
Reinforcement Learning

强化学习是机器学习的一个分支，它可以针对复杂系统（如机器人和自主系统）实现控制器和决策系统。借助深度强化学习，可以实现深度神经网络，这类网络使用从仿真系统或物理系统动态生成的数据进行训练，从而学习复杂行为。与其他机器学习方法不同，深度强化学习不需要预定义的标注或未标注的训练数据集。通常，只需要一个表示环境的仿真模型。

关于 RL&DRL

深度强化学习智能体由深度神经网络策略和算法构成，其中策略用于将输入状态映射到输出动作，算法负责更新此策略。常见算法包括深度 Q 网络 (DQN)DQN)) 、深度确定性策略梯度 (DQN)DDPG)) 、软执行器评价器 (DQN)SAC)) 和近端策略优化 (DQN)PPO)) 。算法会基于从环境中采集的观测值和奖励来更新策略，以最大化预期的长期奖励。Reinforcement Learning Toolbox 可以用编程方式或交互方式（使用强化学习设计器）创建深度强化学习智能体。可以从现成的热门算法中选择，也可以使用已有模板和示例实现自定义算法。

深度强化学习智能体

深度强化学习算法训练是一个动态过程，因为智能体需要与周边环境进行交互。对于机器人和自主系统等应用形式，使用实际硬件执行此类训练不仅代价高昂，还可能面临危险。因此，人们倾向于采用通过仿真生成数据的虚拟环境模型来进行深度强化学习。
可以使用 MATLAB 和 Simulink 构建环境模型，以描述系统动态、智能体的动作对系统动态产生的影响，以及用于评估所执行动作的优度的奖励。这些模型在本质上可以是连续的或离散的，能够以不同的保真度表示系统。此外，可以通过并行仿真来加快训练。在某些情况下，可以重用现有的 MATLAB 和 Simulink 系统模型，只需稍加改动即可将其用于深度强化学习。

使用 MATLAB 和 Simulink 进行环境建模

Reinforcement learning is a goal-directed computational approach where a computer learns to perform a task by interacting with an unknown dynamic environment. This learning approach enables a computer to make a series of decisions to maximize the cumulative reward for the task without human intervention and without being explicitly programmed to achieve the task.

What Is Reinforcement Learning

The goal of reinforcement learning is to train an agent to complete a task within an unknown environment. The agent receives observations and a reward from the environment and sends actions to the environment. The reward is a measure of how successful an action is with respect to completing the task goal.
The agent contains two components: a policy and a learning algorithm.
• The policy is a mapping that selects actions based on the observations from the environment. Typically, the policy is a function approximator with tunable parameters, such as a deep neural network.
• The learning algorithm continuously updates the policy parameters based on the actions, observations, and reward. The goal of the learning algorithm is to find an optimal policy that maximizes the cumulative reward received during the task.

What Is Reinforcement Learning

As an example, consider the task of parking a vehicle using an automated driving system. The goal of this task is for the vehicle computer (DQN)agent) to park the vehicle in the correct position and orientation. To do so, the controller uses readings from cameras, accelerometers, gyroscopes, a G)PS receiver, and lidar (DQN)observations) to generate steering, braking, and acceleration commands (DQN)actions). The action commands are sent to the actuators that control the vehicle. The resulting observations depend on the actuators, sensors, vehicle dynamics, road surface, wind, and many other less-important factors. All these factors, that is, everything that is not the agent, make up the environment in reinforcement learning.

What Is Reinforcement Learning

To learn how to generate the correct actions from the observations, the computer repeatedly tries to park the vehicle using a trial-and-error process. To guide the learning process, you provide a signal that is one when the car successfully reaches the desired position and orientation and zero otherwise (DQN)reward). During each trial, the computer selects actions using a mapping (DQN)policy) initialized with some default values. After each trial, the computer updates the mapping to maximize the reward (DQN)learning algorithm). This process continues until the computer learns an optimal mapping that successfully parks the car.

What Is Reinforcement Learning

The general workflow for training an agent using reinforcement learning includes the following steps.

