ROS

About ROS

What is ROS?

Why ROS?
Installing ROS
TurtleSim
Packages & Nodes
Topics & Messages

What is ROS?

* ROS is an open-source, meta-operating system
for your robot. It provides the services you
would expect from an operating system,
including hardware abstraction, low-level
device control, implementation of commonly-
used functionality, message-passing between
processes, and package management. It also
provides tools and libraries for obtaining,
building, writing, and running code across
multiple computers.

Why ROS?

* Many modern robot systems rely on software
that spans many different processes and runs
across several different computers. For example:

— Some robots carry multiple computers, each of
which controls a subset of the robot’s sensors or
actuators.

— Even within a single computer, it’s often a good idea
to divide the robot’s software into small, stand-alone
parts that cooperate to achieve the overall goal. This
approach is sometimes called “complexity via
composition.”

Why ROS?

— When multiple robots attempt to cooperate on a
shared task, they often need to communicate with
one another to coordinate their efforts.

— Human users often send commands to a robot from
a laptop, a desktop computer, or mobile device. We
can think of this human interface as an extension of
the robot’s software.

ROS provides two relatively simple, seamless
mechanisms for this kind of communication.

Why ROS?

* The rapid progress of robotics research has
resulted in a growing collection of good
algorithms for common tasks such as
navigation, motion planning, mapping, and
many others.

 ROS’s standard packages provide stable,

debugged implementations of many
important robotics algorithmes.

Why ROS?

* One of the reasons that software development for
robots is often more challenging than other kinds of
development is that testing can be time consuming
and error-prone.

* Well-designed ROS systems separate the low-level
direct control of the hardware and high-level
processing and decision making into separate
programs. Because of this separation, we can
temporarily replace those low-level programs (and
their corresponding hardware) with a simulator, to
test the behavior of the high-level part of the system.

Why ROS?

* Of course, ROS is not the only platform that offers
these capabilities. What is unique about ROS,is the
level of widespread support for ROS across the
robotics community. This “critical mass” of support
makes it reasonable to predict that ROS will continue
to evolve, expand, and improve in the future.

Installing ROS

o B Ed i B
http://wiki.ros.org/cn/noetic/Installation/Ubuntu

« Matlab rosiE UM 2 25 Vi HH -

https://ww2.mathworks.cn/support/product/robotics/ros2-vm-
installation-instructions-v6.html

* Windowsig N1 B 15 Ml

https://ssd.mathworks.com/supportfiles/ros/virtual_machines/v3/
ros_noetic_foxy gazebov1l linux_win_v1l.zip

Setting environment variables

 ROS relies on a few environment variables to locate the files it
needs. To set these environment variables, you’ll need to
execute the setup.bash script that ROS provides, using this
command:

source /opt/ros/noetic/setup.bash

 You can then confirm that the environment variables are set
correctly using a command like this:

export | grep ROS

turtlesim

e Starting turtlesim In three separate terminals, execute these
three commands:

roscore
rosrun turtlesim turtlesim_node

rosrun turtlesim turtle_teleop key

Packages

* All ROS software is organized into packages. A ROS
package is a coherent collection of files, generally
including both executables and supporting files, that
serves a specific purpose.

* In the previous example, we used two executables
called turtlesim _node and turtle teleop key, both of
which are members of the turtlesim package.

Packages

* ROS provides several commands for interacting with
installed packages.

e Listing and locating packages You can obtain a list of all
of the installed ROS packages using this command:

rospack list

Packages

* Each package is defined by a manifest, which is a file
called package.xml. This file defines some details
about the package, including its name, version,
maintainer, and dependencies.

* The directory containing package.xml is called the
package directory. (In fact, this is the definition of a
ROS package: Any directory that ROS can find that
contains a file named package.xml is a package
directory.) This directory stores most of the package’s
files.

Packages

* To find the directory of a single package, use the rospack find
command:

rospack find package-name

* Of course, there may be times when you don’t know (or can’t
remember) the complete name of the package that you’'re
interested in. In these cases, it’s quite convenient that rospack
supports tab completion for package names. For example, you
could type

rospack find turtle

* before pressing Enter, press the Tab key twice to see a list of all
of the installed ROS packages whose names start with turtle.

