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Figure 1. Human shape completions with various methods given 2 depth images. NPMs [31] and our approach provide also motion flows.

Abstract

In this paper, we investigate how to complete human
body shape models by combining shape and flow estimation
given two consecutive depth images. Shape completion is
a challenging task in computer vision that is highly under-
constrained when considering partial depth observations.
Besides model based strategies that exploit strong priors,
and consequently struggle to preserve fine geometric de-
tails, learning based approaches build on weaker assump-
tions and can benefit from efficient implicit representations.
We adopt such a representation and explore how the motion
flow between two consecutive frames can contribute to the
shape completion task. In order to effectively exploit the
flow information, our architecture combines both estima-
tions and implements two features for robustness: First, an
all-to-all attention module that encodes the correlation be-
tween points in the same frame and between corresponding
points in different frames; Second, a coarse-dense to fine-
sparse strategy that balances the representation ability and
the computational cost. Our experiments demonstrate that
the flow actually benefits human body model completion.
They also show that our method outperforms the state-of-
the-art approaches for shape completion on 2 benchmarks,
considering different human shapes, poses, and clothing.

1. Introduction

The inference of human body shape information from
depth observations has become a standard problem in com-
puter vision. Depth sensors are now common and enable
the digitization of humans using every day devices such as
tablets or mobile phones, in turn opening a way to new con-
sumer applications that build on this ability, e.g. virtual try
on or avatar applications. Solving the problem efficiently is
however difficult given human body observations that are,
by construction, incomplete with a single frame. Consider-
ing several frames over time, as often available, can how-
ever improve the body shape estimation, provided that tem-
poral consistency is effectively exploited. In this paper we
consider how to build complete human shape models given
these partial depth observations. Particularly we investigate
how the combination of shape and motion flow estimations
can benefit such shape completion tasks.

Different strategies for shape completion have been ex-
plored that exploit various priors over human shapes. Para-
metric body models such as SMPL [24] can be used as
in [5,31,34]. The strong prior assumed with a paramet-
ric model ensures spatially and temporally coherent human
shape predictions. However these predictions are inherently
restricted to limited shape spaces. The preservation of the
geometric details that can be present in depth maps, e.g.



face attributes or cloth wrinkles, is arduous. Other strate-
gies build on weaker priors, relying on learning to char-
acterize shapes and their completion. Early contributions
in this respect [9, 40, 52] explore encoder-decoder network
architectures with 3D convolutions and successfully pre-
dict complete distance fields in explicit voxel grids. They
were subsequently extended to implicit representations that
can provide continuous 3D shape functions such as occu-
pancy [7,28], or distance fields [8,32], with limited memory
costs compared to explicit voxel representations. Further-
more, temporal features provided by depth map sequences
can also be accounted for with implicit representations that
then become spatio-temporal [58]. Yet, without explicit cor-
respondences over time, learning based methods can only
partially exploit temporal consistency.

Such correspondences are encoded in the motion field
between the input depth maps. This field, the scene flow,
is traditionally estimated pixel-wise as an extension of the
2D optical flow. Recent learning-based strategies [22, 50]
generally focus on observed points only and do not target
shape estimation nor completion. Closer to this objective,
OFlow [30] proposes a 4D model that combines shape and
flow information in an implicit continuous representation.
While the method can account for point clouds, it does not
easily extend to shape completion with depth maps. Fur-
thermore the shape and flow are estimated independently
whereas we advocate a combined estimation of both.

To this aim, we propose a learning-based approach that
considers two consecutive depth images as input and esti-
mates a continuous complete representation of both shape
occupancy (SDF) and motion as implicit functions, lever-
aging their representational advantages demonstrated for
both problems independently. Our experiments show that
such a combined estimation benefits the shape completion
task with results that outperform existing works on standard
datasets. The proposed approach is pyramidal and considers
image features that are extracted in a coarse to fine manner,
preserving both local and more global shape properties. In
addition, with the aim to enforce consistency in both spatial
and temporal domains, we take inspiration from the scene
flow work [47] and introduce an all-to-all attention mech-
anism that accounts for spatial and temporal correlations
between points in the two frames considered. Comprehen-
sive ablation tests demonstrate the individual contributions
of the pyramidal framework and attention mechanisms. Ex-
periments were conducted on DFAUST [6] and CAPE [26]
with both undressed and dressed humans. We provide com-
parisons with the state-of-the-art approaches for both shape
and flow estimations and show consistent shape completion
improvements with our method.

