From Logistic Regression in SciKit-Learn to Deep Learning with TensorFlow – A fraud detection case study – Part III

After a series of posts about exotic option pricing (Asian, Barriers and Bermudans) with TensorFlow and finding optimal hedging strategies with deep learning (using a LSTM network to learn a delta hedge) I will come back to our credit card fraud detection case. In the previous part we have build a logistic regression classifier in TensorFlow to detect fraudulent transactions. We will see that our logistic regression classifier is equivalent to a very simple neural network with exactly one layer with one node and sigmoid activation function. We will extend this simple network to to a deep neural network by adding more hidden layers. We will use the low level API of TensorFlow to build the networks. At the end of the post we will use Keras’s high level API to build a same network with just a few lines of code.

We will continue to use the same data apply the same transformation which we are using since the first part of this series.

As usual you can find the notebook on my GitHub repository.

Deep learning / neural networks in a nutshell

An artificial neural network (ANN) is collection of connected nodes. In the first layer of the network the input of our nodes are the input features. In following layers the output of previous nodes are the input to the nodes in the current layer. If we have more than 1 hidden layer we can call the network a deep neural network.

neural-network

The picture is generated by a latex script written by Kjell Magne Fauske (http://www.texample.net/tikz/examples/neural-network/) released under Creative common license. Thanks for that.

The output of the node is the composition of the dot or (scalar) product of a weights vector and the input vector and an activation function. Let be X the vector of input features and w_i the weights vector of the node i, then the output of this node is given by

output_i =  \phi(X^Tw_i+ b_i),

with an activation function \phi and bias b_i.

If a layer consists more of one node the layer can be represented as a matrix multiplication. Such a layer is often called linear or dense layer. Typical choices for activation functions are tanh, relu, sigmoid function.

activation_functions

As we can see from this formula a dense layer with one node and sigmoid function as activation is our logisitc regression model. The matrix product will be the logit and the output of the activation function will be the probability as in a logistic regression model.

Lets review the logistic regression example in a neural network setting, lets start a function which constructs the computational graph for a dense (linear) layer given a input, activation function and number of nodes.

def add_layer(X, n_features, n_nodes, activation=None):
    """
    Build a dense layer with n_features-dimensional input X and n_nodes (output dimensional).

    Parameters:

        X : 2D Input Tensor (n_samples, n_features)
        n_features = number of features in the tensor 
        n_nodes = number of nodes in layer (output dimension)
        activation = None or callable activation function 

    Output:

        Operator which returns a 2D Tensor (n_samples, n_nodes)

    """
    weights = tf.Variable(initial_value=tf.random_normal((n_features,n_nodes), 0, 0.1, seed=42), dtype=tf.float32)
    bias = tf.Variable(initial_value=tf.random_normal((1,n_nodes), 0, 0.1, seed=42), dtype=tf.float32)
    layer = tf.add(tf.matmul(X, weights), bias)
    if activation is None:
        return layer
    else:
        return activation(layer)

We wrapping our training and prediction functions in a class. The constructor of this class builds the computational graph in TensorFlow. The the function create_logit will build the computational graph to compute the logits (in the logisitc regression case: one layer with one node and the identity as activation function). We will override this function at a later point to add more layers to our network.

class model(object):
    def __init__(self, n_features, output_every_n_epochs=1, name='model'):
        self.input = tf.placeholder(tf.float32, shape=(None, n_features))
        self.true_values = tf.placeholder(tf.float32, shape=(None,1))
        self.training = tf.placeholder(tf.bool)
        self.logit = self.create_logit()
        self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=self.true_values, 
                                                                           logits=self.logit))
        self.predicted_probs = tf.sigmoid(self.logit)
        self.output_every_n_epochs = output_every_n_epochs
        self.name = name
        self.saver = tf.train.Saver()    



    def create_logit(self):
        return  add_layer(self.input, 30, 1)

    def evaluate_loss_and_probs(self, sess, X, y, training=False, output=False):
        loss, probs = sess.run([self.loss, self.predicted_probs], {self.input : X, 
                                                                   self.true_values : y.reshape(-1,1),
                                                                   self.training : training})
        probs.reshape(-1)
        y_hat = (probs > 0.5).reshape(-1)*1
        auc = roc_auc_score(y, probs)
        precision = precision_score(y, y_hat)
        recall = recall_score(y, y_hat)
        fp = np.sum((y!=y_hat) & (y==0)) 
        fpr = fp / (y==0).sum()
        if output:
            print('Loss: %.6f \t AUC %.6f \t Precision %.6f%% \t Recall %.6f%% \t FPR %.6f%%' % (loss, auc, precision*100, recall*100, fpr*100))
        return loss, probs, y_hat, auc, precision, recall



    def train(self, sess, X, y, n_epochs, batch_size, learning_rate):
        init = tf.global_variables_initializer()
        sess.run(init)
        optimizer = tf.train.GradientDescentOptimizer(learning_rate)
        train = optimizer.minimize(self.loss)
        n_samples = X.shape[0]
        n_iter = int(np.ceil(n_samples/batch_size))
        indices = np.arange(n_samples)
        training_losses = []
        training_aucs = []
        for epoch in range(0,n_epochs):
            np.random.shuffle(indices)
            for i in range(n_iter):
                idx = indices[i*batch_size:(i+1)*batch_size]
                x_i = X[idx,:]
                y_i = y[idx].reshape(-1,1)
                sess.run(train, {self.input : x_i, 
                                 self.true_values : y_i,
                                 self.training : True})
            output=False
            if (epoch % self.output_every_n_epochs)==0:
                print(epoch, 'th Epoch')
                output=True
            loss_train_epoch, predict_train_epoch, y_hat, auc_train_epoch, _, _ = self.evaluate_loss_and_probs(sess, X, y, False, output)
            training_losses.append(loss_train_epoch)
            training_aucs.append(auc_train_epoch)
        with plt.xkcd() as style:
            plt.figure(figsize=(7,7))
            plt.subplot(2,1,1)  
            plt.title('Loss')
            plt.plot(range(n_epochs), training_losses)
            plt.xlabel('# Epoch')
            plt.subplot(2,1,2)
            plt.title('AUC')
            plt.plot(range(n_epochs), training_aucs)
            plt.xlabel('# Epoch')
            plt.tight_layout()
            plt.savefig('training_loss_auc_%s.png' % self.name, dpi=300)
        self.saver.save(sess, "./%s/model.ckpt" % self.name)

    def restore(self, sess):
        self.saver.restore(sess, "./%s/model.ckpt" % self.name)

Apply this function to build our Logisitc Regression model

np.random.seed(42)
lr = model(30, 10, 'lr')
n_epochs = 11
batch_size = 100
with tf.Session() as sess:
    lr.train(sess, X_train, y_train, n_epochs, batch_size, 0.1)
    print('Validation set:')
    _, probs_lr, y_hat_lr, _, _, _ = lr.evaluate_loss_and_probs(sess, X_valid, y_valid, False, True)

training_loss_auc_lr

0 th Epoch
Loss: 0.007944   AUC 0.980217    Precision 86.538462%    Recall 56.675063%   FPR 0.015388%
10 th Epoch
Loss: 0.004231   AUC 0.984984    Precision 87.591241%    Recall 60.453401%   FPR 0.014948%
Validation set:
Loss: 0.003721   AUC 0.977169    Precision 89.041096%    Recall 68.421053%   FPR 0.014068%

Backpropagation

In the previous parts we have seen how we can learn the weights (parameter) of our logistic regression model. So we know how to train a network with one layer but how can we train a network with more than one layer?

The concept is called Backpropagation and is basically the application of the chain rule. In the first phase (feed forward phase) the the input is feed into the network through all layers and the loss is calculated. Then in the 2nd or backward phase, the weights are updated recursevly from the last layer to the first.

At the last layer the derivate of the loss is straight forward. For the calculation of the weights in the inner or hidden layers we need the previous calculated derivates.