Packages

* Inspecting a package
* To view the files in a package directory, use a command like this:
rosls package-name

* If you'd like to “go to” a package directory, you can change the

current directory to a particular package, using a command like
this:

roscd package-name

Master

e The master

* One of the basic goals of ROS is to enable roboticists to design
software as a collection of small, mostly independent programs
called nodes that all run at the same time. For this to work,
those nodes must be able to communicate with one another.
The part of ROS that facilitates this communication is called the
ROS master. To start the master, use this command:

roscore

Nodes

Once you’ve started roscore, you can run programs that use
ROS. A running instance of a ROS program is called a node.

In the turtlesim example, we created two nodes. One node is an
instance of an executable called turtlesim node. This node is
responsible for creating the turtlesim window and simulating
the motion of the turtle.

The second node is an instance of an executable called

turtle teleop key. The abbreviation teleop is a shortened form
of the word teleoperation, which refers to situations in which a
human controls a robotremotely by giving direct movement
commands. This node waits for an arrow key to be pressed,
converts that key press to a movement command, and sends
that command to the turtlesim _node node.

Nodes

e Starting nodes The basic command to create a node (also
known as “running a ROS program”) is rosrun:

rosrun package-name executable-name

* There are two required parameters to rosrun. The first
parameter is a package name. We discussed package names
previously. The second parameter is simply the name of an
executable file within that package.

Nodes

* Listing nodes ROS provides a few ways to get information about
the nodes that are running at any particular time. To get a list of
running nodes, try this command:

rosnode list

* If you do this after executing the previous commands, you’ll see
a list of three nodes:

/rosout
/teleop_turtle
/turtlesim

Nodes

* The /rosout node is a special node that is started
automatically by roscore. Its purpose is somewhat
similar to the standard output (i.e. std::cout) that you
might use in a console program.

* The other two nodes should be fairly clear: They’re the
simulator (turtlesim) and the teleoperation program
(teleop_turtle) we started previously.

Nodes

* Inspecting a node You can get some information about
a particular node using this command:

rosnode info node-name

* The output includes a list of topics for which that node
is a publisher or subscriber, the services offered by
that node, its Linux process identifier (PID), and a

summary of the connections it has made to other
nodes.

Nodes

* Killing a node To kill a node you can use this command:

rosnode kill node-name

Topics and messages

* The primary mechanism that ROS nodes use to
communicate is to send messages. Messages in ROS
are organized into named topics.

* Theidea is that a node that wants to share
information will publish messages on the appropriate
topic or topics; a node that wants to receive
information will subscribe to the topic or topics that
it’s interested in. The ROS master takes care of
ensuring that publishers and subscribers can find each
other; the messages themselves are sent directly from
publisher to subscriber.

Viewing the graph

* The easiest way to visualize the publishsubscribe
relationships between ROS nodes is to use command:

rqt_graph

* You should see a GUI, most of which is devoted to
showing the nodes in the current system.

“INode Graph D@ -0 [PNodeGraph
@ | [Nodes = -1l7 / SRR & | | Nodes/Topics (all) ||/
- : e - oup: < | Namesp. i tf Highlig
Group: |4 |>| Namespaces V| Actions W tf [v/Images | v Highlight v/ Fit | (1 o T Ftop by t liresehabie
Hide: | | Dead sinks Leaf topics | Debug tf Unreachable Params

fturtiel/color_sensor

M e

Murtel/pose

Viewing the graph

 When you press a key, the /teleop turtle node publishes
messages with those movement commands on a topic called
/turtlel/cmd_vel. Because it subscribes to that topic, the
turtlesim_node receives those messages, and simulates the
turtle moving with the requested velocity.

 The simulator doesn’t care (or even know) which program
publishes those cmd_vel messages. Any program that publishes
on that topic can control the turtle.

* The teleoperation program doesn’t care (or even know) which
program subscribes to the cmd_vel messages it publishes. Any
program that subscribes to that topic is free to respond to those
commands.