Reinforcement Learning Workflow

1. Formulate problem — Define the task for the agent to learn, including how the agent interacts with the environment and any primary and secondary goals the agent must achieve.2. C) reate environment — Define the environment within which the agent operates, including the interface between agent and environment and the environment dynamic model. 3. Define reward — Specify the reward signal that the agent uses to measure its performance against the task goals and how to calculate this signal from the environment. 4. C) reate agent — C) reate the agent, which includes defining a policy approximator (DQN)actor) an value function approximator (DQN)critic) and configuring the agent learning algorithm. 5. Train agent — Train the agent approximators using the defined environment, reward, and agent learning algorithm. 6. Validate agent — Evaluate the performance of the trained agent by simulating the agent and environment together. 7. Deploy policy — Deploy the trained policy approximator using, for example, generated G)PU code.

Reinforcement Learning Workflow

Q-Learning 是强化学习算法中 value-based 的算法， Q 即为Q （ s ， a ），就是在某一个时刻的 state 状态下，采取动作 a 能够获得收益的期望，环境会根据 agent 的动作反馈相应的 reward 奖赏，所以算法的主要思想就是将 state 和 action 构建成一张 Q_table 表来存储 Q 值，然后根据 Q 值来选取能够获得最大收益的动作。

Q-Learning

Q-Learning 的目的是学习特定 state 下、特定 action 的价值。是建立一个Q-table ，以 state 为行、 action 为列，通过每个动作带来的奖赏更新 Q-table 。
Q-Learning 是 off-policy的。异策略是指行动策略和评估策略不是一个策略。 Q-Learning 中行动策略是 ε-greedy策略，更新 Q 表的策略是贪婪策略。

Q-Learning

The Q-learning algorithm is a model-free, online, off-policy reinforcement learning method. A Q-learning agent is a value-based reinforcement learning agent that trains a critic to estimate the return or future rewards. For a given observation, the agent selects and outputs the action for which the estimated return is greatest.
Q-learning agents can be trained in environments with the following observation and action spaces.

Q-Learning Agents

Q agents use the following critic.

During training, the agent explores the action space using epsilon-greedy exploration. During each control interval the agent selects a random action with probability , otherwise it selects the action for ϵ, otherwise it selects the action for which the value function greatest with probability 1–ϵ. .ϵ, otherwise it selects the action for

Q-Learning Agents

To estimate the value function, a Q-learning agent maintains a critic Q(DQN)S,A;ϕ), which is a function approximator with parameters ϕ. The), which is a function approximator with parameters . The ϕ), which is a function approximator with parameters ϕ. The ϕ), which is a function approximator with parameters ϕ. The critic takes observation S and action A as inputs and returns the corresponding expectation of the long-term reward.
For critics that use table-based value functions, the parameters in ϕ), which is a function approximator with parameters ϕ. The are the actual Q(DQN)S,A) values in the table.
During training, the agent tunes the parameter values in . After ϕ), which is a function approximator with parameters ϕ. The training, the parameters remain at their tuned value and the trained value function approximator is stored in critic Q(DQN)S,A).

C) ritic Function Approximator

To create a Q-learning agent:
1. C) reate a critic using an rlQValueFunction object.
2. Specify agent options using an rlQAgentO)ptions object.
3. C) reate the agent using an rlQAgent object.

Agent C) reation

Q-learning agents use the following training algorithm. To configure the training algorithm, specify options using an rlQAgentO)ptions object.
Initialize the critic Q(DQN)S,A;ϕ), which is a function approximator with parameters ϕ. The) with random parameter values in .ϕ), which is a function approximator with parameters ϕ. The ϕ), which is a function approximator with parameters ϕ. The

For each training episode:
1 G)et the initial observation S from the environment.

Training Algorithm

Q-learning agents use the following training algorithm. To configure the training algorithm, specify options using an rlQAgentO)ptions object.
Initialize the critic Q(DQN)S,A;ϕ), which is a function approximator with parameters ϕ. The) with random parameter values in .ϕ), which is a function approximator with parameters ϕ. The ϕ), which is a function approximator with parameters ϕ. The

For each training episode:
1 G)et the initial observation S from the environment.

