Extending the Fundamental Theorem of Linear Programming
for Strict Inequalities

Jasper Nalbach Erika Abraham Gereon Kremer
RWTH Aachen University RWTH Aachen University Stanford University
Aachen, Germany Aachen, Germany Stanford, USA
nalbach@cs.rwth-aachen.de abraham@cs.rwth-aachen.de gkremer@stanford.edu

ABSTRACT

Usual formulations of the fundamental theorem of linear program-
ming only consider weak inequalities as side conditions.

While this suffices for solving linear programs with the Sim-
plex algorithm, when we want to check the satisfiability of general
quantifier-free linear real arithmetic formulas via Satisfiability Mod-
ulo Theories (SMT) solving, we need to extend the Simplex method
to be able to handle strict inequalities, too.

In this paper we formalize such an extension, which has been
successfully used in SMT solving even before a correctness proof
has been given by King in his dissertation in the year 2014. Our
contribution is an alternative correctness formalization which is
analogous to the original theorem, and a corresponding proof that
better highlights the inherent nature of the problem.

CCS CONCEPTS

« Hardware — Theorem proving and SAT solving; - Comput-
ing methodologies — Exact arithmetic algorithms; « Theory of
computation — Linear programming,.

KEYWORDS

SMT solving; linear arithmetic; Simplex; linear programming

ACM Reference Format:

Jasper Nalbach, Erika Abraham, and Gereon Kremer. 2021. Extending the
Fundamental Theorem of Linear Programming for Strict Inequalities. In
Proceedings of the 2021 International Symposium on Symbolic and Algebraic
Computation (ISSAC °21), July 18-23, 2021, Virtual Event, Russian Federation.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3452143.3465538

1 PROBLEM STATEMENT

Satisfiability Modulo Theories (SMT) solving uses a special frame-
work to check the satisfiability of quantifier-free first-order logic
formulas, which are Boolean combinations of constraints from
a theory. To check the satisfiability of such formulas with SMT
solving, a SAT solver determines truth values for the involved con-
straints such that the Boolean structure is satisfied, and consults
a theory solver to check the consistency of this truth assignment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC 21, July 18-23, 2021, Virtual Event, Russian Federation

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8382-0/21/07...$15.00
https://doi.org/10.1145/3452143.3465538

in the underlying theory, i.e. to check the satisfiability of a set (or
conjunction) of constraints.

In quantifier-free linear real arithmetic (QF_LRA, the SMT com-
munity’s synonym for linear algebra), formulas combine constraints
of the form p ~ b, where p is a linear expression over real-valued
variables and rational coefficients, b is a rational constant and ~ is
a weak (<, >, =) or strict (<, >, #) relation symbol. In a QF_LRA
theory solver, for checking the consistency of weak constraints, we
can employ the Simplex algorithm [5, 6, 14], which was preceded
by Kantorovich’s method for problems of special type [19, 26]. The
Simplex method builds on the foundation of the fundamental theo-
rem of linear programming. In its generality, Simplex can do even
more: it can solve linear programs, i.e. optimize a linear objective
function under the side condition that certain weak linear inequali-
ties are satisfied. If the side conditions admit a solution then their
solution set is a (non-empty) polyhedron. Intuitively, the funda-
mental theorem states that we can restrict the search for an optimal
solution to the vertices of this polyhedron, as one of those vertices
evaluates the objective function to its optimal value. In the context
of SMT solving where we do not require optimality, an adaption
known as the general Simplex algorithm [11] has been proposed.
This algorithm uses the fundamental theorem in the sense that
every satisfiable system has a basic feasible solution and iterates
over intersections of constraint-defining hyperplanes until it finds
a vertex or detects that there is none.

When speaking about the Simplex algorithm, for some applica-
tions we are happy with approximate solutions, which makes the
distinction of strict and weak constraints uninteresting. In contrast
to that, in SMT solving, which has applications e.g. in program ver-
ification, exact solutions are required, satisfying the weak as well
as the strict constraints. Note that even if syntactically only weak
constraints appear in an input formula, solutions to its Boolean
structure might require some of these weak constraints to be vio-
lated, indirectly resulting in strict inequalities.

We note that there exists research for dealing with strict inequal-
ities [17, 21]; thus this work might be also of interest for research
areas apart from SMT solving.

The fundamental theorem is not immediately applicable to prob-
lems involving strict constraints: the boundaries of a solution set
might be open, thus the vertices of its closure are not necessar-
ily solutions. Still, if the problem is solvable, then there exists a
solution in an infinitesimal-environment of a vertex of the closure.
To find such a solution, Dutertre and de Moura proposed in 2006
[10, 11] an elegant reduction: Strict constraints are replaced by
weak constraints containing an infinitesimal ¢. Solutions are then
searched in the transformation and translated back to the original
system. This approach is implemented in SMT solvers like Yices

https://orcid.org/0000-0002-2641-1380
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3452143.3465538
https://doi.org/10.1145/3452143.3465538

[10], OpenSMT [18], CVC4 [1], Z3 [7] and SMT-RAT [4] and is even
extended for infinity co to represent unbounded objectives in opti-
mization [2]; further transcendental extensions of the real closed
field in the context of SMT solving are examined in [8].