With the calculated gradients we can apply again a gradient descent method to optimize our weights.

The power of TensorFlow or other deep learning libraries as PyTorch are again the auto gradients. We dont need to worry to calculate the gradients by ourself.

A detailed deriviation of the backpropagation algorithm with an example for a quadratic loss function can be found on wikipedia.

First deep network

Now its time for our first deep neural network. We will add 4 layers with 120, 60, 30 and 1 node.

class model2(model):

    def create_logit(self):
        layer1 = add_layer(self.input, 30, 120)
        layer2 = add_layer(layer1, 120, 60,)
        layer3 = add_layer(layer2, 60, 30)
        layer4 = add_layer(layer3, 30, 1)
        return layer4

np.random.seed(42)
dnn1 = model2(30, 10, 'model1')
n_epochs = 11
batch_size = 100
with tf.Session() as sess:
    dnn1.train(sess, X_train, y_train, n_epochs, batch_size, 0.1)
    print('Validation set')
    _, probs_dnn1, y_hat_dnn1, _, _, _ = dnn1.evaluate_loss_and_probs(sess, X_valid, y_valid, False, True)

The performance of this network is not really good. Actually is quite bad for the complexity of the model.
The AUC on the validation set is worse than the AUC from the logistic regression.

roc_auc_model1

roc_auc_model1_detail

For low FPRs the logistic regession almost always outperforms the deep neural network (DNN). A FPR of 0.1 % means that in we will have 1 false positive in 1000 transactions. If you have millions of transactions even such a low fpr can affect and your customers. In very low FPRs (less than 0.0001) the DNN have a slightly higher true positive rate (TPR).

The problem is that we use the identity as activation function. The logit is still a linear function of the input.
If we want to capture non linear dependencies we have to add a non-linear activation function.
Let’s try the RELU.

Time for non-linearity

class model2b(model):

    def create_logit(self):
        layer1 = add_layer(self.input, 30, 120, tf.nn.relu)
        layer2 = add_layer(layer1, 120, 60, tf.nn.relu)
        layer3 = add_layer(layer2, 60, 30, tf.nn.relu)
        layer4 = add_layer(layer3, 30, 1)
        return layer4

np.random.seed(42)
dnn1b = model2b(30, 10, 'model1b')
n_epochs = 31
batch_size = 100
with tf.Session() as sess:
    dnn1b.train(sess, X_train, y_train, n_epochs, batch_size, 0.1)
    print('Validation set')
    _, probs_dnn1b, y_hat_dnn1b, _, _, _= dnn1b.evaluate_loss_and_probs(sess, X_valid, y_valid, False, True)

Another popular choice is tanh. We compare both activation functions with the logistic regression:

roc_auc_model1c

roc_auc_model1c_detail

We see that both non linear models outperforms the logistic regression. For low FPRs the TPR is signifanct higher.
Assume we would accept a FPR of 0.01 %, then the Recall of our DNN is around 80% vs 50% for the logistic regression.
We can detect much more fraudulent transactions with the same rate of false alarms.

Using TensorFlow layers

Instead of building the computational graph our self (weights, bias tensor, etc) we can use TensorFlow Layers. The function tf.layers.dense build a linear or dense layer. We can specify the number of nodes, the input and the actication function (similar to our own function).

In the next layer we use the TensorFlow function and add on more layers.

class model3(model):

    def create_logit(self):
        layer1 = tf.layers.dense(self.input, 240, activation=tf.nn.tanh)
        layer2 = tf.layers.dense(layer1, 120, activation=tf.nn.tanh)
        layer3 = tf.layers.dense(layer2, 60, activation=tf.nn.tanh)
        layer4 = tf.layers.dense(layer3, 30, activation=tf.nn.tanh)
        layer5 = tf.layers.dense(layer4, 1)
        return layer5

np.random.seed(42)
dnn2 = model3(30, 10, 'model2')
n_epochs = 31
batch_size = 100
with tf.Session() as sess:
    dnn2.train(sess, X_train, y_train, n_epochs, batch_size, 0.1)
    print('Validation set')
    _, probs_dnn2, y_hat_dnn2, _, _, _= dnn2.evaluate_loss_and_probs(sess, X_valid, y_valid, False, True)
0 th Epoch
Loss: 0.003000   AUC 0.986239    Precision 82.428941%    Recall 80.352645%   FPR 0.029897%
10 th Epoch
Loss: 0.002036   AUC 0.992393    Precision 95.626822%    Recall 82.619647%   FPR 0.006595%
20 th Epoch
Loss: 0.001598   AUC 0.995232    Precision 93.989071%    Recall 86.649874%   FPR 0.009673%
30 th Epoch
Loss: 0.001273   AUC 0.996695    Precision 99.137931%    Recall 86.901763%   FPR 0.001319%
Validation set
Loss: 0.002425   AUC 0.980571    Precision 91.764706%    Recall 82.105263%   FPR 0.012309%

The model didn’t improve to the previous one. Maybe we are now overfitting. One way to prevent overfitting in DNN are dropouts. Dropouts deactive a proportion of nodes during training randomnly. So we prevent our neural network to memorize the training data. Lets add dropout layers to the previous model.

Lets use a dropout rate of 20%.

class model4(model):

    def create_logit(self):
        layer1 = tf.layers.dense(self.input, 120, activation=tf.nn.tanh)
        layer1 = tf.layers.dropout(layer1, 0.2, training=self.training)
        layer2 = tf.layers.dense(layer1, 60, activation=tf.nn.tanh)
        layer2 = tf.layers.dropout(layer2, 0.2, training=self.training)
        layer3 = tf.layers.dense(layer2, 30, activation=tf.nn.tanh)
        layer3 = tf.layers.dropout(layer3, 0.2, training=self.training)
        layer4 = tf.layers.dense(layer3, 1)
        return layer4

np.random.seed(42)
dnn3 = model4(30, 10, 'model3')
n_epochs = 31
batch_size = 100
with tf.Session() as sess:
    dnn3.train(sess, X_train, y_train, n_epochs, batch_size, 0.1)
    print('Validation set')
    _, probs_dnn3, y_hat_dnn3, _, _, _= dnn3.evaluate_loss_and_probs(sess, X_valid, y_valid, False, True)

auc_models_2

auc_models_2_detail

We see that all our deep learning model outperform the LR model on the validation set. The difference in AUC doesn’t seems very big, but especially for very low FPR the recall is much higher. Where the model with the dropout (DNN3) performs slightly better than the others.

Lets go for model 3 (4 layers with dropout) and let see the AUC Score of the model on the test data.

with tf.Session() as sess:
    dnn3.restore(sess)
    print('Test set')
    _, probs_dnn3_test, y_hat_dnn3_test, _, _, _= dnn3.evaluate_loss_and_probs(sess, X_test, y_test, False, True)
Test set
Loss: 0.001825   AUC 0.991294    Precision 97.619048%    Recall 83.673469%   FPR 0.003517%

This model performs very well on our test set. We have a high Recall with a very low FPR at a threshold of 50%.

Keras

The library Keras offers a very convinient API to TensorFlow (but it also supports other deep learning backends).

We can build the same model in just 6 lines of code. For many standard problems there are predefined loss functions, but we can also write our own loss functions in Keras.

For the model training and the prediction we only need one line of code each.

model = keras.Sequential()
model.add(keras.layers.Dense(120, input_shape=(30,), activation='tanh'))
model.add(keras.layers.Dropout(0.2))
model.add(keras.layers.Dense(60, activation='tanh'))
model.add(keras.layers.Dropout(0.2))
model.add(keras.layers.Dense(30, activation='tanh'))
model.add(keras.layers.Dropout(0.2))
model.add(keras.layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss='binary_crossentropy')

model.fit(X_train, y_train, epochs=31, batch_size=100)

probs_keras = model.predict(X_test)

Conclusion

In this part we saw how to build and train a deep neural network with TensorFlow using the low level and mid level API and as an outlook we saw how easy the model development is in a high level API like Keras.