Training Algorithm

Q-learning agents use the following training algorithm. To configure the training algorithm, specify options using an rlQAgentO)ptions object.
Initialize the critic Q(DQN)S,A;ϕ), which is a function approximator with parameters ϕ. The) with random parameter values in .ϕ), which is a function approximator with parameters ϕ. The ϕ), which is a function approximator with parameters ϕ. The

For each training episode:
1 G)et the initial observation S from the environment.

Training Algorithm

Sarsa全称是 state-action-reward-state'-action'。 也是采用 Q-table 的方式存储动作值函数；而且决策部分和 Q-Learning 是一样的 , 也是采用 ε-greedy策略。不同的地方在于 Sarsa 的更新方式是不一样的， Sarsa 是on-policy的更新方式，它的行动策略和评估策略都是 ε-greedy策略。

SARSA

Q-Learning vs Sarsa
• Q-Learning 算法，先假设下一步选取最大奖赏的动作，更新值函数。然后再通过 ε-greedy策略选择动作
• Sarsa 算法，先通过 ε-greedy策略执行动作，然后根据所执行的动作，更新值函数

SARSA

The SARSA algorithm is a model-free, online, on-policy reinforcement learning method. A SARSA agent is a value-based reinforcement learning agent that trains a critic to estimate the return or future rewards. For a given observation, the agent selects and outputs the action for which the estimated return is greatest.
SARSA agents can be trained in environments with the following observation and action spaces.

SARSA Agents

SARSA agents use the following critic.

During training, the agent explores the action space using epsilon-greedy exploration. During each control interval the agent selects a random action with probability , otherwise it selects the action for ϵ, otherwise it selects the action for which the value function greatest with probability 1–ϵ. .ϵ, otherwise it selects the action for

SARSA Agents

To estimate the value function, a SARSA agent maintains a critic Q(DQN)S,A;ϕ), which is a function approximator with parameters ϕ. The), which is a function approximator with parameters . The ϕ), which is a function approximator with parameters ϕ. The ϕ), which is a function approximator with parameters ϕ. The critic takes observation S and action A as inputs and returns the corresponding expectation of the long-term reward.
For critics that use table-based value functions, the parameters in ϕ), which is a function approximator with parameters ϕ. The are the actual Q(DQN)S,A) values in the table.
During training, the agent tunes the parameter values in . After ϕ), which is a function approximator with parameters ϕ. The training, the parameters remain at their tuned value and the trained value function approximator is stored in critic Q(DQN)S,A).

C) ritic Function Approximator

To create a SARSA agent:
1. C) reate a critic using an rlQValueFunction object.
2. Specify agent options using an rlSARSAAgentO)ptions object.
3. C) reate the agent using an rlSARSAAgent object.

Agent C) reation

SARSA agents use the following training algorithm. To configure the training algorithm, specify options using an rlSARSAAgentO)ptions object.
Initialize the critic Q(DQN)S,A;ϕ), which is a function approximator with parameters ϕ. The) with random parameter values in .ϕ), which is a function approximator with parameters ϕ. The ϕ), which is a function approximator with parameters ϕ. The

For each training episode:
1. G)et the initial observation S from the environment.
2. For the current observation S, select a random action A with probability . ϵ, otherwise it selects the action for O)therwise, select the action for which the critic value function is greatest.

Training Algorithm

SARSA agents use the following training algorithm. To configure the training algorithm, specify options using an rlSARSAAgentO)ptions object.
Initialize the critic Q(DQN)S,A;ϕ), which is a function approximator with parameters ϕ. The) with random parameter values in .ϕ), which is a function approximator with parameters ϕ. The ϕ), which is a function approximator with parameters ϕ. The

For each training episode:
1. G)et the initial observation S from the environment.
2. For the current observation S, select a random action A with probability . O)therwise, select the action for which the critic value ϵ, otherwise it selects the action for function is greatest.

