Reinforcement Learning
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What Is Reinforcement Learning

Reinforcement learning is a goal-directed computational approach where a
computer learns to perform a task by interacting with an unknown dynamic
environment. This learning approach enables a computer to make a series of
decisions to maximize the cumulative reward for the task without human
intervention and without being explicitly programmed to achieve the task.

//f AGENT H\\

> —> POLICY — >
OBSERVATION ACTION
O Ay
PPPPPP
UUUUUU
REINFORCEMENT
LEARNING

ALGORITHM

|

r 3

REWARD
Ry

ENVIRONMENT <€




What Is Reinforcement Learning

The goal of reinforcement learning is to train an agent to complete a task
within an unknown environment. The agent receives observations and a
reward from the environment and sends actions to the environment. The
reward is a measure of how successful an action is with respect to completing
the task goal.

The agent contains two components: a policy and a learning algorithm.

« The policy is a mapping that selects actions based on the observations
from the environment. Typically, the policy is a function approximator with
tunable parameters, such as a deep neural network.

« Thelearning algorithm continuously updates the policy parameters based
on the actions, observations, and reward. The goal of the learning
algorithm is to find an optimal policy that maximizes the cumulative
reward received during the task.



What Is Reinforcement Learning

As an example, consider the task of parking a vehicle using an
automated driving system. The goal of this task is for the vehicle
computer (agent) to park the vehicle in the correct position and
orientation. To do so, the controller uses readings from cameras,
accelerometers, gyroscopes, a GPS receiver, and lidar (observations) to
generate steering, braking, and acceleration commands (actions). The
action commands are sent to the actuators that control the vehicle.
The resulting observations depend on the actuators, sensors, vehicle
dynamics, road surface, wind, and many other less-important factors.
All these factors, that is, everything that is not the agent, make up the
environment in reinforcement learning.



What Is Reinforcement Learning

To learn how to generate the correct actions from the observations,
the computer repeatedly tries to park the vehicle using a trial-and-
error process. To guide the learning process, you provide a signal that
is one when the car successfully reaches the desired position and
orientation and zero otherwise (reward). During each trial, the
computer selects actions using a mapping (policy) initialized with
some default values. After each trial, the computer updates the
mapping to maximize the reward (learning algorithm). This process
continues until the computer learns an optimal mapping that
successfully parks the car.



Reinforcement Learning Workflow

The general workflow for training an agent using reinforcement
learning includes the following steps.

Reinforcement Learning
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Agent Agent Policy




Reinforcement Learning
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Formulate Define Create Validate Deploy W
Problem Reward Agent Agent Policy

Formulate problem — Define the task tor the agent to learn, including how the agent
interacts with the environment and any primary and secondary goals the agent must
achieve.

Create environment — Define the environment within which the agent operates, including
the interface between agent and environment and the environment dynamic model.
Define reward — Specify the reward signal that the agent uses to measure its performance
against the task goals and how to calculate this signal from the environment.

Create agent — Create the agent, which includes defining a policy approximator (actor) an
value function approximator (critic) and configuring the agent learning algorithm.

Train agent — Train the agent approximators using the defined environment, reward, and
agent learning algorithm.

Validate agent — Evaluate the performance of the trained agent by simulating the agent
and environment together.

Deploy policy — Deploy the trained policy approximator using, for example, generated
GPU code.
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Q-Learning Agents

The Q-learning algorithm is a model-free, online, off-policy
reinforcement learning method. A Q-learning agent is a value-based
reinforcement learning agent that trains a critic to estimate the return
or future rewards. For a given observation, the agent selects and
outputs the action for which the estimated return is greatest.

Q-learning agents can be trained in environments with the following
observation and action spaces.

Cbservation Space Action Space

Continuous or discrete Discrete



Q-Learning Agents
Q agents use the following critic.

Crtic Actor

C-value function critic (S5 .A), which you create (1 agents do not use an acto

using rlQValueFunction or
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During training, the agent explores the action space using epsilon-
greedy exploration. During each control interval the agent selects a
random action with probability €, otherwise it selects the action for

which the value function greatest with probability 1-€.



Critic Function Approximator

To estimate the value function, a Q-learning agent maintains a critic
Q(S,A;d), which is a function approximator with parameters ¢. The
critic takes observation S and action A as inputs and returns the
corresponding expectation of the long-term reward.