For this fraud detection problem a very simple deep network can outperform a classical machine learning algorithm like logistic regression if we looking into the low false positive rate (FPR) regions. If we can accept higher false positive rates all models perform similar.

To decide for a final model, one need to specify the costs of a FP (a genuine transaction which we maybe block or at least investigate) and FN (a fraudulent transaction which we miss), so we can balance the trade-off between Recall (detection power) and FPR.

Our fraud detection problem is as we know a imbalance class problem. We can maybe improve the quality of the logistic regression with use of over-/undersampling of the majority class. Or we can use try other ‘classical’ machine learning methods like random forests or boosting trees, which often outperform a logisitc regression.

Another interesting unsupervised deep learning method to detect anomalies in transactions are auto-encoders.

I think I will cover these topics in later posts. So stay tuned.

As usual you can find the notebook on my GitHub repo, so please download the notebook and play with the model parameter, e.g one could change numbers of epochs we train, apply adaptive learning rates or add more layer or change the numbers of nodes in each layer and play with dropouts to find better models and please share your ideas and results.

So long…

Pricing Bermudan Options in TensorFlow – Learning an optimal Early Exercise Strategy

In the previous post we used TensorFlow to price some exotic options like Asian and Barrier Options and used the automatic differentiation feature to calculate the greeks of the options.

Today we will see how to price a Bermudan option in TensorFlow with the Longstaff-Schwartz (a.k.a American Monte Carlo) algorithm. For simplicity we assume Bermudan equity call option without dividend payments in a Black-Scholes-Merton world.

The complete Jupyter notebook can be found on GitHub.

Let start with a brief recap of Bermudan options and the Longstaff-Schwartz pricing method. For detailed and more formalized description have a look into my previous posts about Bermudan Swaptions and the American Monte Carlo Simulation for CVA calculations or have a look into the book ‘Monte Carlo Methods in Financial-Engineering’ from Paul Glasserman.

A Bermudan option give the holder the right to exercise option not only at the maturity of the option but also earlier on pre specified dates. At each exercise date the holder of the option has to decide if it’s better to exercise the option now (exercise value) or to wait for a later exercise date (continuation value). He has to find a optimal exercise strategy (early exercise boundary of the option). He has to decide if the exercise value is higher than the continuation value of the option. There are some trivial cases:

1) If the option is not in the money its always better to wait and
2) if the option hasn’t been exercised before the last exercise date the Bermudan become an European option.

Therefore the option price have to be higher than the price of an European (because its included).

One approach to price the option is to use Monte-Carlo simulations, but the problem is calculation of the continuation value. On each simulated path we can easily calculate the exercise value of the option at each exercise date given the state of the path, but the continuation value is a conditional expectation given the current underlying price of the path. The naive approach is to calculate this expectation with a Monte-Carlo Simulation again but then we need to run a simulation for each exercise date on each path. These kind of nested simulations can become very slow.

Longstaff-Schwartz method

One solution is the Longstaff-Schwartz method, the basic idea is to approximate the continuation value through a linear regression model.

The pricing consists of two phases:

In the learning phase we go backward through the time starting with the last exercise date (it is trivial to price), then we go to the previous exercise date and we fit a linear model to predict the continuation values (the option value at time t+1 which we just calculated) given the state of the paths (usually a system of polynomials of the state). Then we use the prediction to decide if we exercise or not and update the value of the option at time t (either exercise or continuation value). And we continue these steps that until we reach the first exercise date.

After we learned the models to predict the continuation values we use these linear models to predict the continuation values in the pricing phase. We generate a new set of random paths and go forward through the time and at each exercise date we decide if the exercise depending on the exercise value and the predicted continuation value.

There are two ways to fit the linear model. One could solve the normal equation
or use gradient descent. I decided to go for the gradient descent, it give us the opportunity to exchange the linear model with more sophisticated models like a deep network.

I use three helper functions, the first function get_continuation_function creates the Tensorflow operators needed for training a linear model at an exercise date and a second function feature_matrix_from_state creates a feature matrix for the model from the paths values at a given time step. I use Chebyshev polynomials up to the degree 4 as features, as we can see below the fit could be better. Feel free to play with it and adjust the code.

The third helper function pricing_function create the computational graph for the pricing and it generates for each call date the needed linear model and the training operator with the helper functions and store it in a list of training_functions.

previous_exersies = 0
    npv = 0
    for i in range(number_call_dates-1):
        (input_x, input_y, train, w, b, y_hat) = get_continuation_function()
        training_functions.append((input_x, input_y, train, w, b, y_hat))
        X = feature_matrix_from_current_state(S_t[:, i])
        contValue = tf.add(tf.matmul(X, w),b)
        continuationValues.append(contValue)
        inMoney = tf.cast(tf.greater(E_t[:,i], 0.), tf.float32)
        exercise = tf.cast(tf.greater(E_t[:,i], contValue[:,0]), tf.float32) * inMoney 
        exercises.append(exercise)
        exercise = exercise * (1-previous_exersies)
        previous_exersies += exercise
        npv += exercise*E_t[:,i]
    
    # Last exercise date
    inMoney = tf.cast(tf.greater(E_t[:,-1], 0.), tf.float32)
    exercise =  inMoney * (1-previous_exersies)
    npv += exercise*E_t[:,-1]
    npv = tf.reduce_mean(npv)
    greeks = tf.gradients(npv, [S, r, sigma])

The npv operator is sum of the optimal exercise decisions. At each time we exercise if the exercise value is greater than the predicted continuation value and the option is in the money. We store the information about previous exercise decision since we can only exercise the option once.

In the actual pricing functionbermudanMC_tensorFlow we execute the graph to create the paths, the exercise values for the training path then will iterate backward through the training_functions and learn for each exercise date the linear model.

# Backward iteration to learn the continuation value approximation for each call date
        for i in range(n_excerises-1)[::-1]:
            (input_x, input_y, train, w, b, y_hat) = training_functions[i]
            y = exercise_values[:, i+1:i+2]
            X = paths[:, i]
            X = np.c_[X**1, 2*X**2-1, 4*X**3 - 3 * X]
            X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)
            for epoch in range(80):
                _ = sess.run(train, {input_x:X[exercise_values[:,i]>0], 
                                     input_y:y[exercise_values[:,i]>0]})
            cont_value = sess.run(y_hat, {input_x:X, 
                                     input_y:y})
            exercise_values[:, i:i+1] = np.maximum(exercise_values[:, i:i+1], cont_value)
            plt.figure(figsize=(10,10))
            plt.scatter(paths[:,i], y)
            plt.scatter(paths[:,i], cont_value, color='red')
            plt.title('Continuation Value approx')
            plt.ylabel('NPV t_%i'%i)
            plt.xlabel('S_%i'%i)

We take the prices of the underlying at time i and calculate the Chebyshey polynomials and store it in the predictor matrix X. The option value at the previous time is our target value y. We normalise our features and train our linear model with a stochastic gradient descent over 80 epochs. We exclude all samples where the option is not in the money (no decision to make). After we got our prediction for the continuation value we update the value of option at time i to be the maximum of the exercise value and the predicted continuation value.

After we learned the weights for our model we can execute the npv and greek operator to calculate the npv and the derivatives of the npv.

Pricing Example

Assume the spot is at 100 the risk free interest rate is at 3% and the implied Black vol is 20%. Lets price a Bermudan Call with strike level at 120 with yearly exercise dates and maturity in 4 years.

The fit off our continuation value approximation on the training set.

The runtime is between 7-10 second for a Bermudan option with 4 exercise dates. We could speed it up, if we would use the normal equations instead of a gradient descent method.