Training Algorithm

SARSA agents use the following training algorithm. To configure the training algorithm, specify options using an rlSARSAAgentO)ptions object.
Initialize the critic Q(DQN)S,A;ϕ), which is a function approximator with parameters ϕ. The) with random parameter values in .ϕ), which is a function approximator with parameters ϕ. The ϕ), which is a function approximator with parameters ϕ. The

For each training episode:
1. G)et the initial observation S from the environment.
2. For the current observation S, select a random action A with probability . O)therwise, select the action for which the critic value ϵ, otherwise it selects the action for function is greatest.

Training Algorithm

• Train Reinforcement Learning Agent in Basic G)rid World
• C) reate MATLAB Environment Using C) ustom Functions

DRL 示例

This example shows how to solve a grid world environment using reinforcement learning by training Q-learning and SARSA agents. For more information on these agents, see Q-Learning Agents and SARSA Agents.This grid world environment has the following configuration and rules:1. The grid world is 5-by-5 and bounded by borders, with four possible actions (DQN)N)orth = 1, South = 2, East = 3, West = 4).2. The agent begins from cell [2,1] (DQN)second row, first column).3. The agent receives a reward +10 if it reaches the terminal state at cell [5,5] (DQN)blue).4. The environment contains a special jump from cell [2,4] to cell [4,4] with a reward of +5.5. The agent is blocked by obstacles (DQN)black cells).6. All other actions result in –ϵ.1 reward.

Train Reinforcement Learning Agent in Basic G)rid World

Train Reinforcement Learning Agent in Basic G)rid World

C) reate the basic grid world environment.env = rlPredefinedEnv(DQN)"BasicG)ridWorld");ϕ), which is a function approximator with parameters ϕ. The
To specify that the initial state of the agent is always [2,1], create a reset function that returns the state number for the initial agent state. This function is called at the start of each training episode and simulation. States are numbered starting at position [1,1]. The state number increases as you move down the first column and then down each subsequent column. Therefore, create an anonymous function handle that sets the initial state to 2.env.ResetFcn = @(DQN)) 2;ϕ), which is a function approximator with parameters ϕ. The
Fix the random generator seed for reproducibility.rng(DQN)0)

C) reate G)rid World Environment

To create a Q-learning agent, first create a Q table using the observation and action specifications from the grid world environment. Set the learning rate of the optimizer to 0.01.qTable = rlTable(DQN)getO)bservationInfo(DQN)env),getActionInfo(DQN)env));ϕ), which is a function approximator with parameters ϕ. The

C) reate Q-Learning Agent

qFunction = rlQValueFunction(DQN)qTable,getO)bservationInfo(DQN)env),getActionInfo(DQN)env));ϕ), which is a function approximator with parameters ϕ. The qO)ptions = rlO)ptimizerO)ptions(DQN)"LearnRate",0.01);ϕ), which is a function approximator with parameters ϕ. The

C) reate Q-Learning Agent

N)ext, create a Q-learning agent using the Q value function and configure the epsilon-greedy exploration. agentO)pts = rlQAgentO)ptions;ϕ), which is a function approximator with parameters ϕ. The agentO)pts.EpsilonG)reedyExploration.Epsilon = .04;ϕ), which is a function approximator with parameters ϕ. The agentO)pts.C) riticO)ptimizerO)ptions = qO)ptions;ϕ), which is a function approximator with parameters ϕ. The qAgent = rlQAgent(DQN)qFunction,agentO)pts);ϕ), which is a function approximator with parameters ϕ. The

C) reate Q-Learning Agent

To train the agent, first specify the training options. For this example, use the following options:Train for at most 200 episodes. Specify that each episode lasts for most 50 time steps.Stop training when the agent receives an average cumulative reward greater than 10 over 30 consecutive episodes.
trainO)pts = rlTrainingO)ptions;ϕ), which is a function approximator with parameters ϕ. The trainO)pts.MaxStepsPerEpisode = 50;ϕ), which is a function approximator with parameters ϕ. The trainO)pts.MaxEpisodes= 200;ϕ), which is a function approximator with parameters ϕ. The trainO)pts.StopTrainingC) riteria = "AverageReward";ϕ), which is a function approximator with parameters ϕ. The trainO)pts.StopTrainingValue = 11;ϕ), which is a function approximator with parameters ϕ. The trainO)pts.ScoreAveragingWindowLength = 30;ϕ), which is a function approximator with parameters ϕ. The

