intervals to closed
and half-closed intervals. For constructing such a cell, we will (1) generalize The-
orems 3, 4 and 7 for half-closed intervals and weak orderings, and (2) define how
we determine a symbolic interval that describes the cell as general as possible.

Now, we extend Theorem 3 allowing to realize semi-sign-invariance:

Theorem 6 (Root Ordering for Semi Sign Invariance). Let i ∈ N, R ⊆
Ri be connected, p ∈ Q[x1, . . . , xi+1] be irreducible such that level(p) = i+1, and
I be a symbolic interval of level i+1. Assume that p, I.l.p, and I.u.p (if defined)
are analytically delineable on R.

Assume that for each real root function θ of p on R it holds

– if I = (I.l, I.u), then either I.l ̸= −∞ and θ ≤ I.l on R, or I.u ̸= ∞ and
I.u ≤ θ on R;

– if I = [I.l, I.u], then either I.l ̸= −∞ and θ < I.l on R, or I.u ̸= ∞ and
I.u < θ on R.

Then either p < 0 on R, or p > 0 on R.
Assume that for each real root function θ of p on R it holds

– if I = [I.l, I.u], then either I.l ̸= −∞ and θ ≤ I.l on R, or I.u ̸= ∞ and
I.u ≤ θ on R.

Then either p ≤ 0 on R, or p ≥ 0 on R× I. △

So far, this only exploits the sign conditions on the input polynomials. To
carry this down to lower dimensions, we generalize and extend Theorem 5 for
weak orderings:

Theorem 7 (Root Orderings for Pairs of Root Functions / Lifting of
Pairs of Root Functions (Weak Case)). Let i ∈ N, R ⊆ Ri be a connected
analytic submanifold, s ∈ R, p1, p2 ∈ Q[x1, . . . , xi+1] be irreducible and coprime
such that level(p1) = level(p2) = i + 1, θ1, θ2 : R → R be real root functions of
p1 and p2 respectively such that θ1(s) < θ2(s). Let I be a symbolic interval of
level i, and irExpr(factors(resxi+1

(p1, p2)), s[i−1]) = {ξ1, . . . , ξk} s.t. ξ1(s[i−1]) ≤
. . . ≤ ξk(s[i−1]).

Assume that p1 and p2 are analytically delineable on R, I.l.p and I.u.p are
analytically delineable on R ↓[i−1], {resxi+1(p1, p2), proj polys(p1), proj polys(p2)}
is locally (R ↓[i−1] ×I)-delineable, and for every j ∈ [1..k], if

– s′ := ξj(s[i−1]) /∈ del int({p1, p2}, (s[i−1], s
′)), or

– s′ := ξj(s[i−1]) ∈ del int({p1, p2}, (s[i−1], s
′)) and θ1(s[i−1], s

′) = θ2(s[i−1], s
′),

then for each ∼∈ {<,≤} it holds

– if I = (I.l, I.u), then I.l ̸= −∞ and ξj ≤ I.l on R ↓[i−1] or I.u ̸= ∞ and
I.u ≤ ξj on R ↓[i−1];
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– if I = [I.l, I.u], then I.l ̸= −∞ and ξj ∼ I.l on R ↓[i−1] or I.u ̸= ∞ and
I.u ∼ ξj on R ↓[i−1].

Then θ1 ∼ θ2 holds on R. △

The generalization to half-open intervals is straight-forward. We note that
Theorem 4 can also be generalized for closed and half-closed intervals as well; as
this is mainly technical, we omit it here.

We did not examine yet how to choose the symbolic interval. As this is mainly
technical, we give a brief sketch of the algorithm: Throughout the algorithm,
we maintain sets of polynomials that need to be made (semi-)sign-invariant or
order-invariant and orderings of root functions respectively. These properties
define critical roots at which their satisfaction might change, which are clas-
sified as relevant (root must not be inside the interval), weakly relevant (root
might intersect with a closed bound of the interval) or irrelevant (root might
be inside the cell). After we computed and classified these roots according to
Theorems 4, 6 and 7, we choose an admissible symbolic interval (e.g. the largest
one). Afterwards, we compute an ordering on the critical roots w.r.t. the chosen
symbolic interval, and compute further projection polynomials e.g. for (local)
delineability.

p1
p2

s

)) )

) ))

x
2

p4 p4p5
((( ]]]

x1
Fig. 6: The cell where two polynomials are sign-invariant can be made right-
closed. The darker cell depicts the cell in traditional single cell construction, the
lighter cell the bigger cell if we allow closed interval bounds.