So thats it for today. As usual is the complete source code as a notebook on GitHub for download. I think with TensorFlow its very easy to try other approximations methods, since we can make use of TensorFlows deep learning abilities. So please feel free to play with the source code and experiment with the feature matrix (other polynomials, or higher degrees) or try another model (maybe a deep network) to get a better fit of the continuation values. I will play a bit with it and come back to this in a later post and present some results of alternative approximation approaches.

So long.

TensorFlow meets Quantitative Finance: Pricing Exotic Options with Monte Carlo Simulations in TensorFlow

During writing my previous post about fraud detection with logistic regression with TensorFlow and gradient descent methods I had the idea to use TensorFlow for the pricing of path dependent exotic options. TensorFlow uses automatic (algorithmic) differentitation (AD) to calculate the gradients of the computational graph. So if we implement a closed pricing formula in TensorFlow we should get the greeks for ‘free’. With ‘free’ I mean without implementing a closed formula (if available) or without implementing a numerical method (like finite difference) to calculate the greeks. In Theory the automatic differentiation should be a bit times slower than a single pricing but the cost should be independent on the number of greeks we calculate.

Monte Carlo Simulations can benefit of AD a lot, when each pricing is computational costly (simulation) and we have many risk drivers, the calculation of greeks become very challenging. Imagine a interest rate derivate and we want to calculate the delta and gamma and mixed gammas for each pillar on the yield curve, if we use bump-and-revaluate to calculate the greeks we need many revaluations.

For simplicty we focus on equity options in a Black-Scholes model world since I want to focus on the numerical implementation in TensorFLow. Today we will look into the Monte-Carlo pricing of Plain Vanilla Options, Geometric Asian Options and Down-And-Out Barriers. All options in this post are Calls. For a introduction into TensorFlow look into my previous post on Logisitc Regression in TensorFlow.

You will need TensorFlow 1.8 to run the notebook (which is available on my Github)

Plain Vanilla Call

Lets start with a plain vanilla Call. Let me give a brief introduction into options for the non-quant readers, if you familiar with options skip this part and go directly to the implementation.

A call gives us the right to buy a unit of a underlying (e.g Stock) at preagreed price (strike) at a future time (option maturity), regardless of the actual price at that time.So the value the Call at option maturity is

C = \max(S_T-K,0) ,

with S_T the price of the underlying at option maturity T and strike K. Clearly we wouldn’t exercise the option if the actual price is below the strike, so its worthless (out of the money).

Its very easy to calculate the price of the option at maturity but we are more interested into the todays price before maturity.

Black, Scholes and Merton had a very great idea how to solve this problem (Nobel prize worth idea), and come up with a closed pricing formula.

We will first implement the closed formula and then implement the pricing with a Monte Carlo Simulation.

Not for all kind of options and models we have analytical formula to get the price. A very generic method to price options is the Monte-Carlo Simulation. The basic idea is to simulated many possible (random) evolutions (outcomes/realizations) of the underlying price (paths) and price the option of each of these paths and approximate the price with the average of the simulated option prices. Depending on the underlying stochastic process for the underyling in the model we need numerical approximations for the paths.

For a more detailed introduction into derivates have a look into the book ‘Options, Futures and Other Derivates’ by Prof. John C. Hull.

We lets assume the current stock price is 100, the strike is 110 and maturity is in 2 years from now. The current risk free interest rate is 3% and the implied market vol is 20%.

Let implement the Black Scholes pricing formula in Python

import numpy as np
import tensorflow as tf
import scipy.stats as stats
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

Plain Vanilla Call in TensorFlow


def blackScholes_py(S_0, strike, time_to_expiry, implied_vol, riskfree_rate):
    S = S_0
    K = strike
    dt = time_to_expiry
    sigma = implied_vol
    r = riskfree_rate
    Phi = stats.norm.cdf
    d_1 = (np.log(S_0 / K) + (r+sigma**2/2)*dt) / (sigma*np.sqrt(dt))
    d_2 = d_1 - sigma*np.sqrt(dt)
    return S*Phi(d_1) - K*np.exp(-r*dt)*Phi(d_2)

blackScholes_py(100., 110., 2., 0.2, 0.03)
9.73983632580859

The todays price is 9.73 and a pricing with the closed formula is super fast less then 200 mirco seconds.

Now lets implement the same pricing formula in TensorFLow. We use the concept of a function closure. The outer function constructs the static TensorFow graph, and the inner function (which we return) let us feed in our parameters into the graph and execute it and return the results.

def blackScholes_tf_pricer(enable_greeks = True):
    # Build the static computational graph
    S = tf.placeholder(tf.float32)
    K = tf.placeholder(tf.float32)
    dt = tf.placeholder(tf.float32)
    sigma = tf.placeholder(tf.float32)
    r = tf.placeholder(tf.float32)
    Phi = tf.distributions.Normal(0.,1.).cdf
    d_1 = (tf.log(S / K) + (r+sigma**2/2)*dt) / (sigma*tf.sqrt(dt))
    d_2 = d_1 - sigma*tf.sqrt(dt)
    npv =  S*Phi(d_1) - K*tf.exp(-r*dt)*Phi(d_2)
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, dt])
        dS_2ndOrder = tf.gradients(greeks[0], [S, sigma, r, K, dt]) 
        # Calculate mixed 2nd order greeks for S (esp. gamma, vanna) and sigma (esp. volga)
        dsigma_2ndOrder = tf.gradients(greeks[1], [S, sigma, r, K, dt])
        dr_2ndOrder = tf.gradients(greeks[2], [S, sigma, r, K, dt]) 
        dK_2ndOrder = tf.gradients(greeks[3], [S, sigma, r, K, dt]) 
        dT_2ndOrder = tf.gradients(greeks[4], [S, sigma, r, K, dt])
        target_calc += [greeks, dS_2ndOrder, dsigma_2ndOrder, dr_2ndOrder, dK_2ndOrder, dT_2ndOrder]
    
    # Function to feed in the input and calculate the computational graph
    def execute_graph(S_0, strike, time_to_expiry, implied_vol, riskfree_rate):
        with tf.Session() as sess:
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt: time_to_expiry})
        return res
    return execute_graph

tf_pricer = blackScholes_tf_pricer()
tf_pricer(100., 110., 2., 0.2, 0.03)

[9.739834,
 [0.5066145, 56.411205, 81.843216, -0.37201464, 4.0482087],
 [0.014102802, 0.5310427, 2.8205605, -0.012820729, 0.068860546],
 [0.5310427, -1.2452297, -6.613867, 0.030063031, 13.941332],
 [2.8205605, -6.613866, 400.42563, -1.8201164, 46.5973],
 [-0.012820728, 0.030063028, -1.8201163, 0.011655207, -0.025798593],
 [0.06886053, 13.941331, 46.597298, -0.025798589, -0.62807804]]

We get the price and all first and 2nd order greeks. The code runs roughly 2.3 second on my laptop and roughly 270 ms (without greeks).

tf_pricer = blackScholes_tf_pricer(True)
%timeit tf_pricer(100., 110., 2., 0.2, 0.03)

2.32 s ± 304 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)


tf_pricer = blackScholes_tf_pricer(False)
%timeit tf_pricer(100., 110., 2., 0.2, 0.03)

269 ms ± 13.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

We calculated 30 different greeks and one npv, so for a bump and revaluation we would need 31 times the time for one pricing. So that definetly a speed up but compare to the ‘pure’ python implementation is awefully slow. But its easy to implement and reduce maybe developing time.

Monte Carlo Simulation with TensorFlow

In the Black Scholes model the underlying price follows a geometric Brownian motion and we now the distribution of the prices in the futures given the current price, the risk free interest rate and the implied volatiliy of the underlying. So we are able to sample future prices directly.

We use a helper function create_tf_graph_for_simulate_paths to build the computational graph in TensorFlow which can calculate the future prices given the required inputs and normal distributed random numbers dw with zero mean and a standard deviation of one. The function will return the operator to calculate the random price paths and the placeholder we need to feed in our parameter.