Shape Continuous  Continuous Detail Scene

Method Completion  Shape Rep.  Flow Rep.  Preservation | Represent.

SceneFlow [22,47,50] X X X X Points
4DComplete [19] v X X v Voxels
STIF [58] v v X v Implicit
NPMs [31] v v X v Para. model
OFlow [30] v v v X Implicit
Ours v v v v Implicit

Table 1. Classification of related methods with respect to their
abilities to: handle partial inputs; provide continuous shape and
flow representations; preserve geometric details in the observa-
tions.

2. Related Works

We focus on works that solve for full shape comple-
tion given partial depth image observations. They roughly
fall into two main categories: model-based and learning-
based strategies. Let us also mention fusion-based methods
[29,53-55,57] that typically update a canonical model with
moving cameras but do not handle unobserved shape parts.
Model-Based: A robust strategy to obtain a complete shape
model given partial observations is to rely on a low dimen-
sional parametric shape space, typically built using prin-
cipal component analysis, within which the observations
are fitted. For instance, Weiss et al. [49], MoSh [23]
and MoSh++ [27] recover full undressed body shapes from
sparse inputs using the parametric models SCAPE [2]
BlendSCAPE [14] or SMPL-H [36]. In order to handle
more generic body shapes [I, 5, 33, 46], one can model
cloth as an offset from the undressed parametric model
SMPL [24]. This improves the modeling of clothed hu-
man shapes with some restrictions on the shape topology
and on the ability to preserve high-frequency shape details
imposed by the underlying shape space. Recently, neural
parametric models, e.g. LBS-AE [17] and NPMs [31], have
been proposed which encode full body representations into
low dimensional latent spaces with auto-encoders. Partial
data fitting can then be performed through the optimiza-
tion of a data term with respect to the latent representation.
While improving the expressivity of the shape space, these
methods still build on global shape priors with hence limited
abilities to preserve local shape details or to model arbitrary
human shapes, as illustrated in our experiments.
Learning-based: Inspired by the success of 2D convolu-
tional networks, early learning-based methods [9, 40, 52]
consider 3D convolutions and predict distance fields in ex-
plicit voxel grids, given partial observations. In order to
improve the precision-complexity tradeoff, neural implicit
methods were proposed where decoders model continuous
implicit functions that consider 3D locations and the associ-
ated encoder features as inputs to predict occupancies [7,28]
or distances [3, 12]. These methods achieve physically plau-
sible results with a moderate cost during training but strug-
gle with high-frequency details [28, 30] or rely on com-
plete observations and full supervisions [3, 12, 48]. In



this category, point-based methods were also introduced
[21,44,51,56,59] that learn the mapping between complete
and partial shape point clouds with the benefit of being able
to handle more general human shape topologies with low
memory costs, using point based representations. With the
aim to benefit from observations over time when available,
STIF [58] and H4D [15] use spatio-temporal implicit func-
tions or motion priors for human motion modeling. While
accounting for the time dimension, the proposed methods
do not model explicit temporal correspondences, such as
the flow, hence only partially exploit the time dimension.
Our experiments demonstrate the benefit of introducing the
flow in the estimation. A related method in that respect is
the Occupancy-Flow network [30] which considers tempo-
ral sequences and infers a canonical shape from the first
frame which is then deformed over the sequences with flows
that are predicted in a 3D grid. However, the proposed cas-
caded structure does not enable flow features to benefit the
shape estimation.

3. Method

To address the shape completion problem with a high
level of detail, a popular and time-tested strategy is to
rely on coarse-to-fine schemes, which have been applied to
many domains including that of depth map completion [58],
monocular shape estimation [39], or 2D optical flow [42].
A key aspect of our work is to simultaneously examine the
shape completion and scene flow, where pyramidal cost-
volume approaches have been very successful. Yet to ap-
ply these in our context quickly leads to a dimensionality
problem, because cost-volume approaches combinatorially
examine every motion possibility from consecutive feature
volumes, which quickly leads to a bottleneck for high reso-
lution volumes necessary to high detail recovery.