While this extension seems natural, its correctness proof is non-
trivial. A first formal proof has been given in 2014 by King [20],
tailored specifically to the general Simplex method. In this paper
we formalize and prove a more general statement, applicable to
any procedure that relies on the general theorem of linear program-
ming. Beyond its general nature, our proof helps to understand the
mechanisms and elegantly illustrates the nature of the problem. A
more in-depth comparison of the proof of King and our proof is
given in Section 4.

We first introduce some mathematical foundations in Section 2.
Then we present the transformation and our extension of the the-
orem in Section 3. Finally, advantages of the construction and its
alternatives as well as related work and applications are discussed
in Section 4.

2 PRELIMINARIES

Let ¥ be afield, (U, <) an ordered vector space over ¥ (or ¥ -vector
space) and X={x1, ..., x,} be a set of U-valued variables!. We will
use U= = {acU | a>0} and similarly for other value restrictions.

Wecall p=ay-x1+...+apx, withay,..,ap € F andb € U
a linear (¥ -)combination of X, and p~b with a relation symbol ~€
{=, <, 2, <, >, #} a linear constraint (over (U, <) in variables X). An
equation is a linear constraint where ~ is the equality relation =. A
constraint p ~ b is called weak if ~€ {=, <, >} and strict otherwise.

Linear combinations p and constraints ¢ can be evaluated under
an assignment o : X — U the standard way. We denote by a(p) €
U the value of p under a. For a constraint ¢ of the form p ~ b, we
write a |= ¢ to state that a(p) ~ b; we call @ a solution of c. The
solutions of ¢ build its solution set sol(¢) = {a: X - U | « E c}.
A constraint is satisfiable iff its solution set is not empty.

A system (of linear constraints over (U, <)) is a finite set C =
{p1~1b1,..., pm~mbm} of linear constraints for some m € N. We
define s0l(C) = N¢cecsol(c) and Pe = {p | (p~b) € C}. A system
C is satisfiable iff sol(C) not empty.

Aset {p1,..., pm} of linear #-combinations of X is linearly inde-
pendent iff fi-p1+. . +fimpm=0 & fi=...=fm=0forall fi,..., fin €
¥ . A system C of linear constraints is linearly independent iff Pc
is linearly independent. The rank of C is defined as rank(C) =
max { |[C’| | C" € C,C’ linearly independent}. The set B¢ contains
all maximal linearly independent subsets of C, that are all sets V € C
such that |V| = rank(V) = rank(C).

A formula ¢ in (quantifier-free) linear real arithmetic is a Boolean
combination of linear constraints p~b over (R, <) where R is viewed
as a Q-vector space and b € Q. Note that such a formula ¢ has a
solution over (R, <) iff it has a solution over (Q, <).

2.1 The fundamental theorem of linear
programming

As for SMT solving only the existence of a solution for the side

conditions is of interest, we present a variant of the corresponding

!This is partly unconventional, but required for formal reasons as we will see in
Section 3.3.

x2

7

~~—

a1

o....
"'~/a2

7

Figure 1: Illustration of Theorem 2.1.

part of the fundamental theorem of linear programming, which builds
the basis for the Simplex algorithm [5, 6, 14] as presented in [22].

Let ¢ be a weak linear constraint p ~ b, then ¢ denotes the
equation p = b. Given a set V of weak linear constraints, we define
V := {¢| ¢ € V}. Geometrically, sol(c) is a halfspace, sol(¢) is its
bounding hyperplane, and sol(V) consists of the intersection points
of these bounding hyperplanes for the constraints in V.

THEOREM 2.1 (ADAPTION OF THE FUNDAMENTAL THEOREM OF
LINEAR PROGRAMMING). Let C be a system of weak linear constraints
over (U, <) in X. Then C is satisfiable iff there exists a maximal
linearly independent subset V € B¢ of C such that

Fa:X—>U.aVUC.

A formal proof is given in [24]; here, we give an intuition. While
the backward direction is trivial, an intuitive illustration for the
forward direction is shown in Figure 1. A constraint p ~ b is called
tight under an assignment « iff @(p) = b. Observe that a solution «
is a vertex of the solution set of a system C iff all constraints of a set
V € B are tight under « (e.g. a3 in Fig. 1), but not all assignments
which make rank(C) many constraints tight are solutions (e.g. § in
Fig. 1).

Starting from any solution, we construct the set V from the
theorem as follows: We move the solution towards a direction until
a constraint that defines a face of the solution polyhedron becomes
tight (but is still satisfied); this step is iterated maintaining that all
tight constraints remain tight, thus moving the solution on their
boundaries. This is done until the solution cannot be moved along
the boundaries of the tight constraints - which means that the set
of tight constraints are a maximal linearly independent subset of C.

3 EXTENSION FOR STRICT INEQUALITIES

We will first formally introduce the transformation replacing strict
constraints by weak ones and show some basic relationships be-
tween the solution sets of the original and the transformed system
in Section 3.1. Then, we present an intermediate theorem in Sec-
tion 3.2, before we introduce an infinitesimal to obtain the main
statement in Section 3.3.

For simplicity, we formalize our statements for the relations
< and < only; their generalization is straightforward by replac-
ing each equality p=b by a pair of constraints p>b and p<b, and
transforming each p>b resp. p>b to —p<—b resp. —p<—b. Handling
disequalities using # will be dealt with at the end of this section.