We assume we need to calculate the prices at equidistant points of time. The column of the random matrix dw defines the number of time on each path and the rows the numbers of different paths.

For example a random matrix with the shape (1000, 10) would have 1000 path with the prices of the underlying at times T/10, 2T/10, … T.

def create_tf_graph_for_simulate_paths():
    S = tf.placeholder(tf.float32)
    K = tf.placeholder(tf.float32)
    dt = tf.placeholder(tf.float32)
    T = tf.placeholder(tf.float32)
    sigma = tf.placeholder(tf.float32)
    r = tf.placeholder(tf.float32)
    dw = tf.placeholder(tf.float32)
    S_T = S * tf.cumprod(tf.exp((r-sigma**2/2)*dt+sigma*tf.sqrt(dt)*dw), axis=1)
    return (S, K, dt, T, sigma, r, dw, S_T)

To test the function we create another function which use the function above to create the computational graph and returns another function which feed our parametrization into the graph and run it and return the simulated paths.

def make_path_simulator():
    (S,K, dt, T, sigma, r, dw, S_T) = create_tf_graph_for_simulate_paths()
    def paths(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, seed, n_sims, obs):
        if seed != 0:
            np.random.seed(seed)
        stdnorm_random_variates = np.random.randn(n_sims, obs)
        with tf.Session() as sess:
            timedelta = time_to_expiry / stdnorm_random_variates.shape[1]
            res = sess.run(S_T, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt : timedelta,
                               T: time_to_expiry,
                               dw : stdnorm_random_variates
                         })
            return res
    return paths

path_simulator = make_path_simulator()
paths = path_simulator(100, 110.,  2, 0.2, 0.03, 1312, 10, 400)
plt.figure(figsize=(8,5))
_= plt.plot(np.transpose(paths))
_ = plt.title('Simulated Path')
_ = plt.ylabel('Price')
_ = plt.xlabel('TimeStep') 

paths

Now we going to price our plain vanilla call. We will use the same design pattern as above (function closure). The function will create the computational graph and returns a function that generates the random numbers, feed our parameter into the graph and run it.

Actually we just extend the previous function with the pricing of the call on the path payout = tf.maximum(S_T[:,-1] - K, 0) and we discount it and we add some extra lines to calculate the greeks.

def create_plain_vanilla_mc_tf_pricer(enable_greeks = True):
    (S,K, dt, T, sigma, r, dw, S_T) = create_tf_graph_for_simulate_paths()
    payout = tf.maximum(S_T[:,-1] - K, 0)
    npv = tf.exp(-r*T) * tf.reduce_mean(payout)
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, T])
        target_calc += [greeks]
    def pricer(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, seed, n_sims):
        if seed != 0:
            np.random.seed(seed)
        stdnorm_random_variates = np.random.randn(n_sims, 1)
        with tf.Session() as sess:
            timedelta = time_to_expiry / stdnorm_random_variates.shape[1]
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt : timedelta,
                               T: time_to_expiry,
                               dw : stdnorm_random_variates
                         })
            return res
    return pricer

plain_vanilla_mc_tf_pricer = create_plain_vanilla_mc_tf_pricer()
plain_vanilla_mc_tf_pricer(100, 110, 2, 0.2, 0.03, 1312, 1000000)
[9.734369, [0.5059894, 56.38598, 81.72916, -0.37147698, -0.29203108]]
%%timeit
plain_vanilla_mc_tf_pricer(100, 110, 2, 0.2, 0.03, 1312, 1000000)

392 ms ± 20.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)


plain_vanilla_mc_tf_pricer = create_plain_vanilla_mc_tf_pricer(False)
%timeit plain_vanilla_mc_tf_pricer(100, 110, 2, 0.2, 0.03, 1312, 1000000)

336 ms ± 24.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The MC pricing is faster then the analytical solution in TensorFlow (ok we only have first order derivates) and the
extra costs for the greeks is neglect-able. I really wonder why a MC Simulation is faster than a closed formula.

Lets try some exotic (path dependent) options.

Exotic path dependent option

Asian Options

The fair value of a Asian option depends not only on the price of the underlying at option maturity but also on the values during the lifetime to predefined times. A Asian Call pay the difference between the average price and the strike or nothing.

A asian option which use the geometric mean of the underlying is also called Geometric Asian Option.

We follow the previous design we only make some extensions to the payoff and pricing method (need number of observation points).

def create_geometric_asian_mc_tf_pricer(enable_greeks = True):
    (S,K, dt, T, sigma, r, dw, S_T) = create_tf_graph_for_simulate_paths()
    A = tf.pow(tf.reduce_prod(S_T, axis=1),dt/T)
    payout = tf.maximum(A - K, 0)
    npv = tf.exp(-r*T) * tf.reduce_mean(payout)
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, T])
        target_calc += [greeks]
    def pricer(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, seed, n_sims, obs):
        if seed != 0:
            np.random.seed(seed)
        stdnorm_random_variates = np.random.randn(n_sims, obs)
        with tf.Session() as sess:
            timedelta = time_to_expiry / obs
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt : timedelta,
                               T: time_to_expiry,
                               dw : stdnorm_random_variates
                         })
            return res
    return pricer

geom_asian_mc_tf_pricer = create_geometric_asian_mc_tf_pricer()
geom_asian_mc_tf_pricer(100, 110, 2, 0.2, 0.03, 1312, 100000, 8)
[4.196899, [0.3719058, 30.388206, 33.445602, -0.29993924, -89.84526]]

The pricing is a bit slower than the plain vanilla case about 470ms and 319ms without greeks. Again the extra cost is neglect-able.

Down and Out Options

Now lets try a down and out call. A down-and-out Call behaves as a normal Call but if the price of the underlying touch or fall below a certain level (the barrier B) at any time until the expiry the option, then it becomes worthless, even if its at expiry in the money.

A down and out call is cheaper than the plain vanilla case, since there is a risk that the option get knocked out before reaching the expiry. It can be used to reduce the hedging costs.

In the Black-Scholes model there is again a closed formula to calculate the price. See https://people.maths.ox.ac.uk/howison/barriers.pdf or https://warwick.ac.uk/fac/soc/wbs/subjects/finance/research/wpaperseries/1994/94-54.pdf .

We want to price this kind of option in TensorFlow with a Monte-Carlo Simulation and let TensorFLow calculate the path derivates with automatic differentitation.

Because of the nature of the product it quite difficult to calculate the npv and greeks in a Monte-Carlo Simulation. Obviously we have a bias in our price since we check if the barrier hold on discrete timepoints while the barrier has to hold in continous time. The closer we get to the Barrier the more off we will be from the analytical price and greeks. The MC price will tend to overestimate the value of the option. See the slides from Mike Giles about Smoking adjoints (automtic differentiation) https://people.maths.ox.ac.uk/gilesm/talks/quant08.pdf.