Messages and message types

* Listing topics
* To get a list of active topics, use this command:

rostopic list

* In our example, this shows a list of five topics:
/rosout

/rosout_agg

/turtlel/cmd_vel

/turtlel/color_sensor

/turtlel/pose

Messages and message types

* Echoing messages

* You can see the actual messages that are being published on a
single topic using the rostopic command:

rostopic echo topic-name

* This command will dump any messages publlshed on the given
topic to the terminal. L e

rtle_tele:)p_key

rostopic echo /turtlel/cmd_vel RS

Messages and message types

* Measuring publication rates
* There are also two commands for measuring the speed at

* which messages are published and the bandwidth consumed by
those messages:

rostopic hz topic-name
rostopic bw topic-name

These commands subscribe to the given topic and output statistics
in units of messages per second and bytes per second, respectively

Messages and message types

* Inspecting a topic

* You can learn more about a topic using the rostopic info
command:

rostopic info topic-name

* For example, from this command:
rostopic info /turtlel/color_sensor

* you should see output similar to this:
Type: turtlesim/Color

Publishers:

* [turtlesim (http://192.168.38.131:41153/)
Subscribers: None

Messages and message types

Type: turtlesim/Color

Publishers:

* [turtlesim (http://192.168.38.131:41153/)
Subscribers: None

 The most important part of this output is the very first line,
which shows the message type of that topic. In the case of
/turtlel/color_sensor, the message type is turtlesim/Color.

 The word “type” in this context is referring to the concept of a
data type. It’s important to understand message types because
they determine the content of the messages. That is, the
message type of a topic tells you what information is included
in each message on that topic, and how that information is
organized.

Messages and message types

* Inspecting a message type

* To see details about a message type, use a command like
e this:

rosmsg show message-type-name

e Let’s try using it on the message type for /turtlel/color_sensor
that we found above:

rosmsg show turtlesim/Color
 The output is:

uint8 r

uint8 g

uint8 b

Messages and message types

uint8 r
uint8 g
uint8 b

 The format is a list of fields, one per line. Each field is defined by
a built-in data type (like int8, bool, or string) and a field name.

* The output above tells us that a turtlesim/Color is a thing that
contains three unsigned 8-bit integers called r, g, and b. Every
message on any topic with message type turtlesim/Color is
defined by values for these three fields.

Messages and message types

rostopic info /turtlel/cmd_vel

Type: geometry msgs/Twist

Publishers: None

Subscribers:

* [turtlesim (http://192.168.38.131:41153/)

rosmsg show geometry_msgs/Twist
geometry msgs/Vector3 linear
float64 x
float64 y
float64 z
geometry _msgs/Vector3 angular
float64 x
floate4 y
float64 z

Publishing messages from the command line

* Once you know the message details, you may find it useful at
times to publish messages by hand. To do this, use rostopic:

rostopic pub -r rate-in-hz topic-name message-type message-content

* This command repeatedly publishes the given message on the
given topic at the given rate. The final message content
parameter should provide values for all of th e fields in the
message type, in order. Here’s an example:

rostopic pub -r 1 /turtlel/cmd_vel geometry msgs/Twist ’[2, O, 0]’ ’[0, O, O]’

* Likewise, a command like this will command the robot to rotate
in place about its zaxis (which is perpendicular to your
computer’s screen):

rostopic pub -r 1 /turtlel/cmd_vel geometry msgs/Twist ’[0, O, 0]’ ’[0, O, 1]’

Publishing messages from the command line

* Understanding message type names

* Like everything else in ROS, every message type belongs to a
specific package. Message type names always contain a slash,
and the part before the slash is the name of the containing
package:

package-name/type-name

* For example, the turtlesim/Color message type breaks down
this way:

turtlesim + Color = turtlesim/Color
. g o e — N —

package name lype name message data type

Checking for problems

* One final (for now) command line tool, which can be helpful
when ROS is not behaving the way you expect, is roswtf:

roswtf

* This command performs a broad variety of sanity checks,
including examinations of your environment variables, installed
files, and running nodes.

* For example, roswtf checks whether the rosdep portions of the
install process have been completed, whether any nodes
appear to have hung or died unexpectedly, and whether the
active nodes are correctly connected to each other.