Example 4. Consider the polynomials p1 = x21 + x22 − 1 and p2 = −1 + x1 + x2,
and assume we construct the sign-invariant cell around s = (−0.5, 0). Figure 6
depicts this example where a cell is constructed which is sign-invariant for p1
and p2. As the interval for x2 has open bounds defined by p1, the intersection
point of p1 and p2 will be outside that interval, even if we extend the underlying
cell in that direction. Thus, the root of the resultant p5 is weakly relevant, and
we can close the upper bound on x1. We note that we cannot close the other
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bound for the reason that the indexed roots of the defining polynomials for the
interval of x2 need to be well-defined on the underlying cell. △

6 Experimental Results

We implemented our single cell construction algorithm in our solver SMT-RAT,
which uses it for generating explanations for the NLSAT algorithm; as this im-
plementation is incomplete due to McCallum’s projection operator, we use the
method as described in [6] as fallback. For evaluating the practical usability
of the above results, we implemented several variants which vary in when and
how to check for irrelevant roots. For the evaluation, we focus on the following
variants:

Baseline A variant without any checks for irrelevant roots.
All For each root of a resultant that is inside the delineable interval of the two

originating polynomials, we isolate their roots to determine whether there is
an irrelevant intersection as specified by the root ordering to be maintained.

Independent As All, but we only check the roots of resultants which are
irreducible. Further, we only make use of local delineability if all of its roots
are not relevant; otherwise, we just require its order-invariance. These are
exactly the cases analogous to Example 3 where we do not need to compute
iterative resultants with the given resultant.

Rational As All, but we only check whether a root is irrelevant if it is rational
and the underlying sample point does not contain a non-rational number.
We thus focus on easy-to-compute checks, as root isolation of polynomials
above non-rational samples is computationally expensive.

Bounds We do not check for irrelevant roots, but check whether a bound of
a symbolic interval can be closed using weak root orderings as described in
Section 5. We restrict to cases where no two root functions intersect over
the current sample, as in those cases, there will be a section on the level
below. Applying our optimization would require adding more discriminants
to the projection, which is otherwise avoided by using theorems on equational
constraints as described in [10].

There are more variants thinkable, e.g. deciding whether to check for irrelevance
based on polynomial degrees or level. We justify in the evaluation below why we
excluded those variants from the evaluation.

We conduct our experiments on Intel®Xeon®Platinum 8160 CPUs with
2.1GHz per core on SMT-LIB’s QF NRA benchmark set [11], using a time limit
of 60 seconds and a memory limit of 4 Gigabyte. The code, instructions for re-
producing and raw results are available at https://doi.org/10.5281/zenodo.
11071146.

We restrict the following evaluation to the instances where the single cell
construction algorithm is called at least once, leaving 7615 instances; the other
instances are solved by Boolean reasoning. The results are depicted in Figure 7a
and Figure 7b, clearly showing that All and Independent perform worse than

https://doi.org/10.5281/zenodo.11071146
https://doi.org/10.5281/zenodo.11071146
https://doi.org/10.5281/zenodo.11071146
https://doi.org/10.5281/zenodo.11071146
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(a) Performance profile of all tested variants.

gained lost diff

All 53 267 -214
Independent 9 167 -158
Rational 42 41 1
Bounds 85 70 15
virtual best 113 0 113

(b) Number of gained and lost
instances and the total differ-
ence compared to Baseline.
The virtual best is the portfolio
of all variants.

Fig. 7: Results of all variants.

Baseline, while Rational and Bounds solve about as many as Baseline.
Considering the number of gained and lost instances, All and Independent
are truly inferior to Baseline; for Rational and Bounds, the numbers show
typical differences for slightly different but similar configurations in SMT solving
for NRA. In the following, we will elaborate why the first two variants are inferior,
and how the behaviour of the latter two differs from Baseline. For reasons of
comparability, this evaluation is based on the 5209 instances that are solved by
all variants.