First we implement the analytical solutions in ‘pure’ Python (actually we rely heavly on numpy) and in TensorFLow.

def analytical_downOut_py(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, barrier):
    S = S_0
    K = strike
    dt = time_to_expiry
    sigma = implied_vol
    r = riskfree_rate
    alpha = 0.5 - r/sigma**2
    B = barrier
    Phi = stats.norm.cdf
    d_1 = (np.log(S_0 / K) + (r+sigma**2/2)*dt) / (sigma*np.sqrt(dt))
    d_2 = d_1 - sigma*np.sqrt(dt)
    bs = S*Phi(d_1) - K*np.exp(-r*dt)*Phi(d_2)
    d_1a = (np.log(B**2 / (S*K)) + (r+sigma**2/2)*dt) / (sigma*np.sqrt(dt))
    d_2a = d_1a - sigma*np.sqrt(dt)
    reflection = (S/B)**(1-r/sigma**2) * ((B**2/S)*Phi(d_1a) - K*np.exp(-r*dt)*Phi(d_2a))
    return max(bs - reflection,0)



def analytical_downOut_tf_pricer(enable_greeks = True):
    S = tf.placeholder(tf.float32)
    K = tf.placeholder(tf.float32)
    dt = tf.placeholder(tf.float32)
    sigma = tf.placeholder(tf.float32)
    r = tf.placeholder(tf.float32)
    B = tf.placeholder(tf.float32)
    Phi = tf.distributions.Normal(0.,1.).cdf
    d_1 = (tf.log(S / K) + (r+sigma**2/2)*dt) / (sigma*tf.sqrt(dt))
    d_2 = d_1 - sigma*tf.sqrt(dt)
    bs_npv =  S*Phi(d_1) - K*tf.exp(-r*dt)*Phi(d_2)
    d_1a = (tf.log(B**2 / (S*K)) + (r+sigma**2/2)*dt) / (sigma*tf.sqrt(dt))
    d_2a = d_1a - sigma*tf.sqrt(dt)
    reflection = (S/B)**(1-r/sigma**2) * ((B**2/S)*Phi(d_1a) - K*tf.exp(-r*dt)*Phi(d_2a))
    npv = bs_npv - reflection
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, dt, B])
        # Calculate mixed 2nd order greeks for S (esp. gamma, vanna) and sigma (esp. volga)
        dS_2ndOrder = tf.gradients(greeks[0], [S, sigma, r, K, dt, B]) 
        #dsigma_2ndOrder = tf.gradients(greeks[1], [S, sigma, r, K, dt, B]) 
        # Function to feed in the input and calculate the computational graph
        target_calc += [greeks, dS_2ndOrder]
    def price(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, barrier):
        """
        Returns the npv, delta, vega and gamma
        """
        with tf.Session() as sess:
            
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt: time_to_expiry,
                               B : barrier})
        if enable_greeks:
            return np.array([res[0], res[1][0], res[1][1], res[2][0]])
        else:
            return res
    return price

analytical_downOut_py(100., 110., 2., 0.2, 0.03, 80)
9.300732987604157

And again the TensorFlow implementation is super slow compared to the python one. 344 µs (pure Python) vs 1.63 s (TensorFlow with greeks).

We use the python implementation to visualise the npv of option dependent on the barrier.


def surface_plt(X,Y,Z, name='', angle=70):
    fig = plt.figure(figsize=(13,10))
    ax = fig.gca(projection='3d')
    surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False)
    fig.colorbar(surf, shrink=0.5, aspect=5)
    ax.set_title('Down-And-Out Option (%s vs Barrier)' % name)
    ax.view_init(35, angle)
    ax.set_xlabel(name)
    ax.set_ylabel('barrier')
    ax.set_zlabel('price')
    plt.savefig('npv_%s_barrier.png' % name, dpi=300)
    

T = np.arange(0.01, 2, 0.1)
S = np.arange(75, 110, 1)
V = np.arange(0.1, 0.5, 0.01)
B = np.arange(75, 110, 1)
X, Y = np.meshgrid(S, B)
vectorized_do_pricer = np.vectorize(lambda s,b : analytical_downOut_py(s, 110., 2, 0.2, 0.03, b))
Z = vectorized_do_pricer(X, Y)
surface_plt(X,Y,Z,'spot', 70)

X, Y = np.meshgrid(V, B)
vectorized_do_pricer = np.vectorize(lambda x,y : analytical_downOut_py(100, 110., 2, x, 0.03, y))
Z = vectorized_do_pricer(X, Y)
surface_plt(X,Y,Z,'vol', 120)

X, Y = np.meshgrid(T, B)
vectorized_do_pricer = np.vectorize(lambda x,y : analytical_downOut_py(100, 110., x, 0.2, 0.03, y))
Z = vectorized_do_pricer(X, Y)
surface_plt(X,Y,Z,'time', 120)

Now lets implement the Monte Carlo Pricing. First as pure python version.

def monte_carlo_down_out_py(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, barrier, seed, n_sims, obs):
    if seed != 0:
            np.random.seed(seed)
    stdnorm_random_variates = np.random.randn(n_sims, obs)
    S = S_0
    K = strike
    dt = time_to_expiry / stdnorm_random_variates.shape[1]
    sigma = implied_vol
    r = riskfree_rate
    B = barrier
    # See Advanced Monte Carlo methods for barrier and related exotic options by Emmanuel Gobet
    B_shift = B*np.exp(0.5826*sigma*np.sqrt(dt))
    S_T = S * np.cumprod(np.exp((r-sigma**2/2)*dt+sigma*np.sqrt(dt)*stdnorm_random_variates), axis=1)
    non_touch = (np.min(S_T, axis=1) > B_shift)*1
    call_payout = np.maximum(S_T[:,-1] - K, 0)
    npv = np.mean(non_touch * call_payout)
    return np.exp(-time_to_expiry*r)*npv

monte_carlo_down_out_py(100., 110., 2., 0.2, 0.03, 80., 1312, 10000, 500)

Now now as TensorFlow version.

def create_downout_mc_tf_pricer(enable_greeks = True):
    (S,K, dt, T, sigma, r, dw, S_T) = create_tf_graph_for_simulate_paths()
    B = tf.placeholder(tf.float32)
    B_shift = B * tf.exp(0.5826*sigma*tf.sqrt(dt))
    non_touch = tf.cast(tf.reduce_all(S_T > B_shift, axis=1), tf.float32)
    payout = non_touch * tf.maximum(S_T[:,-1] - K, 0)
    npv = tf.exp(-r*T) * tf.reduce_mean(payout)
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, T])
        target_calc += [greeks]
    def pricer(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, barrier, seed, n_sims, obs):
        if seed != 0:
            np.random.seed(seed)
        stdnorm_random_variates = np.random.randn(n_sims, obs)
        with tf.Session() as sess:
            timedelta = time_to_expiry / obs
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt : timedelta,
                               T: time_to_expiry,
                               B: barrier,
                               dw : stdnorm_random_variates
                         })
            return res
    return pricer

downout_mc_tf_pricer = create_downout_mc_tf_pricer()
downout_mc_tf_pricer(100., 110., 2., 0.2, 0.03, 80., 1312, 10000, 500)
[9.34386, [0.47031397, 54.249084, 75.3748, -0.34261367, -0.2803158]]

The pure Python MC needs 211 ms ± 8.95 ms per npv vs the 886 ms ± 23.4 ms per loop for the TensorFlow MC with 5 greeks. So its not that bad as the performance for the closed formula implementation suggests.

There are many things we could try now: implementing other options, try different models (processes), implement a discretisation scheme to solve a stochastic process numerically in TensorFlow, try to improve the Barrier option with more advanced Monte Carlo techniques (Brownian Bridge). But that’s it for now.

For me it was quite fun to implement the Monte Carlo Simulations and do some simple pricing in TensorFlow. For me it was very suprising and unexpected that the analytical implementations are so slow compared to pure Python. Therefore the Monte Carlo Simulation in TensorFlow seems quite fast. Maybe the bad performance for the closed formula pricings is due to my coding skills.

Nevertheless TensorFlow offers a easy to use auto grad (greeks) feature and the extra cost in a MC Simulation is neglect-able and the automatic differentiation is faster than DF when we need to calculate more than 4-6 greeks. And in some cases we can be with 5 greeks as fast as pure Python as seen the barrier sample. (approx 1 sec for a Tensorflow (npv and 5 greeks) vs 200 ms for Python (single npv). So i assume we can be faster compared to a pure Python implementation when we need to calculate many greeks (pillars on a yield curve or vol surface).

Maybe we can get even more performance out of it if we run it on GPUs. I have the idea to try Bermudan Options in TensorFlow and I also want to give PyTorch a try. Maybe I will pick it up in a later post.

The complete source code is also on GitHub.