Train Q-Learning Agent

Train the Q-learning agent using the train function. Training can take several minutes to complete. To save time while running this example, load a pretrained agent by setting doTraining to false. To train the agent yourself, set doTraining to true.doTraining = false;ϕ), which is a function approximator with parameters ϕ. The
if doTraining % Train the agent. trainingStats = train(DQN)qAgent,env,trainO)pts);ϕ), which is a function approximator with parameters ϕ. The else % Load the pretrained agent for the example. load(DQN)'basicG)WQAgent.mat','qAgent')end

Train Q-Learning Agent

The Episode Manager window opens and displays the training progress.
Train Q-Learning Agent

To validate the training results, simulate the agent in the training environment.Before running the simulation, visualize the environment and configure the visualization to maintain a trace of the agent states.plot(DQN)env)env.Model.Viewer.ShowTrace = true;ϕ), which is a function approximator with parameters ϕ. The env.Model.Viewer.clearTrace;ϕ), which is a function approximator with parameters ϕ. The

Validate Q-Learning Results

Simulate the agent in the environment using the sim function.sim(DQN)qAgent,env)The agent trace shows that the agent successfully finds the jump from cell [2,4] to cell [4,4].

Validate Q-Learning Results

To create a SARSA agent, use the same Q value function and epsilon-greedy configuration as for the Q-learning agent. agentO)pts = rlSARSAAgentO)ptions;ϕ), which is a function approximator with parameters ϕ. The agentO)pts.EpsilonG)reedyExploration.Epsilon = 0.04;ϕ), which is a function approximator with parameters ϕ. The agentO)pts.C) riticO)ptimizerO)ptions = qO)ptions;ϕ), which is a function approximator with parameters ϕ. The sarsaAgent = rlSARSAAgent(DQN)qFunction,agentO)pts);ϕ), which is a function approximator with parameters ϕ. The

C) reate and Train SARSA Agent

Train the SARSA agent using the train function. Training can take several minutes to complete. To save time while running this example, load a pretrained agent by setting doTraining to false. To train the agent yourself, set doTraining to true.doTraining = false;ϕ), which is a function approximator with parameters ϕ. The
if doTraining % Train the agent. trainingStats = train(DQN)sarsaAgent,env,trainO)pts);ϕ), which is a function approximator with parameters ϕ. The else % Load the pretrained agent for the example. load(DQN)'basicG)WSarsaAgent.mat','sarsaAgent')end

C) reate and Train SARSA Agent

C) reate and Train SARSA Agent

To validate the training results, simulate the agent in the training environment.plot(DQN)env)env.Model.Viewer.ShowTrace = true;ϕ), which is a function approximator with parameters ϕ. The env.Model.Viewer.clearTrace;ϕ), which is a function approximator with parameters ϕ. The

Validate SARSA Training

Simulate the agent in the environment.sim(DQN)sarsaAgent,env)The SARSA agent finds the same grid world solution as the Q-learning agent.

Validate SARSA Training

This example shows how to create a cart-pole environment by supplying custom dynamic functions in MATLAB®.Using the rlFunctionEnv function, you can create a MATLAB reinforcement learning environment from an observation specification, an action specification, and user-defined step and reset functions. You can then train a reinforcement learning agent in this environment. The necessary step and reset functions are already defined for this example.C) reating an environment using custom functions is useful for environments with less complex dynamics, environments with no special visualization requirements, or environments with interfaces to third-party libraries. For more complex environments, you can create an environment object using a template class.

C) reate MATLAB Environment Using C) ustom Functions

The cart-pole environment is a pole attached to an unactuated joint on a cart, which moves along a frictionless track. The training goal is to make the pendulum stand upright without falling over.