For critics that use table-based value functions, the parametersin ¢
are the actual Q(S,A) values in the table.

During training, the agent tunes the parameter values in ¢. After
training, the parameters remain at their tuned value and the trained
value function approximator is stored in critic Q(S,A).



Agent Creation

To create a Q-learning agent:
1. Create acritic using an rlQValueFunction object.
2. Specify agent options using an rlQAgentOptions object.

3. Create the agent using an rlQAgent object.



Training Algorithm

Q-learning agents use the following training algorithm. To configure
the training algorithm, specify options using an rlQAgentOptions
object.

Initialize the critic Q(S,A;¢) with random parameter values in ¢.
For each training episode:

1 Get the initial observation S from the environment.



Training Algorithm
2. Repeat the following for each step of the episode until S is a terminal state.

a. For the current observation S, select a random action A with probability e. Otherwise, select
the action for which the critic value function is greatest.

A = arg max Q(S, A; ¢)
A

To specify € and its decay rate, use the EpsilonGreedyExploration option.
b. Execute action A. Observe the reward R and next observation §".

c. If §"is a terminal state, set the value function target y to R. Otherwise, set it to

y=R+ymax Q(S’, A; ¢)
A

To set the discount factor y, use the DiscountFactor option.

d. Compute the difference AQ between the value function target and the current Q(5.A;¢) value.

AQ=y—0Q(S,A:¢)



Training Algorithm

e. Update the critic using the learning rate a. Specify the learning rate when you create the
critic by setting the LearnRate option in the r1CriticOptimizerOptions property within

the agent options object.
- For table-based critics, update the corresponding Q(S,A) value in the table.

Q(S,A)=Q0(S,A;¢p) + a- AQ

- For all other types of critics, compute the gradients A¢ of the loss function with respect to
the parameters ¢. Then, update the parameters based on the computed gradients. In
this case, the loss function is the square of AQ.

Ap = 3 V4(A0P
b=d+a-Ap

f. Set the observation Sto §'.
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SARSA Agents

The SARSA algorithm is a model-free, online, on-policy reinforcement
learning method. A SARSA agent is a value-based reinforcement
learning agent that trains a critic to estimate the return or future
rewards. For a given observation, the agent selects and outputs the
action for which the estimated return is greatest.

SARSA agents can be trained in environments with the following
observation and action spaces.

Observation Space Action Space

Continuous or discrete Discrete



SARSA Agents

SARSA agents use the following critic.

Critic Actor

Q-value function critic Q(S,4), which you create using  SARSA agents do not use an actor.
rlQvalueFunction or rlvVectorQvalueFunction

During training, the agent explores the action space using epsilon-
greedy exploration. During each control interval the agent selects a
random action with probability €, otherwise it selects the action for
which the value function greatest with probability 1-€.



Critic Function Approximator

To estimate the value function, a SARSA agent maintains a critic
Q(S,A;d), which is a function approximator with parameters ¢. The
critic takes observation S and action A as inputs and returns the
corresponding expectation of the long-term reward.

For critics that use table-based value functions, the parametersin ¢
are the actual Q(S,A) values in the table.

During training, the agent tunes the parameter values in ¢. After
training, the parameters remain at their tuned value and the trained
value function approximator is stored in critic Q(S,A).



Agent Creation
To create a SARSA agent:
1. Create acritic using an rlQValueFunction object.
2. Specify agent options using an rISARSAAgentOptions object.

3. Create the agent using an rlISARSAAgent object.



Training Algorithm

SARSA agents use the following training algorithm. To configure the training
algorithm, specify options using an rl[SARSAAgentOptions object.

Initialize the critic Q(S,A;$) with random parameter values in ¢.
For each training episode:
1. Gettheinitial observation S from the environment.

2. Forthe current observation S, select a random action A with probability €.
Otherwise, select the action for which the critic value function is greatest.

A = arg max Q(S, A; ¢)
A



Training Algorithm

3. Repeat the following for each step of the episode until S is a terminal state:

a. Execute action Ay. Observe the reward R and next observation §".

b. For the current observation §’, select a random action A’ with probability e. Otherwise, select
the action for which the critic value function is greatest.

A’ = arg max Q(S', A’; )
b

c. If §'is a terminal state, set the value function target y to R. Otherwise, set it to
vy=R+yQ(S', A" ¢)

To set the discount factor y, use the DiscountFactor option.

d. Compute the difference AQ between the value function target and the current Q(S,A;¢) value.