3.1 Transformation

Definition 3.1. Let C be a system of linear constraints over (U, <)
in X with ~e {<, <} for all (p ~ b) € C. Using a fresh variable
¢ ¢ X, we define the system C,, of linear constraints over (U, <)
in X U {e} as

Cw =A{p+e<b|(p<b)eCU{p<b|(p<b)eC}

Under the assumption ¢ > 0, the systems C and C,, are satisfi-
ability equivalent: in C,, we replace each strict constraint p < b
by a weak counterpart p + ¢ < b, where the new variable ¢ puts a
lower bound on the distance of p to its upper bound b. Thus we
can reduce the satisfiability problem for C to that of C,, under the
additional condition ¢ > 0. We formalize this relationship in the
following two lemmas.

For a function f : A —» Bandaset A’ C A, let fla : A’ > B
with flas(a) = f(a) for all a € A’, denote the restriction of f to
A’.Fora¢ Aand b € B, fla— b] : (AU {a}) — B denotes the
extension of f such that f[a + b](a) = b and f[a — b](d’) =
f(a’) foralla’ € A.

It is easy to see that a solution for C,, with positive ¢ is already
a solution for C:

LEMMA 3.2. Let C be a system of linear constraints over (U, <)
in X. Then for any a,, : (X U {e}) — U such that a,,(¢) > 0 and
o F Cu,

awlx EC.

For the converse direction, we show that a solution for C can be
extended with a strictly positive value for ¢ satisfying C,,. In fact,
we prove something stronger, that is, there exists a value g for ¢
such that any value between 0 and g satisfies C,,.

LEMMA 3.3. Let C be a system of linear constraints over (U, <) in
X. Then forany a : X — U such thata |= C,

3g € Uso. Ye € U g g)- e — €] | Cu.

ProoF. Note that for (p; < bj) € CNCyy, ale > €] E pi < b;
for all e € U; in particular, if C,, = C, then a[e — e] | Cy
for all e € U, thus any g can be taken as witness. Otherwise, let
(pi + € < b;) € Cyy, thus (p; < b;) € C. Then by assumption,

a(pi) < b © 0 < b; —a(pi) = gi.
Foralle € U with 0 < e < g; we have a(p;) =b; —g; < b; —e and
therefore
ale— el Epite<b;.
Thus, forall e € U such that 0 < e < g :=min({g; | (pi+¢ < b;) €
Cw} U {1}),itholds a[e — e] £ Cy,. O

We illustrate this relationship in the following example.

Example 3.4. Consider C = {-x1 <0, —x2 <0, x2 <2} and its
transformation Cy, = {—x1+€£ <0, —x2+¢ <0, x3+¢ < 2}. Figure 2a
depicts sol(C,y) restricted to € > 0, which has a convex tent-shaped

form: the open grey area depicts the two-dimensional solutions of
C, where the tent’s roof is the upper bound on ¢ w.r.t. the values
for x1 and x3, in order to satisfy C,,.

Lemma 3.2 states that any solution of C,, (red point) is a solution
of C after projecting out ¢. Lemma 3.3 states that for any solution of
C (purple point on the horizontal plane), any point strictly above it
(to satisfy € > 0) up to and including the tent’s roof (on the dashed
red line) is a satisfying solutions of C,,.

Now consider the system C’ = {-x; < 0, —x2 < 0, 2+ x3 < 4}
and its transformation C},, = {-x;+¢ < 0, —=x2+¢ < 0, 2x2+¢ < 4},
which is the same as above except that the last constraint is scaled
by a factor of 2. Although the solution set of C and C” are identical,
the solution set of C,, and C}, are not, as depicted in Figure 2b.

3.2 Intermediate theorem

In this section we characterize solutions of C that are arbitrarily
close to a vertex of the closure of sol(C). This set is obtained by the
application of Theorem 2.1 to the transformed system C,,.

Example 3.5. Figure 2c depicts again the system from Example 3.4
but without plotting the right tent wall for a better view. Assume a
solution for C,, with a value g > 0 for ¢. Fixing the value g for ¢,
the solution space in the variables x; and x3 is the horizontal cut
surface of the tent at ¢ = g. According to the fundamental theorem,
there exists a solution which is a vertex of this cut, on a ridge at
¢ = g (red point). As already seen, the projection of this solution
(purple point, dashed red line) is a solution of C. The same holds
for any value 0 < e < g for ¢, resulting in solutions for C arbitrarily
close to a vertex of the closure of sol(C) (dashed purple line).

THEOREM 3.6. Let C be a system of linear constraints over (U, <)
in X. Then C is satisfiable if and only if there exists V C C,, with
|V| = rank(C) such that Py U {¢} is linearly independent and

g€ Uso. Ye€e Uyl Fa: X - U. afe — €] EVUC,.