C) art-Pole MATLAB Environment

For this environment:
• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi radians.
• The pendulum starts upright with an initial angle that is between –ϵ.0.05 and 0.05.
• The force action signal from the agent to the environment is from –ϵ.10 to 10 N).
• The observations from the environment are the cart position, cart velocity, pendulum angle, and pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical, or if the cart moves more than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –ϵ.10 is applied when the pendulum falls.

C) art-Pole MATLAB Environment

The observations from the environment are the cart position, cart velocity, pendulum angle, and pendulum angle derivative.O)bservationInfo = rlN)umericSpec(DQN)[4 1]);ϕ), which is a function approximator with parameters ϕ. The O)bservationInfo.N)ame = 'C) artPole States';ϕ), which is a function approximator with parameters ϕ. The O)bservationInfo.Description = 'x, dx, theta, dtheta';ϕ), which is a function approximator with parameters ϕ. The
The environment has a discrete action space where the agent can apply one of two possible force values to the cart: -10 or 10 N).ActionInfo = rlFiniteSetSpec(DQN)[-10 10]);ϕ), which is a function approximator with parameters ϕ. The ActionInfo.N)ame = 'C) artPole Action';ϕ), which is a function approximator with parameters ϕ. The

O)bservation and Action Specifications

To define a custom environment, first specify the custom step and reset functions. These functions must be in your current working folder or on the MATLAB path.The custom reset function sets the default state of the environment. This function must have the following signature.
[InitialO)bservation,LoggedSignals] = myResetFunction(DQN))
To pass information from one step to the next, such as the environment state, use LoggedSignals. For this example, LoggedSignals contains the states of the cart-pole environment: the position and velocity of the cart, the pendulum angle, and the pendulum angle derivative. The reset function sets the cart angle to a random value each time the environment is reset.

C) reate Environment Using Function N)ames

For this example, use the custom reset function defined in myResetFunction.m.function [InitialO)bservation, LoggedSignal] = myResetFunction(DQN))% Reset function to place custom cart-pole environment into a random% initial state.
% Theta (DQN)randomize)T0 = 2 * 0.05 * rand(DQN)) - 0.05;ϕ), which is a function approximator with parameters ϕ. The % ThetadotTd0 = 0;ϕ), which is a function approximator with parameters ϕ. The % XX0 = 0;ϕ), which is a function approximator with parameters ϕ. The % XdotXd0 = 0;ϕ), which is a function approximator with parameters ϕ. The
% Return initial environment state variables as logged signals.LoggedSignal.State = [X0;ϕ), which is a function approximator with parameters ϕ. The Xd0;ϕ), which is a function approximator with parameters ϕ. The T0;ϕ), which is a function approximator with parameters ϕ. The Td0];ϕ), which is a function approximator with parameters ϕ. The InitialO)bservation = LoggedSignal.State;ϕ), which is a function approximator with parameters ϕ. The
end

C) reate Environment Using Function N)ames

The custom step function specifies how the environment advances to the next state based on a given action. This function must have the following signature.
[O)bservation,Reward,IsDone,LoggedSignals] = myStepFunction(DQN)Action,LoggedSignals)
To get the new state, the environment applies the dynamic equation to the current state stored in LoggedSignals, which is similar to giving an initial condition to a differential equation. The new state is stored in LoggedSignals and returned as an output.For this example, use the custom step function defined in myStepFunction.m. For implementation simplicity, this function redefines physical constants, such as the cart mass, every time step is executed.

C) reate Environment Using Function N)ames

C) reate Environment Using Function N)ames

C) reate Environment Using Function N)ames

C) reate Environment Using Function N)ames

C) onstruct the custom environment using the defined observation specification, action specification, and function names.
env = rlFunctionEnv(DQN)O)bservationInfo,ActionInfo,'myStepFunction','myResetFunction');ϕ), which is a function approximator with parameters ϕ. The
To verify the operation of your environment, rlFunctionEnv automatically calls validateEnvironment after creating the environment.