AQ=y—0Q0(S.A;¢p)

-~



Training Algorithm
e. Update the critic using the learning rate a. Specify the learning rate when you create the
critic by setting the LearnRate option in the r1CriticOptimizerOptions property within

the agent options object.
- For table-based critics, update the corresponding Q(S,A) value in the table.

O(S,A) = 0(S,A;p) +a- AQ

- For all other types of critics, compute the gradients A¢ of the loss function with respect to
the parameters ¢. Then, update the parameters based on the computed gradients. In

this case, the loss function is the square of AQ.
_1 2
Ap = 3 V4(AQ)
b=d+a-Ap

f. Set the observation Sto 5"

g. Set the action Ato A",
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Train Reinforcement Learning Agent in Basic Grid World

This example shows how to solve a grid world environment using reinforcement
learning by training Q-learning and SARSA agents. For more information on these
agents, see Q-Learning Agents and SARSA Agents.

This grid world environment has the following configuration and rules:

1.

2.
3.

o U

The grid world is 5-by-5 and bounded by borders, with four possible actions
(North =1, South =2, East = 3, West = 4).

The agent begins from cell [2,1] (second row, first column).

The agent receives a reward +10 if it reaches the terminal state at cell [5,5]
(blue).

The environment contains a special jump from cell [2,4] to cell [4,4] with a
reward of +5.

The agent is blocked by obstacles (black cells).

All other actions result in -1 reward.



env.Model.States

env.Model States

Train Reinforcement Learning Agent in Basic Grid Woi :

1[1,1]

2|[2,1]

3 [31]

1 2 3 4 5 4[]

env.Model Actions 5 [5,1]

env.Model.Actions

1 6 [1,2]
7 12.2]

; LN 1 8 [3,2]
| | ] | ] 9 [4.2]

3E 10[5,2]
4w g 111,3]
5 12[2.3]
13[3.3]
14/[4,3]
15/[5,3]
16/[1.4]

env.Model.ObstacleStates 3

env.Model.ObstacleStates

1
1[13,3] 4
2 [3.4]
31351
4[43] 5

l;

17 [2.4]
18[2.4]
- - 19 [4,4]
20 [5,4]
h 21/[1,5]
Actions 222,51
23 [3.5]
24 [4,5]
25/[5,5]




env.Model

Create Grid World Environment —

1 GridSize [5.51

=t CurrentState "nanr . o
Create the basic grid world environment. < scin iy s
env = rlPredefinedEnv("BasicGridWorld"); | sl 2
E TerminalStates "[5.,51" 1x1

LN et ot
EE)
[ ]

To specify that the initial state of the agent is always [2,1], create a reset function
that returns the state number for the initial agent state. This function is called at
the start of each training episode and simulation. States are numbered starting at
position [1,1]. The state number increases as you move down the first column and
then down each subsequent column. Therefore, create an anonymous function
handle that sets the initial state to 2.

env.Model.States

env.ResetFcn = @() 2;

env.Model.States

1

1[0,

Fix the random generator seed for reproducibility. 2 2
rng(O) 3311

4[4.1]
5 [5,1]
6 [1,2]
712,21
813,21




Create Q-Learning Agent

To create a Q-learning agent, first create a Q table using the observation
and action specifications from the grid world environment. Set the
learning rate of the optimizer to 0.01.

gTable =rlTable(getObservationinfo(env),getActioninfo(env));

qTable qTable.Table
E>»> getObservationInfo (env) qTable Table

ans = 1 2 3 4

rlFiniteSetSpec with properties: ) ) 0 . p

Elements: [25x1 double]
Name: "MDP Obserwvations™
Description: [0x0 string]
Dimensicon: [1 1]
DataType: "double"
E>> getActionInfo (enwv)

W@ =~ o
oo oo
oo oo oo oo
oo o o
oo o o

12
13
ans = 14
15

oo o o
oo o o
oo oo oo oo
oo o o

rlFiniteSetSpec with properties:

Elements: [4x1 double] -

Name: "MDP Actions" 20

. . . 21

Description: [0x0 string] =
Dimension: [1 1]

oo oo
oo o o
oo oo oo oo
oo o o

24 0
DataType: "double" 25 0 0 0 0



Create Q-Learning Agent

gFunction =
rlQValueFunction(gTable,getObservationinfo(env),getActioninfo(env));
gOptions = rlOptimizerOptions("LearnRate",0.01);

gFunction

@] 1x1 rlQValueFunction

Property Value Size
| @ iObservationinfo | Ix7 AlfnieSetSoec 1x1
|| Actionlnfo Ix? rifiniteSetSoec 1x1
=t UseDevice "cpu” 1x1
qOptions