For this reason, in our approach we propose two distinc-
tive coarse and fine paths to estimate shape and flow: on
one hand a coarse path for which classical 3D convolutions
and cost volumes are tractable to efficiently evaluate global
shape and flow features (§3.2), and on the other hand, a fine
path where we decisively leverage sparse 3D convolutions
and flow cost combinations to infer high resolution details
without paying the dimensionality penalty (§3.3).

In turn, the contained nature of the representation allows
us to explore other combinatorially limitative improvement
schemes such as attention techniques, which allow to en-
hance the model with global knowledge such as symmetries
in the shape and flow inference (§3.4). We couple these as-
pects with a fully implicit SDF shape and flow representa-
tion, which has been many times shown successful to fur-
ther the goal of detailed and continuous inference (§3.5).
One of the key advantages of coupling our SDF extrac-
tion with our hybrid dense/sparse hierarchical scheme is
that it alleviates inference difficulties in multi-modal, self-

occlusion depth completion situations which hinder previ-
ous approaches, e.g. [38, 58] that only decode the SDF us-
ing a single projected depth feature. To achieve the required
multimodality in depth, both of our coarse and fine infer-
ence paths rely on a first stage of pyramidal depth feature
encodings with a specific 3D deprojection stage, which we
will present next (§3.1), to embed them in the continuous
3D query space and allow 3D convolutions and reasoning.
Figure 2 provides an overview of the approach.

3.1. Depth Feature Encoder

Recent literature has shown the robustness of hierarchi-
cal feature encoding for both 2D object detection [20] and
3D reconstruction [43] tasks. We adopt a U-Net [37]-like
feature encoder which contains four downscale and four
upscale convolutional operations, and use two feature lev-
els, one coarse and one fine, for the depth feature encod-
ing. Given a pair of depth images D; € R"*"¢S where
i € {s: source, t: target}, the embedded features of the
second and fourth upscale operations will be fed respec-
tively to the subsequent coarse and fine inference path. We
note these feature maps F7, j € {c: coarse, f: fine}, where
FI e RY xres’xres’ with df the dimensionality of pixel-
aligned features.

Feature deprojection. Given a depth image D(z,y), the
integer location vox(x,y, z) € Z* of occupied points in the
grid can be computed using a deprojection operation [45]:

Fsp(x,y,2) = F(x,y),if D(z,y) # 0, (1)

D ~ ~near
(z,y) — 2 )

where vox(z,y, z) = (zp,yp, | dl
map

where znear 1S the lower bound of depth in view volume
of camera, dlm,p is the cell size of grid, zp/yp is z/y-
coordinate in depth image, D(z, y) denotes the depth value
at pixel (z,y) and | | stands for floor operation. The depro-
jected 3D feature F3p allows us to compute a cost between
source and target frames for the following 3D scene flow
estimation. For front-viewed points V(z, vy, z), we append
projective signed distance PSDF (z,y,z) = D(z,y) —
Znear — (V02 (2) + 0.5)dl,,qp along depth-viewing, into de-
projected feature F5p(x, y, z) as [54].

3.2. Coarse-Dense Flow Module

This module is designed to prepare a dense 3D repre-
sentation which can be used to compute classic cost vol-
ume [42] for flow estimation. Given coarse level feature
F5p» we pad 0 for un-viewed grid points,

Fsp(x,y,z) = 0,if D(x,y) =0 3)

The raw 3D feature F5; is still not able to handle ambigu-
ity along depth direction, because only the frontmost point
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Figure 2. Overview of the approach and network architecture.

along depth is filled with a meaningful feature. We there-
fore follow the idea of [7] to propagate features in the 3D
grid with dense 3D-convolutional layers.

Q° = Dconv3D(F5p) 4)

Note that [7] voxelizes a point cloud input into 3D grid
with 1/0 values, and applies 11 costly 3D-convolutions
from such 1/0 values. We propose to first encode features
with 2D-convolutions, then deproject them into the 3D grid,
where 6 3D-convolutional layers are applied to the depro-
jected features, which yields a more efficient scheme.