Proor. For the backward direction, we choose witnesses for
g > 0,e € (0,g] and « to obtain an assignment « = C,, with
a(e) = e > 0. By Lemma 3.2, it follows that C is satisfiable. The
forward direction is proven as follows:

da: X >U. aEC
(1

=

= Ja:X > U.3g € Uso. Ve € Uyy). ale—e] ECw
= Ja:X > U.3g e Uso. Ve € Uy
ale— el ECyU{e=¢e}
Bl 39 € (L[>0. Ve € (L[((),g].
Ja: XU{et>U. aEC,U{c=¢}
(2)
Sl 3_(] € ’L[>(). Ve € (L[((),g]. JV e g;CWU{é‘:E}‘
Jda: XU{e} > U.aEVUC,U{e=¢}
- Eg € (Ll>0. Ye € (LI(O,g]' Vv e $§WU{£=E}~
Ja: X > U. ale—> e] EVUC,
3
(:)> dg € Uso. Ye € U g)-
3V’ € Cy. (|V’'|=rank(C) A (Py» U {¢} lin. indep.)A
Fa:X > U ale—>e] EV'UC,)
4
g 3V’ C Cy. (|V’'|=rank(C) A (Py» U {¢} lin. indep.)A

Elgeﬂ>0. VEG(L((O’!]].
da: X > U. ale—e]l EV'UC,)

1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
w w w
0.4 1 0.4 1 0.4 ‘ I
0.2 é 0.0 0.2 é 0.0 0.2 o 0.0
0.5 0.5 0.5
0.0 1.0 0.0 1.0 0.0 1.0
1.5 1.5 1.5
00 o5 20 A 0.0 o5 20 & 00 o5 20 &
1.0 15 1.0 15 1.0 15
: 2.0 : 2.0 ’ 2.0
X ES) X2
(a) System C (b) System C’ (c) Solutions arbitrarily close to a vertex

Figure 2: Illustration of Definition 3.1

(1) Lemma 3.3

(2) The consequence results from the application of Theorem 2.1
to the term 3o : X U {e} - U. a E Cy, U {¢ = e}. That
means, for every e witnessing the left statement, we can find
a satisfying vertex of the system C,, U{¢ = e}; thus, we apply
the theorem simultaneously to all those systems.

(3) Letg € U such that the left statement holds. Lete € U (g 4)

and V € B, y(e=e)- We now construct a witness for V”.
First note that rank(C,,U{e = e}) = rank(C)+1as Cy,U{e =
e} contains one variable ¢ more than C and at least one
constraint ¢ = e in this variable. Thus, we set V/ =V \ {c}
for a constraint ¢ such that Py U {¢} is linearly independent,
which is chosen as follows:
LetV = {p1 ~1 b1,...,px ~k bx}. By the choice of V, e = e
linearly depends on V, that is there exists a unique fi, ..., fx
suchthate = fi - p1 + ...+ fr - pr and f; # 0 for at least
one i € [k]. Choosing ¢ = (p; ~; b;) guarantees the linear
independence of Py U{e} (as otherwise, V would be linearly
dependent).

(4) Let g € U such that the left statement holds. Let e €
U(o,g]- Let We # 0 denote the set of possible choices of V.
Since C,, is finite, also W, is finite. Lemma 3.7 below implies
that if there is a V’ € W, such that V’ ¢ W, for some e’ < e,
then V/ ¢ W, for all e’ < e’. It follows that there exists
g’ € (0, g] such that for e,e’ € (0,g’], it holds W, = W,.
Thus, for any set V' € W, = Wy, ¢ satisfies the statement.
It follows that the implication holds. O

LEMMA 3.7. LetV C C,, with |V| = rank(C) such that Py U {¢}
is linearly independent. Let e,e’ € U such that 0 < e’ < e. Let
a: X U{e} = U such that a |= V U C,, U {¢ = e}. Furthermore,
assume there exists no a’ such thata’ = VU Cy, U {e = ¢’}

Then for every e’ € U,e"" < e’ and every assignment a’’ it holds
a’ EVUC,U{e=¢e"}.

Proor. Let V ={p; < b;|i=1,...,k}, e, ¢’ and a as specified
in the Lemma 3.7. Furthermore, let a’, &’ : X U {¢} — U such that
o« EVU{e=¢'}buta’ | Cy,and a”’ =V U {e = ¢’’}. Note that
such o’ and "’ exist, since Py U {¢} is linearly independent.

Let (p < b) € Cy, such that a’(p) > b. Note that from a’ = V
it follows that (p < b) ¢ V. As V U {¢ = e} is a maximal linearly
independent subset of C,,, there exist fi, ..., f, f € ¥ not all 0
such that

p=fi-pit. Afipptfee

andasa E VU {e=e},

a(p)=fi-alpr)+...+ fr - a(pp) +f - a(e) .

—— —— ——
=b, by =e
Analogous statements hold for ¢’ and a”’. From these statements
together with the observation that a(p;) = a’(pi) = a”’ (pi) = b;
fori=1,...,k (due to the satisfaction of V) it follows that
o' (p)—a(p) =fe- (¢ —e)anda”(p) —a’(p) = fo - (e = ¢).
As by assumption, a(p)<b and o’ (p)>b, it holds a’ (p) — a(p) > 0,
ie. fe - (¢/ —e) > 0 and thus using e’ < e we get f; < 0. Taking into
account that e’ < e/, itholds o’/ (p) —a’(p) = fz - (¢ —€’) > 0 as
well. Finally, we can conclude
a’(p) =o' (p)+a’(p) —a'(p) > b

—— —————
>b >0

and thus, o’ | p < b. O

Example 3.8. We illustrate the steps in the proof of Theorem 3.6
on the example C = {-2-x; <0, —% - x1 < 2} respectively

1
Cw={-2-x1+¢<0, —5-x1+£§2}.

—— —
N—— ———

C2

By Implication (1), if C is satisfiable, then C,, A € > 0 (depicted
in Figure 3a) is as well, and for any solution of the latter, its ¢-
component can be made arbitrarily small while still remaining in
the solution set. The e-component of the depicted point corresponds
to the quantified variable g € U from the statement and for the
points below to the variable e € U 4] respectively.