So long…

From Logistic Regression in SciKit-Learn to Deep Learning with TensorFlow – A fraud detection case study – Part II

We will continue to build our credit card fraud detection model. In the previous post we used scikit-learn to detect fraudulent transactions with a logistic regression model. This time we will build a logistic regression in TensorFlow from scratch. We will start with some TensorFlow basics and then see how to minimize a loss function with (stochastic) gradient descent.

We will fit our model to our training set by minimizing the cross entropy. For the logistic regression is minimizing the cross entropy aquivalent to maximizing the likelihood (see previous part for details). In the next part we will extend this model with some hidden layer and build a deep neural network to detect fraud. And we will see how to use the High-Level API to build the same model much easier and quicker.

As usual you will find the corresponding notebook also on GitHub and kaggle.

First we will load the data, split it into a training and test set and normalize the features as in our previous model.


import numpy as np
import pandas as pd
import tensorflow as tf
import keras
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.metrics import roc_curve, roc_auc_score, classification_report, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt

credit_card = pd.read_csv('../input/creditcard.csv')

X = credit_card.drop(columns='Class', axis=1)
y = credit_card.Class.values

np.random.seed(42)
X_train, X_test, y_train, y_test = train_test_split(X, y)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Short TensorFlow introduction

TensorFlow uses a dataflow graph to represent the computation in terms of the dependencies between individual operations.

We first define the dataflow graph, then we create a TensorFlow session to run or calculate it.

Start with a very simple graph. Lets say we have a two dimensional vector

x =(x_1,x_2)

and want to compute a x^2 = (ax_1^2, ax_2^2) , where a is a constant (e.g.5).

First we define the input, a tf.placeholder object. We will use tf.placeholder to feed our data to our models (like our features and the value we try to predict). We can also use tf.placeholder to feed hyperparameter in our model (e.g. a learning_rate). We have to define the type of the input (in this case it’s a floating point number) and the shape of the input (a two dimensional vector).

Another class is the tf.constant, as the name indicates it represent a constant in our computational graph.

input_x = tf.placeholder(tf.float32)
a = tf.constant(5., tf.float32, name='a', shape=(2,))

Now we define our operator y.

y = a * tf.pow(input_x,2)

We can create a TensorFlow session and run our operator with the ´run()´ method of the session. We have to feed our input vector x as a dictionary into the graph. Lets say x=(1,2)

x = np.array([1,2])
with tf.Session() as sess:
    result = sess.run(y, {input_x: x})
    print(result)
[ 5. 20.]

Automatic differentiation in TensorFlow

Most machine learning and deep learning problems are at the end minimization problems. We either have to minimize a loss function or we have to maximize a reward function in the case of reinforced learning. A bread and butter method to solve these kind of problems is the gradient descent (ascent) method.

The power of TensorFlow is the automatic or algorithmic differentiation of our computational graph. We can get the anayltical derviates (or gradients) for almost ‘free’. We dont need to derive the formula for the gradient by ourself or implement it.

The gradient \nabla f(x) is the multidimensional generalization of the derivate of a function. Its the vector of the partial derivates of the function and points into the direction with the strongest increase. If we have have real valued function f(x) with x being a n-dimensional vector, then f is decreasing the fastest when we go from point x into the direction of the negative gradient.

To get the gradient we use the tf.gradientclass. Lets say we want to derive y with respect to our input x. The function call looks like that:

g = tf.gradients(y, [input_x])
grad_y_x = 0
with tf.Session() as sess:
    grad_y_x = sess.run(g,{input_x: np.array([1,2])})
    print(grad_y_x)
[array([10., 20.], dtype=float32)]

Chain Rule in TensorFlow

Lets check a simple example for the chain rule. We come later back to the chain rule when we talk about back propagation in the coming part. Back propagation is one of the key concepts in deep learning. Lets recall the chain rule, which we all learned at high school:

\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)

For our example we use our function y and chain it to a new function z=log(y).

The ‘inner’ partial derivate of y with respect to x_i is

\frac{\partial y}{\partial x_i} = 10x_i

and the outer one with respect to y is

\frac{\partial z}{\partial y_i} =\frac{1}{5x_i^2} .

The partial derivate is \frac{2x_i }{x_i^2} .

With TensorFlow, we can calulate the outer and inner derivate seperatly or in one step.

In our example we will calculate two gradients one with respect to y and one with respect to x. Multiplying elementwise the gradient with respect to y with the gradient of y with respect to x (inner derivative) yield to the gradient of z with respect to x.

z = tf.log(y)
with tf.Session() as sess:
    result_z = sess.run(z,  {input_x: np.array([1,2])})
    print('z =', result_z)
    delta_z = tf.gradients(z, [y, input_x])
    grad_z_y, grad_z_x = sess.run(delta_z,  {input_x: np.array([1,2])})
    print('Gradient with respect to y', grad_z_y)
    print('Gradient with respect to x', grad_z_x)
    print('Manual chain rule', grad_z_y * grad_y_x)
z = [1.609438  2.9957323]
Gradient with respect to y [0.2  0.05]
Gradient with respect to x [2. 1.]
Manual chain rule [[2. 1.]]

Gradient descent method

As mentioned before the gradient is very useful if we need to minimize a loss function.

It’s like hiking down a hill, we walk step by step into the direction of the steepest descent and finally we reach the valley. The gradient provides us the information in which direct we need to walk.

So if we want to minimize the function
f (e.g. root mean squared error, negative likelihood, …) we can apply an iterative algorithm

x_n = x_{n-1} - \gamma  \nabla f(x_{n-1}),

with a starting point $x_0$. These kind of methods are called gradient descent methods.

Under particular circumstances we can be sure that we reach the global minimum but in general this is not true. Sometimes it can happen that we reach a local minima or a plateau.
To aviod stucking in local minima there are plenty extensions to the plain vanilla gradient descent (e.g. simulated annealing). In Machine Learning literature the dradient descent method is often called Batch Gradient method, because you will use all data points to calculate the gradients.

We will usually multiply the gradient with a factor before we subtract it from our previous value, the so called learning rate. If the learning rate is too large, we will make large steps into the direction but it can happen that we step over the minimum and miss it. If the learning rate is too small the algorithm takes longer to converge. There are extensions which adept the learning rate to the parameters (e.g ADAM, RMSProp or AdaGrad) to achive faster and better convergence (see for example http://ruder.io/optimizing-gradient-descent/index.html).

Example Batch Gradient descent

Lets see how to use it on a linear regression problem. We generate 1000 random observations y = 2 x_1 + 3x_2 * \epsilon , with \epsilon normal distributed with zero mean and a standard deviation of 0.2.

#Generate data
np.random.seed(42)
eps = 0.2 * np.random.randn(1000)
x = np.random.randn(2,1000)
y = 2 * x[0,:] + 3 * x[1,:] + eps

We use a simple linear model to predict y. Our model is

\hat{y_i} = w_1 x_{i,1} + w_2 x_{i,2},

for an observation x_i and we want to minimize the mean squared error of our predictions

\frac{1}{1000}  \sum (y_i-\hat{y_i})^2.

Clearly we could use the well known least square estimators for the weights, but we want to minimize the error with a gradient descent method in TensorFlow.

We use the tf.Variableclass to store the parameters $w$ which we want to learn (estimate) from the data. We specify the shape of the tensor, through the intial values. The inital values are the starting point of our minimization.

Since we have a linear model, we can represent our model with an single matrix multiplication of our observation matrix (row obs, columns features) with our weight (parameter) matrix w.

# Setup the computational graph with loss function
input_x = tf.placeholder(tf.float32, shape=(2,None))
y_true = tf.placeholder(tf.float32, shape=(None,))
w = tf.Variable(initial_value=np.ones((1,2)), dtype=tf.float32)
y_hat = tf.matmul(w, input_x)
loss = tf.reduce_mean(tf.square(y_hat - y_true))

In the next step we are going to apply our batch gradient descent algorithm.

We define gradient of the loss with respect to our weights w grad_loss_w.