[E| 1x1 rlOptimizerOptions

Property Value Size

| | LearnRate 0.0100 11
1 GradientThreshold  Inf 1x1
=t GradientThreshol... "l2norm” 1x1
1 L2Regularization...  1.0000e-04 1x1
=tr) Algorithm "adam" 1x1

|&| OptimizerParame... Tx7 OptinizerParameters 1x1




Create Q-Learning Agent

Next, create a Q-learning agent using the Q value function and configure

the epsilon-greedy exploration.
agentOpts = rlQAgentOptions;

agentOpts.EpsilonGreedyExploration.Epsilon =.04;
agentOpts.CriticOptimizerOptions = qOptions;
gAgent = rlQAgent(gFunction,agentOpts);

agentOpts ghgent
(] 1x1 rlQAgentDptions (& 1x1 rlQAgent
Property Value Size Property Value Size

|©| EpsilonGreedyExploration ix] EpsilonGreedyExpio... 1x1 [E| AgentOptions ixi nQAgemOptions 1x1
|©| CriticOptimizerOptions ixi rOptimzerOptions 1x1 [*| UseExplorationPolicy 0 1x1
1 SampleTime 1 1x1 |®| Observationlnfo Ixi rfFiniteSetSpec 1x1
i DiscountFactor 0.9900 1x1 || Actionlnfo Ix7 rifiniteSetspec 1x1
|£| InfoTaSave IxT struct 1x1 1 SampleTime 1 1x1



Train Q-Learning Agent

To train the agent, first specify the training options. For this example, use
the following options:

Train for at most 200 episodes. Specify that each episode lasts for most 50
time steps.

Stop training when the agent receives an average cumulative reward
greater than 10 over 30 consecutive episodes.

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes= 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 11;
trainOpts.ScoreAveragingWindowlLength = 30;



Train Q-Learning Agent

Train the Q-learning agent using the train function. Training can take
several minutes to complete. To save time while running this example,
load a pretrained agent by setting doTraining to false. To train the agent
yourself, set doTraining to true.

doTraining = false;

if doTraining
% Train the agent.
trainingStats = train(gAgent,env,trainOpts);
else
% Load the pretrained agent for the example.
load('basicGWQAgent.mat'/gAgent')
end



Train Q-Learning Agent

The Episode Manager window opens and displays the training progress.

4 Reinforcement Learning Episede Manager
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=
T

.

\

ra

=
T
.

-40

Episode reward for IMDPEnv with riQAgent

40 60 80
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Final result: Training finishad after all
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Training Information
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| More Detals. |
Plat Options
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Validate Q-Learning Results

To validate the training results, simulate the agent in the training
environment.

Before running the simulation, visualize the environment and configure
the visualization to maintain a trace of the agent states.

plot(env)

env.Model.Viewer.ShowTrace = true;

env.Model.Viewer.clearTrace;



Validate Q-Learning Results

Simulate the agent in the environment using the sim function.
sim(gAgent,env)

The agent trace shows that the agent successfully finds the jump from cell
[2,4] to cell [4,4].
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Create and Train SARSA Agent

To create a SARSA agent, use the same Q value function and epsilon-
greedy configuration as for the Q-learning agent.

agentOpts = r[SARSAAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.04;
agentOpts.CriticOptimizerOptions = qOptions;

sarsaAgent = rlSARSAAgent(gFunction,agentOpts);



Create and Train SARSA Agent

Train the SARSA agent using the train function. Training can take several
minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent
yourself, set doTraining to true.

doTraining = false;

if doTraining

% Train the agent.

trainingStats = train(sarsaAgent,env,trainOpts);
else

% Load the pretrained agent for the example.

load('basicGWSarsaAgent.mat''sarsaAgent’)
end



Create and Train

SARSA Agent

4 Reinforcement Learning Episode Manager
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Validate SARSA Training

To validate the training results, simulate the agent in the training
environment.

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;



Validate SARSA Training

Simulate the agent in the environment.
sim(sarsaAgent,env)
The SARSA agent finds the same grid world solution as the Q-learning

agent.
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Create MATLAB Environment Using Custom Functions

This example shows how to create a cart-pole environment by supplying
custom dynamic functions in MATLAB®.