C) reate Environment Using Function N)ames

You can also define custom functions that have additional input arguments beyond the minimum required set. For example, to pass the additional arguments arg1 and arg2 to both the step and rest function, use the following code.[InitialO)bservation,LoggedSignals] = myResetFunction(DQN)arg1,arg2)[O)bservation,Reward,IsDone,LoggedSignals] = myStepFunction(DQN)Action,LoggedSignals,arg1,arg2)
To use these functions with rlFunctionEnv, you must use anonymous function handles.ResetHandle = @(DQN))myResetFunction(DQN)arg1,arg2);ϕ), which is a function approximator with parameters ϕ. The StepHandle = @(DQN)Action,LoggedSignals) myStepFunction(DQN)Action,LoggedSignals,arg1,arg2);ϕ), which is a function approximator with parameters ϕ. The

C) reate Environment Using Function Handles

Using additional input arguments can create a more efficient environment implementation. For example, myStepFunction2.m contains a custom step function that takes the environment constants as an input argument (DQN)envC) onstants). By doing so, this function avoids redefining the environment constants at each step.
type myStepFunction2.m

C) reate Environment Using Function Handles

Using additional input arguments can create a more efficient environment implementation. For example, myStepFunction2.m contains a custom step function that takes the environment constants as an input argument (DQN)envC) onstants). By doing so, this function avoids redefining the environment constants at each step.
type myStepFunction2.m

C) reate Environment Using Function Handles

Using additional input arguments can create a more efficient environment implementation. For example, myStepFunction2.m contains a custom step function that takes the environment constants as an input argument (DQN)envC) onstants). By doing so, this function avoids redefining the environment constants at each step.
type myStepFunction2.m

C) reate Environment Using Function Handles

C) reate the structure that contains the environment constants.
C) reate Environment Using Function Handles

C) reate an anonymous function handle to the custom step function, passing envC) onstants as an additional input argument. Because envC) onstants is available at the time that StepHandle is created, the function handle includes those values. The values persist within the function handle even if you clear the variables.
StepHandle = @(DQN)Action,LoggedSignals) myStepFunction2(DQN)Action,LoggedSignals,envC) onstants);ϕ), which is a function approximator with parameters ϕ. The
Use the same reset function, specifying it as a function handle rather than by using its name.ResetHandle = @(DQN)) myResetFunction;ϕ), which is a function approximator with parameters ϕ. The

C) reate Environment Using Function Handles

C) reate the environment using the custom function handles.env2 = rlFunctionEnv(DQN)O)bservationInfo,ActionInfo,StepHandle,ResetHandle);ϕ), which is a function approximator with parameters ϕ. The

C) reate Environment Using Function Handles

Before you train an agent in your environment, the best practice is to validate the behavior of your custom functions. To do so, you can initialize your environment using the reset function and run one simulation step using the step function. For reproducibility, set the random generator seed before validation.Validate the environment created using function names.rng(DQN)0);ϕ), which is a function approximator with parameters ϕ. The InitialO)bs = reset(DQN)env)

[N)extO)bs,Reward,IsDone,LoggedSignals] = step(DQN)env,10);ϕ), which is a function approximator with parameters ϕ. The N)extO)bs

Validate C) ustom Functions

Validate the environment created using function handles.rng(DQN)0);ϕ), which is a function approximator with parameters ϕ. The InitialO)bs2 = reset(DQN)env2)

[N)extO)bs2,Reward2,IsDone2,LoggedSignals2] = step(DQN)env2,10);ϕ), which is a function approximator with parameters ϕ. The N)extO)bs2

Both environments initialize and simulate successfully, producing the same state values in N)extO)bs.

Validate C) ustom Functions

%Train Reinforcement Learning Agent in Basic G)rid WorldopenExample(DQN)'rl/BasicG)ridWorldExample')
%C) reate MATLAB Environment Using C) ustom FunctionsopenExample(DQN)'rl/C) reateMATLABEnvironmentUsingC) ustomFunctionsExample')

DRL 示例代码

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66