We also need to initialize our weights with the inital value (starting point our optimization). TensorFlow has a operator for this tf.global_variables_initializer(). In our session we run the initialization operator first. And then we can apply our algorithm.

We calculate the gradient and apply it to our weights with the function assign().

grad_loss_w = tf.gradients(loss, [w])
init = tf.global_variables_initializer()
losses = np.zeros(10)
with tf.Session() as sess:
    # Initialize the variables
    sess.run(init)
    # Gradient descent
    for i in range(0,10):
        # Calculate gradient
        dloss_dw = sess.run(grad_loss_w, {input_x:x,
                                          y_true:y})
        # Apply gradient to weights with learning rate
        sess.run(w.assign(w - 0.1 * dloss_dw[0]))
        # Output the loss
        losses[i] =  sess.run(loss, {input_x:x,
                                     y_true:y})
        print(i+1, 'th Step, current loss: ', losses[i])
    print('Found minimum', sess.run(w))
plt.plot(range(10), losses)
plt.title('Loss')
plt.xlabel('Iteration')
_ = plt.ylabel('RMSE')

Unknown-4

Luckily we don’t need to program everytime the same algorithm by ourself. TensorFlow provide many of gradient descent algorithms, e.g.
tf.train.GradientDescentOptimizer, tf.train.AdagradDAOptimizer or tf.train.RMSPropOptimizer (to mention a few). They compute the gradient and apply it to the weights automatically.

In the case of the GradientDescentOptimizerwe only need to specify the learning rate and tell the optimizer which loss function we want to minimize.

We call the method minimize which returns our training or optimization operator. In our loop we just need to run the operator.

tf.train.RMSPropOptimizer
optimizer = tf.train.GradientDescentOptimizer(0.1)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
losses = np.zeros(10)
with tf.Session() as sess:
    # Initialize the variables
    sess.run(init)
    # Gradient descent
    for i in range(0,10):
        _, losses[i] =  sess.run([train, loss], {input_x:x,
                                     y_true:y})
    print('Found minimum', sess.run(w))
plt.plot(range(10), losses)
plt.title('Loss')
plt.xlabel('Iteration')
_ = plt.ylabel('RMSE')

Stochastic Gradient Descent and Mini-Batch Gradient

One extension to batch gradient descent is the stochastic gradient descent. Instead of calculate the gradient for all observation we just randomly pick one observation (without replacement) an evaluate the gradient at this point. We repeat this until we used all data points, we call this an epoch. We repeat that process for several epochs.

Another variant use more than one random data point per gradient. Its the so called mini-batch gradient. Please feel free to play with the batch_size and the learning rate to see the effect of the optimization. One advantage is that we don’t need to keep all data in memory for optimization, especially if we talking about big data. We just need to load small batches at once to calculate the gradient.

np.random.seed(42)
optimizer = tf.train.GradientDescentOptimizer(0.1)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
n_epochs = 10
batch_size = 25
losses = np.zeros(n_epochs)
with tf.Session() as sess:
    # Initialize the variables
    sess.run(init)
    # Gradient descent
    indices = np.arange(x.shape[1])
    for epoch in range(0,n_epochs):
        np.random.shuffle(indices)
        for i in range(int(np.ceil(x.shape[1]/batch_size))):
            idx = indices[i*batch_size:(i+1)*batch_size]
            x_i = x[:,idx]
            x_i = x_i.reshape(2,batch_size)
            y_i = y[idx]
            sess.run(train, {input_x: x_i, 
                             y_true:y_i})
        
        if epoch%1==0: 
            loss_i = sess.run(loss, {input_x: x, 
                             y_true:y})
            print(epoch, 'th Epoch Loss: ', loss_i)
        loss_i = sess.run(loss, {input_x: x, 
                             y_true:y})
        losses[epoch]=loss_i
    print('Found minimum', sess.run(w))
plt.plot(range(n_epochs), losses)
plt.title('Loss')
plt.xlabel('Iteration')
_ = plt.ylabel('RMSE')
Found minimum [[1.9929324 2.9882016]]

Unknown-3

Our minimisation algorithm found a solution very very close to the real values.

Logistic Regression in TensorFlow

Now we have all tools to build our Logistic Regression model in TensorFlow.
Its quite similar to our previous toy example. Logisitc regression is also a kind of linear model, it belong to the class of generalized linear models with with the logit as a link function. As we have seen in the previous part we assume in logistic regression that the logits (logarithm of the odds) are linear in the parameters/weights.

Our data set has 30 features, so we adjust the placeholders and the weights accordingly. We have seen that the minimizing the cross entropy is aquivalent to maximizing the likelihood function.. TensorFlow provides us with the loss function sigmod_cross_entropy, so we don’t need to implement the loss function by ourself (let us use this little shortcut, the cross entropy or negative log likelihood is quite easy to implement). The loss function takes the logits and the true lables (response) as inputs. It computes the entropy elementwise, so we have to take the mean or sum of the output of the loss function.

# Setup the computational graph with loss function
input_x = tf.placeholder(tf.float32, shape=(None, 30))
y_true = tf.placeholder(tf.float32, shape=(None,1))
w = tf.Variable(initial_value=tf.random_normal((30,1), 0, 0.1, seed=42), dtype=tf.float32)
logit = tf.matmul(input_x, w)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=logit))

To get the prediction we have to use the sigmoid function on the logits.

y_prob = tf.sigmoid(logit)

For the training we can almost reuse the code of the gradient descent example. We just need to adjust the number of iterations (100, feel free to play with this parameter). and the function call. In each iteration we call our training operator, calculate the current loss and the current probabilities and store the information to visualize the training.

Every ten epoch we print the current loss and AUC score.

optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
n_epochs = 100
losses = np.zeros(n_epochs)
aucs = np.zeros(n_epochs)
with tf.Session() as sess:
    # Initialize the variables
    sess.run(init)
    # Gradient descent
    for i in range(0,n_epochs):
        _, iloss, y_hat =  sess.run([train, loss, y_prob], {input_x: X_train,
                                                           y_true: y_train.reshape(y_train.shape[0],1)})
        losses[i] = iloss
        aucs[i] = roc_auc_score(y_train, y_hat)
        if i%10==0:
            print('%i th Epoch Train AUC: %.4f Loss: %.4f' % (i, aucs[i], losses[i]))
    
    # Calculate test auc
    y_test_hat =  sess.run(y_prob, {input_x: X_test,
                                             y_true: y_test.reshape(y_test.shape[0],1)})
    weights = sess.run(w)
0 th Epoch Train AUC: 0.1518 Loss: 0.7446
10 th Epoch Train AUC: 0.8105 Loss: 0.6960
20 th Epoch Train AUC: 0.8659 Loss: 0.6906
30 th Epoch Train AUC: 0.9640 Loss: 0.6893
40 th Epoch Train AUC: 0.9798 Loss: 0.6884
50 th Epoch Train AUC: 0.9816 Loss: 0.6876
60 th Epoch Train AUC: 0.9818 Loss: 0.6868
70 th Epoch Train AUC: 0.9818 Loss: 0.6861
80 th Epoch Train AUC: 0.9819 Loss: 0.6853
90 th Epoch Train AUC: 0.9820 Loss: 0.6845

Unknown-2

The AUC score of the test data is around 98%.

Since we have only 30 features we can easily visualize the influence of each feature in our model.

Unknown

So thats it for today. I hoped you enjoyed reading the post. Please download or fork the notebook on GitHub or on kaggle and play with the code and change the parameters.

In the next post we will add a hidden layer to our model and build a neural network. And we will see how to use the High-Level API to build the same model much easier. If you want to learn more about gradient descent and optimization have a look into the following links

So long.

Some note: I will separate the data science related notebooks from the quant related notebooks on GitHub. In future you will find all Machine Learning, Deep Learning related notebook in a own repository, while the Quant notebooks will be stay in the old repo.