Now, we apply the fundamental theorem of linear programming.
To do so, we introduce an artificial constraint ¢ = e, thus for every
such point, we obtain a restricted system. Figure 3b depicts these
systems for some possible values e.

C1

7 €1

c2

™
(=)

/

(a) Any point strictly between a point (red) in the solution set (grey)
of C,y A ¢ > 0 and its projection onto the x; axis is a solution (dashed
line).

IC
c2
£€=9g
e=e
c=e
E=e

\
X1
f e>0
7/

(c) For any value for ¢ less or equal to g and greater than 0, a satisfying
solution on a ridge of the solution set can be found.

y C1 ‘
/Cz
/ Eg:g
é
rc=e
¢
e €
- A
®
:£=€
(4 x1
L e>0
4

(b) For any value for ¢ less or equal to g and greater than 0, a satisfy-
ing solution can be found.

IC
c2
£=g
q
X1
f e>0
/

(d) If g is chosen small enough, for any value for ¢ less or equal to
g and greater than 0, a satisfying solution on the same ridge can be
found.

Figure 3: Illustration of the proof of Theorem 3.6

Implication (2) is the application of the fundamental theorem of
linear programming to each of those systems. By doing so, we know
that for every value e below g, we can find a satisfying solution
with e-component e on the ridge of the original polyhedron, as
depicted in Figure 3c.

The aim of the last steps in Implications (3) and (4) is to choose
the set V defining the ridge of the polyhedron independently from
the choice of g. To do so, we prove that there is a sufficiently small
g such that we can reside on the same ridge for decreasing e-values
- especially for arbitrarily small values of ¢. Intuitively this is clear:
Given a ridge that we moved along (making ¢ smaller) but is cut
off by another ridge at some point, we will never move along this
ridge again; this is exactly, what is proven in Lemma 3.7. As there
are only finitely many constraints, the set of ridges that we can
move along is also finite. Thus, we obtain the desired statement,
graphically depicted in Figure 3d.

3.3 Infinitesimal arithmetic

The characterization given by Theorem 3.6 allows to find solutions
arbitrarily close to a vertex. Finally, by employing infinitesimal

arithmetic, we obtain a formalism allowing to find those solutions
algorithmically.

We introduce a common transcendental extension of the real
closed field for an infinitesimal value. For exhaustive theoretical
foundations we refer for example to [8]; this extension has also
been examined in the context of linear programming [6, 12].

Definition 3.9 (Infinitesimal). Let (U, <) be an ordered vector
space over . We define ¢ as positive infinitesimal, that is

VeeUsp.0<e<c.
The extension of U for ¢ is the vector space U[e] ={a+Db - ¢ |

a,b € U} over F with operations

o +:Ule]l x Ule] — U[e] with
(ag+b1-e)+(azg+by-e)=(ar+az) +(b1+b2) - ¢
o FXUle]l] > Ule] withe-(a+b-e)=c-a+c-b-¢

We define the extension of (U, <) for ¢ as the ordered vector
space (U|e], <) over F with < € U[e] x U[e] such that

(a1 +b1-¢) <(ag+by-¢)iffar <azV (a1 =az Aby <by).

For a system C of linear constraints over (U, <) in X U {¢}, C*
denotes C interpreted as system over (U [¢], <) in X.

THEOREM 3.10 (MAIN THEOREM). Let C be a system of linear
constraints over (U, <) in X. Then C is satisfiable if and only if there
exists a maximal linearly independent subset V € B¢ of Cy, such
that

A" : X - Ule]l. a* EVUCE,

Proor.

da:X—>U. aC

1
5:2 AV € Cy. (|V] =rank(C) A (Py U {¢} lin. indep.)A

Eg S (L[>0. Ve € (Z’[(O,g]'
Fa:X > U. ale—e] EVUC,)

(2)
o Ve %C%.

Hg S (L[>0. Ve € (Ll(O,g]'

Ja*: X = Ule]. (6" EV A (ge 0 a*)[e €] | Cu)
g v e %C;’

Ja*: X — Ule]. (aF VA

3g € Uso. Ve € U g1- (pe 0 a®)[e > e] E Cy)
4 .
5:2 AWV eBe:,. " : X > Ule]. (" EV A" ECY)
where ¢ : Ule] > U,a+b- e +— a+b- e is the substitution
homomorphism for e € U.

(1) Theorem 3.6

(2) Firstnote that rank(C3,) = rank(C); moreover, the witnesses
for V on both sides of the equivalence correspond to each
other: On the left side, it is a set of constraint with variables
in X U {¢}, on the right side the same constraints but seen
in variables X assigned to values in U [¢].
Given this, the backward direction is already proven. For
the forward direction, there is more involved: As Py U {¢}
is linearly independent, V admits a solution for any value of
¢ (i.e. by the Rouché-Capelli theorem [25]). It is easy to see
that such a set of solutions in X U {¢} can be described by
ana® : X — Ule].

(3) The backward direction is trivial.
For the forward direction we note that given a fixed V, the
set of assignments a* for which a* = V holds is independent
from the choice of g and e.

(4) The forward direction follows immediately from ¢ < g for
all g € Uso.
For the backward direction, plugging in «* into C7, results in
bounds on ¢, which are, by the semantics of < on U €], only
positive upper bounds or non-positive lower bounds. Thus,
g can be chosen as any value smaller than the smallest upper
bound (or as any positive value if no such bound exists).