Using the rlFunctionEnv function, you can create a MATLAB reinforcement
learning environment from an observation specification, an action
specification, and user-defined step and reset functions. You can then
train a reinforcement learning agent in this environment. The necessary
step and reset functions are already defined for this example.

Creating an environment using custom functions is useful for
environments with less complex dynamics, environments with no special
visualization requirements, or environments with interfaces to third-party
libraries. For more complex environments, you can create an
environment object using a template class.



Cart-Pole MATLAB Environment

The cart-pole environment is a pole attached to an unactuated joint on a
cart, which moves along a frictionless track. The training goal is to make
the pendulum stand upright without falling over.

# Cart Pole Visualizer — O ) 4




Cart-Pole MATLAB Environment

For this environment:

 The upward balanced pendulum position is 0 radians, and the
downward hanging position is pi radians.

* The pendulum starts upright with an initial angle that is between -0.05
and 0.05.

* The force action signal from the agent to the environment is from -10
to 10 N.

* The observations from the environment are the cart position, cart
velocity, pendulum angle, and pendulum angle derivative.

* The episode terminates if the pole is more than 12 degrees from
vertical, or if the cart moves more than 2.4 m from the original
position.

« Areward of +1is provided for every time step that the pole remains
upright. A penalty of -10 is applied when the pendulum falls.



Observation and Action Specifications

The observations from the environment are the cart position, cart

velocity, pendulum angle, and pendulum angle deriva_
Observationinfo = rINumericSpec([4 1]);
Observationinfo.Name ='CartPole States';
Observationinfo.Description = 'x, dx, theta, dtheta’;

ObservationInfo

[®] 1x1 riNumericSpec

Property

I LowerLimit
1 UpperLimit
=ttt Mame

st Description
1 Dimension
=t DataType

Value
-Inf

Inf
"CartPole States”

"x, dx, theta, dtheta”

[4,1]
"double”

Size

The environment has a discrete action space where the agent can apply
one of two possible force values to the cart: -10 or 10 N.

Actioninfo = rlFiniteSetSpec([-10 10]);
ActionIinfo.Name = 'CartPole Action’;

Actionlnfo

|®] 1x1 rlFiniteSetSpec

Property

1 Elerments
=tr Mame

=t Description
- Dimension
=tr DataType

Value

[-10:10]
"CartPole Action”
el string

.11

"double”

Size

1x1
T1x1
T1x1
T1x1
1x2
T1x1

2x1
1x1
O
1x2
1x1



Create Environment Using Function Names

To define a custom environment, first specify the custom step and reset
functions. These functions must be in your current working folder or on
the MATLAB path.

The custom reset function sets the default state of the environment. This
function must have the following signature.

[InitialObservation,LoggedSignals] = myResetFunction()

To pass information from one step to the next, such as the environment
state, use LoggedSignals. For this example, LoggedSignals contains the
states of the cart-pole environment: the position and velocity of the cart,
the pendulum angle, and the pendulum angle derivative. The reset
function sets the cart angle to a random value each time the environment
IS reset.



Create Environment Using Function Names

For this example, use the custom reset function defined in myResetFunction.m.
function [InitialObservation, LoggedSignal] = myResetFunction()

% Reset function to place custom cart-pole environment into a random

% initial state.

% Theta (randomize)
TO=2*0.05*rand() - 0.05;
% Thetadot

Td0 =0;

% X

X0 =0;

% Xdot

Xd0=0;

% Return initial environment state variables as logged signals.
LoggedSignal.State = [X0;Xd0;T0;TdO0];
InitialObservation = LoggedSignal.State;

end



Create Environment Using Function Names

The custom step function specifies how the environment advances to the
next state based on a given action. This function must have the following
signature.

[Observation,Reward,IsDone,LoggedSignals] =
myStepFunction(Action,LoggedSignals)

To get the new state, the environment applies the dynamic equation to
the current state stored in LoggedSignals, which is similar to giving an
initial condition to a differential equation. The new state is stored in
LoggedSignals and returned as an output.