After our dense operations, Qf is a dense 3D scene rep-
resentation for source and target frames. Given an arbitrary
query point p(z,y, z) in the source scene, the difference
cost from source to target scene can be computed as fol-
lows, and illustrated in Figure 3:

Cs_(z,y, 2, h,v,d, 0%
tri{Qf(x + hd®, y + vd¢, z + doé°)} — tri{Q5(z,y, 2)}
4)

tri(Q,(z,y,2))

given query pol ya /A
S
7
[°8 \
source same position | /
. difference cost
ol |
Qt -k o
tri(Q(z +h x 6,y+vx8,2+dxJ))
target

h,v,d € {~1,0,1}

Figure 3. Implicit cost computation.

where 6¢ is a small shift length depending on resolution,
h,v,d € {—1,0,1} are shift values along z, y, z-axis and
tri is the tri-linear interpolation operation. Unlike PWC-
Net [42] which computes a correlation cost between source
and target scene, we opt for a difference cost, an immutable
operation, because we wish to compute both forward and
backward flow to enforce cycle consistency.

Given the cost C¢,, € R/*3X3X3_ we compute the
point-wise flow embedding with 3 X 3 x 3 convolutional
layers Conv3x3x3,

Q¢ ., (z,y,z) = Conv3x3x3(C:_,,) (6)
Note that Conv3x3x3 is applied to the point-wise cost
value, unlike previous 3D-convolutions spanning the whole
grid with padding and striding, so Conv3x3x3 is simple and
cheap to compute. The embedded feature will be fed into
the flow decoder to predict 3D scene flow, along with cost
feature computed with fine features processed by the fol-
lowing fine-sparse and attention modules.

3.3. Fine-Sparse Module

Since dense 3D convolution is very time- and memory-
consuming, especially for high-resolution grids, we follow
the idea of completion work [19] and use Sparse Convolu-
tions [10, 11]. We use the occupied location vox/ and the
feature values ]-'?{ p as inputs to sparse operations without
any padding. Sparse convolutions affect any observed point
in the receptive field of the applied kernel, with the inherent
limitation that it accounts only for occupied points. For the
completion task however, we do need to propagate infor-
mation to unoccupied regions within the receptive field. To
handle this, [19] applies dense 3D convolutions after sparse
convolution encoding and outputs a signed distance field at
full resolution, which would adversely increase the memory
cost in our case. Instead, we propose a classic coarse-to-fine



strategy in order to extract high-frequency sparse features
@7, which achieves this task with low resources, as follows:

Q" = tri{Q°(vor! (z,y,2))} 7
Q7 = sConv3D((Q“~*? @ ]-'gD), vox?) (8)

where Q°~"P is the up-sampled feature from the coarse-
dense module, which contains the information from the un-
occupied field and serves as an initialization for fine level
features. & is the concatenation operation and SConv3D de-
notes the sparse 3D convolution operator. Since SConv3D
is active only for observed points, @f € R™*9 is indeed
a point-wise feature where n is observed point number and
dq is the feature dimension.

3.4. Self/Cross-Attention Module

Classic convolution operations, dense or sparse, only af-
fect a specific receptive field of the size of the kernel. How-
ever, such a receptive field cannot cover the whole visible
space, in other words, we cannot set the kernel size as res
due to the memory cost. Layer by layer convolutional oper-
ations may alleviate this phenomenon, but a more straight-
forward approach to ensure that longer range similarities
or symmetries are exploited is to use an all-to-all attention
mechanism. Moreover, corresponding features for a mov-
ing point from source to target could be identified and an-
alyzed by this technique. We thus leverage both self- and
cross-attention in our architecture. Recall that, in a generic
setup, attention usually concerns querying a generic set of
features (4, given a key/value set ()y,, attention can be
described as follows:

Mau = Qqquua Mya = kaan7 Mie = kaWkea
Qatt = Softmax(mg,mi, /Vda), (9)
A(Qqua ka) = Lin(Qattmva)

where Wy, Wya, Wie € R?axda are three learnable pa-
rameters, da is the embedding dimension and Lin is one lin-
ear layer. In our case, in the direction from source to target,
we set Quu = Qrp, = Qf when computing self-attention
A while we set Q gy = Qf, Qe = Q{ when computing
cross-attention A5, Unlike point-to-patch [22] or patch-
to-patch [50] attention mechanisms, our method considers
all observed points’ impacts on a query point.