All is able to use about 3% of all resultant roots to merge adjacent cells.
Merging happens in 1002 of the 5210 instances. On these instances, the quality
of the generated cells slightly increases, which we measure by the time spent in
the NLSAT engine, as shown in Table 1a. However, determining which roots are
irrelevant is expensive: it takes about 25% of the overall running time.

Independent is able to use about only 0.08% of all resultant roots for merg-
ing (distributed over 60 instances); this is due to the low portion of resultants
that are detected as independent and have at least one root (0.66% of all re-

Table 1: Influence of merges on the performance.

(a) All: Average time (in seconds) spent
in the NLSAT engine (total running time
minus time spent in the theory backends),
split by instances where at least one merge
happens and where no merges happen.

> 0 merges no merge

Baseline 1.08 0.21
All 0.9 0.21
# instances 1002 4208

(b) Bounds: Average number of sections
(on any level), split by instances where
at least one merge happens and where no
merges happen.

> 0 merges no merge

Baseline 0.029 0.001
Bounds 0.023 0.001
# instances 4071 1139
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sultants). The time spent on checking for irrelevant roots is as high as for All
(about 25% of the total running time) - this might be due to the high portion
of irreducible resultants (81%). Still, Independent loses fewer instances than
All compared to Baseline: For explaining this, we look at the instances on
which Independent and All are exceeding the time limit; for the former, this
happens during checking for irrelevant roots on 344 instances, for the latter, it
happens on 452 instances. There are two possible reasons: First, Independent
only checks irreducible resultants. Second, Independent requires fewer resul-
tants to be locally delineable, which might require more complex root orderings
on the levels below. Tracing back the exact reasons however is not obvious.

Rational is able to use about only 0.7% of all resultant roots for merging
(distributed over 351 instances); 32% of all roots are not considered as they
or their underlying sample are non-rational. The time spent on checking for
irrelevant roots is reduced to a negligible portion of the running time. Thus, the
difference in behaviour compared to Baseline is only marginal.

Bounds is able to close one or both bounds of an interval in about 2% of
the cases (distributed among 4071 instances). The above measure of quality for
the generated cells (time spend outside the theory solver) changes only slightly.
However, the number of sections decreases in instances where at least one merge
happens, see Table 1b. A reason for the little effect might be that the interval
bounds are more likely to be closed on higher levels: We observe that 12% of
the intervals on the highest level are closed, 2.3% on the second highest, and at
most 0.3% on most of the levels below.

7 Conclusion

We introduced a framework that allows to detect “irrelevant” roots of resultants
which witness adjacent cells that can be merged during single cell construction.
During merging, we still maintain cylindricity of the resulting cell. For doing so,
we introduced the notion of local delineability which we require for the resul-
tants. Using this notion, we can generate potentially larger cells. In some cases,
the computation of certain iterated resultants can completely be avoided. We
further introduced a “lightweight” bound-relaxing variant that allows to close
some bounds of the constructed cell. All variants potentially reduce the amount
of real root isolation calls in the future solving process.

However, regarding running times, the experimental results of our implemen-
tation do not confirm that these savings realize in NLSAT: Although some mea-
sures hint that the quality of the constructed cells is slightly improved, the checks
determining which roots are irrelevant are expensive. Restricting the checks to
efficient or promising cases could reduce this issue; however, the approaches we
examined (avoiding non-rational number computations, or restricting to cases
where the number of projection polynomials is reduced) simply detect too few
irrelevant roots to be effective. Similarly, the bound-relaxing variant is applicable
in too few cases. Still, the approach holds potential. Firstly, the experimental
results are limited to the SMT-LIB’s benchmark set, which might not reflect the
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diversity of all NRA problems. Secondly, we conjecture that bigger cells reflect
the problem’s structure better; we did not yet evaluate the impact on the quality
of results in quantifier elimination due to the limited scope of this paper.

Future work could improve these issues: Firstly, we need efficient checks for
irrelevant roots, for instance validated numerics approaches in the style of [12].
Furthermore, this paper did only examine irrelevant roots of resultants; it is
unclear whether a similar approach for discriminants is possible. For improving
the applicability of the bound-relaxing variant, the roots of discriminants and
coefficient could further be investigated: The work in [2] follows a similar idea but
uses different reasoning, the two approaches might be unified to be applicable in
more cases.
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