For this example, use the custom step function defined in
myStepFunction.m. For implementation simplicity, this function
redefines physical constants, such as the cart mass, every time step is

Avariitad



function [NextObs,Reward,IsDone,lLoggedSignals] = myStepFunction(Action,lLoggedSignals)
% Acceleration due to gravity in m/s”2
Gravity = 9.8;

% Mass of the cart

CartMass = 1.0;

% Mass of the pole

PoleMass = ©.1;

% Half the length of the pole

HalfPolelLength = ©.5;

% Max force the input can apply

MaxForce = 18;

% Sample time

Ts = 6.02;

% Pole angle at which to fail the episode
AngleThreshold = 12 * pi/180;

% Cart distance at which to fail the episode
DisplacementThreshold = 2.4;

% Reward each time step the cart-pole is balanced
RewardForNotFalling = 1;

% Penalty when the cart-pole fails to balance
PenaltyForFalling = -10;



% Check if the given action is valid.
if ~ismember(Action, [-MaxForce MaxForce])
error('Action must be %g for going left and %g for going right.’',...
-MaxForce,MaxForce);
end
Force = Action;

% Unpack the state vector from the logged signals.
State = LoggedSignals.State;

XDot = State(2);

Theta = State(3);

ThetaDot = State(4);

% Cache to avoid recomputation.

CosTheta = cos(Theta);

SinTheta = sin(Theta);

SystemMass = CartMass + PoleMass;

temp = (Force + PoleMass*HalfPolelLength*ThetaDot*ThetaDot*SinTheta)/SystemMass;



% Apply motion equations.

ThetaDotDot = (Gravity*SinTheta - CosTheta*temp) /
(HalfPolelLength*(4.8/3.@ - PoleMass*CosTheta*CosTheta/SystemMass));

XDotDot = temp - PoleMass*HalfPolelength*ThetaDotDot*CosTheta/SystemMass;

% Perform Euler integration.
LoggedSignals.State = State + Ts.*[XDot;XDotDot;ThetaDot; ThetaDotDot];

% Transform state to observation.
NextObs = LoggedSignals.State;

% Check terminal condition.

X = NextObs(1);

Theta = NextObs(3);

IsDone = abs(X) > DisplacementThreshold || abs(Theta) > AngleThreshold;

% Get reward.

if ~IsDone
Reward

else
Reward

RewardForNotFalling;

PenaltyForFalling;
end

end



Create Environment Using Function Names

Construct the custom environment using the defined observation specification,
action specification, and function names.

env = rl[FunctionEnv(ObservationInfo,ActionInfo,'myStepFunction’,myResetFunction');

To verify the operation of your environment, rlFunctionEnv automatically calls
validateEnvironment after creating the environment.

env env env.LoggedSignals
[®| 1x1 rlFunctionEnv env.LoggedSignals
Property Value Size Field Value Size
|=|n| StepFcn "myStepFunction’ 1x14 ] State [0:0:0.0377:0] 4x1
|- |h| ResetFcn ‘myResetFunction’ 1x15

| £| LoggedSignals  ix7 struct 1x1




Create Environment Using Function Handles

You can also define custom functions that have additional input
arguments beyond the minimum required set. For example, to pass the
additional arguments argl and arg2 to both the step and rest function, use
the following code.

[InitialObservation,LoggedSignals] = myResetFunction(argl,arg2)
[Observation,Reward,IsDone,LoggedSignals] =
myStepFunction(Action,LoggedSignals,argl,arg2)

To use these functions with rlFunctionEnv, you must use anonymous
function handles.

ResetHandle = @()myResetFunction(argl,arg2);

StepHandle = @(Action,LoggedSignals)
myStepFunction(Action,LoggedSignals,argl,arg2);



Create Environment Using Function Handles

Using additional input arguments can create a more efficient
environment implementation. For example, myStepFunction2.m contains
a custom step function that takes the environment constants as an input
argument (envConstants). By doing so, this function avoids redefining the

environment constants at each step.

type myStepFunction2.m



function [NextObs,Reward,IsDone,lLoggedSignals] = myStepFunction2(Action,LoggedSignals,EnvConstants)
% Custom step function to construct cart-pole environment for the function

% handle case.

%

% This function applies the given action to the environment and evaluates

% the system dynamics for one simulation step.

% Check if the given action is valid.
if ~ismember(Action, [-EnvConstants.MaxForce EnvConstants.MaxForce])
error('Action must be %g for going left and %g for going right.',...
-EnvConstants.MaxForce,EnvConstants.MaxForce);
end
Force = Action;

% Unpack the state vector from the logged signals.
State = LoggedSignals.State;

XDot = State(2);

Theta = State(3);

ThetaDot = State(4);

% Cache to avoid recomputation.