O

While this formalism seems natural, there are some pitfalls in
understanding which choices for V € B¢+ are accepted by Theo-
rem 3.10. These are illustrated in the following example.

Example 3.11. Consider the system depicted in Figure 4a. Clearly,
either {c1,c2}, {c2, c3} or {c1,c3} can be chosen for inducing the
vertex, which is also called a degenerate solution.

Figure 4b depicts the system after replacing c; by a strict in-
equality respectively its weakened version (c1)yw. Now, {c1, cz} and
{c1, c3} represent different vertices while {c2, c3} induces no solu-
tion.

Figure 4c shows the system after replacing all constraints by
strict ones. Though the illustration suggests that any combination
of constraints induces the (same) vertex, this is not true in general.
As illustrated in Figure 4d, if we scale ¢; by the factor % only
{c1,c2} and {c1, c3} induce vertices while selecting {cz, c3} violates
c1. While this seems counter-intuitive at first sight, Theorem 3.10
guarantees the existence of a satisfying vertex w.r.t. infinitesimal
arithmetic if and only if the original system is satisfiable.

3.4 Equal and not-equal constraints

So far, we covered the relations < and <. As already mentioned, >,
> and = can be equivalently expressed by < and <, even though
for better efficiency, in practice these relations are rather handled
separately.

Dealing with disequalities p # b is a bit more involved. Graphi-
cally, each disequality plits the solution set by a hyperplane into
two halves, sharing one open boundary but in different directions.
Algorithmically, both possibilities p < b and p > b need to be con-
sidered in order to achieve a conclusive answer to the satisfiability
question. This can be implemented by case splitting, checking both
branches individually; optimizations could use e.g. explanations of
unsatisfiability in certain branches in order to generalize the result
to other branches, or postpone branching in the computations as far
as possible by computing first without disequalities and considering
constraints belatedly.

4 DISCUSSION AND RELATED WORK

Theorem 3.10 admits the extension of any algorithm relying on
the fundamental theorem of linear programming (Theorem 2.1) for
strict inequalities: The original system needs to be transformed
into its weak version as in Definition 3.1. The arithmetic operations
and evaluation functions need to be extended for an infinitesimal
value ¢ with the semantics given in Definition 3.9. From there on,
Theorem 3.10 guarantees that everything works analogously as
for the case with weak inequalities and thus serves as a drop-in
extension.

4.1 Combinatorial complexity through strict
constraints

Example 3.11 shows that systems containing strict inequalities
might be more complex than their counterparts containing only
weak relations: While for the latter, any choice of the non-basis
yields a satisfying vertex, this is not necessarily the case if some of
these constraints are made strict. In fact, one could construct bad
examples that are trivial after replacing all strict relation symbols
by weak ones but harder to solve otherwise. However, this blow-up
is not greater than adding an additional variable to the problem.

4.2 Applications

Our approach enables decision procedures for weak inequalities
to handle also strict inequalities in the context of SMT solving,
without further modifications.

X2 X2 X2 X2
A , C2 N C2 A Cc2 A C2
N e Y ‘
4 N Vi N ’
] C1 I Cc1 N ,] C1 N ,] c1
\,
) e D b R) aX
! ' 4 A ' - =F - =\ .__. ==T="
’ S ’ R
’ S . S
x x / I x ‘ Is X
->1 -}1 . . «}1 . . ->1
7’ 7’
c3 c3 # MO\ €3 # SO\ €3

(a) “Overdetermined” vertex (b) One strict constraint

(c) Only strict constraints (d) Only strict constraints

Figure 4: Illustration of Theorem 3.10

4.2.1 Simplex in SMT solving. The classical approach for SMT solv-
ing is the DPLL(T) framework. A SAT solver searches for solutions
of the Boolean abstraction of the problem where every constraint
is replaced by a propositional variable, while a theory solver is em-
ployed regularly for checking the consistency of a (possibly partial)
Boolean solution with the underlying theory. Thus, the input to the
theory solver is a set of constraints containing all input constraints
whose abstraction variable is assigned to true and the negation of
all input constraints whose abstraction variable is set to false. The
theory either finds the current solution consistent, that is, all passed
constraints are satisfiable together, or an (as small as possible) set
of constraints that are unsatisfiable together is returned to the SAT
solver, which adds a formula excluding this selection to the input
formula.

For checking the consistency of linear constraints, there are two
common methods: The Fourier-Motzkin elimination [15, 23] is a
quantifier elimination method; while its original formulation only
assumes weak constraints, the extension for strict constraints is
rather trivial. However, due to its doubly exponential complexity,
it is not suitable for applications in the DPLL(T) context where the
state-of-the-art method is based on the general Simplex algorithm
[11]. Here, we give a simplified intuition using a notation that is
consistent with the notation of this paper.

Given a system C of weak linear constraints, the algorithm can
be seen as a heuristic that solves a sequence of equation systems
Vi,...,Vi. where V; € B¢c. Ifin a step i it holds sol(V;) E C, then
satisfiability of C is proven. Otherwise the algorithm improves the
given solution by choosing Viy1 = V; \ {¢;} U {¢j} for some j # j’
such that Vi41 € B still holds. Additionally, cj- is chosen such that
it is violated in step i and cj, c;- are satisfied in step i + 1. If no such
constraint is found, unsatisfiability is returned.