We believe that symmetry and correspondence informa-
tion of self- and cross-attention contribute not only to com-
pletion but also to the flow task. As in Sec. 3.2, we should
define the cost value given attentions A% A5 Asell and

s s—12
A$%s. But attention features A have the same sparsity
structure as Q7 i.e. Q/ (vox(x,y,z)) and A(vox(z,y, 2))
existonly if D(x,y) > 0. Such a cost should also be defined
with unoccupied points on the depth because the trajectory

of a moving point can cover several unoccupied points.

Sparse Feature Densification: We thus simply project
sparse 3D features A back to 2D pixel-wise feature A and
pad O for un-observed pixels for the reason of keeping con-
tinuity along depth direction.

We collect high-resolution feature maps Q" = Ff @
A% @ A58 and follow the process as in Sec. 3.2 to com-
pute high-frequency cost C/ and flow features,

Cgﬁt(xv y7 ha Uv 5f) =
bi{Q}(z + hé’,y + vl )} — bi{Q%(z,y)}
Of_,,(x,y,2) =Conv3x3(C/L) @z (11

where Conv3x3 is 3 X 3 convolutional layers to embed 2D
projected flow. To solve the depth ambiguity, the high-
frequency flow feature Q£ _,; is appended with the depth
value z of the query point in source.

3.5. Shape/Flow Decoder

Given all aforementioned extracted features and query
point position p(z, y, z), we prepare two multilayer percep-
trons [12] ¥, ® to predict SDF and flow simultaneously.

sdf(z,y,2) = \Il(]-'f, Q°, A%elf | peross, 2) (12)
flow, (2, y,2) = ®(Q5,,, QL) (13)
where sdf € R, flow € R3.

(10)

3.6. Training Loss

® computes both forward flow flow,_,; and backward
flow flow;_,; to enforce cycle consistency. In parallel, ¥
predicts SDFs in both source and target frame. Finally, we
train the whole architecture with squared loss between the
prediction and ground truth sdf?*, flow?".

ni

=" (> allsdfy, —sdff’|?

i bs=1
0 (14)
+Z Z B/ flows ¢ —ﬂowZ;H2
di \bf=1

where i € {s,t}, di € {s — t,t — s} and n’,n? are
query points numbers for SDF and flow estimation. «, 3
are coefficients to balance the loss L.

4. Experiments

We provide quantitative and qualitative results on
DFAUST [6] and CAPE [26] (Section 4.1). Additional re-
sults on THUman3.0 [41] are shown in the supplemental
material. We first present comparisons with other meth-
ods in Section 4.3. We further demonstrate the contribu-
tions of our approach core components with ablation stud-
ies in Section 4.4. Supplemental material is available at
https://hal.inria.fr/hal-04045719.



4.1. Datasets and Metrics

We consider real world scan data from DFAUST [6] for
undressed humans and from CAPE [26] for dressed humans
where raw data is fitted with SMPL [24]. Both datasets are
used for training. Real scans often contain holes and noisy
observations, which make them difficult to use as ground
truth. We use instead the SMPL-fitted data to train our net-
works as in [31,58]. We posit that such data provided by
DFAUST and CAPE contains sufficient surface details for
our network to capture at the local level, and regress and
generalize from the local high frequency patterns, in the in-
put depth images, independently of each other. Given 3D
shape geometries, depth images are rendered in resolution
2562 with a fixed viewpoint for dynamic sequences by using
PyTorch3D [35]. Signed distances are pre-computed from
the watertight meshes. During test time, depth images are
rendered from the raw scan data to preserve measurement
noise and to evaluate robustness.