CosTheta = cos(Theta);

SinTheta = sin(Theta);

SystemMass = EnvConstants.MassCart + EnvConstants.MassPole;

temp = (Force + EnvConstants.MassPole*EnvConstants.Length*ThetaDot*ThetaDot*SinTheta)/SystemMass;

I



% Apply motion equations.
ThetaDotDot = (EnvConstants.Gravity*SinTheta - CosTheta*temp)...

/ (EnvConstants.Length*(4.8/3.8 - EnvConstants.MassPole*CosTheta*CosTheta/SystemMass));
XDotDot = temp - EnvConstants.MassPole*EnvConstants.Length*ThetaDotDot*CosTheta/SystemMass;

% Perform Euler integration.
LoggedSignals.State = State + EnvConstants.Ts.*[XDot;XDotDot; ThetaDot; ThetaDotDot];

% Transform state to observation.
NextObs = LoggedSignals.State;

% Check terminal condition.

X = NextObs(1);

Theta = NextObs(3);

IsDone = abs(X) > EnvConstants.XThreshold || abs(Theta) > EnvConstants.ThetaThresholdRadians;

% Get reward.

if ~IsDone
Reward

else
Reward

EnvConstants.RewardForNotFalling;

EnvConstants.PenaltyForFalling;
end

end



Create Environment Using Function Handles

Create the structure that contains the environment constants.

% Acceleration due to gravity in m/s~2
envConstants.Gravity = 9.8;
% Mass of the cart

envConstants.MassCart = 1.0,
% Mass of the pole
envConstants.MassPole = 0.1;

% Half the length of the pole
envConstants.Length = 8.5;

% Max force the input can apply
envConstants.MaxForce = 10;

% Sample time

envConstants.Ts = ©.02;

% Angle at which to fail the episode
envConstants.ThetaThresholdRadians = 12 * pi/18@;
% Distance at which to fail the episode
envConstants.XThreshold = 2.4;

% Reward each time step the cart-pole 1s balanced
envConstants.RewardForiotFalling = 1;

% Penalty when the cart-pole fails to balance
envConstants.PenaltyForfFalling = -5;



Create Environment Using Function Handles

Create an anonymous function handle to the custom step function,
passing envConstants as an additional input argument. Because
envConstants is available at the time that StepHandle is created, the
function handle includes those values. The values persist within the
function handle even if you clear the variables.

StepHandle = @(Action,LoggedSignals)
myStepFunction2(Action,LoggedSignals,envConstants);

Use the same reset function, specifying it as a function handle rather than
by using its name.
ResetHandle = @() myResetFunction;



Create Environment Using Function Handles

Create the environment using the custom function handles.

env2 =
rlFunctionEnv(Observationinfo,Actioninfo,StepHandle,ResetHandle);

enve

& 1x1 rlFunctionEnwv

Property Value Size
& StepFen @[Action LoggedSignals)myStepFunction2(Action,LoggedSignals,envConstants) 1x1
| ResetFcn @ myResetFunction 1x1

£liLoggedSignals  7x7 struct T



Validate Custom Functions

Before you train an agent in your environment, the best practice is to validate the
behavior of your custom functions. To do so, you can initialize your environment

using the reset function and run one simulation step using the step function. For

reproducibility, set the random generator seed before validation.

Validate the environment created using function names.

rng(0); InitialObs =

InitialObs = reset(env) :
8.2315

&

[NextObs,Reward,lsDone,LoggedSignals] = step(env,10);
NextObs

NextObs =

@
8.1947
8.8315

-8. 2826



Validate Custom Functions

Validate the environment created using function handles.
rng(0);

InitialObs2 = reset(env2)  icialoes2 -

]
&
8.a8315
5]

[NextObs2,Reward2,IsDone2,LoggedSignals2] = step(env2,10);
NextObs2

MextObs2 =

]
@.1947
8.a8315

-8. 2826

Both environments initialize and simulate successfully, producing the
same state values in NextObs.



DRL RBIATHS

%Train Reinforcement Learning Agent in Basic Grid World
openExample('rl/BasicGridWorldExample')

%Create MATLAB Environment Using Custom Functions
openExample('rl/CreateMATLABEnvironmentUsingCustomFunctionsExample')
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