The improvement of a solution is also called a pivot operation,
the elements of V; are called non-basis and the elements in C \ Vi
are called basis. By representing the equation system in a tableau,
these pivot operations can be implemented efficiently avoiding the
need to solve the whole equation system Vi;; from scratch. By a
heuristic selecting the pivots, it is made sure that no selection of
the non-basis is visited again, i.e. V; # \7] forall i # j; together with
Theorem 2.1, this implies completeness of the algorithm.

The splits caused by not-equal constraints can be deferred as
long as possible by only deciding for a case when the constraint
p # b is violated by the current solution and is picked for the next
pivot step.

4.2.2 An adaption of the general Simplex method. The formulation
presented in this paper was needed in Nalbach’s master thesis on
an adaption [24] of the general Simplex:

The idea in the thesis was to move the selection of the non-
basis V into the SAT solver and to pass theory information as
additional lemmas to the SAT solver allowing for Boolean learning
and reasoning about the vertex selection. A theory call then not
only consists of a set of constraints to be satisfied, but also an
encoding of the vertex selection, thus the system V U C is solved
by Gaussian elimination.

The general Simplex is able to transfer some theory-specific
knowledge between theory calls by starting from the tableau from
the previous call, keeping progress on small changes to the in-
put. This approach comes to its limits on instances with complex
Boolean structure, while the novel approach in the master’s thesis
learned combinatorial properties of the theory across theory calls.

Although the new approach did not compete with the general
Simplex in practise, the view of the Simplex algorithm as sequence
of equation systems as described above inspired the formulation of
the main theorem of this paper.

Our formulation of the fundamental theorem allows the exten-
sion of the general Simplex method as well as the adapted method
for strict inequalities. Similarly, further novel methods for solving
QF_LRA can be built on its foundation due to its generality.

4.2.3 Exact solutions for linear programming. Most linear program-
ming solvers use floating point arithmetic for efficiency but at the
cost of precision; this makes the study of strict inequalities unin-
teresting. However, there exist solvers that refine solutions [16]
or even employ exact rational arithmetic 3, 9] to increase preci-
sion. For scenarios where high or exact precision is required, the
presented construction could be of interest.

4.3 Alternative approaches

The presented transformation serves as an almost drop-in solution
for extending existing algorithms for strict inequalities. Here, we
present two alternative approaches that are also feasible, but re-
quire a more extensive adaption of the algorithms and thus leaving
some questions open. Furthermore note that as both alternatives
described below also introduce an additional variable ¢, the increase
in combinatorial complexity is the same as the method presented
in the previous section.

4.3.1 Transformation to maximization problem. Lemma 3.2 and
Lemma 3.3 already yield an obvious transformation of a system

C of linear constraints over (U, <) in variables X to the linear
program max ¢ subject to Cs,.

C is satisfiable if and only if there exists a solution for C,, with
a strictly positive value for ¢, that is, the outcome of the linear
program is positive.

4.3.2 Allow arbitrary positive values for e. Our approach interprets
¢ as an infinitesimal, which can be seen as a variable that can take
arbitrarily small values. Alternatively, one could interpret it as a
variable that can take any strictly positive value.

This can be achieved using a weaker version of Theorem 3.6: A
system C is satisfiable iff there exists a subset V C C,, such that
|[V| = rank(C) and Py U {¢} is linearly independent such that

dg € Uso. Fa: X - U. afe — g] EVUC,,.

Note that consistency of a system V U C,, can be checked by
application of Gaussian variable elimination. The resulting system
Cf, then only contains ¢ as a single variable, its constraints thus are

weak lower and upper bounds on ¢. Thus V UC,, is consistent if and
only if there exists a positive value g for satisfying these bounds.

4.4 Differences to King’s proof

The formulation of King’s work focusses on the extension of the
general Simplex method and thus is only applicable to this specific
method. This paper gives a more general formulation as an exten-
sion of (parts of) the fundamental theorem of linear programming;
while the two formulations are identical for the general Simplex,
our generalization can be applied to other methods such as given
in Section 4.2.2 without crucial modifications to the method.

Although the idea of King’s proof can be applied also to the new
formulation, our proof employs a different idea than King’s proof
[20]: Both proofs use the same transformation of a system C of
linear constraints to a system Cj, with only weak constraints and
containing an infinitesimal ¢ with a special interpretation as given
in Definitions 3.1 and 3.9. Also, both use that any solution for C%,
can be transformed to a solution for C.

We gave a constructive proof stating that if a system C of linear
constraints is satisfiable, then there also exists a solution for C},
which is in particular a vertex of the solution polyhedron (under
application of the fundamental theorem of linear programming).
The latter is the crucial step in the proof, as this enables restricting
the search to vertex candidates analogously to the fundamental
theorem of linear programming.

King [20] proves the contraposition: He applies Farkas’ lemma
[13] on the transformation Cj,, implying that if the Simplex algo-
rithm detects a conflict, then C7, does not have a solution; then by
construction and the semantics of ¢, the original system C is also
unsatisfiable.

Our constructive proof gives insight to the relation between a
system C and its transformation C}, which is the main contribution
of this paper.