For the shape completion, we evaluate methods shape by
shape with the Intersection Over Union(IoU) and the Cham-
fer distance metrics, and we follow [7, 58] for that purpose.
For the flow estimation, we use the end-point-error (EPE),
similarly to [22,3 1], and with respect to 2 different schemes:
Tracking errors evaluate the average EPE between the first
frame in a sequence and all the other frames, whereas the
pairwise flow errors measure the average EPE between suc-
cessive frames of around 70ms in the sequence.

4.2. Training

We use for training 2 male and 2 female characters from
CAPE, where each character is dressed with 2 or 3 different
clothing styles. We also include 2 male and 2 female char-
acters from DFAUST, for a total of 8 characters, 258 short-
term and 252 long-term pairs of depth images. The short-
term interval is around 70ms while the longer one 200ms.

During training, pre-computed signed distances for
query points are given as supervision. As mentioned
in [38, 39], the sampling strategy has a major impact on
the reconstruction quality. We follow a threefold strategy
that has proven efficient in practice. For a given scene, we
sample 1600 points near the surface to capture the fast evo-
lution of the SDF in such regions. We additionally sample
400 points in a bounding box to avoid the ghost artifacts that
can appear when focusing only on near-surface regions. We
note that such points satisfy the condition that the distance
is farther than 2cm from the surface, and we consider these
points fixed during flow estimation. Moreover we sample
400 surface points for both shape and flow estimations. Be-
fore computing the loss at each iteration, we rescale the SDF
by factor 50 and flow by factor 10 for numeric stability. In
addition the rescaled SDF is truncated to value 1. We also
set coefficient &« = 1 everywhere, 8 = 1 for surface points
and S = 0.1 for 400 points whose flows are 0.

DFAUST

(a) (b1) (c1) @ ©

CAPE

(@) (b2) (c2) (d) (e)

Figure 4. Shape completions. From left to right, we show (a) par-
tial inputs, completions of (b1) IF-Net [7], (b2) ShapeFormer [51],
(c1) SeedFormer [59], (c2) STIF [58], (d) ours and (e) ground
truth.

4.3. Comparisons

DFAUST: We compare our method with baseline meth-
ods that use different scene representations: 1. Mesh,
3D-CODED [13] deforms a mesh template. 2. Implicit
ONet [28], IF-Net [7], OFlow [30], STIF [58] complete
shapes using implicit representations. 3. Voxels 4DCom-
plete [19] estimates shape and flow in a regular voxel
grid. 4. Points SeedFormer [59] completes directly par-
tial point clouds. All the compared methods are trained
with our training data, except OFlow which operates un-
der its provided pre-trained model. Results from Seed-
Former were meshed with the Ball Pivoting method [4],
similarly to [18]. However, the resulting meshes are not



watertight, see Fig. 4, which invalidates the IoU metric for
SeedFormer. Results of Onet, IF-Net, STIF, OFlow and our
method were meshed using the Marching Cubes [16, 25],
as in [28]. Since Oflow [30] processes sub-sequences of
17 frames by construction, we report the tracking EPE for
such sub-sequences in Tab. 2. In total, we evaluate on 31
sub-sequences of 2 unseen characters and 2 seen characters
performing unseen motions in DFAUST. We observe that, in
general, implicit representations perform better than other
representations. We also note that our method consistently
outperforms all other methods w.r.t. all metrics. In Fig. 4,
it can be observed that our method preserves more surface
detail than other methods.

Method IoU1 Chamfer-L1|, EPE] Represent.
3D-CODED [13] 0.339 5412 0.572 Mesh
ONet [28] 0.349 5.365 - Implicit
IF-Net [7] 0.826 1.197 - Implicit
OFlow [30] 0.708 2.510 0.374 Implicit
4DComplete [19] | 0.679 3.047 1.373 Voxels
STIF [58] 0.850 1.133 - Implicit
SeedFormer [59] - 1.056 - Points
Ours 0.862 1.029 0.212 Implicit

Table 2. DFAUST comparisons with chamfer x10~2 and EPE
%1071, The flow is evaluated with the tracking EPE errors (see
Sec. 4.1) over 17-frame subsequences as in OFlow [30].