5 CONCLUSION

The presented transformation is an elegant way to extend algo-
rithms relying on the fundamental theorem of linear programming
for strict inequalities, which is commonly used for applications in
SMT solving. While there was already a proof for this method, we

gave an additional proof that shows the nature of the problem and
hopefully helps for deeper understanding its implications.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback on an earlier
version of this paper. This work has been supported by the German
Research Council (DFG) — RTG 2236 “UnRAVeL”.

REFERENCES

[1] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In
International Conference on Computer Aided Verification. 171-177.

Nikolaj Bjerner and Anh-Dung Phan. 2014. vZ-Maximal Satisfaction with Z3.
(2014). Symbolic Computation in Software Science.

William Cook, Thorsten Koch, Daniel E Steffy, and Kati Wolter. 2011. An exact
rational mixed-integer programming solver. In International Conference on Integer
Programming and Combinatorial Optimization. 104-116.

Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika
Abraham. 2015. SMT-RAT: An open source C++ toolbox for strategic and parallel
SMT solving. In International Conference on Theory and Applications of Satisfia-
bility Testing (LNCS, Vol. 9340). 360-368.

George B Dantzig. 1990. Origins of the Simplex Method. Association for Computing
Machinery, 141-151.

George B Dantzig. 1998. Linear Programming and Extensions. Princeton University
Press.

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. 337-340.

[8] Leonardo de Moura and Grant O Passmore. 2013. Computation in real closed
infinitesimal and transcendental extensions of the rationals. In International
Conference on Automated Deduction. 178-192.

Marcel Dhiflaoui, Stefan Funke, Carsten Kwappik, Kurt Mehlhorn, Michael Seel,
Elmar Schomer, Ralph Schulte, and Dennis Weber. 2003. Certifying and Repairing
Solutions to Large LPs, How good are LP-solvers?. In SODA, Vol. 3. 255-256.
[10] Bruno Dutertre and Leonardo de Moura. 2006. A fast linear-arithmetic solver
for DPLL (T). In International Conference on Computer Aided Verification (LNCS,
Vol. 4144). 81-94.

Bruno Dutertre and Leonardo de Moura. 2006. Integrating simplex with DPLL(T).
Computer Science Laboratory, SRI International, Tech. Rep. SRI-CSL-06-01 (2006).
Toannis Z Emiris and John F Canny. 1995. A general approach to removing
degeneracies. SIAM J. Comput. 24, 3 (1995), 650-664.

[13] Julius Farkas. 1902. Theorie der einfachen Ungleichungen. Journal fiir die reine
und angewandte Mathematik 1902, 124 (1902), 1-27.

Institute for Numerical Analysis (US). 1951. Problems for the Numerical Analysis
of the Future. US Government Printing Office.

[15] Jean B] Fourier. 1825. Analyse des travaux de I’Académie Royale des Sciences
pendant 'année 1824. Partie mathématique (1825).

Ambros M Gleixner, Daniel E Steffy, and Kati Wolter. 2016. Iterative refinement
for linear programming. INFORMS Journal on Computing 28, 3 (2016), 449-464.
[17] Harvey J Greenberg. 1996. Consistency, redundancy, and implied equalities in
linear systems. Annals of Mathematics and Artificial Intelligence 17, 1 (1996),
37-83.

Antti E] Hyvérinen, Matteo Marescotti, Leonardo Alt, and Natasha Sharygina.
2016. OpenSMT2: An SMT solver for multi-core and cloud computing. In Inter-
national Conference on Theory and Applications of Satisfiability Testing. 547-553.
Leonid V Kantorovich. 1960. Mathematical methods of organizing and planning
production. Management science 6, 4 (1960), 366—422.

Tim King. 2014. Effective algorithms for the satisfiability of quantifier-free formulas
over linear real and integer arithmetic. Ph.D. Dissertation. Courant Institute of
Mathematical Sciences New York.

Jean-Louis Lassez and Ken McAloon. 1989. Independence of negative constraints.
In Colloquium on Trees in Algebra and Programming. 19-27.

David G Luenberger and Yinyu Ye. 1984. Linear and Nonlinear Programming.
Springer.

Theodore S Motzkin. 1936. Beitrige zur Theorie der linearen Ungleichungen.
Azriel.

[24] Jasper Nalbach. 2020. A novel adaption of the simplex algorithm for linear real
arithmetic. Master’s thesis. RWTH Aachen University. https://doi.org/10.18154/
RWTH-2021-04303

Igor R Shafarevich and Alexey O Remizov. 2012. Linear Algebra and Geometry.
Springer.

Cornelis van de Panne and Farhood Rahnama. 1985. The first algorithm for linear
programming: An analysis of Kantorovich’s method. Economics of Planning 19, 2
(1985), 76-91.

[2

B3

[4

—
)

—_ =
A

—
)

—_
jan

=
&,

=
oot

=
&

=
&

[19

[20

[21

[22

[23

[25

[26

https://doi.org/10.18154/RWTH-2021-04303
https://doi.org/10.18154/RWTH-2021-04303

	Abstract
	1 Problem statement
	2 Preliminaries
	2.1 The fundamental theorem of linear programming

	3 Extension for strict inequalities
	3.1 Transformation
	3.2 Intermediate theorem
	3.3 Infinitesimal arithmetic
	3.4 Equal and not-equal constraints

	4 Discussion and related work
	4.1 Combinatorial complexity through strict constraints
	4.2 Applications
	4.3 Alternative approaches
	4.4 Differences to King's proof

	5 Conclusion
	Acknowledgments
	References