CAPE: Tab. 3 aggregates quantitative results provided in
NPMs [31], in addition to the results we obtained with
STIF, SeedFormer and ShapeFormer [51]. ShapeFormer
was also trained with our data. In NPMs the evaluation is
conducted on sub-sequences of 17 frames from 4 sequences
of 4 identities. We report both tracking EPE and pair-wise
flow EPE when relevant. Our method again achieves best
performance for shape completion. It also appears very
competitive for tracking performance, and outperforms
NPMs on flow estimation, as illustrated in Fig. 1 and 5.

Method IoU1 Chamfer-L2 | EPE | Represent.
OpenPose+SMPL 0.68 0.243 2.82/ Model
OFlow [30] 0.55 0.755 2.65/ Implicit
IP-Net [5] 0.82 0.034 2.52/ Model
NPMs [31] 0.83 0.022 0.74/0.43 Model
ShapeFormer [51] | 0.48 0.824 - Explicit
STIF [58] 0.85 0.035 - Implicit
SeedFormer [59] - 0.037 - Points
Ours 0.87 0.017 0.75/0.38  Implicit

Table 3. CAPE comparisons. We follow the setup of NPMs to
bound results in a normalized space and to evaluate shape recon-
struction and motion tracking over sub-sequences of 17 frames.
Our metrics are IoU, Chamfer-L2 x10~2 and tracking/pair-wise
flow EPE x10~2 (see Sec. 4.1).

4.4. Ablation

The ablation tests were conducted on 76 pairs of depth
images from 6 unseen characters and 2 seen characters per-
forming unseen motions. Tab. 4 evaluates 4 configurations:
(i) Baseline: the depth encoder and shape decoder only
when single-frame is given.

(i) 3D flow: the coarse-dense module and the cost volume
for the flow estimation are added.

(iii) Fine-sparse: Sparse convolutions for high-frequency
features are hierarchically added.

(iv) Self/cross attention: Self/cross attention are added to
enforce both spatial and temporal consistency.

The different components all contribute to improve the
results. We note that the flow improves IoU the most,
while the main impact on Chamfer distance comes from the
fine-sparse strategy. These results should nevertheless be
considered with the fact the ground truth shapes are fitted
SMPL models that do not exactly fit original surface de-
tails. In that respect IoU is a more robust volumetric metric
than the surface based Chamfer distance.

Method IoU 1 Chamfer-L1, EPE|
baseline 0.839 1.146 -

+3D dense flow | 0.848 1.121 0.137
+fine-sparse 0.854 1.051 0.133
+attention 0.861 1.047 0.121

Table 4. Ablation tests with Chamfer-L1 x1072 and EPE x 1071,

5. Conclusion

We have presented a novel learning based approach that
combines implicit human shape completion with implicit
motion flow estimation given 2 depth images. Besides the
combination of shape and flow features, the approach builds
on 2 components with a coarse-dense to fine-sparse strat-
egy, as well as an attention mechanism that helps exploiting
the correlation between features inside and across frames.
Ablation tests demonstrate the respective benefits of these
components to the shape completion task. We also compare
with other methods on 2 standard real human body datasets.
They show that our approach consistently outperforms the
other methods with more precise reconstructions, and ad-
vances therefore the state of the art in human shape com-
pletion with potentially more practical applications.
Limitations and Future Work. Although high-frequency
details in front-view are better extracted by our method,
it might make the unobserved part noisy for challenging
poses, e.g. squat. We believe this is because some com-
ponents, such as sparse convolution and attention, focus on
local patterns. Due to the lack of human topology prior,
strong occlusion is still challenging for our method. This
points to several interesting future directions, such as com-
bining implicit and model-based methods into a virtuous cy-
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Figure 5. Shape completions and flow estimation. From left to right, we show (a) partial inputs, shape completions and flow estimations of

(b1) OFlow [30], (b2) NPMs [31], (c) ours and (d) ground truth.

cle. Moreover we note the interest of considering temporal
sequences with arbitrary lengths. Currently the flow extrac-
tion can provide critical low level information when dealing
with more than 2 frames. In such a situation, the approach

could be applied recursively, frame to frame, as an initial
estimation to then drive a more global inference.
Acknowledgement. This work has been partially supported
by MIAI@Grenoble Alpes (ANR-19-P31A-0003).
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